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§ 15. THE PERTURBATION THEORY SERIES FOR THE 

THERJ\IODYNAl\UC POTENTIAL 

There are cases when it proves more convenient to find the thermo­
dynamic potential Q directly, rather than indirectly, via an evaluation 
of the Green functions. 

The correction to the thermodynamic potential is given in terms of 
the average of the <5-matrix by (see (12.11)) 

{ 

l/T ~ l 
L1Q = - T In (<5), <5 =exp - J Hi111 ('r)d-rJ. (15.1) 

The logarithm can in fact be taken in the ordinary form in (15.1); or, 
more precisely, a diagram technique can be developed for dealing di­
rectly with Q. 

It is obvious from the foregoing that the diagrams which describe the 
perturbation theory series for Q are made up of closed loops. Typical 
diagrams are shown for both variants of a two-particle interaction in 

Fig. 48 

Fig. 48a, b, and for interac­
tion with phonons in Fig. 49 
(the diagram in Fig. 49, I, is in 
fact equal to zero). 
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Fig. 49 

The diagrams of a given order of the perturbation theory series will 
include both types - connected and unconnected. The latter consist of 
two or more closed loops, with no lines joining them. Connected diagrams 
are obtained if, when dPscribing a term of the series for (<5) in accor­
dance with Wick's theorem, 

(-1)" l/T l/T ~ 
- 1- J · · · J d-rl · · · d-rn(TT{Hi111(T1) · · · Bin1(-rn)}), 

n. o o 
(15.2) 

we can start the pairing with an operator appearing iu Hrnt(-r1) then 
~ ~ 

retun1 to H;.,1(r1) without passing over any of the Hint· In any other 
case, the diagram must be unconnected. 

Suppose an n1 h order unconnected diagram consists of k closed loops, 
and, for a start, that every one of these loops contains a different number 
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of vertices. The corresponding expression will be 

(-_!tf dT(l) ... dT(l) (T {EI. (i1>) ••• EI. (T(l))}) n ! I m, T Ult 1 int m, c 

where 
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(15.3) 

and the symbol (· · )c denotes the averaging corresponding to a given 
connected diagram. We now sum all the topologically equivalent dia­
grams containing k loops of the type selected. Obviously this can be 
done simply by multiplying (15.3) by the number of such diagrams Fk. 
This number is the same as the number of methods by which we can acco-

modate n operators Hint in k different "cells" (· · ·)c, containing respec­
tively ?ni• m2, ••• , mk places, i.e. 

F - n! 
k- 'ini ! m2 ! ... mk ! 

We get as a result: 

l-1r f dr<1> ... dT<1>< T {fl. (r<1>) •.• fl. (T<1>)}) 
m l I m, r mtl intm1 c 

l" 

Notice that we did not really need the assumption that each averaging 
(- · ·)c corresponds to a connected diagram of a definite type; instead, 
we could have simply assumed that(·· ·)c is the sum of all the connected 
diagrams with a given number of vertices. It may be concluded from this 
that the sum of all the unconnected diagrams containing k closed loops 
with ?ni, m2, •.. , mk vertices respectively is of the form 

where 

(15.5) 

is nothing but the sum of all the connected diagrams of order m for (<5). 
Obviously, 

(15.6) 

If some of the numbers m1 , rn 2 , ••• arC' the same, so that the diagram 
splits up into p 1 + p 2 + · · · +Pk closed loops, containing respectively 
Q.F.T. 9 
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'lni· m2, ••• , mk ('lni =/=- • • • rnk) vertices, it can be shown that expression 
(15.5) must be replaced by(t) 

__!___ £P1 __!__ EP· ... __!__ £Pk 
P1 ! m, P2 ! m., Pk ! m.k 

(15. 7) 

or, what amounts to the same thing, by 

1 ~v1 1 ~v. 1 ~pi 1 8 
-, .!:1 -, .!::2 ••• -, .!:1 ' ( 5. ) 
P1· P2· Pl· 

where the Pi (p1 = 0, J, 2, ... ) indicate how many closed loops of order l 
are contained in all the unconnected diagrams. On summing (15.8) over 
all Pi (the summations over different Pi are obviously independent), we 
get 

(<5) = L ~Ef'~~·· · · = L ~Ef1 L ~E~· · · · 
p,,p,, ..• P1 . P2 . P1 P1 . p, P2 . 

s, s, {~ + ~ + } = e e · · · = exp .!:1 .!: 2 · · • . (15.9) 

Finally, on substituting (15.9) in (15.1), we get 

Ll.Q = - T(E1 + E2 + · · ·) = - T{(<5)c -1}. (15.10) 

A very important result has been obtained: to find the corrections to 
the thermodynamic potential, we only need to find the contribution of 
the connected diagrams for (<5). 

As already remarked, the diagrams for (<5) are in the form of closed 
loops, and these can be evaluated in accordance with essentially the same 
rules as for @-functions. The only difference lies in the factor in front 
of the diagram. 

We mentioned in § 12 that t,he factor 1/n ! in the perturbation theory 
series (12.13) for the @-functions cancels out if we take into account 
the contribution of all the topologically equivalent diagrams, the number 
of which is in fact equal to n ! The situation is different when we evaluate 
(<5)c· The number of equivalent diagrams that give the nth term of 
series (12.12) will be equal(t) to (n - 1) !, so that a factor l/n appears 

(t) This can be proved as follows. When some of the m1, ••• , m" are the same, 
the Fk mentioned above is the same as the number of ways in which p 1 m1 + p2 m 2 

+ · · · + pkmk = n operators Hint can be allocated to p1 + p2 + · · · + p1, cells 
<· · -)0, containing m1 , m2, ••• , m1, places where, respectively, p1, p 2, ••• , Pk of the 
cells are the same. In this case F1r is equal to 

n! 
F" = -------------

p1!(m1!)Pip2! (m2!)P• • • • p,,,!(m,,,!)Pk
0 

<tl All the equivalent diagrams follow by taking all possible permutations of 
the n - 1 operators Hint in (12.12). One of the Hint must be regarded as fixed. 
When evaluating @. the beginning and end of the external lines were fixed, i.e. 
the operators 'Pa (r1 , T 1), -.Pp (r2, T 2 ) in (12.13). 
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in front of each diagram (assuming that only topologically non-equi­
valent diagrams are distinct). The presence of a factor dependent on 
the order n makes the perturbation theory series for Q very awkward, 
especially in cases when we cannot confine ourselves to a finite number 
of terms but have to sum infinite sequences of diagrams. 

We quote some examples of finding the corrections LIQ, and confine 
ourselves for brevity to interaction with phonons. Only the connected dia­
gram of Fig. 49,II, is non-zero in the second order of perturbation theory. 
We find its contribution from Wick's theorem, putting Q2 = - T 3 2 
(we use a four-dimensional notation): 

!J2= ± ! Tg2 f d4xd4y@~W(x-y)@~°](y-x)~(O>(x-y). 

It turns out that Q2 is proportional to the volume V of the system, as 
may easily be verified by introducing the new variable x' = x - y in the 
integral. The situation is the same in any approximation; this is to be 
expected, since the potential Q is well known to have the form 

Q = - VP(µ, T), 

where P is the pressure expressed as a function of the chemical poten­
tial and the temperature. In future, therefore, we shall always give the 
formulae for LIP(P = P0 (µ, T) +LIP, where P0 is the pressure in the 
system of free particles). 

We have for LIP2 : 

LIP2 = =j= ~ g2 J d4x@~~(x)@~~(-x)~<0>(x). (15.11) 

If we change to the momentum representation, we have 

1 T 2 

LIP2 = ± 2 g2 (2n)6 (2s + 1) w~. J d3pdsk 

1 1 
X -iwt--e-

0
(_p_). + µ i(w

1 
+ w

2
) -i::

0
(p + k) + µ 

wij(k) 

w~ + wij(k) • 

The corresponding diagram is shown in Fig. 50. 
Let us take any diagram of order 2n. It contains 3n lines and 2n ver­

tices. However, one of the 2n conservation laws turns out to be an iden­
tity, provided the remaining 2n - 1 laws are fulfilled. Thus there are 
altogether n + 1 independent integrations in a 2nth order diagram. 
The extra law of conservation leads to the appearance in the diagram 
for (<5) of an extra factor /IJ(p = 0), proportional to the volume V of 
the system(t). 

(t) By definition, 
1 v 

t5(p = 0) = {2 :n)" J d3
r = {2 :n)". 

9* 
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The rules by which the individual elements of the diagrams are asso­
ciated with the Green functions (and the vertex parts, in the case of 

/J,Uj,; 

Fig. 50 
13. tu,,p 

Fig. 51 

other interactions) remain the same as for the diagrams for @.The factor 
in front of the diagram of order 2n for the correction L1 P is equal to 

Mn= c-~~+l g2n (c2:)srn FF l)F c2s + l)F, 

where F is the number of closed loops, formed by single @-lines of the 
particles. 

We quote in addition the expression for L1P for the case of binary 
interactions. When the interaction has the form (13. 7), the second order 
correction to the pressure, corresponding to the diagram of Fig. 51, is 

1 T3 J 3 3 3 1 1 ---- 5' dp dp dp --- ---- --
4 (2n)9 w;.;;:w. 1 2 3 iw1 -Eo(P1) + µ iw2 -Eo(P2) + µ 

1 1 x --- --
iw3 -e(p3) + µ i(w1 + W2 - W3) -E0(P1 + P2 - Ps) + µ 

X Y~W;y6 <Pi• P2; Pi + P2 - Ps• Ps) Y;°i;pa (P1 + P2 - Ps• Ps; P2• P1) · 

§ 16. DYSON EQUATION. MANY-PARTICLE GREEN 
FUNCTIONS 

1. Dyson equation 
As in the absolute zero case, statistical problems at T =F 0 virtually 

always involve finding several of the first terms of the perturbation 
theory series as corrections to the Green functions. ·within the framework 
of almost any physical problem which is correctly stated, the formal 
parameter of the expansion of the diagram technique, namely the inter-

action Hamiltonian Hint> is not small; as a result, several infinite sequen­
ces of terms of the perturbation theory series will give contributions 
of the same order of magnitude. 

We saw in the previous chapter that a summation of infinite series 
is carried out by the diagram method in the field theory technique. 


