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MS received 11 April 1972 

Abstract. Dislocation theory is used to define long range order for two dimensional 
solids. An ordered state exists at low temperatures, and the rigidity modulus is nonzero 
at the transition temperature. Similar arguments show that the superfluid density is 
nonzero at the transition temperature of a two dimensional superfluid. 

Peierls (1934, 1935) has argued that no long range order exists in two dimensional solids 
because thermal motion of low energy phonons results in a mean square deviation of 
atoms from their equilibrium positions which increases logarithmically with the size of 
the system. The absence of long range order of this simple form has been shown rigorously 
by Mermin (1968). Similar arguments can be used to show that there is no spontaneous 
magnetization in a two dimensional Heisenberg magnet (Mermin and Wagner 1966) and 
that the expectation value of the superfluid order parameter in a two dimensional Bose 
liquid is zero (Hohenberg 1967). 

Numerical work on a two dimensional system of hard discs by Alder and Wainwright 
(1962) indicated a phase transition between a gaseous and a solid state. Stanley and 
Kaplan (1966) found that high temperature series expansions for two dimensional spin 
models indicated a phase transition at which the magnetic susceptibility becomes infinite. 
The evidence for such a transition is much stronger for the xy model (spins confined to a 
plane) than for the Heisenberg model, as can be seen in the papers of Stanley (1968) and 
Moore (1969). Low temperature expansions obtained by Wegner (1967) and Berezinskii 
(1970) give a magnetization proportional to some power of the field between zero and 
unity, and there may be a sharp transition between such behaviour, with infinite magnetic 
susceptibility, and the high temperature regime. 

In this paper we argue in favour of a different definition of long range order based on 
the overall properties of the system rather than on the behaviour of a two-point correla- 
tion function. This type of long range order, which we refer to as topological long range 
order, may exist for the two dimensional solid, neutral superfluid, and for the xy model, 
but not for a superconductor nor for the isotropic Heisenberg model. In the case of a 
solid the disappearance of topological long range order is associated with a transition 
from a rigid to a fluid response to a small external stress, while for a neutral superfluid it 
is associated with the instability of persistent currents. We have recently learnt that 
Berezinskii (1 971) has put forward similar arguments, but there are some important 
differences in our results. 

The definition of topological long range order which we adopt arises naturally in the 
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case of a solid from the dislocation theory of melting (Nabarro 1967). In this theory it is 
supposed that a liquid close to its freezing point has a local structure similar to that of 
a solid, but that in its equilibrium configurations there is some concentration of dis- 
locations, which can move to the surface under the influence of an arbitrarily small 
shear stress, and so produce viscous flow. In the solid state there are no dislocations 
running across the system in equilibrium, and so the system is rigid. This theory is much 
easier to apply in two dimensions than in three, since a dislocation is associated with a 
point rather than with a curve. 

The energy of a single dislocation in a two dimensional system with lattice spacing a 
can be found from the theory of edge dislocations (Friedel 1964), and it is given by 

Here n and 7 are the two dimensional rigidity modulus and Poisson’s ratio, A is the area 
of the system, and A0 is an area of the order of a2. The entropy of a dislocation is 

s = kBln (Ala2) (2) 

~ B T  <kBT, = nu2 (1 + 7)/4rr (3) 

At temperatures which satisfy the inequality 

the logarithmically large energy dominates, and no isolated dislocation can be formed, 
so the system is rigid, but once this inequality is violated there are free dislocations in 
the equilibrium state, and viscous flow can occur. 

Although isolated dislocations cannot occur at low temperatures in a large system 
(except near the boundary), pairs of dislocations of equal and opposite Burgers vector 
have finite energy and must occur. Such pairs can respond to an applied stress and SO 
reduce the rigidity modulus. When the inequality (3) is violated the largest pairs become 
unstable under an applied shearing stress, and produce a viscous response to the shear. 
We have worked out the behaviour of these pairs in some detail, and the results will be 
described in a subsequent paper. 

The presence or absence of free dislocations can be determined in the following 
manner. We suppose that in any small local region the system is crystalline-to be definite 
we assume the lattice is square. We attempt to trace a rectangular path from atom to 
atom taking M I  steps in the + x direction, MZ in the + y direction, M1 in the - x 
direction, and Mz in the - y direction. Local defects can be avoided by small deforma- 
tions of the path. The amount by which the path fails to close is the sum of the Burgers 
vectors of all the dislocations enclosed by the path. If there are isolated dislocations, the 
total number enclosed is proportional to the area MlMzaZ, but they are of arbitrary 
sign, so the expected length of the sum of the Burgers vectors is proportional to 
(M1M2)1’2a. If there are only pairs of dislocations, only those pairs cut by the path 
contribute. Their number is proportional to ( M I  + Mz), and so the expected length of 
the sum of the Burgers vectors is proportional to ( M I  +M#2 a. In the solid state such 
paths fail to close by an amount proportional to the square root of the length of the path, 
while in the liquid state they fail to close by an amount proportional to the length of the 
path. This allows us to determine whether or not topological long range order exists in a 
particular configuration of the system. 

Similar arguments can be made for a two dimensional neutral superfluid, with vortices 
instead of dislocations, since the energy of a vortex also depends logarithmically on the 
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size of the system. In this case the critical temperature is given by 

kBTc = T psh2/2m2 (4) 
where p s  is the two dimensional superfluid density and m is the atomic mass (effective 
mass for a thin film). Above this temperature free vortices can destroy superfluid flow. 
This case has been examined in some detail by Berezinskii (1971). 

There should not be such a phase transition for a superconductor, since flux lines 
have a finite energy which depends on the penetration depth. For the isotropic Heisenberg 
model there is no such transition, since the topologically distinct arrangements of Heisen- 
berg spins are separated from one another by a finite energy barrier that can be overcome 
by thermal fluctuations. 

An important consequence of these considerations is that a solid or superfluid system 
with periodic boundary conditions has metastable states separated from one another by 
an energy barrier which cannot be overcome by thermal fluctuations in the limit of an 
infinite system. These metastable states cease to be distinct at Tc given by equations 3 or 4. 
In the case of a superfluid these states are current-carrying states; the circulation can only 
change by one unit if a vortex moves right round the system. For a solid the lines of atoms 
form a spiral whose pitch is different in different metastable states. 

The argument leading to equations 3 and 4 is very similar to the argument used by 
Thouless (1969) for a one dimensional system with l/r2 interaction. In that case it was 
argued that the magnetization must be nonzero at the transition, and Dyson (1971) has 
obtained a similariesult for a soluble model. The inequality (3) shows that the rigidity 
cannot be zero at the transition temperature, and, from equation 4, the superfluid 
density cannot be zero. 
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