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In the Luttinger model analysis,

β2 = 16πK. (18.108)

We will also use a related parameter (unfortunately also called x),

x= 2− 4K = 2

(
1− β

2

8π

)
, (18.109)

because the physics changes dramatically with the sign of x. It is most natural to envisage
the physics in the (x,y) plane.

18.4.2 Renormalization Group Analysis of the Sine-Gordon Model

We see that the model describes a massless scalar field plus the cosine interaction due to
the umklapp process (RR↔ LL). It is parametrized by K and y. We need to know what the
umklapp term does to the massless boson.

The answer depends on K, which determines whether or not the umklapp term is
relevant. For the RG analysis it is convenient to go from the Hamiltonian in Eq. (18.106)
to the Euclidean action

S=
∫ (

1

2
(∇φ)2+ y�2

2
cosβφ

)
d2x (18.110)

and the path integral over e−S(φ). Notice that we use the Lorentz-invariant bosonization
formulas of Section 17.5. The replacement

1

πα
=� (18.111)

trades the spatial momentum cut-off 1/α for �, the cut-off on k, the magnitude of the
two-dimensional Euclidean momentum k. The evolution of y will be found by integrating
out a thin shell of momenta near the cut-off k=�.

Let us write φ as a sum of slow and fast modes,

φ = φs+φf ≡ φ(0≤ k≤�(1− dt))+φ(�(1− dt) < k≤�). (18.112)

The free-field action separates as well:

S0 =
∫ [

1

2
(∇φs)

2+ 1

2
(∇φf)

2
]

d2x. (18.113)

The RG that leaves S0 invariant involves integrating out φf, followed by the rescaling of
spacetime coordinates:

d2x= s2d2x′, (18.114)
d

dx
= 1

s

d

dx′
, (18.115)

φ(x)= φ′(x′). (18.116)
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Now we introduce the interaction, integrate out φf as usual, and see happens to the
coupling y of the slow modes that remain. Here is the abridged analysis:

Z =
∫

dφs

∫
dφf exp

[
−

∫ [
1

2
(∇φs)

2+ 1

2
(∇φf)

2
]

d2x− y�2

2

∫
d2xcosβ(φs+φf)

]

=
∫

dφs exp

[
−

∫
1

2
(∇φs)

2d2x

]〈
exp

[
−y�2

2

∫
d2xcosβ(φs+φf)

]〉
f

(18.117)

�
∫

dφs exp

[
−

∫ (
1

2
(∇φs)

2+ y�2

2
cosβφs〈cosβφf〉f

)
d2x

]
, (18.118)

where 〈· · · 〉f is the average over fast modes and we are using the leading term in the
cumulant expansion (〈eA〉 � e〈A〉); the sinβφs sinβφf term is ignored because it has zero
average over fast modes. The average 〈· · · 〉f above is only over the sliver of width �dt.

To perform the average we first set A= iβφ, B= 0 in Eq. (17.57) to deduce that

〈eiβφ〉 = e−
1
2β

2〈φ2〉. (18.119)

Using this result, we find that

〈cos(βφf)〉 = e−
1
2β

2〈φ2
f 〉 (18.120)

= exp

[
−β

2

2

∫ �

�(1−dt)

kdkdθ

4π2

1

k2

]
(18.121)

= 1− β
2

4π
dt. (18.122)

Now we rescale the coordinates as per Eq. (18.114),

d2x= s2d2x′ = (1+ 2dt)d2x′, (18.123)

to obtain (on dropping primes)

y�2

2

∫
d2xcosβφ→ y�2

2

(
1+

(
2− β

2

4π

)
dt

)∫
d2xcosβφ,

dy

dt
=

[
2− β

2

4π

]
y (18.124)

= (2− 4K)y because (18.125)

β2 = 16πK in the Luttinger model. (18.126)

Thus, we find that the umklapp term is

irrelevant for K > 1
2 or β2 > 8π , (18.127)

relevant for K < 1
2 or β2 < 8π . (18.128)

We rescaled x but not �, which just stood there. Are we not supposed to rescale all
dimensionful quantities when we change units? The short answer is that in the Wilson
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approach the cut-off remains fixed because we use the cut-off as the unit of measurement.
We could call it � or we could call it 1. If we begin with the ball of radius 1010 GeV and
keep integrating away, in laboratory units then of course �lab is being steadily reduced,
but in rescaled units it will be fixed. It is this fixed value we are denoting by � above.

As a check, consider a Gaussian theory with action

S=
∫

d2x

[
1

2
(∇φ�)2+ 1

2
m2φ2

�

]
, (18.129)

where m is the mass in lab units and � is the cut-off on the momentum content of φ�.
Suppose we integrate out modes between �/s and �. We are left with

S=
∫

d2x

[
1

2
(∇φ�/s)2+ 1

2
m2φ2

�/s

]
, (18.130)

which tells us that in lab units the theory with the reduced cut-off�/s continues to describe
a particle of the same mass m, and asymptotic correlations will fall as e−mx. There has been
no change of units.

Let us now repeat this, but starting with the mass term expressed in terms of some initial
cut-off � and a dimensionless parameter r0:

S=
∫

d2x

[
1

2
(∇φ�)2+ 1

2
r0�

2φ2
�

]
. (18.131)

Upon mode elimination this becomes

S=
∫

d2x

[
1

2
(∇φ�/s)2+ 1

2
r0�

2φ2
�/s

]
. (18.132)

We now change units:

k= k′

s
, (18.133)

x= sx′, (18.134)
d

dx
= 1

s

d

dx′
. (18.135)

In these new units the momentum now goes all the way to � and we end up with

S =
∫

d2x′
[

1

2
(∇′φ�)2+ 1

2
r0s2�2φ2

�

]
(18.136)

def=
∫

d2x′
[

1

2
(∇′φ�)2+ 1

2
r0s�

2φ2
�

]
. (18.137)

We see that, under the RG,

r0→ r0s = r0s2. (18.138)
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(We could also lump the s2 with �2 in Eq. (18.136) and identify s2 times �2 in the new
units with the �2

lab original laboratory units, thereby showing that the m2 in laboratory
units is fixed at r0�

2
lab.)

18.4.3 Tomonaga–Luttinger Liquid: (K > 1
2 ,y = 0)

We consider the line of fixed points y = 0 and focus on the sector K > 1
2 where the

perturbation ycos
√

16πKφ is irrelevant. In terms of a variable

x= 2− 4K, (18.139)

the region where the cosine is irrelevant is

x= 2− 4K < 0. (18.140)

Not only does this line y = 0 for x < 0 describe the models with y = 0, it also describes
models which flow to y = 0 under the RG. Later we will see what range of y will flow
into this line under RG. In studying this line we are studying all systems in the basin of
attraction of this line. Remember, however, that if you begin at some (K,y) in this basin,
you will end up at (K∗,0), where K∗ �= K in general. (Equivalently, (x,y)→ (x∗,0) after
the RG.) So the K in what follows is in general the final K∗ of a system that started away
from the fixed line and got sucked into it.

For x > 0, the line is unstable to perturbations and the system must be tuned to stay
on it. Also bear in mind that we have assumed exactly half-filling; otherwise, the umklapp
term is not allowed: e4iKFn oscillates and averages to zero unless KF = π

2 . What if we are
just a little off KF = π

2 ? Then the oscillations will be very slow in space to begin with, but
after a lot of RG iterations, the oscillations will become rapid in the new lattice units and
the seemingly relevant growth will fizzle away.

The line of fixed points (K > 1
2 ,y = 0) ≡ (x < 0,y = 0) is ubiquitous and appears in

many guises and with different interpretations. Here it describes a fermionic liquid state
called the Tomonaga–Luttinger (TL) liquid. The name was coined by Haldane [19, 20],
who explored its properties and exposed the generality of the notion. It is the d= 1 version
of Landau theory. Recall that Landau’s Fermi liquid is parametrized by the F function, or
its harmonics um ≡ Fm. Even if we cannot calculate the um from some underlying theory,
we can measure them in some experiments and use them to describe others in terms of these
measured values. The main point is that many low-energy quantities can be described by
a few Landau parameters. Likewise, K and a velocity parameter, which I have suppressed,
fully define all aspects of the fermionic system – response functions, thermodynamics,
correlation functions – in the infrared.

The line of fixed points has one striking property: exponents that vary continuously
with K. (This is not so for the Landau Fermi liquid, which has canonical power laws as
F varies.) I will show this now, and as a by-product, establish the claim made earlier that
the fermion pole at ω = k (in Minkowski space) is immediately destroyed by the smallest
interaction, i.e., the smallest departure from K = 1.

  




