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We can turn the field ¢ (x1) into a Schrédinger operator using ¢s(X1) |¢1) =
#1(x1) |¢1). The completeness relation [ D¢y |¢1) (¢1] = 1 then allows us
to eliminate the intermediate state |¢1). Similar manipulations work for ¢,
yielding the expression
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Most of the exponential factors combine with the Schrédinger operators to
make Heisenberg operators. In the case 2§ > zJ, the order of z; and z; would
simply be interchanged. Thus expression (9.15) is equal to

(Bpl e HT T{ b (21) P (x2) } €77 |ha) . (9.17)

This expression is almost equal to the two-point correlation function. To
make it more nearly equal, we take the limit 7' — oo(l — i€). Just as in
Section 4.2, this trick projects out the vacuum state |Q2) from |¢,) and |¢p)
(provided that these states have some overlap with |€2), which we assume).
For example, decomposing |¢,) into eigenstates |n) of H, we have

e T (ga) = D e T n) (nlda) | (Qa) 20T ),

T—o0(1—1ie

As in Section 4.2, we obtain some awkward phase and overlap factors. But
these factors cancel if we divide by the same quantity as (9.15) but without
the two extra fields ¢(z1) and ¢(z2). Thus we obtain the simple formula
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This is our desired formula for the two-point correlation function in terms

of functional integrals. For higher correlation functions, just insert additional
factors of ¢ on both sides.

Feynman Rules

Our next task is to compute various correlation functions directly from the
right-hand side of formula (9.18). In other words, we will now use (9.18) to
derive the Feynman rules for a scalar field theory. We will begin by computing
the two-point function in the free Klein-Gordon theory, then generalize to
higher correlation functions in the free theory. Finally, we will consider ¢*
theory, in which we can perform a perturbation expansion to obtain the same
Feynman rules as in Section 4.4.
Consider first a noninteracting real-valued scalar field:

So = / Bz Lo = / d'z [1(0,0) — 3m?e?]. (9.19)
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Since Ly is quadratic in ¢, the functional integrals in (9.18) take the form of
generalized, infinite-dimensional Gaussian integrals. We will therefore be able
to evaluate the functional integrals exactly.

Since this is our first functional integral computation, we will do it in a
very explicit, but ugly, way. We must first define the integral D¢ over field
configurations. To do this, we use the method of Eq. (9.4) in considering the
continuous integral as a limit of a large but finite number of integrals. We
thus replace the variables ¢(z) defined on a continuum of points by variables
¢(x;) defined at the points z; of a square lattice. Let the lattice spacing be ¢,
let the four-dimensional spacetime volume be L#, and define

Dy = [ do(z), (9-20)

up to an irrelevant overall constant.
The field values ¢(z;) can be represented by a discrete Fourier series:

1

Bwi) = 57 D e lkn), (921)

n

where k¥ = 27n*/L, with n* an integer, |k*| < m/e, and V = L% The
Fourier coefficients ¢(k) are complex. However, ¢(z) is real, and so these
coefficients must obey the constraint ¢*(k) = ¢(—k). We will consider the
real and imaginary parts of the ¢(k,) with k2 > 0 as independent variables.
The change of variables from the ¢(x;) to these new variables ¢(ky) is a
unitary transformation, so we can rewrite the integral as

= [] dRed(kn)dIm ¢(kn).

kS >0

Later, we will take the limit L — oo, € — 0. The effect of this limit is to
convert discrete, finite sums over k,, to continuous integrals over k:

d'k
VZ / (9.22)

In the following discussion, this limit will produce Feynman perturbation the-
ory in the form derived in Part I. We will not eliminate the infrared and
ultraviolet divergences of Feynman diagrams that we encountered in Chap-
ter 6, but at least the functional integral introduces no new types of singular
behavior.

Having defined the measure of integration, we now compute the functional
integral over ¢. The action (9.19) can be rewritten in terms of the Fourier
coeflicients as

(/fx%@%@Q—%m%ﬂ=: ; 5 (m*=k2) o (kn) |

:__Z m?—k2) [(Re ¢)? + (Im ¢,)?],

k9 >0
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where we have abbreviated ¢(k,) as ¢, in the second line. The quantity
(m? — k2) = (m? + |kn|? — £9?) is positive as long as kO is not too large.
In the following discussion, we will treat this quantity as if it were positive.
More precisely, we evaluate it by analytic continuation from the region where
[kn| > k2.

The denominator of formula (9.18) now takes the form of a product of
Gaussian integrals:

[ poese - (kgo [Re6,dtm qbn) v kOZ;O(m?—ki)wnP]
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To justify using Gaussian integration formulae when the exponent appears to
be purely imaginary, recall that the time integral in (9.18) is along a contour
that is rotated clockwise in the complex plane: ¢ — #(1 —i¢). This means that
we should change k° — k°(1 + i) in (9.21) and all subsequent equations; in
particular, we should replace (k? — m?) — (k? — m? + ie). The ie term gives
the necessary convergence factor for the Gaussian integrals. It also defines
the direction of the analytic continuation that might be needed to define the
square roots in (9.23).

To understand the result of (9.23), consider as an analogy the general

Gaussian integral
(H /dfk) exp|—&:Bi;&;],
k

where B is a symmetric matrix with eigenvalues b;. To evaluate this integral
we write § = O;;x;, where O is the orthogonal matrix of eigenvectors that
diagonalizes B. Changing variables from &; to the coeflicients z;, we have

(l;[ / dék) exp[—-fiBijfj} = (1;[ / da:k> exp [_;bﬂ?]

= H(/dmz exp| I%ﬁﬁ])
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= const x [det B] 2 (9.24)

The analogy is clearer if we perform an integration by parts to write the
Klein-Gordon action as

So = %/d‘l:c(b (—=0°—m?) ¢ + (surface term).

Thus the matrix B corresponds to the operator (m?+9?), and we can formally
write our result as

/Dqﬁ €50 = const x [det(m2+32)]_1/2. (9.25)

This object is called a functional determinant. The actual result (9.23) looks
quite ill-defined, and in fact all of these factors will cancel in Eq. (9.18). How-
ever, in many circumstances, the functional determinant itself has physical
meaning. We will see examples of this in Sections 9.5 and 11.4.

Now consider the numerator of formula (9.18). We need to Fourier-expand
the two extra factors of ¢:

¢(z1)¢(z2) = % D eTthmmg % S ehrazg,
l

m

Thus the numerator is

1 )
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For most values of k,, and k; this expression is zero, since the extra factors of
¢ make the integrand odd. The situation is more complicated when k,, = +k;.
Suppose, for example, that kO, > 0. Then if k; = +k,,, the term involving
(Re ¢ )? is nonzero, but is exactly canceled by the term involving (Im ¢,,)?.
If k; = —k,,, however, the relation ¢(—k) = ¢* (k) gives an extra minus sign
on the (Im ¢,,)? term, so the two terms add. When k2 < 0 we obtain the
same expression, so the numerator is

1 ik (212 —imV —iV
Numerator = Ve ZG (w1 LZ)( H m2— k2 ) m2 — k2 — je’
m k2>0 n m

The factor in parentheses is identical to the denominator (9.23), while the rest
of this expression is the discretized form of the Feynman propagator. Taking
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the continuum limit (9.22), we find
dik ie—ik-(ml—zg)
(2m)4 k2 — m? +ie

0] To(z1)p(z2) |0) = / = Dp(xz1—x2). (9.27)
This is exactly right, including the +e.

Next we would like to compute higher correlation functions in the free
Klein-Gordon theory.

Inserting an extra factor of ¢ in (9.18), we see that the three-point function
vanishes, since the integrand of the numerator is odd. All other odd correlation
functions vanish for the same reason.

The four-point function has four factors of ¢ in the numerator. Fourier-
expanding the fields, we obtain an expression similar to Eq. (9.26), but with
a quadruple sum over indices that we will call m, [, p, and q. The integrand
contains the product

(Re ¢, + i Im ¢y, ) (Re ¢y + i Im @) (Re pp + i Im ¢ ) (Re ¢y + i Im ¢y ).

Again, most of the terms vanish because the integrand is odd. One of the
nonvanishing terms occurs when k; = —k,, and k, = —k,. After the Gaussian
integrations, this term of the numerator is

1 —ikm-(z1—22) —ikp~(xg—x4) _Zﬂ.V _ZV —’[,V
v ;p e i kgo m?—kj; ) m?—k3, —ie m?—kj—ie

—mV
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k2 >0

The factor in parentheses is again canceled by the denominator. We obtain
similar terms for each of the other two ways of grouping the four momenta

in pairs. To keep track of the groupings, let us define the contraction of two
fields as

€950 (21 )b (o
b(en) () = L %mi(eiszw )

= DF(.’IJl - xg). (928)

Then the four-point function is simply
(0| Tp1 2034 |0) = sum of all full contractions

= Dp(z1 — x2)Dp(rs — z4)
+ DF(CL‘1 — $3)DF($2 — 1‘4) (929)
+ Dp(z1 — z4)Dp(z2 — z3),

the same expression that we obtained using Wick’s theorem in Eq. (4.40).
The same method allows us to compute still higher correlation functions.
In each case the answer is just the sum of all possible full contractions of
the fields. This result, identical to that obtained from Wick’s theorem in
Section 4.3, arises here from the simple rules of Gaussian integration.
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We are now ready to move from the free Klein-Gordon theory to ¢* theory.
Add to £y a ¢* interaction:
A g

EZEO—E .

Assuming that A is small, we can expand

exp{i/d“xﬁ} :exp[z’/d%ﬁol (1 —i/d4x%¢4+...>.

Making this expansion in both the numerator and the denominator of (9.18),
we see that each is (aside from the constant factor (9.23), which again cancels)
expressed entirely in terms of free-field correlation functions. Moreover, since
i [ d®x Liny = —iHint, we obtain exactly the same expansion as in Eq. (4.31).
We can express both the numerator and the denominator in terms of Feynman
diagrams, with the fundamental interaction again given by the vertex

>< = —i (2n)*5 (L p). (9.:30)

All of the combinatorics work the same as in Section 4.4. In particular, the
disconnected vacuum bubble diagrams exponentiate and factor from the nu-
merator of (9.18), and are canceled by the denominator, just as in Eq. (4.31).

The vertex rule for ¢* theory follows from the Lagrangian in an exceed-
ingly simple way, and this simple procedure will turn out to be valid for other
quantum field theories as well. Once the quadratic terms in the Lagrangian
are properly understood and the propagators of the theory are computed, the
vertices can be read directly from the Lagrangian as the coefficients of the
cubic and higher-order terms. ‘

Functional Derivatives and the Generating Functional

To conclude this section, we will now introduce a slicker, more formal, method
for computing correlation functions. This method, based on an object called
the generating functional, avoids the awkward Fourier expansions of the pre-
ceding derivation.

First we define the functional derivative, 6/6J(x), as follows. The func-
tional derivative obeys the basic axiom (in four dimensions)

)

5707 =6W@-y) or %@/d“w(y)é(y) _b@). 931)

This definition is the natural generalization, to continuous functions, of the
rule for discrete vectors,
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