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Introduction. Justin Sumner has elected to attempt to develop a thesis from
material that he encountered in a recent issue of AJP.1 The paper concerns the
evaluation of the “functional determinants” that appear as “preexponential”
factors when Feynman’s “sum-over-paths” formalism is used to construct
quantum mechanical propagators, and that occur also in some other closely
related contexts. The authors may be technically correct when they assert that
“the prerequisites for this analysis involve only introductory courses in ordinary
differential equations and complex variables,” but neglect to mention that
the work is certain to seem entirely unmotivated to readers whose (quantum
mechanical) experience happens not to have exposed them to certain fairly
arcane issues/problems. Here my primary objective will be to motivate the
subject, to place it in an intelligible physical/mathematical context. Initially
I will be content to wander about on the periphery of the subject, reminding
myself of issues/methods that seem to be of some remote relevance.

Free particle propagator.2 The equation

∂
∂tψ = aD2ψ : D ≡ ∂

∂x (1)

becomes (i) the free particle Schrödinger equation if we set

a = i !
2m

1 Klaus Kirsten & Paul Loya, “Calculation of determinants using contour
integrals,” AJP 76, 60–64 (2008).

2 Here I borrow from the opening paragraphs of my research notes:
Theory and physical applications of the Appell transform (). That work
was inspired by material I encountered in D. V. Widder’s The Heat Equation
().
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and interpret ψ(x, t) to be a probability amplitude; (ii) the diffusion equation
if we set

a = diffusion coefficient

and consider ψ to to provide a description of the relevant density; (iii) the
Fourier heat equation if we set

a = thermal conductivity
(specific heat)(density)

Formally, we expect—whatever the interpretation—to have

ψt(x) = eatD2
ψ0(x) (2)

Familiarly, one has the Gaussian integral formula

∫ +∞

−∞
e−(αx2+βx) dx =

√
π/α · e β2/4α : "(α) > 0 (3.1)

of which (send α #−→ 1/4a)

eaβ2
= 1√

4πa

∫ +∞

−∞
e−

1
4 a–1x2−βx dx (3.2)

is a notational variant—of present interest because the expression on the right
can be considered to provide an integral representation of the expression on
the left. We proceed on the tentative assumption that it makes formal sense to
write

eatD2
= 1√

4πat

∫ +∞

−∞
e−

1
4at ξ2−ξ D dξ : "( 1

4at > 0) (4)

—the point here being that the operator D , which appears squared on the left,
appears unsquared on the right. By Taylor’s theorem we have (within some
unstated radius of convergence)

e−ξ D f(x) = f(x − ξ)

so we expect to have

ψt(x) = 1√
4πat

∫ +∞

−∞
e−

1
4at ξ2

ψ0(x − ξ) dξ

=
∫ +∞

−∞
gt(ξ) ψ0(x − ξ) dξ

where gt(x) ≡ 1√
4πat

e−
1

4at x2
(5)
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A final change of variables ξ #−→ y = x − ξ gives

ψt(x) =
∫ +∞

−∞
gt(x − y) ψ0(y) dy (6)

The function ψt(x) thus produced satisfies (1) because each member of the
y-parameterized family of functions gt(x − y) does:

∂
∂tgt(x − y) = aD2gt(x − y) (7.1)

And

lim
t↓0

ψt(x) = g0(x) because lim
t↓0

gt(x − y) = δ(x − y) = δ(y − x) (7.2)

The functions gt(x− y) are the so-called “fundamental solutions” of the linear
partial differential equation (1). We might write

gt−t0(x − x0) = G(x, t; x0, t0)

to cast (6) into the form

ψt(x) =
∫ +∞

−∞
G(x, t; x0, t0) ψ0(x0) dx0 (8)

to emphasize that the fundamental solution is precisely the Green’s function of
the differential equation in question.

The prefactor
1√
4πat

provides a trivial instance of the kind of object that the theory of functional
determinants has been designed to evaluate.

Higher-dimensional generalization. Let D2 be interpreted now to mean

D2 = ∇∇∇···A∇∇∇ where ∇∇∇ ≡





∂1

∂2
...

∂n



 with ∂i ≡ ∂
∂xi

and where A is a real symmetric n × n matrix (additional properties yet to be
specified). In the case A = I the second-order differential operator D2 reduces
to the familiar Laplacian: ∇2 ≡ ∇∇∇···∇∇∇. Now, in straightforward generalization
of (3)—i.e., of

∫ +∞

−∞
e−αx2±βx dx =

√
π

α
exp

{
1
4β α–1β

}
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—one has3

∫∫
· · ·

∫ +∞

−∞
e−xiAijxj±bix

i

dnx =

√
πn

det ‖Aij‖
e

1
4 biA

ijbj

where ‖Aij‖ ≡ ‖Aij‖–1 and summation on repeated indices is understood, and
to assure convergence we have had to assume that all the (necessarily real)
eigenvalues of A are positive. More neatly,

∫∫
· · ·

∫ +∞

−∞
e−xxx···Axxx ± bbb···xxxdnx =

√
πn

det A e
1
4 bbb···A–1bbb (9)

or again (send A #−→ 1
4B –1)

e bbb···B bbb = 1√
(4π)n det B

∫∫
· · ·

∫ +∞

−∞
e−

1
4xxx···B –1xxx ± bbb···xxx dnx

on which basis we expect to have (at least formally)

e t∇∇∇···A∇∇∇ = 1√
(4π t)n det A

∫∫
· · ·

∫ +∞

−∞
e−

1
4t ξξξ ···A–1ξξξ − ξξξ ···∇∇∇ dnξ (10)

from which we recover (4) in the one-dimensional case. The multi-variable
Taylor theorem provides (again within some unstated radius of convergence)

e− ξξξ···∇∇∇f(xxx) = f(xxx − ξξξ)

so we expect the solution of

∂tψ(xxx, t) = (∇∇∇···A∇∇∇)ψ(xxx, t) : ψ(xxx, 0) = ψ0(xxx)

to be expressible

ψ(xxx, t) = e t∇∇∇···A∇∇∇ψ(xxx, 0)

=
∫∫

· · ·
∫ +∞

−∞
gt(ξξξ)ψ0(xxx − ξξξ) dξ1 · · · dξn (12)

where now gt(xxx) ≡ 1√
(4π t)n det A

e−
1
4t xxx···A–1xxx (13)

3 See page 32 in my quantum mechanics (/), or (for example)
http://en.wikipedia.org/wiki/Gaussian integral
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If A were diagonal

A =





a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an





—which can in principle always be achieved by a rotational change of variables—
then (13) assumes the especially transparent form

gt(xxx) =
n∏

i=1

1√
4πait

e−xi(4ait)–1xi

In such cases, the n-dimensional problem resolves into what are essentially n
copies of the one-dimensional problem.4

Problems that arise when n is very large. When n is very large (and especially
in the limit n → ∞) and spectral information is absent, the use of (13) presents
two closely related problems:

1) the definition of det A (which involves a sum over signed permutations)
becomes unworkable, and

2) so also (for similar reason) does the matrix-theoretic construction of A.
Looking first to the former problem, we if we were in position to write

A = exp L

then we would have
det A = exp

{
tr L

}
(14)

which, if one commands (say) L=RandomReal[{{{0,1}}},{{{5,5}}}] to construct a
random 5 × 5 with random elements drawn from the interval {0, 1}, is readily
verified by calculation. The identity (14) presents this advantage: evaluation of
tr L involves no permutational combinatorics—is straightforward whatever the
dimension of L.

If spectral information were available, one would have

det A =
∏

i

ai

whence log det A =
∑

i

log ai

4 My “essentially” becomes “literally” when and only when the initial value
of ψ(xxx, t) factors:

ψ(xxx, t) =
n∏

i=1

fi(xi)
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Now the non-obvious step which Kirsten & Loya1 take in the introduction
to their paper, and which appears to be entirely characteristic of work in this
field: trivially a−s = e−s log a, so

d
dsa−s = −e−s log a log a

↓
= − log a at s = 0

and we have
log det A = −

{
−

∑

i

log ai

}

= − d
ds

∑

i

a−s
i

∣∣∣
s=0

Enlarging upon the definition of the Riemann ζ-function

ζRiemann(s) ≡
∞∑

n=1

n−s

we define

ζA(s) ≡
∞∑

i=1

a−s
i (15)

which gives back ζRiemann(s) in the special case ai = i: (i = 1, 2, 3, . . .). In this
notation

log det A = − d
dsζA(s)

∣∣∣
s=0

= −ζ ′
A(0)

,
det A = exp

{
− ζ ′

A(0)
}

(16)

Comparison with (14) supplies −ζ ′
A(0) = tr log A. These equations are pretty,

but become useful only if one is in position to speak without knowledge of the
A-spectrum about relevant properties of the function ζA(s).

The preceding remarks have nothing per se to do with quantum mechanics,
but do have quantum mechanical applications, and it is in the latter context
that—for the reason just stated—one acquires interest in the general theory of
quantum ζ-functions.5

5 Richard Crandall, in “On the quantum zeta function,” J. Phys. A: Math.
Gen. 29, 6795–6816 (1996), draws attention to the remarkable fact that

Z(s) =
∑

i

E−s
i

can sometimes be evaluated exactly even though not a single eigenvalue Ei is
known. He himself concentrates on cases in which s assumes (not arbitrary
complex, but) integral values.
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Basic notions. The dynamical evolution of an arbitrary quantum state |ψ) is
accomplished by action

|ψ)t0 #−→ |ψ)t1 = U(t1, t0)|ψ)t0

of a unitary operator of which these are fundamental properties:

U(t0, t0) = I (17.1)

U(t2, t0) = U(t2, t1)U(t1, t0) (17.2)

Differentiation of the unitarity condition U(t, t0)Ut(t, t0) = I establishes that
necessarily U(t, t0) satisfies a differential equation of the form

i!∂
∂t U = HU : H hermitian, with [H ] = energy (18)

of which the Schrödinger equation

i!∂
∂t |ψ)t = H |ψ)t

is an immediate corollary. If the operator H (physically, the “Hamiltonian”) is
time-independent, one has

U(t, t0) = eβ(t−t0)H : β ≡ −i/! (19)

In the x-representation we have

(x|ψ)t =
∫

(x|U(t, t0)|x0)dx0(x0|ψ0)

which differs only notationally from (8), and supplies a description of the
Green’s function G(x, t; x0, t0) (or “propagator” K(x, t; x0, t0) as it is usually
called/denoted in the quantum literature):

K(x, t; x0, t0) = (x|U(t, t0)|x0) (20)

The composition law (17.2) permits one to write

K(x, t; x0, t0) =
∫

(x|U(t, t1)|x1)dx1(x1|U(t1, t0)|x0) : t > t1 > t0

=
∫

K(x, t; x1, t1)dx1K(x1, t1; x0, t0) (21)

In continuation of this basic refinement process, we resolve the interval {t, t0}
into N + 1 subintervals, each of duration

τ = t − t0
N + 1

t0 < t1 = t0 + τ < · · · < tn = t0 + nτ < · · · < tN = t0 + Nτ < tN+1 ≡ t

and as a generalization of (21) have

K(x, t; x0, t0) (22)

=
∫

· · ·
∫

︸ ︷︷ ︸
Kτ (x, xN )dxN · · · dxn+1Kτ (xn+1, xn)dxn · · · dx1Kτ (x1, x0)

N-fold
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where the functions Kτ (x, y) are short-time propagators:

Kτ (x, y) = K(x, τ ; y, 0) = (x|eβτ H |y) (23)

At cost of a complication of the form
∫
#−→

∫∫
· · ·

∫
we have placed ourselves

in position to make use of the fact (which Dirac was the first to notice, and
Feynman was the first to exploit) that the quantum object Kτ (x, y) can be
assembled from material provided by classical mechanics.6

Look to the case
H free particle = 1

2m p2 (24)

Drawing upon the completeness of the p -eigenfunctions |p)
∫

|p)dp(p| = I

we have7

(x|eβτ H |y) =
∫

(x|eβτ H |p)dp(p|y)

=
∫

e(βτ/2m)p2
(x|p)dp(p|y)

= 1
h

∫
e(βτ/2m)p2

eβ(x−y)pdp

which by formal appeal8 to the Gaussian integral formula (3.1) gives

=
√

m
ihτ

exp
{

i
!

m
2

(x − y)2

τ

}
(25)

6 The sense in which quantum mechanics becomes classical in the limit ! ↓ 0
was recognized/stated almost immediately after publication of the Schödinger
equation, by Wentzel, Kramers and Brillouin—independent co-inventors of the
WKB “semi-classical approximation” (), the analytical essence of which
was recognized later to have been introduced into the mathematical literature
by Liouville and Green as early as . That

quantum mechanics becomes classical in the short term
was recognized only later (Dirac/Feynman).

7 Use (x|p) = 1√
h
e

i
! px, which are orthonormal in the sense

(p|q) =
∫

(p|x)dx(x|q) = δ(p − q)

8 The substitution α #−→ iτ/!2m places one in violation of the condition
"(α) > 0. Feynman addressed this problem by sending 1

! #−→ 1
! − iε and

setting ε ↓ 0 at the end of the calculation. The generally preferred practice
today is to complexify time t #−→ t′ = −iθ, and to obtain real-time results by
analytic continuation.
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As a first step toward the implementation of (22) we compute
∫

(x|eβτ H |ξ)dξ(ξ|eβτ H |y)

=
(√

m
ihτ

)2
∫

exp
{

i
!

m
2

(x − ξ)2 + (ξ − y)2

τ

}
dξ

=
(√

m
ihτ

)2
√

ihτ
2m

exp
{

i
!

m
2

(x − y)2

2τ

}

=
√

m
ih2τ

exp
{

i
!

m
2

(x − y)2

2τ

}

= (x|eβ2τ H |y) (26.1)

More generally
∫

(x|eβ t1 H |ξ)dξ(ξ|eβ t2 H |y)

=
√

m
iht1

√
m
iht2

∫
exp

{
i
!

m
2

[ (x − ξ)2

t1
+ (ξ − y)2

t2

]}
dξ

=
√

m
iht1

√
m
iht2

√
ih
m

t1t2
t1 + t2

exp
{

i
!

m
2

(x − y)2

t1 + t2

}

=
√

m
ih(t1 + t2)

exp
{

i
!

m
2

(x − y)2

t1 + t2

}

= (x|eβ(t1+t2)H |y) (26.2)

Equations (26) display a “structural persistence” property which is not at all
typical of Hamiltonians-in-general, and in the case H free particle renders the
complicated

lim
N↑∞

∫∫
· · ·

∫

process called for on the right side of (22) superfluous: immediately

K(x, t; x0, t0) = Kt−t0(x, x0) =
√

m
ih(t − t0)

exp
{

i
!

m
2

(x − x0)2

t − t0

}
(27)

This conforms precisely to the result obtained at (6), where we in effect had

K(x, t, y, 0) = 1√
4πat

e−
1

4at (x−y)2
∣∣∣
a=i!/2m

Suppose we were ignorant of the exceptional free particle circumstance just
noted, determined to proceed as (22) asks us to. At stage N = 5 we would—by

(x − ξ5)2 +
5∑

k=1

(ξk+1 − ξk)2 + (ξ1 − y)2 = x2 + y2 + ξξξ···Aξξξ − bbb···ξξξ
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ξξξ =





ξ1

ξ2

ξ3

ξ4

ξ5




, A =





2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




, bbb =





2y
0
0
0
2x





—be looking at

K6 ≡
(√

m
ihτ

)6
e−α(x2 + y2)·

∫∫∫∫∫
e−α(ξξξ···Aξξξ − bbb···ξξξ) dξ1 · · · dξ5

where τ = 1
6 t and α = −(i/!)(m/2τ) = π(m/ihτ). Drawing upon the Gaussian

integral formula (9) we have

∫∫∫∫∫
e−α(ξξξ···Aξξξ − bbb···ξξξ) dξ1 · · · dξ5 =

√
π5

det(αA)
e

1
4 (αbbb)···(αA)–1(αbbb)

So special is the structure of bbb that we need compute only the corner elements
of

(αA)–1 = α–1





5
6 • • • 1

6
• • • • •
• • • • •
• • • • •
1
6 • • • 5

6





Also
det(αA) = 6α5

The results now in hand supply

K6 = (
√

α/π)6 e−α(x2 + y2)
√

π5

6α5
e

1
6α(5x2 + 3xy + 5y2)

=
√

α/6π e−(α/6)(x − y)2

=
√

m
ih6τ

exp
{

i
!

m
2

(x − y)2

6τ

}∣∣∣
τ= 1

6 t

To evaluate KN one needs to know that (as follow from some simple recursion
relations: see my quantum mechanics (/), pages 33–42)

(αA)–1 = α–1





N−1
N • • • 1

N
• • • • •
• • • • •
• • • • •
1
N • • • N−1

N




: (N − 1) × (N − 1)

det(αA) = NαN−1

The argument proceeds along otherwise identical lines, and leads to an identical
result.
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The preceding demonstration that the free particle propagator—which
can be obtained by the simplest of means—can also be obtained by relatively
complicated means would, on its face, hardly seem to constitute progress. But
when one looks to systems more complicated/interesting than H free = 1

2m p2

the simplest modes of argument generally fail, and the relatively robust
“complicated modes of argument” acquire fresh interest.

Propagators of quantum motion in the presence of a potential. I review several
alternative ways of constructing the propagator when H = H(p , x) and when,
more particularly, the Hamiltonian has the commonly encountered form

H = 1
2m p2 + V (x)

Suppose first of all that one has solved the time-independent eigenvalue
problem:

H |n) = En|n) (28)

Then
U(t) = eβ tH =

∑

m

∑

n

|m)(m|eβ tH |n)(n| =
∑

n

|n)eβ tEn(n|

supplies

K(x, t; y, 0) = (x|U(t)|y) =
∑

n

ψ∗
n(x)eβ tEnψn(y)

=
∑

n

ψ∗
n(x)e−iωntψn(y) (29)

where ψn(y) ≡ (n|y) and ωn ≡ En/!. The spectral representation (29) of
the propagator sees important service in a great variety of applications, but
presumes that one possesses all of the detailed spectral information (28).

I sketch now a relatively little known second line of attack that takes us
closer to my intended objective. Suppose we were in possession of a function
H(x, p) with the property that it permits us to present the operator e−(i/!)Hτ

in x p-ordered9 form:

e−(i/!)Hτ =
[

x
e−(i/!)H(x,p)τ

]
p

9 To illustrate both the concept and the way it will be notated, we have

(x + p)2 = x2 + x p + p x + p2

[
x

(x + p)2
]
p

= x2 + 2x p + p2

-=
[

p
(x + p)2

]
x
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We would then be in position to write

Kτ (x, y) =
∫

(x|
[

x
e−(i/!)H(x,p)τ

]
p
|p)dp(p|y)

=
∫

e−(i/!)H(x,p)τ (x|p)dp(p|y)

= 1
h

∫
e−(i/!)H(x,p)τe(i/!)(x−y)p dp

= 1
h

∫
exp

{
i
!

[
p

x − y
τ

− H(x, p)
]
τ
}

dp (30)

The expression [etc.] is tantalizingly suggestive of the construction pẋ−H(x, p)
that, in conjunction with ẋ = ∂H/∂p, serves in classical mechanics to produce
the Lagrangian L(x, ẋ). Lending concrete substance to that observation turns
out, however, to be a non-trivial undertaking.10 It is easier to approach the
seeming implication of (30) from another angle:

Let A and B be n × n matrices. Then

eA+B -= eA · eB unless A and B commute

The Lie product formula asserts that

eA+B = lim
N↑∞

(
eA/N · eB/N

)
N

Ask Mathematica to test the accuracy of this statement with random matrices;
you will find that it checks out, but that the convergence is typically very slow.
H. F. Trotter () and T. Kato () showed that the Lie formula pertains
also to a broad class of linear operators, in which context it is known as the
Trotter product formula11

eA+B = lim
N↑∞

(
eA/N · eB/N

)
N

Feynman wrote his thesis in , and published in , so was obliged to
proceed in ignorance of the Trotter product formula,12 which is now recognized
to provide the most effective mathematical foundation of the “sum-over-paths”
formalism. Assume the Hamiltonian to have the form H = T + V . Then

10 See pages 49–50 in Chapter I of my advanced quantum topics ().
11 See L. S. Schulman,Techniques andApplications of Path Integration (),

pages 9–12; http://en.wikipedia.org/wiki/Lie product formula.
12 Both Feynman and Trotter were at Princeton when they did the work in

question, but Trotter wrote in the manner of a pure mathematician with no
evident interest in applications, and made no reference to Feynman.
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K(x, t; y, 0) = (x|eβ(T+V ) t|y)
= lim

N↑∞
(x|

[
eβ Tτ · eβ Vτ

]
N |y) : τ = t/N

= lim
N↑∞

∫
dx1 · · · dxN−1

N−1∏

k=0

(xk+1|eβ Tτ · eβ Vτ |xk) (31)

where it is understood that |x0) ≡ |y) and |xN ) ≡ |x). Assume, moreover, that
T = T (p) = 1

2m p2, V = V (x) and use the mixed representation trick to obtain

(xk+1|eβ Tτ · eβ Vτ |xk) =
∫

(xk+1|eβ T (p )τ |p)dp(p|eβ V ( x )τ |xk)

=
∫

eβ T (p )τ (xk+1|p)(p|xk)dp · eβ V (xk)τ

= 1
h

∫
eβ 1

2m p2τ+βp(xk+1−xk)dp · eβ V (xk)τ

=
√

m
ihτ

exp
{

i
!

[
m
2

(xk+1 − xk

τ

)2
− V (xk)

]
τ
}

where at the last step we have looked to (25) for evaluation of the Gaussian
integral. Returning with this information to (31), we get

K(x, t; y, 0) = lim
N↑∞

(
m
ihτ

)N
2
∫

dx1 · · · dxN−1 (32)

exp
{

i
!

N−1∑

k=0

[
m
2

(xk+1 − xk

τ

)2
− V (xk)

]
τ
}

The expression
∑

k[etc.]τ in the exponent looks like a discrete approximation
to the classical action

S[x(t)] =
∫ t

0
L(ẋ(t), x(t)) dt

L(ẋ, x) = 1
2mẋ2 − V (x)

of a path x(t) that passes through the points

{
y = x0, x1, x2, . . . , xk, . . . , xN = x

}

at times {
0 = t0, t1, t2, . . . , tk, . . . , tN = t

}

Equation (32) appears therefore to speak of a “sum-over-paths,” but since the
points xk range independently on (−∞, +∞) almost all of the paths in question
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are so kinky as to be (continuous but) nowhere differentiable. It is tempting to
introduce the abbreviated notation

∫
e

i
! S[x(t)]Dx(t)

≡ lim
N↑∞

∫
dx1 · · · dxN−1 exp

{
i
!

N−1∑

k=0

[
m
2

(xk+1 − xk

τ

)2
− V (xk)

]
τ
}

but the expression on the right cannot have literal stand-alone meaning for, as
we saw at (32), it must be multiplied by

(
m
iht

N
)N

2
, which blows up as N ↑ ∞

if we are to achieve the finite valuation K(x, t; y, 0).
Feynman finessed that awkward point. He interpreted K(x, t; y, 0) to be

the probability amplitude for the transition x(t) ←− x(0) ≡ y, asserted that13

net probability amplitude =
∑

independent paths

amplitude of each contributory path

and postulated that

path amplitude = A · e i
!S[path]

where A is a normalization factor, which acquires its value from the requirement
that ∫

|K(x, t; y, 0)|2 dx = 1

A is precisely the “preexponential factor” to the evaluation of which Kirsten &
Loya devote their paper.1

Exploring the neighborhood of a classical path. We write

x(t) = xcl(t) + η(t) : η(0) = η(t) = 0

to describe variants of the classical path xcl(t)—of which there may be more
than one—that proceeds from (x0, t0) ≡ (y, 0) to (x1, t1) ≡ (x, t). Immediately,

S[xcl(t) + η(t)] =
∫ t1

t0

L
(
xcl(t) + η(t), ẋcl(t) + η̇(t)

)
dt

13 This, by probability = |probability amplitude|2, is seen to be “the square
root of the familiar statement that the probabilities (here: probability
amplitudes) of independent events add.”
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=
∫ t1

t0

{
L

(
xcl, ẋcl

)
+

[
Lx

(
xcl, ẋcl

)
η + Lẋ

(
xcl, ẋcl

)
η̇
]

(33)

+ 1
2

[
Lxx

(
xcl, ẋcl

)
ηη + 2Lxẋ

(
xcl, ẋcl

)
ηη̇ + Lẋẋ

(
xcl, ẋcl

)
η̇η̇

]
+ · · ·

}
dt

The 0th-order term becomes S[xcl]. The 1st-order term can, after an integration
by parts, be written

∫ t1

t0

{
Lx

(
xcl, ẋcl

)
− d

dtLẋ

(
xcl, ẋcl

)}
η dt + Lẋ

(
xcl, ẋcl

)
η(t)

∣∣∣
t1

t0

and is seen therefore to vanish: the first term vanishes because xcl(t) is a
solution of Lagrange’s equation of motion; the second term is killed by the
endpoint conditions η(t0) = η(t1) = 0. To simplify discussion of the higher-
order contributions to (33) I assume the Lagrangian to be of the form

L(x, ẋ) = 1
2mẋ2 − V (x)

in which case we have

S[xcl(t) + η(t)] = S[xcl(t)] +
∫ t1

t0

{
1
2

[
mη̇η̇ − V ′′(xcl(t)

)
ηη

]

− 1
3!V

′′′(xcl(t)
)
ηηη + · · ·

}
dt

It is difficult to imagine a case in which the terms of order n ! 3 do not
serve to make the integration problem impossibly complicated. Let us suppose,
therefore, that such terms are absent:

V (x) = α + βx + 1
2mω2x2

The problem then is to evaluate

m
2

∫ t1

t0

[
η̇η̇ − ω2ηη

]
dt = m

2

∫ t1

t0

[
d
dt (ηη̇) − ηη̈ − ω2ηη

]
dt

The endpoint conditions η(t0) = η(t1) = 0 serve to kill the first term on the
right, and we are left with

= −m
2

∫ t1

t0

η(t)
[
∂2

t + ω2
]
η(t) dt (34)

where ∂t ≡ d
dt . Returning this problem to the context from which it sprang, we
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have

K(x1, t1; x0, t0) = A ·
∫

e
i
!S[x(t)]Dx(t)

= A exp
{

i
!S[xcl(t)]

}
·
∫

exp
{

i
!

∫ t1

t0

m
2

[
η̇η̇ − ω2ηη

]
dt

}
Dη(t) (35)

which appears as equation (3.13) on page 46 of Ashok Das’ Field Theory : A
Path Integral Approach ().

In his §§3.2–3 (pages 47–62) Das evaluates the expression on the right side
of (35) by two different methods. Das’ second method is too familiar to be
interesting: he slices the time interval t0 " t " t1 into intervals of duration τ
(a la Feynman), notices that

[
η̇η̇ − ω2ηη

]
can be rendered as a quadratic form

in the discrete values that η(t) assumes at the ends of those intervals, solves
the resulting many-variable Gaussian integration problem. Das’ first method is
more interesting: he writes

η(t) =
∞∑

n=1

an sin
(
nπ

t − t0
t1− t0

)
: endpoint conditions automatic

and obtains
∫ t1

t0

[
η̇η̇ − ω2ηη

]
dt = t1 − t0

2

∞∑

n=1

[(
nπ

t1 − t0

)2
− ω2

]
a2

n

The Fourier coefficients an are the “coordinates” that serve to identify the
individual elements η(t) of η -space. The process

∫
Dη(t) is understood now

to mean
∫ ∫

· · ·
∫

da1da2 · · · =
∏

n

∫
dan, so we once again confront an infinite

product of Gaussian integrals, which—after the dust has settled—gives14

Kosc(x1, t1; x0, t0) = Aosc

√
ω(t1 − t0)

sin[ω(t1 − t0)]
· exp

{
i
!Sosc[xcl(t)]

}
(36)

To fix the value of A—which remains still indeterminate—Das imposes the
requirement that

lim
ω↓0

Kosc(x1, t1; x0, t0) = Kfree(x1, t1; x0, t0)

It is easy to see that
lim
ω↓0

Sosc[xcl(t)] = Sfree[xcl(t)]

14 Critical use is made of the identity
∞∏

n=1

[
1 −

(
z
nπ

)2]
= sin z

z
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and that

lim
ω↓0

√
ω(t1 − t0)

sin[ω(t1 − t0)]
= 1

Das argues on this basis that necessarily

Aosc = Afree

though he is in fact in position to argue only that

Aosc = Afree · (function of ω and t that goes to unity as ω ↓ 0)

Feynman’s normalization requirement is free from this defect.15

Enter: the “functional determinant”. We have made repeated use of the multi-
variable Gaussian integral formula (9), which in the case bbb = 000 reads

∫∫
· · ·

∫ +∞

−∞
e−xxx···Axxxdnx =

√
πn

det A (37.1)

—the assumption there being that the square matrix A was real & symmetric
(therefore hermitian) and positive definite (all eigenvalues real and strictly
positive). By formal extension8 we therefore have

∫∫
· · ·

∫ +∞

−∞
eixxx···Axxxdnx =

√
(iπ)n

det A (37.2)

I have remarked in reference to (35), in connection with Das’ “uninteresting
first method,” that we expect to be able to write16

∫
exp

{
i α

∫ t1

t0

[
η̇η̇ − ω2ηη

]
dt

}
Dη(t) = lim

N↑∞

∫∫
· · ·

∫ +∞

−∞
eiηηη···Aηηη dnη (38)

for some suitably designed matrix A (constructed along the lines of the A on
page 10). Using (34) to reformulate the expression on the left side of (38), and
using (37) to evaluate the expression on the right, we are led to write

∫
exp

{
− i α

∫ t1

t0

η (∂2
t + ω2)η dt

}
Dη(t) = N 1√

det(∂2
t + ω2)

(39)

where the α has been absorbed into the as-yet-undetermined normalization
constant N. Das asserts (his page 72) that we can, on the basis of this result,

15 So also are the arguments that serve to relate the prefactor A to the
VanVleck determinant (of which Das nowhere makes any use).

16 Here α = m/2!.
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expect to be able more generally to write
∫

exp
{

i

∫ t1

t0

η(t)O(t)η(t) dt
}

Dη(t) = N 1√
det O(t)

(40)

How much more generally (for what class of operators O(t)?) is a question
that at this point remains to be determined—a question that will be settled
by mathematical requirements that will emerge when we look more closely into
meaning of (40).

We have

Kosc(x1, t1; x0, t0) = A

∫
exp

{
iα

∫ t1

t0

(η̇η̇ − ω2ηη) dt
}

Dη(t) · e i
! Sosc[xcl(t)]

and Das has already evaluated the prefactor by two distinct methods: his
“matrix method,” which involves Feynmanesque time-slicing carried to the limit
N ↑ ∞, and his “Fourier transform method,” which proceeds from writing

η(t) =
∑

n

an sin
(
nπ

t − t0
t1− t0

)

and interpreting Dη(t) to mean
∏

ndan.17 To those two he on pages 76–77 adds
a third which has a much more “operator theoretic” flavor.18 It proceeds from
∫

exp
{

iα

∫ t1

t0

(η̇η̇ − ω2ηη) dt
}

Dη(t) =
∫

exp
{
− iα

∫ t1

t0

η (∂2
t + ω2)η dt

}
Dη(t)

Das proposes to obtain the value of the expression on the right by analytic
continuation of

∫
exp

{
− α

∫ τ1

τ0

η(τ)(−∂2
τ + ω2)η(τ) dτ

}
Dη(τ) : τ = it

—the point here being that

(−∂2
τ + ω2)η(τ) = λ · η(τ) : η(τ0) = η(τ1) = 0

presents a tractable eigenvalue problem. If, for the moment, we suspend the
condition η(τ1) = 0 we get

η(τ) ∼ sin
(√

λ − ω2 (τ − τ0)
)

The suspended condition now requires λ to be a solution of

sin
(√

λ − ω2 (τ1 − τ0)
)

= 0 (41)

17 Das passes over in silence the fact that his two methods assign two distinct
meanings to the “space of paths.”

18 To those three methods Kirsten & Loya1, in their §III, add yet a fourth.
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so λ must assume one or another of the (eigen)values

λn =
(

nπ
τ1 − τ0

)2
+ ω2 : n = 1, 2, 3, . . . (42)

The corresponding eigenfunctions (of which in the present context we have
actually no need) are

ηn(τ) = An sin
(
nπ

τ − τ0

τ1 − τ0

)

Orthogonality is automatic, and normalization requires that we set

An =
√

2
τ1 − τ0

: all n

For finite-dimensional matrices A one can always write

det A =
∏

n

λn

so Das writes

det(−∂2
τ + ω2) =

∞∏

n=1

[(
nπ

τ1 − τ0

)2
+ ω2

]

=
∞∏

n=1

(
nπ

τ1 − τ0

)2

︸ ︷︷ ︸
·

∞∏

n=1

[
1 +

(ω(τ1 − τ0)
nπ

)2]

︸ ︷︷ ︸

? sinhω(τ1 − τ0)
ω(τ1 − τ0)

↓

det( ∂2
t + ω2) = B · sin ω(t1 − t0)

ω(t1 − t0)
(43)

The problematic factor is the ∞-valued B, to which Das is prepared to assign
whatever value is required in order to achieve

lim
t1↓ t0

K(x1, t1; x0, t0) = δ(x1 − x0)

This procedure would, however, be unavailable if the problem of assigning value
to det( ∂2

t + ω2) had arisen as a free-standing problem, detached from any
reference to the Feynman path-integral formalism.

Note that the problem just touched upon can be circumvented if one takes
motivation from

lim
ω↓0

sin ω(t1 − t0)
ω(t1 − t0)

= 1 and the ω-independence of B ≡
∞∏

n=1

(
nπ

i(t1 − t0)

)2
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to look not to det( ∂2
t + ω2) itself but to the following ratio of functional

determinants
det( ∂2

t + ω2)
det( ∂2

t )
= sin ω(t1 − t0)

ω(t1 − t0)
(44)

Introduction to the contour integral method. It is—for a reason now evident —
with ratios of functional determinants that Kristen and collaborators19 mainly
concern themselves, as also does the anonymous author of the Wikipedia article
on functional determinants20 (though the latter neglects to mention the contour
integral method, and does not cite Kristen).

Let F (λ) be an entire function of the complex variable λ, and let it be the
case that the zeros λn of F (λ) are real/simple/non-negative. The associated
zeta function is

ζF (s) =
∑

n

λ−s
n = 1

2πi

∮

C
λ−s

{∑

n

1
λ − λn

}
dλ

where C is any contour that envelopes all the zeros. Notice that expansion of
F (λ) around λn gives

F (λ) = (λ − λn)F ′(λn) + 1
2 (λ − λn)2F ′′(λn) + · · ·

1
F (λ)

= 1
(λ − λn)F ′(λn)

− F ′′(λn)
2[F ′(λn)]2

+ O((λ − λn)+1)

F ′(λ)
F (λ)

= 1
(λ − λn)

+ F ′′(λn)
2F ′(λn)

+ O((λ − λn)+1)

from which we learn that the function

d
dλ

log F (λ) = F ′(λ)
F (λ)

has simple poles at the zeros of F (λ). We are in position now to write

ζF (s) =
∑

n

λ−s
n = 1

2πi

∮

C
λ−s d

dλ
log F (λ) dλ (45)

which, as Kristen & Loya emphasize, may prove useful even in situations where
the zeros of F (λ) remain unknown.

19 His initial/principal collaborator appears to have been A. J. McKane: see
“Functional determinants by contour integral methods,” Ann. Phys. 308, 502–
527 (2003) and“Functional determinants for general Sturm-Liouville problems,”
J. Phys. A 37, 4649–4670 (2004). It is interesting that neither paper makes
explicit reference (in its title, at least) to the Feynman formalism.

20 http://en.wikipedia.org/wiki/Functional determinant



To illustrate the application of their method, Kristen & Loya look to the
evaluation of the expression det(∂2

t +ω2) that appears on the right side of (39),
which was motivated by an equation

Kosc(x1, t1; x0, t0) = A

∫
exp

{
− iα

∫ t1

t0

η(∂2
t + ω2)η dt

}
Dη(t) · e i

! Sosc[xcl(t)]

produced in course of an application of the Feynman formalism to the oscillator
problem.21 In their §2 they look to the evaluation of det(∂2

t ),22 which in their
§3 they look to the ratio (44). I follow their example:

free particle Borrowing now some equations from page 18 (in which I have
set ω = 0) we have

−∂2
τ η(τ) = λ · η(τ) : η(τ0) = η(τ1) = 0

η(τ) ∼ sin
(√

λ (τ − τ0)
)

where λ is fixed by the condition

sin
(√

λ T
)

= 0 : T ≡ τ1 − τ0

Evidently
√

λ = nπ/T : n = 0, 1, 2, . . . and the associated eigenfunctions are
ηn(τ) ∼ sin

(
nπ (τ − τ0)/T

)
. But η0(τ) vanishes identically, so we must exclude

the case n = 0. This Kristen & Loya do by identifying the eigenvalues λn with
the zeros of

F (λ) ≡
sin

(√
λ T

)
√

λ T
= ei

√
λT − e−i

√
λT

2i
√

λ T

Introducing

f(λ) ≡ d
dλ

log F (λ) = T cot
√

λ T
2
√

λ
− 1

2λ

into (45), we have

ζF (s) = 1
2πi

∮

C

{
λ−(s+ 1

2 ) · 1
2T cot

√
λT − 1

2λ−(s+1)
}

dλ

and see that to insure convergence of such integrals we must have 1
2 < %(s).

Relatedly, expansion about the origin gives

λ−sf(λ) = − 1
6T 2λ−s − 1

90T 4λ1−s − 1
945T 6λ2−s − · · · (46)

so if we are (after we have deformed the contour—see below) to avoid picking
up a residue at the origin we must have 1

2 < %(s) < 1.

21 Kristen & Loya mention the Feynman formalism in their abstract, but do
not attempt to indicate how one gets from Feynman formalism to the class of
problems they address.

22 An oscillator with ω = 0 is, of course, simply a free particle.
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Figure 1: The contours C and C′ employed by Kristen & Loya.

Kristen & Loya now exercise their established right to deform the contour:
C−→C′. The integral of interest resolves into three components:

1
2πi

∮

C′
λ−sf(λ) dλ = 1

2πi

∫ 0

−∞
(ξ + iε)−sf(ξ + iε) d(ξ + iε)

+ 1
2πi

∫ −π/2

π/2
(ε eiθ)−sf(ε eiθ)εi dθ (47)

+ 1
2πi

∫ −∞

0
(ξ − iε)−sf(ξ − iε) d(ξ − iε)

The second term is (by (46)) readily seen to vanish in the limit ε ↓ 0. Looking to
the first and third terms, we observe that (ξ+ iε) has a branch cut that extends
along the negative half of the real axis: as one passes ↓ across the negative real
axis the phase jumps from +π to −π.23We therefore have

23 To see this, command Plot3D[Evaluate[Arg[ComplexExpand[x+iy]]],
{{{x,-5,5}}}, {{{y,-5,5}}}, PlotRange→ {−π, π}→ {−π, π}→ {−π, π}
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lim
ε↓0

(−x + iε)−s = x e−iπs

lim
ε↓0

(−x − iε)−s = x e+iπs

The phase of f(ξ + iε) d(ξ + iε) is, on the other hand, found to be zero on the
negative real axis, and to display no such phase discontinuity. So the first and
third of the terms on the right side of (47) can be written

e−iπs

2πi

∫ 0

∞
x−s d

dx
log F (−x) dx + e+iπs

2πi

∫ ∞

0
x−s d

dx
log F (−x) dx

= sin πs
π

∫ ∞

0
x−s d

dx
log F (−x) dx

= sin πs
π

∫ ∞

0
x−s d

dx
log sinh

√
x T√

x T
dx (48)

If that were indeed a correct description of ζF (s) it would immediately follow
that

ζ ′
F (0) =

∫ ∞

0

d
dx

log sinh
√

x T√
x T

dx = log sinh
√

x T√
x T

∣∣∣∣
∞

0

= ∞− 0

but s ↓ 0 has placed us in violation of the condition 1
2 < %(s) < 1, and has led

to an absurd result. Kristen & Loya remind us that the condition 1
2 < %(s)

was introduced to temper an integrand in the limit x ↑ ∞. Returning to (48),
they write ∫ ∞

0
=

∫ 1

0
+

∫ ∞

1

and in the latter integral use

log sinh
√

x T√
x T

= log eT
√

x − log T
√

x + log
(
1 − e−2T

√
x
)

to obtain
∫ ∞

1
x−s d

dx
log sinh

√
x T√

x T
dx

=
∫ ∞

1

{
1
2Tx−s− 1

2 − 1
2x−s−1 + x−s d

dt
log

(
1 − e−2T

√
x
)}

dx

= T 1
2s − 1

− 1
2s

+
∫ ∞

1
x−s d

dt
log

(
1 − e−2T

√
x
)

dx

giving

ζF (s) = T sin πs
(2s − 1)π

− sin πs
2πs

+ sin πs
π

∫ ∞

1
x−s d

dx
log

(
1 − e−2T

√
x
)

dx

+ sin πs
π

∫ 1

0
x−s d

dx
log sinh

√
x T√

x T
dx
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where the leading term shows the origin of the 1
2 < %(s) requirement. Now

apply lims↓0
d
ds , get24

ζ ′
F (0) = −T − 0 +

{
log

(
1 − e−2T

√
x
)}∣∣∣∣

∞

1

+
{

log eT
√

x + log
(1 − e−2T

√
x

T
√

x

)}∣∣∣∣
1

0

= −T − 0 +
{
0 − log

(
1 − e−2T

)}

+
{
T + log

(
1 − e−2T

)
− log T

}

− log
( sinhT

√
x

T
√

x

)∣∣∣∣
0

= − log T −
{

log 2 + 2
3T 2x − 4

45T 6x3x2 + 64
2835T 6x3 − · · ·

}∣∣∣∣
0

= − log 2T (49)

To recapitulate: standard quantum mechanics leads naturally to the
spectral representation of the propagator, which in the case of a free particle
(see again page 8) reads

Kfree(x1, t1; x0, t0) =
∫

(x1|p)e−
i
!

1
2m p2(t1−t0)(p|x0)

=
√

m
ih(t1 − t0)

··· exp
{

i
!Sclassical free(x1, t1; t0, t0)

}

where
Sclassical free(x1, t1; t0, t0) = m

2
(x1 − x0)2

t1 − t0

We were, on the other hand, led (at (35)) by Feynman formalism to write

Kfree(x1, t1; x0, t0) = A

∫
exp

{
i
!

∫ t1

t0

m
2

[η̇η̇] dt
}

Dη(t)

··· exp
{

i
!Sclassical free(x1, t1; t0, t0)

}

and looked therefore to the evaluation of
∫

exp
{

i
!

∫ t1

t0

m
2

[η̇η̇] dt
}

Dη(t) =
∫

exp
{
− iα

∫ t1

t0

η (∂2
t ) η dt

}
Dη(t)

=
∫

exp
{
− α

∫ τ1

τ0

η (−∂2
τ ) η dτ

}
Dη(τ)

24 Use
sin πs
2πs

= 1
2 − 1

12 (πs)2 + 1
240 (πs)4 · · ·

In the final step of the argument we will again use Taylor expansion to claarify
the meaning of a seemingly improper limit.
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where α = m/2! and τ = it. We found it expedient to set α = 1 and, proceeding
in formal imitation of (37.1), wrote

∫
exp

{
−

∫ τ1

τ0

η (−∂2
τ ) η dτ

}
Dη(τ) ∼ 1√

det(−∂τ
2)

= 1√
det(

∏
nλn)

where the λn are defined by the equations

(−∂2
τ )η(τ) = λ · η(τ) : η(τ0) = η(τ1) = 0

and were found to comprise the zeros of

F (λ) =
sin

(√
λ(τ1 − τ0)

)
√

λ(τ1 − τ0)

We introduced
ζF (s) =

∑

n

λ−s
n

in terms of which we were able to write

det(−∂τ
2) = exp

{
− ζF

′ (0)
}

We used Kristen & Loya’s coutour integration technique to obtain

ζF
′ (0) = − log[2(τ1 − τ0)]

whence
det(−∂τ

2) = 2(τ1 − τ0)
∫

exp
{
−

∫ τ1

τ0

η (−∂2
τ ) η dτ

}
Dη(τ) ∼ 1√

2(τ1 − τ0)

= 1√
2i(t1 − t0)

To relax the α = 1 assumption we have only to rescale τ :
∫

exp
{
−

∫ τ1

τ0

η (−∂2
τ ) η dτ

}
Dη(τ) =

∫
exp

{
− α

∫ τ1/α

τ0/α
η (−∂2

ατ ) η d(ατ)
}

Dη(τ)

∼
√

α
2(τ1 − τ0)

=
√

mπ
ih(t1 − t0)

So to achieve
lim

t1↓ t0
Kfree(x1, t1; x0, t0) = δ(x1 − x0)

we have to set A =
√

1/π.
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oscillator The functional integral of interest now reads

∫
exp

{
−

∫ τ1

τ0

η (−∂2
τ + ω2) η dτ

}
Dη(τ) ∼ 1√

det(−∂τ
2 + ω2)

The equations

(−∂2
τ + ω2)η(τ) = λ · η(τ) : η(τ0) = η(τ1) = 0

lead to eigenvalues that are the zeros of

G(λ) =
sin

(√
λ − ω2(τ1 − τ0)

)
√

λ − ω2(τ1 − τ0)

Kirsten & Loya elect to look to the ratio

det(−∂τ
2 + ω2)

det(−∂τ
2)

=
exp

{
− ζG

′ (0)
}

exp
{
− ζF

′ (0)
} = exp

{
− ζG

′ (0) + ζF
′ (0)

}

Reading from (45), we have

ζG
′ (s) − ζF

′ (s) = 1
2πi

∮

C
λ−s d

dλ
log G(λ)

F (λ)
dλ

= 1
2πi

∮

C
λ−s d

dλ
log

[
sin

(
T
√

λ − ω2
)

√
λ − ω2

√
λ

sin
(
T
√

λ
)
]

dλ

where (as before) T = (τ1 − τ0). Deformation of the contour supplies

= sin πs
πs

∫ ∞

0
x−s d

dx
log

[
sinh

(
T
√

x + ω2
)

√
x + ω2

√
x

sinh
(
T
√

x
)
]

dx

From here the argument proceeds as before (but without the intrusion of nasty
singularities) to

log det(−∂τ
2 + ω2)

det(−∂τ
2)

= −ζG
′ (0) + ζF

′ (0) = log sinhω(τ1 − τ0)
ω(τ1 − τ0)

from which we could easily extract a description of

Kosc(x1, t1; x0, t0)
Kfree(x1, t1; x0, t0)

if reason could be discovered to have interest in such a ratio.


