
5
Perturbative renormalization group

5.1 Expectation values in the Gaussian model

Can we treat the Landau–Ginzburg Hamiltonian as a perturbation to the
Gaussian model? In particular, for zero magnetic field, we shall examine

�� =�� 0 + � ≡
∫

ddx
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(5.1)

The unperturbed Gaussian Hamiltonian can be decomposed into independent
Fourier modes, as

�� 0 = 1
V

∑

q
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∫ ddq
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The perturbative interaction which mixes up the normal modes has the form

� = u
∫

ddxm�x�4 +· · ·

= u
∫

ddx
∫ ddq1ddq2ddq3ddq4

�2��4d
e−ix·�q1+q2+q3+q4�m��q1�m��q2�m��q3�m��q4�

+· · · 	 (5.3)

where summation over � and � is implicit. The integral over x sets q1 +q2 +
q3 +q4 = 0, and

� = u
∫ ddq1ddq2ddq3

�2��3d
m��q1�m��q2�m��q3�m��−q1 −q2 −q3�+· · · � (5.4)

From the variance of the Gaussian weights, the two-point expectation values
in a finite sized system with discretized modes are easily obtained as

�m��q�m��q′��0 = 
q	−q′ 
�	� V

t +Kq2 +Lq4 +· · · � (5.5)

In the limit of infinite size, the spectrum becomes continuous, and Eq. (5.5)
goes over to

�m��q�m��q′��0 = 
�	��2��d
d�q +q′�
t +Kq2 +Lq4 +· · · � (5.6)
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The subscript 0 is used to indicate that the expectation values are taken with
respect to the unperturbed (Gaussian) Hamiltonian. Expectation values involv-
ing any product of m’s can be obtained starting from the identity

〈

exp

[
∑

i

aimi

]〉

0

= exp

[
∑

i	j

aiaj

2

〈
mimj

〉
0

]

	 (5.7)

which is valid for any set of Gaussian distributed variables �mi�. (This is easily
seen by “completing the square.”) Expanding both sides of the equation in
powers of �ai� leads to

1 + ai�mi�0 + aiaj

2
�mimj�0 + aiajak

6
�mimjmk�0 + aiajakal

24
�mimjmkmk�0 +· · · =

1 + aiaj

2
�mimj�0 + aiajakal

24
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)+· · · (5.8)

Matching powers of �ai� on the two sides of the above equation gives
〈

∏

i=1

mi

〉

0

=
⎧
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⎩
0 for  odd

sum over all pairwise contractions for  even�
(5.9)

This result is known as Wick’s theorem; and for example,

�mimjmkml�0 = �mimj�0�mkml�0 +�mimk�0�mjml�0 +�mimk�0�mjml�0�

5.2 Expectation values in perturbation theory

In the presence of an interaction �, the expectation value of any operator � is
computed perturbatively as

��� =
∫
� �m�e−�� 0−�
∫
� �m e−�� 0−�

=
∫
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∫
� �m e−�� 0 �1−�+�2/2−· · · �
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(5.10)

Inverting the denominator by an expansion in powers of � gives
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[
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2
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5.2 Expectation values in perturbation theory 75

The connected averages (cumulants) are defined as the combination of unper-
turbed expectation values appearing at various orders in the expansion. Their
significance will become apparent in diagrammatic representations, and from
the following example.

Let us calculate the two-point correlation function of the Landau–Ginzburg
model to first order in the parameter u. (In view of their expected irrelevance,
we shall ignore higher order interactions, and also only keep the lowest order
Gaussian terms.) Substituting Eq. (5.4) into Eq. (5.11) yields

�m��q�m��q′�� = �m��q�m��q′��0 −u
∫ ddq1ddq2ddq3

�2��3d

×��m��q�m��q′�mi�q1�mi�q2�mj�q3�mj�−q1 −q2 −q3��0

−�m��q�m��q′��0�mi�q1�mi�q2�mj�q3�mj�−q1 −q2 −q3��0�

+��u2�� (5.12)

To calculate ����0 we need the unperturbed expectation value of the product
of six m’s. This can be evaluated using Eq. (5.9) as the sum of all pair-wise
contractions, 15 in all. Three contractions are obtained by first pairing m� to
m�, and then the remaining four m’s in �. Clearly these contractions cancel
exactly with corresponding ones in ���0���0. The only surviving terms involve
contractions that connect � to �. This cancellation persists at all orders, and
���n�c

0 contains only terms in which all n + 1 operators are connected by
contractions. The remaining 12 pairings in ����0 fall into two classes:

(1) Four pairings involve contracting m� and m� to m’s with the same index, e.g.

�m��q�mi�q1��0�m��q′�mi�q2��0�mj�q3�mj�−q1 −q2 −q3��0
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where we have used Eq. (5.6). After summing over i and j, and integrating over

q1, q2, and q3, these terms make a contribution

−4u
n
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d �q +q′�
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∫ ddq3
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1
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3
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(2) Eight pairings involve contracting m� and m� to m’s with different indices, e.g.
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= 
�i
�j
ij�2��3d
d�q +q1�

d�q′ +q3�


d�q1 +q3�

�t +Kq2��t +Kq′2��t +Kq2
2�

�
(5.15)

Summing over all indices, and integrating over the momenta leads to an overall

contribution of

−8u
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∫ ddq2
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2
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Adding up both contributions, we obtain

�m��q�m��q′�� = 
�� �2��d 
d �q +q′�
t +Kq2

[
1− 4u�n+2�

t +Kq2

∫ ddk
�2��d

1
t +Kk2

+��u2�

]
�

(5.17)

5.3 Diagrammatic representation of perturbation theory

The calculations become more involved at higher orders in perturbation theory.
A diagrammatic representation can be introduced to help keep track of all
possible contractions. To calculate the -point expectation value �∏

i=1 m�i
�qi��,

at pth order in u, proceed according to the following rules:

(1) Draw  external points labeled by �qi	 �i� corresponding to the coordinates of

the required correlation function. Draw p vertices with four legs each, labeled by

internal momenta and indices, e.g. ��k1	 i�	 �k2	 i�	 �k3	 j�	 �k4	 j��. Since the four

legs are not equivalent, the four point vertex is indicated by two solid branches joined

by a dotted line. (The extension to higher order interactions is straightforward.)

Fig. 5.1 Elements of the
diagrammatic
representation of
perturbation theory. k2, i

k1, i

k4, j

k3, j

(q2, α2)

(qn, α n)

(q1, α1)

· · ·

(2) Each point of the graph now corresponds to one factor of m�i
�qi�, and the unper-

turbed average of the product is computed by Wick’s theorem. This is implemented

by joining all external and internal points pair-wise, by lines connecting one point

to another, in all topologically distinct ways; see (5) below.

(3) The algebraic value of each such graph is obtained as follows: (i) A line joining a

pair of points represents the two point average;1 e.g. a connection
(q1, α1) (q2,  α 2)

,

corresponds to 
�1�2
�2��d
d�q1 +q2�/�t +Kq2

1�; (ii) A vertex

k1, i

k2, i

k3, j

k4, j

stands

for a term u�2��d
d�k1 +k2 +k3 +k4� (the delta-function insures that momentum

is conserved).

1 Because of its original formulation in quantum field theory, the line joining two points is
usually called a propagator. In this context, the line represents the world-line of a particle in
time, while the perturbation � is an “interaction” between particles. For the same reason, the
Fourier index is called a “momentum”.
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(4) Integrate over the 4p internal momenta �ki�, and sum over the 2p internal indices.

Note that each closed loop produces a factor of 
ii = n at this stage.

(5) There is a numerical factor of

�−1�p

p! ×number of different pairings leading to the same topology�

The first contribution comes from the expansion of the exponential; the second

merely states that graphs related by symmetry give the same result, and can be

calculated once.

(6) When calculating cumulants, only fully connected diagrams (without disjoint pieces)

need to be included. This is a tremendous simplification.

For example, the diagrams appearing in the expansion for the propagator

�m��q�m��q′�� ≡ ,
�q	�� �q1	��

to second order are

= (q, α) (q′, β) +

k 2, i k3, j
k2, i k2, i k2, ik3, j k3, j k3, j

k1, i k1, i k1, ik4, j k4, j k4, jk1, i k4, j

q, α q′, β

+

q′, βq, α

+

q′, βq, α q′, βq, α

+ +

+ + +

+ + +

+ + +

+ + +

+ + +

+ + + + .
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5.4 Susceptibility

It is no accident that the correction term in Eq. (5.17) is similar in form to
the unperturbed value. This is because the form of the two point correlation
function is constrained by symmetries, as can be seen from the identity

�m��q�m��q′�� =
∫

ddx
∫

ddx′eiq·x+iq′ ·x′ �m��x�m��x′��� (5.18)

The two-point correlation function in real space must satisfy translation
and rotation symmetry, and (in the high temperature phase)�m��x�m��x′�� =

���m1�x−x′�m1�0��� Transforming to center of mass and relative coordinates,
the above integral becomes,

�m��q�m��q′��

=
∫

dd

(
x +x′

2

)
dd �x −x′� ei�q+q′�·�x+x′�/2ei�x−x′�·�q−q′�/2
���m1�x −x′�m1�0��

≡ �2��d
d�q +q′�
��S�q�	 (5.19)

where

S�q� = 〈�m1�q��2
〉 =

∫
ddxeiq·x�m1�x −x′�m1�0�� (5.20)

is the quantity observed in scattering experiments (Section 2.4).
From Eq. (5.17) we obtain

S�q� = 1

t +Kq2

[
1− 4u�n+2�

t +Kq2

∫ ddk
�2��d

1

t +Kk2
+��u2�

]
� (5.21)

It is useful to examine the expansion of the inverse quantity

S�q�−1 = t +Kq2 +4u�n+2�
∫ ddk

�2��d

1
t +Kk2

+��u2�� (5.22)

In the high-temperature phase, Eq. (5.20) indicates that the q → 0 limit of S�q�

is just the magnetic susceptibility �. For this reason, S�q� is sometimes denoted
by ��q�. From Eq. (5.22), the inverse susceptibility is given by

�−1�t� = t +4u�n+2�
∫ ddk

�2��d

1
t +Kk2

+��u2�� (5.23)

The susceptibility no longer diverges at t = 0, since

�−1�0� =4u�n+2�
∫ ddk

�2��d

1
Kk2

= 4�n+2�u

K

Sd

�2��d

∫ �

0
dkkd−3

= 4�n+2�u

K
Kd

(
�d−2

d−2

)
(5.24)

is a finite number (Kd ≡ Sd/�2��d). This is because in the presence of u the
critical temperature is reduced to a negative value. The modified critical point
is obtained by requiring �−1�tc� = 0, and hence from Eq. (5.23), to order
of u,
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tc = −4u�n+2�
∫ ddk

�2��d

1

tc +Kk2
≈ −4u�n+2�Kd�d−2

�d−2�K
< 0� (5.25)

0

χ0

t

χ

tc

Fig. 5.2 The divergence of
susceptibility occurs at a
lower temperature due to
the interaction u.

How does the perturbed susceptibility diverge at the shifted critical point?
From Eq. (5.23),

�−1�t�−�−1�tc� = t − tc +4u�n+2�
∫ ddk

�2��d

(
1

t +Kk2
− 1

tc +Kk2

)

= �t − tc�

[
1− 4u�n+2�

K2

∫ ddk
�2��d

1

k2�k2 + �t − tc�/K�
+��u2�

]
�

(5.26)

In going from the first equation to the second, we have changed the position
of tc from one denominator to another. Since tc = ��u�, the corrections due to
this change only appear at ��u2�. The final integral has dimensions of

[
kd−4

]
.

For d > 4 it is dominated by the largest momenta and scales as �d−4. For
2 < d < 4, the integral is convergent at both limits. Its magnitude is therefore
set by the momentum scale �−1 = √

�t − tc�/K, which can be used to make the
integrand dimensionless. Hence, in these dimensions,

�−1�t� = �t − tc�

[

1− 4u�n+2�

K2
c

(
K

t − tc

)2−d/2

+��u2�

]

	 (5.27)

where c is a constant. For d < 4, the correction term at the order of u diverges
at the phase transition, masking the unperturbed singularity of � with � = 1.
Thus the perturbation series is inherently inapplicable for describing the diver-
gence of susceptibility in d < 4. The same conclusion arises in calculating any
other quantity perturbatively. Although we start by treating u as the perturbation
parameter, it is important to realize that it is not dimensionless; u/K2 has dimen-
sions of (length)d−4. The perturbation series for any quantity then takes the form
X�t	u� = X0�t��1+f�ua4−d/K2	 u�4−d/K2��, where f is a power series. The two
length scales a and � are available to construct dimensionless variables. Since �

diverges close to the critical point, there is an inherent failure of the perturbation
series. The effective (dimensionless) perturbation parameter diverges at tc and is
not small, making it an inherently ineffective expansion parameter.
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5.5 Perturbative RG (first order)

The last section demonstrates how various expectation values associated with
the Landau–Ginzburg Hamiltonian can be calculated perturbatively in powers
of u. However, the perturbative series is inherently divergent close to the critical
point and cannot be used to characterize critical behavior in dimensions d ≤ 4.
K.G. Wilson showed that it is possible to combine perturbative and renor-
malization group approaches into a systematic method for calculating critical
exponents. Accordingly, we shall extend the RG calculation of Gaussian model
in Section 3.7 to the Landau–Ginzburg Hamiltonian, by treating � = u

∫
ddxm4

as a perturbation.

(1) Coarse grain: This is the most difficult step of the RG procedure. As before,

subdivide the fluctuations into two components as,

m̃

σ

Λ b
Λ

�m�q� =
⎧
⎨

⎩
�̃m�q� for 0 < q < �/b

���q� for �/b < q < ��
(5.28)

In the partition function,

Z =
∫

� �̃m�q�� ���q�exp
{
−
∫ �
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ddq
�2��d

(
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2

)

(�m̃�q��2 +���q��2)−�� �̃m�q�	 ���q��
}

	

(5.29)

the two sets of modes are mixed by the operator �. Formally, the result of integrating

out ����q�� can be written as

Z =
∫

� �̃m�q� exp
{
−
∫ �/b

0

ddq
�2��d

(
t +Kq2

2

)
�m̃�q��2

}

× exp
{
−nV

2

∫ �

�/b
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�2��d

ln
(
t +Kq2

)} 〈
e−�� �̃m	���

〉

�

≡
∫

� �̃m�q�e−��̃� �̃m��

(5.30)

Here we have defined the partial averages

���� ≡
∫ � ���q�

Z�

� exp
[
−
∫ �

�/b

ddq
�2��d

(
t +Kq2

2

)
���q��2

]
	 (5.31)

with Z� = ∫
� ���q� exp�−�� 0�����, being the Gaussian partition function asso-

ciated with the short wavelength fluctuations. From Eq. (5.30), we obtain

˜�� � �̃m� = V
f 0
b +

∫ �/b

0

ddq
�2��d

(
t +Kq2

2

)
�m̃�q��2 − ln

〈
e−�� �̃m	���

〉

�
� (5.32)
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The final expression can be calculated perturbatively as,

ln
〈
e−�

〉

�
= −���� + 1

2

(〈
�2

〉
�
−���2

�

)
+· · ·

+ �−1�

! ×th cumulant of �+· · ·
(5.33)

The cumulants can be computed using the rules set in the previous sections. For

example, at the first order we need to compute

〈
�
[
�̃m	 ��

]〉

�
=u

∫ ddq1ddq2ddq3ddq4

�2��4d
�2��d
d�q1 +q2 +q3 +q4�

〈[
�̃m�q1�+ ���q1�

]
·
[
�̃m�q2�+ ���q2�

]

×
[
�̃m�q3�+ ���q3�

]
·
[
�̃m�q4�+ ���q4�

]〉

�
�

(5.34)

The following types of terms result from expanding the product:

m̃(q1) · m̃(q2) m̃(q3) · m̃(q4)
σ

2

1

4

3

�[m̃]

· m̃(q2) m̃(q3) · m̃(q4)
σ

0

· m̃ q3 )( · m̃(q4)
σ

· m̃(q2) · m̃(q4 )
σ

· m̃(q4) σ
0

[6]   1

[5]   4

[4]   4

[3]   2

[2]   4

[1]   1

σ (q1) · σ (q2) σ (q3)

σ (q1)

σ (q1)

σ (q1)

σ (q1)

·σ (q2)

σ (q2)

σ (q3)

σ (q3)

· σ (q4) σ +

(5.35)

The second element in each line is the number of terms with a given “symmetry”.

The total of these coefficients is 24 = 16. Since the averages ���� involve only the

short wavelength fluctuations, only contractions with �� appear. The resulting inter-

nal momenta are integrated from �/b to �.

Term [1] has no �� factors and evaluates to �� �̃m�. The second and fifth terms

involve an odd number of ��s and their average is zero. Term [3] has one contraction

and evaluates to
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− u×2
∫ ddq1 · · ·ddq4

�2��4d
�2��d
d�q1 +· · ·+q4�


jj�2��d
d�q1 +q2�

t +Kq2
1

�̃m�q3� · �̃m�q4�

= −2nu
∫ �/b

0

ddq
�2��d

�m̃�q��2
∫ �

�/b

ddk
�2��d

1

t +Kk2
� (5.36)

Term [4] also has one contraction but there is no closed loop (the factor 
jj) and

hence no factor of n. The various contractions of 4 �� in term [6] lead to a number

of terms with no dependence on �̃m. We shall denote the sum of these terms by

uV
f 1
b . Collecting all terms, the coarse-grained Hamiltonian at order of u is given

by

˜�� � �̃m� =V
(

f 0

b +u
f 1
b

)+
∫ �/b

0

ddq
�2��d

(
t̃ +Kq2

2

)
�m̃�q��2

+u
∫ �/b

0

ddq1ddq2ddq3

�2��3d
�̃m�q1� · �̃m�q2� �̃m�q3� · �̃m�−q1 −q2 −q3�	

(5.37)

where

t̃ = t +4u�n+2�
∫ �

�/b

ddk
�2��d

1

t +Kk2
� (5.38)

The coarse-grained Hamiltonian is thus again described by three parameters t̃, K̃,

and ũ. The last two parameters are unchanged, and

K̃ = K	 and ũ = u� (5.39)

(2) Rescale by setting q = b−1q′, and

(3) Renormalize, �̃m = z �m′, to get

��� �′�m′� = V
(

f 0

b +u
f 1
b

)+
∫ �

0

ddq′

�2��d
b−dz2

(
t̃ +Kb−2q

′2

2

)

�m′�q′��2

+uz4b−3d
∫ �

0

ddq′
1ddq′

2ddq′
3

�2��3d
�m′�q′

1� · �m′�q′
2� �m′�q′

3� · �m′�−q′
1 −q′

2 −q′
3��

(5.40)

The renormalized Hamiltonian is characterized by the triplet of interactions

�t′	K′	 u′�, such that

t′ = b−dz2 t̃	 K′ = b−d−2z2K	 u′ = b−3dz4u� (5.41)

As in the Gaussian model there is a fixed point at t∗ = u∗ = 0, provided that

we set z = b1+ d
2 , such that K′ = K. The recursion relations for t and u in the

vicinity of this point are given by
⎧
⎪⎨

⎪⎩

t′b = b2

[
t +4u�n+2�

∫ �

�/b

ddk
�2��d

1
t +Kk2

]

u′
b = b4−du�

(5.42)

While the recursion relation for u at this order is identical to that obtained by

dimensional analysis, the one for t is different. It is common to convert the discrete
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recursion relations to continuous differential flow equations by setting b = e, such

that for an infinitesimal 
,

t′
b ≡ t�b� = t�1+
� = t +


dt

d
+��
2�	 u′

b ≡ u�b� = u+

du

d
+��
2��

Expanding Eqs. (5.42) to order of 
, gives
⎧
⎪⎨

⎪⎩

t +

dt

d
= �1+2
�

(
t +4u�n+2�

Sd

�2��d

1

t +K�2
�d


)

u+

du

d
= �1+ �4−d�
�u�

(5.43)

The differential equations governing the evolution of t and u under rescaling

are then
⎧
⎪⎨

⎪⎩

dt

d
= 2t + 4u�n+2�Kd�d

t +K�2

du

d
= �4−d�u�

(5.44)

The recursion relation for u is easily integrated to give u�� = u0e�4−d� = u0b
�4−d�.

The recursion relations can be linearized in the vicinity of the fixed point

t∗ = u∗ = 0, by setting t = t∗ +
t and u = u∗ +
u, as

d

d

(

t


u

)

=
⎛

⎝2
4�n+2�Kd�d−2

K
0 4−d

⎞

⎠

(

t


u

)

� (5.45)

In the differential form of the recursion relations, the eigenvalues of the matrix

determine the relevance of operators. Since the above matrix has zero elements on

one side, its eigenvalues are the diagonal elements, and as in the Gaussian model

we can identify yt = 2, and yu = 4−d. The results at this order are identical to those

obtained from dimensional analysis on the Gaussian model. The only difference

is in the eigendirections. The exponent yt = 2 is still associated with u = 0, while

yu = 4−d is actually associated with the direction t = −4u�n+2�Kd�d−2/K. This

agrees with the shift in the transition temperature calculated to order of u from the

susceptibility.

0 u

t

0

d > 4

0 u

d < 4

t

0

Fig. 5.3 RG flows
obtained perturbatively to
first order.
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For d > 4 the Gaussian fixed point has only one unstable direction associated

with yt. It thus correctly describes the phase transition. For d < 4 it has two

relevant directions and is unstable. Unfortunately, the recursion relations have no

other fixed point at this order and it appears that we have learned little from the

perturbative RG. However, since we are dealing with an alternating series we can

anticipate that the recursion relations at the next order are modified to
⎧
⎪⎨

⎪⎩

dt

d
= 2t + 4u�n+2�Kd�d

t +K�2
−Au2

du

d
= �4−d�u−Bu2	

(5.46)

with A and B positive. There is now an additional fixed point at u∗ = �4 −d�/B

for d < 4. For a systematic perturbation theory we need to keep the parameter

u small. Thus the new fixed point can be explored systematically only for small

� = 4 −d; we are led to consider an expansion in the dimension of space in the

vicinity of d = 4! For a calculation valid at ���� we have to keep track of terms

of second order in the recursion relation for u, but only to first order in that of t.

It is thus unnecessary to calculate the term A in the above recursion relation.

5.6 Perturbative RG (second order)

The coarse-grained Hamiltonian at second order in � is

˜�� � �̃m� =V
f 0
b +

∫ �/b

0

ddq
�2��d

(
t +Kq2

2

)

�m̃�q��2 +���� − 1

2

(〈
�2

〉
�
−���2

�

)
+O��3�� (5.47)

To calculate
(〈
�2

〉
�
−���2

�

)
we need to consider all possible decompositions

of two �s into �̃m and �� as in Eq. (5.34). Since each � can be broken up into
six types of terms as in Eq. (5.35), there are 36 such possibilities for two �s
which can be arranged in a 6 × 6 matrix, as below. Many of the elements of
this matrix are either zero, or can be neglected at this stage, due to a number
of considerations:

(1) All the 11 terms involving at least one factor of type [1] are zero because they

cannot be contracted into a connected piece, and the disconnected elements cancel

in calculating the cumulant.

(2) An additional 12 terms (such as �2� × �3�) involve an odd number of ��s and are

zero due to their parity.

(3) Two terms, �2�× �5� and �5�× �2�, involve a vertex where two ��s are contracted

together, leaving a �̃m�q<� and a ���q>�. This configuration is not allowed by the


-function which ensures momentum conservation for the vertex, as by construction

q> +q< = 0.
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(4) Terms �3�× �6�, �4�× �6�, and their partners by exchange have two factors of �̃m.

They involve two-loop integrations, and appear as corrections to the coefficient t̃.

We shall denote their net effect by A, which as noted earlier does not need to be

known precisely at this order.

(5) The term �5�× �5� also involves two factors of �̃m, while �2�× �2� includes six such

factors. The latter is important as it indicates that the space of parameters is not

closed at this order. Even if initially zero, a term proportional to m6 is generated

under RG. In fact, considerations of momentum conservation indicate that both these

terms are zero for q = 0, and are thus contributions to q2m2 and q2m6, respectively.

We shall comment on their effect later on.

(6) The contributions resulting from �6� × �6� are constants, and will be collectively

denoted by u2V
f 2
b .

disc. disc. disc. disc.

disc. par. par.
q2m6

disc. par.

8

2 × 2 × 2
4

disc. par.
4 × 2 × 2

disc. mtm. par.

disc.

par.

4 × 2 × 2

4 × 4 × 2

par. par.

disc. par.

disc.

mtm.

par.

par.

par.

Fig. 5.4 Diagrams
appearing in the
second-order RG
calculation (par. and disc.
indicate contributions
that are zero due to
parity considerations, or
being disconnected and
mtm. is used to label
diagrams that appear at
higher order in q2 due to
momentum
conservation).
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(7) The terms �3�× �3�, �3�× �4�, �4�× �3�, and �4�× �4� contribute to �̃m4. For example,

�3�× �3� results in

q1

q2

k1, j k′ , j ′

k2, j k′  , j ′
q4

q3
1

2

u2

2
×2×2×2

∫ �/b

0

ddq1 · · ·ddq4

�2��4d

∫ �

�/b

ddk1ddk2ddk′
1ddk′

2

�2��4d

×�2��2d
d�q1 +q2 +k1 +k2�

d�k1 +k2 +q3 +q4�

×
��′ �2��d
d�k1 +k′
1�

t +Kk2′
1


��′ �2��d
d�k2 +k
′
2�

t +Kk2′
2

�̃m�q1� · �̃m�q2� �̃m�q3� · �̃m�q4�

= 4nu2
∫ �/b

0

ddq1 · · ·ddq4

�2��4d
�2��d
d�q1 +q2 +q3 +q4� �̃m�q1� · �̃m�q2� �̃m�q3� · �̃m�q4�

×
∫ ddk

�2��d

1
�t +Kk2� �t +K�q1 +q2 −k�2�

� (5.48)

The contractions from terms �3�× �4�, �4�× �3�, and �4�× �4� lead to similar expres-

sions with prefactors of 8, 8, and 16 respectively. Apart from the dependence on

q1 and q2, the final result has the form of �� �̃m�. In fact the last integral can be

expanded as

f�q1 +q2� =
∫ ddk

�2��d

1
�t +Kk2�2

[
1− 2Kk · �q1 +q2�−K�q1 +q2�

2

�t +Kk2�
+· · ·

]
�

(5.49)

After fourier transforming back to real space we find in addition to m4, such terms

as m2��m�2	m2�2m2	 · · · .

Putting all contributions together, the coarse grained Hamiltonian at order of u2

takes the form

˜�� =V
(

f 0

b +u
f 1
b +u2
f 2

b

)+
∫ �/b

0

ddq
�2��d

�m̃�q��2
[

t +Kq2

2
+2u�n+2�

∫ �

�/b

ddk
�2��d

1
t +Kk2

− u2

2
A�t	K	q2�

]

+
∫ �/b

0

ddq1ddq2ddq3

�2��3d
�̃m�q1� · �̃m�q2� �̃m�q3� · �̃m�q4�×

[
u− u2

2
�8n+64�

∫ �

�/b

ddk
�2��d

1
�t +Kk2�2

+��u2q2�

]
+��u2m̃6q2	 · · · �+��u3�� (5.50)
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5.7 The �-expansion

The parameter space �K	 t	 u� is no longer closed at this order; several new
interactions proportional to m2, m4, and m6, all consistent with symmetries of
the problem, appear in the coarse-grained Hamiltonian at second order in u.
Ignoring these interactions for the time being, the coarse grained parameters
are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K̃ = K −u2A′′�0�

t̃ = t +4�n+2� u
∫ �

�/b

ddk
�2��d

1
t +Kk2

−u2A�0�

ũ = u−4�n+8�u2
∫ �

�/b

ddk
�2��d

1

�t +Kk2�2 	

(5.51)

where A�0� and A′′�0� correspond to the first two terms in the expansion of
A�t	K	q2� in Eq. (5.50) in powers of q.

After the rescaling q = b−1q′, and renormalization �̃m = z �m′, steps of the
RG procedure, we obtain

K′ = b−d−2z2K̃	 t′ = b−dz2 t̃	 u′ = b−3dz4ũ� (5.52)

As before, the renormalization parameter z is chosen such that K′ = K, leading
to

z2 = bd+2

�1−u2A′′�0�/K�
= bd+2

(
1+O�u2�

)
� (5.53)

The value of z does depend on the fixed point position u∗. But as u∗ is of
the order of �, z = b1+ d

2 +���2�, it is not changed at the lowest order. Using
this value of z, and following the previous steps for constructing differential
recursion relations, we obtain

⎧
⎪⎪⎨

⎪⎪⎩

dt

d
= 2t + 4u�n+2�Kd�d

t +K�2
−A�t	K	��u2

du

d
= �4−d�u− 4�n+8�Kd�d

�t +K�2�2
u2�

(5.54)

The fixed points are obtained from dt/d = du/d = 0. In addition to the
Gaussian fixed point at u∗ = t∗ = 0, discussed in the previous section, there is
now a non-trivial fixed point located at

⎧
⎪⎪⎨

⎪⎪⎩

u∗ = �t∗ +K�2�2

4�n+8�Kd�d
� = K2

4�n+8�K4
�+���2�

t∗ = −2u∗�n+2�Kd�d

t∗ +K�2
= − �n+2�

2�n+8�
K�2 �+���2��

(5.55)

The above expressions have been further simplified by systematically keeping
terms to first order in � = 4−d.
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Fig. 5.5 RG flows
obtained perturbatively to
second order.
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Linearizing the recursion relations in the vicinity of the fixed point results in

d

d

(

t


u

)

=

⎛

⎜
⎜
⎝

2− 4�n+2�Kd�d

�t∗ +K�2�2
u∗ −A′u∗2 4�n+2�Kd�d

t∗ +K�2
−2Au∗

8�n+8�Kd�d

�t∗ +K�2�3
u∗2 �− 8�n+8�Kd�d

�t∗ +K�2�2
u∗

⎞

⎟
⎟
⎠

(

t


u

)

� (5.56)

At the Gaussian fixed point, t∗ = u∗ = 0, and Eq. (5.45) is reproduced. At the
new fixed point of Eqs. (5.55),

d
d

(

t


u

)

=

⎛

⎜⎜
⎝

2− 4�n+2�K4�
4

K2�4

K2�

4�n+8�K4
· · · · · ·

���2� �− 8�n+8�K4�
4

K2�4

K2�

4�n+8�K4

⎞

⎟⎟
⎠

⎛

⎜
⎝


t


u

⎞

⎟
⎠ �

(5.57)

We have not explicitly calculated the top element of the second column as
it is not necessary for calculating the eigenvalues. This is because the lower
element of the first column is zero to order of �. Hence the eigenvalues are
determined by the diagonal elements alone. The first eigenvalue is positive,
controlling the instability of the fixed point,

yt = 2− �n+2�

�n+8�
�+���2�� (5.58)

The second eigenvalue,

yu = −�+���2�	 (5.59)

is negative for d < 4. The new fixed point thus has co-dimension of one and
can describe the phase transition in these dimensions. It is quite satisfying
that while various intermediate results, such as the position of the fixed point,
depend on such microscopic parameters as K and �, the final eigenvalues
are pure numbers, only depending on n and d = 4 − �. These eigenvalues
characterize the universality classes of rotational symmetry breaking in d < 4,
with short-range interactions. (As discussed in the problem section, long-range
interaction may lead to new universality classes.)
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The divergence of the correlation length, � ∼ �
t�−�, is controlled by the
exponent

� = 1

yt

=
{

2
[

1− �n+2�

2�n+8�
�

]}−1

= 1

2
+ 1

4
n+2
n+8

�+���2�� (5.60)

The singular part of the free energy scales as f ∼ �
t�2−�, and the heat capacity
diverges with the exponent

� = 2−d� = 2− �4− ��

2

[
1+ 1

2
n+2
n+8

�

]
= 4−n

2�n+8�
�+���2�� (5.61)

To complete the calculation of critical exponents, we need the eigenvalue
associated with the (relevant) symmetry breaking field h. This is easily found
by adding a term −�h ·∫ ddx �m�x� = −�h · �m�q = 0� to the Hamiltonian. This term
is not affected by coarse graining or rescaling, and after the renormalization
step changes to −z�h · �m′�q′ = 0�, implying

h′ = zh = b1+ d
2 h	 =⇒ yh = 1+ d

2
+���2� = 3− �

2
+���2�� (5.62)

The vanishing of magnetization as T → T−
c is controlled by the exponent

� = d−yh

yt

=
(

4− �

2
−1

)
× 1

2

(
1+ n+2

2�n+8�
�+���2�

)

= 1

2
− 3

2�n+8�
�+���2�	

(5.63)

while the susceptibility diverges as � ∼ �
t�−� , with

� = 2yh −d

yt

= 2× 1
2

(
1+ n+2

2�n+8�
�

)
= 1+ n+2

2�n+8�
�+O��2�� (5.64)

Using the above results, we can estimate various exponents as a function
of d and n. For example, for n = 1, by setting � = 1 or 2 in Eqs. (5.60) and
Eqs. (5.63) we obtain the values ��1� ≈ 0�58, ��2� ≈ 0�67, and ��1� ≈ 0�33,
��2� ≈ 0�17. The best estimates of these exponents in d = 3 are � ≈ 0�63, and
� ≈ 0�32. In d = 2 the exact values are known to be � = 1 and � = 0�125. The
estimates for � are quite good, while those for � are less reliable. It is important
to note that in all cases these estimates are an improvement over the mean
field (saddle point) values. Since the expansion is around four dimensions, the
results are more reliable in d = 3 than in d = 2. In any case, they correctly
describe the decrease of � with lowering dimension, and the increase of �.
They also correctly describe the trends with varying n at a fixed d as indicated
by the following table of exponents ��n�.

Although the sign of � is incorrectly predicted at this order for n = 2 and
3, the decrease of � with increasing n is correctly described.
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n = 1 n = 2 n = 3 n = 4

���� at � = 1 0.17 0.11 0.06 0
Experiments in d = 3 0.11 −0.01 −0.12 −

5.8 Irrelevance of other interactions

The fixed point Hamiltonian at ���� (from Eqs. 5.55) has only three terms

�� ∗ = K

2

∫

�
ddx

[
��m�2 − �n+2�

�n+8�
��2m2 + ��−�

2�n+8�

K

K4

m4

]
	 (5.65)

and explicitly depends on the imposed cutoff � ∼ 1/a (unlike the exponents).
However, as described in Section 3.4, the starting point for RG must be the
most general Hamiltonian consistent with symmetries. We also discovered that
even if some of these terms are left out of the original Hamiltonian, they are
generated under coarse graining. At second order in u, terms proportional to
m6 were generated; higher powers of m will appear at higher orders in u.

Let us focus on a rotationally symmetric Hamiltonian for �h = 0. We can
incorporate all terms consistent with this symmetry in a perturbative RG by
setting �� = �� 0 +�, where

�� 0 =
∫

ddx
[

t

2
m2 + K

2
��m�2 + L

2
��2m�2 +· · ·

]
(5.66)

includes all quadratic (Gaussian terms), while the remaining higher order terms
are placed in the perturbation

� =
∫

ddx
[
um4 +vm2��m�2 +· · ·+u6m

6 +· · ·+u8m
8 +· · · ] � (5.67)

After coarse graining, and steps (ii) and (iii) of RG in real space, x = bx′ and
�̃m = � �m′, the renormalized weight depends on the parameters

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t �→ bd�2 t̃ = b2 t̃

K �→ bd−2�2K̃ = K

L �→ bd−4�2L̃ = b−2L̃

���

u �→ bd�4ũ = b4−dũ

v �→ bd−2�4ṽ = b2−dṽ

���

u6 �→ bd�6ũ6 = b6−2dũ6

u8 �→ bd�8ũ8 = b8−3dũ8

���

(5.68)
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The second set of equalities are obtained by choosing �2 = b2−dK/K̃ = b2−d�1+
��u2	 uv	 v2	 · · · ��, such that K′ = K. By choosing an infinitesimal rescaling,
the recursion relations take the differential forms

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dt

d
= 2t +��u	 v	u6	 u8	 · · · �

dK

d
= 0

dL

d
= −2L+��u2	 uv	 v2	 · · · �

���
du

d
= �u−Bu2 +��uv	 v2	 · · · �

dv

d
= �−2+ ��v+��u2	 uv	 v2	 · · · �

���
du6

d
= �−2+2��u6 +��u3	 u2

6	 · · · �
du8

d
= �−4+3��u8 +��u3	 u2u6	 · · · �

���

(5.69)

These recursion relations describe two fixed points:

(1) The Gaussian fixed point, t∗ = L∗ = u∗ = v∗ = · · · = 0, and K = 0, has eigenvalues

y0
t = 2	 y0

L = −2	 · · · 	 y0
u = +�	 y0

v = −2+ �	 · · · 	

y0
6 = −2+2�	 y0

8 = −4+3�	 · · · �
(5.70)

(2) Setting Eqs. (5.69) to zero, a non-trivial fixed point is located at

t∗ ∼ u∗ ∼ ����	 L∗ ∼ v∗ ∼ · · · ∼ ���2�	 u∗
6 ∼ · · · ∼ ���3�	 · · · � (5.71)

The stability of this fixed point is determined by the matrix,

d
d

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝


t


L
���


u


v
���

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

2−��u∗� ���� · · · ��1� ��1� · · ·
���2� −2+����

���
� � �

���2� ����

���2� ����
���

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝


t


L
���


u


v
���

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎟
⎠

� (5.72)

Note that as � → 0, the non-trivial fixed part, its eigenvalues and eigendirec-
tions continuously go over to the Gaussian fixed points. Hence the eigenvalues
can only be corrected by order of �, and Eq. (5.70) is modified to
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yt = 2− n+2

n+8
�+���2�	 yL = −2+����	 · · · 	

yu = −�+���2�	 yv = −2+����	 · · · 	y6 = −2+����	 y8 = −4+����	 · · ·
(5.73)

While the eigenvalues are still labeled with the coefficients of the various
terms in the Landau–Ginzburg expansion, we must remember that the actual
eigendirections are now rotated away from the axes of this parameter space,
although their largest projection is still parallel to the corresponding axis.

Whereas the Gaussian fixed point has two relevant directions in d < 4, the
generalized O�n� fixed point has only one relevant direction corresponding
to yt. At least perturbatively, this fixed point has a basin of attraction of co-
dimension one, and thus describes the phase transition. The original concept of
Kadanoff scaling is thus explicitly realized and the universality of exponents
is traced to the irrelevance (at least perturbatively) of the multitude of other
possible interactions. The perturbative approach does not exclude the existence
of other fixed points at finite values of these parameters. The uniqueness of the
critical exponents observed so far for each universality class, and their proximity
to the values calculated from the �-expansion, suggests that postulating such
non-perturbative fixed points is unnecessary.

5.9 Comments on the �-expansion

The perturbative implementation of RG for the Landau–Ginzburg Hamiltonian
was achieved by K.G. Wilson in the early 1970s; the �-expansion was developed
jointly with M.E. Fisher. This led to a flurry of activity in the topic which still
continues. Wilson was awarded the Nobel Prize in 1982. Historical details can
be found in his Nobel lecture reprinted in Rev. Mod. Phys. 55, 583 (1983). A
few comments on the �-expansion are in order at this stage.

(1) Higher orders, and convergence of the series: Calculating the exponents to ����2

and beyond, by going to order of �3 and higher, is quite complicated as we have

to keep track of many more interactions. It is in fact quite unappealing that the

intermediate steps of the RG explicitly keep track of the cutoff scale �, while

the final exponents must be independent of it. In fact there are a number of field

theoretical RG schemes (dimensional regularization, summing leading divergences,

etc.) that avoid many of these difficulties. These methods are harder to visualize and

will not be described here. All higher order calculations are currently performed

using one of these schemes. It is sometimes (but not always) possible to prove that

these approaches are consistent with each other, and can be carried out to all orders.

In principle, the problem of evaluating critical exponents in d = 3 is now solved:

simple computations lead to approximate results, while more refined calculations

should provide better answers. The situation is somewhat like finding the energy

levels of a He atom, which cannot be done exactly, but which may be obtained

with sufficient accuracy using various approximation methods.
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To estimate how reliable the exponents are, we need some information on the

convergence of the series. The � expansion has been carried out to the fifth order,

and the results for the exponent �, for n = 1 at d = 3, are

� = 1+0�167�+0�077�2 −0�049�3 +0�180�4 −0�415�5

1�2385±0�0025 = 1�000	 1�167	 1�244	 1�195	 1�375	 0�96�
(5.74)

The second line compares the values obtained at different orders by substituting

� = 1, with the best estimate of � ≈ 1�2385 in d = 3. Note that the elements of the

series have alternating signs. The truncated series evaluated at � = 1 improves up

to third order, beyond which it starts to oscillate, and deviates from the left hand

side. These are characteristics of an asymptotic series. It can be proved that for

large p, the coefficients in the expansion of most quantities scale as �fp� ∼ cp!a−p.

As a result, the �-expansion series is non-convergent, but can be evaluated by the

Borel summation method, using the identity
∫ �

0 dx xpe−x = p!, as

f��� = ∑

p

fp�p = ∑

p

fp�p 1

p!
∫ �

0
dx xpe−x =

∫ �

0
dxe−x

∑

p

fp��x�p

p! � (5.75)

The final summation (which is convergent) results in a function of x which can be

integrated to give f���. Very good estimates of exponents in d = 3, such as the one

for � quoted above, are obtained by this summation method. There is no indication

of any singularity in the exponents up to � = 2, corresponding to the lower critical

dimension d = 2.

(2) The 1/n expansion: The fixed point position,

u∗ = �t∗ +K�2�2�4−d�

4�n+8�Kd�d
	

vanishes as n → �. This suggests that a controlled 1/n expansion of the critical

exponents is also possible. Indeed such an expansion can be developed by a number

of methods, such as a saddle point expansion that takes advantage of the exponential

dependence of the Hamiltonian on n, or by an exact resummation of the perturbation

series. Equation (5.58) in this limit gives,

yt = lim
n→�

[
2− n+2

n−8
�4−d�

]
= d−2 =⇒ � = 1

d−2
� (5.76)

This result is exact in dimensions 4 < d < 2. Above four dimensions the mean field

value of 1/2 is recovered, while for d < 2 there is no order.

Problems for chapter 5

1. Longitudinal susceptibility: While there is no reason for the longitudinal suscep-

tibility to diverge at the mean-field level, it in fact does so due to fluctuations in

dimensions d < 4. This problem is intended to show you the origin of this divergence

in perturbation theory. There are actually a number of subtleties in this calculation
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which you are instructed to ignore at various steps. You may want to think about

why they are justified.

Consider the Landau–Ginzburg Hamiltonian:

�� =
∫

ddx
[

K

2
�� �m�2 + t

2
�m2 +u� �m2�2

]
	

describing an n-component magnetization vector �m�x�, in the ordered phase for

t < 0.

(a) Let �m�x� = (
m+��x�

)
ê + ��t�x�êt	 and expand �� keeping all terms in the

expansion.

(b) Regard the quadratic terms in � and ��t as an unperturbed Hamiltonian �� 0,

and the lowest order term coupling � and ��t as a perturbation U ; i.e.

U = 4um
∫

ddx��x���t�x�2�

Write U in Fourier space in terms of ��q� and ��t�q�.

(c) Calculate the Gaussian (bare) expectation values ���q���q′��0 and

��t	��q��t	��q′��0, and the corresponding momentum dependent susceptibilities

��q�0 and �t�q�0.

(d) Calculate ���t�q1� · ��t�q2� ��t�q′
1� · ��t�q′

2��0 using Wick’s theorem. (Don’t forget

that ��t is an �n−1� component vector.)

(e) Write down the expression for ���q���q′�� to second order in the perturbation

U . Note that since U is odd in �, only two terms at the second order are

non-zero.

(f) Using the form of U in Fourier space, write the correction term as a product

of two four-point expectation values similar to those of part (d). Note that only

connected terms for the longitudinal four-point function should be included.

(g) Ignore the disconnected term obtained in (d) (i.e. the part proportional to �n−
1�2), and write down the expression for ��q� in second order perturbation

theory.

(h) Show that for d < 4, the correction term diverges as qd−4 for q → 0, implying

an infinite longitudinal susceptibility.

2. Crystal anisotropy: Consider a ferromagnet with a tetragonal crystal structure.

Coupling of the spins to the underlying lattice may destroy their full rotational

symmetry. The resulting anisotropies can be described by modifying the Landau–

Ginzburg Hamiltonian to

�� =
∫

ddx
[

K

2
�� �m�2 + t

2
�m2 +u

( �m2
)2 + r

2
m2

1 +vm2
1 �m2

]
	

where �m ≡ �m1	 · · · 	mn�, and �m2 = ∑n
i=1 m2

i (d = n = 3 for magnets in three

dimensions). Here u > 0, and to simplify calculations we shall set v = 0 throughout.

(a) For a fixed magnitude � �m�, what directions in the n component magnetization

space are selected for r > 0, and for r < 0?
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(b) Using the saddle point approximation, calculate the free energies (ln Z) for phases

uniformly magnetized parallel and perpendicular to direction 1.

(c) Sketch the phase diagram in the �t	 r� plane, and indicate the phases (type of

order), and the nature of the phase transitions (continuous or discontinuous).

(d) Are there Goldstone modes in the ordered phases?

(e) For u = 0, and positive t and r, calculate the unperturbed averages �m1�q�m1�q′��0

and �m2�q�m2�q′��0, where mi�q� indicates the Fourier transform of mi�x�.

(f) Write the fourth order term � ≡ u
∫

ddx� �m2�2, in terms of the Fourier

modes mi�q�.

(g) Treating � as a perturbation, calculate the first order correction to

�m1�q�m1�q′��. (You can leave your answers in the form of some integrals.)

(h) Treating � as a perturbation, calculate the first order correction to

�m2�q�m2�q′��.

(i) Using the above answer, identify the inverse susceptibility �−1
22 , and then find

the transition point, tc, from its vanishing to first order in u.

(j) Is the critical behavior different from the isotropic O�n� model in d < 4? In

RG language, is the parameter r relevant at the ��n� fixed point? In either case

indicate the universality classes expected for the transitions.

3. Cubic anisotropy – mean-field treatment: Consider the modified Landau–Ginzburg

Hamiltonian

�� =
∫

ddx

[
K

2
�� �m�2 + t

2
�m2 +u� �m2�2 +v

n∑

i=1

m4
i

]

	

for an n-component vector �m�x� = �m1	m2	 · · · 	mn�� The “cubic anisotropy” term
∑n

i=1 m4
i breaks the full rotational symmetry and selects specific directions.

(a) For a fixed magnitude � �m�, what directions in the n component magnetization

space are selected for v > 0 and for v < 0? What is the degeneracy of easy

magnetization axes in each case?

(b) What are the restrictions on u and v for �� to have finite minima? Sketch these

regions of stability in the �u	 v� plane.

(c) In general, higher order terms (e.g. u6� �m2�3 with u6 > 0) are present and insure

stability in the regions not allowed in part (b) (as in the case of the tricritical

point discussed in earlier problems). With such terms in mind, sketch the saddle

point phase diagram in the �t	 v� plane for u > 0; clearly identifying the phases,

and order of the transition lines.

(d) Are there any Goldstone modes in the ordered phases?

4. Cubic anisotropy �-expansion:

(a) By looking at diagrams in a second order perturbation expansion in both u and

v show that the recursion relations for these couplings are
⎧
⎪⎨

⎪⎩

du

d
= �u−4C

[
�n+8�u2 +6uv

]

dv

d
= �v−4C

[
12uv+9v2

]
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where C = Kd�d/�t +K�2�2 ≈ K4/K2 is approximately a constant.

(b) Find all fixed points in the �u	 v� plane, and draw the flow patterns for n < 4

and n > 4. Discuss the relevance of the cubic anisotropy term near the stable

fixed point in each case.

(c) Find the recursion relation for the reduced temperature, t, and calculate the

exponent � at the stable fixed points for n < 4 and n > 4.

(d) Is the region of stability in the �u	 v� plane calculated in part (b) of the previous

problem enhanced or diminished by inclusion of fluctuations? Since in reality

higher order terms will be present, what does this imply about the nature of the

phase transition for a small negative v and n > 4?

(e) Draw schematic phase diagrams in the �t	 v� plane �u > 0� for n > 4 and n < 4,

identifying the ordered phases. Are there Goldstone modes in any of these phases

close to the phase transition?

5. Exponents: Two critical exponents at second order are,
⎧
⎪⎪⎨

⎪⎪⎩

� = 1

2
+ �n+2�

4�n+8�
�+ �n+2��n2 +23n+60�

8�n+8�3
�2 	

� = �n+2�

2�n+8�2
�2�

Use scaling relations to obtain �-expansions for two or more of the remaining

exponents �	 �	 �	 
 and �. Make a table of the results obtained by setting � = 1	 2

for n = 1	 2 and 3; and compare to the best estimates of these exponents that you

can find by other sources (series, experiments, etc.).

6. Anisotropic criticality: A number of materials, such as liquid crystals, are anisotropic

and behave differently along distinct directions, which shall be denoted parallel and

perpendicular, respectively. Let us assume that the d spatial dimensions are grouped

into n parallel directions x�, and d − n perpendicular directions x⊥. Consider a

one-component field m�x�	 x⊥� subject to a Landau–Ginzburg Hamiltonian, �� =
�� 0 +U , with

�� 0 =
∫

dnx�dd−nx⊥

[
K

2
���m�2 + L

2
��2

⊥m�2 + t

2
m2 −hm

]
	

and U = u
∫

dnx�dd−nx⊥ m4 �

(Note that �� depends on the first gradient in the x� directions, and on the

second gradient in the x⊥ directions.)

(a) Write �� 0 in terms of the Fourier transforms m�q�	 q⊥�.

(b) Construct a renormalization group transformation for �� 0, by rescaling coordi-

nates such that q′
� = b q� and q′

⊥ = c q⊥ and the field as m′�q′� = m�q�/z. Note

that parallel and perpendicular directions are scaled differently. Write down

the recursion relations for K	 L	 t	 and h in terms of b	 c	 and z. (The exact

shape of the Brillouin zone is immaterial at this stage, and you do not need to

evaluate the integral that contributes an additive constant.)
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(c) Choose c�b� and z�b� such that K′ = K and L′ = L. At the resulting fixed point

calculate the eigenvalues yt and yh for the rescalings of t and h.

(d) Write the relationship between the (singular parts of) free energies f�t	h� and

f ′�t′	 h′� in the original and rescaled problems. Hence write the unperturbed

free energy in the homogeneous form f�t	h� = t2−�gf �h/t��, and identify the

exponents � and �.

(e) How does the unperturbed zero-field susceptibility ��t	h = 0� diverge as t → 0?

In the remainder of this problem set h = 0, and treat U as a perturbation.

(f) In the unperturbed Hamiltonian calculate the expectation value �m�q�m�q′��0,

and the corresponding susceptibility �0�q� = ��mq�2�0, where q stands for

�q�	 q⊥�.

(g) Write the perturbation U , in terms of the normal modes m�q�.

(h) Using RG, or any other method, find the upper critical dimension du, for validity

of the Gaussian exponents.

(i) Write down the expansion for �m�q�m�q′��, to first order in U , and reduce the

correction term to a product of two point expectation values.

(j) Write down the expression for ��q�, in first order perturbation theory, and

identify the transition point tc at order of u. (Do not evaluate any integrals

explicitly.)

7. Long-range interactions between spins can be described by adding a term

∫
ddx

∫
ddyJ��x −y�� �m�x� · �m�y�	

to the usual Landau–Ginzburg Hamiltonian.

(a) Show that for J�r� ∝ 1/rd+� , the Hamiltonian can be written as

�� =
∫ ddq

�2��d

t +K2q
2 +K�q� +· · ·

2
�m�q� · �m�−q�

+u
∫ ddq1ddq2ddq3

�2��3d
�m�q1� · �m�q2� �m�q3� · �m�−q1 −q2 −q3� �

(b) For u = 0, construct the recursion relations for �t	K2	K�� and show that K� is

irrelevant for � > 2. What is the fixed Hamiltonian in this case?

(c) For � < 2 and u = 0, show that the spin rescaling factor must be chosen such

that K′
� = K� , in which case K2 is irrelevant. What is the fixed Hamiltonian

now?

(d) For � < 2, calculate the generalized Gaussian exponents �, �, and � from the

recursion relations. Show that u is irrelevant, and hence the Gaussian results are

valid, for d > 2� .

(e) For � < 2, use a perturbation expansion in u to construct the recursion relations

for �t	K�	u� as in the text.

(f) For d < 2� , calculate the critical exponents � and � to first order in � = d−2� .

[See M.E. Fisher, S.-K. Ma and B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972).]

(g) What is the critical behavior if J�r� ∝ exp�−r/a�? Explain!


