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(of a new type, because the definition of on order parameter is difficult) oc-
curs. This phase transition is called the Kosterlitz—Thouless transition, being
an extremely important phase transition, where the crucial point are topo-
logical defects. Because this idea strongly underlies gauge theory on a lattice,
we will discuss it in detail in the next sections.

3.3 Kosterhitz—Thouless Transition

We now understand the properties of symmetry breaking at low temperature
and of the order parameter characterizing the phase transition discussed in
Sect. 3.1. In the present and the following sections, we examine a phase
transition where it is difficult to define such an order parameter.

We consider a classical XY model on a two-dimensional orthogonal lat-
tice, described by the following Hamiltonian:

H=—J) cos(6; —6;) , (3.3.1)
{15)
where (ij) indicates nearest-neighbour sites. We already demonstrated in

Sects. 3.1 and 3.2 that the correlation length of the correlation function is
characterized by a power behaviour at low temperature

<ei(6w9,)> ~|R; — Rj|-T/27fJ ’ (3.3.2)
and exponential decay at high temperature
(00 o~ IRi—R;|/6 (3.3.3)

For the derivation of (3.3.2), the assumption has been made that in

COS(G,L' — GJ) ~1-— —21—(91 — Gj)Q
1 R, + R\’
~1- [(Ri —R;)-V0 (m;ﬁ)} (3.3.4)

the difference in 8 between neighbouring sites is small compared with 7 (the
spin wave approximation).

In this approximation, the Hamiltonian becomes quadratic and we always
obtain (3.3.2), and no phase transition would occur. Therefore, we conclude
that the high-temperature phase transition described by (3.3.3) occurs, be-
cause configurations start to be excited where spins at neighbouring sites do
make a difference in @ of magnitude 7, and can no longer be described by a
continuous function §( R). Indeed, for the derivation of (3.3.3) in Sect. 3.1 we
used the high-temperature expansion where (i) the angle € is defined on the
lattice and (ii) the range of € is limited to the interval from 0 to 27 (reflecting
the 27 periodicity in 8).
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So, what kind of distribution will it be that cannot be described by a
continuous function #(R)? We have to handle three points to answer this
question. First, when 6; is expressed by #(R) in the continuum limit, owing
to (i), 6(R) may also have singularities R = Ry. That is, when the singularity
is placed inside the plaquette, where originally no spin has been defined, we
do not run into difficulties. Second, owing to (ii}, #(R) may also be multi-
valued. Of course, this multi-valueness is limited at one point R to be an
integer multiplied by 27.

The last point is that in the continuum limit, besides the singularity at
R = Ry, the function §(R) is determined by the Hamiltonian

J
H=3 /(VG(R))QdZR (3.3.5)
as a solution of the variational equation 6’ = 0. The trivial solution which
for all sides i, 6; = 6y, obeys 6H = (. However, we are looking for different,
non-homogeneous solutions. It is evident that éH is given explicitly by the
Laplace equation

V(R) =0 . (3.3.6)

In two dimensions, the Laplace equation can be derived by the Cauchy-
Riemann equation. Recall that both the real part and the imaginary part of
a regular function of z =z + iy (R = (x,y)) obey (3.3.6).

We conclude that the solution can be given by

O(R) = 6(2) = £ TmIn(z — zo) . (3.3.7)

Here, zo = x¢ + iyg is the position of the singularity, and by moving once
anticlockwise around the singularity, the phase of z — z; gains 27, and 6(R)
just changes by +2x. In such a way, a whirl emerges around the point z = zp,
being the so-called vortex.

Next, we derive the excitation energy corresponding to the solution
(3.3.7). Tt is sufficient to insert (3.3.7) into (3.3.5), with the result

J [Fe 1
Evortex = 5 L 27TR dRﬁ

=nJlIn He . (3.3.8)
a
Here, a is the smallest size where the continuum limit (3.3.5) is valid, that
is, the lattice spacing. R, 1s the size of the sample. Then, the vortex energy
is logarithmically diverging with respect to the sample size!

Therefore, can we forget about the configuration (3.3.5) in the limit R, —
oo? In this context, recall the discussion that followed equation (3.1.5). That
is, not the energy E, but the free energy F' = E' — TS has to be considered.
Therefore, we have to calculate the entropy Seortex Of one vortex. With W
being the number of all possible microstates, the entropy is given by S =
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In W. From the number W ~ R?/a* of possibilities of placing the centre of
the vortex, we again obtain a logarithmic dependence:

R.\? R.
Svortex = In (—) =2ln— . (33.9)

a a

Using (3.3.8) and (3.3.9) we obtain for the free energy of the vortex

Fvortex = Livortex — TSvortex
R,
= (rJ —2T)In—= . (3.3.10)

From the sign of the coefficient of In(R./a), we conclude that at T, =
w.J/2, a phase transition occurs between the phases where a vortex does or
does not occur due to thermal excitation. This transition is the so-called
Kosterlitz-Thouless transition (KT transition), the unique phase transition
where a vortex, i.e. a topological defect, plays the main role.

However, the above discussion is incomplete because only one vortex has
been considered, and also the discussion whether thermal excitation arises or
not is incomplete. In order to clarify this point, we have to consider a system
with many vortices, and so for a more detailed mathematical investigation,
we will introduce the so-called duality mapping.

We return to (3.3.1) and discuss again the partition function

Z = /dﬂl uﬂfdGN exp[ﬁJZcos(Gi ‘Gj)} . (3.3.11)

{17)

Consider one pair (ij) corresponding to one link. exp[3.J cos(8; — 6;)] is 27-
periodic in 6; — 6;, and for every §, — 6; = 2mrm + ¢ (¢ < 7), the integral
becomes Gaussian, B o—(BI/ 2",

We replace exp|[3.J cos(f; — 6;)] by a function that fulfils these two prop-
erties and that can be handled more easily:

ot cos{@;—6;) _, m;x el exp |:-— (ﬁz—J) (61 — 93' — 271'771)2 . (3312)

Near every minimum 27mm, the right-hand side of (3.3.12) equals the above
approximation. Furthermore, using Poisson’s equation

i h(m) = i /jo dp h(p)e®™? (3.3.13)

m=—=— 00 l=—00

(3.3.12) becomes
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eﬁJ cos(f; —8;)

— Z /dcﬁ)eﬁ‘] exp [ ('GQJ) (0; — 0; - 2m¢)° + 27rilijgb}

byj=—00

Qﬁ@ z; e’ explili;(6; — 6;)] exp[-15;/28J] . (3.3.12))

Inserting (3.3.12') into (3.3.11), up to some constant factor, we obtain

2

{15} {i3)

Here, I;; is defined on every link, and we interpret it as a vector field {,,(r)
(¢t = x,y) that is directed from the starting point r, the left-hand side or the
lower side of the link between ¢ and 7, to the other side of the link. Then, the
argument of the exponent in (3.3.14) becomes

‘Ez[m”__u r) - (6(r) - 9w+#w . (3.3.15)

N

Here, r runs over all lattice points, and g is the sum in x and y. We can
rewrite the second term in (3.3.15) as

—1) () (B(r) = 6(r + p)) = =1 Y (u(r) = Lu(r — w))B(r)  (3.3.16)
LTS T

and can therefore perform the #(r)-integration from 0 to 2x. In addition to
numerical factors, we obtain from (3.3.14)

L.
Z exp( Z z(gj ) [1¢ (L (1) Lulr =)0 (3.3.17)

w(T)}

In (3.3.17), the constraint given by the delta function

> () = Lu(r—p)) =0 (3.3.18)

is the discrete version of divl = 0 of the vector I(r) = (I.(r),l, (7).

Then, by analogy, a vector field n(r) satisfying I(r} = rot n(r) should
exist, and because l(r) is two-dimensional in this case, using only the z-
component of n, we write [,(r) = dyn(r), ly(r) = —0n(r). Indeed, the
discrete version of these equations

o

=]

——
~3

) =n(r) - n(r—y) , (3.3.19)
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inserted into the left-hand side of (3.3.18) leads to

Lo(r) — L(r —x) + 1,(r) = L(r —y)
= [n(r) —n(r - y)] = [o(r — x) —n(r -z —y)]
+ [=n(r)+ n(r—z)] — [-n(r —y) + nlr —z — y)]
-0 . (3.3.20)

Next, we consider the number of degrees of freedom. With N being the
number of lattice points, the number of different {,(r) is 2NV. The number of
conditions (3.3.18) equals the number of points r, that is, N, and therefore
only 2N — N = N vectors are independent. Indeed, because the number
of n(r) is also given by N, the result is cousistent. Inserting (3.3.19) into
(3.3.17), we obtain

Z = Z exp ( Z 2ﬁ%](n(r) — n(r — ,[L))Q) . (3.3.21)
{n(r)} T,

Interpreting n(r) as the height of the atom layer at position r, then (3.3.21)
describes a model where with increasing height difference at neighbouring
positions, the energy becomes larger. The model describes the roughening
transition of the surface. Notice that in (3.3.21), 3 appears in the denoin-
inator, and therefore the high-temperature (low-temperature) phase of the
original XY model corresponds to the low-temperature (high-temperature)
phase of this model.

Let us again rewrite the sum (3.3.21) running over integers n(r) using the
Poisson equation (3.3.13):

7 = /jo [[de(r) > exp {_26% > (Aug(r)* + 2frizm(r)¢>(?")}

m(r)=—oc T r
(3.3.22)
Here, we defined A,¢(r) = o(r) — ¢(r — p). The integral (3.3.22) can be
performed when ¢(r) is Fourier transformed, with the result

Z = Zsw Z exp { - 27r2,6JZm(r)G(r —~ ’r’)m(r’)} . (3.3.23)

m(rj=-—oc r,r’

Here, Zgw is the sum of states of the spin waves, and m(r) indicates the pres-
ence of m(r) vortices (= 0,+1,+2,...} at position r. Furthermore, G(r — ')
18 given by

T dk T dk elk(r—r")
- 1) = - Y . 3.3.24
Glr—r) /_ﬂ 2T [ﬁ 2w (4 — 2cosk, —2cosky) (3.3.24)

For large |r — r’|, it behaves like
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T a 4

1 -7 1
Gir—r') =~ ~ 5 In ('T r |) — — + G(0) (3.3.25)

and G(0) is estimated by the logarithmic dependence In R., where the _ower

range of k = \/k, + k, is given by 7/R..
Splitting G(r — r') into two parts,

Glr—rY=G0)+G'(r—71} , (3.3.26)

where by definition only the first term contains divergent terms, we can write
(3.3.23) as

Z=Zsw Y exp {‘27r25JG(0) [Zm(r)] }
m(ri=—oc T
X exp { — QWQBJZm(r)G’(r — r’)m(r')} (3.3.27)

and conclude that there is only a contribution to the sum of states in the case
when the term [>"_m(r)]? that is multiplied by G(0) vanishes. As mentioned,
the absolute value of m(r) indicates the vortex number, and the sign its di-
rection. Interpreting m(r) as an electric charge at position r, and identifying
the logarithmic potential (3.3.25) with the Coulomb potential in two dimen-
sions, then >~ m(r) = 0 can be interpreted as the neutrality condition of the
whole system. That is, (3.3.27) signifies that the XY model can be split into
a degree of freedom of spin waves and a degree of freedom of vortices; the
latter is equivalent to a two-dimensional Coulomb gas.

From this fact, we can deduce the following physical picture. At low tem-
perature, even when vortices are excited, they must emerge as a +/— pair,
forming a dipole, but no free charge, and therefore the system is in the insu-
lator phase (dielectric substance). The lowering of the Coulomb force due to
the dielectric constant €y does not affect it being a long-distance force, and
therefore the fact that the charge must be bound as a plus or minus charge
pair is a self-consistent description. However, when the temperature becomes
higher, the number of charges becomes larger and larger, and therefore the
screening effect gains importance. Therefore, conversely, because of the exis-
tence of free charges, the Coulomb force becomes a short-range force due to
screening, and therefore free charges can exist, and the metallic state emerges
self-consistently.

The KT transition is the phase transition between the metallic state and
the insulator state. We need to obtain a more quantitative picture:

Z m(r)G'(r — r"Yym(r’)

= m(r)G'(r — " Yym(r')
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_AZ (Fym(r’ Zm 111("";’"’|)m(r’)

r#r’ 1;51

_ ;; Z m(r)? — — Z m(r ("" T |) m(r') . (3.3.28)

r#r

Here, we have used > _m(r) = 0, G'(0) = 0 and the approximation
(3.3.25) of G'(r — r"). Therefore, from (3.3.27) we obtain

7 = Zew Z exp lnyZm 2787 S mir) ('r—H)m(r’):l.

m(r)=—oc r#£r/

(3.3.29)

Here, y is the so-called fugacity, given by e®#, with u being the chemical
potential. In the present case, u is given by u = —72J/2,

When v is small enough, the absolute value of m(r) cannot hecome very

large. We now discuss the properties of the system in this dilute state limit.

In order to do so, we return to the step (3.3.22) and add by hand the term

In(y) 3=, m(r)*:

:/1:[d¢(r) > exp[ QWZ Au0(r)

mir)=—o0 Tl
+Ilny- Z m(r)? + 2ni Z m(r)qb(r):l ‘ (3.3.30)

Here, because y is small, we only sum over 0, £1 in the sum of m(r). We
obtain approximately

Z exp [Iny - m(r)” + 2mim(r)e(r)] = 1 + 2y cos(2m¢(r))

m{r)=0,+1
= exp[2ycos(2mo(r))] . (3.3.31)

Then, (3.3.30) becomes

/Hdgb exp[ 2;} Z( u(b(r))z—l—Qchos(me(r))} . (3.3.32)

Performing the continuum limit at this stage, we obtain the so-called
Sine-Gordon model. given by

2= [Dotryexp |- [ (S 190ln) - 2ycostzmotr) )
— / Dé(r) exp / d%r (-iyw(rn? — 2y cos(27r\/[)7qb(r))>} .(3.3.33)
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_ Fig. 3.8. The potential of
>2n /BT ¢ the phase ¢

Here, we redefined the integration variable ¢(r) in a suitable manner. With
d(T) = ¢o (constant) being the minimum of the action, we obtain an infi-
nite number of possibilities 2m/3Jd¢ = 27m (m constant), as indicated in
Fig. 3.8. The question is: Will ¢(r) rest in the vicinity of one valley or not?

We apply the variation method discussed in (2.2.20) and (2.2.21) to dis-
cuss this question. We choose as the trial action the action Sy with the dotted
line in Fig. 3.8 as the potential, obeying the quadratic equation

2
5= [ {éw(ruz + o) - %)2} ‘ (3:3.34)
Using the curvature m? of the potential as the variation parameter, it can be
determined whether ¢(r) is bounded in the vicinity of ¢y or not, depending
on whether m is zero or finite. Let us compute f(m) = -T1InZg+T(S — Sp),
the right-hand side of (2.2.21). In order to do so, we perform a Fourier trans-
formation of Sy in (3.3.34). With ¢, being the Fourier component of ¢(r)— ¢y,
we can write

Sy = Zl( > 5 m?) b

2
«Z ) {(Re)® + (Iméy) }
= Z (k% + m®) {(Re¢)® + (Im ¢x)?} . (3.3.35)
k:half

Notice that because ¢(r) is real, the relation ¢; = ¢_x holds, and that when
the degrees of freedom are assigned both to the real and imaginary parts for
every k, then it is sufficient to sum only over one half of the k’s.

With this action Sy in the exponential, performing the Gauss integral
with the integration measure

H/ (Re ¢) d(Im ¢)

k:half

gives the right expression for ( )¢, leading to



76 3. Symmnietry Breaking and Phase Transition

(Brod—k)o = ((Redr)’), + ((Imx)?),
1 1
2(k* 4+ m?2) i 2(k* + m?)

1

= 3.3.36
k* + m? ( )

Using the following equation derived from the Gauss integral

-

(explia((r) — do)l}o = exp | - La2(((r) — %)%]
=exp | — —;—az Z(fbk(b—k)o}

1, 1

L k

we can compute every term in f(m), and the result is (when performing the k
integration, a cut-off k. of inagnitude of the inverse lattice constant is intro-
duced, and terms with higher powers in m?/k2 as well as terms independent

of m? are ignored)
\ m2\ (/D8]
m* — 2y (Zg) . (3.3.38)

Notice that the term 3", 1/(k* + m?) in (3.3.37) causes the In(kZ/m?)
dependence, leading finally to the particular exponent in the second term in
(3.3.38).

The behaviour of f(m) is determined by the relation between the powers
of the first and second terms. That is, as shown in Fig.3.9, for the case
(r/2)B8J > 1, the minimum is at m? = 0, whereas for (7/2)8J < 1, a
minimum at a finite value of m? emerges. Therefore, the temperature obeying
the equation (7/2)3.J = 1 corresponds to the phase transition point T = T, =
m.J/2. At temperatures lower than T, the cos term in (3.3.33) can effectively
be ignored and the system can be described by the spin waves only (in the

flm)=T

flm)

A

0 / > m2 Fig. 3.9. The free energy f(m) as obtained by the
variation method. T; is given by T, = n.J/2
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picture of the Coulomb gas this corresponds to the insulator phase). On the
other hand, at higher temperatures the potential arising due to the cos term
leads to confining of phase ¢, and as a result, the Coulomb force becomes a
short-range force with the range 1/m. This corresponds to the metallic phase,
where the Coulomb force is screened.

In this manner, using a simple variational method, we have discussed
whether the cos term effectively plays a role at low energy. This approach
is quite similar to the discussion of relevant/irrelevant terms in the theory
of renormalization. Indeed, an excellent paper [G.10] has been written about
the application of Wilson’s style renormalization group to the model (3.3.33),
which is recommended to the reader.

We end this section by discussing briefly the three-dimensional XY model.
In three dimensions, it is also possible to perform the duality transformation
starting from the reformulation (3.3.12). However, [,(r) introduced below
(3.3.14) is now a three-component vector I(r), and therefore the vector field
1t that describes I through I = rot n also has three components. Therefore,
the integers vector m = m,(r) appearing when rewriting the sum for every
component in an integral using the Poisson equation also has three compo-
nents. For details, the literature [19,20] is recommanded. As can be found
there, the sum of states finally reads

z=11 > Iéam.moexp|=4m87 Y m,(r)o(r — r'ym, (')

Tomy, (ry}=—oc T [T’
(3.3.39)
Here, v(r—r') is the three-dimensional Coulomb potential. From the property
of the delta function, it follows that at every site the number of ingoing and
outgoing vector fields m(r) are equal (that is, there is no source present).

Therefore, when m,(r) at one link is given by 1, on both neighbouring
sites it must be joined with links with m,- = £1. In this manner, a string
of joined links grows, and this string cannot have a starting point; there-
fore the only possibility is the construction of a closed loop. Comparing the
above consideration with the two-dimensional case, where topological defects
(vortices) have been points, in the three-dimensional space, topological defect
lines (vortex lines) arise that are creating loops themselves. Equation (3.3.39)
describes the statistical mechanics of loops created by segments interacting
via the Coulomb force. It is important to notice how the form of the topolog-
ical defects changes depending on the dimension. In the next section, when
the gauge field is discussed, we will meet a similar case.

However, it is a mistake to think that a far-reaching force acts between
the loops just because the Coulomb interaction acts on the vortex segments.
When m,, in the direction from site i to site ¢ + p is given by +1, then in
the direction from ¢ + p to i we have m, (i) = —1. Therefore, from a wider
point of view, the 4+ and — contributions of m,, almost cancel. Therefore, we
expect an effective short-distance potential for v(r — r').
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Having this in mind, we choose one vortex line and try to sketch roughly
the phase transition in the three-dimensional XY model. Consider the free
energy I of a vortex line of length L. With (3.3.39), the energy is given by

E =47 Ju(0)L . (3.3.40)

Here, v(0) is a representative finite short-range value of v(r — ') (= 0.253).
On the other hand, because the entropy S is given by the logarithin of the
number of possibilities ol constructing a string of length L, it can roughly be
estimated as follows. We ignore the condition that the string must be closed,
then because at every site the string has the possibility of proceeding further
in five directions, which are all directions different from the one it came from,
we conclude W o 5% Therefore we obtain

F = (47%(0.253)J — T'In5)L (3.3.41)

and has critical temperature 7. = 472(0.253)J/ In 5. Above this temperature,
vortex rings with infinite radius exist, leading to a short-range spin correlation
function; on the other hand, at low temperature, all vortex rings have a finite
radius, having no influence at a scale above this radius. Above, we described
the phase transition of the three-dimensional XY model from the point of
view of condensation of topological defects.

3.4 Lattice Gauge Theory and the Confinement Problem

In solid state physics, the existence of a crystal lattice is fundamental. In
the tight-binding approximation, at every lattice point 7, an atomic wave
function ¢; is defined, and the wave function of the electrons in the crystal
is determined by linear superposition of the atomic wave functions. This ap-
proximation is useful because the originally infinitely many degrees of freedom
in the continuous space around the lattice point ¢ are represented only by «;,
and when the number of lattice points is /N, in this manner the problem is
reduced to a system with IV degrees of freedom.

For simplicity, we consider a two-dimensional square lattice as shown in
Fig. 3.10. On the lattice points are orbits, and between neighbouring orbits
there is the hopping integral t. The transition process of an electron fromn
1 to 7 is described by the Hamiltonian ‘tj,;a;.ai‘ a;r and a; are the creation
and annihilation operators of the orbit ;. We require that the theory is
invariant when an arbitrary phase e is multiplied by ; at every point
7. This corresponds to the transformation a; — a; eith a;, — al e, The
Hamiltonian is invariant if ¢;; transforms as t;; — t;; e!(%:=%)  For the case
that ¢,; is a simple number, no such transformation can emerge. It is necessary
to think of ¢;; as a field causing such a phase transformation. This field is
nothing but the electromagnetic field.



