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These are the inhomogeneous Maxwell equations, with the current density
j¥ = 1¥y¥1 given by the conserved Dirac vector current (3.73). As with ¢*
theory, the equations of motion can also be obtained as the Heisenberg equa-
tions of motion for the operators (z) and A,(x). This is easy to verify for
Y (x); we have not yet discussed the quantization of the electromagnetic field.

In fact, we will not discuss canonical quantization of the electromagnetic
field at all in this book. It is an awkward subject, essentially because of gauge
invariance. Note that since A° does not appear in the Lagrangian (4.3), the
momentum conjugate to A° is identically zero. This contradicts the canonical
commutation relation [A%(x),7%(y)] = i6(x — y). One solution is to quan-
tize in Coulomb gauge, where V- A = 0 and A° is a constrained, rather than
dynamical, variable; but then manifest Lorentz invariance is sacrificed. Alter-
natively, one can quantize the field in Lorentz gauge, 0, A* = 0. It is then
possible to modify the Lagrangian, adding an A° term. One obtains the com-
mutation relations [A*(x), A”(y)] = —igh”6(x — y), essentially the same as
four Klein-Gordon fields. But the extra minus sign in [A°, A°] leads to another
(surmountable) difficulty: states created by a?f have negative norm.*

The Feynman rules for calculating scattering amplitudes that involve pho-
tons are derived more easily in the functional integral formulation of field the-
ory, to be discussed in Chapter 9. That method has the added advantage of
generalizing readily to the case of non-Abelian gauge fields, as we will see
in Part III. In the present chapter we will simply guess the Feynman rules
for photons. This will actually be quite easy after we derive the rules for an
analogous but simpler theory, Yukawa theory:

['Yukawa — EDirac + LKlein-Gordon - QQZ¢¢ (49)

This will be our third example. It is similar to QED, but with the photon
replaced by a scalar particle ¢. The interaction term contains a dimensionless
coupling constant g, analogous to the electron charge e. Yukawa originally
invented this theory to describe nucleons (/) and pions (¢). In modern particle
theory, the Standard Model contains Yukawa interaction terms coupling the
scalar Higgs field to quarks and leptons; most of the free parameters in the
Standard Model are Yukawa coupling constants.

Having written down our three paradigm interactions, let us pause a mo-
ment to discuss what other interactions could be found in Nature. At first it
might seem that the list would be infinite; even for a scalar theory we could
write down interactions of the form ¢" for any n. But remarkably, one simple
and reasonable axiom eliminates all but a few of the possible interactions. That
axiom is that the theory be renormalizable, and it arises as follows. Higher-
order terms in perturbation theory, as mentioned in Chapter 1, will involve

*Excellent treatments of both quantization procedures are readily available. For
Coulomb gauge quantization, see Bjorken and Drell (1965), Chapter 14; for Lorentz
gauge quantization, see Mandl and Shaw (1984), Chapter 5.
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integrals over the 4-momenta of intermediate (“virtual”) particles. These in-
tegrals are often formally divergent, and it is generally necessary to impose
some form of cut-off procedure; the simplest is just to cut off the integral at
some large but finite momentum A. At the end of the calculation one takes
the limit A — oo, and hopes that physical quantities turn out to be indepen-
dent of A. If this is indeed the case, the theory is said to be renormalizable.
Suppose, however, that the theory includes interactions whose coupling con-
stants have the dimensions of mass to some negative power. Then to obtain
a dimensionless scattering amplitude, this coupling constant must be multi-
plied by some quantity of positive mass dimension, and it turns out that this
quantity is none other than A. Such a term diverges as A — 0o, so the theory
is not renormalizable.

We will discuss these matters in detail in Chapter 10. For now we merely
note that any theory containing a coupling constant with negative mass di-
mension is not renormalizable. A bit of dimensional analysis then allows us to
throw out nearly all candidate interactions. Since the action S = [ Ld%z is
dimensionless, £ must have dimension (mass)* (or simply dimension 4). From
the kinetic terms of the various free Lagrangians, we note that the scalar and
vector fields ¢ and A* have dimension 1, while the spinor field 1) has dimension
3/2. We can now tabulate all of the allowed renormalizable interactions.

For theories involving only scalars, the allowed interaction terms are

ud? and Aot

The coupling constant i has dimension 1, while A is dimensionless. Terms of
the form ¢" for n > 4 are not allowed, since their coupling constants would
have dimension 4 —n. Of course, more interesting theories can be obtained by
including several scalar fields, real or complex (see Problem 4.3).

Next we can add spinor fields. Spinor self-interactions are not allowed,
since 93 (besides violating Lorentz invariance) already has dimension 9/2.
Thus the only allowable new interaction is the Yukawa term,

gpe,

although similar interactions can also be constructed out of Weyl and Majo-
rana spinors.

When we add vector fields, many new interactions are possible. The most
familiar is the vector-spinor interaction of QED,

ey P A,

Again it is easy to construct similar terms out of Weyl and Majorana spinors.
Less important is the scalar QED Lagrangian,

L= |D”¢>|2 —m?|p|%, which contains eA*¢0,¢", e2|p|2 A2

This is our first example of a derivative interaction; quantization of this theory
will be much easier with the functional integral formalism, so we postpone its



