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Of course, the time evolution of the Hamiltonian itself is given by

i

[H, Au(t)] . (1.1.74)

Hy(t) =H (1.1.75)

and is therefore time independent. This is nothing but the energy conservation
law in quantum mechanics.
Returning to the discussion of symmetry, we obtain from (1.1.68)
dpa(t) 1,-
= ~[H,pa(t)] =0 . 1.1.76

i 7 [H Da(t)] ( )
We see that p, does not change in time and therfore is a conserved quan-
tity. The symmetry operation in the # coordinate is written in terms of the
canonical conjugate P as a symmetry generator, and this symmetry leads to
a conservation law for p. When we proceed to quantum field theory, this will
be seen to be related to the Noether theorem.

1.2 Many-Particle Quantum Mechanics:
Second Quantization

In this section, we consider the many-particle case. In this case the wave
function is a function of the time ¢ and 3/N-dimensional coordinate space (for
a moment, we omit the spin dependence)

(ri. .. rN|p)y =9(ry,...,rN,t) . (1.2.1)

Unlike classical mechanics, in many-particle quantum mechanics it is im-
possible in principle to distinguish particles of the same species. We cannot
think about indistinguishable particles as rigid bodies; however, it should be
possible to get an idea of it with the following metaphor.

Think about a luminous advertisement screen. By switching the lamps on
and off at every point of the surface, it is possible to create a moving picture.
Places that are illuminated have more energy than the other places, and there-
fore there should be a particle. A state with IV particles at r; ...ryN should
correspond to the state where IV lights are illuminated. In this metaphor, it is
clear that it is not possible to distinguish the particles. The particle appears
as an illuminated lamp, and it is not possible to trace back the way of it as
rigid body.

In mathematical language, this means that exchanging the order of
r1...7x5 does not lead to a new state, but should lead to the very same
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state again. Explicitly, taking care also of the statistics when exchanging r;
with 7, we obtain

Y(P1, e Ty Tiy TN
+Y(ry, .. Tiyo P, T bos
:{ virs "o 7). (boson) (1.2.2)
—Y{ri,...,r, ..., 74, ..., rN)  (fermion)

However, as the reader might have realized, we now have a little problem
with the interpretation of the wave function. Of course,

P(T],"',T'N;t):|1/)(T'1,"'7T'N;t)|2 (123)

is the probability of finding at time ¢ the N particles at r; ... ry. However, the
image that we have in mind in the single-particle case, namely that (7, t) is
the complex wave amplitude at the position 7 in the three-dimensional phys-
ical space, is ruined because we now have to think mathematically about
a 3N-dimensional space. The answer to the question whether in the many-
particle case it is still possible to think about a wave function in the physical
three-dimensional space is given by the so-called method of second quantiza-
tion.

For a detailed discussion of the second quantization the reader is referred
to [3]. Here, we proceed in a heuristic way. Let us return to the single-particle
case. We decompose the single-particle wave function (r,t) in an orthonor-
mal basis ¢, (r) ‘

W(rt) = an(t)gnlr) . (1.2.4)

The whole time dependence is given by the expansion coefficients a,(t). In-
serting (1.2.4) into the Schrodinger equation, we obtain

lhz dagt(t) ¢n(’!‘) = Zan(t)H¢7l(r) . (125)

Multiplying by ¢%(r) and integrating over r, we obtain

da, (1)

ih
S

=Y (bnlH|bm)am(t) - (1.2.6)

The complex conjugate of this equation is given by

L day(t) . N
mjfw—;%M%mmm (1.27)

where H' = H has been used.

These equations determine the time development of the expansion coef-
ficients a,(t). We will now modify them a little. In order to do so, we must
think about the energy expectation value H in the state |1)(t)):
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(H) = ((t)| Hu?) Za” am(O)(onlHbm) . (128)

Using this expression we can write for (1.2.6) and (1.2.7), respectively

da,(t)  O(H)
dt  O(ika?)

(1.2.9)

and

dimas(t))  9(H)
= (1.2.10)

Here, we see that these equations are formally analogous to Hamilton’s canon-
ical equations with the correspondences a,, < z and ifia} < p. However, of
course the expansion coefficients a,, and a, are not dynamical variables of
the system.

The idea of second quantization is to promote a,, and a}, to operators and
to interpret N,, = N|an|2 Na,a} as physical quantities of the system. Orig-
inally, in single-particle quantum mechanics, N,, is N times the probability
of detecting the particle in the state n, and therefore corresponds to the total
probability of detecting the particle when the same experiment is performed
N times. Then, N is the number of experiments, and therefore in principle
this experiment can be performed in single-particle quantum mechanics.

On the other hand, consider a system with N non-interacting particles
where only one experiment is performed, and where the number of particles
in the single-particle state n is observed to be N,. Since both experiments
described above are different, N,, and N,, are different quantities - repeat-
ing number, or observed number of particles. Experience tells us that these
two numbers often agree. Admitting this, the number N,, appearing in the
single-particle system after performing N experiments will be promoted to
the observable (physical quantity) N = Al A, in the N-particle system. At
the same time,

VNa, — A, ,

SR (1.2.11)
an - n

are promoted to operators. Taking into account also that the energy expec-
tation value H is multiplied by N, it is clear from (1.2.9) and (1.2.10) that
A, and ih./i; are canonical conjugate variables. Therefore, we suppose that
they fulfil the same commutation relation as # and p:

[A,,ihAl] =ik . (1.2.12)

Further generalizing (1.2.12), we obtain
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(A, ihAL ) = ihbpm :
. o (1.2.13
[A,, Apm] = [iRAL,iRAT 1 =0 .

From these commutation relations it can be understood that AL and fln are
creating and annihilating one particle in the state n, respectively. We write
|N,,) for the many-particle state where N,, particles are in the single-particle
state n. Then, the following equation holds:

No|No) = NalN,) (1.2.14)
Acting with N,, on the state Al |N,), we obtain

NnAL|Nnr> = ([Nm AIL] + ALNH)|Nn>
= (N, + D)AL|N,) . (1.2.15)

Here, we used a variation of equation (1.2.13)
[N, Al] = [AL A, Al] = Al [A, Al] = Af . (1.2.13")

From (1.2.15) it follows that the particle number eigenvalue of the state
AL|N,) is given by N, + 1, and therefore Al is an operator that increases
the particle number by one. In the same way, it can be seen that fln is an
operator that decreases the particle number by one. Starting from the state
|N, = 0), we can create the states N,, = 0,1,2,... by acting on it successively
with AL The particle picture arises because the particle number eigenvalue
N,, counts discrete integer numbers.

On the other hand, what might the wave picture be? In order to under-
stand it, we define the field operators ¥ (r) and ¥ (r)

Or) =) Angu(r)
) " (1.2.16)
Wir) =) Algn(r) .

Using the commutator relation (1.2.13) and the fact that {¢,(r)} is an or-
thonormal basis of single-particle states, we obtain

(), 0 @) =Y [An, AL ]bn(P)g5(r') =D dn(r)}(r)

n,m

= (rin)(nlr’) = (rlr') = 6(r - 7') (1.2.17)

n

and

[D(r), ()] = [ (r), DT ()] =0 . (1.2.18)
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n(r) = ¥'(r)i(r) is the particle density at the position 7, ¢'(r) is the crea-
tion operator of a particle at position r, and 1&(7‘) is the annihilation operator
of a particle at position r. By promoting the wave functions (r) and *(r)
to operators 1&(1‘) and wAT(r), we regain the picture of wave functions in the
three-dimensional physical space, and also the metaphor of the luminous ad-
vertisement screen works well. More precisely, the position coordinate # is
degraded from an operator to a label r defining the position of the light, and
instead operators switching the light on ('(r)) and off (¢(r)) emerge. A
particle is described as the excitation of a field that is created and annihi-
lated.

We now introduce the phase operator én describing the interference of a
wave by

(1.2.19)

We show that by assuming the canonical conjugation relations of N and 6,
[Nn, 6] =ik (1.2.20)

the commutation relation (1.2.12) is obtained. In order to do so, we define
Np(A) = exp <%Aén> N, exp <—%)\én> . (1.2.21)

Then, the following equation holds:

On the other hand, owing to (1.2.20), we obtain

dN,(A) i exp(

dA " h

ios PN is
-6 On, Ny, =M, ) =1 1.2.23
$0 ) Wl e (00, ) =1 (1229
and therefore (1.2.12). X

Now, having introduced the particle number operator N, and its canonical
conjugate, the phase 6,, it is neccessary to stress the following. Obviously,

N, is a Hermitian operator; however, exactly speaking, 6,, is not Hermitian.
In order to see this, we notice that owing to (1.2.22)

exp <%0> N, exp <—%én> =N, +1 (1.2.24)

holds, and for a general integer number m
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=Ny +1)™ (1.2.25)

> -

holds. For a general function g(N) we obtain
exp (}—;én> g(N,,) exp (—%én) =g(Np+1) . (1.2.26)

This means that [/ = exp( 6 ) is a linear operator acting on Nn, just like
U(a) i in (1.1.60). If 6,, were Hermltlan then U would be a unitary operator
with UtU = U U t=1, However, this identity is not true. This can be seen
from (1.2.26): Ut increases Nn bv one, U decreases Nn by one. Acting with
U on the vacuum state with no particles [N, = 0) we obtain UIN, =0) =0.
Acting on this equation with U! we obtain of course UTU|N =0) = 0.
However, because of UU|N,, =0) = U|N, = 1) = |N, =0) # 0 we have
just demonstrated that UTU # Uut. Therefore, we conclude that because
the particle number N, is bounded from below, 6 is not Hermitian. However,
when only states with NV,, > 1 are considered, the existence of a lower bound
can be neglected, and 6 can be regarded to be Hermitian.
Next, we deduce the Hamiltonian occurring after second quantization.
Continuing in a heuristic manner as above, we declare in (1.2.8) (H) to be
an operator again and write

H=Y"Al(on|Flpm)Am . (1.2.27)

n,m

Here, H, is the single-particle Hamiltonian, being an operator in the sense
that it acts on single-particle wave functions ¢;,(r) and ¢ (7). H is an op-
erator because 41 and A,, are operators; however, (¢n|Hl|¢m) is a simple
complex number.

Equation (1.2.27) can also be expressed in terms of the field operators

&t (r) and P(r):
H= /d%uﬁ(r)f}m}(r) . (1.2.28)

The Heisenberg equation of motion of ¥ is given by

., 0U(r,t)
ik 5

= [(r.t), H] = Hyd(r,1) . (1.2.29)

If 1[)(7‘) were a single-particle wave function, then this equation would be
the Schrodinger equation (1.1.1); however, again we mention that ¢/(r) is an
operator, and the above equation describes the time evolution of this operator
in the Heisenberg picture, which leads to a totally different meaning.
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In the framework of second quantization, it is also possible to express the
interaction between particles in terms of ¥(r) and ¥'(r). We mention only
the result

Z v(r; —7;) — %/d‘gr B Pt (o — #)o(r)d(r) . (1.2.30)

i<j

The Hamiltonian is then the sum of H in (1.2.28) and the right-hand side of
(1.2.30), and the equation of motion of the field operator is

ih%ﬁ = H19(r,t) + [/ Er'dt Hole — )b )| o(r,t) .

(1.2.31)

Comparing this expression with (1.2.29), we notice that owing to the interac-
tion, a non-linear term emerges. Because this is not the Schrédinger equation,
but the Heisenberg equation, there is no conflict with the superposition prin-
ciple of quantum mechanics.

Finally, we mention the case of fermions. The whole discussion so far is
valid for the case when all particles obey Bose statistics. For fermiions, all
the commutator relations (1.2.12), (1.2.13), (1.2.17) and (1.2.18) must be
replaced by the anti-commutator relations. By doing so, the Hamiltonian
(1.2.28), (1.2.30) and the equation of motion of the field (1.2.31) are valid as
they stand.

In the case when the particles have a spin degree of freedom, the r coor-
dinate must be extended to (r, o) [o is the spin component, for example the
eigenvalue S, of the spin in the z direction]. The discussion of the phase of
the fermions is not that simple compared with the bosomnic case. This question
will be examined in Chap. 5.

1.3 The Variation Principle and the Noether Theorem
We return to a single-particle system. The Heisenberg equation of motion,

describing the time evolution of a particle at position # having momentuin
P, is given by

s A__BH(r,p)

i A0 = [F(e), H] = g P (13.)
p=p(t)

Sd oo -~ OH(r,p)

1hap(t) = [p(t), H] = —ih or P (1.3.2)
p=5(t)

Here, H(r,p) is a function of r and p, from which the Hamiltonian H is
obtained by substituting » — #(¢) and p — P(t). The above equation has the
same structure as the classical canonical equations of the Hamiltonian:



