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Problem 3.4.1.
Note that, near Tc, the action Seff in eqn (3.4.1) can be approximated by

because the order parameter (pc Is small near the critical point (or the phase transition
point) at T = Tc. In the mean-field (or semiclassical) approach to the phase transition and
the critical point, we first find the mean-field solution that minimizes the action. We then
assume that fluctuations around the mean-field solution are small and expand the action
to quadratic order in the fluctuations. The quadratic approximation of 50ff can be used to
calculate various correlations.

1. Use the mean-field approach to calculate the decay exponent 7 in
l/\x "'' at the critical point.

2. The above result is not always valid because the classical theory may break down.
Repeat the discussions at the end of Section 3.3.8 (i.e. write Scff in the form g~lS
with dimensionless S) to see when the mean-field approach can correctly describe
the critical point and when the critical point is controlled by strong fluctuations; that
is, to find the upper critical point dr.

3. Here we would like to introduce the concept of relevant versus irrelevant perturba-
tions. We know that above the upper critical dimension the classical theory correctly
describes the critical point at the phase transition. Now we add a perturbation

to the effective action SCJT. If the perturbation is important and modi-
fies the critical exponents, then we say it i.s a relevant perturbation. If the perturbation
becomes vanishingly small near the critical point, then we say it is an irrelevant per-
turbation. Use the same scalings that you found above to see how the perturbation

modifies the scaled action 5. Determine for what range of a the
perturbation is relevant, and for what range of o the perturbation is irrelevant.

3.5 Renormalization group

3.5.1 Relevant and irrelevant perturbations

• Relevant perturbations change the long-distance (or low-energy) behavior of
a system, while irrelevant perturbations do not.

• We can use the scaling dimension of a perturbation to determine if the
perturbation is relevant or irrelevant.

In the above discussion of the KT transition, we note that, when
the vortex fluctuations are just 'small perturbations'. However, if h < 2, then
no matter how small c~S' is, the vortex fluctuations always destroy the algebraic
long-range correlation of ^e'^^o"1^0^. Thus, when h < 2, the perturbation
of including the vortex fluctuations is called a relevant perturbation. When h >
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2, the perturbation is called an irrelevant perturbation, and, when h — 2, the
perturbation is called a marginal perturbation. In the following we would like to
discuss relevant/irrelevant/marginal perturbations in a more general set-up.

Consider a theory described by the action

where aO is a perturbation. We assume that SQ has a Z^ symmetry and
under the Z% transformation. As a result, (O) = 0 when a — 0. We also assume
that, for large x,

when a = 0. Here h is called the scaling dimension of the operator O (the scaling
dimension of 1/x is defined as 1). Equation (3.5.1) also defines the normalization
of the operator O.

At the second-order perturbation, the partition function is given by

where ZQ is the zeroth-order partition function. We see that the second-order
perturbation changes the effective action by

system prefers to have two O(x) insertions. When L ;§> £, the system wants to
have two O(x) insertions for each £d volume. We see that, if we are interested
in correlation functions at length scales beyond £, then the perturbation is always
important. We conclude that the perturbation               is relevant if the scaling
dimension of O(x] is less than d. In this case, O(x) is called a relevant operator. If
the scaling dimension of O(x) is greater than (or equal to) d, then O(x) is called
an irrelevant (marginal) operator. An easy way to remember this result is to note
that the perturbation J ddx O(x) is relevant if f ddx O(x) has a dimension less
than zero.

The concept of scaling dimension also allows us to use dimensional analysis
to estimate the induced (O) by a finite perturbation aO. As the scaling dimension
of 5S = f ddx aO is zero by definition, the coefficient a has a scaling dimension

. When aO is an irrelevant perturbation (i.e. when h > d),
the induced (O) is proportional to a. We have

where I is the short-distance cut-off. When aO is a relevant perturbation (i.e. when
h < d), the induced (O} is more than ald~2h. By matching the scaling dimensions,

None that, when and we have Thus, the
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we find that

Problem 3.5.1.
The effective action

describes a critical point. Calculate the scaling dimensions of              , and |tp|4. Show
that, below a spatial dimension do, the perturbation                      becomes a relevant per-
turbation. Find the value of do and explain why do is equal to the upper critical dimension
dc of

3.5.2 The duality between the two-dimensional XY-model and the two-dimensional
clock model

• The vortices in the two-dimensional XY-model can be viewed as particles.
The field theory that describes those particles is the two-dimensional clock
model.

In order to study the vortex fluctuations of the XY-model in more detail, we
would like to map the two-dimensional XY-model to the Z\ two-dimensional clock
model. A generic Zn clock model is defined by

When g — 0 the clock model is the XY-model at finite temperatures. The action is
the energy divided by the temperature: S = BE. The g cos(nl9) term (explicitly)
breaks the [/{!) rotational symmetry. If we view
the two components of a spin, then, for n = 1, the gc,os(8) term is a term induced
by a magnetic field in the Sx direction. For general n, the clock model has a Zn

symmetry:
To show the duality relation, we consider the following partition function of

eqn (3.5.3) with

where ZQ is the partition function of  Each term in the sum-
mation arises from the correlation                                                                             . Also,

as
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Equation (3.5.4) is identical to the partition function (3.4.5) of the XY-model
(3.4.2) if            So, the Z\ clock model (3.5.3) is equivalent to the XY-model
(3.4.2) (with vortices) if ̂ . = IT.T). The vortex in the XY-model is mapped to

 in the clock model. Similarly, the vortex in the clock model is mapped to
 jn me XY-model. The vortex in the clock model has a scaling dimension TTK.

The             operator in the XY-model has a scaling dimension 1/4.7777. The relation
 ensures that the two scaling dimensions agree with each other.

We know that the f/( l) symmetry in the XY-model does not allow the el° term
to appear in the action. Using the above mapping, we see that the corresponding
clock model must not allow vortex fluctuations. Allowing the vortex fluctuations in
the clock model corresponds to explicitly breaking the f/(l) symmetry in the dual
XY-model. We see that there are two different types of clock model, the one with
vortex fluctuations and the one without vortex fluctuations. As the correspond-
ing dual models have different symmetries, the two types of clock model have
very different properties. We will call the clock model with vortex fluctuations the
compact clock model, and the one without vortex fluctuations the non-compact
clock model. The XY-model with vortices is mapped to an Z\ non-compact clock
model. Such a mapping allows us to study the KT transition in the XY-model by
studying the transition in the corresponding non-compact clock model.

3.5.3 Physical properties of the clock model

• A field theory model is not well defined unless we specify the short-distance
cut-off.

• Ginzburg-Landau theory, containing strong vortex fluctuations, cannot
describe phase transitions in the non-compact clock model.

In this section, we will discuss possible phase transitions in a generic Zn clock
model. When g is large, the field 0 is trapped by one of the minima of the potential
—gcos(nd). We believe that, in this case, the model is in a phase that sponta-
neously breaks the Zn symmetry. When both K and g are small, the fluctuation of
0 is strong. We expect that the model will be in a /^-symmetric phase.

Despite sounding so reasonable, the above statements do not really make sense.
This is because g has a dimension. It is meaningless to talk about how large g is.
What is worse is that g is the only parameter in the model that has a non-trivial
dimension. So, we cannot make a dimensionless combination to determine how
large g is.
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To understand the importance of the gcos(nO) term in a physical way, we
would like to ask how big the eind operator is. One physical way to answer
this question is to examine the correlation of eind for the XY-model S =

The correlation is given by (see eqn (3.3.25))

One big surprise is that the correlation depends on the short-distance cut-off I.
Thus, the magnitude (or the importance) of the operator eind is not even well
defined unless we specify the cut-off I. This illustrates the point that to have a
well-defined field theory we must specify a short-distance cut-off I. To stress this
point, we would like to make the I dependence explicit and write the action as

The short-distance cut-off is introduced by requiring that the QI field does not
contain any fluctuations with wavelengths shorter than /:

We see that a well-defined clock model (3.5.6) contains three parameters KI, gi,
and 1. So, the clock model really contains two dimensionless parameters KI and

We can now make sensible statements. When gi S> 1, we believe that the model
is in a phase that spontaneously breaks the Zn symmetry. When both KI and g\ are
much less than 1, we expect the model to be in a Zn-symmetric phase.

A non-trivial limit is when « / ; § > ! and gi -C 1. Is the model in the
.^-symmetric phase or in the Zn-symmetry-breaking phase? The concept of rele-
vant/irrelevant perturbation is very helpful in answering this question. If we treat
the gl cos(n ) term as a perturbation to the XY-model, then, from eqn (3.5.5), we
see that the scaling dimension of em° in the XY-model is
Thus, the gi cos(nO] term is relevant when            < 2 and irrelevant when
n2/47nq > 2.

This result is reasonable. When KI is small, the fluctuations of 0 are strong.
This makes the gi cos(n#) term average to zero and be less effective. Hence the
perturbation gi cos(n9) is irrelevant. When gi cos(n9) is irrelevant and gi is small,
we can drop the gi cos(nO) term when we calculate long-range correlations. This
suggests that, at long distances, we not only have the Zn symmetry, but we also
have the full U(l) symmetry when both KI and gi are small.

When K is large, the fluctuations of 0 are weak. This makes the g\ cos(nO) term
a relevant perturbation. The effect of the gi cos(n9] term becomes important at
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long distances, no matter how small gi is. Thus, we expect the system to be trapped
in one of the n minima of the potential term and the Zn symmetry is spontaneously
broken, even for small g;.

After realizing that the clock model can have a Zn-symmetry-breaking phase
and a ZTl-symmetric phase, the next natural question is how do the two phases
transform into each other? One way to understand the transition is to introduce a
complex order parameter               and write down a Ginzburg-Landau
effective theory for the transition

Note that the cRecp" term (explicitly) breaks the (/(I) symmetry down to Zn.
When n > 1, the Ginzburg-Landau theory describes a symmetry-breaking
transition as a changes from a positive value to a negative value.

When n = 1, the Ginzburg-Landau theory contains no phase transition because
there is no symmetry breaking. This seems to suggest that the Z\ clock model
contains no phase transition and the corresponding XY-model contains no TK
transition.

So what is wrong? In the Ginzburg-Landau theory, the order parameter has
strong amplitude fluctuations near the transition point. A typical configuration
of 1/3 contains many points where <p = 0. So, there are strong vortex fluctua-
tions. The Ginzburg-Landau theory describes the phase transitions in the compact
clock model. The Ginzburg-Landau theory does not apply to a non-compact clock
model.

3.5.4 Renormalization group approach to the non-compact clock model

• Through the concept of running coupling constants, the renormalization group
(RG) approach allows us to see how a theory evolves as we go to long dis-
tances or low energies. It is very useful because it tells us the dynamical
properties that emerge at long distances or low energies.

• As an effective theory only evolves into a similar effective theory, we cannot
use the renormalization group approach to obtain the emergence of qualita-
tively new phenomena, such as the emergence of light and fermions from a
bosonic model.

In this section, to understand the physical properties of the non-compact clock
model, we will work directly with the 9 field in the clock model.

We note that, if the fluctuations O(x) and O(y) at different locations fluctuate
independently, then the so-called connected correlation
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vanishes. So, the connected correlation measures the correlation between the
fluctuations ofO(x) and 0(y).

When gi — 0, the non-compact clock model always has an algebraic long-range
correlation: regardless of

the value of K,\. The issue here is how the g\ cos(nO) term affects the algebraic
long-range correlation.

As discussed in the last section, when KI < n2/8ir, ein8^ is irrelevant and
a small gi cos(n9) term will not affect the algebraic long-range correlation. When
KI >                      is relevant. We expect that a gi cos(nO) term will change the
algebraic long-range correlation into a short-ranged one, no matter how small gi
is. We see that, for small gi, the non-compact clock model has a phase transition
at                  In the following, we will use the RG approach to understand the
above phase transition.

We note that the clock model is well defined only after we specify a short-
distance cut-off 1. The key step in the RG approach is to integrate out the
fluctuations between the wavelengths I and A (A > I). This results in a model
with a new cut-off A. To integrate out the short-wavelength 0 fluctuations, we first
write

where 59 only contains fluctuations with wavelengths between I and A. As the
short-wavelength fluctuations 50 are suppressed by the term, we expect
56 to be small and expand the action to second order in 50 as follows:

We treat 6\ as a smooth background field, and integrate out SO (this approach is
called the background-field RG approach). We obtain the effective action
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where                                       We note that the last terra can be rewritten as

where               d2x K(x). We see that
 etc. are generated. RG flow can generate many new

terms that are not in the starting action. In fact, any local terms that do not break
the Zn symmetry can be generated. However, the term cos(0\) is not generated
when n > 1 because it breaks the Zn symmetry. For the time being, let us only
keep the terms (dxO\)2 and cos(6\) that are already in our starting action.23 We
find that the action of our model becomes

where A is the new cut-off. The effective coupling constants depend on the cut-off
A and are called running coupling constants. They are given by (assuming that

23 It turns out thai all of the other terms arc irrelevant. If those terms are small at the start of the
RG flow, then they will become even smaller after a long flow. This is the reason why we can ignore
those terms. Certainly, if those terms arc large at the beginning, then they can change everything.
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F I G . 3.10. fa) The RG flow of g\ and h-.,\ as determined by eqn (3.5.9). (b) The RG flow of ax and

fi\ as determined by eqn (3.5.10).

Let b — In A; then the changes of the coupling constants are described by the
following differential equations:

In terms of the dimensionless couplings K\ —
differential equations can be rewritten as follows:

The flow of (</A, «A) is illustrated in Fig. 3.10(b). We find that

which are called the RG equations. The flow of (K, g) is illustrated in Fig. 3.10(a).

3.5.5 Renormalization group theory and phase transition

• The concept of a fixed point and effective theory for a fixed point.

To understand the physical implications of the RG flow, let us first ignore the
flow of KX and study, instead, the following RG equations:

113

and these
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from the RG equations, where h — ̂ ^ is the scaling dimension of cos(n#). When
cos(nO) is relevant, a very small gi can become as large as one wants for a long
enough flow. In particular, g\ = 1 when                              At this point, the cou-
pling constants stop flowing because the RG equations (3.5.9) become invalid due
to the higher-order g\ terms that were ignored in the RG equations. The resulting
effective theory has the same form as eqn (3.5.8) and is called fixed-point theory.
We can use the fixed-point theory to obtain the long-distance correlations and other
long-distance physical properties of the original model.

When g\ = 1, everything in the renormalized fixed-point theory is of order 1
when measured in units of A. Thus, if we believe that a large g\ cos(nO\) will make
9\ have short-range correlation, then the correlation length £ must be of order 1
when measured by A. This way, we find that

which agrees with the general result                 obtained in the last sec-
tion, after realizing that the perturbation O in the last section corresponds to
O = lrhcos(nd). (Equation (3.5.1) determines the normalization of O.) Thus
a = glh. In terms of K, the above result leads to

Also, a large g^ cos(n^) potential term at the length scale £ traps 0^ in one
of the potential minima. Thus, a relevant perturbation gi cos(n6i) always causes a
spontaneous Zn symmetry breaking, no matter how small g\ is at the cut-off scale.

When K approaches n2/8yr, the correlation length £ —> oo. Thus, there is a
phase transition at n2/8vr. When K < n2/8?r, the perturbation gi cos(n(9/) is irrel-
evant. After a long RG flow, we obtain a different fixed-point theory ^(dxO\)2

because the g^ flow goes to zero. This fixed-point theory has full £7(1) symmetry!
This is a very striking and very important phenomenon called dynamical symme-
try restoration. Sometimes a term may explicitly break a certain symmetry (such
as the gi cos(n0/) term breaks the U(l) symmetry down to the Zn symmetry). If
the term is irrelevant, then, at long distances and/or low energies, the term flows to
zero and the symmetry is restored.

To summarize, the non-compact clock model (3.5.3) has Zn symmetry. When K
is less than a critical value KC — ri2/87r, the model is in a phase that does not break
the Zn symmetry. Furthermore, the phase has U(l) symmetry at long distances.
The correlation length is infinite. When K is above the critical value KC, the model
is in a phase that breaks the Zn symmetry. The correlation length is finite.

The above discussion is correct and general if there is no marginal operator in
the model. In that case, h can be treated as a constant. However, for the XY-model,
the operator (dxO)2 has a dimension exactly equal to 2 and is an exact marginal
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operator. As a result, K is a marginal coupling constant. The constant K, and hence
h, can shift their values in an RG flow. This results in the RG flow described
by eqn (3.5.9) and shown in Fig. 3.10(a). We note that the RG flow described in
Fig. 3.10(a) is quite different from that in Fig. 3.10(b) near the transition point
KQC = n2/87r. The result (3.5.11) only applies to the RG flow in Fig. 3.10(b), and
is not valid for the RG flow in Fig. 3.10(a) near the transition point 
In the next section, we will calculate £ for the RG flow in Fig. 3.10(a).

In the above, we have used the RG approach to discuss the phases and the phase
transitions in the non-compact clock model. We can also use the same RG result to discuss
the phases and the phase transitions in the compact clock model with vortex fluctuations.

At first sight, one may say that vortices and anti-vortices are always confined due to
the potential term gt cos(nft). This is indeed true if K > KC and recos(n0) is relevant. When
K < KC, Kcos(n6) is irrelevant. In this case, the properties of the vortices are just like those
in the XY-model. The vortex fluctuations are relevant if K < 2/V and irrelevant if K > 2/vr.
When vortex fluctuations are relevant, they modify the phase structure of the clock model.

The compact two-dimensional clock model can have several different behaviors depend-
ing on the value of n.

1. n > 4: The model is in the Zn-symmetry-breaking phase when K > n2/87r. The Zn

order parameter e i s has a long-range order:
Near the transition point n2/8-n-, we have K > 2/w and the vortex fluctuations are
irrelevant. Thus, when                  he system is in a Zn-symmetric phase
with emergent U(l) symmetry at long distances. The Zn order parameter eie has
an algebraic long-range order:  When K < 2/V, the
vortex fluctuations are relevant, which destroys the algebraic long-range order. The
system is in a Zn-symmetric phase. The Zn order parameter e'" has a short-ranged
correlation: (e ie(ll!)e~ i9(0)) ~ e~^^. As there is no long-range correlation, we
cannot even talk about the emergent (7(1) symmetry at long distances.

2. n = 4: The model is in the Z4-symmetry-breaking phase when K > n2/8n = 2/7r,
and in a ^-symmetric phase when K < 2/ir. In the symmetry-breaking phase,
gi cos(4#) is relevant and the vortex is irrelevant. In the ̂ -symmetric phase, gi cos(4#)
is irrelevant and the vortex is relevant. Thus, the ^-symmetric phase has no alge-
braic long-range order and no emergent (7(1) symmetry. At the transition point, both
gi cos(40) and the vortex are marginal.

3. n < 4: The model is in the Zn-symmetry-breaking phase when K » n2/8ir, and
in the Zn-symmetric phase when K < n2/87r. Near the transition point, both e ine

and the vortices are relevant and fluctuate strongly. The phase transition is described
by Ginzburg-Landau theory, see eqn (3.5.7). When n = 1, there is no symmetry
breaking and no phase transition.

Problem 3.5.2.
Running 'coupling function' Consider a model                                         , where
V(9) is a small periodic function:                                Find the RG equations for the flow
of the 'coupling function' V. You may ignore the flow of K because we have assumed that
V is small. Discuss the form of V after a long flow if we have started with a very small V.

Problem 3.5.3.
The n = 1 clock model (3.5.3) describes a two-dimensional XY-spin system in a magnetic

constant
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field Bx, where Sx = cos(0), Sy = sin($), Sz = 0, and Bx = g. Assume that cos(0) is
relevant. Use the RG argument to find the value of Sx induced by a small magnetic field.
Now assume that cos($) is irrelevant. What is the Sx induced by a small magnetic field?
Compare your result with eqn (3.5.2). (Hint: You may write the renormalized action in
terms of the original coupling constant Bx and use the renormalized action to calculate the
induced Sx. You only need to calculate the induced Sx up to an (9(1) coefficient.)

3.5.6 The correlation length near the transition point

To understand the behavior of £ near the transition point for the RG flow in Fig. 3.10(a), let
us expand the RG equations (3.5.9) for small                          as follows:

We find that

The differential equation leads to                     C. Depending on the sign of the
constant term C, there are three classes of solutions (see Fig. 3.10(a)). Class I and class II
solutions are given by

We can integrate both sides of the above equation from A = I to A = £ to obtain

We know that, at the correlation length £,, we have gf ~ 1. Equation (3.5.13) tells us that
5Fi,£ is also of order 1. Equations (3.5.13) and (3.5.14) relate SKI and gi to £ and allow us to
determine how the correlation length £ depends o

Let us first fix gi and adjust KI to make                                From
eqn (3.5.13), we see that gmin = 0. The integral on the left-hand side of eqn (3.5.14)

which is for C < 0.
Substituting eqn (3.5.13) into the second equation in eqn (3.5.12), we get

where Class III solutions have the form
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diverges, which implies that £ = oo. We see that the Zn -symmetry-breaking transition really
happens when «( - K,., where

If KI is slightly above K<:, then we find that

We find that

3.5.7 Fixed points and phase transitions

• Fixed points and universal properties.

• A fixed point with no relevant perturbations corresponds to a stable phase. A
fixed point with one relevant perturbation corresponds to the transition point
between two stable phases.

Running coupling constants and fixed points (or universality classes) are prob-
ably the two most important concepts in RG theory. In this section, we are going
to discuss them in a general setting. Let us consider a theory with two coupling
constants g\ and g?. When combined with the cut-off scale /, we can define the
dimensionless coupling constants ga — gal

x", a — 1, 2. As we integrate out short-
distance fluctuations, the dimensionless coupling constants may flow. One of the
possible flow diagrams is given in Fig. 3.11 (a).

What can we learn from such a flow diagram? First, we note that the flow has
two attractive fixed points A and B. If (<h ,£b) is anywhere below the DCD' line,
then, after a long flow, the system will be described by { g i ( A } , g i ( A } } . So the
system is described by the fixed point A at long distances. This picture demon
strates the principle of universality. The long-distance behavior of a system does
not depend on the short-distance details of the system. All of the systems below
the DCD' line share a common long-distance behavior described by the fixed-point
theory at A. One of the common long-distance properties is the algebraic decay
exponent in the correlation function. All of the systems below the DCD' line have

As g,niH is much less than \&KI\ and tin^, eqn (3.5.14) becomes



118 I N T E R A C T I N G B O S O N SYSTEMS

FIG. 3.11. (a) A and B are two stable fixed points representing two phases. C is an unstable fixed

point with one relevant operator/direction. The transition between phase A and phase B is continuous.

The critical point is described by the unstable fixed point C. (b) The fixed point/line structure of the

model (3.5.3). CA is a stable fixed line. B and B' arc two stable fixed points. CA, B, and B' represent

three phases. C is the critical point representing the transition between the A phase (with algebraic

long-range correlations) and the B/B' phase (with no long-range correlations). The transition is the

KT transition. CA' is an unstable fixed line, describing the transition between the B phase and the B'

phase.

the same decay exponent in the corresponding correlations. Those common prop-
erties are called universal properties. All of the systems that flow to the same fixed
point form a universality class.

The systems above the DCD' line flow to a different fixed point and form a
different universality class. Those systems have different universal properties (at
long distances). In particular, the decay exponents are different.

The universality classes and phases are closely related. We see that, as (91,92)
moves across the DCD' line, the long-distance behavior and the long-wavelength
fluctuations of the system change suddenly. As a result, the free energy of the
system has a singularity at the DCD' line. Thus, the DCD' line is a phase transition
line that separates two phases. Under this picture, we can say that the systems
below the DCD' line form one phase and the systems above the DCD' line form
the other phase. Phase and universality class mean the same thing here.

Let us start with a system exactly on the fixed point A. We add some per-
turbations to move the coupling constant (91,92) away from (gi(A),g2(A)). As
(91,92) flows back to (gi(A),g2(A)), the perturbations flow to zero at long dis-
tances. Thus, the perturbations are irrelevant perturbations. As all perturbations
around a stable fixed point flow to zero, the effective theory at a stable fixed point
contains no relevant or marginal perturbations.
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Now let us consider the long-distance properties of the transition point (or the
critical point). If we start anywhere on the DCD' line, then we can see that the
system flows to the fixed point C. Thus, the long-distance behavior of the critical
point is described by the unstable fixed point C. Here again, we see universality.
No matter where we cross the transition line, the long-distance behavior of the
transition point is always the same.

The fixed point C has one (and only one) unstable direction. A perturbation
in that direction will flow away from the fixed point. Therefore, the fixed-point
theory for C has one, and only one, relevant perturbation. In general, a critical
point describing a transition between two phases has one, and only one, relevant
perturbation. If an unstable fixed point has two relevant perturbations, then the
fixed point will describe a tri-critical point.

The model (3.5.3) contains a marginal perturbation. Its flow diagram is more
complicated. (See Fig. 3.11(b), where (<h, #2) corresponds to (f),g).) The system
has three phases. The phase below the DCD' line is controlled by the stable fixed
line AC. This phase has algebraic long-range correlations. The exponent of the
algebraic long-range correlations depends on the position on the AC line. The
phase above the DC A' line is controlled by the stable fixed point B. It has no long-
range correlation and is characterized by, say, (cos($)} < 0. The phase to the right
of the D'CA' line is controlled by the stable fixed point B'. It has no long-range
correlation either, and is characterized by (cos(#)} > 0. The transition between
phase AC and phase B (or phase B') is controlled by the unstable fixed point C,
and the transition between phase B and phase B' is controlled by the unstable fixed
line CA'. The critical exponents depend on the position on the CA' line.

From the above two simple examples, we see that we can learn a lot about the
phases and phase transitions from the RG flow diagram of a system. In Section
3.3.2, we discussed phases and phase transitions from the point of view of sym-
metry breaking. In this section, we see that phases and phase transitions can also
be understood based on an RG picture. Here, I would like to point out that the RG
picture (although less concrete) is more fundamental than the symmetry-breaking
picture. The symmetry-breaking picture assumes that the two stable fixed points
in Fig. 3.1 l(a) have different symmetries and the phase transition line DCD' is a
symmetry-breaking transition line. This symmetry-breaking picture is not always
true. We can construct explicit examples where the fixed points A and B have the
same symmetry and the phase transition line DCD' does not change any symmetry
(Coleman and Weinberg, 1973; Halperin et al, 1974; Fradkin and Shenker, 1979;
Wen and Wu, 1993; Senthil et al., 1999; Read and Green, 2000; Wen, 2000).




