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FIGURE 2.3

This drawing has the property that part of it is not topologically connected to the Green’s
function line G¥(p,t — ). Diagrams in which all parts are not connected are called
disconnected diagrams. For example, in Fig. 2.3, part (a) is disconnected, while part (b) is
connected. The disconnected parts, as in (2.95), provide just a multiplicative constant such as
F; which multiplies the contribution from the connected parts.

2.6. VACUUM POLARIZATION GRAPHS

Now consider the factor which has been ignored to this point:
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Again consider the electron—phonon interaction and evaluate the term n = 2. The n = 1 term
vanishes as it did for the Green’s function expansion,
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The Feynman diagrams for the two terms in Eq. (2.98) are shown in Figs. 2.4(a) and 2.4(b).
The (a) term is zero because there are no q = 0 phonons. The (b) term is nonzero and gives a
contribution
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where F; is defined in (2.96). The constant F, appears whenever the closed bubble of
Fig. 2.4(b) occurs, regardless of whether the term arises in the disconnected diagrams of
G(p, t — ¢) or in the expansion of ((|S(co, —o0|).

The terms in the series for ;(|S(co0, —o0|), are called vacuum polarization terms. Some
terms for n = 4, where there are two phonon lines, are shown in Fig. 2.5. Fach of these
diagrams or terms represents a constant F; which one can evaluate by doing the required time
and wave vector integrals. The constant ((|S(oco, —o0])q could be evaluated by computing all
the F; and then summing them (¥ = 1):

o(1S(00, —ool) = i)F, (2.100)
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This procedure is unnecessary because of a cancellation theorem.

The next theorem also simplifies the calculation of the Green’s function expansion
(2.76). This theorem is that the vacuum polarization diagrams exactly cancel the disconnected
diagrams in the expansion for G(p, # — t'). The net result is that in calculating G(p, ¢t — t') one
needs only to evaluate the connected diagrams. The other contributions, from the discon-
nected diagrams and from ,(|S(oo, —00|}4, exactly cancel one another.

This theorem will not be proven, but only explained. Call G.(p, t — ') the summation of
all connected diagrams, and the basic theorem is that

o(ITC(OCH(H)S (00, ~00l)y = G.(p. 1 = 1)y (IS(00, —00l)g
The Green’s function (2.43) is just the summation of all the connected diagrams:
Glp,t—1)y=G.(p,t—1) (2.101)

The proof of this theorem is just a counting problem. One must convince oneself that each
connected diagram has, in higher-order terms in the S-matrix expansion, all disconnected
parts which exactly add up to ((|S(00, —o0|)q. For example, the self-energy diagram in Fig.
2.2(a) has in higher order the vacuum polarization terms shown in Fig. 2.6. The summation of
all these terms, to all orders, is just the factor (([S(co, —o0|),. The important point is that each
disconnected part is just a constant factor ;. This theorem is very convenient, since it states
that one can just ignore the disconnected diagrams. They do not need to be calculated. It is
just as well, since when they are evaluated they often turn out to be infinity. In fact, it is easy

FIGURE 2.5 Vacuum polarization graphs
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FIGURE 2.6

to show that they are infinity. The disconnected term F is defined in (2.96). The integrand is
only a function f(z; — t,) of t; — ;. Change integration variables to

T=t ~4
s= %(fl +15)
and Eq. (2.96) becomes
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The important point is that there is no dependence on s, so
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One can show that each disconnected part has an “extra” time integral and has the same
infinity.

It has been shown that the one-particle Green’s functions consist of just connected
diagrams:
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The next step is to get rid of the 1/a! factor. It is eliminated because there are just n! terms
exactly alike in each bracket of the nth term in the expansion.
Considering only different terms gives the result
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The obvious question is then: how can you tell when terms are different? Usually one can tell
by inspection, although sometimes terms must be examined carefully. In Fig. 2.2, terms (a)
and (b) are the same and provide the 2 = 2! necessary for this n = 2 term. Similarly, (¢) and
() are identical. For example, (a) and (b) differ only in the variables ¢, #, and q,. But these
are dummy variables of integration and so may be relabeled, respectively, to t,, f; and —q;.
Then the (a) term is obviously the same as (b).
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The next terms in the electron—phonon expansion have n = 4, which are diagrams with
two phonons. Here each different connected diagram is found 4! = 24 times.

2.7. DYSON'S EQUATION

The Green’s function of energy is defined by taking the usual Fourier transform with
respect to the time variable:
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This time integral has already been evaluated for the unperturbed Green’s function with the
following results. For a single particle in a band, the result from (2.59) is
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For a fermion in a degenerate electron gas, the result (2.64) is
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The Fourier transform in time is applied to each term in the S-matrix summation:
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To see what sort of terms develop, consider the example of the electron—phonon interaction,
The first two terms [Figs. 2.2(c) and 2.2(e) are zero] are G® plus the self-energy term in Fig,
2.2(a):
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The phonon Green’s function of energy is defined the same way:
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Using the unperturbed phonon Green’s function in (2.107),
® do
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