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suits of A~„=0.4—0.6."" In conclusion, reflec-
tance measurements and plasma-simulation cal-
culations exhibit similarities unexpected only a
short time ago.
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We observe that recent theories of phase transitions in the two-dimensional XY model
predict a universal jump in the superfluid density of He films as T, is approached from
below Specific. ally, we find that limr r p, (T)/T = 3.62 x10 ~ g/cm2 K. Analogous re-
sults should hold for two-dimension. al plane, r magnets and liquid crystals.

A number of theories have been advanced deal-
ing with the critical properties of the classical
two-dimensional XI model. ' ' Although the lack
of long-range order in such systems has been
proven rigorously, ' evidence from high-tempera-
ture —series expansions' suggests the possibility
of a transition at finite temperature into a low-
temperature phase without longe-range order.
Indeed, the theories of Refs. 1 —6 all predict a
low-temperature region which can be character-
ized as a "phase" of critical points with contin-
uously variable critical exponents. Within this
phase, order-parameter correlation functions
are expected to fall off at large distances as pow-
er laws with temperature-dependent exponents.

There is considerable disagreement, however,
on the predictions near the critical temperature
T„above which correlations are expected to de-
cay exponentially. Because exPerimental realiza-
tions of two-dimensional XF behavior may actual-
ly be available in 'He films, in planar magnets, "
and in liquid crystals, " it seems desirable to
have a simple criterion for determining which of
the theories, if any, are correct.

In this Letter, we point out that the theories ad-
vanced in Refs. 2b and 5 predict a universal jump
in the superfluid density of 'he films. The size
of the jump is related to the critical exponent
q(T,), which governs the power-law decay of cor-
relations at the critical temperature. This result
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can be transcribed into analogous predictions for
two-dimensional planar magnets and for liquid-
crystal films. To the extent we understand Refs.
1, 3, and 4, these theories would lead to quite
different predictions. Because many of the pre-
dictions of Wiegmann' agree with the results of
Kosterlitz' and Jos0 eI, al. ,

' we expect that the
same universal jump in p, (T) would result from

his theory.
A crucial feature of the theories of Kosterlitz

and Thouless' and of Josb eI, al. ' is the mapping
of a two-dimensional lattice of planar spins onto
a neutral Coulomb gas. A Coulomb-gas problem
is also suggested by the application of statistical
mechanics to a superfluid 'He film. We assume
that the relevant probability distribution for the
superfluid velocity v, is

I'~ exp]- fd'r[ —,'(p, /kBT)v, ' —m'lny, ~a xv, ~'/(2@k)']),

where, in addition to the usual kinetic-energy term, we have included a term proportional to the total
squared vorticity in the fluid, or "enstrophy. " As pointed out by Kraichnan, ' conservation of "enstro-
phy" is a feature peculiar to two-dimensional hydrodynamics, and leads to the modified statistical-
mechanical description implied by (1). The parameter lny, is the thermodynamically conjugate varia-
ble to the enstrophy, and was introduced in a rather ad Aoc fashion for planar magnets in Ref. 5. We
shaB assume that yo is less than unity.

We now decompose the superfluid velocity field into a potential flow term and a part due to vortices:

v, (r) = (h'/m)Vy(r) + (2mb/m)(z x V)fd'r'n(r')G(r, r'), (2)

where y(r) is a smoothly varying function, n(r) is an integer-valued vorticity field, and m is the mass
of a helium atom. The unit vector z is perpendicular to the plane of the film, V represents a three-di-
mensional gradient, and the Green's function G(r, r') satisfies

[(S'/a»') + (S'/By') J G(r, r') = 6~2'(r r') . —

Although we have used a convenient continuum notation, we shall, in fact, impose an ultraviolet cutoff,
and require in particular that the logarithmic interaction between two vortices cease at separations
smaller than some core radius a. On substituting (2) into (1), we find a probability distribution of the
form I'~e~, with

dH=- ',Kfd'r (Vp—) +zK 2
—

2 n(r)n(r') ln +inyj 2 n (r), (4)
Q a2

where K=p,8'/m'k~T and y =y,e e». In deriving (4), we have approximated G(r, r') by (1/2») in(~r —r'~/
a)+ C, where C is a positive constant related to the core energy whose precise value is unimportant.
The kinetic-energy term is finite, provided that we allow only those vorticity complexions with Id'r n(r)
=0. Equation (4) is, of course, precisely the spin-wave Coulomb-gas Hamiltonian found for magnetic
systems in Refs. 2 and 5. To calculate correlation functions with (4), one must average over smoothly
varying velocity fields determined by y(r), and over distinct vorticity complexions determined by n(r).
At low temperatures (or small y,), we expect that n(r) will be zero nearly everywhere, and +1 at iso-
lated points. The vortex-interaction part of (4) is just that proposed years ago by Onsager. " We refer
readers to Ref. 12 for a discussion of the relation between continuous and discrete vorticity in classi-
cal hydrodynamics.

We shall demonstrate the universality of p, (T)/T by calculating this quantity directly from (4). This
will be done by using a renormalization transformation to relate a difficult calculation in the presence
of vortices to a more tractable one in a vortex-free environment. The superfluid density can be ex-
pressed in terms of a correlation function" ":

Kz '= m'k~T/k—'p, (T) =(m/ ')kJd r(v, (r) v, (5)). (5)

By substituting the velocity decomposition (2) into (5), we can easily derive a formal expression for
K„' as a power series in y:

K~
' =K '+ 4v'y J

"(dr/a)(r/a)' ' + O(y'), (6)

where we have made use of the relation' (n(5)n(r)) =-2y'r "»+O(y'). To this order, only vortex pairs
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the model produces a series of flat curves with-
out much structure in p, (T) below T„ there is a
characteristic square-root cusp" as T- T,
which depresses p, (T,) by about 10%%uo of its value
at T=O. Of course, in a real film, many other
processes will tend to depress p, (T) below its T
=0 value; however, we expect that an additional
10%%uo effect due to the cusp will still be important.
The various values of p, (T,) and T, all lie on a
straight line through the origin with slope 2m'k~/
@'m=3.52&&10 g/cm' K. We predict that this
slope will be a universal constant for 'He films
despite the fact that p, (T,) and T, will depend on
coverage, the details of the wall potential, etc.
Although the amplitude of the square-root cusp is
nonuniversal, we can estimate its size from our
model calculations. Near T„we find p, (T)/T
= [p, (T,)/T, ] [1+0.50(1 —T/T, )'~ +O(T, —T)].
Presumably, p, (T) is zero above T,.

The universal result (10) can be couched in
terms of a prediction for the critical exponent
q(T) as T- T, . Since it is an immediate conse-
quence of the theories of Refs. 2b and 5 that

dK '(I)/dl =4m'y (I),

dy (l)/dl = [2 —nK(l)] y(l), (8)

subject to the initial conditions K(l =0) =K and

y(l =0) =y. Comparing Eqs. (6) and (7), we arrive
at an important relation between K~ calculated
with the bare parameters K and y, and K„calcu-
lated with the partially "dressed" quantities K(l)
and y(l), namely,

KR (K~y) =Kg '(K(I) y(~)) (9)

A direct determination of K~ '(K, y) from the
series (6) can be difficult, especially for 2mK) 4,
where the integrals appearing in (6) are poorly
convergent. Equation (9), however, relates such
a calculation to one with altered parameters K(l)
and y(l). For T ( T„ the differential equations
(8) drive y(l) to zero", i.e.,

lim y(l) =0.
g ~ OO

This suggests that (9) can be exploited below T,
by taking the limit l-~,

q(T) = lim [1/2@K(l)],
Kz '(K, y) =limKz '(K(l), y(l))

with quantum numbers ~ 1 need be taken into account. An expression similar to (6) was obtained in Ref.
5,"where a very different (and much more complicated) correlation function was considered. In Ref.
5, it was shown that, by integrating over length scales between a, and a,e', the series (6) can be re-
written,

Kz '=K '(l)+4m'y (l)J (dr/a)(r/a)' "~ ' +O(y (l)), (7)

where K(l) and y(l) obey differential recursion
relations, '"

=limK '(I) (Ts T,),

where we have made use of (7) with y(l) =0. The
critical temperature is identified' ' with the
largest temperature such that

limy(l) =0.

As T goes to T, from below, it is easily shown
from Eqs. (8) that

lim Kz '-— lim m'k~T/h' p, (T) =—', m. (10)
r r r r

Thus, m'k~T/IE p, (T) approaches a universal con-
stant as T- T-, —a constant which is independent
of the initial values of K and y.

It is instructive to produce plots of p, (T) vs T
for the Coulomb-gas model (4) by integrating the
recursion relations (8) numerically until y(l) =0.
We have done this for different values of po,
which could be varied in an experiment by, say,
changing the thickness of the 'He film. Although

we have q(T) =m'kBT/2mb'p, (T), which gives q = —,
'

at T,. (There are actually logarithmic corrections
to the power-law decay of correlations at T„"
but these need not concern us here. ) An identical
relation between g and p, appears to us to be a
consequence of the theories of Refs. 1, 3, and 4.
Since Zittartz' predicts transition at T,'s such
that q(T, ) =2 and 4, and Luther and Scalapino'
predict a nonuniversal g(T', ) [in particular, g(T,)
can assume the value 1/48], precision experi-
mental measurements of p, (T) in 'He films could
presumably decide between the various theories.
Berezinskii predicts that p,(T) vanishes at T„
which can also be checked experimentally. Meas-
urements of third-s'ound propagation in films'7
are not inconsistent" with the prediction (10).

Predictions for the spin-wave stiffness in two-
dimensional magnetic systems analogous to (10)
follow by making the standard analogy between
XY magnetism and superfluidity. " Two-dimen-
sional nematic crystals can be described by a
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free-energy density of the form"

F = —,'K, (T)[V n(r)]'+ —,'K, (T) i n(r) x [V x n(r)] i',

where n(r) is a two-dimensional director field.
The E, Franck coefficient corresponding to "twist"
distortions is absent for d =2. A renormalization-
group analysis by Nelson and Pelcovits" has
shown that deviations from the one-Franck-con-
stant approximation K, =X, are irrelevant varia-
bles in the low-temperature XY-model phase
characterized by power-law decay of correla-
tions. In this limit, Eq. (11) reduces to a con-
tinuum version of the two-dimensional XY mod-
el." Taking over the analysis for superfluids,
we find

lim K, (T)/k B T = 2/m, i = 1, 3 .
T Tg

De Gennes" has suggested that a nematic film
floating on the surface of a fluid may give a good
realization of a liquid-crystal system described
by (11). "Soap-bubble" films of a small number
of smectic liquid-crystal layers may also pro-
vide such an experimental realization. "

Although we have demonstrated explicitly only
that p, (T)/T should approach a universal constant
for the model defined by (4), we believe our con-
clusions remain unchanged when other irrelevant
variables are taken into account. Indeed, if we
denote by (y,] a collection of additional perturba-
tions representing, say, vortices with quantum
numbers +2, +3, . . . , or interactions between
vortices and the field y(r), it seems clear that
the renormalization groups constructed in Refs.
2b and 5 would lead to a simple generalization of
(9): K~ '(K, y, (y,f) =K„'(K(l),y(l), fy, (l))). In
d dimensions this result reads K„(K,y, fy, j)
=e ' " 'Ks(K(l), y(l), Q, (l)) ), which is just the
Josephson scaling relation" in disguise. It is
easy to show using the methods of Refs. 2 and 5
that the perturbations b, (l)] as well as y(l) all
tend to zero as l- in the low-temperature phase
of the two-dimensional LY model. An analysis in
the limit l-~ then leads immediately to the uni-
versal result (10).

It is worth noting that the universal (minimum)
value of p, (T)/T which is approached as T- T,
bears a striking resemblance to the predicted"
minimum conductivity in two-dimensional metals.
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We report thermal conductivity measurements of a Pbo qCuo l film before (amorphous)
and after (crystalline) annealing. Below 7, , where electronic effects are negligible, we
found that the phonon contribution in the amorphous phase k, &" was much larger than
that in the crystalline phase. We also found that the temperature dependence of k~ i'" re-
sembles that of amorphous dielectrics, thus providing evidence that this sort of "glassy"
behavior does not require the presence of covalent bonds.

Amorphous insulators like glasses, polymers,
and a-Se show distinctive thermal properties
below 1 K. For these substances contributions to
the specific heat proportional to T and T' are ob-
served in addition to the Debye term. ' Further-
more, a T' variation of the (phonon) thermal con-
ductivity is found in contrast to the T' dependence
seen in crystals. ' This "glassy" behavior, also
visible in the k vs T curves of semiconducting
a-Ge, ' can be successfully interpreted in terms
of localized low-energy excitations (LEE) as as-
sumed in the Anderson-Halperin-V'arma-Phillips
tunneling model. '~ To date, however, this mod-
el lacks a microscopic explanation. Thus, since
all the mentioned materials are covalently bond-
ed, it is not clear whether the amorphous struc-
ture itself or the presence of covalent bonds in a
disordered environment is essential for "glassy"
behavior.

Amorphous metals, of course, are the natural
probe for such an investigation. Very recently,
a phonon thermal conductivity k -T was report-
ed for several bulk metallic glasses. ' However,
all of these materials, most of which contain
metalloids with covalent bonds, are in the normal
state (including Ti, ,Be, ,Zr, , which becomes
superconducting only below 0.32 K). In addition,
they all contain transition metals which can act
as resonance scattering centers of the conduction
electrons. Therefore, the influence of the con-
duction electrons (as heat carriers as well as
phonon scatters) is not easy to calculate, and as
a result conclusions drawn for k are, at most,
only of qualitative value. To avoid these difficul-
ties, an amorphous superconducting Pb, ,Cu, ,
(PbCu) film, prepared by quench condensation

from the vapor phase, was chosen for the present
investigation: Well below 7, =6.5 K, the influence
of the few remaining electronic quasiparticles on
k is negligible. Besides, in PbCu there are no
constituents with covalent bonds.

Another motivation for thermal conductivity
measurements on amorphous metal films stems
from the fact that in quench-condensed crystal-
line metal films A' is almost negligible as com-
pared to the electronic contribution O'." It has
been argued' that in this case the phonons are
scattered strongly from spatially extended lat-
tice defects, i.e. , stacking faults, dislocations,
and grain boundaries. However, since these de-
fects should be absent in a solid without long-
range order, we hoped to observe a substantial
recovery of the ratio kP /k' in amorphous (as com-
pared to crystalline) PbCu. This should enable us
to use k " as a probe of "glassy" behavior.

The amorphous film was prepared by means of
the Dvekxohxofen technique deveoped by Hilsch
and Mar tienssen'. A mechanically homogenized
90-at.% Pb, 10-at.% Cu mixture was evaporated
in small pellets (each producing less than one
atomic layer) onto a cooled substrate. As sub-
strate we used a 12.5-pm-thick circular Kap-
ton foil, which sealed an additional Cu tank
clamped to the cold part of a He' cryostat. ' Dur-
ing evaporation of the metal film, this Cu tank
was filled with He' exchange gas (5 Torr). Thus
the substrate temperature could be kept below
15 K, i.e., well below the crystallization temper-
ature (30 K) of PbCu. The pressure in the cryo-
stat remained below 10 ' Torr during evaporation.
Afterwards the He' exchange gas was pumped out
and the total thermal conductance E~ of the sub-

1205


