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This is exactly the conclusion that we stated without proof in Section 4.1. In
QED, the coupling constant e is dimensionless; thus QED is (at least super-
ficially) renormalizable.

10.2 Renormalized Perturbation Theory

In the previous section we saw that a renormalizable quantum field theory con-
tains only a small number of superficially divergent amplitudes. In QED, for
example, there are three such amplitudes, containing four infinite constants.
In Chapters 6 and 7 these infinities disappeared by the end of our compu-
tations: The infinity in the vertex correction diagram was canceled by the
electron field-strength renormalization, while the infinity in the vacuum po-
larization diagram caused only an unobservable shift of the electron’s charge.
In fact, it is generally true that the divergences in a renormalizable quantum
field theory never show up in observable quantities.

To obtain a finite result for an amplitude involving divergent diagrams,
we have so far used the following procedure: Compute the diagrams using a
regulator, to obtain an expression that depends on the bare mass (myg), the
bare coupling constant (eg), and some ultraviolet cutoff (A). Then compute the
physical mass (m) and the physical coupling constant (e), to whatever order
is consistent with the rest of the calculation; these quantities will also depend
on mg, eg, and A. To calculate an S-matrix element (rather than a correlation
function), one must also compute the field-strength renormalization(s) Z (in
accord with Eq. (7.45)). Combining all of these expressions, eliminate myg
and ey in favor of m and e; this step is the “renormalization”. The resulting
expression for the amplitude should be finite in the limit A — oo.

The above procedure always works in a renormalizable quantum field
theory. However, it can often be cumbersome, especially at higher orders in
perturbation theory. In this section we will develop an alternative procedure
which works more automatically. We will do this first for ¢* theory, returning
to QED in the next section.

The Lagrangian of ¢* theory is
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We now write mg and Ag, to emphasize that these are the bare values of the
mass and coupling constant, not the values measured in experiments.

The superficial degree of divergence of a diagram with NV external legs is,
according to (10.13),

D=4—-N.

Since the theory is invariant under ¢ — —¢, all amplitudes with an odd
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number of external legs vanish. The only divergent amplitudes are therefore

(unobservable vacuum energy shift);

~A? + p?log A + (finite terms);

~log A + (finite terms).

Ignoring the vacuum diagram, these amplitudes contain three infinite con-
stants. Our goal is to absorb these constants into the three unobservable pa-
rameters of the theory: the bare mass, the bare coupling constant, and the
field strength. To accomplish this goal, it is convenient to reformulate the
perturbation expansion so that these unobservable quantities do not appear
explicitly in the Feynman rules.

First we will eliminate the shift in the field strength. Recall from Sec-
tion 7.1 that the exact two-point function has the form

/d4a: (QTo(z)p(0) |Q) P® = pQ—Z_%é- + (terms regular at p? = m?),
(10.14)

where m is the physical mass. We can eliminate the awkward residue Z from
this equation by rescaling the field:

=22, (10.15)

This transformation changes the values of correlation functions by a factor
of Z=1/2 for each field. Thus, in computing S-matrix clements, we no longer
need the factors of Z in Eq. (7.45); a scattering amplitude is simply the sum
of all connected, amputated diagrams, exactly as we originally guessed in
Eq. (4.103).

The Lagrangian is much uglier after the rescaling:

L= 32006, — mdZ6% — 20 76}, (10.16)

The bare mass and couphng constant stlll appear in £, but they can be elim-
inated as follows. Define

bz =2 -1, 6m = meZ —m? 8y = X Z? — A, (10.17)

where m and A are the physically measured mass and coupling constant. Then
the Lagrangian becomes

A
L= ( u¢r)2_" _I¢f
: (10.18)
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Figure 10.3. Feynman rules for ¢* theory in renormalized perturbation
theory.

The first line now looks like the familiar ¢*-theory Lagrangian, but is written
in terms of the physical mass and coupling. The terms in the second line,
known as counterterms, have absorbed the infinite but unobservable shifts
between the bare parameters and the physical parameters. It is tempting to
say that we have “added” these counterterms to the Lagrangian, but in fact
we have merely split each term in (10.16) into two pieces.

The definitions in (10.17) are not useful unless we give precise definitions
of the physical mass and coupling constant. Equation (10.14) defines m? as the
location of the pole in the propagator. There is no obviously best definition
of A, but a perfectly good definition would be obtained by setting A\ equal to
the magnitude of the scattering amplitude at zero momentum. Thus we have
the two defining relations,
= _Z — (terms regular at p? = m?);

= —iA at s=4m? t =u = 0. (10.19)

amputated

These equations are called renormalization conditions. (The first equation
actually contains two conditions, specifying both the location of the pole and
its residue.)

Our new Lagrangian, Eq. (10.18), gives a new set of Feynman rules, shown
in Fig. 10.3. The propagator and the first vertex come from the first line of
(10.18), and are identical to the old rules except for the appearance of the
physical mass and coupling in place of the bare values. The counterterms in
the second line of (10.18) give two new vertices (also called counterterms).

We can use these new Feynman rules to compute any amplitude in ¢*
theory. The procedure is as follows. Compute the desired amplitude as the
sum of all possible diagrams created from the propagator and vertices shown
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in Fig. 10.3. The loop integrals in the diagrams will often diverge, so one
must introduce a regulator. The result of this computation will be a function
of the three unknown parameters 6z, 6,,, and 5. Adjust (or “renormalize”)
these three parameters as necessary to maintain the renormalization condi-
tions (10.19). After this adjustment, the expression for the amplitude should
be finite and independent of the regulator.

This procedure, using Feynman rules with counterterms, is known as
renormalized perturbation theory. It should be contrasted with the procedure
we used in Part 1, outlined at the beginning of this section, which is called
bare perturbation theory (since the Feynman rules involve the bare mass and
coupling constant). The two methods are completely equivalent. The differ-
ences between them are purely a matter of bookkeeping. You will get the
same answers using either procedure, so you may choose whichever you find
more convenient. In general, renormalized perturbation theory is technically
easier to use, especially for multiloop diagrams; however, bare perturbation
theory is sometimes easier for complicated one-loop calculations. We will use
renormalized perturbation theory in most of the rest of this book.

One-Loop Structure of ¢* Theory

To make more sense of the renormalization procedure, let us carry it out
explicitly at the one-loop level.
First consider the basic two-particle scattering amplitude,

D3 P4

Z'-’\/1(291132 - p3p4) =

D1 D2

:><+(zi+>o<+6)+>g<+...

If we define p = p; + p2, then the second diagram is

. ) (—in)? / &k i i
T (2m)* k2 —m? (k+p)? —m?

p
= (—i))? - iV (p?). (10.20)

Note that p? is equal to the Mandelstam variable s. The next two diagrams
are identical, except that s will be replaced by ¢ and u. The entire amplitude
is therefore

iM = —iX+ (—iA)?[iV(s) + iV (t) + iV (u)] — iba. (10.21)

According to our renormalization condition (10.19), this amplitude should
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equal —i)\ at s = 4m? and t = u = 0. We must therefore set
6 = —A*[V(4m?) + 2V (0)]. (10.22)

(At higher orders, 6, will receive additional contributions.)

We can compute V (p?) explicitly using dimensional regularization. The
procedure is exactly the same as in Section 7.5: Introduce a Feynman param-
eter, shift the integration variable, rotate to Euclidean space, and perform the
momentum integral. We obtain

; d
V(pz)zi/dl_/dkd 1 2
2 J (2m) (k% + 2zk - p + ap? — m?]
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B §/dx/(27T>d [€2+:E(1—;1:)p2_m2}2 (6=Fk+zp)
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2 / ( 7'( /2 m2 — x(l—m)pQ]Q—d/Q
1
d—4 3%2/ - —’Y+10g(47r) log [m” —m(l—x)pﬂ), (10.23)
0

where € = 4 — d. The shift in the coupling constant (10.22) is therefore

A I(2-9) 1 2
0 = D) (47r)d?2 /da:([m2 — 2(1—z)4m2]2—d/2 + [mz]z—d/z)

1
6 ) , ,
d—4 3212 /dx<; — 37 + 3log(4n) — log[m*—z(1—~z)4m?] — 2log[m })
0

(10.24)

These expressions are divergent as d — 4. But if we combine them according
o (10.21), we obtain the finite (if rather complicated) result,

iM = i i/ldxllog( m?—z(1—x)s )+log<m2_x(1—x)t)

3272 m2—z(l—z)4m? m?
0

+ log(mZ-g;gi"m)“)] . (10.25)
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To determine 6z and §,, we must compute the two-point function. As in
Section 7.2, let us define —iM?(p?) as the sum of all one-particle-irreducible
insertions into the propagator:

(10.26)

= . 10.27
P M) o2
The renormalization conditions (10.19) require that the pole in this full prop-
agator occur at p? = m? and have residue 1. These two conditions are equiv-
alent, respectively, to

d

M) oo =0 and MA@ e = 0. (10.28)

(To check the latter condition, expand M? about p? = m? in Eq. (10.27).)
Explicitly, to one-loop order,

ey = () + —e—
d .
:_z-,\.l./(d’“ L+ i(p%6y — 6)

2 2m)¢ k2 —m

ix o1 r(1-%)
9 (47)4/2 (m2)1-d/2

+i(p*6z — bm). (10.29)

Since the first term is independent of p?, the result is rather trivial: Setting

A T(-9
0z=0 and  bn =g s i (10.30)

yields M?2(p?) = 0 for all p?, satisfying both of the conditions in (10.28).
The first nonzero contributions to M?(p?) and éz are proportional to A2,
coming from the diagrams '

_@, v ( ) o (10.31)

The second diagram contains the 6, counterterm, which we have already com-
puted. It cancels ultraviolet divergences in the first diagram that occur when
one of the loop momenta is large and the other is small. The third diagram
is again the (p?6z — 8,,) counterterm, and is fixed to order A? by requiring
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that the remaining divergences (when both loop momenta become large) can-
cel. In Section 10.4 we will see an explicit example of the interplay of various
counterterms in a two-loop calculation.

The vanishing of 7 at one-loop order is a special feature of ¢* theory,
which does not occur in more general theories of scalar fields. The Yukawa the-
ory described in Section 4.7 gives an explicit example of a one-loop correction
for which this counterterm is required.

In the Yukawa theory, the scalar field propagator receives corrections at
order g2 from a fermion loop diagram and the two propagator counterterms.
Using the Feynman rules on p. 118 to compute the loop diagram, we find

B o [ d% i(F+ ¢+ mg)i(K+ my) .
o [ d% k-(p+k)+m3
Y /(27T)d ((p+k)? — m3)(k* — m%)

+i(p?6z — 6m), (10.32)

where my is the mass of the fermion that couples to the Yukawa field. To
evaluate the integral, combine denominators and shift as in Eq. (10.23). Then
the first term in the last line becomes

dp 2 — x(1—x)p? + m?
_49/ /de z(1-2)p? + m3

2m)d (2 + z(1—x)p? — m%)?

1
:_492/d$ —i <gm_g) B Ar(z—g))
(47T)d/2 Al—d/2 A2—d/2
0

1
_ 4ig®(d—1) ) I(1-%)
(47)d/2 Al—d/2”
0

(10.33)

where A = m3 — z(1—z)p*.

Now we can see that both of the counterterms 6,, and 6z must take
nonzero values in order to satisfy the renormalization conditions (10.28). To
determine 6,,, we subtract the value of the loop diagram at p? = m? as before,
so that

4g°(d—1) r(1-9) 2

To determine 6, we cancel also the first derivative with respect to p? of the
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loop integral (10.33). This gives
1

. _4g%(d-1) /d z(1-z)T'(2—-4%)
z (4r)i/2 [mfc — z(1—x)m?2]2—d/2
30 rn(1-a) (2 = 5 — 2 +log(dn) — loglm? — #(1—z)m?]
d—a 472 € ! 3 ; ° ! |

0

(10.35)
Thus, in Yukawa theory, the propagator corrections at one-loop order require
a quadratically divergent mass renormalization and a logarithmically diver-
gent field strength renormalization. This is the usual situation in scalar field
theories.

10.3 Renormalization of Quantum Electrodynamics

The procedure we followed in the previous section, yielding a “renormalized”
perturbation theory formulated in terms of physically measurable parameters,
can be summarized as follows:

1. Absorb the field-strength renormalizations into the Lagrangian by rescal- .
ing the fields.

2. Split each term of the Lagrangian into two pieces, absorbing the infinite
and unobservable shifts into counterterms.

3. Specify the renormalization conditions, which define the physical masses
and coupling constants and keep the field-strength renormalizations equal
to 1.

4. Compute amplitudes with the new Feynman rules, adjusting the counter-
terms as necessary to maintain the renormalization conditions.

Let us now use this procedure to construct a renormalized perturbation theory
for Quantum Electrodynamics.

The original QED Lagrangian is

L==3(Fuw)® +9(if —mo)ih — eopy i Ay

Computing the electron and photon propagators with this Lagrangian, we
would find expressions of the general form
iy
=7
(We found just such expressions in the explicit one-loop calculations of Chap-
ter 7.) To absorb Z; and Z3 into £, and hence eliminate them from formula

(7.45) for the S-matrix, we substitute 1) = Z21/21/)r and A* = Zé/QA,‘f. Then
the Lagrangian becomes

L= —LZ5(F) + Zop, (if) — mo)er — eaZaZy’ >, 4"y Ay (10.36)
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