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that, in principle, a way to overcome these problems was to introduce a UV and, if needed,

an IR cutoff into the theory. However, we soon dismissed this option because it seemed

evident that it would lead to spurious non-universal cutoff dependences of physical results.

How do these observations relate to what we are doing presently? Obviously, the present10

version of the RG procedure also relies on the introduction of a cutoff regularizing the

logarithmic UV divergences mentioned above; apparently, the RG procedure shares a lot

of structures with the perturbative approach. But, somehow, we managed to extract the

information in which we were interested – the dependence of the potential strength on long-

range system parameters – in a manner independent of the cutoff.11 The key to obtaining

this information was to introduce not one, but an entire hierarchy of cutoffs and to integrate

over each of these domains recursively.

Now, a subtle and important point is that this procedure does not imply that the cutoff

or, more generally, short-scale fluctuations of the model have silently made their way out

of the theory. After all, the UV divergences mentioned before are manifestations of a large

“phase volume” of field fluctuations that are likely to somehow affect the behavior of the

system. To understand the “implicit” way through which these fluctuations enter our results,

let us return to a remark made on page 425. There, we had noted that, upon scaling

frequency/time, each operator changes according to its physical dimension. An operator

carrying the dimension [time]
d
would acquire a scaling factor bd. The scaling dimension of

an operator predicted by its “physical” dimension is called the naive scaling dimension,

the canonical scaling dimension, or, for obscure reasons, the engineering dimension.

The designations indicate, however, that these dimensions are not the last word on the

actual scaling behavior of an operator. Indeed, the net result of the RG analysis was that

our operator of interest,
∫
dτ cos θ, an object of engineering dimension 1, changes according

to b1−g. The correction to the naive scaling dimension (presently, g) is called the anoma-

lous dimension of an operator. Its origin lies in the (cutoff-dependent) phase volume of

fluctuations co-determining the change of an operator during each RG step. Put differently,

we can say that the cutoff Λ, by itself a quantity of dimension [time]
−1

, acts as a “gray

eminence” implicitly affecting the scaling behavior of an operator. The anomalous scal-

ing dimensions of the theory effectively determine its long-range observable behavior and,

therefore, represent quantities of prime interest.

8.3 Renormalization group: general theory

Having discussed two extended examples, we are in a position to attempt a reasonably

general outline of the RG strategy. Suppose we are given a field theory defined through the

10 Below we become acquainted with UV regularization procedures that are not based on introduction of a cutoff.
11 One may object that the solutions of the β-functions given above actually do contain the bare cutoff, through an

initial condition; they also depend on the bare coupling strength and, possibly, other “non-universal” parame-
ters. However, that need not worry us: in most applications (both experimental and theoretical) one is interested
not so much in the “absolute value” of physical observables (as these usually depend on unknown material
parameters anyway) but rather in the way these observables change as a relevant control parameter is var-
ied. The important feature found above is that the rate at which the effective potential strength varies with
temperature, say, is largely universal and cutoff-independent.
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action

S[φ] ≡
N∑

a=1

gaOa[φ],

where φ is some (generally multi-component) field, ga are coupling constants and Oa[φ]

a certain set of operators. For concreteness, one may think of these operators as Oa =∫
ddx (∇φ)nφm, i.e. as space–time local operators involving powers of the field and its

derivatives – although more general structures are conceivable.12 By “renormalization of

the theory,” we refer to a scheme to derive a set of Gell-Mann–Low equations describing

the change of the coupling constants {ga} as fast fluctuations of the theory are successively

integrated out.

8.3.1 Gell-Mann–Low equations

There are a number of methodologically different procedures whereby the set of flow equa-

tions can be obtained from the microscopic theory. Here, we formulate this step in a language

adjusted to applications in statistical field theory (as opposed to, say, particle physics).

While there is considerable freedom in the actual implementation of the RG procedure, all

methods share the feature that they proceed in a sequence of three more or less canonical

steps.

I: Subdivision of the field manifold

In the first step, one may decompose the integration manifold {φ} into a sector to be

integrated out, {φf}, and a complementary set, {φs}. For example:

� We may proceed according to a generalized block spin scheme and integrate over all

degrees of freedom located within a certain structural unit in the base manifold {x}.
(This scheme is adjusted to lattice problems where {x} = {xi} is a discrete set of points.

However, as pointed out above, even then it is difficult to implement analytically.)

� We could decide to integrate over a certain sector in momentum space. When this sector is

defined to be a shell Λ/b ≤ |p| < Λ, one speaks of a momentum shell integration. Nat-

urally, within this scheme, the theory will be explicitly cutoff-dependent at intermediate

stages.

� Alternatively, we may decide to integrate over all high-lying degrees of freedom λ−1 ≤ |p|.
In this case, we will of course encounter divergent integrals. An elegant way to handle these

divergences is to apply dimensional regularization. Within this approach one formally

generalizes from integer dimensions d to fractional values d± ε. One motivation for doing

so (for another, see below) is that, miraculously, the formal extension of the characteristic

integrals appearing during the RG step to non-integer dimensions are finite. As long as

one stays clear of the dangerous values d = integer one can then safely monitor the

12 In our previous example of the Luttinger liquid, there appeared an operator
∫
(dω/2π)θ(ω)|ω|θ(−ω). When

represented in space-time, this operator is highly non-local.



8.3 Renormalization group: general theory 431

dependence of the integrals on the IR cutoff λ−1. For a good introduction to dimensional

generalization we refer to the textbook by Ryder.13

� For a discussion of alternative schemes, such as the introduction of short-distance real

space cutoffs underlying the so-called operator product expansion, we refer to the

literature (see, e.g., the excellent text by Cardy.1)

II: RG step

The second, and central, part of the program is to actually integrate over short–range

fluctuations. As exemplified above, this step usually involves approximations. In most cases,

one will proceed by a so-called loop expansion, i.e. one organizes the integration over

the fast field φf according to the number of independent momentum integrals – loops14 –

that occur after the appropriate contractions. Of course, this strategy makes sense only if

we can guarantee that the contribution of loops of higher orders is in some sense small,

a precondition that is, alas, often difficult to meet. At any rate, to engage loop numbers

as an expansion parameter, we first need to understand the key role played by space-

dimensionality in the present context. We return to this point in Section 8.4.

Following the procedure, an expansion over the fast degrees of freedom gives an action

S′[φs] ≡
∑
a

g′aO′
a[φs],

in which coupling constants of the remaining slow fields are altered. Notice that the inte-

gration over fast field fluctuations may (and usually does) lead to the generation of “new”

operators, i.e. operators that have not been present in the bare action. In such cases one

has to investigate whether the newly generated operators are “relevant” (see below) in their

scaling behavior. If so, the appropriate way to proceed is to include these operators in the

action from the very beginning (with an a priori undetermined coupling constant). One

then verifies whether the augmented action represents a complete system, i.e. one that does

not lead to the generation of operators beyond those that are already present. If necessary,

one has to repeat this step until a closed system is obtained.

III: Rescaling

One next rescales frequency/momentum so that the rescaled field amplitude φ′ fluctuates
on the same scales as the original field φ, i.e. one sets

q → bq, ω → bzω.

Here, the frequency renormalization exponent or dynamical exponent z may be

unity, two, or sometimes a non-integer value, depending on the effective dispersion relating

frequency and momentum. We finally note that the field φ, as an integration variable, may

be rescaled arbitrarily. Using this freedom, we select a term in the action which we believe

governs the behavior of the “free” theory – in a theory with elastic coupling this might,

13 L. H. Ryder, Quantum Field Theory (Cambridge University Press, 1996).
14 For the definition of loops, see Section 5.1.
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for example, be the leading-order gradient operator ∼
∫
ddr(∇φ)2 – and require that it be

strictly invariant under the RG step. To this end we designate a dimension Ldφ for the

field, chosen so as to compensate for the factor bx arising after the renormalization of the

operator. The rescaling

φ → bdφφ,

is known as field renormalization. It renders the “leading” operator in the action scale

invariant.

As a result of all these manipulations, we obtain a renormalized action

S[φ] =
∑
a

g′aOa[φ],

which is entirely described by the set of changed coupling constants, i.e. the effect of the

RG step is fully encapsulated in the mapping

g′ = R̃(g),

relating the old value of the vector of coupling constants, g = {ga}, to the renormalized one,

g′ = {g′a}. By letting the control parameter, � ≡ ln b, of the RG step assume infinitesimal

values, one can make the difference between bare and renormalized coupling constants

arbitrarily small. It is then natural to express the difference g′ − g = R̃(g)− g in the form

of a generalized β-function or Gell-Mann–Low equation

dg

d�
= R(g), (8.17)

where the right-hand side is defined through the relation R(g) = lim�→0 �
−1(R̃(g)− g).

INFO As mentioned at the beginning of the section, the formulation of the RG step above is

actually not the only one possible. For instance, in high-energy physics, other renormalization

schemes appear to be more natural. In this area of physics, there is actually no reason to believe

in the existence of a well-defined “bare” action with finite coupling constants. (Contrary to the

situation in condensed matter physics, the bare action of quantum electrodynamics, say, is in

principle inaccessible.) However, one may legitimately require that, after an integration over

UV-divergent fluctuations, the “renormalized” coupling constants of the theory (which, in turn,

determine observables such as the physical electron mass) are finite. One may then postulate

that the bare coupling constants of the theory are actually infinite. The value of these infinities is

fine-tuned so as to combine with the fluctuation-induced “infinities” to realize finite renormalized

coupling constants. Alternatively, one may deliberately add extra operators, counter-terms, to

the action which are designed so as to cancel divergences due to fluctuations. However, the net

result of all these RG schemes (which are by and large equivalent) is a mapping describing the

flow of the coupling constants upon variation of a control parameter.
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Figure 8.4 The fractal Julia set is self-similar in the sense that any sub-region of it contains the
full information of the original set.

8.3.2 Analysis of the Gell-Mann–Low equation

The Gell-Mann–Low equation (8.17) represents the principal result of an RG analysis.

Thinking of the control parameter � as a kind of “flow parameter,” one may identify this

equation as a generalized dynamical system, namely the system describing the evolution of

the effective coupling constants of a model upon changing length or time scales. As with any

dynamical system, the prime structural characteristic of the set of equations (8.17) is the set

of fixed points, i.e. the submanifold {g∗} of points in coupling constant space which are

stationary under the flow: R(g∗) = 0. Once the coupling constants are fine-tuned to a fixed

point, the system no longer changes under subsequent RG transformations. In particular it

remains invariant under the change of space/time scale associated with the transformation.

Alluding to the fact that they look the same no matter how large a magnifying glass is

used, systems with this property are referred to as self-similar. (For example, fractals

such as the Julia set shown in Fig. 8.4 are paradigmatic examples of self-similar systems;

the magnification of any sub-region of the fractal looks identical to the full system.)

Now, to each system, one can attribute at least one intrinsic length scale, namely the

length ξ determining the exponential decay of field correlations. However, the existence of a

finite, and pre-determined, intrinsic length scale clearly does not go together with invariance

under scale transformations. We thus conclude that, at a fixed point, either ξ = 0 (not so

interesting), or ξ = ∞. However, a diverging correlation length ξ → ∞ is a hallmark of
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Figure 8.5 Showing the RG flow in the vicinity of a fixed point with two irrelevant (φ1, φ3) and
one relevant (φ2) scaling fields. The manifold S defined through the vanishing of the relevant field,
φ2 = 0, is called a critical surface. On this submanifold, the RG flow is directed towards the fixed
point f . Deviations off criticality make the system approach one of the stable fixed points f1 and
f2.

a second-order phase transition. We thus tentatively identify fixed points of the RG flow

as candidates for “transition points” of the physical system. (For a more comprehensive

review of phase transitions and the critical phenomena accompanying them, see the Info

block starting on page 436 below.) This being so, it is natural to pay special attention to

the behavior of the flow in the immediate vicinity of the fixed-point manifolds. If the set

of coupling constants, g, is only close enough to a fixed point, g∗, it will be sufficient to

consider the linearized mapping

R(g) ≡ R((g − g∗) + g∗) � W (g − g∗), Wab =
∂Ra

∂gb

∣∣∣∣
g=g∗

.

To explore the properties of flow, let us assume that we had managed to diagonalize the

matrix W . Denoting the eigenvalues by λα, α = 1, . . . , N , and the left-eigenvectors15 by φα,

we have

φT
αW = φT

αλα.

The advantage of proceeding via the unconventional set of left-eigenvectors is that it allows

us to conveniently express the flow of the physical coupling constants under renormalization.

To this end, let vα be the αth component of the vector g−g∗ when represented in the basis

{φα}:

vα = φT
α(g − g∗).

15 Since there is no reason for W being symmetric, the left- and right-eigenvectors may be different.
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These components display a particularly simple behavior under renormalization:

dvα
d�

= φT
α

d

d�
(g − g∗) = φT

αW (g − g∗) = λαφ
T
α(g − g∗) = λαvα.

Under renormalization, the coefficients vα change by a mere scaling factor λα, wherefore

they are called scaling fields – a somewhat unfortunate nomenclature. (The coefficients

vα are actually not fields but simply a set of �-dependent coefficients, the vector of coupling

constants when expressed in the basis of eigenvectors φα.) These equations are trivially

integrated to obtain

vα(�) ∼ exp(�λα).

This result suggests a discrimination between at least three different types of scaling fields:

� For λα > 0 the flow is directed away from the critical point. The associated scaling field

is said to be relevant (in the sense that it forcefully drives the system away from the

critical region). In Fig. 8.5, v2 is a relevant scaling field.

� In the complementary case, λα < 0, the flow is attracted by the fixed point. Scaling fields

with this property (v1, v3) are said to be irrelevant.16

� Finally, scaling fields which are invariant under the flow, λα = 0, are termed marginal.17

The distinction of relevant/irrelevant/marginal scaling fields in turn implies a classification

of different types of fixed points:

� Firstly, there are stable fixed points, i.e. fixed points whose scaling fields are all irrel-

evant or, at worst, marginal. These points define what we might call “stable phases of

matter”: when you release a system somewhere in the parameter space surrounding any

of these attractors, it will scale towards the fixed point and eventually sit there. Or,

expressed in more physical terms, looking at the problem at larger and larger scales will

make it more and more resemble the infinitely correlated self-similar fixed-point configu-

ration. (Recall the example of the high-temperature fixed line of the one-dimensional Ising

model encountered earlier.) By construction, the fixed point is impervious to moderate

variations in the microscopic morphology of the system, i.e. it genuinely represents what

one might call a “state of matter.”

� Complementary to stable fixed points, there are unstable fixed points. Here, all scaling

fields are relevant (cf. the T = 0 fixed point of the 1-D Ising model). These fixed points

represent the concept of a Platonic ideal: you can never get there and, even if you managed

16 The terminology “irrelevant” indicates that a scaling field of negative dimension usually does not play much of
a physical role. There are, however, exceptions to this rule. For instance, it may happen that the free energy
of the system depends in a singular manner on an irrelevant scaling variable – in which case the variable is
called dangerously irrelevant. Dangerously irrelevant scaling variables not only strongly affect the outcome
of the theory, but also invalidate the applicability of a number of established concepts of RG theory (such as
the scaling laws to be discussed below).

17 A marginal scaling field corresponds to a direction in coupling constant space with vanishing partial derivative,
∂φαR|g∗=0 = 0. In this case, to obtain a refined picture, one sometimes considers the second-order derivative,

∂2
φα

R|g∗=0 ≡ 2x. In the vicinity of the fixed point, the scaling field then behaves as d�vα = xv2
α. For x > 0

(x < 0) the field has the status of a marginally relevant (irrelevant) scaling field. It is relevant (irrelevant)
on account of the non-vanishing direction of the flow. However, it is also “marginal” because the speed of the
flow decreases upon approaching the critical regime.
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to approach it closely, the harsh conditions of reality will make you flow away from it.

Although unstable fixed points do not correspond to realizable forms of matter, they are

of importance inasmuch as they “orient” the global RG flow of the system.

� Finally, there is the generic class of fixed points with both relevant and irrelevant

scaling fields. These points are of particular interest inasmuch as they can be associated

with phase transitions. To understand this point, we first note that the r eigenvectors

Φα associated with irrelevant scaling fields span the tangent space of an (r)-dimensional

manifold known as the critical surface. (A schematic illustration for the case r = 2

is shown in Fig. 8.5.) This critical manifold forms the basin of attraction of the fixed

point, i.e. whenever a set of physical coupling constants g is fine-tuned so that g ∈ S, the

expansion in terms of scaling fields contains only irrelevant contributions and the system

will feel attracted to the fixed point as if it were a stable one.

However, the smallest deviation from the critical surface introduces a relevant compo-

nent driving the system exponentially away from the fixed point. A sketch of the resulting

flow is shown in Fig. 8.5 for the case of just one relevant scaling field. For example, in the

case of the ferromagnetic phase transition – discussed in more detail in the next section –

deviations from the critical temperature Tc are relevant. If we consider a system only

slightly above or below Tc, it may initially (on intermediate length scales) appear to be

critical. However, upon further increasing the scale, the relevant deviation will grow and

drive the system away from criticality, either towards the stable high-temperature fixed

point of the paramagnetic phase (T > Tc) or towards the ferromagnetic low-temperature

phase (T < Tc).

This picture actually suggests that systems with generic fixed points typically possess

complementary stable fixed points, i.e. fixed points towards which the flow is directed

after it has left the critical region. We also notice that a scaling direction that is relevant

at one fixed point (e.g. Φ2 at the critical fixed point) may be irrelevant at others (Φ2 at

the high- and low-temperature fixed points).

INFO The discussion above suggests that the concept of renormalization is intimately linked to

the theory of phase transitions and critical phenomena, the traditional platform for the

development of the subject in the literature. In view of the existing wealth of literature (and

acknowledging the fact that we are approaching the field from a more operational perspective),

we shall not endeavor to present another “introduction to the theory of critical phenomena.”

Rather, we will summarize in a concise, but hopefully self-contained, manner, those few tenets

and principles that are necessary to place the concept of renormalization into a larger physical

context.

The most fundamental18 signature of a phase transition is its order parameter, M , i.e., a

quantity whose value unambiguously identifies the phase of the system. Examples from classical

statistical mechanics include the magnetization for the ferromagnetic–paramagnetic transition,

the density for the liquid–vapor transition, the order parameter amplitude for the BCS transi-

tion, etc. (However, to keep the terminology concrete, we shall mostly use the language of the

ferromagnetic transition in the following.)

18 Notice that there are transitions whose order parameter is actually unknown. A famous example is the quantum
Hall transition discussed in more detail in Section 9.3.4.
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Figure 8.6 Phase diagram of the ferromagnetic transition. Tuning a magnetic field at fixed tem-
perature T < Tc through zero causes the magnetization to jump discontinuously: [0, Tc] is a line of
first-order transitions. This line terminates in the unique second-order transition point of the sys-
tem, (T = Tc, H = 0). Lowering the temperature at H = 0 causes the non-analytic, but continuous,
development of a finite magnetization at T < Tc.

Transitions between different phases of matter fall into two large categories.19 In first-order

phase transitions the order parameter exhibits a discontinuous jump across the transition line

while, in the complementary class of second-order transitions, the order parameter changes in

a non-analytic but continuous manner. (The two cases are exemplified in Fig. 8.6 by the classical

ferromagnet.)

The phenomenology of second-order transitions is generally richer than that of first-order

transitions. As a thermodynamic state variable, the order parameter is coupled to a conjugate

field, H : M = −∂HF , where F is the free energy. At a second-order transition, M changes non-

analytically, which means that the second-order derivative, a thermodynamic susceptibility,

χ = −∂2
HF, develops a singularity. Now, you may recall from the discussion of the fluctuation

dissipation theorem that the susceptibility is intimately linked to the field fluctuation behavior

of the system. More precisely, χ is proportional to the integral over the correlation function C

determining the fluctuation behavior of the fields (cf. Eq. (8.3)). A divergence of the susceptibility

implies the accumulation of infinitely long-range field fluctuations.

The divergence of the susceptibility goes hand in hand with non-analytic and/or singular

behavior of all sorts of other physical quantities. In fact, an even stronger statement can be made.

We have seen that, right at the transition/fixed point, the system is self-similar. This implies

that the behavior of its various characteristics must be described by power laws. Referring for

a more substantial discussion to Section 8.3.3 below, we here merely support this statement by

a heuristic argument. Consider a function f(t), where f is representative of an observable of

interest and t is a control parameter (a scaling field) determining the distance to the transition

point. In the immediate vicinity of the transition point, f is expected to “scale,” i.e. under a

change of the length scale x → x/b, t → tb−Dt , the function f must, at most, change by a factor

reflecting its own scaling dimension. f(t) = bDf f(tb−Dt). (A more serious, structural change of

the function would be in conflict with asymptotic self-similarity.) Mathematically speaking, this

equation amounts to homogeneity of the function f , equivalently expressed by f ∼ tDf/Dt .

19 Readers absolutely unfamiliar with the thermodynamics of phase transitions may wish to consult the corre-
sponding section of a textbook on statistical mechanics.
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The set of different exponents characterizing the relevant power laws occurring in the vicinity

of the transition are known as critical exponents. For at least four different reasons, the set

of critical exponents represents the most important structural fingerprint of a transition:

1. They carry universal significance, i.e. we do not have to invent a set of critical exponents for

each transition anew. (For example, the divergence of the correlation length, ξ ∼ |t|−ν , is

characterized by a critical exponent commonly, and irrespective of the particular transition

under consideration, denoted by ν.)

2. The set of critical exponents carries the same information as the set of exponents of the

scaling fields, i.e. knowledge of the critical exponents is equivalent to the knowledge of the

linear dynamical system characterizing the flow in the transition region. (In fact, the set of

critical exponents overdetermines the scaling field exponents, i.e. it contains redundancy. For

example, of the six critical exponents characterizing the magnetic transition, only two are

independent. The others are interrelated by20 scaling laws or exponent identities to be

discussed below.

3. Critical exponents are fully universal; they are numbers depending, at most, on dimensionless

characteristics such as the space-time dimensionality or number of components of the order

parameter.

4. Perhaps most importantly, the critical exponents represent quantities that can be measured. In

fact, their universality and structural importance make them quantities of prime experimental

interest.

In the following, let us briefly enumerate the list of the most relevant exponents, α, β, γ, δ, η,

ν, and z.21 Although we shall again make use of the language of the magnetic transition, it is

clear that (and, indeed, how) the definitions of most exponents generalize to other systems.

α: In the vicinity of the critical temperature, the specific heat C = −T∂2
TF scales as C ∼ |t|−α,

where t = (T − Tc)/Tc measures the distance to the critical point. Note that, by virtue of

this definition, a non-trivial statement has been made: although the phases above and below

the transition are essentially different, the scaling exponents controlling the behavior of C are

identical. The same applies to most other exponents listed below.

β: Approaching the transition temperature from below, the magnetization vanishes as M ≡
−∂HF

∣∣
H�0

∼ (−t)β .

γ: The magnetic susceptibility behaves as χ ≡ ∂hM |h�0 ∼ |t|−γ .

δ: At the critical temperature, t = 0, the field dependence of the magnetization is given by

M ∼ |h|1/δ.
ν: Upon approaching the transition point, the correlation length diverges as ξ ∼ |t|−ν .

η: This implies that the correlation function,

C(r) ∼
{

1
|r|d−2+η , |r| 	 ξ,

exp[−|r|/ξ], |r| � ξ,

crosses over from exponential to a power law scaling behaviour at the length scale ξ. To

motivate the power, one may notice that C ∼ 〈φφ〉 carries twice the dimension of the field

20 Unfortunately, the language used in the field of critical phenomena makes excessive use of the prefix “scaling.”
21 Historically, the exponents are drawn from the first six letters of the Greek alphabet. The exceptional designation

of the last exponent, z, betrays the fact that quantum dynamical fluctuations were considered only later.
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φ. The engineering dimension of the latter follows from the requirement that the gradient

operator ∼
∫
ddr (∇φ)2 be dimensionless: [φ] = L(2−d)/2, according to which C(r) has canon-

ical dimension L2−d. The exponent η, commonly referred to as the anomalous dimension

of the correlation function, measures the mismatch between the observed and the canonical

dimension.

z: A quantum theory can, to a large extent, be viewed as a kind of classical theory in d + 1

dimensions. The theory is “quantum critical” if the effective classical theory contains a critical

point. In the vicinity of that point large fluctuations are observed in both the d spatial direc-

tions and the temporal “direction.” However, the different physical origin of these dimensions

manifests itself in the scaling being anisotropic. Denoting the correlation length in the tem-

poral direction by τ , we define τ ∼ ξz, where deviations z �= 1 in the dynamical exponent

measure the degree of anisotropy.

Now, a moment’s thought shows that, of the six classical exponents, only a few can be truly

independent. Previously we have noted that, modulo irrelevant perturbations, the flow in the

vicinity of a transition point is controlled by the relevant scaling fields. Referring for a more

quantitative discussion to Section 8.4 below, we anticipate that, for the magnetic transition, the

magnetic field will certainly represent a relevant perturbation (a fact readily expressed by the

positivity of the exponent δ). Moreover, deviations from the critical temperature, t �= 0, are also

relevant.22 However, for the magnetic transition, that exhausts the list; in the asymptotic vicinity

of the transition, the flow is controlled by a two-dimensional dynamical system. This suggests

that four constraining equations should reduce the set of six classical exponents to only two

independent ones. Historically, these scaling laws were discovered one by one (at a time when

the underlying connections to the system of “scaling fields” had not been fully appreciated).

For the sake of reference, these constraint equations (along with the names of the people who

discovered them) are listed below. In Section 8.3.3 below, we exemplify how the scaling laws can

be transparently derived from the intrinsic structure of the theory.

Fisher ν(2− η) = γ
Rushbrooke α+ 2β + γ = 2
Widom β(δ − 1) = γ
Josephson 2− α = νd

For practical purposes, we need only compute/measure two exponents – no matter which – to

fully specify the scaling structure of the theory.

In the next section we discover that the dynamical system of scaling fields encapsulates

practically all information about “critical” fluctuation phenomena accompanying a phase

transition. However, for the moment, we shall restrict ourselves to the discussion of one

more aspect of conceptual importance, namely universality. In fact, the majority of critical

systems can be classified into a relatively small number of universality classes. Crudely

speaking, leaving apart more esoteric classes of phase transitions there are O(101) funda-

mentally different types of flow recurrently appearing in practical applications. This has to

22 If you find it difficult to think of temperature as a “coupling constant,” remember that, in our derivation of
the φ4-model as the relevant theory of the magnetic transition, the coupling constant of the “mass operator”
r
∫
ddr φ2 turned out to be proportional to the reduced temperature t = |T − Tc|/Tc.
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be compared with the near infinity of different physical systems that display critical phe-

nomena. Why, then, is it that the plethora of all these transitions can be grouped into a

very limited set of different universality classes? Remarkably, the origin of this universality

can readily be understood from the concept of critical surfaces.

systems
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Imagine, then, an experimentalist exploring a system

that is known to exhibit a phase transition. Motivated

by the critical phenomena that accompany phase transi-

tions, the available control parameters Xi (temperature,

pressure, magnetic field, etc.) will be varied until the sys-

tem begins to exhibit large fluctuations. On a theoretical

level, the variation of the control parameters determines

the initial values of the coupling constants of the model

(as they functionally depend on the Xis through their

connection to the microscopic Hamiltonian). In Fig. 8.5

the curve in coupling constant space defined in this way

is indicated by γ. For microscopic parameters corresponding to a point above or below the

critical manifold, the system asymptotically (i.e. when looked at at sufficiently large scales)

falls into either the “high-” or the “low-temperature” regime (as indicated by the curves

branching out from γ in Fig. 8.5). However, eventually the trajectory through parameter

space will intersect the critical surface. For this particular set of coupling constants, the

system is critical. As we look at it on larger and larger length scales, it will be attracted by

the fixed point at S, i.e. it will display the universal behavior characteristic of this particular

point. This is the origin of universality: variation of the system parameters in a different

manner (or for that matter considering a second system with different material constants)

will generate a different trajectory gα({Xi}) = γ′. However, as long as this trajectory inter-

sects with S, it is guaranteed that the critical behavior will exhibit the same universal

characteristics (controlled by the unique fixed point).

In fact a more far-reaching statement can be made. Given that there is an infinity of

systems exhibiting transition behavior (symbolically indicated by the row of boxes in the

upper part of the figure above) while there is only a very limited set of universality classes

(the set of boxes on the left), many systems of very different microscopic morphology must

have the same universal behavior. More formally, different microscopic systems must map

onto the same critical low-energy theory. Examples of these coincidences include (to mention

but a few entries of an endless list) the equivalence of the disordered Luttinger liquid to

a Josephson junction (cf. Problem 6.7), the equivalence of models of planar magnets (see

Section 8.6 below) to two-dimensional classical Coulomb plasmas, and the equivalence of the

liquid–gas transition to the ferromagnetic transition. (In all cases, “equivalence” means that

the systems exhibit identical scaling behavior and, therefore, fall into the same universality

class.) Further coincidences of this type will be encountered below.
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8.3.3 Scaling theory

Previously, we have seen that the dynamical system of scaling fields encodes a wealth of

information on the large-scale structure and on the phases of a physical system. However, we

have not yet established a connection between the concept of renormalization and concrete

(i.e. experimentally accessible) data. This is the subject of the present section. Imagine,

then, that we had represented some observable of experimental interest, X, in the language

of the functional integral. According to the discussion of the previous chapter this means

that we have managed to express

X =
∑
p

C(pi, gα),

as the sum over an n-point correlation function C(pi, gα) = 〈(· · · )φφ · · ·φ〉φ, where the

(symbolic) notation indicates that C may depend both on the momentum scale at which it

is evaluated (e.g. through the explicit momentum dependence of current operators, etc.) and

on the coupling constants. The ellipsis (· · · ) stand for optional algebraic elements entering

the definition of the correlation function.

We next build on our assumption of renormalizability of the theory, i.e. we make use of

the fact that we can evaluate C before or after an RG step; the result must be the same. On

the other hand, the RG transformation will, of course, not leave the individual constituents

entering the definition of C invariant; it will change coupling constants, gα, the momenta

pi, and the field amplitudes φ according to the prescriptions formulated in the previous

section. Expressed in a single formula,

C(pi, gα) = bndφC(pib, gαb
λα), (8.18)

where we have simplified the notation by assuming that the coupling constants themselves

scale (for, otherwise, the matrix elements of a linear transformation mediating between the

coupling constants and the scaling fields would appear). For notational convenience, let us

also assume that the fixed point values of the coupling constants are specified in such a way

that g∗ = 0. The factor bndφ accounts for the explicit rescaling of the n fields entering the

definition of C.

Notice that Eq. (8.18) presents a remarkable statement. Although the three different

elements (φ, pi, gα) contributing to the correlation function change under the transformation

in seemingly unrelated manners, the net result of the concerted rescaling is nil. Indeed,

Eq. (8.18) serves as a starting point for the derivation of various relations of immediate

practical relevance.

Scaling functions

Let us return to a principle already employed in connection with the one-dimensional Ising

model. For concreteness, imagine that we are working under conditions where there is just a
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single relevant scaling field g1, while all gα>1 are irrelevant (or, for that matter, marginal).

We can then write

C(pi, g1, gα) = bndφC(pib, g1b
λ1 , gαb

λα) = g
−ndφ/λ1

1 C(pig
−1/λ1

1 , 1, gαg
−λα/λ1

1 )

g1�1
≈ g

−ndφ/λ1

1 C(pig
−1/λ1

1 , 1, 0) ≡ g
−ndφ/λ1

1 F (pig
−1/λ1

1 ).

Here, we have used the freedom of arbitrarily choosing the parameter b to set g1b
λ1 = 1

while, in the third equality, we have assumed that we are sufficiently close to the transition

that the dependence of C on irrelevant scaling fields is inessential. The function F defined

through the relation

C(pi, g1) = g
−ndφ/λ1

1 F (pig
−1/λ1

1 ), (8.19)

is an example of a scaling function. Alternatively (for example, if C represents a thermody-

namic observable or a global transport coefficient) we might be interested in the correlation

function C(g1, gα) ≡ C(pi = 0, g1, gα) at zero external momentum pi = 0. In this case, a

typical question to ask would be the dependence of C on the most relevant and the sec-

ond most relevant control parameter g2 (where we leave unspecified whether g2 is relevant,

marginal, or irrelevant). Following the same logic as above, one obtains

C(g1, g2) = g
−ndφ/λ1

1 F̃ (g2g
−λ2/λ1

1 ),

with some different scaling function F̃ .

INFO As an example particularly relevant to the comparison between analytical theory and

numerics, we note the concept of finite-size scaling. While analytical theories are most conve-

niently formulated in the thermodynamic limit, numerical simulations are carried out for systems

of still very limited size. The need to compare theory and numerical simulations motivates the

need to explicitly keep track of the system size under renormalization. Indeed, the system size

L has dimension [length] and, therefore, gets rescaled as L → L/b. Setting L/b = 1, we obtain a

scaling function

G(gα, L) = LndφFfs(gαL
λα),

with explicit system size dependence.

While the construction of any particular scaling function may be context-dependent, the

principle behind the derivation is general: once the scaling behavior of a correlation function

is known, the arbitrariness of the scaling parameter b can be used to reduce the number of

independent variables by one. The reduced correlation function is called a scaling function.

As with the response functions discussed in the previous chapter, scaling functions also

represent a prime interface between theory and experiment. Experimentally, the mea-

surement of an observable X in its dependence on a number of relevant system parameters,

t and h say, results in a multi-parameter function X(t, h). In fact, a better way to think

about this object is as a set of one-dimensional functions Xh(t) depending on a parameter

h. (This is because, in experiment, one typically varies only a single control parameter, e.g.

temperature at fixed magnetic field.) Scaling implies that all these functions collapse onto
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a generic one-dimensional23 profile, if only the data are plotted as a function of the relevant

scaling parameter thx.

This mechanism can be exploited in several different ways. For example, if there is not

yet a theory of the transition phenomenon in question, an experimentalist may empirically

identify the relevant scaling parameters and pose the explanation of the observed scaling

exponent x – by construction a fully universal number – as a challenge to theorists.24

Conversely, theorists may suggest a scaling exponent that can be put to the test by checking

whether the experimental data collapse onto this exponent. Summarizing, one of the great

virtues of the concept of scaling is that it condenses the information exchange between

experiment and theory (and analytical theory and numerics for that matter) into a small

set of universal numbers.

INFO For the sake of completeness we mention that, especially in the field theoretical community,

the information encapsulated in the scale-dependent correlation functions is often represented in

a different manner. Starting out from the relation

C(pi, gα) = en�dφC(pie
�, gα(�)),

where we have set b = e�, we can use the �-independence of the left-hand side to write 0 =
d
d�
en�dφC(pie

�, gα(�)). (Notice that, here, we do not need to be in the asymptotic scaling regime,

i.e., for the sake of the present construction, the �-dependence of the coupling constants need

not be explicitly exponential.) We next carry out the �-differentiation to obtain

&
n
&
de,φ +

η

2

'
+ ∂� + βα(gα)∂gα

'
C(pie

�, gα(�)) = 0. (8.20)

Here, de,φ is the engineering dimension of the field φ and η/2 = dφ−de,φ its anomalous dimension

(see the definition of η in the Info block starting on page 436). Further, the partial derivative ∂�

acts on the explicit scale dependence of the momentum arguments (or any other explicitly scale-

dependent argument for that matter). Finally, βα(gα) is the β-function defined above. Equation

(8.20) is known as a renormalization group equation. Both the RG equation and the scaling

form that we used to derive it equivalently express the scaling behavior of the correlation function.

Scaling functions and critical exponents

Another important aspect of scaling theory is that it can be used to disclose relations

between the seemingly independent25 critical exponents of the theory. For the sake of con-

creteness, let us consider the case of the ferromagnetic transition, i.e. a transition we have

previously characterized in terms of six critical exponents α, . . . , η (see page 438). However,

the flow in the vicinity of the magnetic fixed point is controlled by only two relevant scaling

fields, the (reduced) temperature t and the reduced magnetic field h ≡ H/T . Neglecting

23 For an n-dimensional data set, the collapse is to an (n − 1)-dimensional functional set.
24 Parenthetically, one may note that the empirical collapse of experimental data onto scaling functions requires

a lot of skill. For example, if the data set consists of a number of functional “patches” of only limited overlap,
it is quite “easy” to construct a scaling function of, in fact, almost any desired power law dependence. Data of
this type tend to contain a lot of statistical uncertainty, which can easily lead to erroneous conclusions.

25 After all, the critical exponents describe the behavior of quite different physical observables in the transition
region.
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irrelevant perturbations, we thus conclude that, under a renormalization group transforma-

tion, the reduced free energy f = F/TLd will behave as26 f(t, h) = b−df(tbyt , hbyh). We

next fix tbyt = 1 to reduce the number of independent variables to one:

f(t, h) = td/yt f̃(h/tyh/yt). (8.21)

Containing the complete thermodynamic information, Eq. (8.21) is all that we need to

compute the critical exponents. Indeed, comparing with the definitions summarized on

page 438, it is straightforward to show that

α = 2− d

yt
, β =

d− yh
yt

, γ =
2yh − d

yt
,

δ =
yh

d− yh
, ν =

1

yt
, η = 2 + d− 2yh,

⎫⎪⎪⎬⎪⎪⎭ (8.22)

from where follow the cross-relations summarized in the table on page 439 by direct com-

parison. These relations illustrate our previous assertion that, conceptually, the dimensions

of the relevant scaling fields have a more fundamental status than the critical exponents.

EXERCISE Verify these statements. To obtain the fifth relation, the hyperscaling relation,

notice that, under a change of scale, ξ → bξ. On the other hand, we know that t ∼ ξ−1/ν . The

sixth relation is obtained from Eq. (8.3) by a substitution of the definition of the spatial profile of

the correlation function in terms of the critical exponent η into the integral to obtain a relation

between the critical exponents γ and η (Fisher’s scaling law).

8.4 RG analysis of the ferromagnetic transition

In the previous section, we became acquainted with some fundamental elements of the

structure of RG analyses, and their connection to the theory of critical phenomena. Being

kept at a general and conceptual level, the discussion may have seemed somewhat abstract.

Therefore, to elucidate the concepts introduced above, and to introduce some more elements

of the RG, we turn now to a concrete application of the approach to the classical theory

of the (uniaxial) ferromagnetic (or liquid–gas) transition. In Section 5.1, the φ4-theory was

identified as an effective low-energy model of the ferromagnetic system. However, beyond

the mean-field, we have not yet applied the model to explore the universal characteristics

of the transition. In the following, we shall see that RG methods, and only RG methods,

can be applied to successfully understand much of the intriguing behavior displayed by the

(d > 2)-dimensional Ising model in the vicinity of its phase transition.

26 Here we have made use of the fact that the reduced free energy does not carry an anomalous dimension. By
definition, the free energy F = −T lnZ does not change under renormalization (which after all, merely amounts
to representing the number Z through functional integrals of different space-time resolution). Thus, the scaling

of the reduced free energy is entirely carried by the prefactor L−d.
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8.4.1 Preliminary dimensional analysis

The first question that we wish to address has a somewhat technical status: with what

justification was the Ising model represented in terms of the model action27

S[φ] =

∫
ddr

[
r

2
φ2 +

1

2
(∇φ)2 +

λ

4!
φ4 − hφ

]
, (8.23)

i.e. why was it possible to neglect both higher powers and gradients of the field φ that are

surely present in the exact reformulation of the Ising problem in terms of φ-variables? To

rationalize the neglect of these terms, we proceed by dimensional analysis. Anticipating that

the “real” dimensions carried by the operators in the action will be not too far from their

engineering dimensions (see below), we begin by exploring the latter. We proceed along

the lines of the general scheme outlined in the previous chapter and attribute a dimension

of unity to the leading gradient term
∫
(∇φ)2 in the action. This entails the choice [φ] =

L(2−d)/2, from where it is straightforward to attribute engineering dimensions to all other

operators:[∫
φ2

]
= L2,

[∫
φ4

]
= L−d+4,

[∫
φn

]
= Ld+(2−d)n/2,

[∫
(∇mφ)2

]
= L2(1−m).

These relations convey much about the potential significance of all structurally allowed

operators:

� The engineering dimension of the non-gradient operator ∼ φ2 is positive in all dimensions,

indicating general relevance.

� The φ4 operator is relevant (irrelevant) in dimensions d < 4 (d > 4). This suggests that for

d > 4 a harmonic approximation (λ = 0) of the model should be reasonable. It also gives

us a preliminary clue as to how we might want to approach the φ4-model on a technical

level: while for dimensions “much” smaller than d = 4 the interaction operator ∼ φ4 is

strongly relevant, the dimension d = 4 itself is borderline. This suggests that we analyze

the model at d = 4, or maybe “close”28 to d = 4 where the φ4 operator is not yet that

virulent, and then try to extrapolate to infer what happens at the “physical dimensions”

of d = 2 and 3.

� Operators φn>4 become relevant only in dimensions d < (−1/n + 1/2)−1 < 4. However,

even below these threshold dimensions, operators of high powers in the field variable are

much less relevant than the dominant non-harmonic operator
∫
φ4. This is the a posteriori

justification for the neglect of φn>4 operators in the derivation of the model.

� Similarly, operators with more than two gradients are generally irrelevant and can be

neglected in all dimensions.

� In contrast, the operator
∫
φ coupling to the magnetic field carries dimension 1+d/2 and

is therefore always strongly relevant.

27 Generalizing our discussion from Section 5.1, we have incorporated a coupling to an external field. (Exercise:
Recapitulate the construction of Section 5.1 to convince yourself that, to lowest order in an expansion in terms
of φ, coupling the system to a magnetic field leads to the fourth term of Eq. (8.23). In case you are too impatient
to do this: justify the structure of the term on physical grounds.)

28 As we see shortly, the analysis of the problem is readily generalized to non-integer dimensions.
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Dimensional analysis provides us with some valuable hints as to the importance of various

operators appearing in the theory. It also indicates that, in the present context, dimension

d = 4 might play a special role. Guided by this information, we now proceed to analyze the

model in a sequence of steps of increasing sophistication.

8.4.2 Landau mean-field theory

Given an action of the form (8.23), the first thing one might try is a mean-field analysis.

That is, assuming that our coupling constants r and λ are sufficiently large we might assume

that the functional integral over φ is centered around solutions of the equation δS[φ]

δφ̄
= 0,

or

rφ̄+
λ

6
φ̄3 − h = 0, (8.24)

where we have used the fact that the low-energy mean-field configuration will be spatially

constant. Just by inspecting the potential part of the field-free Lagrangian, r
2φ

2+ λ
4!φ

4, it is

clear that, depending on the sign of r, the mean-field equation possesses two fundamentally

different types of solution. For r > 0, the action has a global minimum at φ = 0, implying

that φ̄ = 0 is the unique mean-field (see Fig. 8.7). Noticing that the amplitude of φ represents

a measure of the magnetization of the system (which is clear from the way the φ4-action

was derived from the Ising model on page 196), we identify r > 0 as a phase of zero net

magnetism, the paramagnetic phase.

In contrast, for r < 0, the action has two degenerate minima at non-zero values, φ̄ =

±φ0 ≡ ±(6|r|/λ)1/2 (see Fig. 8.7). The system then has to make a choice as to whether

it wants to sit in the ground state configuration φ̄ = φ0 or φ̄ = −φ0. This is the state of

spontaneous symmetry breaking indicative of the low-temperature ferromagnetic phase.

(Notice that, upon the switching on of a small magnetic field, the degeneracy between the

two ground states is lifted and the system will populate a state of predetermined magneti-

zation, φ̄ = ±φ0, depending on the sign of h.)

The preliminary analysis above indicates that r has the status of a fundamental parameter

tuning the system through the ferromagnetic transition. Indeed, the microscopic analysis

in Section 5.1 had indicated that r ∼ T − Tc was a function of temperature that changed

sign at some critical temperature Tc, the mean-field critical temperature of the transition.

However, even if we did not know the microscopics, it would be clear that r(T ) is (i) some

S

φ φ

r > 0 r < 0

S

(a) (b)

Figure 8.7 Action of the φ4-theory evaluated on a constant field configuration above (a) and below
(b) the critical point.
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Table 8.1 Critical exponents of the ferromagnetic transition

obtained through different methods. Experimental exponents

represent cumulative data from various three-dimensional

ferromagnetic materials.

Exponent Experiment Mean-field Gaussian ε1 ε5

α 0–0.14 0 1/2 1/6 0.109

β 0.32–0.39 1/2 1/4 1/3 0.327

γ 1.3–1.4 1 1 7/6 1.238

δ 4–5 3 5 4 4.786

ν 0.6–0.7 — 1/2 7/12 0.631

η 0.05 — 0 0 0.037

Source: Data taken from K. Huang, Statistical Mechanics (Wiley, 1987).

function of temperature which (ii) must have a zero at some temperature T = Tc (otherwise

there would be no transition to begin with). Therefore, in the vicinity of T = Tc, we can

set r ∼ T − Tc as our prime measure of the distance to the critical point. (This observation

is, in fact, in perfect agreement with our earlier observation that the operator
∫
φ2 coupled

to r is relevant – see the discussion in Section 8.3.2.)

What can mean-field theory say about the prime descriptors of the transition, the critical

exponents? Identifying the field amplitude φ (alias the magnetization) with the order

parameter of the transition, and referring back to our list of exponents on page 438, the

low-temperature profile is given by |φ̄| = (12|r|/λ)1/2 ∼ |t|1/2, implying that β = 1/2. The

exponent γ is obtained by differentiating Eq. (8.24) with respect to h. With χ ∼ ∂hφ, it

is then straightforward to verify that, on approaching the critical point from either side

of the transition, χ ∼ |t|−1, implying an exponent γ = 1. The action evaluated on the

mean-field-configuration takes the form

S[φ̄]

Ld
=

r

2
φ̄2 +

λ

4!
φ̄4 ∼

{
λ−1t2, t < 0,

0, t > 0.
(8.25)

With the mean-field free energy F = TS[φ̄] we find that the specific heat C = −T 2∂2
TF ∼

∂2
t S behaves as a step function at the transition point, implying α = 0. Right at the critical

temperature, r = 0, the mean-field magnetization depends on h as φ̄ ∼ h1/3, implying that

δ = 3. Finally, the correlation length exponents ν, η cannot directly be computed from plain

mean-field theory as they are tied to the spatial profile of fluctuating field configurations.

For the sake of later comparison, the mean-field critical exponents are summarized in

Table 8.1. At first sight the differences between the experimentally observed exponents

(second column) and the mean-field exponents (third column) do not look too dramatic –

apparently the primitive mean-field approach pursued here fares reasonably favorably –

which, in view of the accumulation of pronounced fluctuations at the critical point, should

come as something of a surprise. On the other hand we must keep in mind that the exponents

describe singular power laws in the transition region. In view of that, the difference between
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1.3 and 1 does look quite significant. At any rate, we should try to refine our theoretical

understanding of the transition and search for the source of the discrepancy with experiment.

8.4.3 Gaussian model

As a first improvement on the mean-field approximation, let us explore the effect of quadratic

fluctuations around the constant field configuration φ̄. Approaching the transition point

from above, we set φ̄ = 0 and approximate the action through its quadratic expansion29

S[φ] ≈
∫

ddr

[
r

2
φ2 +

1

2
(∇φ)2 − hφ

]
. (8.26)

In this form, one may effect the Gaussian integral over field fluctuations and evaluate the

dependence of the free energy on the external parameters h and r. However, in anticipation

of our analysis of the full problem below, we here pursue a slighly different, renormalization-

group-oriented approach, i.e., pretending that we did not know how to do the Gaussian

integral, we subject the quadratic action to a momentum shell RG analysis.

Proceeding along the lines of the canonical scheme, we split our field into fast and slow

degrees of freedom φ = φs + φf resulting in the, now familiar, fragmentation of the action

S[φs, φf ] = Ss[φs] + Sf [φf ] + Sc[φs, φf ]. However, the crucial simplification, characteristic

of a Gaussian theory, is that the action Sc coupling fast and slow components vanishes

(exercise), implying that the integration over the fast field merely leads to an inessential

constant. The effect of the RG step on the action is then entirely contained in the rescaling

of the slow action. According to our previous discussion, the scaling factors thus appearing

are determined by the engineering dimensions of the operators appearing in the action, i.e.

r → b2r and h → bd/2+1h. Using the fact that r ∼ t we can then readily write down the

two relevant scaling dimensions of the problem, yt = 2 and yh = d/2 + 1. Comparison with

Eq. (8.22) finally leads to the list of exponents,

α = 2− d

2
, β =

d

4
− 1

2
, γ = 1, δ =

d+ 2

d− 2
, ν =

1

2
, η = 0.

Notice that the exponents now explicitly depend on the dimensionality of the system, a nat-

ural consequence of the fact that they describe the effect of spatial fluctuations. Table 8.1

contains the values of the exponents for a three-dimensional system. We cannot really say

that the results are any better than those obtained by the mean-field analysis. Some expo-

nents (e.g. δ) agree better with the experimental data, while others (e.g. α) are decidedly

worse.

As a corollary to this section, we note that the Gaussian model possesses only one fixed

point, namely r = h = 0, which in the context of φ4-theory is called the Gaussian fixed

point.

29 The appearance of a linear term indicates that we are expanding not around the “true” mean-field, i.e. the
exact solution of (8.24), but rather around the solution φ̄ = 0 of the field-free system. However, in view of the
fact that h has the status of an external perturbation, this choice of the reference configuration is quite natural.
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8.4.4 Renormalization group analysis

In the present analysis of the model, we have not really touched upon its principal source of

complexity, namely the effect of the “interaction operator” φ4 on the fluctuation behavior

of the field. It seems likely that the neglect of this term is responsible for the comparatively

poor predictive power both of the straightforward mean-field analysis, and of the Gaussian

model. Indeed, the dimensional analysis of Section 8.4.1 indicated that the φ4 addition to

the action becomes relevant below four dimensions. A more physical argument, to the same

effect, is given in the Info block below.

Although the solution of the general problem posed by the action (8.23) still appears to

be hopelessly difficult, there is one aspect we can turn to our advantage. While physical

systems exist in integer dimensions d = 1, . . . , 4, . . . , there is actually no reason why we

should not be allowed to evaluate our theory, i.e. the functional integral with action (8.23),

in fractional dimensions. In the present context, this seemingly academic freedom turns out

to be of concrete practical relevance. The point is that the nonlinear φ4 operator was found

to be marginal at d = 4 and relevant below. One may thus expect that, in dimensions

d = 4 − ε, ε � 1, the operator is relevant but not that relevant, i.e. one may expect that,

for sufficiently small deviations off the threshold dimension, four, the theory knows of an

expansion parameter, somehow related to ε, which will enable us to control the interaction

operator. Of course, at the end of the day, we will have to “analytically continue” to dimen-

sions of interest, ε = 1 or even ε = 2, but, for the present, we will see what we can learn

from a d = 4− ε representation of the theory.

INFO Our previous analysis relied on the assumption that the field integration is tightly bound

to the vicinity of the extrema of the action. But let us now ask under what conditions this

assumption is actually justified. We should develop some intuition as to the relative importance

of the mean-field content of the theory and of the fluctuations around the mean-field. While

there are several ways to proceed with this program, we will focus on the analysis of the magnetic

susceptibility. (At this point, we should warn the reader that the arguments formulated below,

while technically straightforward, are conceptually involved. The critical contemplation of the

logical steps of the construction is time well invested.) Firstly, let us recall the definition of the

susceptibility,

χ = −∂2
HF ∼

∫
ddr 〈φ(r)φ(0)〉c ∼ G(k = 0),

where we have used the fact that 〈φ(r)φ(r′)〉 = G(r−r′) is the Green function of the model. Given

this identification, we note that a formal criterion of the transition – divergent susceptibility! –

is synonymous with a singularity of the zero-momentum Green function.

On the level of the Gaussian theory (see Eq. (8.26)) G(k) = (r + k2)−1, i.e. χ ∼ r−1. Antici-

pating troubling observations to come, we reiterate that the mean-field transition temperature is

identified by the condition r ∼ t = 0. Now, let us move on to explore corrections to the mean-field

susceptibility on the level of a perturbative one-loop calculation. To this end, we recall that (if

necessary, recapitulate the discussion of Section 5.1), due to the presence of the φ4 operator, the

Green function acquires a self-energy which, at the one-loop level, is given by Σ = −λ
2

∑
k′

1
r+k′2 .
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As a consequence, one can identify the susceptibility as

χ−1 ∼ (G(k = 0))−1 = r − Σ = r +
λ

2

∑
k′

1

r + k′2 .

A first observation to be made is that non-Gaussian fluctuations (physically: interactions between

harmonic fluctuations around the mean-field amplitude) lower the transition amplitude, i.e.,

setting r ∼ T − Tc, it now takes a smaller temperature T to reach the critical point; in accord

with the intuitive expectation that fluctuations tend to “disorder” the system. Frustratingly, one

may also observe that the cutoff Λ is needed to prevent the “correction”,

−λ

2

∑
k′

1

r + k′2 ∼ λ

∫ Λ

ddk′ 1

r + k′2 ,

from diverging in dimensions d ≥ 2. To deal with this singularity, we have to realize that the effect

of fluctuations is actually two-fold: the transition temperature gets shifted and the temperature

dependence of the inverse susceptibility is apparently no longer simply linear (by virtue of the

r-dependence of the integrand). The two effects can be disentangled by writing

χ−1 = r̃ +
λ

2

(
L

2π

)d ∫ Λ

ddk′
(

1

r + k′2 − 1

k′2

)
≈ r̃ − λr̃

2

(
L

2π

)d ∫ Λ ddk′

(r̃ + k′2)k′2 , (8.27)

where

r̃ ≡ r +
λ

2

(
L

2π

)d ∫ Λ ddk′

k′2 ,

represents the shifted transition temperature while the integral describing the deviation from the

linear temperature dependence of the susceptibility is now UV-convergent in dimensions d < 4.

Notice that in the second equality of Eq. (8.27) we have replaced the parameter r in the integrand

by the modified parameter r̃. To the accuracy of a one-loop calculation, this manipulation is

permissible.

Naively, it looks as if this sequence of manipulations has led to a catastrophe: the fluctuation-

renormalized transition temperature appears to diverge as one sends the cutoff to infinity, clearly

a nonsensical prediction! However, one may note that there was actually no justification for

identifying the physical transition temperature through the parameter r in the first place. This

identification was based on mean-field theory alone, i.e. an approach to the problem which

neglected altogether the key effect of fluctuations. However, the bare parameter r appearing in

the action carries as little “universal” meaning as the cutoff Λ, or any other microscopic system

parameter for that matter!

Once we have acknowledged this interpretation, we should then identify the transition tem-

perature through the singularity of the macroscopically observable properties (e.g. divergence of

the susceptibility leads to the vanishing of the modified parameter r̃ at the one-loop level) while

the microscopic parameters carry no significance by themselves.

EXERCISE This interpretation closely parallels the philosophy of renormalization in high-

energy physics. There, the bare parameters of the action are fundamentally undetermined,

while the inverse of the Green function at zero external momentum represents a physical

observable, e.g. the mass of the electron. Since the loop corrections to this physical quantity

appear to be infinite (and the theory does not enjoy the luxury of the presence of a physically

motivated cutoff), one postulates that the bare parameters of the action have been infinite by

themselves. These singularities are deliberately adjusted so as to cancel the divergence of the
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fluctuation corrections and to produce finite “physical” quantities. It is instructive to consult

a textbook on renormalization in high-energy physics (such as Ryder30) to become acquainted

with the functioning of this strategy, and with the enormous success it has had in the context

of QED and other sub-branches of particle physics.

We now turn to the second effect of the fluctuation correction, namely the deviation from the

linear temperature dependence, as described by the integral contribution to Eq. (8.27). On

dimensional grounds, the integral depends on the parameter r̃ as ∼ λLdr̃(d−4)/2. The (mean-field

+ quadratic fluctuations) approach to the problem breaks down when this contribution becomes

more important than the leading-order contribution to the susceptibility, i.e. for dimensions

d ≤ 4. This observation is the essence of the so-called Ginzburg criterion. The criterion states

that mean-field theory becomes inapplicable below the so-called upper critical dimension

dc = 4. While we have derived this statement for the particular case of the φ4-model, it is clear

that similar estimates can be performed for every nonlinear field theory, i.e. as with the lower

critical dimension, the upper critical dimension also represents an important threshold separating

the mean-field dominated d > dc from the fluctuation dominated d < dc behavior. Also notice

that the analysis above conforms with our previous observation that the nonlinear φ4 operator is

relevant in dimensions d < 4. (Convince yourself that the two lines of argument reflect the same

principle, namely the dependence of fluctuations on the accessible phase volume, as determined

by the dimensionality of the system.)

Before proceeding to the details of the RG program, let us try to predict a number of general

elements of the φ4 phase diagram on dimensional grounds. We saw that in dimensions d > 4

the φ4 operator is irrelevant and that the Gaussian model essentially dictates the behavior

of the system. Specifically, for d > 4, the Gaussian fixed point r = λ = h = 0 is the only

fixed point of the system. Below four dimensions, the φ4 operator becomes relevant and

the emergence of a richer fixed point structure may be expected. However, for ε = 4 − d

sufficiently small, we also expect that, whatever new fixed points appear, they should be

close to the Gaussian point. This means that we can conduct our search for new fixed points

within a double expansion in ε, and the small deviation of the coupling constants r, λ, h

around the Gaussian fixed point. (In fact, we will momentarily identify a third expansion

parameter, namely the number of momentum loops appearing in fast-field integration.)

Step I

We next proceed to formulate the steps of the RG in detail. To keep things simple, the RG

transformation will be carried out to lowest order in a triple expansion in ε, the coupling

constants, and the number of momentum loops. The rationale behind the loop expansion can

be best understood if we assume that the entire action31 is multiplied by a large parameter

(which, in the case of a quantum theory, might be �−1). The expansion in the number of

loops is then equivalent to an expansion in the inverse of that parameter (for a quantum

theory, an expansion away from the classical limit).

30 L. H. Ryder, Quantum Field Theory, (Cambridge University Press, 1996).
31 Before we rescaled the fields so as to make the leading-order coefficient equal to 1/2.
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EXERCISE Verify this statement; to this end, notice that a diagram of nth order in perturbation

theory in the φ4 vertex contains a prefactor an involving the large parameter. On the other hand,

each of the I internal lines, or propagators, contained by the diagrams contributes a factor a−1,

so that the overall power is an−I . Next relate the number of internal lines to the number L of

loops. Notice that each line corresponds to a momentum summation. However, the number of

independent summations is constrained by the n δ-functions carried by the vertices. Use this

information to show that the overall power of the graph is a−L+1, i.e. an expansion in L is

equivalent to an expansion in the inverse of a.

Let us now decompose the action in the standard manner, setting S[φs, φf ] = Sf [φf ] +

Ss[φs] + Sc[φs, φf ], where

Sf [φf ] =

∫
ddr

[
r

2
φ2
f +

1

2
(∇φf)

2

]
,

Ss[φs] =

∫
ddr

[
r

2
φ2
s +

1

2
(∇φs)

2 +
λ

4!
φ4
s − hφs

]
,

Sc[φs, φf ] =
λ

4

∫
ddrφ2

sφ
2
f + · · ·

Several approximations related to the loop order of the expansion are already imposed at

this level. We have neglected terms of O(φ4
f ) because their contraction leads to two loop

diagrams. The same applies to terms ofO(φsφ
3
f ) (exercise). Terms of O(φ3

sφf) do not arise

because the addition of a fast momentum and three slow momenta is incompatible with

momentum conservation.

Steps II and III

To simplify the notation, let us rescale the momentum according to q → q/Λ, implying

that coordinates are measured in units of the inverse cutoff r → rΛ. With the coupling

constants rescaled according to their engineering dimensions, r → rΛ2, λ → λΛ4−d, the

action remains unchanged, while the fast and slow momenta are now integrated over the

dimensionless intervals |qs| ∈ [0, b−1] and |qf | ∈ [b−1, 1], respectively. We next construct

an effective action by integration over the fast field: e−Seff [φs] = e−Ss[φs]
〈
e−Sc[φs,φf ]

〉
f
. In

performing the average over fast fluctuations, 〈· · · 〉f , we shall (a) retain only contributions of

one-loop order while (b) neglecting terms that lead to the appearance of φn>4
s contributions

in the action. (For example, the contraction 〈
(∫

φ2
sφ

2
f

)3〉 would lead to such a term.) To this

level of approximation, one obtains

e−Seff [φs] = e−Ss[φs]exp

[
−〈Sc[φs, φf ]〉f +

1

2

〈
Sc[φs, φf ]

2
〉c
f

]
,

where the superscript c denotes a connected average. (Exercise: It is instructive to check

the consistency of this expansion for yourself.) The two diagrams corresponding to the

contractions 〈Sc[φs, φf ]〉f and 〈Sc[φs, φf ]
2〉cf are shown in parts (a) and (b) of the figure

below, respectively, where the external line segments indicate the passive φs amplitudes.
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According to the standard rules of perturbation theory, the first of the two diagrams, (a),

evaluates to

〈Sc[φs, φf ]〉f =
λ

4

∫
f

ddq′

(2π)d
1

r + q′2

∫
s

ddq

(2π)d
φs(q)φs(−q).

We now consider the summation over fast momenta appearing in this expression. Using

the fact that we are in the near vicinity of the critical point and anticipating that we are

interested in no more than the expansion of the β-function for small values of the coupling,

we now expand the integrand to first order in r,
∫
f

ddq
(2π)d

1
r+q2 = I1 − rI2, where we have

introduced the shorthand notation,

Iα ≡
∫
f

ddq

(2π)d
1

q2α
. (8.28)

These integrals are straightforwardly computed by switching to polar coordinates,

Iα = Ωd

∫ 1

b−1

dq qd−2α−1 =
Ωd

d− 2α
(1− b2α−d),

where Ωd = (2πd/2/Γ(d/2))/(2π)d denotes the volume of the d-dimensional unit sphere

(measured in units of 2π). We thus find that, after the integration over fast modes, and the

standard rescaling operation, q → bq, φ → b(d−2)/2φ, the quadratic part of the action takes

the form

S(2)[φ] =
b2

2

[
r +

λΩd

2(d− 2)
(1− b2−d)− rλΩd

2(d− 4)
(1− b4−d)

] ∫
ddr φ2. (8.29)

(a)

(b)

Turning to the second diagram (b) in the figure, we notice that,

owing to the presence of four external legs, its contribution will be

proportional to φ4
s . Further, momentum conservation implies that the

momenta carried by the internal lines of the diagram will depend on

both the fast “internal” momentum and the external momenta carried

by the fields φs. However, we can simplify the analysis by neglecting

the dependence on the latter from the outset. The reason is that the integration over the

internal momentum followed by Taylor expansion in the slow momenta would generate

expressions of the structure F (q1,q2,q3)φ(q1)φ(q2)φ(q3)φ(−q1 − q2 − q3), where q1,2,3

represent slow momenta and F is some polynomial. Taking account of the small momenta

would thus generate derivatives acting on an operator of fourth order in φ, a combination

that we saw above is irrelevant.

Neglecting the external momenta, diagram (b) leads to the result

1

2
〈Sc[φs, φf ]

2〉f �
λ2

16

∫
ddr φ4

s

∫
f

ddq

(2π)d
1

(r + q2)2
=

λ2I2
16

∫
ddr φ4

s +O(λ2r).

Evaluating the integral and rescaling, we find that the quartic contribution to the renor-

malized action reads

S(4)[φ] = b4−d

(
λ

4!
− λ2Ωd

16

1− b4−d

d− 4

)∫
ddr φ4.
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Finally, there are no one-loop diagrams affecting the linear part of the action, i.e.

S(1)[φ] = hbd/2+1

∫
ddr φ,

rescales according to its engineering dimension.

Combining everything, we find that, to one-loop order, the coupling constants scale

according to the relations r → b2(r + λΩd

2(d−2) (1 − b2−d) − rλΩd

2(d−4) (1 − b4−d)), λ → b4−d(λ −
3
2λ

2Ωd
1−b4−d

d−4 ), and h → hbd/2+1. We next set d = 4 − ε and evaluate the right-hand sides

of these expressions to leading order in ε. With Ω4−ε ≈ Ω4 = 1
8π2 , we thus obtain

r → b2
(
r +

λ

32π2
(1− b−2)− rλ

16π2
ln b

)
,

λ → (1 + ε ln b)

(
λ− 3λ2

16π2
ln b

)
,

h → hb3−ε/2,

which, setting b = e�, lead to the Gell-Mann–Low equations:

dr

d�
= 2r +

λ

16π2
− rλ

16π2
,

dλ

d�
= ελ− 3λ2

16π2
,

dh

d�
=

6− ε

2
h.

(8.30)

These equations clearly illustrate the meaning of the ε-expansion. According to the second

equation, a perturbation away from the Gaussian fixed point will initially grow at a rate

set by the engineering dimension ε. While, on the level of the classical, zero-loop theory, λ

would grow indefinitely, the one-loop contribution ∼ λ2 stops the flow at a value λ ∼ ε.

(ε)

β (λ)

ε > 0

ε < 0

λ

Equating the right-hand sides of Eq. (8.30) to zero (and

temporarily ignoring the magnetic field), we indeed find that

besides the Gaussian fixed point (r∗1 , λ
∗
1) = (0, 0) a non-

trivial fixed point (r∗2 , λ
∗
2) = (− 1

6ε,
16π2

3 ε) has appeared.

Notice that, in accord with the schematic considerations made

at the beginning of the section, the second fixed point is O(ε)

and coalesces with the Gaussian fixed point as ε is sent to

zero. Plotting the β-function for the coupling constant λ (see

figure), we further find that, for ε > 0, λ is relevant around

the Gaussian fixed point but irrelevant at the non-trivial fixed point.

To understand the full flow diagram of the system, one may linearize the β-function

around both the Gaussian and the non-trivial fixed point. Denoting the linearized mappings

by W1,2, we find

W1 =

(
2 1

16π2

0 ε

)
, W2 =

(
2− 1

3ε
1+ε/6
16π2

0 −ε

)
.
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Figure 8.8 Phase diagram of the φ4-model as obtained from the ε-expansion.

Figure 8.8 shows the flow in the vicinity of the two fixed points, as described by the matrices

W1,2 as well as the extrapolation to a global flow chart. Notice that the critical surface of

the system – the straight line interpolating between the two fixed points – is tilted with

respect to the r ∼ temperature axis of the phase diagram. This implies that it is not the

physical temperature alone that decides whether the system will eventually wind up in the

paramagnetic (r � 0) or ferromagnetic (r � 0) sector of the phase diagram. Rather one has

to relate temperature (∼ r) to the strength of the nonlinearity (∼ λ) to decide on which side

of the critical surface we are. For example, for strong enough λ, even a system with r initially

negative may eventually flow towards the disordered phase. This type of behavior cannot

be predicted from the mean-field analysis of the model (which would generally predict a

ferromagnetic state for r < 0). Rather it represents a non-trivial effect of fluctuations.

Finally notice that, while we can formally extend the flow into the lower portion of the

diagram, λ < 0, this region is actually unphysical. The reason is that, for λ < 0, the action is

fundamentally unstable and, in the absence of a sixth-order contribution, does not describe

a physical system.

What are the critical exponents associated with the one-loop approximation? Of the two

eigenvalues of W2, 2− ε/3 and −ε, only the former is relevant. As with the Gaussian fixed

point, it is tied to the scaling of the coupling constant, r ∼ t, i.e. we have yt = 2− ε/3 and,

as before, yh = (d + 2)/2 = (6 − ε)/2. An expansion of the exponents summarized in Eq.

(8.22) to first order in ε then yields the list

α =
ε

6
, β =

1

2
− ε

6
, γ = 1 +

ε

6
, δ = 3 + ε, ν =

1

2
+

ε

12
, η = 0.

If we are now reckless enough to extend the radius of the expansion to ε = 1, i.e. d = 3,

we obtain the fifth column of Table 8.1. Apparently the agreement with the experimental

results has improved – even in spite of the fact that we have driven the ε-expansion well

beyond its range of applicability! (For ε = 1, terms of O(ε2) can, of course, no longer be

neglected!)
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How can one rationalize the success of the ε-expansion? Trusting in the principle

that good theories tend to work well beyond their regime of applicability, we might simply

speculate that nature seems to be sympathetic to the concept of renormalization and the

loop expansion. Of course, a more qualified approach to the question is to explore what

happens at higher order in the ε-expansion. Needless to say, the price to be paid for this

ambition is that, at orders O(εn>1), the analysis indeed becomes laborious. Nonetheless,

the success of the first-order expansion prompted researchers to drive the ε-expansion up to

fifth order! The results of this analysis are summarized in the last column of Table 8.1. In

view of the fact that we are still extending a series beyond its radius of convergence,32 the

level of agreement with the experimental data is striking. In fact, the exponents obtained by

the ε-expansion even agree – to an accuracy better than one percent – with the exponents

of the two-dimensional model,33 i.e. for a situation where the “small” parameter ε has to

be set to two.

However, it is important to stress that the ε-expansion is not just a computational tool

for the calculation of exponents. On a more conceptual level, its merit is that it enables

one to explore the phase diagram of nonlinear theories in a more or less controlled manner.

In fact, the ε-expansion not only is useful in the study of field theories close to the upper

critical dimension (i.e. close to the mean-field threshold) but can equally well be applied

to the analysis of systems in the vicinity of the lower critical dimension. In the following

section, we consider a problem of this type, i.e. we will apply an ε-expansion around d = 2

to detect the onset of global thermal disorder in models with continuous symmetries.

8.5 RG analysis of the nonlinear σ-model

The scalar field theory encapsulates a wide class of systems encompassing a single-

component order parameter. However, throughout the text, we have encountered problems

where the order parameter involves more than one component, e.g. the complex field

associated with condensation phenomena, the matrix field associated with the quantum

disordered metallic system, or the field theories involving spin. In such cases, one very

often finds that the low-energy content of the theory involves a projection which imparts

a constraint to the field integral. In the context of condensation phenomena, we saw that,

at low temperatures, one can neglect the massive amplitude fluctuations of the order

parameter, while the collective fluctuations of the phase mode impacted significantly on the

low-energy properties of the system. In this case, the phase degree of freedom is constrained

by its topology to lie on the unit circle. Similarly, if we neglect the “high-energy” physics

of local moment formation, classical and quantum spin theories are constrained by the

normalization of the local spin. When subjected to an auxiliary constraint, theories that

are otherwise free are known as nonlinear σ-models. The aim of the present section is to

apply methods of the RG to explore the critical properties of a general class of nonlinear

32 Indeed, it is believed that we are dealing with a series that is only asymptotically convergent. That is, beyond
a certain order of the expansion, the agreement with the “true” exponents will presumably become worse.

33 The latter are known from the exact solution of the two-dimensional model, see L. Omsager, Crystal statistics
I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65 (1944), 117–49.


