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Two Views of Renormalization

Here I discuss the relationship between two approaches to renormalization: the older one
based on removing infinities in the quest for field theories in the continuum, and the more
modern one due to Wilson based on obtaining effective theories. My focus will be on a few
central questions. No elaborate calculations will be done.

14.1 Review of RG in Critical Phenomena

Let us recall the problem of critical phenomena and its resolution by the RG. Suppose we
have some model on a lattice with some parameters, like K1, K2, . . . of the Ising model.
At very low and very high temperatures (K→∞ or K→ 0) we can employ perturbative
methods like the low-temperature or high-temperature expansions to compute correlation
functions. These series are predicated on the smooth change of physics as we move away
from these extreme end points. By definition, these methods will fail at the critical point
(and show signs of failing as we approach it) because there is a singular change of phase.
One signature of trouble is the diverging correlation length ξ . The RG beats the problem
by trading the original system near the critical point for one that is comfortably away from
it (and where the series work) and things like ξ can be computed. The RG then provides a
dictionary for translating quantities of original interest in terms of new ones. For example,

ξ(r0)= 2Nξ(rN), (14.1)

where r0 � t is the deviation from criticality, N is the number of factor-of-2 RG
transformations performed, and rN the coupling that r0 evolves into. At every step,

r0→ r02ad = r021/ν . (14.2)

We keep renormalizing until rN has grown to a safe value far from criticality, say

rN = r02N/ν = 1, that is (14.3)

2N = r−ν0 . (14.4)
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252 Two Views of Renormalization

Then, from Eq. (14.1),

ξ(r0)= r−ν0 ξ(1). (14.5)

The divergence in ξ is translated into the divergence in N, the number of steps needed
to go from r0 to rN = 1 as r0 approaches the critical value of 0.

In terms of the continuous scale s (which replaces 2N), these relations take the form

ξ(r0)= sξ(rs), (14.6)

rs = r0s1/ν . (14.7)

Typically one finds some approximate flow equations, their fixed points K∗, the linearized
flow near K∗, and, eventually, the exponents.

14.2 The Problem of Quantum Field Theory

Consider the field theory with action (with c= 1= h̄)

S=
∫ [

1

2
(∇φ(x))2+ 1

2
m2

0φ
2(x)+ λ0

4! φ
4(x)

]
d4x (14.8)

= S0+ SI, (14.9)

where S0 is the quadratic part. I have chosen d = 4, which is relevant to particle physics
and serves to illustrate the main points, and a real scalar field to simplify the discussion.
The parameters m0 and λ0 are to be determined by computing some measurable quantities
and comparing to experiment.

To this end, we ask what is typically computed, how it is computed, and what
information it contains.

Consider the two-point correlation function

G(x)= 〈φ(x)φ(0)〉 (14.10)

=
∫

[Dφ]φ(x)φ(0)e−S∫
[Dφ]e−S

. (14.11)

First, let us assume that λ0 = 0. Doing the Gaussian functional integral we readily find

G(r)� e−m0r

r2
. (14.12)

How do we determine m0 from experiment? In the context of particle physics, m0 would
be the particle mass, measured the way masses are measured. If, instead, the φ4 theory
were being used to describe spins on a lattice of spacing a, we would first measure
the dimensionless correlation length ξ (in lattice units) from the exponential decay of
correlations and relate it to m0 by the equation

m0 = 1

a · ξ . (14.13)

  



14.3 Perturbation Series in λ0: Mass Divergence 253

Sometimes I will discuss correlations of four φ’s. They will also be called G, but will
be shown with four arguments. If not, assume we are discussing the two-point function.

In momentum space we would consider the Fourier transform

〈φ(k1)φ(k2)〉 = (2π)4δ4(k1− k2)G(k), where (14.14)

G(k)=G0(k)= 1

k2+m2
0

; (14.15)

the subscript on G0 reminds us that we are working with a free-field theory. Correlations
with more fields can be computed as products of two-point functions G0(k) using Wick’s
theorem. If this explains the data, we are done.

14.3 Perturbation Series in λ0: Mass Divergence

Let us say the λ0 = 0 theory does not explain the data. For example, the particles could be
found to scatter. The λ0 = 0 theory cannot describe that. So we toss in a λ0 and proceed to
calculate correlation functions, and fit the results to the data to determine m0 and λ0.

When λ0 �= 0, we resort to perturbation theory. We bring the λ0φ
4 term in S downstairs

as a power series in λ0 and do the averages term-by-term using Wick’s theorem. To order
λ0, we find

G(x)= 〈φ(x)φ(0)〉 (14.16)

=
∫

[Dφ]φ(x)φ(0)e−S0(φ)
[
1− λ0

4!
∫
φ4(y)d4y

]
∫

[Dφ]e−S0(φ)
[
1− λ0

4!
∫
φ4(y)d4y

] . (14.17)

In the denominator, we pair the four φ(y)’s two-by-two to obtain

denominator= 1− λ0

8

∫
G2

0(0)d
4y. (14.18)

In the numerator, one option is to pair φ(x) and φ(0), which are being averaged, and pair

the fields inside the y integral with each other. This will give G0(x) ·
(

1− λ0
8

∫
G2

0(0)d
4y

)
.

The factor in parentheses will get canceled by the normalizing partition function in the
denominator. This happens in general: any contribution in which the fields being averaged
do not mingle with the ones in the interaction, the so-called disconnected terms, may be
dropped.

This leaves us with contributions where φ(x) and φ(0) are paired with the φ(y)’s. The
result is, to order λ0,

G(x)=G0(x)− 1

2
λ0

∫
G0(x− y)G0(y− y)G0(y− 0)d4y. (14.19)

Since the second term is of order λ0, we may set the normalizing denominator 1 −
λ0
8

∫
G2

0(0)d
4y to 1.
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G(k) = + +

k’

k
kk

(a) (b)= λ0

Figure 14.1 (a) G0(k) = G(k) in free-field theory. (b) One-loop correction to m2
0. The lines with

arrows denote the free propagator G0(k)= 1
k2+m2

0
.

In momentum space,

G(k)= 1

k2+m2
0

− 1

k2+m2
0

[
1

2

∫ ∞
0

λ0

k′2+m2
0

d4k′

(2π)4

]
︸ ︷︷ ︸

δm2
0

1

k2+m2
0

· · · (14.20)

This series is represented in Figure 14.1.
To this order in λ0 we may rewrite this as

G(k)= 1

k2+m2
0+ δm2

0

. (14.21)

We conclude that the mass squared in the interacting theory is

m2 =m2
0+ δm2

0. (14.22)

The next natural thing to do is compare the measured m2 to this result and find a relation
constraining m2

0 and λ0.
It is here we encounter the serious trouble with continuum field theory: δm2

0 is
quadratically divergent in the ultraviolet:

δm2
0 =

1

2

∫ ∞
0

λ0

k′2+m2
0

d4k′

(2π)4
. (14.23)

So no matter how small λ0 is, the change in mass δm2
0 is infinite. The infinity comes from

working in the continuum with no limit on the momenta in Fourier expansions. The theory
seems incapable of describing the experiment with a finite m, assuming m0 and λ0 are
finite.

Let us set this aside and compute the scattering amplitude, to compare it with experiment
to constrain m2

0 and λ0.

14.4 Scattering Amplitude and the �’s

We must clearly begin with the correlation of four fields, two each for the incoming and
outgoing particles. The momenta are positive flowing inwards and there is no difference
between particles and antiparticles.The correlation function G(k1, . . . ,k4) is depicted in
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Γ

k3 k4

k1 k2

Figure 14.2 The scattering amplitude � is a function of the particle momenta, all chosen to point
inwards. Their vector sum is zero.

Figure 14.2 and is defined as follows after pulling out the momentum-conserving δ

function:

〈φ(k1)φ(k2)φ(k3)φ(k4)〉 = (2π)4δ4(k1+ k2+ k3+ k4)G(k1, . . . ,k4).

(14.24)

To lowest order in λ0, we get, upon pairing the four external φ’s with the four φ’s in the
λ0φ

4 interaction,

G(k1, . . . ,k4)=G(k1)G(k2)G(k3)G(k4)λ0. (14.25)

However, G(k1, . . . ,k4) is not the scattering amplitude which we should square to get
the cross section. The four external propagators do not belong there. (In Minkowski space,
the propagators will diverge because k2 = m2.) The scattering amplitude �(k1, . . . ,k4) is
defined as follows:

G(k1, . . . ,k4)=G(k1)G(k2)G(k3)G(k4)�(k1, . . . ,k4). (14.26)

That is,

�(k1, . . . ,k4)=G−1(k1)G
−1(k2)G

−1(k3)G
−1(k4)G(k1, . . . ,k4). (14.27)

To lowest order,

�(k1, . . . ,k4)= λ0. (14.28)

Do we really need to bring in another function �(k1, . . . ,k4) if it is just G(k1, . . . ,k4)

with the four external legs chopped off? Actually, we could get by with just the
G(k1, . . . ,k4)’s, but in doing so would miss some important part of quantum field theory
(QFT). First, �(k1, . . . ,k4) is not alone, it is part of a family of functions, as numerous as
the G’s. That is, there are entities �(k1, . . . ,kn) for all n. They provide an alternate, equally
complete, description of the theory to the G’s, just like the Hamiltonian formalism is an
alternative to the Lagrangian formalism. They are better suited than the G(k1, . . . ,kn)’s
for discussing renormalization. And they are not just G(k1, . . . ,kn)’s with the external legs
amputated.
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In view of time and space considerations, I will digress briefly to answer just two
questions:

• Where do the �’s come from?
• What are the Feynman diagrams that contribute to them?

Consider the partition function Z(J) with a source:

Z(J)=
∫

[Dφ]e−Se
∫

J(x)φ(x)dx ≡ e−W(J). (14.29)

The generating functional W(J) yields Gc(x1, . . . ,xn) upon repeated differentiation by J(x),
where the subscript c stands for connected:

W(J)=−
∫

dx1 · · ·dxn

n! Gc(x1, . . . ,xn)J(x1) · · ·J(xn). (14.30)

In particular,

φ̄(x)≡ 〈φ(x)〉 = − ∂W
∂J(x)

. (14.31)

(It is understood here and elsewhere that the derivatives are taken at J = 0.) Taking one
more derivative gives

〈φ(x)φ(y)〉c =− ∂2W
∂J(x)∂J(y)

=Gc(x,y). (14.32)

Given this formalism, in which W(J) is a functional of J and φ̄ is its derivative, it is
natural to consider a Legendre transform to a functional �(φ̄) with J as its derivative. By
the familiar route one follows to go from the Lagrangian to the Hamiltonian or from the
energy to the free energy, we are led to

�(φ̄)=
∫

J(y)φ̄(y)dy+W(J). (14.33)

By the usual arguments,

∂�(φ̄)

∂φ̄(y)
= J(y). (14.34)

The Taylor expansion

�(φ̄)
def=

∫
dx1 · · ·dxn

n! �(x1, . . . ,xn)φ̄(x1) · · · φ̄(xn) (14.35)

defines the �’s with n arguments. A similar expansion in terms of φ̄(k) defines
�(k1, . . . ,kn).

Given this definition, and a lot of work, one can show that �(k1, . . . ,kn) will have the
following diagrammatic expansion:
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• Draw the connected diagrams that contribute to G(k1, . . . ,kn) with the same incoming
lines, except for those diagrams that can be split into two disjoint parts by cutting just one
internal line. For this reason the �’s are called 1PI or one-particle irreducible correlation
functions.

• Append a factor G−1(k) for every incoming particle of momentum k.

To get acquainted with this formalism, let us derive the relation between �(k) and G(k)
that it implies. Given that J(x) and J(y) are independent, it follows that

δ(x− y)= ∂J(x)

∂J(y)
(14.36)

= ∂2�

∂J(y)∂φ̄(x)
(14.37)

= ∂2�

∂φ̄(x)∂J(y)
(14.38)

=
∫

dz
∂2�

∂φ̄(x)∂φ̄(z)

∂φ̄(z)

∂J(y)
(14.39)

=−
∫

dz
∂2�

∂φ̄(x)∂φ̄(z)

∂2W
∂J(z)∂J(y)

(14.40)

=
∫

dy�(x,z)G(z,y), (14.41)

which leads to the very interesting result that the matrices � and G with elements �(x,z)
and G(z,y) are inverses:

� =G−1. (14.42)

This agrees with the rules given above for computing the two-point function �(k) from
G(k): If we take the two-point function G(k) and multiply by two inverse powers of G(k)
(one for each incoming line) we get �(k)=G−1(k).

Upon further differentiation with respect to φ̄(k), one can deduce the relation between
the G’s and �’s and the Feynman rules stated above.

14.4.1 Back to Coupling Constant Renormalization

Let us now return to the scattering amplitude �(k1, . . . ,k4). To lowest order in λ0,

�(k1, . . . ,k4)= λ0. (14.43)

It is |λ0|2 you must use to compute cross sections.
In general, �(k1, . . . ,k4) will depend on the external momenta. However, to this order in

λ0, we find � does not have any momentum dependence and coincides with the coupling
λ0 in the action.
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As we go to higher orders, �(0,0,0,0) will be represented by a power series in λ0.
We will then define �(0,0,0,0) as the coupling λ, not the λ0 in the action. This fixes the
interaction strength completely. I am not saying that the external momenta vanish in every
scattering event, but that in any one theory, given �(0,0,0,0), a unique �(k1, . . . ,k4) is
given by Feynman diagrams.

The trick of comparing the observed scattering rate to the one calculated from
Eq. (14.43) to extract λ0 will work only if λ0 is small and higher-order corrections are
negligible. Let us assume that λ0 is very small, just like in electrodynamics where the
analog of λ0 � 1

137 .
We will now consider scattering to order λ2

0, even though it is one order higher than
the correction to m2

0. The reason is that it is also given by a one-loop graph, as shown in
Figure 14.3, and the systematic way to organize perturbation theory is in the number of
loops. If we restore the 1

h̄ in front of the action, we will find (Exercise 14.4.1) that the

tree-level diagram, which is zeroth order in the loop expansion, is of order 1
h̄ and that each

additional loop brings in one more positive power of h̄. The loop expansion is therefore an
h̄ expansion. (During Christmas, we have a tree in our house but no wreath on the door,
making us Christians at tree level but not one-loop level.)

Exercise 14.4.1 Introduce h̄−1 in front of the action and see how this modifies G0 and λ0.
Look at the diagrams for G and � to one loop and see how the loop brings in an extra h̄.

The one-loop corrections to scattering are depicted in Figure 14.3. They correspond to
the following expression:

�(0,0,0,0)= λ0− 3λ2
0

∫ ∞
0

1

(k2+m2
0)

2

d4k

(2π)4
≡ λ0+ δλ0 ≡ λ. (14.44)

This defines the coupling λ to next order.

= + + 2 more

= λ0

Γ

k3 k4

k1 k2

k3 k4

k1 k2

k3

k1 k2

k4

k

k+k1+k3

Figure 14.3 One-loop correction to � and λ = �(0,0,0,0). Two more diagrams with external
momenta connected to the vertices differently are not shown. They make the same contributions
when external momenta vanish. The incoming arrows denote momenta and not propagators of that
momentum (which have been amputated).
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The factor of 3 comes from three loops with different routing of external momenta
to the interaction vertices. Since all external momenta vanish, the graphs make identical
contributions. Unfortunately, δλ0 is logarithmically divergent.

14.5 Perturbative Renormalization

How do we reconcile these infinities in mass and coupling with the fact that actual masses
and cross sections are finite? We employ the notion of renormalization.

First, we introduce a large momentum cut-off � in the loop integrals so that everything
is finite but �-dependent:

δm2
0(�)=

λ0

2

∫ �

0

1

k2+m2
0

d4k

(2π)4
, (14.45)

δλ0(�)=−3λ2
0

∫ �

0

1

(k2+m2
0)

2

d4k

(2π)4
. (14.46)

Then we identify the perturbatively corrected quantities with the measured ones. That is,
we say

m2 =m2
0(�)+ δm2

0(�) (14.47)

is the finite measured or renormalized mass, and that m2
0(�) is the bare mass, with an

�-dependence chosen to ensure that m2 equals the measured value. This means that we
must choose

m2
0(�)=m2− λ0

2

∫ �

0

1

k2+m2
0

d4k

(2π)4
(14.48)

=m2− λ
2

∫ �

0

1

k2+m2

d4k

(2π)4
, (14.49)

where I have replaced the bare mass and coupling by the physical mass and coupling with
errors of higher order.

Likewise, we must go back to Eq. (14.44) and choose

λ0(�)= λ+ 3λ2
0

∫ �

0

1

(k2+m2
0)

2

d4k

(2π)4
(14.50)

= λ+ 3λ2
∫ �

0

1

(k2+m2)2

d4k

(2π)4
, (14.51)

where I have replaced the bare mass squared by the physical mass squared and ł20 by λ2

with errors of higher order.
Equations (14.49) and 14.51 specify the requisite bare mass m2

0(λ,m,�) and bare
coupling λ0(λ,m,�) corresponding to the experimentally determined values of λ and m
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for any given �. If we choose the bare parameters as above, we will end up with physical
mass and coupling that are finite and independent of �, to this order.

What about the scattering amplitude for non-zero external momenta? What about its
divergences? We find that

�(k1, . . . ,k4)= λ0− ł20

[∫ �

0

d4k

(2π)4
1

(k2+m2
0)(|k+ k1+ k3|2+m2

0)

+ two more contributions

]
(14.52)

is logarithmically divergent as � → ∞. Don’t panic yet! We first replace m2
0 by m2

everywhere, due to the ł20 in front of the integral. Next, we use Eq. (14.51) to replace
the first λ0 by

λ0 = λ+ 3λ2
∫ �

0

1

(k2+m2)2

d4k

(2π)4
, (14.53)

and the ł20 in front of the integral by λ2 (with errors of higher order), to arrive at

�(k1, . . . ,k4)= λ+λ2
[∫ �

0

[
1

(k2+m2)(|k+ k1+ k3|2+m2)
− 1

(k2+m2)2

]
d4k

(2π)4

+ two more contributions

]
. (14.54)

I have divided the 3λ2 term in Eq. (14.53) into three equal parts and lumped them with the
three integrals in large square brackets.

The integrals are now convergent because as k→∞, the integrand in the diagram shown
goes as

(q2+ 2k · q)k3

k6
, (14.55)

where q = k1 + k3 is the external momentum flowing in. Because the k · q term does
not contribute due to rotational invariance, the integrand has lost two powers of k due
to renormalization. The other two diagrams are also finite for the same reason. In short,
once �(0,0,0,0) is rendered finite, so is �(k1, . . . ,k4).

The moral of the story is that, to one-loop order, the quantities considered so far are free
of divergences when written in terms of the renormalized mass and coupling.

14.6 Wavefunction Renormalization

However, at next order a new kind of trouble pops up that calls for more renormalization.
I will describe this in terms of

�(k)=G−1(k). (14.56)
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where c is some constant and I have introduced the field renormalization factor:

Z−
1
2

(
λ0,

�2

m2
0

)
=

(
1+ cł20 ln

�2

m2
0

) 1
2

. (14.62)

Because Z−1 diverges, the k2 term in �(k) now has a divergent coefficient.
Let us first handle this divergence and then interpret our actions. We begin with

�(k)= Z−1

(
λ0,

�2

m2
0

)
k2+ k-independent term m2

1+O(k4). (14.63)

Multiplying both sides by Z, we arrive at

Z�(k)= k2+Zm2
1+O(k4)≡ k2+m2+O(k4), (14.64)

where we have finally defined the quantity m2 that is identified with the experimentally
measured renormalized mass to this order.

The renormalized function

�R = Z� (14.65)

now has a finite value and finite derivative at k2 = 0:

�R(0)=m2, (14.66)

d�R(k2)

dk2

∣∣∣∣
k2=0
= 1. (14.67)

What does � → �R imply for G? Since � = G−1, it follows that the renormalized
propagator

GR(k)= Z−1

(
λ0,

�2

m2
0

)
G(k) (14.68)

is divergence free. As Z is independent of momentum we may also assert that the Fourier
transform to real space given by

GR(r)= Z−1

(
λ0,

�2

m2
0

)
G(r) (14.69)

is also divergence free. But

G(r)= 〈φ(r)φ(0)〉, (14.70)

which means that

GR(r)= 〈Z− 1
2φ(r)Z−

1
2φ(0)〉 ≡ 〈φR(r)φR(0)〉 (14.71)
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is divergence free. Above, we have defined a renormalized field

φR = Z−
1
2φ (14.72)

in coordinate or momentum space, which has divergence-free correlations when everything
is expressed in terms of renormalized mass and coupling (except for the unavoidable
momentum-conservation δ-function in front of G(k)). One refers to Eq. (14.72) as field
renormalization.

Several questions arise at this point:

• Since our original task was to compute correlations of φ, what good is it to have
correlations of φR, even if the latter are finite?

• Renormalization looks like a Ponzi scheme, wherein we keep shoving problems to higher
and higher orders. How many more new infinities will arise as we go to higher orders
in λ0 and k2 and consider correlation functions of more than two fields? Will all the
infinities be removed by simply renormalizing the mass, coupling, and field?

As to the first point, it turns out that the overall scale of φ does not affect any physical
quantity: one will infer the same particle masses and physical scattering matrix elements
before and after rescaling. This is not obvious, and I will not try to show that here.

As for the second set of points, it is the central claim of renormalization theory that
no more quantities need to be renormalized (though the amount of renormalization will
depend on the order of perturbation theory), and that the renormalized correlation function
of rescaled fields

φR = Z−
1
2φ, (14.73)

expressed in terms of the renormalized mass and coupling,

GR(k1, . . . ,kM ,m,λ)= Z−M/2G(k1, . . . ,kM ,m0,λ0,�), (14.74)

are finite and independent of � as �→∞.
(New divergences arise if the spatial arguments of any two or more φ’s in GR coincide

to form the operators like φ2. We will not discuss that here.)
The proof of renormalizability is very complicated. To anyone who has done the

calculations, it is awesome to behold the cancellation of infinities in higher-loop diagrams
as we rewrite everything in terms of quantities renormalized at lower orders. It seems
miraculous and mysterious.

While all this is true for the theory we just discussed, φ4 interaction in d= 4, referred to
as φ4

4 , there are also non-renormalizable theories. For example, if we add a φ6 interaction
in d = 4, the infinities that arise cannot be fixed by renormalizing any finite number of
parameters. Here it should be borne in mind that in quantum field theory one adds this
term with a coefficient, λ6 = w6/μ

2, where μ is some fixed mass (say 1 GeV) introduced
to define a dimensionless w6. In the post-Wilson era one adds the φ6 term with coupling
λ6 =w6/�

2, which is more natural. Its impact is benign and will be explained later.
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What is the diagnostic for renormalizability? The answer is that any interaction that
requires a coupling constant with inverse dimensions of mass is non-renormalizable. The
couplings of φ2 and φ4 have dimensions m2 and m0, while a φ6 coupling would have
dimension m−2 in d = 4. These dimensions are established (in units of h̄ = 1 = c) by
demanding that the kinetic term

∫
(∇φ)2ddx be dimensionless and using that to fix the

dimension of φ as

[φ(x)]=
(

d

2
− 1

)
. (14.75)

I invite you to show that

[λ]= 4− d, (14.76)

which means that λ is marginal in d= 4 and renormalizable in d< 4. Likewise, try showing
that λ6, the coupling for the φ6 interaction, has dimension

[λ6]= 6− 2d, (14.77)

which makes it non-renormalizable in d= 4 but renormalizable for d ≤ 3.
You must have noticed the trend: The renormalizable couplings are the ones which are

relevant or marginal at the Gaussian fixed point.
That the Gaussian fixed point plays a central role is to be expected in all old treatments

of QFT because they were based on perturbation theory about the free-field theory. These
topics are treated nicely in many places; a sample [1–6] is given at the end of this
chapter. The relation between relevance and renormalizability can be readily understood
in Wilson’s approach to renormalization, which I will now describe. His approach gives
a very transparent non-perturbative explanation of the “miracle” of canceling infinities in
renormalizable theories.

14.7 Wilson’s Approach to Renormalizing QFT

Compared to the diagrammatic and perturbative proof of renormalization in QFT, Wilson’s
approach [7, 8] is simplicity itself.

Recall our goal: to define a QFT in the continuum with the following properties:

• All quantities of physical significance – correlation functions, masses, scattering
amplitudes, and so on – must be finite.

• There should be no reference in the final theory to a lattice spacing a or an ultraviolet
momentum cut-off �.

Of course, at intermediate stages a cut-off will be needed and the continuum theory will be
defined as the �→∞ limit of such cut-off theories.

Wilson’s approach is structured around a fixed point of the RG. Every relevant direction
will yield an independent parameter.

  



14.7 Wilson’s Approach to Renormalizing QFT 265

It is assumed that we know the eigenvectors and eigenvalues of the flow near this fixed
point.

Even if we cannot find such fixed points explicitly, the RG provides a framework for
understanding renormalizability, just as it provides a framework for understanding critical
phenomena and demystifying universality in terms of flows, fixed points, scaling operators,
and so on, even without explicit knowledge of these quantities.

Consider a scalar field theory. By assumption, we are given complete knowledge of
a fixed point action S∗ that lives in some infinite-dimensional space of dimensionless
couplings such as r0, u0, and so forth. The values of these couplings are what we previously
referred to as K∗. Let the fixed point have one relevant direction, labeled by a coordinate
t. As t increases from 0, the representative point moves from S∗ to S∗ + tSrel, where Srel is
the relevant perturbation, a particular combination of φ2,φ4, and so on. Once we go a finite
distance from S∗ the flow may not be along the direction of the relevant eigenvector at S∗,
but along its continuation, a curve called the renormalized trajectory (RT).

Let us say that our goal is to describe physics in the 1 GeV scale using a continuum
theory. (In terms of length, 1 GeV corresponds to roughly 1 fermi, a natural unit for nuclear
physics. More precisely, 1GeV ·1fermi� 5� 1 in units h̄= c= 1.) Although we limit our
interest to momenta within the cut-off of 1 GeV, we want the correlations to be exactly
those of an underlying theory with a cut-off that approaches infinity, a theory that knows
all about the extreme-short-distance physics. The information from very short distances is
not discarded, but encoded in the renormalized couplings that flow under the RG.

Notice the change in language: we are speaking of a very large cut-off �. We are
therefore using laboratory units in contrast to the Wilsonian language in which the cut-off is
always unity. (For example, when we performed decimation, the new lattice size a served as
the unit of length in terms of which the dimensionless correlation length ξ was measured.)

To make contact with QFT, we too will carry out the following discussion in fixed
laboratory units. In these units the allowed momenta will be reduced from a huge sphere of
radius �GeV to smaller and smaller spheres of radius �/s GeV. The surviving momenta
will range over smaller and smaller values, and they will be a small subset of the original
set k<�.

We have had this discussion about laboratory versus running units before in discussing
the continuum limit of a free-field theory. If we want the continuum correlation to fall by
1/e over a distance of 1 fermi, we fix the two points a fermi apart in the continuum and
overlay lattices of smaller and smaller sizes a. As a→ 0, the number of lattice sites within
this 1 fermi separation keeps growing and the dimensionless correlation length has to keep
growing at the same rate to keep the decay to 1/e.

So, we are not going to rescale momenta as modes are eliminated. How about the field?
In the Wilson approach the field gets rescaled even in free-field theory because k gets
rescaled to k′ = sk. We will not do that anymore. However, we will rescale by the factor Z
introduced in connection with the renormalized quantities �R and GR. This Z was needed
in perturbation theory to avert a blow-up of the k2 term in � due to the loop correction.
[Recall the appearance of Z in the two-loop diagram, Eq. (14.61)]. In the Wilsonian RG
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there will also be a correction to the k2 term from loop diagrams (now integrated over the
eliminated modes), and these will modify the coefficient of the k2 term. We will bring in a
Z to keep the coefficient of k2 fixed at 1. The reason is not to cancel divergences, for there
are none, but because the strength of the interaction is measured relative to the free-field
term. For example, in a φ4 theory if we rescale φ(x) by 5 this will boost the coefficients φ2

and (∇φ)2 by 25 and that of the quartic term by 625. But it is still the same theory. For this
reason, to compare apples to apples, one always rescales the k2 coefficient to unity, even if
there are no infinities.

Let us now begin the quest for the continuum theory.
Say we want a physical mass of 1 GeV or a correlation length of 1 fermi. First we pick

a point t0 on the RT where the dimensionless correlation length ξ0 = 20 = 1, as indicated
in Figure 14.5. We refer to the action at t0 as S(0).

No cut-off or lattice size has been associated with the point t0, since everything is
dimensionless in Wilson’s approach. All momenta are measured in units of the cut-off,
and the cut-off is unity at every stage in the RG. We now bring in laboratory units and
assign to t0 a momentum cut-off of �0 = 20 = 1 GeV.

What is the mass corresponding to this ξ0 in GeV? For this, we need to recall the
connection between ξ and m:

G(r)� e−mr = exp

[
− r

aξ

]
= exp

[
− r�

ξ

]
, (14.78)

which means that the mass is related to the cut-off and ξ as follows:

m= �
ξ

. (14.79)

S(N)

ξN=2N

ΛN=2N
ξ2=22

Λ2=22 ξ0=20

Λ0=20

S(0)

ξ3=23

Λ3=23

S*
tN

t3

ξ1=21

Λ1=21

t1
t2

t0

1 = mo = = m1 = . . . = mN =ξ0

Λ0

ξ1

Λ1

ξN

ΛN

Figure 14.5 Points on the renormalized trajectory emanating from the fixed point S∗. To end up at
the theory with cut-off �0 = 1 GeV and action S(0) after N RG steps of factor of 2 reduction of �,
we must begin with the point labeled N, cut-off �N = 2N GeV, ξN = 2N (dimensionless), and action
S(N). The sequence of points S(N), N→∞ defines the continuum limit.

  



14.7 Wilson’s Approach to Renormalizing QFT 267

Thus, the mass corresponding to S(0) is

m0 = �0

ξ0
= 1GeV

1
= 1GeV. (14.80)

Imagine that we got to the point t0 by performing N RG steps of size 2, starting with the
point tN where ξN = 2N and�N = 2N GeV. At every stage, the dimensionful mass is 1 GeV:

mN = �N

ξN
= 1. (14.81)

Thus we have a sequence of actions, S(n) : n= 0,1, . . . ,N, defined on smaller and smaller
length scales or larger and larger momentum cut-offs, which produce the requisite physical
mass. Not only is the mass fixed, the complete interaction is fixed to be S(0). We have
reverse-engineered it so that the theory at 1 GeV stays fixed at S(0) while the underlying
theory is defined on a sequence of actions S(N) for which ξN = 2N , and cut-off 2N GeV,
with N→∞. We can make N as large as we like because ξ diverges as we approach S∗.

We have managed to renormalize the theory by providing for each cut-off 2N an action
S(tN)≡ S(N) that yields the theory S(0) at low energies. This is the continuum limit.

This discussion also makes it obvious how to obtain a theory with a cut-off of 2 GeV:
we just stop the RG one step earlier, at S(1).

We can be more explicit about the continuum limit by invoking our presumed
knowledge of ν. Near the fixed point we know that

ξ = t−ν . (14.82)

This means that

2N = t−νN (14.83)

tN = 2−N/ν , (14.84)

which specifies the bare coupling or action S(tN)≡ S(N) as a function of the cut-off �N =
2N and the critical exponent ν. Just to be explicit: the bare action for cut-off �= 2N GeV
is S= S∗ +2−N/νSrel, where Srel is the relevant eigenoperator (some linear combination of
φ2, φ4, etc.) that moves us along the RT starting at S∗.

We have managed to send the cut-off of the underlying theory to 2N GeV with N→∞
holding fixed the action S(0) for a theory with a cut-off of 1 GeV, but we need more. We
need to ensure that not only does the low-energy action have a limit S(0), as�N→∞, but
so do all the M-point correlation functions G(k1,k2, . . . ,kM) defined by

〈φ(k1)φ(k2) · · ·φ(kM)〉 = (2π)dδ
(∑

i

ki

)
G(k1,k2, . . . ,kM). (14.85)

Since we measure momentum in fixed laboratory units, the surviving momenta and
fields φ(k) in the �0 = 1 GeV theory are a subset of the momenta and fields in the
underlying �N = 2N GeV theory.
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This may suggest that

G(k1, . . . ,kM ,S(N))=G(k1, . . . ,kM ,S(0)). (14.86)

However, Eq. (14.86) is incorrect. The reason is that the fields that appear in S(0) are
different from the ones we began with in S(N), because we rescale the field to keep the
coefficient of the k2 term fixed in the presence of higher-loop corrections.

So, at every RG step we define a renormalized φR as follows:

φR(k)= Z−
1
2φ(k), (14.87)

and write S in terms of that field. If there are N steps in the RG the same equation would
hold, with Z being the product of the Z’s from each step. So, the fields entering S(0) are
rescaled versions of the original fields entering S(N).

This means that, for the M-point correlation,

G(k1, . . . ,kM ,S(N))= Z(N)
M
2 G(k1, . . . ,kM ,S(0)), (14.88)

where Z(N) is the net renormalization factor after N RG steps starting with cut-off 2N .
Look at the G(k1, . . . ,kM ,S(N)) on the left-hand side. This is the correlation function

of a theory with a growing cut-off. The coupling is chosen as a function of cut-off that
grows like 2N . If G is finite as N→∞, we have successfully renormalized. The equation
above expresses G as the product of two factors. The second factor is a correlation function
evaluated in a theory with action S(0) which remains fixed as N→∞ by construction. It
has a finite non-zero mass and a finite cut-off, and is thus free of ultraviolet and infrared
divergences. So we are good there. But, this need not be true of the Z-factor in front,
because it is the result of (product over) Z’s from N steps, with N→∞. Let us take the Z
factor to the left-hand side:

Z(N)−
M
2 G(k1, . . . ,kM ,S(N))=G(k1, . . . ,kM ,S(0)). (14.89)

The left-hand side is now finite as N→∞, namely G(k1, . . . ,kM ,S(0)). In other words, the
correlation functions of the renormalized fields are finite and cut-off independent as the
cut-off approaches∞. This is the continuum limit.

In this approach it is obvious how, by choosing just one coupling (the initial value
tN of the distance from the fixed point along the RT) as a function of the cut-off (� =
2N), we have an expression for finite correlation functions computed in terms of the finite
renormalized interaction S(0). Renormalizability is not a miracle if we start with an RG
fixed point with a relevant coupling (or couplings) and proceed as above.

14.7.1 Possible Concerns

You may have some objections or concerns at this point.
What about t < 0? Is there not a flow to the left of S∗? There is, and it defines another

continuum theory. In the magnetic case the two sides would correspond to the ordered
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and disordered phases. However, the rest of the discussion would be similar. (There are
some cases, like Yang–Mills theory, where the fixed point is at the origin and the region of
negative coupling is unphysical [9, 10].)

You may object that we have found a smooth limit for the correlation of the
renormalized fields, whereas our goal was to find the correlations of the original fields.
Have we not found a nice answer to the wrong question? No. As mentioned earlier (without
proof), the physical results of a field theory – masses, scattering amplitudes, and so on – are
unaffected by such a k- and x-independent rescaling of the fields. So what we have provided
in the end are finite answers to all physical questions pertaining to the low-energy physics
in the continuum.

Another very reasonable objection is that the preceding diagram and discussion hide one
important complexity. Even though the flow along the RT is one-dimensional, it takes place
in an infinite-dimensional space of all possible couplings. As we approach the fixed point
S∗ along the RT, we have to choose the couplings of an infinite number of terms like the
φ2, φ4, φ6, φ2(∇φ)2, and so on of the short-distance interaction. This seems impractical.
It also seems to have nothing to do with standard renormalization, where we vary one or
two couplings to banish cut-off dependence.

14.7.2 Renormalization with Only Relevant and Marginal Couplings

We resolve this by bringing in the irrelevant directions and seeing what they do to the
preceding analysis. Look at Figure 14.6.

Besides the RT, I show one irrelevant trajectory that flows into the fixed point. This is
a stand-in for the entire multidimensional critical surface, which includes every critical
system of this class. Somewhere in the big K space is an axis describing a simple coupling,
which I call r0. It could be the nearest-neighbor coupling K of an Ising model or some
combination of the elementary couplings r0φ

2 and u0φ
4 of a scalar field theory which can

be varied to attain criticality. We will see how to define the continuum limit by taking a
sequence of points on the r0 axis.

Though the interaction is simple, we can hit criticality by varying its strength. The
critical point, where the r0 axis meets the critical surface, is indicated by r∗.

Now, r∗ is a critical point while S∗ is a fixed point. The two differ by irrelevant terms.
This means that the correlation functions at r∗ will not have the scaling forms of S∗ in
general. To see the ultimate scaling forms associated with the fixed point S∗, we do not
have to renormalize: if we evaluate the correlation functions at r∗ in the limit k→ 0 or
r→∞, they will exhibit these laws. For example, at the Ising critical point, G(k)� 1/k2−η

will result as k→ 0, or G(r)� 1/r
1
4 will follow as r→∞, despite being formulated on a

lattice with just the symmetry of a square.
Of course, we can understand this in terms of the RG. If we limit ourselves to k→ 0,

we are permitted to trade our initial theory with a large � for one with � � k, which is
related by RG flow to S∗.
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Figure 14.6 Flow with one relevant direction (the RT) and one irrelevant direction, which is a
stand-in for the entire critical surface. The axis labeling the simple coupling r0 (which could stand
for r0φ

2) cuts the critical surface at r∗. Look at the points on the trajectory emanating from the point
M on the r0 axis. At point M, �M = 2M and ξM = 2M . We will end up at the theory with cut-off
�0 = 1 GeV and action S′(0) after M RG steps of factor of 2 reduction of �. The sequence of points
S(M), M→∞ defines the continuum limit defined using just a single simple relevant coupling like
r0. If we start at M′ we will reach S′′(0) (equivalent in the infrared to S(0) and S′(0)) after M−1 steps.
This is how one renormalizes in quantum field theory, by choosing simple couplings as a function of
cut-off. The coupling M′ corresponds to �= 2M−1.

To define the continuum theory starting on this axis corresponding to a simple coupling,
we pick a point M such that after M RG steps (of powers of 2) we arrive at the point S′(0)
that differs from S(0), the theory generated from S∗, by a tiny amount in the irrelevant
direction. The tiny irrelevant component will vanish asymptotically, and even when it is
non-zero will make negligible corrections in the infrared. This result is inevitable given
the irrelevance of the difference between r∗ and S∗. We can go to the continuum limit by
starting closer and closer to the critical surface (raising M) and reaching the target S′(0)
after more and more steps. As M→∞, our destination S′(0)will coalesce with S(0), which
lies on the RT.

As a concrete example, consider Figure 13.4. Look at the dotted line parallel to the r0

axis that comes straight down and crosses the critical line joining the Gaussian and WF
fixed points. By starting closer and closer to the critical point where the dotted line crosses
the critical line, we can renormalize the continuum theory based on the WF fixed point. The
flow will initially flow toward the WF fixed point, and eventually will run alongside the RT.
We can arrange to reach a fixed destination on the RT (the analog of S(0)) by starting at
the appropriate distance from the critical line. You can also vary u0 at fixed (negative) r0

to approach the critical line with the same effect.
Now we can see the answer to a common question: how does a field theorist manage

to compensate for a change in cut-off by renormalizing (i.e., varying with �) one or
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two couplings, whereas in Wilson’s scheme, it takes a change in an infinite number of
couplings? In other words, when we flow along the RT, i.e., vary one parameter t, we are
actually varying an infinite number of elementary couplings in K-space. How can a field
theorist achieve the same result varying one or two couplings? The answer is that the field
theorist does not really compensate for all the changes a changing cut-off produces. This
is simply impossible. Whereas in Wilson’s approach all correlation functions right up to
the cut-off are preserved under the RG, in the field theory, only correlations in the limit
k/�→ 0 are preserved.

Let us dig a little deeper into this. Suppose we begin at the point M, where � = 2M ,
and reach the point S′(0) in the figure after M RG steps of size 2. Say we ask what bare
coupling with a cut-off 2M−1 will reproduce the answers of M with � = 2M . It does not
exist in general. Suppose, however, that we ask only about correlations in the infrared limit,
k/�→ 0. Now we may trade the initial couplings for those on the RG trajectory. The point
M flows to S′(0) after M steps, i.e., when�= 1. The difference between S(0) and the S′(0)
are technically and literally irrelevant in the infrared limit. If we start on the r0 axis at M′,
at a suitably chosen point a little to the right of M, we can, after M − 1 steps, reach the
point S′′(0) that agrees with S(0) and S′(0) up to irrelevant corrections. It follows that if
we reduce the cut-off by 2 we must change M to M′, and if we increase the cut-off by 2
we must change M′ to M. In other words, for each cut-off 2M there is a point on the r0 axis
that has the same long-distance physics as the point M does with �= 2M . This is how one
renormalizes in QFT.

In QFT, one does not apologize for considering only the limit k/�→ 0 because there,
� is an artifact that must be sent to∞ at the end. So, k/�→ 0 ∀ k.

Suppose I add a tiny irrelevant coupling, say w6φ
6, to the simple interaction of the

starting point M. (Imagine the point is shifted slightly out of the page by w6.) After M
steps, the representative point again has to end up close to the RT. It may now end up
slightly to the left or right of S′(0) (ignore the component outside the page, which must
have shrunk under the RG). Say it is to the right. This is what would have happened had
we started with no w6 but with a slightly bigger r0 (a little to the right of M). A similar
thing is true if the end point with w6 in the mix is to the left of S′0. In either case, the
effect of an irrelevant perturbation is equivalent to a different choice of the initial relevant
coupling.

It is understood above that w6 is finite in units of the cut-off, and hence is very small in
laboratory units, scaling as �−2 in d= 4. Had it been of order μ−2, where μ is some fixed
mass, it would not have been possible to absorb its effects by renormalization because it
could correspond to an infinite perturbation in the natural units, namely�. But this is what
field theorist tend to do in declaring it a non-renormalizable theory.

14.8 Theory with Two Parameters

Consider next the Gaussian fixed point in d < 4 when it has two relevant directions. Look
at the flow in Figure 14.7. A generic point near the fixed point (the origin) will run away
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invariant under this change of cut-off due to the change in the scale of the field to keep
the k2 term fixed after every iteration. The original φ we started with is related to the φR

that appears in the theory with the new cut-off as

φ(k)= Z
1
2φR(k). (14.90)

Consequently,

Z(N)−
M
2 G(k1, . . . ,kM ,S(N))=G(k1, . . . ,kM ,S(0)), (14.91)

where the action S(0) and the corresponding coupling K(0) are reached after N RG steps
of cut-off reduction by 2.

The Callan–Symanzik equation is derived in quantum field theory from a similar
relation which, however, holds only in the limit�→∞, or more precisely k/�→ 0, where
k is any fixed momentum. The reason for the restriction is that a cut-off change can be
compensated by changing a handful of (marginal and relevant) couplings only in this limit,
in which irrelevant corrections vanish as positive powers of k/�. The Callan–Symanzik
equation is not limited to the study of correlation functions as �→∞ in QFT. We can
also use it in critical phenomena where � is some finite number � � 1/a, provided we
want to study the limit k/�→ 0, i.e., at distances far greater than the lattice size a. All that
is required in both cases is that k/�→ 0.

We begin with the central claim of renormalization theory that the correlations of

φR = Z−
1
2φ, (14.92)

expressed in terms of the renormalized mass and coupling,

GR(k1, . . . ,kM ,m,λ)= lim
�→∞Z−M/2(λ0,�/m0)G(k1, . . . ,kM ,m0(�),λ0(�),�), (14.93)

are finite and independent of �.
For a theory with a mass m we have seen that the renormalized inverse propagator �

and four-point amplitude �R(k1, . . . ,k4) can be made to obey

�R(0)=m2, (14.94)
d�R(k)

dk2

∣∣∣∣
k=0
= 1, (14.95)

�R(0,0,0,0)= λ. (14.96)

We are going to study a critical (massless) theory in what follows. Although we can
impose

�R(0)= 0 (14.97)

to reflect zero mass, we cannot impose Eqs. (14.95) and (14.96). This is because in a
massless theory both these quantities have infrared divergences at k= 0. These are physical,
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just like the diverging Coulomb cross section. So we pick some point k=μ> 0 where these
quantities can be finite, and demand that

d�R(k)

dk2

∣∣∣∣
k=μ
= 1, (14.98)

�R(μ,μ,μ,μ)= λ= μεuR. (14.99)

This calls for some explanation.
First, μ is arbitrary, and any choice of μ can be used to specify a theory. If you change

μ you will have to change λ accordingly if you want to describe the same theory.
Next, we are working in d= 4−ε dimensions, where λ has dimension ε. It is expressed

as the product of a dimensionless parameter uR and the factor με, which restores the right
engineering dimension.

Finally, �(μ,μ,μ,μ) is a schematic: it stands for a symmetric way to choose the
momenta all of the scale μ:

ki · kj = μ
2

3
(4δij− 1). (14.100)

We will not need this expression from now on.
It is to be noted that the theory is not renormalizable in d = 4− ε due to the power-law

infrared divergences that arise. However, if we expand everything in a double series in
u and ε, the infinities (which will be logarithmic) can be tamed order by order, i.e.,
renormalized away. This double expansion will be understood from now on.

14.9.2 Massless M = 2 Correlations in d = 4 − ε
I will illustrate the Callan–Symanzik approach with the case M = 2, that is, two-point
correlations, and study just the critical (massless) case in d = 4− ε. Consider the system
at point P in Figure 14.9 lying on the critical line joining the Gaussian and WF fixed
points. It has a cut-off � and a coordinate u(�)≡ u. We are interested in �(k,u,�) in the
limit k/�→ 0. We cannot use simple perturbation theory, even if u is small, because the
expansion parameter will turn out to be u ln �k . The trick is to move the cut-off to a value of
the order of k, thereby avoiding large logarithms, and work with the coupling u(k) rather
than u= u(�). It is during this cut-off reduction that the coupling will flow from u(�) to
u(k). We expect that u(k)→ u∗, the WF fixed point, as k→ 0.

It is convenient to work with the inverse propagator � =G−1, which obeys

�R(k,uR,μ)= lim
�→∞

[
Z1(u(�),�/μ)�(k,u(�),�)

]
. (14.101)

The key to the Callan–Symanzik equation approach is the observation that since the
left-hand side is independent of � (in the limit �→∞), so must be the right-hand side,
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going from �1 to �2 and account for the field rescaling factor Z. Imagine doing the mode
elimination in stages. Each stage will contribute a factor to Z, and the final Z will be a
product of the Z’s in each step depending on the coupling u at that stage. We reason as
follows:

�(�1)Z(�1)= �(�2)Z(�2)= �R (14.108)

�(�1)= Z(�2)

Z(�1)
�(�2) (14.109)

= e(lnZ(�2)−lnZ(�1))�(�2) (14.110)

= exp

[∫ ln�2

ln�1

d lnZ

d ln�
d ln�

]
�(�2) (14.111)

= exp

[∫ ln�1

ln�2

γ (u(ln�))d ln�

]
�(�2), with (14.112)

γ =− d lnZ

d ln�
. (14.113)

We verify that the solution Eq. (14.107) satisfies Eq. (14.106) by taking �1
∂
∂�1

of both
sides:

�1
∂�(k,u(�1),�1)

∂�1
+β(u(�1))

∂�(k,u(�1),�1)

∂u(�1)
= γ (u(ln�1))�(k,u(�1),�1).

(14.114)

Sometimes Eq. (14.107) is written in terms of an integral over the running coupling
u(�):

�(k,u(�1),�1)= exp

[∫ u1≡u(�1)

u2≡u(�2)

γ (u)
du

β(u)

]
�(k,u(�2),�2).

(14.115)

This version comes in handy if the integral over u is dominated by a zero of the β-function.
We will have occasion to use it.

14.9.3 Computing the β-Function

The first step in using the Callan–Symanzik equation is the computation of β, which we
will do to one loop. We begin with the renormalization condition,

uRμ
ε =�ε

[
u(�)− 3u2(�)

16π2
ln
�

μ

]
, (14.116)

where the right-hand side was encountered earlier for the case d= 4 where ε= 0. Now we
have to introduce the �ε in front as part of the definition of the coupling. Setting to zero
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the ln�-derivative of both sides (at fixed μ and uR), we have (keeping only terms of order
εu and u2),

0= εu(�)+ du(�)

d ln�︸ ︷︷ ︸
β(u)

−3u2(�)

16π2
. (14.117)

(We anticipate that β will be of order εu or u2, and do not take the ln�-derivative of the
3u2 term, for that would lead to a term of order u3 or u2ε.) The result is

β(u)=−εu+ 3u2

16π2
. (14.118)

The way β is defined, as � increases (more relevant to QFT), u flows toward the origin,
while if � decreases (more relevant to us), it flows away and hits a zero at

u∗ = 16επ2

3
. (14.119)

That is,

β(u∗)= 0. (14.120)

This is the WF fixed point. For future use, note that the slope of the β-function at the fixed
point is

ω= dβ(u)

du

∣∣∣∣
u∗
= −ε+ 6u∗

16π2
= ε. (14.121)

This irrelevant exponent ω = ε determines how quickly we approach the fixed point as we
lower the cut-off. Here are the details.

14.9.4 Flow of u − u∗

Let us write a variable cut-off as

�(s)= �
s

, s> 1. (14.122)

It follows that

d

d ln�
=− d

d lns
. (14.123)

The coupling

u(s)≡ u(�/s) (14.124)

flows as follows:

du(s)

d lns
=−du(�)

d ln�
= εu(s)− 3u2

s

16π2
≡ β̄(u)=−β(u). (14.125)
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Integrating the flow of the coupling as a function of s, starting from u(1)= u, gives∫ u(s)

u(1)=u

du′

β̄(u′)
= lns. (14.126)

Now we expand β̄ near the fixed point:

β̄(u′)= β̄(u∗)−ω(u′ − u∗)= 0−ω(u′ − u∗)= (−ω)(u′ − u∗). (14.127)

(The minus in front of ω reflects the switch from β to β̄ =−β.) Substituting this into the
previous equation, we get ∫ u(s)

u(1)=u

du′

(−ω)(u′ − u∗)
= lns, (14.128)

with the solution

u(s)− u∗ = (u− u∗)s−ω = (u− u∗)s−ε. (14.129)

That is, the initial deviation from the fixed point (u− u∗) shrinks by a factor s−ε = s−ω
under the RG transformation �→�/s. Equation (14.129) will be recalled shortly.

14.9.5 Computing γ

The function γ begins at two loops. Armed with the two-loop result

Z = 1+ u2

6(4π)4
ln
μ

�
+·· · , (14.130)

we find

γ =− d lnZ

d ln�
= u2

6(4π)4
. (14.131)

At the fixed point

u∗ = 16π2ε

3
, (14.132)

we have

γ (u∗)≡ γ ∗ = ε2

54
. (14.133)

For later use, note that

γ ′ = dγ

du

∣∣∣∣
u∗
= ε

144π2
. (14.134)
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14.9.6 Computing �(k,u,�)

Now we are ready to confront the correlation function �(k,u,�), which is the two-point
function on the critical line shown in Figure 14.9. We want to know its behavior as a
function of k as k→ 0. We expect it to be controlled by the WF fixed point.

The equation obeyed by �(k,u,�) is[
− ∂

∂ lns
− β̄(u(s)) ∂

∂u
− γ (u(s))

]
�(k,u(s),�/s)= 0. (14.135)

Suppose we are at the fixed point, where β̄ = 0 and

γ = γ (u∗)≡ γ ∗. (14.136)

The equation to solve is

∂�(k,u∗,�/s)
∂ lns

=−γ (u∗)�(k,u∗,�/s), (14.137)

with an obvious solution

�(k,u∗,�)= sγ
∗
�(k,u∗,�/s). (14.138)

By dimensional analysis,

�(k,u∗,�/s)= k2f

(
k

�/s

)
= k2f

(
ks

�

)
. (14.139)

Substituting this into Eq. (14.138), we arrive at

�(k,u∗,�)= sγ
∗
k2f

(
ks

�

)
. (14.140)

Now we choose

s= �
k

, (14.141)

which just means

�

s
= k, (14.142)

i.e., the new cut-off equals the momentum of interest. With this choice,

�(k,u∗,�)=
(
�

k

)γ ∗
k2f (1)� k2−γ ∗ . (14.143)

Comparing to the standard form

�(k)� k2−η, (14.144)
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we find that

η= γ (u∗)≡ γ ∗. (14.145)

In case you wondered how �(k) can go as k2−η when it has engineering dimension 2,

the answer is given above: k−η is really
(

k
�

)−η
.

Finally, we ask how subleading corrections to the fixed point behavior arise if we start
at some u �= u∗ with a k that is approaching zero. For this, we return to the solution to the
Callan–Symanzik equation

�(k,u(�1),�1)= exp

[∫ ln�1

ln�2

γ (u(ln�′))d ln�′
]
�(k,u(�2),�2).

(14.146)

Let

�1 =�, (14.147)

�2 =�/s, (14.148)

u(�/s)≡ u(s), (14.149)

u(�)≡ u(1). (14.150)

Then

�(k,u(1),�)= exp

[∫ 1

s
γ (u′(s′))−ds′

s′

]
�(k,u(s),�/s). (14.151)

Corrections are going to arise from both the exponential factor and �(k,u(s),�/s)), due
to the fact that at any non-zero �

s = k, the coupling u(s) is close to, but not equal to, u∗,
which is reached only asymptotically.

Consider first the exponential factor. Expanding γ near u∗ as

γ (u′)= γ ∗ + γ ′(u′ − u∗)+·· · , (14.152)

γ ′ = ε

144π2
[Eq. (14.134)], (14.153)

we have, in the exponent,∫ 1

s
γ (u′(s′))−ds′

s′
=

∫ s

1
(γ ∗ + γ ′(u(s′)− u∗)ds′

s′

= γ ∗ lns+ γ ′(u− u∗)
∫ s

1
(s′)−ω ds′

s′

= γ ∗ lns+ γ
′

ω
(u− u∗)(1− s−ω). (14.154)
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Thus the exponential factor becomes

exp[· · · ]= sγ
∗
(

1+ γ
′

ω
(u− u∗)(1− s−ω) · · ·

)
. (14.155)

Next, consider

�(k,u(s),�/s))= �(k,u∗ + u(s)− u∗,�/s)

= k2f

[
ks

�
,u∗ + (u(s)− u∗)

]

= k2f

[
ks

�
,u∗ + (u− u∗)s−ω

]
. (14.156)

If we now set

s= �
k

(14.157)

and recall that ω = ε, we find, upon putting the two factors in Eqs. (14.155) and (14.156)

together, an irrelevant correction of the form
(

k
�

)ε
:

�(k,u(�),�)= k2
(
�

k

)γ ∗ (
a+ c

(
k

�

)ε)
, (14.158)

where a and c are some constants.

14.9.7 Variations of the Theme

The preceding introduction was aimed at giving you an idea of how the Callan–Symanzik
machine works by focusing on �, corresponding to two-particle correlations, and only for
the critical case. There are so many possible extensions and variations.

The first variation is to go to the non-critical theory, where, in addition to the
marginal coupling u, we have a relevant coupling, denoted by t, which as usual measures
deviation from criticality. It multiplies the operator φ2, whose presence calls for additional
renormalization. The final result will be quite similar: as k/�→ 0, the flow will first
approach the fixed point and then follow the renormalized trajectory.

Next, we can go from correlations of two fields to M fields and work with �(k1, . . . ,kM).
Finally, let us go back to the relation between bare and renormalized �’s:

�R(k,uR(μ),μ)= lim
�→∞Z(u(�),�/μ)�(k,u(�),�). (14.159)

We got the Callan–Symanzik equation by saying that since the �R on the left-hand side had
no knowledge of �, i.e., was cut-off independent, we could set the ln�-derivative of the
right-hand side to zero. This equation describes how the bare couplings and correlations
have to change with the cut-off to keep fixed some renormalized quantities directly related
to experiment.
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Instead, we could argue that since � does not know about μ, the lnμ-derivative of the
left-hand side must equal the same derivative acting on just the Z on the right-hand side
(which has been expressed as Z(uR(μ),�/μ)). The resulting equation,[

∂

∂ lnμ
+β ∂

∂uR
− γ

]
�R(k,uR(μ),μ)= 0, (14.160)

where

β(uR)= ∂uR

∂ lnμ

∣∣∣∣
u(�),�

, (14.161)

γ (uR)= ∂ lnZ

∂ lnμ

∣∣∣∣
u(�),�

, (14.162)

dictates how the renormalized coupling and correlations must change with μ in order to
represent the same underlying bare theory. (Again, the dimensionless functions β and γ
cannot depend on μ/� because they are determined by �R, which does not know about�.)

We can use either approach to get critical exponents, flows, and Green’s functions
(because � and �R differ by Z, which is momentum and position independent), but
there are cultural preferences. In statistical mechanics, the bare correlations are physically
significant and describe underlying entities like spins. The cut-off is real and given by
� � 1/a. To particle physicists, the cut-off is an artifact, and the bare Green’s functions
and couplings are crutches to be banished as soon as possible so that they can work with
experimentally measurable, finite, renormalized quantities defined on the scale μ. They
prefer the second version based on �R.

References and Further Reading

[1] C. Itzykson and J. B. Zuber, Quantum Field Theory, Dover (2005). Gives a more
thorough treatment of QFT and renormalization.

[2] M. Le Bellac, Quantum and Statistical Field Theory, Oxford University Press (1992).
[3] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford University

Press (1996).
[4] D. J. Amit, Field Theory, Renormalization Group and Critical Phenomena, World

Scientific (1984).
[5] C. Itzykson and J. M. Drouffe, Statistical Field Theory, vol. I, Cambridge University

Press (1989).
[6] N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group,

Addison-Wesley (1992).
[7] K. G. Wilson, Reviews of Modern Physics, 47, 773 (1975). The first few pages of this

paper on RG and the Kondo problem are the best reference for renormalzing QFT.
[8] K. G. Wilson and J. R. Kogut, Physics Reports, 12, 74 (1974). Provides a discussion

of the triviality of φ4
4 .

[9] D. J. Gross and F. Wilczek, Physical Review Letters, 30, 1343 (1973).
[10] H. D. Politzer, Physical Review Letters, 30, 1346 (1973). In these two Nobel Prize

winning works, these authors showed that quantum chromodynamics, the gauge
theory of quarks and gluons, was asymptotically free, i.e., the coupling vanished

  



284 Two Views of Renormalization

at very short distances or very large momenta and grew at long distances or small
momenta. This allowed us to understand why quarks seemed free inside the nucleon
in deep inelastic scattering and yet were confined at long distances. The β-function
of this theory has a zero at the origin and the coupling grows as we move toward long
distances. In all other theories like φ4 or quantum electrodynamics, the behavior is
exactly the opposite.

[11] C. Callan, Physical Review D, 2, 1541 (1970).
[12] K. Symanzik, Communications in Mathematical Physics, 18, 227 (1970).

  




