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diverges, which implies that £ = oo. We see that the Zn -symmetry-breaking transition really
happens when «( - K,., where

If KI is slightly above K<:, then we find that

We find that

3.5.7 Fixed points and phase transitions

• Fixed points and universal properties.

• A fixed point with no relevant perturbations corresponds to a stable phase. A
fixed point with one relevant perturbation corresponds to the transition point
between two stable phases.

Running coupling constants and fixed points (or universality classes) are prob-
ably the two most important concepts in RG theory. In this section, we are going
to discuss them in a general setting. Let us consider a theory with two coupling
constants g\ and g?. When combined with the cut-off scale /, we can define the
dimensionless coupling constants ga — gal

x", a — 1, 2. As we integrate out short-
distance fluctuations, the dimensionless coupling constants may flow. One of the
possible flow diagrams is given in Fig. 3.11 (a).

What can we learn from such a flow diagram? First, we note that the flow has
two attractive fixed points A and B. If (<h ,£b) is anywhere below the DCD' line,
then, after a long flow, the system will be described by { g i ( A } , g i ( A } } . So the
system is described by the fixed point A at long distances. This picture demon
strates the principle of universality. The long-distance behavior of a system does
not depend on the short-distance details of the system. All of the systems below
the DCD' line share a common long-distance behavior described by the fixed-point
theory at A. One of the common long-distance properties is the algebraic decay
exponent in the correlation function. All of the systems below the DCD' line have

As g,niH is much less than \&KI\ and tin^, eqn (3.5.14) becomes
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FIG. 3.11. (a) A and B are two stable fixed points representing two phases. C is an unstable fixed

point with one relevant operator/direction. The transition between phase A and phase B is continuous.

The critical point is described by the unstable fixed point C. (b) The fixed point/line structure of the

model (3.5.3). CA is a stable fixed line. B and B' arc two stable fixed points. CA, B, and B' represent

three phases. C is the critical point representing the transition between the A phase (with algebraic

long-range correlations) and the B/B' phase (with no long-range correlations). The transition is the

KT transition. CA' is an unstable fixed line, describing the transition between the B phase and the B'

phase.

the same decay exponent in the corresponding correlations. Those common prop-
erties are called universal properties. All of the systems that flow to the same fixed
point form a universality class.

The systems above the DCD' line flow to a different fixed point and form a
different universality class. Those systems have different universal properties (at
long distances). In particular, the decay exponents are different.

The universality classes and phases are closely related. We see that, as (91,92)
moves across the DCD' line, the long-distance behavior and the long-wavelength
fluctuations of the system change suddenly. As a result, the free energy of the
system has a singularity at the DCD' line. Thus, the DCD' line is a phase transition
line that separates two phases. Under this picture, we can say that the systems
below the DCD' line form one phase and the systems above the DCD' line form
the other phase. Phase and universality class mean the same thing here.

Let us start with a system exactly on the fixed point A. We add some per-
turbations to move the coupling constant (91,92) away from (gi(A),g2(A)). As
(91,92) flows back to (gi(A),g2(A)), the perturbations flow to zero at long dis-
tances. Thus, the perturbations are irrelevant perturbations. As all perturbations
around a stable fixed point flow to zero, the effective theory at a stable fixed point
contains no relevant or marginal perturbations.
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Now let us consider the long-distance properties of the transition point (or the
critical point). If we start anywhere on the DCD' line, then we can see that the
system flows to the fixed point C. Thus, the long-distance behavior of the critical
point is described by the unstable fixed point C. Here again, we see universality.
No matter where we cross the transition line, the long-distance behavior of the
transition point is always the same.

The fixed point C has one (and only one) unstable direction. A perturbation
in that direction will flow away from the fixed point. Therefore, the fixed-point
theory for C has one, and only one, relevant perturbation. In general, a critical
point describing a transition between two phases has one, and only one, relevant
perturbation. If an unstable fixed point has two relevant perturbations, then the
fixed point will describe a tri-critical point.

The model (3.5.3) contains a marginal perturbation. Its flow diagram is more
complicated. (See Fig. 3.11(b), where (<h, #2) corresponds to (f),g).) The system
has three phases. The phase below the DCD' line is controlled by the stable fixed
line AC. This phase has algebraic long-range correlations. The exponent of the
algebraic long-range correlations depends on the position on the AC line. The
phase above the DC A' line is controlled by the stable fixed point B. It has no long-
range correlation and is characterized by, say, (cos($)} < 0. The phase to the right
of the D'CA' line is controlled by the stable fixed point B'. It has no long-range
correlation either, and is characterized by (cos(#)} > 0. The transition between
phase AC and phase B (or phase B') is controlled by the unstable fixed point C,
and the transition between phase B and phase B' is controlled by the unstable fixed
line CA'. The critical exponents depend on the position on the CA' line.

From the above two simple examples, we see that we can learn a lot about the
phases and phase transitions from the RG flow diagram of a system. In Section
3.3.2, we discussed phases and phase transitions from the point of view of sym-
metry breaking. In this section, we see that phases and phase transitions can also
be understood based on an RG picture. Here, I would like to point out that the RG
picture (although less concrete) is more fundamental than the symmetry-breaking
picture. The symmetry-breaking picture assumes that the two stable fixed points
in Fig. 3.1 l(a) have different symmetries and the phase transition line DCD' is a
symmetry-breaking transition line. This symmetry-breaking picture is not always
true. We can construct explicit examples where the fixed points A and B have the
same symmetry and the phase transition line DCD' does not change any symmetry
(Coleman and Weinberg, 1973; Halperin et al, 1974; Fradkin and Shenker, 1979;
Wen and Wu, 1993; Senthil et al., 1999; Read and Green, 2000; Wen, 2000).




