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Preface to the second edition

I am extremely happy to, at long last, be able to present the second edition of this
book. In spite of what I stated in the preface of the 1991 edition, I ended up not only
writing a second edition but, in a sense, a new book. So one can say, once again,
that we have met the enemy and it is us. I have been pleased that the 1991 edition
of this book was appreciated by many people who found it useful and stimulating.
I am really happy that my effort was not in vain.

My motivation for writing this book, in 1991 and now, was to present quan-
tum field theory as a conceptual framework to understand problems in condensed
matter physics that cannot be described perturbatively, and hence do not admit
a straightforward reduction to some non-interacting problem. In essence, almost
all interesting problems in condensed matter physics have this character. Two
prime examples of problems of this type in condensed matter physics that devel-
oped in the late 1980s, and even more so in the 1990s, are the understanding
of high-temperature superconductors and the quantum Hall effects. In both areas
field theory played (and plays) a central role. If anything, the use of these ideas
has become widespread and increasingly plays a key role. It was lucky that the
first edition of this book appeared at just about the right time, even though this
meant that I had to miss out on research that was and still is important. This was
probably the only time that I was on time, as people who know me can relate.
Much has happened since the first edition appeared in print. The problem of the
quantum Hall effects has developed into a full-fledged framework to understand
topological phases of matter. Although it is still an unsolved problem, the research
in high-temperature superconductors (and similar problems) has motivated theo-
rists to look for new ways to think of these problems, and the ideas of quantum
field theory have played a central role. The concepts, and subtleties, of gauge
theory have come to play a key role in many areas, particularly in frustrated quan-
tum magnetism. The interactions between condensed matter and other areas of
physics, particularly high-energy physics and string theory, have become more
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xii Preface to the second edition

important. Concepts in topology and other areas of mathematics rarely frequented
by condensed matter physicists have also entered the field with full force. More
recent developments have seen the incorporation of ideas of general relativity and
quantum entanglement into the field.

These developments motivated me to work on a second edition of this book. I
have to thank Simon Capelin, my editor from Cambridge University Press, who
took the time to persuade me that this was not a foolish project. So, some time in
2007 (I think) I finally agreed to do it. Of course, this was a more complex project
than I had expected (nothing new there!). For this reason it took until now, the
Spring of 2012, for me to finish what I thought would take just one year (or so).
I wish to thank Simon Capelin and the people at Cambridge University Press for
working with me throughout this project.

This second edition contains essentially all that was included in the ten chapters
of the first edition, with a substantial editing of misprints and “misprints.” However,
it has grown to have seven more chapters to incorporate some important material
that I left out in 1991 and to add new material to reflect some of the new develop-
ments. The result is that this is essentially a new book. I hope that in the process
of writing this second edition I have not ruined what was good in the first one, and
that the new material will be useful to a wide spectrum of people, not only in con-
densed matter. Although the book is significantly larger than its first edition, I had
to leave out some really important material. In particular, I incorporated hardly any
discussion of Fermi liquids, non-Fermi liquids (except for Luttinger liquids), and
superconductors, among many important problems that are also of interest to me.

Several notable books that cover some parts of the material I cover have appeared
in print since 1991, such as Xiao-Gang Wen’s Quantum Field Theory of Many
Body Systems (published in 2003) and Subir Sachdev’s Quantum Phase Transi-
tions (published in 1999). Other books that cover some aspects of the material are
Assa Auerbach’s Interacting Electrons and Magnetism (published in 1994) and the
book by A. Gogolin, A. Nersesyan, and A. Tsvelik, Bosonization and Strongly Cor-
related Systems (published in 2004), as well as the superb Principles on Condensed
Matter Physics by Paul Chaikin and Tom Lubensky (published in 1995) and John
Cardy’s Scaling and Renormalization in Statistical Physics (published in 1996).

I am deeply indebted to many people whose work has influenced my views. I
have to particularly thank Steve Kivelson for his long-term friendship and collabo-
ration, which has had a strong impact on my work, as reflected here. I also thank my
collaborators in many projects, some of which are reflected here, Chetan Nayak,
Claudio Chamon, Paul Fendley, Shivaji Sondhi, Joel Moore, and Fidel Schapos-
nik. I am also indebted to Lenny Susskind and Steve Shenker, who played a great
role during my formative years as a theorist and whose outlook has strongly influ-
enced these pages. I also thank my former students Ana López, Christopher Mudry,
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Antonio Castro Neto, Eun-Ah Kim, Michael Lawler, Kai Sun, and Benjamin Hsu,
whose work is also reflected here. I am also indebted to my colleagues Mike Stone
and Rob Leigh, with whom I collaborated in several projects and had countless
stimulating discussions. Their work has strongly influenced my own. I also wish
to thank Taylor Hughes and Shinsei Ryu for explaining their work (and others) on
topological insulators, and motivating me to think on these problems. I am also
grateful to Pouyan Ghaemi for reading the chapter on topological insulators and
catching several misprints, and to Rodrigo Soto Garrido and to Ponnuraj Krish-
nakumar for proofreading the entire book and for their great help in generating the
skyrmion figures for the cover.

I must also acknowledge the constant and permanent support of the Department
of Physics of the University of Illinois, and my colleagues in our department. Some
of the material presented here was also used in several special-topics courses I
taught in Urbana over the years. I am particularly grateful to Professor Dale van
Harlingen, our Department Head, for his constant support. I also wish to thank the
many people who over the years have pointed out to me several conceptual issues
present in the first edition as well as numerous misprints. I hope the editing of the
second edition is substantially better than that of the first. I also wish to thank the
National Science Foundation, which supported my research for many years.

This second edition, much like the first, could not have existed without the emo-
tional support and love of Claudia, my wife and lifetime companion. Our children
have fortunately (for them) been spared this second edition, which also could not
have existed without my father constantly asking when I was going to be done
with it.

Eduardo Fradkin
Urbana, Illinois, USA





Preface to the first edition

This volume is an outgrowth of the course “Physics of Strongly Correlated Sys-
tems” which I taught at the University of Illinois at Urbana-Champaign during the
Fall of 1989. The goal of my course was to present the field-theoretic picture of
the most interesting problems in Condensed Matter Physics, in particular those rel-
evant to high-temperature superconductors. The content of the first six chapters is
roughly what I covered in that class. The remaining four chapters were developed
after January 1, 1990. Thus, that material is largely the culprit for this book being
one year late! During 1990 I had to constantly struggle between finalizing the book
and doing research that I just could not pass on. The result is that the book is one
year late and I was late on every single paper that I thought was important! Thus,
I have to agree with the opinion voiced so many times by other people who made
the same mistake I did and say, don’t ever write a book! Nevertheless, although
the experience had its moments of satisfaction, none was like today’s when I am
finally done with it.

This book exists because of the physics I learned from so many people, but it
is only a pale reflection of what I learned from them. I must thank my colleague
Michael Stone, from whom I have learned so much. I am also indebted to Steven
Kivelson, Fidel Schaposnik, and Xiao-Gang Wen, who not only informed me on
many of the subjects which are discussed here but, also, more importantly, did not
get too angry with me for not writing the papers I still owe them.

This book would not have existed either without the extraordinary help of
Christopher Mudry, Carlos Cassanello, and Ana López, who took time off their
research to help me with this crazy project. They have done an incredible job in
reading the manuscript, finding my many mistakes (not just typos!), making very
useful comments, and helping me with the editing of the final version. I am partic-
ularly indebted to Christopher, who made very important remarks and comments
concerning the presentation of very many subjects discussed here. He also gener-
ated the figures. Mrs. Phyllis Shelton-Ball typeset the first six chapters. My wife,
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Claudia, made this project possible by learning LATEX at great speed and typeset-
ting the last four chapters, correcting some of my very boring and awkward writing
style.

This book was also made possible by the love and help of my children Ana,
Andrés, and Alejandro, who had to live with a father who became a ghost for a
while. Ana and Andrés helped in the proofreading, and took care of their little
brother, who helped by keeping everybody happy.

Finally, I must acknowledge the support of the Department of Physics and
the Center for Advanced Study of the University of Illinois. The help and
understanding of the staff at Addison Wesley is also gratefully acknowledged.

Eduardo Fradkin
Urbana, Illinois, USA



1

Introduction

1.1 Field theory and condensed matter physics

Condensed matter physics is a very rich and diverse field. If we are to define it as
being “whatever gets published in the condensed matter section of a physics jour-
nal,” we would conclude that it ranges from problems typical of material science to
subjects as fundamental as particle physics and cosmology. Because of its diversity,
it is sometimes hard to figure out where the field is going, particularly if you do
not work in this field. Unfortunately, this is the case for people who have to make
decisions about funding, grants, tenure, and other unpleasant aspects in the life of
a physicist. They have a hard time figuring out where to put this subject which is
neither applied science nor dealing with the smallest length scales or the highest
energies. However, the richness of the field comes precisely from its diversity.

The past few decades have witnessed the development of two areas of condensed
matter physics that best illustrate the strengths of this field: critical phenomena and
the quantum Hall effect. In both cases, it was the ability to produce extremely pure
samples which allowed the discovery and experimental study of the phenomenon.
Their physical explanation required the use of new concepts and the development
of new theoretical tools, such as the renormalization group, conformal invariance,
and fractional statistics.

While the concept of conformal invariance was well known in field theory before
critical phenomena became recognized as a field, its importance to the complete
structure of the field theory was not understood. The situation changed with the
development of the renormalization group (RG). For condensed matter physics,
the RG is the main tool for the interpretation of the experimental data, providing
the conceptual framework and the computational algorithm which has allowed the
theory to make powerful predictions. In particle physics, the RG is also a tool for
the interpretation of the data. But, more importantly, the concept of an infrared-
unstable fixed point has become the definition of the field theory itself.

1



2 Introduction

Similarly, the Chern–Simons theories, which are field theories that describe sys-
tems exhibiting fractional statistics, were known before the quantum Hall effect
(QHE) was discovered (actually they were discovered at about the same time),
but were regarded as a curiosity of field theories below four dimensions: in other
words, a beautiful piece of mathematical physics but without relevance to “the
world.” We have come to recognize that Chern–Simons theories are the natural
theoretical framework to describe the quantum Hall effect.

Another case relevant to this point is superconductivity. Viable mechanisms for
superconductivity have been known for the fifty-some years that have passed since
the theory of Bardeen, Cooper, and Schrieffer (BCS). This theory has successfully
explained superconductivity, and a variety of related phenomena, in very diverse
areas of physics. This theory has been applied to diverse areas of physics, rang-
ing from superconductivity in metals and superfluidity of liquid 3He in condensed
matter physics to neutron stars and nuclear matter in nuclear physics, and dynami-
cal symmetry breaking and grand unification mechanisms (such as technicolor) in
elementary-particle physics.

The origin of this constant interplay between field theory and condensed matter
(or statistical) physics is that, despite their superficial differences, both fields deal
with problems that involve a large (macroscopic) number of degrees of freedom
that interact with each other. Thus, it should be no surprise that the same techniques
can be used in both fields. The traditional trend was that field theory provided the
tools (and the “sexy” terms) which were later adapted to a condensed matter prob-
lem. In turn, condensed matter models were used as “toy models” in which to
try new techniques. Although this is still the case, more recent developments in
condensed matter physics have allowed us to investigate new fundamental concep-
tual problems in quantum field theory. However, as the examples of the RG and
the QHE show, the “toy models” can provide a framework for the understanding
of much more general phenomenon. The experimental accessibility of condensed
matter systems is just as important. The MOSFETs and heterostructures in which
the QHE is studied have given us the surprisingly exact quantization of the Hall
conductance whose understanding has required the use of topology and fiber
bundles.

The importance of condensed matter physics to field theory, and vice versa, has
been recognized at least since the 1950s. Landau and Feynman are perhaps the two
theorists who best understood this deep connection. They worked in both fields and
used their ideas and experience from one field in the other and then the converse.

1.2 What has been included in this book (first edition)

This volume is an outgrowth of the course “Physics of Strongly Correlated Sys-
tems” which I taught at the University of Illinois at Urbana-Champaign during the
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Fall of 1989. Much of the material covered here has been the subject of intense
research by a lot of people during the past four years. Most of what I discuss
here has never been presented in a book, with the possible exception of some
reprint volumes. While the choice of the material is motivated by current work
on high-temperature superconductors, the methods and ideas have a wide range of
applicability.

This book is not a textbook. Many of the problems, ideas, and methods which are
discussed here have become essential to our current understanding of condensed
matter physics. I have made a considerable effort to make the material largely
self-contained. Many powerful methods, which are necessary for the study of con-
densed matter systems in the strong-fluctuation limit, are discussed and explained
in some detail within the context of the applications. Thus, although the theoret-
ical apparatus is not developed systematically and in its full glory, this material
may be useful to many graduate students, in order for them to learn both the sub-
ject and the methods. For the most part I have refrained from just quoting results
without explaining where they come from. So, if a particular method happens to
be appropriate to the study of a particular subject, I present a more or less detailed
description of the method itself. Thus, various essential theoretical tools are dis-
cussed and explained. Unfortunately, I was able to cover only part of the material I
wanted to include. Perhaps the biggest omission is a description of conformal field
theory. This will have to wait for a second edition, if and when I ever become crazy
enough to come back to this nightmare.

The material discussed here includes path-integral methods applied to several
problems in condensed matter such as the Hubbard model, quantum spin sys-
tems and the fractional quantum Hall effect; 1/N , 1/S, and other semi-classical
expansions; coherent states; the Bethe ansatz; Jordan–Wigner transformations and
bosonization; gauge invariance; topological invariants in antiferromagnets; the Hall
effect; and the Chern–Simons theory of fractional statistics. The material is always
developed within the context of a particular application. While there is the danger
that the application may go “out of fashion,” I find that it is easier to motivate and to
understand this material within the framework of a concrete problem. Perhaps what
this book may be good for is not so much for learning the techniques but as a place
to find the conceptual framework of field theory in a condensed matter setting.

1.3 What was left out of the first edition

The course that I taught had as its subtitle “High Temperature Superconductors and
Quantum Antiferromagnets.” As the reader will soon find out, in the material that
I have covered there is plenty of quantum antiferromagnetism but little supercon-
ductivity. This is not an oversight on my part. Rather, it is a reflection of what we
understand today on this subject which is still a wide open field. Thus I chose not
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to include the very latest fashion on the subject but only what appears to be rather
well established. This is a field that has produced a large number of very excit-
ing ideas. However, the gedanken theories still dominate. To an extent, this book
reflects my own efforts in transforming several fascinating gedanken theories into
something more or less concrete.

Still, the tantalizing properties of the high-temperature superconductors seem to
demand from us novel mechanisms such as Phil Anderson’s RVB. But, of course,
this is far from being universally accepted. After all, with a theory like BCS being
around, with so many successes in its bag, it seems strange that anybody would
look for any other mechanism to explain the superconductivity of a set of rather
complex materials. After all, who would believe that understanding the supercon-
ductivity produced by stuff made with copper and oxygen, mixed and cooked just
right, would require the development of fundamentally new ideas? Right? Well,
maybe yes, maybe not.

1.4 What has been included in the second edition

I have not changed at all the content of what I wrote in the first section of this
chapter back in 1991. If anything, these words are even more pertinent today.

Over the years I have often decided that it had been a mistake to include certain
topics in the first edition, since they no longer seemed relevant, and regretted not
having included others for similar reasons. However, there is a conservation law
of good ideas in physics. So it is often the case that a theory that was proposed
at a certain time in a certain setting acquires new life and meaning in a different
setting. A case in point is the material on spin liquids, both chiral and non-chiral,
which was discussed in Chapters 6 and 7 of the first edition. Shortly after the book
appeared it became clear that the chiral spin liquid, and the anyon superconduc-
tor, do not play a role in the physics of high-temperature superconductors. This
was possible since these are examples of internally consistent theories, as opposed
to gedanken ones, which make clear predictions and hence can be tested in experi-
ment. Nevertheless, the chapters on spin liquids and quantum dimers regained their
relevance in the late 1990s and in much of the following decade as evidence for the
internal consistency of topological phases in frustrated quantum magnets and quan-
tum dimer models became more established, even though so far they have eluded
experimental confirmation.

This second edition is in many ways a new book. Here is a summary of what
has been included. Except for correcting a few misprints and typos, Chapter 2, The
Hubbard model, is the same as in the first edition. Chapter 3, The magnetic insta-
bility of the Fermi system, has been edited to remove typos and misprints and the
last section has had its mistakes purged. Chapter 4, The renormalization group, is



1.4 What has been included in the second edition 5

new. In the first edition the discussion on the renormalization group was scattered
throughout the text. In Chapter 4 I present a succinct but modern presentation of the
subject, which sets the stage for its use in other chapters. This chapter was strongly
influenced by John Cardy’s beautiful textbook (Cardy, 1996). Chapter 5, One-
dimensional quantum antiferromagnets, was edited and revamped. It now has three
sections discussing the important subject of duality in spin systems, and another
one on the one-dimensional quantum Ising model, including the exact solution.
The section on Abelian bosonization was updated, particularly the notation. Chap-
ter 6, The Luttinger liquid, is entirely new. Although some of this material also
appears in Chapter 5, here I give what I think is a thorough presentation of this
important problem in condensed matter. Some of the material used here is strongly
inspired by reviews written by Kivelson and Emery on this problem (Emery, 1979;
Carlson et al., 2004). Chapter 7, Sigma models and topological terms, is a vastly
revised version of what was Chapter 5 in the first edition. The main changes in this
chapter are the new sections on the Wess–Zumino–Witten model and non-abelian
bosonization, and another section giving a brief presentation of the main ideas of
conformal field theory (a subject that has acquired widespread use in many areas
of condensed matter) and their application to the Wess–Zumino–Witten model and
to quantum spin chains. For the sake of brevity I chose not to include a discussion
of the Kondo problem here.

In the first edition Chapters 6 and 7 dealt with spin liquids and chiral spin states,
respectively. These two chapters have been completely revised, expanded and split
into three chapters, Chapters 8, 9, and 10. Chapter 8, Spin-liquid states, contains
much of the discussion of the old Chapter 6 on spin liquids, valence-bond states,
and the gauge-theory description of antiferromagnets, but significantly edited and
updated to account for the many developments. The content of the new Chap-
ter 9, Gauge theory, dimer models, and topological phases, is completely new.
Here I include an in-depth discussion of the phases and observables of gauge theo-
ries, paying special attention to their relation to time-reversal-invariant topological
phases, the Z2 spin liquid, the Kitaev toric code, and quantum loop models. I also
include a theory of quantum criticality in quantum dimer models and the quantum
Lifshitz model.

In the new Chapter 10, Chiral spin states and anyons, I have merged all the dis-
cussions on the chiral spin liquid. I also expand the treatment of the Chern–Simons
gauge theory and its role as a theory of fractional statistics. I also corrected some
errors on the lattice version of Chern–Simons that were present in the first edition.
Chapter 11, Anyon superconductivity, is a compressed version of Chapter 8 of the
first edition. It is now clear that an anyon superconductor, a state resulting from the
condensation of electrically charged anyons (abelian) is not essentially different
from a superconductor with a spontaneously broken time-reversal symmetry, e.g. a
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px + ipy or dx2−y2 + idxy superconductor. Nevertheless, I am not fond of rewriting
history and for this reason I kept this chapter, after excising some results that were
wrong.

Chapter 12, Topology and the quantum Hall effect, is almost the same as
Chapter 9 of the first edition. I only made minor editing changes. Similarly, the
new Chapter 13, The fractional quantum Hall effect, is almost the same as Chap-
ter 10 in the first edition. The only important change here, aside from editing, was
that the section on edge states is no longer in this chapter. The bulk of this chapter
is devoted to a presentation of the bosonic and fermionic Chern–Simons theory of
the fractional quantum Hall states.

The remaining four chapters of the new edition are new and are devoted to,
respectively, Topological fluids (Chapter 14), Physics at the edge (Chapter 15),
Topological insulators (Chapter 16), and Quantum entanglement (Chapter 17).
Chapter 14 is devoted to the theory of topological fluids presented here as a theory
of fractional quantum Hall fluids. Here I include a description of the hydrodynamic
theory (of Wen and Zee), its extensions to general abelian multi-component fluids,
non-abelian quantum Hall fluids, superconductors as topological fluids, and topo-
logical superconductors, and a brief presentation of the concepts of braiding and
fusion. Chapter 15, Physics at the edge, is an in-depth presentation of the the-
ory of edge states in integer and fractional quantum Hall fluids, both abelian and
non-abelian, Wen’s theory of bulk–edge correspondence, and the effective field the-
ories of the non-abelian fractional quantum Hall states. I devote special sections to
discussions of tunneling conductance at quantum point contacts, noise and the mea-
surement of fractional charge, and the theory of abelian and non-abelian quantum
interferometers, and there is a brief sales pitch for topological quantum computing.
Chapter 16 is devoted to a brief presentation of the exciting new field of topolog-
ical insulators. Here I discuss the basic concepts, band topological invariants, the
anomalous quantum Hall effect, and the spin quantum Hall effect and its experi-
mental discovery. I also discuss the extensions of these ideas to three-dimensional
Z2 topological insulators, their relations to fractional charge (and polyacetylene)
in one dimension, the Callan–Harvey effect in three dimensions, surface Weyl
fermions, Majorana modes, and possible new topological insulators resulting from
spontaneous symmetry breaking. Chapter 17 is devoted to the role of quantum
entanglement in field theory, quantum critical systems and topological phases, and
large-scale entanglement and the scaling of the entanglement entropy, as well as
the relation of this problem to the modern ideas of holography and the CFT/gravity
duality.

Several important subjects are not in this book. In particular, except for some cur-
sory discussion in Chapter 2, Fermi liquids are not discussed. For this reason I have
also not discussed the Bardeen–Cooper–Schrieffer theory of superconductivity
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and other mechanisms. I have also not discussed what happens when a Fermi
liquid fails. This is an area to which I have devoted a great deal of effort, includ-
ing the formulation of a new class of electronic liquid-crystal phases of strongly
correlated systems. Experimentally these phases arise often in conjunction or in
competition with high-temperature superconductivity. I have also not discussed the
important problem of fermionic quantum criticality and non-Fermi-liquid behav-
ior, with many interesting connections with the concept of holography, as well as
extensions of bosonization to dimensionalities higher than two, which is a natural
framework to describe these open problems. Absent from this book is also the dis-
cussion of disordered systems, a fascinating problem in which there are very few
well-established results.

Finally, all the figures in this book are new because I had lost the source files of
the figures that were used in the first edition. This new edition includes an extensive
set of references at the end of the book, and a detailed index, which I hope will be
useful to the reader.



2

The Hubbard model

2.1 Introduction

All theories of strongly correlated electron systems begin with the Hubbard model
because of its simplicity. This is a model in which band electrons interact via
a two-body repulsive Coulomb interaction. No phonons are present, and in gen-
eral no explicitly attractive interactions are included. For this reason, the Hubbard
model has traditionally been associated with magnetism. Superconductivity, on
the other hand, has traditionally (i.e. after BCS) been interpreted as an insta-
bility of the ground state resulting from effectively attractive interactions (say,
electron–phonon as in BCS). A novel situation has arisen with Anderson’s sug-
gestion (Anderson, 1987) that the superconductivity of the new high-Tc materials
may arise from purely repulsive interactions. This suggestion was motivated by the
fact that the superconductivity seems to originate from doping (i.e. extracting or
adding charges) an otherwise insulating state.

The Hubbard model is a very simple model in which one imagines that, out of
the many different bands which may exist in a solid, only very few states per unit
cell contribute significantly to the ground-state properties. Thus, if a Bloch state of
energy εp, momentum �p, and index α has a wavefunction � �p,α, one can construct
Wannier states

�α(�ri ) = 1√
N

∑
�p∈BZ

ei �p·�ri� �p,α(�ri ) (2.1)

where �ri is the location of the i th atom and BZ is the Brillouin zone. The assump-
tion here will be that only one (or a few) band indices matter, so I will drop the
index α. The Coulomb interaction matrix elements are

Ui j,i ′ j ′ =
∫

d3r1 d3r2 �
∗
i (�r1)�

∗
j (�r2)Ṽ (�r1 − �r2)�i ′(�r1)� j ′(�r2) (2.2)

8
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(in three dimensions), where Ṽ is the (screened) Coulomb interaction. Since Ṽ is
expected to decay as the separation increases, the largest term will be the “on-site”
term: Uii,i i ≡ U . Next will come nearest neighbors, etc. Moreover, since the
Wannier functions have exponentially decreasing overlaps, Ui j,i ′ j ′ is expected to
decrease rather rapidly with the separation |i − j |.

The second quantized Hamiltonian tight binding (in the Wannier-functions
basis) is

H = −
∑
�ri ,�r j
σ=↑,↓

(
c†
σ (�ri )ti j cσ (�r j )+ c†

σ (�r j )ti j cσ (�ri )
)

+ 1

2

∑
i, j,i ′, j ′
σ,σ ′=↑,↓

Ui j,i ′ j ′c
†
σ (�ri )c

†
σ ′(�r j )cσ ′(�r j ′)cσ (�ri ′)

(2.3)

where c†
σ (�r) creates an electron at site �r with spin σ (or more precisely, at the unit

cell �r in the band responsible for the Fermi surface) and satisfies

{cσ (�r), c†
σ ′(�r ′)} = δσ,σ ′δ�r ,�r ′

{cσ (�r), cσ ′(�r ′)} = 0
(2.4)

The Hubbard model is an approximation to the more general Hamiltonian,
Eq. (2.3), in which the hopping is restricted to nearest neighboring sites:

ti j =
{

t if i, j are nearest neighbors

0 otherwise
(2.5)

and the Coulomb interaction is assumed to be screened. If just the “on-site” term
is kept,

Ui j,i ′ j ′ = Uδi jδi ′ j ′δi i ′ (2.6)

the resulting model Hamiltonian

H = −t
∑
〈�r ,�r ′〉
σ=↑,↓

(
c†
σ (�r)cσ (�r ′)+ h.c.

) + U
∑
�r

n↑(�r)n↓(�r) (2.7)

is known as the one-band Hubbard model. In Eq. (2.7), we have dropped the lat-
tice site labels and 〈 , 〉 means nearest-neighboring sites. This is the tight-binding
approximation and represents the one-band Hubbard model. We have introduced

nσ (�r) = c†
σ (�r)cσ (�r) (2.8)

From the Pauli principle we get nσ = 0, 1 or n2
σ = nσ at every site.

The Hilbert space of this system is the tensor product of only four states per site,
representing |0〉 as nothing, |↑〉 as an electron with spin up, |↓〉 as an electron with
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spin down, and |↑↓〉 as an up–down pair. The states |0〉 and |↑↓〉 are spin singlets
(i.e. S = 0).

It is convenient to define the following operators. The spin operator �S(�r) is
defined by (the summation convention is assumed)

�S (�r) = �

2
c†
σ (�r)�τσσ ′cσ ′(�r) (2.9)

where �τ are the (three) Pauli matrices

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
(2.10)

The particle number operator at site �r (or charge) is

n(�r) =
∑
σ

nσ (�r) =
∑
σ

c†
σ (�r)cσ (�r) ≡ c†

σ (�r)1σσ ′cσ ′(�r) (2.11)

and the associated total charge Q is given by

Q = e
∑
�r

n(�r) ≡ eNe (2.12)

2.2 Symmetries of the Hubbard model

2.2.1 SU(2) spin

Suppose we rotate the local spin basis (i.e. the quantization axis)

c′σ (�r) = Uσσ ′cσ ′(�r) (2.13)

where U is a 2 × 2 SU(2) matrix. Namely, given four complex numbers a, b, c,
and d , the matrix U given by

U =
(

a c
d b

)
(2.14)

must satisfy

U−1 = U † ≡ (
U T

)∗
(2.15)

together with the condition

det U = 1 (2.16)

We will parametrize the matrix U (�θ) as follows:

U (�θ) = ei �θ ·�τ = 1 cos |�θ | + isin|�θ | �θ · �τ
|�θ | (2.17)
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where 1 represents the 2×2 identity matrix, �τ are the Pauli matrices, and the Euler
angles �θ = (θ1, θ2, θ3) parametrize the SU(2) group.

Under such a unitary transformation, the spin �S transforms as follows:

S′a(�r) = Rab Sb(�r)
= �

2
c′†(�r)τ ac′(�r)

= �

2
c†(�r) (U−1τ aU

)
c(�r) (2.18)

where Rab is a rotation matrix induced by the SU(2) transformation of the
fermions:

U−1τ aU = Rabτ b (2.19)

In other words, we have a rotation of the quantization axis.
The axis of quantization can be chosen arbitrarily. Thus, the Hubbard model

Hamiltonian should not change its form under a rotation of the spin quantization
axis. This is not apparent in the standard form of the interaction

H1 = U
∑
�r

n↑(�r)n↓(�r) (2.20)

But we can write this in a somewhat different form in which the SU(2) symmetry
becomes explicit. Consider the operator∑

�r

(�S(�r))2 =
∑
�r

a=1,2,3

Sa(�r)Sa(�r) (2.21)

By expanding the components and making use of the SU(2) identity∑
a=1,2,3

τ a
αβτ

a
γ δ = 2δαδδβγ − δαβδγ δ (2.22)

one gets ∑
�r

(�S(�r))2 =
∑
�r

(
3

4
n(�r)− 3

2
n↑(�r)n↓(�r)

)
(2.23)

Thus, we can write

H1 = U
∑
�r

n↑(�r)n↓(�r) = −2U

3
�S2(�r)+ NeU

2
(2.24)

The last term is a constant, which can be dropped. The Hamiltonian now has the
form



12 The Hubbard model

H = −t
∑
〈�r ,�r ′〉
σ=↑,↓

(
c†
σ (�r)cσ (�r ′)+ h.c.

) − 2U

3

∑
�r

(�S(�r))2 + NeU

2
(2.25)

which is manifestly SU(2)-invariant.
For U > 0, the interaction energy is lowered if the total spin at each site is

maximized. Thus, one should expect some sort of magnetic ground state, at least if
each site has one particle (on average). This state requires that the system somehow
should pick a global (i.e. the same for all sites) quantization axis. In other words,
the global SU(2) spin symmetry may be spontaneously broken. This has important
consequences, which we will discuss later.

2.2.2 U(1) charge

We are free to change the phase of the one-particle wavefunction

c′σ (�r) = eiθcσ (�r) (2.26)

Here, eiθ is an element of the group U(1), and group elements satisfy

eiθeiθ ′ = ei(θ+θ ′) (2.27)

The Hamiltonian is invariant under this U(1) transformation. This is nothing but
charge conservation. For example, if we had terms that would not conserve charge,
like

c†
↑(�r)c†

↓(�r ′) → ei2θc†
↑(�r)c†

↓(�r ′) (2.28)

we would not have this invariance.
Suppose now that we couple this system to the electromagnetic field (A0, �A).

We expect three effects.

1. A Zeeman coupling given by

HZeeman = g
∑
�r

�S(�r) · �B(�r) (2.29)

which couples the spin �S(�r) with the local magnetic field �B(�r) so as to align it
along the �B(�r) direction.

2. An orbital coupling for electrons in a crystal with one-particle Hamiltonian

H( �p) = 1

2me

(
�p − e

c
�A
)2 + V (�r) (2.30)

where V (�r) is the periodic potential imposed by the crystal. In the tight-binding
approximation, we must therefore modify the kinetic-energy term according to
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H0 ≡−t
∑
〈�r ,�r ′〉
σ=↑,↓

(
c†
σ (�r)cσ (�r ′)+ h.c.

)

→ −t
∑
〈�r ,�r ′〉
σ=↑,↓

(
c†
σ (�r)e

ie
�c

∫ �r ′
�r d �x· �A(�x)cσ (�r ′)+ c†

σ (�r ′)e−
ie
�c

∫ �r ′
�r d �x· �A(�x)cσ (�r)

)
(2.31)

We should now check the gauge invariance under the transformation

�A′ = �A + �∇� (2.32)

where � is an arbitrary function of space and time. We get the change

A′(�r , �r ′) ≡
∫ �r ′

�r
d �x · �A′(�x)

= A(�r , �r ′)+�(�r ′)−�(�r) (2.33)

Thus the kinetic-energy term is gauge-invariant,

H ′
0 ≡−t

∑
〈�r ,�r ′〉
σ=↑,↓

(
c′†σ (�r)e

ie
�c A′(�r ,�r ′)c′σ (�r ′)+ h.c.

)

=−t
∑
〈�r ,�r ′〉
σ=↑,↓

(
c†
σ (�r)e−iθ(�r)e

ie
�c (A(�r ,�r ′)+�(�r ′)−�(�r))e+iθ(�r ′)cσ (�r ′)+ h.c.

)
(2.34)

provided that the local change of phase is given by

θ(�r) ≡ − e

�c
�(�r) (2.35)

3. An electrostatic coupling given by

Helectrostatic =
∑
�r ,σ

eA0(�r)c†
σ (�r)cσ (�r) (2.36)

which couples the particle density to A0(�r).

2.2.3 Particle–hole transformations

In the case of a bipartite lattice (i.e. a lattice that is the union of two interpenetrating
sublattices A and B) we get additional symmetries.

1. First, the sign of t can be changed. Consider the transformation

cσ (�r) → +cσ (�r) if �r ∈ A
cσ (�r) → −cσ (�r) if �r ∈ B

(2.37)
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under which the kinetic energy changes sign:

tc†
σ (�r)cσ (�r ′) → −tc†

σ (�r)cσ (�r ′), �r ∈ A, �r ′ ∈ B (2.38)

while the potential energy is left unchanged. This transformation leaves the
canonical commutation relations unchanged and therefore leaves the spectrum
unchanged.

2. Now consider the particle–hole transformation

c↑(�r) = d↑(�r)

c↓(�r) =
{
+d†

↓(�r), �r ∈ A
−d†

↓(�r), �r ∈ B
(2.39)

The Hamiltonian H(t,U ), Eq. (2.7), changes into H(t,−U ) + U N↑, where
N↑ is the total number of up spins (which is conserved), since under this
transformation we get

n↑ + n↓ = c†
↑c↑ + c†

↓c↓ = d†
↑d↑ + d↓d†

↓ = d†
↑d↑ − d†

↓d↓ + 1 (2.40)

and

n↑ − n↓ = c†
↑c↑ − c†

↓c↓ = d†
↑d↑ − d↓d†

↓ = d†
↑d↑ + d†

↓d↓ − 1 (2.41)

Similarly, the charge Q and the component Sz of the total spin transform as

Q → Sz + 1, Sz → Q − 1 (2.42)

Thus the attractive and the repulsive cases map into each other and, at the same
time, spin maps into charge and vice versa. Note that for negative U< 0 the
Hamiltonian favors local spin-singlet states (S = 0), i.e. empty and doubly
occupied sites.

2.3 The strong-coupling limit

We consider now the strong-coupling limit of the Hubbard model, i.e. U → ∞.

The half-filled case is special but important. We will consider it first.

2.3.1 The half-filled system (U > 0)

Recall that the interaction term

Hint ≡ −2

3
U

∑
�r

(�S(�r))2
(2.43)

forces the spin �S to be largest if U becomes infinitely large, i.e. doubly occu-
pied sites are forbidden. Only |↑〉 and |↓〉 states are kept in this large-U limit at



2.3 The strong-coupling limit 15

(c)(a) (b)

Figure 2.1 Configurations (a) and (c) are two configurations of spins correspond-
ing to orthogonal ground states of H0. They differ by the exchange of two
neighboring spins. Configuration (b) corresponds to a virtual state. The circles
represent the unit cells of the crystal and the arrows are the components of the
spin along the quantization axis.

half-filling. The interaction part of the Hamiltonian has infinitely many eigenstates.
Any spin configuration is an eigenstate. In order to lift this massive degeneracy we
will keep the effects of fluctuations induced by the kinetic-energy term to lead-
ing order in an expansion in t/U . We have to solve a problem in degenerate
perturbation theory, a strong-coupling expansion.

Suppose we begin with any configuration that can be labeled by the local
z-component of the spin |{σ(�r)}〉 (see Fig. 2.1(a)). In an expansion in powers of
t/U , we have intermediate states in which one site will become doubly occupied
and, at the same time, another site becomes empty (see Fig. 2.1(b)). This state
has an energy U above that of the degenerate ground states. The matrix element
(squared) is t2. There is also a multiplicity factor of 2 since this process can occur
in two different ways. Hence we expect that the relevant parameter of the effec-
tive Hamiltonian should be 2t2/U . Also, the final state has to be either the same
one as the initial state or it can differ at most by a spin exchange (see Fig. 2.1(c)).
The natural candidate for the effective Hamiltonian is the quantum Heisenberg
antiferromagnet.

We can obtain this result by carrying out this expansion explicitly (Emery, 1979).
Let H0 and H1 denote the kinetic and interaction terms of the Hubbard Hamiltonian
H , Eq. (2.7),

H0 = −t
∑
〈�r ,�r ′〉
σ=↑,↓

(
c†
σ (�r)cσ (�r ′)+ h.c.

)
H1 = U

∑
�r

n↑(�r)n↓(�r)
(2.44)

Let |α〉 be any of the 2N states with every site occupied by a spin either up or down.
Here, |α〉 is an eigenstate of H1 with eigenvalue E1 = 0.
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We will use Brillouin–Wigner perturbation theory (Baym, 1974) Consider
Schrödinger’s equation

H |�〉 = E |�〉 (2.45)

where |�〉 is any eigenstate. We can write

(E − H1)|�〉 = H0|�〉 (2.46)

Formally, we get

|�〉 = 1

E − H1
H0|�〉

= P̂

E − H1
H0|�〉 +

∑
α

|α〉〈α|H0|�〉
E − E1

(2.47)

where

H1|α〉 = E1|α〉 (2.48)

and

P̂ = 1 −
∑
α

|α〉〈α| (2.49)

projects out of the unperturbed states. Clearly P̂ commutes with H1. Define |�α〉
as the solution of the equation

|�α〉 = |α〉 + P̂

E − H1
H0|�α〉 (2.50)

Let aα be given by

aα = 〈α|H0|�〉
E − E1

(2.51)

Then we can write

|�〉 =
∑
α

aα|�α〉 (2.52)

If we iterate Eq. (2.50) to first order in powers of [P̂/(E − H1)]H0, we find

|�α〉 ≈ |α〉 + P̂

E − H1
H0|α〉 ≈ |α〉 − 1

U
H0|α〉 (2.53)

since 〈β|H0|α〉 = 0 at half-filling. Thus, if we insert Eq. (2.53) into Eq. (2.52), and
in turn insert this into Eq. (2.51), we get

(E − E1)aα = 1

|U |
∑
α′

〈α|H 2
0 |α′〉aα′ (2.54)
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This is the same as the Schrödinger equation for the Hamiltonian H ′
0 = H 2

0 /|U |,
where H ′

0, at half-filling, is given by

H ′
0 = 2t2

|U |
∑
〈�r ,�r ′〉

�S(�r) · �S(�r ′) (2.55)

In other words, we find the spin one-half quantum Heisenberg antiferromagnet with
the exchange coupling J = 2t2/|U |. This result is valid for the half-filled system
in any dimension and for any lattice.

2.3.2 Away from half-filling

Clearly other processes are now allowed. If U � t, doubly occupied sites are
energetically very expensive. Thus the restricted Hilbert space now consists of
configurations made of empty sites (holes), and up and down spins.

The kinetic-energy term will allow charge motion since empty sites (holes) will
be able to move. These holes carry electric charge but have no spin. The effective
Hamiltonian now has the form of the t–J model:

H = −t
∑
〈�r ,�r ′〉
σ=↑,↓

(
c†
σ (�r)cσ (�r ′)+ h.c.

) + J
∑
〈�r ,�r ′〉

�S(�r) · �S(�r ′) (2.56)

(where J = 2t2/|U |), with the constraint∑
σ=↑,↓

c†
σ (�r)cσ (�r) = n(�r) = 0, 1 (2.57)

which eliminates doubly occupied sites. Now we have two separately conserved
quantities: the charge Q, which equals the number of holes, and the spin compo-
nent Sz = ∑

�r Sz(�r). It is clear that as the holes move they can induce spin-flip
processes. The spin configurations get disrupted by the motion of holes and the
long-range order (antiferromagnetic) may be destroyed. Presumably it should take
a finite density of holes to destroy the long-range order. We will discuss this
strong-coupling limit at great length. Let us first consider the opposite case.

2.4 The weak-coupling limit

In the weak-coupling limit U � t we may think of the interaction as a weak per-
turbation. One therefore expects that the states of a weakly coupled electron gas
may be qualitatively similar to the states of a free-electron gas. This picture is usu-
ally called a Fermi liquid (Pines and Nozières, 1966). The main assumption is that
there is a one-to-one correspondence between the states of a free-fermion system
and those in a weakly interacting one.
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For free fermions, the Hamiltonian reduces to the kinetic-energy term. For the
Hubbard model we have

H0 = −
∑
�r ,�r ′

σ=↑,↓

(
c†
σ (�r)t (�r − �r ′)cσ (�r ′)+ c†

σ (�r ′)t (�r − �r ′)cσ (�r)
)

(2.58)

It is convenient to go to Fourier space (momentum). Assume that we are in d space
dimensions and that the lattice has N d sites with N even (for simplicity). With
V ≡ N d , we define

cσ (�r) = 1

V

∑
�k

ei �k·�r cσ (�k) (2.59)

where

�k = 2π

N
(n1, . . . , nd)− (π, . . . , π) (2.60)

and 1 ≤ ni ≤ N . Thus the momenta ki vary over the range −π + 2π/N ≤ ki ≤ π .
In the thermodynamic limit N → ∞, 2π/N → 0 and the ks become uniformly
distributed in the interval −π ≤ ki ≤ π , the Brillouin zone.

Remember the following properties of Fourier transforms. Let k = (2π/N )
n − π, n = 1, . . . , N and let f (k) be some function of k. We have the Riemann
sums ∑

k

f (k) = 1

�k

∑
k

�k f (k)

→ N

2π

∫ π

−π
dk f (k) as N → ∞

(2.61)

where �k = 2π/N . The extension to the d-dimensional case is∑
�k

f (�k) → N d
∫ π

−π
ddk

(2π)d
f (�k) as N → ∞ (2.62)

In particular, as N → ∞
1

N d

∑
�k

ei �k·(�r−�r ′) = δ�r ,�r ′ →
∫ π

−π
ddk

(2π)d
ei �k·(�r−�r ′) = δ�r ,�r ′

∑
�r

ei(�k−�k′)·�r = N dδ�k,�k′ → (2π)dδ(d)(�k − �k ′)

cσ (�r) →
∫ π

−π
ddk

(2π)d
ei �k·�r cσ(�k) (2.63)

The canonical (anti)commutation relations

{c†
σ (�r), cσ ′(�r ′)} = δσ,σ ′δ�r ,�r ′ (2.64)
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become, in the same limit,

{c†
σ (
�k), cσ ′(�k ′)} = δσ,σ ′δ�k,�k′ → (2π)dδσ,σ ′δ(d)(�k − �k ′) (2.65)

The kinetic energy then takes the form

H0 = −
∑
�r ,�r ′

σ=↑,↓

(
c†
σ (�r)t (�r − �r ′)cσ (�r ′)+ c†

σ (�r ′)t (�r − �r ′)cσ (�r)
)

= −
∑
�r ,�r ′

σ=↑,↓

t (�r − �r ′)
∫

ddk

(2π)d

∫
ddk ′

(2π)d

(
e−i �k·�r+i �k′·�r ′c†

σ (
�k)cσ (�k ′)+ h.c.

)
(2.66)

If by t (�k) we denote the Fourier transform of t (�l),
t (�k) =

∑
�l

t (�l)e−i �k·�l (2.67)

we can write ∑
�r ,�r ′

t (�r − �r ′)e−i �k·�r+i �k′·�r ′ = t (�k)(2π)dδ(d)
(�k − �k ′

)
(2.68)

For the case

t (�r − �r ′) ≡ t (�l) =
{

t for nearest neighbors

0 otherwise
(2.69)

we get

t (�k) = 2t
d∑

j=1

cos k j (2.70)

and a free Hamiltonian of the form

H0 =
∑
σ=↑,↓

∫
ddk

(2π)d
ε(�k)c†

σ (
�k)cσ (�k) (2.71)

with

ε(�k) = −t (�k) = −2t
d∑

j=1

cos k j (2.72)

The ground state is found by filling up the Fermi sea. Thus, if we have N parti-
cles, the total number of momentum states with energy smaller than E is (assuming
that ε�k has its minimum at �k = (0 . . . 0)) determined by the constant-energy curves



20 The Hubbard model

ε(�k) ≡ ε (see Fig. 2.2). For instance, in the one-dimensional case we find (see
Fig. 2.3)

ε(k) = −2t cos k (2.73)

If N is the number of particles and N the number of sites, we get

N = 2N
∫ kF

−kF

dk

2π
= 2NkF

π
(2.74)

kx

ky
π

π−π

−π

Figure 2.2 Constant-energy curves of H0 in the first Brillouin zone of the square
lattice.

(k)

k

εF

4t

kF π−kF−π

Figure 2.3 One-particle spectrum of H0 in one dimension.
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kx

ky

π

π−π

−π

Figure 2.4 Fermi sea for free electrons on a square lattice at half-filling (the lattice
spacing is unity).

and

kF = πN
2N

≡ π

2
ρ (2.75)

where ρ is the linear density. At half-filling kF = π/2 and ε(kF) vanishes. In higher
dimensions we determine the constant-energy curves in the same way. For a half-
filled system we just fill up the negative-energy states to obtain the Fermi sea. This
is so because this band has E ↔ −E symmetry (“particle–hole” symmetry) and
there are as many states with positive energy as there are with negative energy. The
Fermi surface is defined by εF = 0 and for a square lattice is rectangular (square)
(see Fig. 2.4).

The expectation value of the occupation number

n�k =
∑
σ=↑,↓

c†
σ (
�k)cσ (�k) (2.76)

has a jump at the Fermi surface both in the free case and in the case with interaction
(see Fig. 2.5).

2.5 Correlation functions

The fermion Green function (or propagator) plays an important role in the theory.
We can define it in terms of field operators in the Heisenberg representation



22 The Hubbard model

n(k)

(k)Fε ε

Z

Figure 2.5 Occupation number of the energy levels labeled by k in the non-
interacting case (straight line) and interacting (curved line) case; Z is the
quasiparticle residue of Eq. (2.84).

cσ (�r , t) = ei Ht cσ (�r )e−i Ht (2.77)

The fermion propagator is defined by

Gσσ ′(�r , t; �r ′, t ′) = −i〈Gnd|T cσ (�r , t)c†
σ ′(�r ′, t ′)|Gnd〉 (2.78)

where |Gnd〉 stands for the ground state of the system and T means a time-ordered
product of operators,

T A(t)B(t ′) = A(t)B(t ′)θ(t − t ′)± B(t ′)A(t)θ(t ′ − t) (2.79)

with a + (–) sign for bosons (fermions) and

θ(t) =
{

1 if t > 0

0 if t < 0
(2.80)

For a translationally invariant and time-independent system, we can write
Gσσ ′(�r , t; �r ′, t ′) in terms of its Fourier transform (Abrikosov et al., 1963; Fetter
and Walecka, 1971; Doniach and Sondheimer, 1974)

Gσσ ′(�r , t; �r ′, t ′) =
∫

ddk

(2π)d

∫
dω

2π
ei(�k·(�r−�r ′)−ω(t−t ′))Gσσ ′(�k, ω) (2.81)

In principle Gσσ ′(�k, ω) is a 2 × 2 spin matrix. In the case of a non-interacting
system (and for any spin-isotropic ground state, for that matter), G(0)

σσ ′(�k, ω) is very
simple to compute (Fetter and Walecka, 1971). The result is
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Gσσ ′(�k, ω) = δσσ ′ lim
ν→0+

⎛⎝ θ
(
ε(�k)− εF

)
ω − ε(�k)+ iν

+
θ

(
εF − ε(�k)

)
ω − ε(�k)− iν

⎞⎠ (2.82)

The poles of G0
αβ(

�k, ω) exhibit the physical one-particle excitation spectrum

ω = ε(�k) (2.83)

A weakly interacting system (a Fermi liquid) resembles a non-interacting one
in the sense that the physical low-energy excitations look like weakly interacting
fermions. Thus the fermion propagator retains its pole structure, albeit with a renor-
malized dispersion relation ω = εren(�k) and a non-trivial residue for energies close
to the Fermi energy. In other words, for ω ∼ εF the propagator should look like

lim
ω→εF
ν→0+

G(�k, ω) ≈ lim
ω→εF
ν→0+

(
Z

ω − εren(�k)+ iν
+ Greg(�k, ω)

)
(2.84)

where Z is the residue and Greg(�k, ω) does not have any singularities close to εF.
The wave-function renormalization Z measures the strength of the jump of the
fermion occupation number n�k at the Fermi surface, see Fig. 2.5. These excita-
tions are the fermion quasiparticles, the dressed electrons, of the Fermi liquid.
These quasiparticles are assumed to be stable in the sense that the poles lie
on the real energy axis. Any imaginary part would imply a decay rate of the
quasiparticles (“damping”). The existence of such fermionic quasiparticles in the
low-energy spectrum of a system of interacting fermions is the central content (and
assumption) of the Landau theory of the Fermi liquid (Baym and Pethick, 1991).

In addition to one-particle states, a Fermi liquid has a large class of many-particle
excitations. These include particle–hole excitations (i.e. density fluctuations), spin
excitations, and paramagnons. These collective modes are bound states that exist
only in an interacting system. Many of these modes are damped. Others are not.
We can study the collective modes by means of the many-particle Green functions.
Several correlation functions are going to be important to us. They are outlined
below.

(1) The density correlation function

K00(�r , t; �r ′, t ′) = 〈Gnd|T n̂(�r , t)n̂(�r ′, t ′)|Gnd〉 (2.85)

where n̂(�r , t) is the local normal-ordered density operator

n̂(�r , t) =
∑
σ=↑,↓

c†
σ (�r , t)cσ (�r , t)− ρ (2.86)

and ρ is the average density.
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The density correlation function measures the strength of the density fluctua-
tions in a physical system. As we will see in other chapters, it plays a key role in
understanding the dielectric properties of a system. If the Hamiltonian system is
translationally invariant (or, equivalently, invariant under lattice translations, as the
Hubbard model is) and time-independent, then the correlation function can only be
a function of the separation �r − �r ′ and of the time difference t − t ′,

K00(�r , t; �r ′, t ′) ≡ K00(�r − �r ′, t − t ′) (2.87)

whose Fourier transform has the form K00(�k, ω).
In many electronic systems, such as NbSe2 (and other chalcogenides), and

in strongly correlated systems, such as the high-temperature superconductor
La2−x Bax CuO4 for some doping range x ∼ 1/8, the electronic ground state is
a charged stripe or (charge) density wave (CDW) that breaks spontaneously the
lattice translation symmetry. The CDW order parameter 〈Gnd|n( �Q)|Gnd〉 is the
ground-state expectation value of the Fourier transform of the density operator at
the ordering wave vector �Q of the CDW. In a CDW state, the Fourier transform of
the density correlation function takes the form

K00(�k, ω) = |〈n( �Q)〉|2δ(�k − �Q)δ(ω)+ K conn
00 (�k, ω) (2.88)

where the connected correlation function K conn
00 (�k, ω) contains the information on

the spectrum of density fluctuations of this state. This correlator can be measured
by a number of experimental techniques such as light and X-ray scattering.

(2) The current correlation function

Kii ′(�r , t; �r ′, t ′) = 〈Gnd|T Ji (�r , t)Ji ′(�r ′, t ′)|Gnd〉 (2.89)

where Ji (�r , t) is the current operator, which, in the case of the Hubbard model in
the absence of external electromagnetic fields, is

Ji (�r , t) = −i t
∑
σ=↑,↓

(
c†
σ (�r , t)cσ (�r + �ei , t)− h.c.

)
(2.90)

There is no need to normal-order this operator since the ground state is not expected
to spontaneously carry a non-zero current. The current correlation function has the
most direct information on the conductivity and can also be measured by light
scattering and similar experimental techniques.

(3) The spin correlation function

K aa′(�r , t; �r ′, t ′) = 〈Gnd|T Sa(�r , t)Sa′(�r ′, t ′)|Gnd〉 (2.91)

We will see below that, if the spin symmetry is broken spontaneously (i.e. mag-
netism), K aa′ can be non-zero as (�r , t) and (�r ′, t ′) become infinitely separated from
each other. In fact, the limit (at equal time!)
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lim
|�r−�r ′|→∞

1

3

3∑
a=1

K aa(�r , t; �r ′, t) = M2 (2.92)

represents the amplitude of the ferromagnetic order parameter M . A non-zero
order parameter M signals the presence of a spontaneously broken symmetry. If
the magnetic ordering has a spatial dependence with an ordering wave vector �Q it
is a spin-density wave (SDW) whose order parameter is the Fourier transform at
wave vector �Q of the ground-state expectation value of the spin-density operator
〈Gnd| �S(�r)|Gnd〉, the local magnetization. In the case of antiferromagnetism, the
ground state is a Néel state, in which case the ordering wave vector is �Q = (π, π)

(in two dimensions), and the order parameter is the staggered magnetization, which
takes opposite values on the two sublattices of the square lattice.

(4) The Cooper-pair correlation function
All of these two-particle operators have the common feature that they con-

serve particle numbers locally and the excitations are electrically neutral. In the
Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity particle-number
conservation is lost locally (but not globally), since one could break a Cooper pair
at one location and form it again somewhere else. In BCS theory (Schrieffer, 1964),
a Cooper pair is a bound state of an electron with momentum �k and spin up and
another electron with momentum −�k and spin down, with �k on the Fermi sur-
face. This state has charge 2e and is a spin singlet. The order parameter for a
superconducting state is

�σσ ′(�k) = 〈Gnd|c†
σ (k)c

†
σ ′(−�k)|Gnd〉 (2.93)

In a BCS state �k and −�k are two vectors on the Fermi surface and �(�k) is the
Cooper-pair amplitude. If �σσ ′(�k) does not depend on the direction of �k, as in
most low-temperature superconductors, such as niobium, the superconductor is
in an s-wave state. Other superconductor order-parameter symmetries, i.e. other
angular-momentum channels, are also possible. In general, the fermionic nature of
the electrons dictates that states which pair in an even-angular-momentum chan-
nel (such as s-wave and d-wave states) must be spin singlets, while those which
pair in an odd-angular-momentum channel (such as p-wave states) must be spin
triplets. Thus, 3He A has an order parameter that is a spin triplet and a p-wave
orbital state. The order parameter of the copper-oxide high-temperature supercon-
ductors is a spin singlet and has d-wave orbital symmetry, specifically dx2−y2 , and
is invariant under time-reversal invariance. However, superconducting states that
break time-reversal invariance are also possible. An example of a time-reversal-
invariance-breaking superconducting state is the case of the p-wave, specifically
px + i py , spin-triplet state that appears to describe the superconductivity of the
ruthenate Sr2RuO4. We can now define a Cooper-pair correlation function



26 The Hubbard model

C(�k, t; �k ′, t ′) = 〈Gnd|T
(

c†
↑(�k, t)c†

↓(−�k, t)c↑(�k ′, t ′)c↓(−�k ′, t ′)
)
|Gnd〉 (2.94)

From an experimental point of view, what one can measure are susceptibil-
ities. In other words, one couples the system to a weak external field. From
linear-response theory (Fetter and Walecka, 1971; Doniach and Sondheimer, 1974)
we know how to relate the response functions (i.e. causal propagators) to the
time-ordered functions. The susceptibilities are the Fourier-transformed causal
propagators. For instance, the magnetic susceptibility χaa′(�k, ω) is defined as
follows:

χaa′(�k, ω) =
∑
�r

∫
dt ei(�k·�r−ωt)χaa′(0, 0; �r , t) (2.95)

where χaa′(�r , t; �r ′, t ′) is the causal (or retarded) propagator

χaa′(�r , t; �r ′, t ′) = θ(t ′ − t)〈Gnd|Sa(�r , t)Sa′(�r ′, t ′)|Gnd〉 (2.96)

In particular the static susceptibility χaa′(�k, 0) measures the response of the system
to a weak external magnetic field. In the uniform limit �k → 0, we are measuring
the response to a weak uniform magnetic field. Thus this is the static ferromagnetic
susceptibility. If we want to probe a Néel state we must couple to the staggered
magnetization and hence use a staggered field. This is difficult to achieve. However,
using neutron scattering we can measure χ(�k, ω) for a wide range of wave vectors
�k, in particular the case �k = (π, π, π), which is the staggered or Néel susceptibility.
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The magnetic instability of the Fermi system

The Hubbard model was originally introduced as the simplest system which may
exhibit an insulating (Mott) state. This state is the result of strong electron–electron
interactions. In this chapter we consider the Hubbard model at half-filling. The
main goal here is the study of the magnetic properties of its ground state. Apart
from an exact solution in one dimension, no exact results are available for this
problem. This leads to the use of several approximations. The most popular one,
and the oldest, is the mean-field theory (MFT). In the MFT one has the bias that
the ground state does have some sort of magnetic order (i.e. ferromagnetic, Néel
antiferromagnetic, etc.). The problem is then usually solved by means of a varia-
tional ansatz. However, one is usually interested in more than just the ground-state
energy, which, after all, is not directly measurable and depends very sensitively on
the properties at short distances. Most often we wish to evaluate the long-distance,
low-frequency, properties of the correlation and response functions of this theory.
Moreover, in some cases, such as in one dimension, the fluctuations overwhelm the
MFT predictions.

In this chapter we will consider the standard MFT (i.e. Hartree–Fock), which
is expected to become accurate at weak coupling. We will consider both ferro-
magnetic and antiferromagnetic states. We will also rederive these results using
path integrals. As a byproduct, we will also have a theory of the fluctuations: the
non-linear sigma model.

3.1 Mean-field theory

Let us consider now the effects of interactions on the unperturbed ground state. It is
convenient to consider the Fourier transform of the interaction term of the Hubbard
Hamiltonian, Eq. (2.7)

H1 = U
∑
�r

n↑(�r)n↓(�r)

= U
∫
�k1 ... �k4

(2π)dδd(−�k1 + �k2 − �k3 + �k4)c
†
↑(�k1)c↑(�k2)c

†
↓(�k3)c↓(�k4) (3.1)

27
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Figure 3.1 Scattering processes between right (R) and left (L) movers:
(a) forward, (b) backward and (c) Umklapp.

where
∫
�ki

is a shorthand for
∫

BZ ddki/(2π)d . Notice that on a lattice momentum is

conserved, modulo a reciprocal-lattice vector �G.
Let us discuss first the simpler one-dimensional case. There are two Fermi points

(at ±kF). Thus we can classify the excitations as left- or right-moving particles
and holes with either spin orientation. We have the following scattering processes
(see Fig. 3.1): (a) forward scattering, (b) backward scattering, and (c) Umklapp
scattering.

In case (a) two particles scatter with a small momentum transfer and do not
change the direction of their individual motion. In case (b) a right mover becomes
a left mover and vice versa. In case (c) two right movers become left movers.
This process violates momentum conservation but, if the total momentum violation
equals a reciprocal-lattice vector, the (Umklapp) process is allowed. This occurs for
kF = π/2, which is the half-filled case (see Fig. 3.1(c)).

Case (b), backward scattering, implies a scattering process involving two degen-
erate states: exchanging a right mover with a left mover and vice versa (see
Fig. 3.1(b)). Since the energy denominator is zero we may have an instability of the
perturbation theory. This is an antiferromagnetic instability since the momentum
transfer is π . Conversely, instability in the forward-scattering channel is a symptom
of ferromagnetism.

In dimensions higher than one, the situation is more complex due to the intrica-
cies of the Fermi surface. For instance, in the case of a half-filled square lattice the
Fermi surface is a square (see Fig. 2.4). A scattering process involving the (nest-
ing) wave vectors shown in Fig. 3.2 may induce an antiferromagnetic instability.
That is, we exchange particles with opposite spin from opposite sides of the Fermi
surface. Once again this involves a momentum exchange of (π, π) or (π,−π),
depending the case.

However, for a nearly empty band, only quasi-forward scattering should mat-
ter, and the relevant momentum exchange should be zero (ferromagnetism). Other
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π

−π

−π

k1

k2

Figure 3.2 Nesting vectors for the Brillouin zone of a square lattice at half-filling.
This nesting property is responsible for an antiferromagnetic instability.

cases, involving other momentum exchanges, are possible. These instabilities gen-
erally give rise to a spin-density wave of wave vector �k. The ferromagnetic state
occurs when �k = 0 and the Néel antiferromagnetic state occurs when �k = (π, π).

We want to develop a theory of these instabilities. As we see, we need to find
bound states of a certain wave vector �k and the ground state will have to be rebuilt
in the form of a coherent superposition of these bound states. Since we do not
know how to solve this problem exactly, some sort of mean-field theory is neces-
sary. There are several ways of achieving this goal, using (a) the Hartree–Fock and
random-phase approximation (RPA), (b) variational wave functions, and (c) 1/N
expansions.

These three approaches are, to some extent, physically equivalent. While (a) and
(b) (and mostly (a)) are commonly discussed in textbooks, the 1/N expansion is
a rather novel technique and, for that reason, is not usually available to students
(although it has become pervasive throughout the current literature).

The Hartree–Fock–RPA approach involves choosing a particular set of the
Feynman diagrams, which one can argue gives the “most important” contributions.
While in one dimension it is possible to select diagrams according to their degree
of divergence in the infrared, the situation is far less clear in two or more dimen-
sions. Typically, one has to choose a particular process and sum all the leading
contributions which contribute to the process and, at the same time, do not violate
any conservation laws, a “conserving approximation,” in the terminology of Baym
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and Kadanoff (Kadanoff and Baym, 1962). Such is the spirit of Hartree–Fock–
RPA theories. Similarly, in the variational-wave-function approach, one chooses
variational states which are essentially inspired by RPA-like calculations.

Let us first discuss a simple form of mean-field theory. We start from the
Hubbard Hamiltonian

H = −t
∑
〈�r ,�r ′〉

c†
σ (�r)cσ (�r ′)+ h.c.− 2

3
U

∑
�r

(�S(�r))2
(3.2)

which is quartic in the fermionic operators, since

�S(�r) = 1

2
c†
σ (�r)�τσσ ′cσ ′(�r) (3.3)

(From now on, I will be using the summation convention on repeated spin indices.)
The interaction term of the Hubbard Hamiltonian, Eq. (3.2), is quartic in fermion

operators. In general a non-linear problem of this sort is not solvable except in
some very special cases, such as one-dimensional systems. A standard approach
is the mean-field approximation (or Hartree–Fock approximation) in which the
quartic term is factorized in terms of a fermion bilinear times a Bose field, which
is usually treated classically. In other words one simply ignores the dynamics of
the Bose field. Consider, for instance, the Hamiltonian H ′,

H ′ = −t
∑
〈�r ,�r ′〉

c†
σ (�r)cσ (�r ′)+ h.c.+ 3

8U

∑
�r

�M2(�r)+
∑
�r

�M(�r) · �S(�r) (3.4)

which can be regarded as a linearized version of H in terms of a Bose field �M(�r),
which, as we will see below, represents the local magnetization.

However, there is something in this expression that is not quite right, since
the field �M(�r) does not have any dynamics. It looks like a variational parameter.
Indeed, in the Hartree–Fock approximation, one assumes that a certain operator,
say �S(�r), picks up an expectation value. One then has to shift the operator by its
expectation value and neglect fluctuations (this is the mean-field approximation).
Therefore, one writes

�S(�r) = 〈�S(�r)〉 +
(�S(�r)− 〈�S(�r)〉

)
(3.5)

The term in brackets clearly represents fluctuations. Thus

�S2 = 〈�S〉2 +
(�S − 〈�S〉

)2 + 2〈�S〉 ·
(�S − 〈�S〉

)
(3.6)

Neglecting fluctuations means that we drop the second term. Thus we write

H = HMF + Hfl (3.7)
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where

HMF = −t
∑
〈�r ,�r ′〉

c†
σ (�r)cσ (�r ′)+ h.c.− 2

3
U

∑
�r
〈�S(�r)〉2

− 4

3
U

∑
�r
〈�S(�r)〉 ·

(�S(�r)− 〈�S(�r)〉
)

(3.8)

and the fluctuation part Hfl is the rest. We can also write

HMF = −t
∑
〈�r ,�r ′〉

c†
σ (�r)cσ (�r ′)+h.c.+ 2U

3

∑
�r
〈�S(�r)〉2 − 4U

3

∑
�r
〈�S(�r)〉 · �S(�r) (3.9)

which is just H ′, Eq. (3.4), if we make the identification �M(�r) ≡ −(4U/3)〈�S(�r)〉.
We can give dynamics to �M (�r) by using the following device. Consider first the

simple classical oscillator problem with a degree of freedom �M and Lagrangian

L = 1

2
m �̇M2 − g

2
�M2 − �M · �S (3.10)

The equations of motion of this oscillator are

d

dt

∂L

∂ �̇M
= ∂L

∂ �M (3.11)

which imply

m �̈M = −g �M − �S (3.12)

At the quantum level these equations become the equation of motion of the
operator �M(t) in the Heisenberg representation.

Consider now the limit m → 0. The only smooth trajectories, i.e. with �̈M finite,
which are possible in this limit satisfy

g �M + �S = 0 (3.13)

The Hamiltonian H ′ has to be regarded in precisely the same way. We have to add
a kinetic-energy term at each site of the form

∑
�r �P2(�r)/(2m), where �P and �M

obey canonical commutation relations, and consider the limit m → 0. One should
not panic at the apparent divergence in the kinetic-energy term: the equations of
motion are taking care of it. We are going to come back to this later on, when we
discuss the path-integral form. There everything is simpler.

Thus we see that the Lagrange multiplier field �M is dynamical in the sense that
it follows the configurations of fermions in detail. In mean-field theory (i.e. the
Hartree–Fock approximation), one replaces �M by some static (time-independent)
configuration, which, in turn, is determined by the condition that the ground-state
energy should be the lowest possible energy.
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Let us now look at HMF in Fourier space. The Lagrange multiplier field �M(�r)
has the Fourier transform

�M(�r) = 1

N d

∑
�k

ei �k·�r �M(�k) →
∫

ddk

(2π)d
ei �k·�r �M(�k) for N → ∞ (3.14)

We can now write HMF in the form

HMF =
∫
�k

(∑
σ

ε(�k)nσ (�k)+ 3

8U
| �M(�k)|2 + �M∗(�k) · �S(�k)

)
(3.15)

since
�M(�k) = �M∗(−�k) (3.16)

and where

�S(�k) =
∫
�k′

c†
α(
�k ′)

�ταβ
2

cβ(�k ′ + �k) (3.17)

with ε(�k) = −2t
∑d

j=1 cos k j .
The second term on the right-hand side of Eq. (3.15) implies that a configuration

with the Fourier component �M(�k) induces scattering processes which mix one-
particle states differing by �k.

3.1.1 The ferromagnetic state

Let us consider first the ferromagnetic solution in which �M(�r) is a constant �M0. In
Fourier space, we have

�M(�k) = �M0(2π)
dδd(�k) (3.18)

Then HMF is (with the volume V = N d)

HMF = 3

8U
V �M2

0 +
∫
�k

(
ε(�k)c†

σ (
�k)cσ (�k)+ c†

σ (
�k) �τσσ ′

2
cσ ′(�k) · �M0

)
(3.19)

Since the direction of �M0 is arbitrary, one can choose the z axis (i.e. the quan-
tization axis) to be parallel to �M0 without any loss of generality. One then
finds

HMF = 3

8U
V �M2

0 +
∫
�k

[(
ε(�k)+ 1

2
| �M0|

)
n↑(�k)+

(
ε(�k)− 1

2
| �M0|

)
n↓(�k)

]
(3.20)

The result is that, if | �M0| is non-zero, we can lower the electronic energy by filling
up a number of down spin states and, at the same time, emptying the same number
of up spin states. Since the first term penalizes a non-zero value of | �M0| we must
search for a balance. We also need to keep track of the fact that there is a total of
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N electrons (both those with up and those with down spins). As usual, this is taken
care of by shifting HMF by μN̂ = μ

∑
�r c†

σ (�r)cσ (�r).
Consider now a state with N↑ electrons with spin up and N↓ with spin down. Let

ε↑ (ε↓) be the one-particle energy of the top of the filled up (down) states. The total
energy of such a state E is a function of | �M0|, μ, ε↑, and ε↓ (or, equivalently N↑
and N↓).

The energy is
(
| �M0| ≡ M0

)
E0(M0, μ, ε↑, ε↓) = 3

8U
V M2

0 + V
∫
�k

(
ε(�k)+ 1

2
M0

)
θ

(
ε↑ − ε(�k)

)
+ V

∫
�k

(
ε(�k)− 1

2
M0

)
θ

(
ε↓ − ε(�k)

)
+ μV

∫
�k

(
θ

(
ε↑ − ε(�k)

)
+ θ

(
ε↓ − ε(�k)

))
(3.21)

By introducing the one-particle band density of states (DOS) (i.e. the DOS of
the unperturbed system without spin), ρ(ε), we get

E ≡ E0

V

= 3

8U
M2

0 +
∫ ε↑

ε0

dε

(
ε + 1

2
M0

)
ρ(ε)+

∫ ε↓

ε0

dε

(
ε − 1

2
M0

)
ρ(ε)

+ μ

(∫ ε↑

ε0

dε ρ(ε)+
∫ ε↓

ε0

dε ρ(ε)

)
(3.22)

where ε0 is the energy of the bottom of the band.
Since the ground-state energy must be an extremum (actually a minimum) we

have to find the values of μ, M0, ε↑, and ε↓ which make the energy density have a
minimum at fixed density. That is

∂E
∂μ

= N

V
,

∂E
∂| �M0|

= 0,
∂E
∂ε↑

= 0,
∂E
∂ε↓

= 0 (3.23)

An explicit calculation gives

N

V
=

∫ ε↑

ε0

dε ρ(ε)+
∫ ε↓

ε0

dε ρ(ε)

0 = 3

4U
M0 + 1

2

∫ ε↑

ε0

dε ρ(ε)− 1

2

∫ ε↓

ε0

dε ρ(ε)

0 =
(
ε↑ + 1

2
M0

)
ρ(ε↑)+ μρ(ε↑)

0 =
(
ε↓ − 1

2
M0

)
ρ(ε↓)+ μρ(ε↓)

(3.24)
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Provided that ρ(ε↑,↓) �= 0, we see that the polarization M0 is given by

M0 = ε↓ − ε↑ (3.25)

and the chemical potential μ is equal to

μ = −1

2
(ε↓ + ε↑) (3.26)

Clearly, since M0 is positive, ε↑ < ε↓ and there are more occupied down spin
states than up spin states. We can also write

ε↓ − ε↑ = 2U

3

∫ ε↓

ε↑
dε ρ(ε) (3.27)

and
N

V
= 2

∫ ε↑

ε0

dε ρ(ε)+
∫ ε↓

ε↑
dε ρ(ε) (3.28)

Equations (3.27) and (3.28) determine ε↑ and ε↓ and, thus, the solution to the
problem. In general these equations need to be solved numerically.

Equation (3.27) has two solutions: ε↑ = ε↓ (i.e. M0 = 0, the paramagnetic state)
and ε↑ �= ε↓ (M0 �= 0, the ferromagnetic state). The analysis of these equations
follows closely the solution of the Curie–Weiss equation in the theory of phase
transitions. We can write Eq. (3.27) in the form

x = 2U

3

∫ x

0
dε ρ(ε + ε↑) (3.29)

where x = ε↓ − ε↑. Also, we get

N

V
= 2

∫ ε↑

ε0

dε ρ(ε)+ 3

2U
x (3.30)

For ε↑ given, the integral in Eq. (3.29) is a monotonically increasing function of
x (see Fig. 3.3). For values of U > Uc there are two solutions x0 = 0 and x0 �= 0,
whereas for U < Uc there is only one solution, x0 = 0. The critical Hubbard
coupling Uc is determined by the condition

1 = 2Uc

3
ρ(ε̄↑) (3.31)

where ρ(ε̄↑) is determined by Eq. (3.30) at x = 0

N

V
= 2

∫ ε̄↑

ε0

dε ρ(ε) (3.32)

Equation (3.31) is known as the Stoner criterion. The statement is that for U > Uc

the ferromagnetic solution appears and has a lower energy than the paramagnetic
state, | �M0| = 0.
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U > Uc

U < Uc

x0 = 0 x0 = 0

x

Figure 3.3 Solution of the mean-field equation.

If the DOS is a smooth function near the Fermi energy of the paramagnetic state,
we can find the solution close to Uc by using a power-series expansion. The result,
to leading order in (Uc − U )/Uc, is

x0 = ε↓ − ε̄↑ ≈ 2ρ̄

ρ̄ ′

(
Uc − U

Uc

)
+ · · · (3.33)

and

δ = ε↑ − ε̄↑ ≈ − 3

2Ucρ̄ ′

(
Uc − U

Uc

)
+ · · · (3.34)

where ε̄↑ satisfies Eq. (3.32) and ρ̄ and ρ̄ ′ are the DOS and its derivative at ε̄↑. There
are important cases in which the DOS ρ(ε) has singularities at certain energies
known as the van Hove singularities. This happens at half-filling for systems like a
square lattice, for which the Fermi surface has the property of nesting.

3.1.2 The Néel state

We now will look for solutions of the mean-field equations in which �M(�r) is not
a constant. Ultimately the problem boils down to a comparison of the energies
for different solutions. However, for situations in which nesting takes place we
can argue that a Néel state, or, more generally, a spin-density wave (SDW), is the
ground state.

Let us consider the mean-field Hamiltonian of Eq. (3.15) and assume that M(�r)
has the form

�M(�r) = �M0 cos( �Q · �r) (3.35)
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π

π

−π

−π k1

k2

Γ

Γ

Figure 3.4 The first Brillouin zone for the square lattice for a nearest-neighbor
hopping band structure. The diamond-shaped full curve is the Fermi surface (FS)
at half-filling with Fermi energy EF = 0. � is an FS with EF < 0, and �̃ is an FS
with EF > 0. The black dots are the van Hove singularities at the saddle-points
of the dispersion E(�k).

where �Q = (π, π). We saw before that, at half-filling, the Fermi surface (FS) has
the shape shown in Fig. 2.4; see here Fig. 3.4. The states across the FS differ by
a wave vector �Q = (π, π), which is at the Brillouin-zone (BZ) edge (this is the
nesting property). Furthermore, for a square lattice, we have ε(�k) = −2t (cos k1 +
cos k2). Thus we get

ε(�k) = −ε(�k + �Q) (3.36)

The mean-field Hamiltonian can now be written in the form

HMF = 3

8U
| �M0|2V +

∫
�k
ε(�k)c†

σ (
�k)cσ (�k)

+
∫
�k

c†
α(
�k)1

2
�ταβcβ(�k + �Q) · 1

2
�M0

+
∫
�k

c†
α(
�k)1

2
�ταβcβ(�k − �Q) · 1

2
�M0 (3.37)

Consider the spinor �σ(�k)

�σ (�k) =
(

cσ (�k)
cσ (�k + �Q)

)
(3.38)



3.1 Mean-field theory 37

If we restrict ourselves to the two-dimensional case we can now write

HMF = 3

8U
| �M0|2V +

∫ ′

�k
�†

aσ (
�k)Haσ,a′σ ′(�k)�a′σ ′(�k) (3.39)

where the integral now ranges over the upper half of the BZ (it has been “folded”)
and a = 1, 2 and σ = ↑,↓, indicating the upper and lower components of �
with either spin. The one-particle Hamiltonian H is a 4 × 4 matrix that has the
block form

H =
(

ε(�k) 1
2 �τ · �M0

1
2 �τ · �M0 ε(�k + �Q)

)
=

(
ε(�k) 1

2 �τ · �M0
1
2 �τ · �M0 −ε(�k)

)
(3.40)

This matrix can be diagonalized very easily (see, for instance, the diagonalization
of the Dirac Hamiltonian). It has two doubly degenerate (spin) eigenvalues E±(�k)
with

E± = ±
√
ε2(�k)+ 1

4
| �M0|2 (3.41)

Thus, we see that the system has now acquired a gap � with

� = | �M0| (3.42)

at the “Fermi surface.”
The ground state is obtained by filling up the negative-energy single-particle

fermionic states with spins both up and down. This state has a vanishing z-
component of the total spin: Sz = 0. The energy density is

E = 3

8U
| �M0|2 −

∫ ′

�k
E+(�k) (3.43)

where the integral ranges over the occupied states in the upper half of the first BZ.
We can now use the symmetries of E(�k) ≡ E+(�k) to write this expression in terms
of an integral over the upper-right quadrant of the BZ

E = 3

8U
| �M0|2 − 2

∫
�

E(�k) (3.44)

where the integration range is the set of points of the first BZ � = { �k, 0 ≤ ki ≤
π, k1 + k2 ≤ π}.

We must now determine the value of M0 for which E is lowest. The condition
for an extremum is

∂E
∂M0

= 3

4U
| �M0| − 2

∫
�

d2k

(2π)2

∂E(�k)
∂M0

= 0 (3.45)
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Clearly we get

3

4U
| �M0| − 1

2

∫
�

d2k

(2π)2

| �M0|
E(�k) = 0 (3.46)

One solution is | �M0| = 0 (i.e. no long-range order). This is the paramagnetic state.
The other solution obeys the gap equation

3

2U
=

∫
�

d2k

(2π)2

1√
ε2(�k)+ 1

4 | �M0|2
(3.47)

In the case of the square lattice (although similar results hold for other cases
with nesting) the integral on the right-hand side of Eq. (3.47) is divergent (for
M0 → 0). In fact, the integral is dominated by contributions with momenta close
to the FS, i.e. near k1 + k2 = π , or for single-particle states with energy close to
the Fermi energy (EF = 0 in this case). The simplest way to evaluate Eq. (3.47) is
to write the momentum integral as an integral over the energies ε of the occupied
single-particle states:

3

2U
=

∫ EF

Emin

dε
ρ(ε)√
ε2 +�2

(3.48)

where ρ(ε) is the one-particle DOS (per unit volume) for the single-particle disper-
sion ε(�k) = −2t (cos k1 + cos k2), and � = 1

2 M0 is the single-particle gap. Here,
EF = 0 and Emin = −4t .

The single-particle DOS can always be written as a line integral over a closed
contour �(ε) (the set of points with energy ε)

ρ(ε) = 2

(2π)2

∮
�(ε)

d�l · n̂

|�v| = 1

2π2

∮
�(ε)

d�k · �∇kε(�k)
|∇kε(�k)|2

(3.49)

where �v = �∇kε(�k) and n̂ is the unit tangent vector, n̂ = �v/|�v|. If the DOS ρ(ε) is a
smooth function of the energy ε near the Fermi energy EF, the integral of Eq. (3.48)
would be logarithmically divergent as the gap � → 0. However, for the case of the
square lattice the DOS is singular for ε → 0.

The FS of the half-filled square lattice has EF = 0 and hence it separates
electron-like states with E > 0 from hole-like states with E < 0. The point (0, 0)
of the BZ is the minimum energy (for single-particle states) whereas the point
(π, π) (and others related by reciprocal lattice vectors) are maxima of the disper-
sion. Of particular interest are the points (π, 0) and (0, π) (and their images under
reciprocal-lattice translations) that are saddle-points of the dispersion. It turns out
that the one-particle DOS is logarithmically divergent at these saddle-points, which
are examples of van Hove singularities. An explicit evaluation of the integral of
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Eq. (3.49) shows that the most singular contributions are due to the vicinity of the
van Hove singularities, yielding the logarithmically divergent result

ρ(ε) = 1

4π2t
ln

(
t

ε

)
+ · · · as ε → 0 (3.50)

The mean-field (gap) equation, Eq. (3.47), becomes

3

2U
�

∫ Emax

�

dε

ε

1

4π2t
ln

(
t

ε

)
(3.51)

Upon evaluating this integral we find that the gap � for single-particle states in a
Néel antiferromagnetic state is

� = 2π2te
−

√√√√12t

U (3.52)

We conclude that the order parameter 〈�S(�r)〉 is also non-zero: 〈�S(�r)〉 =
[3/(8U )] �M0 cos( �Q · �r). Thus an antiferromagnetic solution is found even for arbi-
trarily weak Hubbard coupling U . Please keep in mind that the ferromagnetic
solution requires a finite value of U to exist. It is also easy to see that this Néel
state has less energy than that of the paramagnetic state | �M0| = 0. Thus, at least at
half-filling, the ground state appears to be a Néel antiferromagnet.

This solution is also remarkable for other reasons. First, the dependence of | �M0|
on U is highly non-analytic: we get an essential singularity. This is exactly anal-
ogous (albeit with a stronger singularity) to what one finds in BCS theory and
in the case of the Peierls instability of one-dimensional electron–phonon systems
(see Section 16.7). Secondly, the electronic spectrum has a gap �, which is equal
to | �M0|. Thus the gap also has an essential singularity in the coupling constant.
But is the spectrum truly massive? Are there any gapless (or massless) excitations
present? What this calculation says is that the one-particle spectrum is massive.
What about the two-particle spectrum? We will see below that there are massless
spin waves, in agreement with Goldstone’s theorem.

3.2 Path-integral representation of the Hubbard model

So far we have discussed some features of these systems within a mean-field the-
ory that is based on the canonical Hamiltonian formalism. It is possible to gain
further insight by going to the path-integral form. These two representations are
equivalent and certainly whatever one can do in one form can be reproduced in
the other picture. However, certain aspects of the problem can be dealt with in
a more natural and concise way in the path-integral picture. The questions relat-
ing to the symmetry, and its breaking, effective theories for the low-lying modes,
etc., are more answerable in path-integral form. Also, of course, the semi-classical
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treatment, including non-perturbative features such as solitons and the like, is very
simple to picture in terms of path integrals.

Typically we are interested in studying both zero-temperature and finite-tem-
perature properties of the system. At finite temperature, the equilibrium properties
are determined by the partition function

Z = tr e−βH (3.53)

where β = 1/T (in units in which kB = 1). Usually, one would also like to know
the behavior of the correlation functions.

At zero temperature one is interested in the “vacuum persistence amplitude”
(Coleman, 1985)

Z = lim
t→∞ tr ei Ht (3.54)

which is just the trace of the evolution operator at long times. Feynman showed
(Feynman and Hibbs, 1965) that Eq. (3.54) can be written as a sum over his-
tories. Also, it is apparent that Eq. (3.53) is related to Eq. (3.54) by an analytic
continuation procedure known as “Wick rotation,”

i t = −τ (3.55)

which amounts to going to imaginary time (Abrikosov et al., 1963). I will use both
forms more or less simultaneously.

I do not intend to give a thorough description of the path-integral method. Qual-
itatively, the path integral is derived as follows. Let H be the Hamiltonian of the
system and {|α〉} be a set of states. In most cases we will demand that {|α〉} be a
complete set of states. However, it will also be convenient to work with a system of
coherent states that is over-complete. In either case, what matters is the existence
of an identity of the form (“resolution of unity”)

1 = N
∫

dα|α〉〈α| (3.56)

where N is a normalization constant and dα is an integration measure. It is worth-
while to comment that the states {|α〉} need not be position eigenstates. In the
usual derivation (“sum over histories”) the position-space (or coordinate) repre-
sentation is used. On the other hand, in many problems, such as the quantization
of spin systems, there isn’t a natural separation between canonical coordinates and
momenta. Thus the space of states {|α〉} can be quite general and abstract. In fact
the coherent-state representation is in a sense more primitive (or fundamental).

The standard strategy that one employs is the following. First one defines the
states {|α〉}. In the case of a many-body system such as the Hubbard model,
these states should be antisymmetrized many-fermion states. I will work in the
grand canonical ensemble and, hence, use second quantization. The need to
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antisymmetrize the states will bring some complications, which will be taken care
of by using Grassmann variables.

The second step is to split up the time interval t into Nt segments of infinitesimal
length �t such that Nt�t = t . The same prescription applies to the imaginary time
(Euclidean) formalism. The vacuum persistence amplitude is

Z = tr T̂ ei
∫ +∞
−∞ dt H(t) (3.57)

where T̂ is the time-ordering operator. For a time-independent Hamiltonian, Eq.
(3.57) reduces to Eq. (3.54). For infinitesimal intervals �t → 0 we can write

Z = tr T̂ ei
∑Nt

j=1 �t H(t j ) ≈ tr T̂
Nt∏

j=1

ei�t H(t j ) (3.58)

Now we proceed by inserting the resolution of unity, Eq. (3.56), at each
intermediate time t j . Let {|α j 〉} be a set of states at each time t j . We get

Z =
∑
{α j }

Nt∏
j=1

〈α j |e−i�t H(t j )|α j+1〉 (3.59)

with |αN+1〉 = |α1〉 and where |α j 〉 ≡ |α(t j )〉 are the states at time t j .
We can regard the α(t j ) as a set of parameters spanning a manifold defining

the states |α j 〉. Thus what we actually have is a sum over configurations {α(t)}.
Notice that this procedure is absolutely general. We are supposed to take the limit
�t → 0, Nt → ∞ at the end. That this limit exists is a highly non-trivial issue
and certainly not a formal matter. This procedure applies both for single-particle
problems and for states of a many-body second-quantized system, i.e. a field theory.

Let us first review the simple particle in a potential problem. In this case the
Hamiltonian is

H = p̂2

2m
+ V (q̂) (3.60)

where p̂ and q̂ obey canonical commutation relations (� = 1)

[q̂, p̂] = i (3.61)

Thus the states |α〉 can be the complete set of position eigenstates |q〉. The
resolution of the identity is

1 =
∫

dq|q〉〈q| (3.62)

Conversely, we could also use momentum eigenstates. The momentum operator
p̂ is not diagonal in this basis. Thus the amplitude

〈q(t j )|ei�t H |q(t j+1)〉 (3.63)
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can be written in the form

〈q(t j )|ei�t
p̂2

2m |q(t j+1)〉ei�t V (q(t j+1)) (3.64)

where we have used the fact that V̂ is diagonal in the coordinate representation.
Now we use a complete set of momentum eigenstates {|p(t j )〉} and write

ei�t
p̂2

2m =
∫ +∞

−∞
dp

2π
ei�t

p2(t j )
2m |p(t j )〉〈p(t j )| (3.65)

On collecting these various contributions we get

Z =
∫

Dp Dq
Nt∏

j=1

ei�t
p2(t j )

2m + i�t V (q(t j+1))〈p(t j )|q(t j+1)〉〈p(t j )|q(t j )〉∗ (3.66)

where I used the definition of the measure

Dp Dq =
Nt∏

j=1

dp(t j )dq(t j )

2π
(3.67)

Thus, we can write Eq. (3.66) in the form

Z =
∫

Dp Dq e−i
∫

dt[pq̇−H(p,q)] (3.68)

by making use of the fact that

〈p|q〉 = e−i �p·�q (3.69)

Equation (3.68) is nothing but a sum over the configurations in the phase space
of the action S,

S =
∫

dt (pq̇ − H) (3.70)

of each configuration. Since we are computing a trace the field q(t) obeys periodic
boundary conditions in time. Note that p̂ and q̂ do not commute. The phase-space
integral is actually a coherent-state path integral (Faddeev, 1976). Equation (3.68)
is generally valid even for Hamiltonians for which it is not possible to clearly sepa-
rate coordinates and momenta. I will adopt the phase-space (or coherent-state) path
integral as the definition.

This procedure can be trivially generalized to second-quantized systems. In the
case of bosons we have second-quantized field operators �̂(�r) and �̂†(�r) and a
Hamiltonian H. The field operators obey the equal-time commutation relations[

�̂(�r), �̂†(�r ′)
]
= δ(�r − �r ′) (3.71)
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Consider the classical Lagrangian L

L =
∑
�r
�∗i ∂t� − H (3.72)

The commutation relations in Eq. (3.71) follow from canonically quantizing L .
The canonical momentum �̂(�r) is given by

�̂(�r) ≡ δL

δ∂t�̂(�r)
≡ i�̂†(�r) (3.73)

Thus the canonical commutation relations[
�̂(�r), �̂(�r ′)

]
= iδ(�r − �r ′) (3.74)

are equivalent to Eq. (3.71) after �̂ has been identified with i�̂†.
A discussion analogous to what we did for the particle case yields a phase-space

path integral

Z =
∫

D�∗ D� ei
∫

dt[∑�r �∗i ∂t�−H(�∗,�)] (3.75)

where � and �∗ are complex c-number fields that parametrize the coherent states
(Faddeev, 1976). Since we are dealing with bosons, the fields � are c-numbers and
commute. The boundary conditions in turn are periodic. The case of fermions can
also be dealt with, provided that one takes care of the anti-commuting nature of
fermion operators.

It is convenient to introduce coherent states for fermions. Let �̂† and �̂ be Fermi
creation and annihilation operators that satisfy

{�̂, �̂†} = 1 (3.76)

and

�̂2 = (�̂†)2 = 0 (3.77)

In the occupation-number representation we have two states, |0〉 and |1〉, with the
properties

�̂|0〉 = 0, �̂†|0〉 = |1〉, �̂†�̂|0〉 = 0,

�̂†|1〉 = 0, �̂|1〉 = |0〉, �̂†�̂|1〉 = |1〉 (3.78)

We introduce the two Grassmann numbers � and �̄ that we will associate with
the Fermi operators �̂ and �̂†. Their defining property is the (Grassmann) algebra

{�,�} = {�̄, �̄} = {�, �̄} = 0 (3.79)
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that they satisfy. It is natural to extend these anticommutation relations by imposing
(Negele and Orland, 1988)

{�, �̂} = 0 and (��̂)† = �̂†�̄ (3.80)

We define the coherent state |�〉 in terms of the Grassmann number �

|�〉 ≡ |0〉 −�|1〉 = |0〉 −��̂†|0〉 (3.81)

With the help of Eqs. (3.79) and (3.80) we obtain

|�〉 =
(

1 −��̂†
)
|0〉 ≡ e−��̂

† |0〉 (3.82)

�̂|�〉 = �̂|0〉 − �̂��̂†|0〉 = �|0〉 = �|�〉 (3.83)

and

�̂†|�〉 = �̂†|0〉 − �̂†��̂†|0〉 = |1〉 ≡ − δ

δ�
|�〉 (3.84)

As usual the exponential on the right-hand side of Eq. (3.82) is defined as a
power expansion in ��̂† and Eq. (3.84) defines operationally the “left” Grassmann
derivative.

The adjoint coherent state 〈�| is defined in terms of the Grassmann number �

〈�| ≡ 〈0| − 〈1|�̄ = 〈0| − 〈0|�̂�̄ (3.85)

As before

〈�| = 〈0|
(

1 − �̂�̄
)
≡ 〈0|e−�̂�̄ (3.86)

〈�|�̂† = 〈0|�̂† − 〈0|�̂�̄�̂† = 〈0|�̄ = 〈�|�̄ (3.87)

and

〈�|�̂ = 〈0|�̂ − 〈0|�̂�̄�̂ = 〈1| ≡ −〈�| δ
δ�̄

(3.88)

The right-hand side of Eq. (3.88) defines the “right” Grassmann derivative in com-
plete analogy to Eq. (3.84). It is natural to require that the “left” (“right”) derivative
δ/δ� anti-commutes with � so that (δ/δ�)� = −�(δ/δ�).

From Eqs. (3.86), (3.82), and (3.80) the inner product 〈�|� ′〉 is equal to

〈�|� ′〉 = e�̄�
′

(3.89)

This, together with Eqs. (3.83) and (3.87), gives for the matrix elements of a

normal-ordered operator : U
(
�̂†, �̂

)
:

〈�| : U
(
�̂†, �̂

)
: |� ′〉 = U(�̄,� ′)e�̄�

′
(3.90)
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where U(�̄,� ′) is obtained by carrying out the replacements �̂ → � and �̂† →
�̄ inside the normal-ordered operator : U :.

The resolution of unity in this representation is just

1 =
∫

d�̄ d� e−�̄� |�〉〈�| (3.91)

This identity can be checked by computing the inner product 〈� ′|� ′′〉, where � ′

and � ′′ are the Grassmann variables � or �̄. The integrals in Eq. (3.91) are under-
stood to be linear functionals on the space of functions of the Grassmann variables
with ∫

d� � ≡ 1,
∫

d� ≡ 0 (3.92)

We can now repeat the procedure outlined at the beginning of this section for a
second-quantized system of fermions except that now we will use fermion coherent
states |{�σ(�r)}〉 at each site and for each spin degree of freedom

|{�σ(�r)}〉 = exp

⎛⎝−
∑
�r ,σ

�σ (�r)�̂†
σ (�r)

⎞⎠ |0〉 (3.93)

where |0〉 is the empty state (not the “vacuum,” as we will see in Chapter 5).
Following our noses, we find

Z = lim
Nt→∞
�t→0

⎛⎝ Nt∏
j=1

∫
d�̄(t j )d�(t j )

⎞⎠ Nt∏
j=1

e−�̄(t j )�(t j )〈�(t j )| (1 − i�t H) |�(t j+1)〉

(3.94)

where, for the sake of simplicity, I have dropped the space and spin labels. In the
limit Nt → ∞ and �t → 0, one finds

Z =
∫

D�̄ D� ei
∫

dt L (3.95)

where L is given by

L =
∑
�r
�̄σ (�r)i ∂t�σ(�r)− H(�̄σ (�r),�σ (�r)) (3.96)

For the case of the Hubbard model, or any other model, for that matter, and in
the presence of a non-zero chemical potential μ, we get (see Eq. (2.25))

L =
∑
�r
�̄σ (�r)(i ∂t + μ)�σ (�r)+ t

∑
〈�r ,�r ′〉

�̄σ (�r)�σ (�r ′)− Hint(�̄,�) (3.97)
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From Eq. (2.24) the interaction term of the Hubbard model is

Hint = −U

6

∑
�r

c†
α(�r)τ a

αβcβ(�r)c†
γ (�r)τ a

γ δcδ(�r) (3.98)

Normal ordering relative to the empty state |0〉 gives

: Hint : = −U

6

∑
�r

c†
α(�r)c†

γ (�r)cδ(�r)cβ(�r)τ a
αβτ

a
γ δ −

U

2

∑
�r

c†
α(�r)cα(�r) (3.99)

Thus Hint(�̄,�) is given by

Hint(�̄,�) = −U

6

∑
�r
�̄α(�r)�̄γ (�r)�δ(�r)�β(�r)τ a

αβτ
a
γ δ −

U

2

∑
�r
�̄α(�r)�α(�r)

(3.100)

The last term on the right-hand side can obviously be cancelled out by means of a
shift of the chemical potential μ.

The final property of Grassmann integrals which will be useful for us is the
integral for actions that are quadratic in the fields,

S =
∑
�r ,�r ′

�̄(�r)M(�r , �r ′)�(�r ′) (3.101)

where M(�r , �r ′) is an antisymmetric matrix (operator). We get the Gaussian integral

Z =
∫

D�̄ D� e−
∫
�̄M� = det M (3.102)

This expression should be contrasted with the analogous result for bosonic fields φ

Z =
∫

Dφ∗ Dφ e−
∫
φ∗Mφ = (det M)−1 (3.103)

Both results can be derived quite easily by expanding � and �̄ in a basis of
eigenstates of M , see Faddeev (1976) or Negele and Orland (1988).

3.3 Path integrals and mean-field theory

We now turn to the mean-field theory for the Hubbard model in path-integral form.
The advantage of this description is that we will be able to extract an effective-field
theory for the low-lying modes in the Néel state: spin waves.

The Lagrangian density for the Hubbard model in two dimensions, in real time
and at zero temperature is, from Eqs. (3.97) and (3.100),
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L = �̄α(�r , t)(i ∂t + μ)�α(�r , t)

+ t
∑
j=1,2

(
�̄α(�r , t)�α(�r + �e j , t)+ �̄α(�r , t)�α(�r − �e j , t)+ c.c.

)
+ U

6
(�̄α(�r , t)�ταβ�β(�r , t))2 (3.104)

The associated path integral contains quartic terms, the interaction, and hence we
do not know how to compute the partition function. The strategy is to write another
theory, which is quadratic in Grassmann fields and is equivalent to Eq. (3.104). We
will make extensive use of the Gaussian identity for bosonic fields (or Hubbard–
Stratonovich transformation)∫

d �φ e
−i

(
1
2
�φ2+λ �φ·�̄ �τ�

)
= constant × ei 1

2λ
2(�̄ �τ�)2 (3.105)

Thus at any point in space time (�r , t), we introduce a three-component real Bose
field �φ(�r , t) coupled bilinearly to the fermions as in Eq. (3.105). If one chooses
the coupling constant λ to be equal to

√
U/3, one finds the interaction term of Eq.

(3.100). Thus the Lagrangian density L′,

L′ = �̄α(�r , t)(i ∂t + μ)�α(�r , t)

+ t
∑
j=1,2

[�̄α(�r , t)�α(�r + �e j , t)+ �̄α(�r , t)�α(�r − �e j , t)+ c.c.]

−
√

U

3
�φ(�r , t) · �̄α(�r , t)�ταβ�β(�r , t)− 1

2
�φ2(�r , t) (3.106)

is equivalent to the Lagrangian of the Hubbard model. Equation (3.106) has the
advantage of being bilinear in Fermi fields (compare Eqs. (3.106) and (3.3)). Thus,
using Eq. (3.102), we can now integrate out the fermions. The result is an effective
action for the Bose fields �φ. We will see that the �φ fields represent the collective
modes associated with spin fluctuations. The result is

Z =
∫

D �φ ei Seff( �φ) (3.107)

where the effective action Seff( �φ) is given by

Seff( �φ) = −
∫

dt
∑
�r

1

2
�φ 2(�r , t)− i ln det

(
i ∂t + μ−M( �φ)

)
(3.108)

The operator M( �φ) in Eq. (3.108) has the matrix elements

〈�r tα|M( �φ)|�r ′t ′β〉 = −δαβδ(t − t ′)t
∑
j=1,2

(
δ�r ′,�r+�e j + δ�r ′,�r−�e j

)
+

√
U

3
δ(t − t ′)δ�r ,�r ′ �φ(�r , t) · �ταβ (3.109)
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The mean-field theory for this problem is just the evaluation of the path integral
Eq. (3.107) by means of the saddle-point (or stationary-phase) approximation. For
this problem, this approximation is equivalent to a Hartree–Fock decoupling. The
stationary condition is

0 = δSeff

δφa(�r , t)
= −φa(�r , t)− i

δ

δφa(�r , t)
ln det(i ∂t + μ−M( �φ)) (3.110)

Using the identity

ln det A = tr ln A (3.111)

and Eq. (3.109), one finds

φa(�r , t) = −i
δ

δφa(�r , t)
tr

(
ln[i ∂t + μ−M( �φ)]

)
= +i tr

(
1

i ∂t + μ−M( �φ)
δM( �φ)
δφa(�r , t)

)

= i

√
U

3
〈�r tα| 1

i ∂t + μ−M( �φ) |�r tβ〉τ a
βα (3.112)

The expression in angular brackets is just the (in space and time diagonal) matrix
element of the fermion one-particle Green function in a background field �φ(�r , t),

Gαβ(�r t; �r ′t ′;φ) ≡ −i〈�r tα| 1

i ∂t + μ−M(φ)
|�r ′t ′β〉 (3.113)

Hence we can write Eq. (3.112) in the form

φa(�r , t) = −
√

U

3
Gαβ(�r t; �r t;φ)τ a

βα (3.114)

On the other hand, the local magnetic moment 〈Sa(�r t)〉 is equal to

〈Sa(�r t)〉 = +Gαβ(�r t; �r t;φ)τ
a
βα

2
(3.115)

Thus, the saddle-point approximation, Eq. (3.110), is the same as the Hartree–Fock
condition

φa(�r , t) = −
√

4U

3
〈Sa(�r , t)〉 (3.116)

At the level of a one-band Hubbard model, there is no quantitative justification
for the validity of this approach, since there is no small parameter other than � to
control this expansion. Thus, this is essentially a semi-classical approximation.

We also know that an angular-momentum degree of freedom, such as spin
itself, becomes semi-classical if the angular momentum becomes large. The main
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assumption of the mean-field theory is that the order parameter thus obtained, in
this case the staggered magnetization, is close to its saturation value and hence is
large.

We can formally introduce a small parameter to control this expansion by means
of the following device. Let us imagine that the band electrons have an orbital
degeneracy labeled by an index a = 1, . . . , Nb, where Nb is the number of
degenerate bands. The total band spin at a given site �r is now given by (i = 1, 2, 3)

Si (�r) =
∑

α,β=↑,↓

Nb∑
a=1

�†
α,a(�r)τ i

αβ�β,a(�r) (3.117)

The generalized Hubbard model is then given by the Hamiltonian

H = −
∑
〈�r ,�r ′〉
α,a

�†
α,a(�r)t (�r , �r ′)�α,a(�r ′)+ c.c.− 2

3
U

∑
�r

(�S(�r))2
(3.118)

where �S(�r) is the total band spin at �r . This system still has the global SU(2) invari-
ance of spin rotations. For large values of U , i.e. U/t → ∞, the local spin becomes
as large as possible. The equivalent Heisenberg model has a total spin quantum
number s at each site equal to s = Nb/2 or, equivalently, Nb = 2s. The limit
Nb → ∞ is then the same as the semi-classical limit s → ∞. This limit is usually
treated by spin-wave theory (Bloch, 1930; Holstein and Primakoff, 1940; Dyson,
1956a, b; Maleev, 1957) (for a review see the book by Mattis (1965)).

The path-integral approach is particularly well suited to deal with this limit. As a
matter of fact, all the formulas derived above carry over to this case. The Hubbard–
Stratonovich transformation works, with the only change being that �φ couples now
to the total band spin. Since all Nb orbital species couple exactly in the same way to
the Hubbard–Stratonovich field �φ, the only change that occurs is that the fermion
determinant factorizes and is given by the Nbth power of the determinant of a single
species. After a trivial rescaling of the field �φ by

√
Nb, the effective action SNb

eff for
the theory with orbital degeneracy is simply given by

SNb
eff (

�φ) = NbSeff( �φ) (3.119)

In the large-Nb limit (i.e. large-s limit), the saddle-point approximation becomes
exact. For the rest of this section, we will carry on with this expansion assuming
that it is valid. We should keep in mind, however, that the results will become
accurate only in the s → ∞ limit.

It is apparent that if φa(�r , t) is a solution, any uniform rotation of it is also a
solution,

φ′
a = Rabφb (3.120)
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where Rab is a constant rotation matrix. This implies that the global spin symmetry
has been preserved. We will see now that this implies the existence of Goldstone
modes, spin waves, if this symmetry is spontaneously broken.

Let us consider the half-filled case. Here, we expect an antiferromagnetic state.
The classical solution is (for the case of a square lattice)

φa(�r , t) = | �φ|na(−1)x1+x2 (3.121)

This solution is (a) static, and (b) staggered (i.e. a Néel state). It really represents
an infinite number of solutions parametrized by the unit vector �n (in spin space).
The amplitude | �φ| is determined by solving the saddle-point equation, Eq. (3.116).
In the notation of Eq. (3.113), we can write

�M =
√

4U

3
�φ (3.122)

In Section 3.1 we determined that the Néel state was energetically preferred
both to a paramagnetic state and to a ferromagnetic state. Notice that this argu-
ment does not rule out other solutions. However, the existing numerical evidence
seems to indicate that a Néel state is the ground state at half-filling except for
one-dimensional systems.

In Section 3.1 we showed that (a) the amplitude | �φ| is always non-zero at zero
temperature and (b) the single-particle excitation spectrum has a gap � = | �M0|.
This last result can be seen to follow by computing the one-particle Green function
Gαβ(�r t; �r ′t ′;φ) and writing it as a 4 × 4 matrix in spin and sublattice space.

Equation (3.113) is equivalent to

−iδ(t − t ′)δ�r ,�r ′δαβ = (i ∂t + μ)Gαβ

(
�r t; �r ′t ′; �φ

)
+ t

∑
j=1,2

[Gαβ(�r + �e j t; �r ′t ′; �φ)+ Gαβ(�r − �e j t; �r ′t ′; �φ)]

−
√

U

3
| �φ|�n · �ταγ (−1)x1+x2 Gγβ(�r t; �r ′t ′; �φ) (3.123)

If we Fourier transform Eq. (3.123), we find

−iδαβ = (ω − ε(�k))Gαβ(�k, ω)−
√

U

3
| �φ|�n · �ταγ Gγβ(�k − �Q, ω) (3.124)

where �Q = (π, π) is the ordering wave vector (for the Néel state, the corner of the
first Brillouin zone). This equation can be solved by writing (the Fourier transform
of) the fermion operators in a spinor notation �α(�k, ω) defined by

�α(�k, ω) ≡
(

�α(�k, ω)
�α(�k − �Q, ω)

)
(3.125)
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where �k ∈ BZ+ (the upper half of the first Brillouin zone). Equation (3.124) now
takes the matrix form

−iδαβ =
(

(ω − ε(�k))δαγ −√
U/3| �φ|�n · �ταγ

−√
U/3| �φ|�n · �ταγ (ω + ε(�k))δαγ

)
Gγβ(�k, ω) (3.126)

The solution of this equation is

G(�k, ω) = −i

ω2 −
(
ε2(�k)+ (U/3)| �φ|2

)
+ iη

(
(ω + ε(�k)) √

U/3| �φ|�n · �τ√
U/3| �φ|�n · �τ (ω − ε(�k))

)
(3.127)

with η → 0+. Here, the diagonal components correspond to the Fourier transform
of the Green function for sites on the same sublattice, and the off-diagonal terms
correspond to sites on different sublattices.

This solution clearly shows that the single-particle fermionic spectrum for the
Néel state is

E(�k) =
√
ε2(�k)+ U

3
| �φ|2 =

√
ε2(�k)+�2 (3.128)

and we recover Eq. (3.42), with an energy gap � = √
U/3| �φ|.

3.4 Fluctuations: the non-linear sigma model

In the previous section we obtained an effective action for the order-parameter field
�φ and solved the saddle-point equations. We now wish to estimate the role and size
of the quantum-mechanical fluctuations about this classical Néel state.

When solving the saddle-point equations, we observed that, if a non-trivial solu-
tion �φc with broken symmetry can be found, then any configuration obtained by
means of a rigid rotation in spin space from �φc is also a solution. This reflects the
fact that the spin sector has a continuous symmetry group, in this case O(3).

Imagine now not a solution of the saddle-point equation but a slowly varying
configuration �φ(�r , t) not far from a solution. The fluctuation part δ �φ(�r , t) is small
and slowly varying. By slowly varying, I mean slow on time scales compared with
τ = 1/� and smooth on length scales long compared with ξ = vF/� (where vF is
the Fermi velocity of the unperturbed system). This last length ξ is the (mean-field)
correlation length of the system. It will turn out that ξ and τ determine the scales
on which the magnitude | �φ| of the order parameter fluctuates, at least in mean-field
theory.

The existence of an infinite number of solutions of the saddle-point equation
indicates that there are configurations δ �φ with arbitrarily low action. These are the
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Goldstone bosons of this problem and are spin waves. We wish to find an effective
theory for these spin waves.

Our first step will be to study the (Gaussian) fluctuations around the mean-field
solution. Thus, we will expand the effective action Seff(φ) in powers of δ �φ(�r , t).
Since M( �φ) of Eq. (3.109) is linear in �φ, we can write

M( �φ) = M( �φc)+M(δ �φ) (3.129)

where the matrix elements of M(δ �φ) are

〈�r tα|M(δ �φ)|�r ′t ′α′〉 =
√

U

3
δ �φ(�r , t) · �ταα′δ�r ,�r ′δ(t − t ′) (3.130)

By expanding in powers of M(δ �φ), we find that the effective action

Seff( �φ) = −
∫

dt
∑
�r

�φ2(�r , t)

2
− i tr ln

(
i ∂t + μ−M( �φ)

)
(3.131)

can be written in the form

Seff( �φ) = −
∫

dt
∑
�r

�φ2(�r , t)

2
− i tr ln

(
i ∂t + μ−M( �φc)

)
− i tr ln

(
1 − iG( �φc)M(δ �φ)

)
(3.132)

with the mean field Green function G( �φc)

Gαα′(�r t; �r ′t ′; �φc) = −i

〈
�r tα

∣∣∣∣ 1

i ∂t + μ−M( �φc)

∣∣∣∣�r ′t ′α′
〉

(3.133)

Recall that the Green function G has a matrix structure involving both sublattices
of the Néel state, cf. Eq. (3.127).

Since the Néel state breaks translation invariance by one lattice spacing (i.e. it
breaks the sublattice symmetry of the square lattice), the Green function also breaks
translation invariance and it is invariant only under shifts on the same sublattice.
For the same reason the fluctuations δφ(�r , t) on the two sublattices behave differ-
ently. Hence we will also represent δφ(�r , t) by a two-component object denoting
the two sublattices.

By expanding the logarithm in powers of the fluctuations δ �φ, we get

Seff( �φ) = −
∫

dt
∑
�r

�φ2(�r , t)

2
− i tr ln

(
i ∂t + μ−M( �φc)

)
+

∞∑
n=1

i n+1

n
tr

(
G( �φc)M(δ �φ)

)n
(3.134)
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Equation (3.134) can be organized as follows:

Seff( �φ) =
∞∑

n=0

S(n)( �φc, δ �φ) (3.135)

where S(0)( �φc) is the classical action (i.e. the action of the mean-field solution)

S(0)( �φc) = −
∫

dt
∑
�r

�φ2
c (�r , t)

2
− i tr ln[i ∂t + μ−M( �φc)] (3.136)

Since the mean-field solution is static (i.e. time-independent), we can write

S(0)( �φc) = T E (0)
Gnd(

�φc) (3.137)

where T is the time span (not the temperature!) and E (0)
Gnd(

�φc) is the ground-state
energy (at the level of the mean-field theory). The first-order term in δ �φ cancels out
since �φc is a solution of the saddle-point equation

δSeff

δ �φ = 0 (3.138)

Thus we can write Seff in the form

Seff( �φ) = T E (0)
Gnd(

�φc)+
∞∑

n=2

S(n)( �φc, δ �φ) (3.139)

The Gaussian theory, i.e. the quadratic terms in Eq. (3.139), has the action S(2)(δ �φ),
where

S(2)(δ �φ) = −
∫

dt
∑
�r

δ �φ2(�r , t)

2
− i

2
tr

(
G( �φc)M(δ �φ)

)2
(3.140)

This expression can be expanded out in components to yield

S(2)(δ �φ) = −
∫

dt
∑
�r

δ �φ2(�r , t)

2

− i
U

6

∫
dt dt ′

∑
�r ,�r ′

Gα,α′(�r t; �r ′t ′; �φc)τ
a′
α′βGββ ′(�r ′t ′; �r t; �φc)τ

a
β ′α

× δφa′(�r ′, t ′)δφa(�r , t) (3.141)

We will see now that fluctuations δ �φ(�r , t) with wave vector �p close to the
antiferromagnetic (Néel) ordering wave vector �Q = (π, π) are gapless, i.e.
have vanishingly small energy. These are the antiferromagnetic spin waves. Con-
versely, the excitations with �p close to the zone center ( �p ≈ 0), which describe
uniform ferromagnetic fluctuations, have large energies. Formally this amounts
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to splitting the fluctuations into a ferromagnetic component δφF, whose Fourier
transform has wave vectors close to (0, 0), and an antiferromagnetic component
δφAF, whose Fourier components have wave vectors close to the ordering wave
vector �Q = (π, π). From now on we will consider only the antiferromagnetic
fluctuations, which we will denote by δφAF = δφ.

In Fourier components, the effective action for the antiferromagnetic fluctuations
δφ has the form

S(2)(δ �φ) =
∫
�p,�

1

2
δφa( �p, �)δφ∗

b( �p, �)K ab( �p, �) (3.142)

where the kernel K ab( �p, �) is given by

K ab( �p, �) = −δab − i
U

3

∫
�k,ω

tr
(
G(�k, ω)τ a T G(�k + �p, ω +�)τ b T

)
(3.143)

where G(�k, ω) is given by Eq. (3.127) and T is the 2 × 2 matrix

T =
(

1 0
0 1

)
(3.144)

The following trace identities for the Pauli matrices will be useful to compute the
kernel:

tr 1 = 2, tr τ a = 0, tr(τ aτ b) = 2δab, tr(τ aτ bτ c) = 2iεabc,

tr(τ aτ bτ cτ d) = 2
(
δabδcd − δacδbd + δadδbc

)
(3.145)

We can now write the kernel K ab( �p, �) in the form

K ab( �p, �) = K0( �p, �)δab + K2( �p, �)nanb (3.146)

after inserting Eq. (3.127) into Eq. (3.143) and using the trace identities. One
obtains for K0 and K2

K0( �p, �) = −1 + i
4U

3

∫
�k,ω

ω(ω +�)+ ε(�k)ε(�k + �p)−�2(
ω2 − E2(�k)+ iη

) (
(ω +�)2 − E2(�k + �p)+ iη

)
K2( �p, �) = +i

8U

3
�2

∫
�k,ω

1(
ω2 − E2(�k)+ iη

) (
(ω +�)2 − E2(�k + �p)+ iη

)
(3.147)

where the integrals range over the full Brillouin zone and � = √
U/3| �φ| (see

Eq. (3.128)). The structure of the effective kernel, Eqs. (3.147), is a consequence
of the symmetry of the spectrum, which, in turn, reflects the fact that the Néel
state is invariant under the combined effects of time reversal and displacement by
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one lattice spacing, which amounts to the exchange of the two antiferromagnetic
sublattices.

We are interested in studying the low-energy limit (�� � 1) of this system.
It will be convenient to decompose the fluctuations δ �φ( �p, �) into a longitudinal
component σ( �p, �) parallel to �n and two transverse components πi ( �p, �) per-
pendicular to �n. In terms of σ and �π , the Gaussian action S(2), Eq. (3.142), has
the form

S(2)(δ �φ) =
∫
�p,�

{
(K0( �p, �)+ K2( �p, �))|σ( �p, �)|2

+ K0( �p, �)�π( �p, �) · �π∗( �p, �)} (3.148)

I will now show that for wave vectors �p close to the ordering wavevector �Q =
(π, π), the transverse components (represented by the fields �π ) become gapless. In
contrast, the longitudinal component, σ , remains massive (i.e. with a non-zero gap)
over the entire Brillouin zone. Thus, in a Néel state, the Hubbard model has two
gapless transverse spin waves �π and a massive (gapped) longitudinal amplitude
mode σ .

We can check this statement by considering the limit � → 0 and �p = �Q − �q
where |�q| is small, i.e. |�q|ξ � 1. Thus, the relevant limit is

�� � 1, |�q|vF

�
� 1 (3.149)

We wish to expand the kernels of Eq. (3.147) in powers of �q and �, i.e. we are
performing a gradient expansion.

Let us first compute K0 and K2 for � = 0 and �p = �Q. The result, for K0( �Q, 0),
is zero:

K0( �Q, 0) = −1 + i
4U

3

∫
�k,ω

1

ω2 − E2(�k)+ iη
≡ 0 (3.150)

This result follows from the saddle-point (gap) equation, Eq. (3.114) (or, equiv-
alently, Eq. (3.47)). Similarly, the other kernel K2 has the limit, after integrating
over ω,

K2( �Q, 0) = i
8U

3
�2

∫
�k

∫
dω

2π

1(
ω2 − E2(�k)+ iη

)2

= −2U

3
�2

∫ ∞

0
dε

ρ(ε)

(ε2 +�2)3/2

� − 1

12π2

(
2U

t

)
ln

(
2t

�

)
(3.151)

where ρ(ε) is the one-particle density of states of Eq. (3.49) and Eq. (3.50).
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σ mode

sigma-mode gapπ modes

Figure 3.5 A spin-wave spectrum along the main diagonal of the Brillouin zone.

These results imply that the longitudinal σ mode for �p ≈ �Q and � → 0 has
a finite mass (or energy gap), and imply the absence of such a mass term for
both transverse �π modes (see Fig. 3.5). The mass of the σ mode can be used
to define a spin-correlation length ξspin. (We should note, however, that in two
space dimensions the σ mode has a finite lifetime since it can decay into two �π
modes.)

We can also estimate the spin-wave stiffness from these results. However, we
need to keep the leading order in both � and �q to get these results. By expanding
in powers of both � � � and �q (with |�q| � | �Q|), we find for K0( �Q − �q, �)

K0( �Q − �q, �) = a�2 − b�q 2 + h.o.t. (3.152)

The coefficients a and b are most easily found by doing first an analytic continua-
tion of the frequency integration,ω → iω, together with an analytic continuation of
the external frequency, � → i�; at the end of the calculation we must analytically
continue back to the real frequency axis. We obtain

a = lim
�→0

K0( �Q, i�)

−�2
= 2U

3

∫
BZ

d2k

(2π)2

1

E3(�k)
= 2U

3

∫ ∞

0
dε

ρ(ε)

(ε2 +�2)3/2
� U

3�2
ρ(�) (3.153)

where the last expression follows in the weak-coupling limit, U � t , where � is
small. Similarly, we also obtain
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b = lim
�p→0

K0( �Q − �p, 0)

�p 2

= U

3
lim
�p→0

1

�p 2

∫
BZ

d2k

(2π)2

ε(�k)(ε(�k + �p)− ε(�k))
E(�k)E(�k + �p)(E(�k + �p)+ E(�k))

= U

24

∫ ∞

0
dε ρ(ε)

[
ε

ε2 +�2
+ 6tε

(ε2 +�2)3/2

(
1 − ε2

4t2

)]
� U

16

D

�
ρ(�)

(3.154)

where we have used that the band width is 2D = 8t . In Eqs. (3.153) and (3.154),
ρ(�) is the density of states of the free-fermion problem at the energy �.

Thus, the transverse �π modes have the effective action for fluctuations with
momenta close to the ordering wave vector �Q and frequencies low with respect
to the gap � of

S(2)�π = 1

2

∫
�q,�

ρs

(
1

v2
s

�2 − �q 2

)
| �π(�q, �)|2 (3.155)

where we have defined ρs, the spin-wave stiffness, and vs, the spin-wave velocity,
respectively, by

ρs = b � U

16

D

�
ρ(�), v2

s = b

a
�

√
3

4

√
D� (3.156)

These results show that the transverse �π modes are massless and have a linear
dispersion relation

� = vs|�q | (3.157)

3.5 The Néel state and the non-linear sigma model

I will now show that these results can be embodied in a very simple effective
Lagrangian that includes all the relevant non-linear effects. The key to the argu-
ment is the observation that the Néel state breaks, on each sublattice, the SU(2)
spin rotation symmetry. This is a continuous symmetry. The transverse spin waves
are gapless excitations because they involve merely tilting the spins relative to the
classical mean-field state. But they do not change the amplitude of the field. Thus,
it is natural to ask for the effective Lagrangian in which the amplitude fluctuations
are frozen but the transverse ones are not. In mathematical terms this means that, in
position space, the staggered order parameter �n(�r , t) will be slowly varying and its
length will be constrained to be equal to a fixed value | �φc|, the classical minimum.
Thus, the fields σ(�k, ω) and �π(�k, ω) need to be scaled by a factor of | �φc|−1. The
net effect is that the spin-wave stiffness ρs, Eq. (3.155), gets multiplied by | �φc|2,
the solution of Eq. (3.110).
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This calculation can in fact be carried out because the transverse spin waves
remain massless to all orders in an expansion around the mean-field solution. This
is guaranteed by a Ward identity, which is a consequence of the symmetry. We shall
derive this identity below.

Let us consider the Hubbard model coupled to an external magnetic field
�H(�r , t),

HZeeman =
∑
�r

�H(�r , t) · c†
α(�r , t)�ταβcβ(�r , t) (3.158)

If we retrace the steps that led to the path integral for the Hubbard–Stratonovich
field �φ(�r , t), we find a new effective action of the form

Seff

( �φ, �H
)
= −

∫
dt

∑
�r

�φ2(�r , t)

2
− i tr ln

(
i ∂t + μ− M( �φ)− �H(�r , t) · �τ

)
(3.159)

where the magnetic field �H(�r , t) is a c-number operator with matrix elements

〈�r tα| �H(�r , t)|�r ′t ′α′〉 = δα,α′δ�r ,�r ′δ(t − t ′) �H(�r , t) (3.160)

In principle, we will want to study the Néel state. Hence we will choose �H(�r , t) to
be staggered and time-independent, i.e.

�Hs(�r , t) = �Hse
i �Q·�r (3.161)

with

�Q = (π, π) (3.162)

We can prove the existence of gapless excitations, to all orders in perturba-
tion theory, by deriving a Ward identity. This identity can be derived by standard
methods (Amit, 1980). Let us first shift the �φ field

�φ′(�r , t) ≡ �φ(�r , t)+
√

3

U
�H(�r , t) (3.163)

We can write

Seff

( �φ, �H
)
= Seff( �φ′, 0)+

√
3

U

∫
dt

∑
�r

�φ′(�r , t) · �H(�r , t)

− 3

U

∫
dt

∑
�r

�H 2(�r , t)

2
(3.164)

Next, we can make use of the invariance of the integration measure D �φ under the
rotation φ′′

a = Rabφ
′
b (where Rab is a rotation matrix), Dφ′′ = Dφ′, to shift the
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coordinates of the functional integral. The rotation matrix Rab can be written in
terms of Euler angles θ c and rotation generators Lc in the form

Rab = (
e−i Lcθc)

ab
(3.165)

where

(Lc)ab = −iεabc (3.166)

Thus, for an infinitesimal rotation (θ c � 1)

φ′′
a = φ′

a − εabcφ
′
bθc (3.167)

Using the invariance of the measure, we can now write for the vacuum persistence
amplitude in the presence of the “source” �H

Z [ �H ] ≡ exp

(
i F[ �H ] − i

3

U

∫
dt

∑
�r

�H 2

2

)

=
∫

D �φ ′ exp

[
i Seff( �φ ′, 0)+ i

∫
dt

∑
�r

(√
3

U
�φ ′ · �H − 3

2U
�H 2

)]

=
∫

D �φ ′′ exp

[
i Seff( �φ ′′, 0)+ i

∫
dt

∑
�r

(√
3

U
�φ ′′ · �H − 3

2U
�H 2

)]

=
∫

D �φ ′ exp

[
i Seff( �φ ′, 0)+ i

∫
dt

∑
�r

(√
3

U
�φ ′ · �H − 3

2U
�H 2

)

+ i δSeff( �φ ′, �H , �θ)
]

(3.168)

where

δSeff( �φ′, �H , �θ) = −
√

3

U

∫
dt

∑
�r
εabc H a(�r , t)φ′b(�r , t)θ c (3.169)

By expanding Eq. (3.168) in powers of θ we obtain, to leading order,

Z [ �H ] = Z [ �H ] (1 + δ S̄eff + · · · ) (3.170)

Thus, since the variables θ c are arbitrary, we obtain the identity

0 =
∫

dt
∑
�r
εabc H a(�r , t)φ̄′b(�r , t) (3.171)

Here φ̄′b is the exact expectation value of φ′b in the presence of �H .



60 The magnetic instability of the Fermi system

Let us define now the generating functional of vertex functions, �[φ̄′], by means
of the Legendre transform

�[φ̄′] =
√

3

U

∫
dt

∑
�r
φ̄′

a(�r , t)Ha(�r , t)− F[ �H ] (3.172)

with

δF

δH b(�r , t)
=

√
3

U
φ̄′b(�r , t) (3.173)

It follows (Amit, 1980) that

δ�

δφ̄′a(�r , t)
=

√
3

U
H a(�r , t) (3.174)

The one-particle irreducible vertex functions can be defined in terms of functional
derivatives of � relative to φ̄′

d . For instance, the two-point irreducible function

�
(2)
ab (�r , t, �r ′, t ′) ≡ δ2�

δφ̄′
a(�r , t)δφ̄′

b(�r ′, t ′)
(3.175)

is the inverse of the �φ′ two-point (Green) function∑
�r ′,b

δ2�

δφ̄′a(�r , t)δφ̄′b(�r ′, t ′)
δ2 F

δH b(�r ′, t ′)δH c(�r ′′, t ′′)
= δacδ�r ,�r ′′δ(t − t ′′) (3.176)

With those definitions, Eq. (3.171) can be brought to the form

0 =
∫

dt
∑
�r

(
εabc δ�

δφ̄′a(�r , t)
φ̄′b(�r , t)

)
(3.177)

To avoid cumbersome notation we denote from now on (�r , t) ≡ (x1, x2, x0) ≡ x ,
and δ�r ,�r ′δ(t − t ′) ≡ δ(x − x ′). By taking a further derivative with respect to φ̄′d(x ′),
one gets the general Ward identity

0 =
∫

dt
∑
�r
εabc

(
δ2�

δφ̄′d(x ′)δφ̄′a(x)
φ̄′b(x)+ δ�

δφ̄′a(x)
δbdδ(x − x ′)

)
(3.178)

In particular, for the Néel state

φ̄′b(x) = | �φ|nb(−1)x1+x2 (3.179)

and the corresponding staggered field of Eq. (3.161), we get the Ward identity

εadc

√
3

U
H a

s (x
′) = −εabc| �φ|nb

∫
dt

∑
�r

δ2�

δφ̄′d(x ′)δφ̄′a(x)
(−1)x1+x2 (3.180)
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In momentum space, Eq. (3.180) simply becomes

εacd

√
3

U
H a

s (
�Q) = lim

ω→0�p→0

εabc| �φ|nb�
(2)
da (

�Q + �p, ω) (3.181)

The spontaneous breaking of symmetry means that, when the external field is
switched off, the order parameter remains finite. In this case, for the right-hand
side of Eq. (3.181) to vanish, the contraction of the vertex two-point function with
the Levi-Civita tensor and with �n must vanish in this limit. Thus, if | �φ| �= 0, the
transverse components of �φ must have a pole at ω = 0 and �p = �Q in their corre-
lation function (see Eq. (3.175)). We found before that this was indeed the case in
the leading order of an expansion around mean-field theory.

Since we know now that this leading-order pole must persist to all orders, we
can look for an effective Lagrangian with the following properties:

(1) the amplitude fluctuations are suppressed,
(2) it has a massless pole for each transverse component, and
(3) it has a minimum number of derivatives in the order-parameter field.

The simplest expression satisfying these properties is the non-linear sigma
model with a Lagrangian density given by

Leff = ρ

2

(
(∂t �n)2 − v2

s (∇�n)2
)
+ · · · (3.182)

where �n satisfies the constraint

|�n|2 = 1 (3.183)

Here �n represents the slow fluctuations of the order-parameter field. The spin-wave
stiffness ρs and velocity vs appearing in Eq. (3.182) are not generally identical to
the values we calculated above (see Eq. (3.156)). The reason for that is that the non-
linear σ -model is the effective theory at low frequencies and for wave vectors close
to �Q. It is the result of integrating out all fluctuations at high energies. This process
significantly renormalizes the values of ρs and vs. In addition, I have ignored the
possible existence of topological terms. We will see in Chapter 7 that these terms
are generated in one dimension, but not in two or higher dimensions.

It is a simple matter to see that, if one solves for the constraint |�n| = 1 in terms
of a σ and a �π field

�n =
(
σ

�π
)

(3.184)

and expands in powers of �π, one finds, to the leading quadratic order in �π, the
effective action Eq. (3.155).
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We conclude that the quantum fluctuations around a Néel state are described by
a non-linear σ -model. One key assumption that we have made here is that the stiff-
ness ρs was assumed to be large. Otherwise this expansion does not make sense. In
fact for ρs sufficiently small, the non-linear σ -model has wild fluctuations which
destroy the Néel state. The system becomes a (quantum) paramagnet and the spin
symmetry is unbroken. We will see below that frustrating interactions will gener-
ally produce this effect. On the other hand, given the large renormalizations of ρs

and vs, it is not possible to be sure whether the half-filled Hubbard model is in a
Néel state (i.e. whether the ground state is an antiferromagnet) or in a disordered
state. In practice only numerical calculations, i.e. fermion Monte Carlo or finite-
size exact diagonalizations, can yield more reliable answers for a specific Hubbard
model. So far the evidence strongly favors a Néel state.

Finally we should consider the connection between the collective excitations
�φ(�x, t) and the susceptibilities of the Hubbard model. From Eq. (3.158) we see that
the field �H(x) couples to the local moment c†

α(x)�ταβcβ(x). Thus by functionally
differentiating with respect to �H(x) we should be able to compute expectation
values related to the spin degrees of freedom. Indeed, the spin correlation function

K aa′(x, x ′) = 〈Gnd|T̂ Sa(x ′)Sa′(x ′)|Gnd〉 (3.185)

is equivalent to

K aa′(x, x ′) = −g(x, x ′)
δ2 F

δH a
s (x)δH a′

s (x
′)
≡ G(2)

aa′(x, x ′) (3.186)

where g(x, x ′) is a sign function

g(x, x ′) = (−1)x1+x2+x ′1+x ′2 (3.187)

Since G(2)
aa′(x, x ′) is the inverse of �(2)

aa′(x, x ′), we conclude that a zero in �(2)
aa′( �p, ω)

at ( �Q, 0) implies a divergence of G(2)
aa′(x, x ′) also at ( �Q, 0). Thus the staggered

static susceptibility χ⊥( �Q, 0), which is the Fourier transform of Kaa′(x, x ′), must
have a delta-function peak at ( �Q, 0) if the ground state is a Néel state ( �Q, 0).
This peak appears only in the transverse components of Kaa′ since the longitudinal
components are connected to excitations with a non-zero gap.
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The renormalization group and scaling

4.1 Scale invariance

The renormalization group is a central conceptual framework for understanding the
behavior of strongly coupled and critical systems. It was originally formulated in
the context of perturbative quantum field theory (particularly in relation to quan-
tum electrodynamics), and found its crisper and most powerful realization in the
explanation of critical phenomena in statistical physics. The most important ideas
derived from the renormalization group are the concepts of a fixed point and uni-
versality. These ideas, due primarily to Wilson and Kadanoff, in turn provided a
definition of a quantum field theory outside the framework of perturbation theory.
In this chapter we will present a brief exposition of the main ideas and tools of
the renormalization group and their application to problems of interest in strongly
correlated and quantum critical systems (Cardy, 1996).

Many problems in condensed matter physics can be described in terms of a
Hamiltonian that is a sum of two terms, H = H ∗ + H ′. Equivalently, in terms
of the action, we can write S = S∗ + S′, where the action S is a function of some
macroscopic number of degrees of freedom, which we will represent in terms of a
field φ(x) and its derivatives (in space and time). The field φ may obey Fermi or
Bose statistics, in which case it will be represented by a set of Grassmann or scalar
(or vector) fields, depending on the case. Both in classical statistical mechanics and
in a quantum field theory we can formally represent the system in terms of a path
integral

Z =
∫

Dφ e−S(φ) (4.1)

In what follows we will work in imaginary time. In the following chapters we
will discuss many systems that admit a representation of this form. The degrees of
freedom may be spins (classical or quantum) or fermions, as well as gauge fields.
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In its simplest representation the renormalization group is a transformation that
maps a system with a set of coupling constants and a scale (representing the short-
distance or high-energy cutoff) to another equivalent system with a different set
of (“renormalized”) coupling constants and a different scale. This is done by a
procedure known as a “block-spin” transformation (in the language of classical
statistical mechanics), by which some of the degrees of freedom, representing the
short-distance physics, are integrated out and a subsequent scale transformation is
performed to restore the original scale (or units).

The field φ(x, t) ≡ φ(x) has many Fourier components (in D-dimensional
space-time)

φ(x) =
∫

d Dk

(2π)D
eik·xφ(k) (4.2)

The large-momentum (-frequency) components correspond to configurations with
larger action than those with lower momentum k ≡ (ω, �k). If the high-(k, ω) com-
ponents, represented by φ>(x), are integrated out, then we can find an effective
action (or Hamiltonian) for the configurations φ<(x) with lower (k, ω). In real
space-time we are eliminating degrees of freedom at short distances, or rather we
are defining configurations averaged over a short distance scale ba (a is the lattice
constant) or with wave vectors |k| < �/b (where � is a high-energy cutoff).

In most cases S(φ) will change upon a process of this sort

Z =
∫

Dφ e−S(φ) =
∫

Dφ< Dφ> e−S(φ<+φ>) (4.3)

where

φ = φ< + φ> (4.4)

Hence,

Z ≡
∫

Dφ< e−Seff(φ<) (4.5)

where we have defined an effective action Seff

e−Seff(φ<) ≡
∫

Dφ> e−S(φ<+φ>) (4.6)

This is, formally, our “block-spin” transformation.
However, now we have a new short-distance cutoff a′ ≡ ba (with b> 1) or,

equivalently, a high-energy cutoff �′ ≡ �/b<�. Thus, we need to rescale the
lengths (and time) in order to restore the units. In order to compensate for the
change in the definition of units, we rescale lengths and momenta as follows:

x ′ = x

b
or k ′ = kb (4.7)

such that |k ′| < � or |x |′ > a back again.
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Clearly many transformations of this type can be defined and the form of the
effective action will depend on this definition. Nevertheless, these transformations
must obey some basic principles. The most important one is that this procedure
should be compatible with the underlying symmetries of the physical system. Thus,
if the system has a tendency to become anisotropic (either in space or in space-
time) the rescaling will have to be consistent with this fact. For simplicity, in what
follows we will assume that the rescaling is isotropic both in space and in space-
time. Thus, we are assuming that there will be an effective Lorentz invariance in
the system of interest.

Suppose that we are able to find an action S∗ such that it remains invariant under
the renormalization-group (RG) transformation:

S∗
eff(φ<) = S∗(φ) (4.8)

We will call this action a fixed point of the RG.
At a fixed point the action and the Hamiltonian reproduce themselves under

an RG transformation. Thus a system at a fixed point has a new symmetry: scale
invariance. This means that there can be no scales left in the problem. Therefore,
a fixed-point action describes either

(1) a system with a vanishing correlation length, ξ → 0, and hence a divergent
energy gap, EG → ∞, or

(2) a system with a divergent correlation length, ξ → ∞, and hence a vanishing
energy gap, EG → 0.

Fixed points with vanishing correlation lengths (and divergent energy gaps)
describe stable phases of matter. Conversely, fixed points with diverging corre-
lation lengths (and vanishing energy gaps) describe systems at criticality (quantum
or thermal), and thus correspond to phase transitions. We will see that fixed points
with vanishing correlation lengths are stable under the action of all (local) per-
turbations, and are hence known as stable fixed points. In contrast, fixed points
with divergent correlation lengths are unstable at least with respect to one local
perturbation (or more), and are known as unstable fixed points.

Let us consider now a system close to a fixed point. Quite generally we can write
the action of the system in the form

S(φ) = S∗(φ)+
∫

dx D
∑

n

λnφn(x)) (4.9)

where {φn(x)} is a complete set of operators defined in the fixed-point theory.
Here {λn} are the associated coupling constants. Under a renormalization-group
transformation consisting of

(1) integrating out high-energy modes � → b� (b < 1) and
(2) rescaling lengths x → b−1x
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the action S∗(φ) remains invariant since it is a fixed point. The operators {φn(x)}
transform irreducibly under rescalings as

φn(xb−1) = b�nφn(x) (4.10)

where �n is the scaling dimension of this operator. Operators that transform irre-
ducibly (i.e. homogeneously) under rescalings are called primary (scaling) fields.
Then, under the action of the RG the perturbation transforms as∫

dx D
∑

n

λnφn(x) →
∫

dx D
∑

n

b−D+�nλnφn(x) (4.11)

Thus, the RG transformation is equivalent to a rescaling of the coupling constants

λ′n = λnb�n−D ≡ λn(b) (4.12)

Since b → 1−, we can write b = e−δ� and turn the transformation into a differential
change of the coupling constants of terms of the beta function

β(λn) = ∂λn

∂�
= (D −�n)λn + · · · (4.13)

where the ellipsis denotes higher-order contributions to the beta function that we
will discuss shortly. This result, Eq. (4.13), is usually called the tree-level beta
function.

Alternatively, we can define dimensionless coupling constants λ̄n = λnaD−�n .
We now ask how we have to change the dimensionless coupling constants as the
UV cutoff changes, � → b� or a → b−1a, while keeping the dimensional cou-
plings λn fixed. For an infinitesimal change a → a + da this can be expressed as
the condition

a
∂λn

∂a
= 0 ⇒ β(λ̄n) = a

∂λ̄n

∂a

∣∣∣∣
λn

= (D −�n)λ̄n + O(λ̄2
n) (4.14)

From now on λn will always denote dimensionless coupling constants, and we
will always express the renormalization-group flows in terms of the changes of the
dimensionless coupling constants. The physical reason for this is that dimensional
parameters depend on the (arbitrary) choice of units.

We now see the following.

1. If D − �n > 0, the dimensionless coupling λn grows as the momentum scale
decreases. In this case φn(x) is a relevant operator (�n < D) and drives the
system away from the fixed-point action S∗, into a phase characterized by a
new (stable) fixed point.
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2. If D −�n < 0, the dimensionless coupling λn shrinks as the momentum scale
decreases. In this case φn(x) is an irrelevant operator (�n > D), whose effects
become asymptotically negligible at long distances and low energies.

3. If D−�n = 0, to leading order, the dimensionless coupling λn does not change
as the momentum scale decreases. In this case φn(x) is a marginal operator
(�n = D). To assess its effects, a higher-order calculation needs to be done. If
this operator remains exactly marginal, then it should be included in the fixed-
point action.

We will now see how this structure works in some simple examples of physical
interest.

4.2 Examples of fixed points

4.2.1 The free-scalar-field-theory fixed point

A simple example of a fixed-point action is a free scalar field in D dimensions. The
case D = 2, which represents either a classical statistical-mechanical system in
two space dimensions or a quantum field theory in (1+1) (Euclidean) dimensions,
will be of special interest. In the next chapters we will see that this theory plays a
key role in the theory of quantum antiferromagnets in one dimension and Luttinger
liquids, which we discuss in Chapters 5 and 6. In classical statistical mechanics this
is the theory of critical phenomena originally proposed by Landau (and Ginzburg)
and eventually developed by Wilson and Fisher and by Kadanoff.

The action of a scalar field φ(x) in D dimensions is

S(φ) = 1

2

∫
d Dx(∂φ)2 =

∫ � d Dk

(2π)D

k2

2
|φ(k)|2 (4.15)

where we have also introduced the expression in terms of the Fourier components
of the field. Here � is the large-momentum (or short-distance) cutoff.

Let us now proceed to split the field into its slow and fast components,

φ(x) = φ<(x)+ φ>(x) (4.16)

where (in terms of a slicing parameter b < 1)

φ<(x) ≡
∫ b� d Dk

(2π)D
φ(k)eik·x (4.17)

represents the slow components, and

φ>(x) ≡
∫ �

b�

d Dk

(2π)D
φ(k)eik·x (4.18)
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represents the fast components. In terms of the Fourier transform of the slow and
fast fields the action takes the form

S� = S< + S>

=
∫ b� d Dk

(2π)D

k2

2
|φ<(k)|2 +

∫ �

b�

d Dk

(2π)D

k2

2
|φ>(k)|2 (4.19)

where we have labeled the action with the cutoff �. Thus, for a free field (and only
for a free field), the total action is the sum of the actions for the slow and fast modes
independently. In this simple case we can integrate out the fast fields and obtain an
effective action for the slow fields:∫

Dφ> e−S�(φ) = constant × e−Sb�(φ<) (4.20)

We now must make a scale transformation to restore the value of the cutoff to its
original value:

x ′ = b−1x, k ′ = bk, φ(x ′) = b�φ(x) (4.21)

where � is the scaling dimension of the field φ. Thus, under a scale
transformation,∫

d Dx
1

2

(
∂φ

∂ �x
)2

=
∫

d Dx ′ b2−D 1

2

(
∂φ(�x ′

b−1)

∂ �x ′

)2

=
∫

d Dx ′ 1

2

(
∂φ(�x ′

)

∂ �x ′

)2

(4.22)

Thus, the action is invariant under scale transformation, provided that the scaling
dimension of the field φ is � = (D − 2)/2. The case D = 2 is special in that φ
has scaling dimension zero (i.e. it is dimensionless, and so are all powers of the
field φn).

Let us examine now simple perturbations at this fixed point. The mass term is the
operator

∫
d Dx(m2/2)φ2, which is not invariant under rescalings, since the volume

element scales as
∫

d2x → d Dx ′ b−D and φ2 → b2�φ2. Thus, the mass scales as
m ′2 = b2�−Dm2 = b−2m2, and as b decreases the “coupling” m2 “flows” to larger
values under renormalization.

Similarly, the couplings to higher-derivative operators decrease as b
decreases, ∫

d Dx g(∂2φ)2 =
∫

d Dx ′ b2g(∂ ′2φ′)2 (4.23)

Hence g′ = gb2, and we conclude that under the RG g decreases as b decreases.
This is an irrelevant operator. Obviously, operators with higher derivatives are even
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more irrelevant. This is consistent with the intuition that the effective-field theory
at long distances must contain only operators with the smallest possible number of
derivatives compatible with the symmetries of the system.

The same conclusions also follow simply from naive dimensional analysis. Thus,
by demanding that the free-field action be dimensionless, we see that the units of
the scalar field are [φ] = L−�, where � = (D − 2)/2 is the scaling dimension.
Similarly, the mass m has units of L−1 (as it should). The same line of reasoning
determines the scaling of interaction terms. Thus, demanding once again that this
term also be dimensionless, we find L D[λr ][φ]r = 1 Thus, the scaling dimension
of the operator φr is �r = r� = r(D − 2)/2. Hence, the units of its coupling
constant are [λr ] = L−D+r� = L(r/2)(D−2)−D, e.g. [λ4] = L D−4, and it is dimen-
sionless at D = 4. We can also write down the (tree-level) beta function for the
(dimensionless) coupling λr :

β(λr ) = (D −�r )λr + O(λ2
r ) (4.24)

Therefore the free-massless-scalar-field fixed point is stable provided that D −
�r < 0. However, since

D −�r = r − 2

2

(
−D + 2r

r − 2

)
(4.25)

the fixed point is stable only if D > 2r/(r − 2). In particular, the operator φ4 is
irrelevant only for D > 4 and the free-field fixed point is unstable for fewer than
four dimensions.

4.2.2 The non-linear sigma model

In Chapter 7 we will discuss the case of a non-linear sigma model as the field
theory of a quantum antiferromagnet, i.e. an N -component scalar field that satisfies
the constraint �n 2 = 1. Owing to the constraint, this theory is no longer a free
field. Also, the constraint forces the field �n to be dimensionless. The action of the
non-linear sigma model is

S = 1

2g

∫
d Dx

(
∂μ�n

)2
(4.26)

with μ = 1, . . . , D. The only operator in this action has scaling dimension � = 2.
Notice that, due to the symmetry, only derivative operators are allowed in this case,
and operators with higher derivatives will correspondingly have a larger scaling
dimension. By dimensional analysis we see that the coupling constant has units of
[g] = L D−2, and hence it is dimensionless in D = 2. The tree-level beta function
for the coupling constant g is β(g) = −(D − 2)g + · · · . Hence, dimensional
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analysis predicts that the fixed point at g → 0, the classical theory, describes a
stable phase for D > 2. We will discuss this problem in some detail in Chapter 7.

4.2.3 Anisotropic scaling

As we noted above, there are many circumstances in which space and time scale
differently. One such example is the theory of a quantum ferromagnet that will be
discussed in Chapter 7. There we will see that the effective action contains Berry-
phase-like terms (that we refer to as Wess–Zumino terms) that are of first order in
time derivatives, whereas the spatial dependence comes from terms with two space
derivatives. Thus, in the case of a quantum ferromagnet time scales as two powers
of length, T ∼ L2. This system has a dynamical critical exponent z = 2. This
behavior is manifest in the structure of the Landau–Lifshitz equation and in the
dispersion of the magnons, i.e. Bloch waves.

Yet another system in which anisotropic scaling arises is quantum dimer models
at criticality. In this problem, which will be discussed in Chapter 9, the effective-
field theory also has dynamical critical exponent z = 2. However, in contrast to the
case of the ferromagnet, this theory is time-reversal-invariant. Consequently the
dynamics is manifest through operators that are quadratic in time derivatives. How-
ever, since these systems have spatially anisotropic phases, at quantum criticality
their spatial dependence comes from operators that are quartic in space derivatives,
which is why z = 2. More generally, there are many systems in which spatial and
temporal fluctuations scale with a non-trivial exponent z �= 1. One example of this
type of behavior is Fermi fluids at a nematic quantum critical point, which has
z = 3 (Oganesyan et al., 2001).

4.2.4 Scaling in Fermi liquids

A Fermi liquid is a system of fermions at finite density whose interactions, in many
circumstances, with the notable exception of the case of one dimension, become
very weak at low energies due to the kinematical constraints imposed by the exis-
tence of a Fermi surface. In this limit, the interacting system is smoothly connected
to the physics of non-interacting fermionic quasiparticles. This is reflected in the
simple scaling behavior that these systems exhibit and it is the essence of the
Landau theory of the Fermi liquid (Baym and Pethick, 1991).

A system of non-interacting fermions is described by an action for the Fermi
field whose kinetic energy is defined by the single-particle spectrum ε( �p). The
Fermi surface is the locus of points { �p} where ε( �p) = EF, the Fermi energy. At
low enough energies, i.e. close to the Fermi energy, the allowed momenta of the
fermion states are restricted to being close to the Fermi surface and the energy of
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these excitations differs little from EF. In this regime it is legitimate to approx-
imate the single-particle spectrum by ε( �p) = vF(| �p| − pF) + · · · , where vF is
the Fermi velocity and pF is the Fermi momentum (assuming, for simplicity, an
isotropic Fermi surface). Thus, in this limit the energy and the momentum scale in
the same way, and hence space and time scale in the same way as well (Polchinski,
1993; Shankar, 1994), T ∼ L , and the dynamic critical exponent is z = 1. Notice,
however, that only the normal component of the momentum enters in the scaling,
since the tangential components do not change the energy. In this regime the inter-
actions between the quasiparticles become actually irrelevant (with the important
exception of the Cooper channel, the BCS interaction). The generic irrelevance of
essentially all interactions is the reason for the robustness of the Landau theory of
the Fermi liquid.

4.2.5 The free-relativistic-fermion theory

Relativistic free-fermionic systems obey the Dirac equation as their equation of
motion. In condensed matter physics interacting Dirac fermions appear naturally
in the theory of one-dimensional Fermi systems such as Luttinger liquids. They
also appear as topological excitations (or solitons) of one-dimensional antiferro-
magnets. Dirac fermions give a natural description of the low-energy electronic
states in two-dimensional semi-metals made of carbon layers (graphene), and of
the fermionic quasiparticles of d-wave superconductors and in flux phases (which
will be discussed in subsequent chapters).

Dirac fermions are spinor fields. Dirac fermions in one and two space
dimensions are two-component complex Fermi fields, whereas in three space
dimensions they are four-component fields. Let ψα(x), with α = 1, 2, denote a
two-component Fermi field in D = 1 + 1 and D = 2 + 1 space dimensions. In
D = 1 + 1 dimensions, the two components correspond to right- and left-moving
fermions. The Hamiltonian density for massless Dirac fermions in D = 1 + 1 is

H = vFψ
†
α(x)iσ

αβ

3 ∂xψβ(x) (4.27)

where σ3 is the (diagonal) 2 × 2 Pauli matrix. The single-particle spectrum has
the relativistic form E(p) = vF p. In the massless (gapless) limit, the spectrum is
linear. Hence, time and space scale the same way, T ∼ L , as required by relativistic
invariance: Dirac fermions have dynamic exponent z = 1.

The action of a free Dirac field is

S =
∫

d2x ψ̄α(x)iγ
μ
αβ ∂μψβ(x) (4.28)

where we have used the Dirac γ -matrices, γ0 = σ1 and γ1 = −iσ2, and the nota-
tion ψ̄ = ψ†γ 0 (see Chapters 5 and 6). We have also used the convention that
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repeated indices are summed. In this relativistic notation the Fermi velocity vF (the
“speed of light”) is absorbed in a redefinition of the time coordinate as x0 = vFt
or, equivalently, set to 1 by an appropriate choice of units.

The theory of free massless Dirac fermions is scale-invariant. The only quan-
tity with units in Eq. (4.27) is the velocity vF, which, as we said, can be set to 1.
It is straightforward to determine the scaling behavior of various local operators
at this fixed point. By first generalizing the action of Eq. (4.28) to D space-time
dimensions, which now involve a set of D anticommuting gamma matrices γμ
(whose rank depends on the dimension), we see that the Dirac field must scale as
[ψ] = L−(D−1)/2. It is easy to determine the scaling of simple local operators. The
mass term, ψ̄ψ , has scaling dimension � = D − 1, and the Dirac mass scales
as [m] = L−1, as expected. This scaling analysis shows that the Dirac current
jμ = ψ̄γμψ has scaling dimension D − 1.

Local interactions of Dirac fermions have the form of four-fermion operators,
such as (ψ̄γμψ)2 and (ψ̄ψ)2, which have scaling dimension � = 2(D − 1). In
particular, in D = 1 + 1 dimensions, the current has dimension 1 and the four-
Fermi operators have dimension 2. Therefore, in D = 2 space dimensions the
four-fermion interactions are marginal and are irrelevant for D > 2. The associated
coupling constant g scales as [g] = L D−2. Hence, the tree-level beta function is

β(g) = −(D − 2)g + O(g2) (4.29)

and behaves similarly to the non-linear sigma model.
Thus, a theory of free massless Dirac fermions is a fixed point of the renormal-

ization group. At this level this fixed point is marginally stable in D = 1 + 1.
Much as in the case of the non-linear sigma model, we will see that determining
the actual stability of this fixed point requires us to take into account the effects of
fluctuations which appear at order O(g2) in the beta function. On the other hand,
for D > 2 the free-massless-Dirac-fermion fixed point is stable under small local
perturbations and defines a stable phase. Thus, for D > 2 space-time dimensions
a theory of relativistic fermions with local four-Fermi couplings is perturbatively
stable (in the infrared) and has a phase transition to a phase with a non-vanishing
mass gap at a critical value of the coupling constant (Wilson, 1973). An example of
this is the case of graphene. For D < 4 the free Dirac fixed point is unstable with
respect to the coupling to a dynamical gauge field. The nature of the fixed point
which controls the infrared behavior of this theory is not well understood.

4.3 Scaling behavior of physical observables

One powerful consequence of the renormalization group is that, provided the struc-
ture of fixed points is understood, it will enable us to understand how physical
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observables behave in a physical system. This is the basis of the theory of critical
phenomena, both in classical and in quantum-mechanical systems.

4.3.1 The correlation length

We will begin by considering first the behavior of the correlation length ξ for
a theory close to a fixed point. The distance to the fixed point is controlled by
the (dimensionless) coupling constant λ of a local operator of the theory. By
dimensional analysis we can write ξ in the form

ξ = a f (λ) (4.30)

where f (λ) is a so-far-undetermined dimensionless function of the coupling
constant; a is the ultraviolet (UV) cutoff.

By demanding that physical dimensional quantities, such as the correlation
length ξ , remain fixed (invariant) under the action of the renormalization group,
we can derive a flow equation that will allow us to determine, in principle, the
function f (λ). Thus, the condition

∂ξ

∂ ln a
= 0 = ∂

∂ ln a
(a f (λ)) (4.31)

leads to the differential flow equation for f (λ)

0 = a f (λ)+ a
∂ f

∂λ

∂λ

∂ ln a
(4.32)

where we recognize the presence of the (Gell-Mann–Low) beta function, β(λ) =
a∂λ/∂a in the last term of Eq. (4.32). We can now write the flow equation as

0 = f (λ)+ ∂ f

∂λ
β(λ) (4.33)

Flow equations of this type are known as Callan–Symanzik, or renormalization-
group, equations.

It is trivial to solve these flow equations, if the beta function is known, since they
are first-order partial differential equations. In this simple case we easily find

∂ ln f

∂λ
= − 1

β(λ)
(4.34)

which implies that f (λ) must be such that

ln f (λ) = constant −
∫

dλ
′

β(λ
′
)

(4.35)



74 The renormalization group and scaling

λ

λ̄λ∗ λ1 λ2

Figure 4.1 Schematic RG flow with a single relevant coupling constant. Here λ∗
is the fixed point. See the text for details.

By integrating between two values λ and λ0 of the coupling constant we obtain the
following solution:

ln

(
f (λ)

f (λ0)

)
= −

∫ λ

λ0

dλ
′

β(λ
′
)

(4.36)

We will now consider a theory with a fixed point at a particular value λ∗ of the
dimensionless coupling constant. A fixed point is defined as the value λ∗ at which
the beta function vanishes, β(λ∗) = 0. See Figure 4.1.

Let us consider the system at two values of the dimensionless coupling con-
stant λ1 and λ2, where the correlation length takes the values ξ(λ1)= a f (λ1) and
ξ(λ2) = a f (λ2), respectively. Then, f (λ1) and f (λ2) have the form

f (λ1) = f (λ̃)exp

(∫ λ̃

λ1

dλ

β(λ)

)
(4.37)

and

f (λ2) = f (λ̃)exp

(∫ λ̃

λ2

dλ

β(λ)

)
(4.38)

where λ̃ is some other value of the coupling constant. Thus, the ratio of the cor-
relation lengths ξ(λ1) and ξ(λ2) is determined by the change of the coupling
constant:

ξ(λ1)

ξ(λ2)
= exp

(∫ λ̃

λ1

dλ

β(λ)
−

∫ λ̃

λ2

dλ

β(λ)

)
= exp

(∫ λ2

λ1

dλ

β(λ)

)
(4.39)

Therefore we find that

ξ(λ1) = ξ(λ2)exp

(∫ λ2

λ1

dλ

β(λ)

)
(4.40)

Close enough to the fixed point at λ∗, we can approximate the beta function as

β(λ) = β ′(λ∗)(λ− λ∗)+ O((λ− λ∗)2) (4.41)

where β ′(λ∗) = (dβ/dλ)(λ∗) is the slope of the beta function at the fixed point. If
we take |λ1 − λ∗| � λ∗ to be very close to the fixed point and |λ2 − λ∗| ≈ λ∗ at
some finite distance from it, Eq. (4.39) becomes
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ξ(λ1) = ξ(λ2)exp

(∫ λ2

λ1

dλ

β
′
(λ∗)(λ− λ∗)+ · · ·

)
= ξ(λ2)exp

[
1

β
′
(λ∗)

ln

(
λ2 − λ∗

λ1 − λ∗

)
+ · · ·

]
= ξ(λ2)

(
λ2 − λ∗

λ1 − λ∗

)1/β ′(λ∗)
(1 + · · · ) (4.42)

If the operator with coupling constant λ is a relevant operator, then the slope
of the beta function must be positive, β ′(λ∗) > 0. In this case, provided that this
relevant operator drives the system to a phase with a finite correlation length, which
we can take to be ξ(λ2) ≈ a, Eq. (4.42) implies that the correlation length ξ(λ)

must diverge with a power law as the fixed point is approached, λ → λ∗,

ξ(λ) ≈ a

∣∣∣∣λ2 − λ∗

λ− λ∗

∣∣∣∣ν (4.43)

where

ν = 1

β ′(λ∗)
(4.44)

is the universal critical exponent of the correlation length. By universal we mean
that ν is independent of the microscopic physics of the systems and, in particular,
of the choice of the short-distance cutoff a. In conclusion, the correlation length
must diverge ξ(λ) → ∞ as the fixed point is approached λ → λ∗ with a universal
critical exponent ν.

4.4 General consequences of scale invariance

We will now discuss some general and important properties of a theory at a fixed
point. We noted before that at a fixed point the system becomes scale-invariant, a
new symmetry that holds precisely only at the fixed point. We will also assume
that the system is spatially homogeneous and isotropic. In what follows we will
assume that at this fixed point the correlation length is infinite, limλ→λ∗ ξ(λ) = ∞
and hence is much bigger than the short-distance cutoff a (the lattice spacing). In
this regime we must be able to replace the lattice system with an effective-field
theory without a lattice, i.e. we have effectively a continuum system. In quan-
tum field theory, a system with these properties is said to be a conformal field
theory.

In this discussion we will adopt a heuristic approach and we will not give a
formal proof of a number of (important!) properties that will prove to be very
useful. Many of these proofs (and arguments) can be found in the literature, see
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e.g. Polyakov (1987) and Cardy (1996). However, we will need these properties in
order to show the generality of the approach that is used.

Let {φn(�r)} be a set of operators of a system at a fixed point with a scale-
invariant action S∗. Here n is a set of labels that depends on the system. We will
assume that under scale transformations these operators transform as φn(b�r) =
b−�nφn(�r). Operators that transform irreducibly under scale transformations are
called primary operators (or fields). The transformation property of the operators
under scale transformations dictates the transformation properties of their correla-
tion functions. Thus, scale invariance of the action (and of the partition function)
demands that under a global change of scale �r → b�r the correlation functions of
all operators will transform simply under scale transformations. This means that all
expectation values at the fixed point must be homogeneous functions of the coordi-
nates. A function F(x) is homogeneous of degree k if, under a scale transformation
of its variables x → bx , it transforms as F(bx) = bk F(x).

4.4.1 Scale invariance and correlation functions

Let us now apply this concept to the correlation function of the operator φn(�r) at
a fixed point S∗. Below we will denote all expectation values at the fixed point
as 〈 . . . 〉∗. We will further assume that the operator is normal ordered at the fixed
point, 〈φn(�r)〉∗ = 0, and that the (connected) correlation function decays at long
separations |�r −�r ′|. Then, the assumption of translation, rotation, and scale invari-
ance means that the correlator must have a power-law dependence of the distance
|�r − �r ′|

〈φn(�r)φn(�r ′)〉∗ = 1

|�r − �r ′|2�n
(4.45)

where �n is the scaling dimension of operator φn(�r) at the fixed point, i.e. [φn] =
L−�n . Here −2�n is the degree of the correlator as a homogeneous function. We
have normalized the operator so that the possible constant factor in the numerator
is set to 1.

The scaling dimension of a local operator can be regarded as a quantum number.
Indeed, in treating scale invariance as a symmetry we are implicitly assuming that
the operators can be chosen to transform irreducibly under these transformations,
much as angular momentum labels the representations of the group of rotations,
and describe how physical observables transform. More generally, scale transfor-
mations are a special case of the group of global conformal transformations. Sys-
tems that are homogeneous, isotropic, and scale-invariant are also invariant under
general global conformal transformations. The operators of a system at a fixed
point are then classified by the way they transform under all of these symmetries.
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Much as in the case of the group of rotations, operators in a scale-invariant
system obey a generalized orthogonality property. Namely, if we consider two
operators φn(�r) and φm(�r ′) with scaling dimensions �n and �m , respectively, then
the correlator at the fixed point must have the following form:

〈φn(�x1)φm(�x2)〉∗ = δ�n ,�m

|�x1 − �x2|2�n
(4.46)

i.e. the correlation function of operators with different scaling dimensions van-
ishes. This orthogonality condition follows from the following simple observations.
Translation and rotational invariance require that the correlator of Eq. (4.46) be
a function only of the distance |�x1 − �x2|. Scale invariance now requires that it
be a homogeneous function of a distance, i.e. a power law. Thus it cannot be
a separate function of each scaling dimension; the only solution is that the two
scaling dimensions must be the same and that, otherwise, the correlation function
must vanish. From a quantum-mechanical (or field-theory) perspective this relation
states that the states created by the action of the operator φn(�r) on the ground state
are orthogonal to the states created by the action of φm(�r ′) on the same ground
state if these operators transform differently under scale transformations, i.e. if
their scaling dimensions are not equal.

Global scale invariance also constrains the form of three-point correlators.
Let φn(�x1), φm(�x2), and φk(�x3) be three operators with scaling dimensions �n ,
�m , and �k , respectively. It can be shown that scale and conformal invariance
require (Belavin et al., 1984; Polyakov, 1987) that the three-point function of these
operators must have the form

〈φn(�x1)φm(�x2)φk(�x3)〉∗ = Cnmk

|�x1 − �x2|�nm |�x2 − �x3|�mk |�x3 − �x1|�kn
(4.47)

where the exponents are

�nm = �n +�m −�k

�mk = �m +�k −�n (4.48)

�kn = �k +�n −�m

With the normalization we chose for the two-point functions, the constant Cnmk in
Eq. (4.47) is a universal amplitude.

4.4.2 The operator-product expansion

Let us consider now a general correlation function at a fixed point of the form
〈 . . . φn(�xn) . . . φm(�xm) . . . 〉∗. We will say that the set of operators {φn(�x)} is
“complete” if inside a general expectation value of this type we can replace the
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product of a pair of these operators by a series of terms involving operators of the
same set, i.e.

lim
�xm→�xn

φm(�xm)φn(�xn) ≡ lim
�xm→�xn

∑
k

Cnmk

|�xn − �xm |�m+�n−�k
φk

( �xn + �xm

2

)
(4.49)

Here the limit is understood to mean that the distance |�xn − �xm | between the oper-
ators φn and φm is much smaller than their distances from all other operators in
the general expectation value. This identity is known as the operator product-
expansion (or OPE). In particular, the terms of the OPE tell us how different
operators fuse with another. Thus, the OPE can be understood as a set of fusion
rules dictated by the scaling dimensions of the operators, {�n}, and by the coeffi-
cients {Cnmk}, which are known as the structure constants of the OPE, the universal
amplitudes of the three-point function of the operators φn , φm , and φk . The fusion of
two fields φn and φm , denoted by the operation �, is summarized in the expression

φn � φm =
∑

k

Cnmkφk (4.50)

4.5 Perturbative renormalization group about a fixed point

We will now see that the scaling dimensions of the operators and the structure
constants of the OPE completely determine the form of the renormalization-group
beta functions in the vicinity of this fixed point. Let S be the action of a system
close to a fixed point with action S∗:

S = S∗ + δS = S∗ +
∫

d Dx
∑

n

gna�n−Dφn(�x) (4.51)

where, as before, {�n} are the scaling dimensions of the operators {φn}, {gn}
are dimensionless coupling constants, and a ∼ �−1 is the short-distance cutoff.
We will assume that the perturbing operators {φn(�r)} are primary and obey the
properties we listed above.

We will now consider the effects of the perturbations contained in δS on the
partition function of the system close to the fixed point S∗:

Z = tr e−S(φ) = tr
[
e−S∗(φ)e−

∑
n

∫
d D x gna�n−Dφn(�x)

]
(4.52)

where the trace indicates a sum (in the sense of a path integral) over the config-
urations (or histories) of the fields of the system. By expanding in powers of the
couplings to low orders, we find
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Z

Z∗ = 1 +
∑

n

∫
d Dx

aD−�n
gn〈φn(�x)〉∗

+ 1

2!
∑
n,m

∫
d Dx1

aD−�n

∫
d Dx2

aD−�m
gngm〈φn(�x1)φm(�x2)〉∗

− 1

3!
∑
nmk

∫
d Dx1

aD−�n

∫
d Dx2

aD−�m

∫
d Dx3

aD−�k

× gngm gk〈φn(�x1)φm(�x2)φk(�x3)〉∗ + · · · (4.53)

where

Z∗ ≡ tr e−S∗(φ) (4.54)

is the partition function at a fixed point S∗.
At the fixed point the correlators of the operators {φn(x)} acquire the scaling

form of Eq. (4.46) and Eq. (4.47) and, as a result, the integrals that appear in each
term of this expansion are typically singular. Two types of singularities are present:
(a) long-distance or infrared (IR) divergences, which are cut off by a finite size L ,
and (b) short-distance or ultraviolet (UV) divergences, which are regulated by the
short-distance cutoff a. In this form, the expansion formally looks like a partition
function of a “gas” of “particles” located at coordinates {�xk}, with the index of the
operator n labeling the different “species” of particles. This picture goes back to
the formulation of the RG by Kosterlitz. We will work in the regime where the
coordinates of these “particles” are separated from each other by distances large
compared with the short-distance cutoff and small compared with the linear size of
the system, L � |x1 − x2| � a.

An RG transformation consists of (a) a change in the short-distance cutoff a →
ba (with b > 1) and (b) a rescaling of all (dimensionless!) coupling constants to
compensate for this change. In the process we will keep the partition function and
the linear size of the system L (the IR cutoff) fixed.

We first rescale the cutoff a → ba (b > 1) and parametrize the change as
b = eδl or, equivalently, δl = ln b. (See Fig. 4.2.) Hence, δl → 0 as b → 1. We
will change the UV cutoff a by an amount b in the integrals and we will compensate
by changing the couplings while keeping Z fixed. How do we change the coupling
constants gn with Z fixed? To proceed we note that the UV cutoff a appears

(1) in the factors aD−�n in the action,
(2) as the cutoff in the integrals, and
(3) in the L dependence (L/a) of the integrals.

The effect of the change of the cutoff a in the factors of the action is readily com-
pensated for by a rescaling of the coupling constants gn . Indeed, under a change
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a

a δl

Figure 4.2 Changing the cutoff a by the annular region (shaded) of radial
thickness a δl.

a → ba the factor involving the coupling constant gn changes as

gn

aD−�n
→ gn

aD−�n bD−�n
(4.55)

For an infinitesimal change δl = δa/a, this change can be compensated for by a
rescaling of the coupling constant gn:

gn → bD−�ngn = gn(1 + (δl)(D −�n)+ · · · ) (4.56)

Hence, at this level, the change in the coupling constant gn

gn → gn + (D −�n)gn δl + · · · (4.57)

is dictated by the scaling dimension �n and the dimensionality D. It is easy to see
that this change is equivalent to the tree-level approximation to the beta function
for gn that we discussed above.

Next we look at the effect of changing the UV cutoff a in the integrals. The cutoff
is brought into the integrals by restricting the integrations over the coordinates {�x j }
to the range |�x j − �xk | > a. Thus, the integral over two of these coordinates, say �x j

and �xk , becomes modified as follows:∫
|�x j−�xk |>a(1+δl)

d Dx j d Dxk F(�x j , �xk)

=
∫
|�x j−�xk |>a

d Dx j d Dxk F(�x j , �xk)−
∫

a(1+δl)>|�x j−�xk |>a
d Dx j d Dxk F(�x j , �xk)

(4.58)
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The change we need to evaluate is then the integral over the annular region a(1 +
δl) > |�x j − �xk | > a. We will now examine this in each term in the expansion of
Eq. (4.53)

The first term of the series of Eq. (4.53) has no singular terms and is affected
only by the change of the cutoff in the prefactors that we discussed above. Upon
implementing this rescaling, we recover the original contribution to Z . In the sec-
ond term, in addition to the prefactor rescaling, we get singular contributions in the
two-point functions. Here, the change in the UV cutoff leads to the evaluation of
the integral over an annular region. Inside each annular region we can compute the
two-point function using the OPE, Eq. (4.49),

1

2

∑
n,m

∫
d Dx1 d Dx2

gn

aD−�n

gm

aD−�m
〈φn(�x1)φm(�x2)〉∗

≡ 1

2

∑
n,m,k

∫
d Dx1 d Dx2

gn gm

a2D−�n−�m

Cnmk〈φk(
1
2(�x1 + �x2))〉∗

|�x1 − �x2|�n+�m−�k + · · ·

=
∑
nmk

Cnmka�k−�n−�m gngm

∫
d Dx〈φk(�x)〉∗ SDaD δl

a2D−�n−�m
+ · · ·

≡ 1

2

∑
n,m

∑
k

gngmCnmk

∫
d Dx

aD−�k
〈φk(�x)〉∗SD δl (4.59)

where SD = 2π D/2/�(D/2) is the area of a hypersphere in D dimensions, and
�(z) is the Euler gamma function.

From the form of Eq. (4.59), we see that the net effect of the second-order (“one-
loop”) contributions amounts to an additional rescaling (or renormalization) of the
coupling constants

gk → gk − 1

2
SD

∑
n,m

gngmCnmk δl + · · · (4.60)

It is straightforward to see that this repeats to all orders (cf. cubic terms and higher
in Eq. (4.53)).

By combining the tree-level and one-loop rescalings we obtain a general form
of the beta functions for all the coupling constants {gk}:

dgk

dl
= (D −�k)gk − 1

2
SD

∑
nm

Cnmk gngm + · · · (4.61)

We can simplify this expression by absorbing the phase-space factors in a further
simple redefinition of the coupling constants, gk → (2/SD)gk , and find the final
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form of the one-loop beta functions

β(gk) = dgk

dl
= (D −�k)gk −

∑
nm

Cnmk gngm + · · · (4.62)

We see that, in addition to the linear term which follows from knowledge of
the scaling dimensions {�k} (and the dimensionality D), the one-loop contribution
amounts to quadratic (bilinear) terms in the coupling constants whose coefficients
are given by the structure constants of the OPE, {Cnmk}. All one-loop beta functions
of all perturbative RG transformations have this structure.

4.6 The Kosterlitz renormalization group

We will use this approach to derive the RG flow for the sine–Gordon (SG) model
in 1 + 1 dimensions. This is the Kosterlitz RG flow (Kosterlitz, 1974). As will be
explained in Chapters 5 and 6, this RG appears in the theory of one-dimensional
(1D) quantum antiferromagnets and Luttinger liquids. It was derived originally by
Kosterlitz to explain the Kosterlitz–Thouless transition in two-dimensional (2D)
classical superfluids and XY magnets (Kosterlitz and Thouless, 1973; José et al.,
1977). An RG with the same structure was found some years earlier by Anderson
and Anderson, Yuval, and Hamann in their work on the Kondo problem (Anderson,
1970; Anderson et al., 1970).

The SG model is a theory of a scalar field φ in 1 + 1 dimensions whose
Lagrangian density (in Euclidean space-time) is

L = 1

2
(∂φ)2 + u

a2
cos(βφ) (4.63)

Here u is the dimensionless coupling constant and β is a (real) parameter. The first
(free-field) term of the SG Lagrangian, Eq. (4.63), is invariant under shifts of the
field, φ → φ + α, where α is arbitrary. The cosine term of the SG Lagrangian
breaks this continuous symmetry to a discrete symmetry,

φ → φ + 2πn R (4.64)

where n is an integer and R = 1/β is known as the “compactification radius,”
using a terminology borrowed from string theory. Alternatively, we can define a
rescaled field ϕ, βφ = ϕ, which has compactification radius 1. The SG (Euclidean)
Lagrangian takes the form

L = K

2
(∂ϕ)2 + u

a2
cosϕ (4.65)

where we introduced the stiffness K = 1/β2. This form of the SG Lagrangian will
be useful for our discussion of its behavior under scaling.
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To construct a renormalization group transformation for the SG theory we will
follow the approach discussed in the preceding sections. We will consider this prob-
lem in 2D Euclidean space, where it becomes equivalent to a problem in classical
statistical mechanics. In a 2D Euclidean space-time it is convenient to express the
Cartesian coordinates in terms of the complex coordinates z = x + iy and the
complex conjugate z̄ = x − iy.

The expansion of the partition function of the SG theory in powers of the cou-
pling constant g has the same form as Eq. (4.53). On writing the cosine as a sum of
two vertex operators, cosϕ = 1

2

(
eiϕ + e−iϕ

)
, we see that the equivalent gas of par-

ticles has now two “species” or charges, ±1, one for each type of vertex operator.
On the other hand, since we are expanding about the fixed “point” (actually a fixed
line, as we will see below) of the free massless scalar field in two Euclidean space-
time dimensions, the propagator is a logarithmic function of the distance, and the
effective interaction between the charges is also logarithmic. Therefore, the equiv-
alent system is a 2D two-component Coulomb gas at total charge neutrality with
the partition function

Z (2)
CG =

∑
{m(�r)=±1}

′ z
∑

�r m2(�r) exp

⎛⎝− 1

2Teff

∑
�r ,�r ′

m(�r)Ueff(|�r − �r ′ |)m(�r ′ )

⎞⎠ (4.66)

The effective interaction of the 2D Coulomb gas is

Ueff(r) = 1

4π
ln

(
r

a

)
(4.67)

with an effective “temperature” Teff and “fugacity” z

Teff = K = 1

β2
, z = u

2a2
(4.68)

Since the effective interaction diverges logarithmically at large distances, the
weight of the configurations {m(�r)} that do not obey the charge-neutrality condi-
tion,

∑
�r m(�r) = 0, vanishes identically. The prime label on the sum of Eq. (4.66)

indicates that the sum runs only over overall charge-neutral configurations. On
the other hand, the effective interaction also diverges (logarithmically) at short dis-
tances and hence needs to be regularized. This is done by imposing a short-distance
cutoff in the integrals, which, as in the preceding section, amounts to a “hard-core”
condition at some short distance a. Thus we will cut off the integrals at that dis-
tance and absorb the short-distance behavior of the interaction in a redefinition of
the fugacity.

This problem was first solved by Kosterlitz and Thouless (1973) in their the-
ory of the thermal superfluid phase transition in two dimensions. In the superfluid
case (as in the physically equivalent classical 2D XY model), the Coulomb
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charges represent topologically non-trivial configurations known as vortices. In
the SG theory (and in 1D antiferromagnets and Luttinger liquids) the Coulomb
charges are instantons. This is the Kosterlitz–Thouless transition (which also
describes the roughening transition of crystal surfaces). The general problem of
the D-dimensional two-component Coulomb gas was solved (using a perturbative
RG) by Kosterlitz (1977).

This system has two phases separated by a (Kosterlitz–Thouless) phase tran-
sition. For low Teff ≤ Tc (where Tc is an effective critical temperature), the
logarithmic interaction forces the Coulomb charges to be rare and to be bound
in neutral dipole configurations. This is the dielectric phase of the 2D neutral
Coulomb gas, i.e. the “2D superfluid” phase. In contrast, for Teff > Tc the Coulomb
charges proliferate and the long-range Coulomb interaction becomes (Debye)
screened. This is the plasma phase of the 2D Coulomb gas. This is the nor-
mal phase, with a finite correlation length, namely the screening length of the
Coulomb gas.

Here we will use the OPE approach to the perturbative RG discussed in the
preceding section. It requires us (as in Kosterlitz’s analysis) to expand about a
specific value of the stiffness K where the cosine operator is marginal. We will see
below how this physically intuitive picture works out in this approach.

The correlation function of the free field ϕ can be expressed as the sum of a
holomorphic function GR(z) and an anti-holomorphic function GL(z̄),

〈ϕ(0, 0)ϕ(�x)〉 ≡ G(�x) = GR(z)+ GL(z̄) (4.69)

where

GR(z) = − 1

4πK
ln z (4.70)

and likewise for GL(z̄). Similarly, the field ϕ(x, y) can be decomposed into a sum
of holomorphic ϕR and anti-holomorphic ϕL components,

ϕ(x, y) ≡ ϕR(z)+ ϕL(z̄) (4.71)

which satisfy

∂z̄ϕR = ∂zϕL = 0 (4.72)

and whose correlators are given by

〈ϕR(0)ϕR(z)〉 = GR(z), 〈ϕL(0)ϕL(z)〉 = GL(z̄) (4.73)

Upon analytic continuation from 2D Euclidean space to (1 + 1)-dimensional
Minkowski space-time, i.e. real time iy → −vt (with velocity v), we can identify
the holomorphic component of the field with its right-moving component, which is
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a function of x−vt , and the anti-holomorphic component with its left-moving com-
ponent, which is a function only of x + vt . The holomorphic and anti-holomorphic
components, ϕR and ϕL, are known as chiral bosons and will play an important role
in our discussion of several systems.

In order to construct an RG transformation we first need to determine the scaling
dimensions of the operators of interest. We begin with the vertex operator Vn(x) =
exp(inϕ(x)), whose correlation functions are〈

einϕ(0)e−inϕ(�x)〉 = exp

(
−n2

2

〈
(ϕ(0)− ϕ(|�x |))2

〉)
(4.74)

This expression has a formal singularity in the G(0) and requires a regularization
(or cutoff). We will introduce the regularized correlation function

Greg(x) ≡ − 1

4πK
ln

( |�x |2 + a2

a2

)
(4.75)

where a is the short-distance cutoff, and by virtue of which Greg(0) = 0. The
correlation function of the vertex operators becomes〈

einϕ(0)e−inϕ(�x)〉 = en2(Greg(|�x |)−Greg(0))

= exp

[
− n2

4πK
ln

( |�x |2 + a2

a2

)]
=

(
1

|�x |
)n2/(2πK )

=
(

1

z

)n2/(4πK ) (1

z̄

)n2/(4πK )

(4.76)

where we have rescaled the operator to absorb the power of the cutoff a.
From this result we can read off the scaling dimension �n of the vertex operator

Vn(�x) to be

�n = n2

4πK
= n2β2

4π
(4.77)

According to our general rules, the cosine operator 1
2(V1 + V−1) is irrelevant if

�1 > 2, relevant if �1 < 2, and marginal if �1 = 2. Hence, there is a critical value
of the stiffness Kc = 1/(8π) or, equivalently, βc = 1/Rc = √

8π , at which the
cosine operator is marginal. Since we are constructing a perturbative RG, we will
have to assume that the stiffness K is close to its critical value Kc. This is the
Kosterlitz–Thouless (KT) transition.

This theory has an exactly marginal operator for all values of K . To see this, let
us compute the scaling dimension �0 of the (normal-ordered) operator, : (∂ϕ)2 : ≡
(∂ϕ)2 − 〈

(∂ϕ)2
〉
. We need to compute the correlation function

〈: (∂ϕ)2(�x) :: (∂ϕ)2(�y ) :〉 = (
1

πK

)2 1

|�x − �y |4 (4.78)
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which tells us that its scaling dimension is �0 = 2. Hence, this is a marginal
operator.

Since the free-field action S∗ =
∫
(K/2)(∂ϕ)2 is scale-invariant for all values of

K , and since the scaling dimension of the vertex operator On varies continuously
with K , we conclude that this theory has a line of fixed points rather than an isolated
fixed point. Notice that the scaling dimension of (∂ϕ)2 does not vary and hence it
remains marginal.

Our next task is to compute the coefficients of the OPE. We begin with the
marginal operator O0. Since the fixed-point action is a free field, the three-point
function of the operator : (∂ϕ)2 : with itself vanishes. It then follows that the OPE
coefficient of this operator with itself also vanishes,

C0,0,0 = 0 (4.79)

On the other hand, the OPE of the vertex operators Vn(�x) is

lim
�y→�x

: Vn(�x) :: V−n(�y) : = 1

|�x |2�n
− 1

|�x − �y|2�n−2

n2

4K
: (∂ϕ(�x))2 : + · · ·

(4.80)

lim
�y→�x

: Vn(�x) :: Vm(�y) : = 1

|�x − �y|�n+�m−�n+m
: Vn+m(�x) : + · · · (4.81)

From Eq. (4.80) and Eq. (4.81), we see that the non-vanishing OPE coefficients
Cn,−n,0 and Cn,m,−(n+m) are

Cn,−n,0 = − n2

4K
= −π�n, Cn,m,−(n+m) = 1 (4.82)

In particular, Eq. (4.80) implies that there is a finite renormalization of the stiffness.
On the other hand, since the scaling dimension of the vertex operators is a contin-
uous function of the stiffness, there is also a non-linear feedback on their scaling
behavior as well.

We can now derive our perturbative RG. We will consider a general perturbation
of the form

Lint = u cos(nϕ(x)) = u

2
(Vn(x)+ V−n(x)) (4.83)

although in this chapter we are interested only in the case n = 1. Since our
procedure is perturbative, we will expand about the critical value of the stiffness
Kn = n2/(8π) at which the operators V±n are marginal. Let us parametrize the dis-
tance to this critical value by x(K ) = 2−�n(K ) = 2−n2/(4πK ), which satisfies
x(Kn) = 0. The perturbative RG equations are

a
du

da
= (2 −�n(K ))u + · · · (4.84)
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The OPE of the vertex operators V±n generates a renormalization of the stiffness

a
d K

da
= −4πCn,−n,0(Kn)

u2

4
= n2π

4K
(4.85)

where the factor of 4π arises from two contributions, a space phase factor and the
definition of the stiffness. On the other hand, from the definition of the variable x ,
we have

a
dx

da
=

(
n2

4πK 2

)
a

d K

da
= n4

16K 3
u2 + · · · (4.86)

Near marginality, where these results are reliable, the RG beta functions, Eq. (4.84)
and Eq. (4.86), can be recast in the more compact form

a
du

da
= xu + · · · (4.87)

a
dx

da
= A(n)2u2 + · · · (4.88)

where A(n)2 = 32π2/n2. Up to a redefinition of the coupling constant, these RG
equations are known as the Kosterlitz renormalization group.

The RG flows of the SG theory are the solutions of the Kosterlitz RG equations
and are shown in Fig. 4.3. With the sign conventions we are using the direction of

u

x

line of fixed points unstable

PP

Q

Q

Critical Phase

Massive Phase

Figure 4.3 The Kosterlitz RG flow and phase diagram; u is the SG dimensionless
coupling constant and x = 2 − n2/(4πK ), where K is the stiffness. The phase
boundaries are the asymptotes u = ±x/A(n) for x < 0. Here P = A(n)

√|C |,
P ′ = −A(n)

√|C |, Q = √|C |, and Q′ = −√|C |.
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the flows is towards the infrared (long distances). It is straightforward to show that
the RG trajectories are the hyperbolas

u2 − x2

A(n)2
= C (4.89)

For C > 0 these hyperbolas intersect the u axis, whereas for C < 0 they intersect
the x axis. The solutions of the RG equations are

x(�) = A(n)
√

C tan(A(n)
√

C�), u(�) = ±
√

C

cos(A(n)
√

C�)
, C > 0 (4.90)

x(�) = A(n)
√|C | coth(A(n)

√|C |�), u(�) = ±
√|C |

sinh(A(n)
√|C |�), C < 0

(4.91)
whereas for C = 0 they degenerate into the asymptotes u = ±x/A(n).

We will now discuss the case n = 1, although (with some minor changes) the
conclusions are general. The RG flow is clearly symmetric with respect to the x
axis. This is natural since the changing of the sign of the coupling constant g → −g
can be compensated for by a shift of the field ϕ → ϕ + π . Hence, it is sufficient
to consider only the upper half-plane, u ≥ 0. The most important feature of these
flows is that for values of u and x located below or at the asymptote u = −x/A(1)
the cosine term in the Lagrangian is irrelevant and the system flows towards the
stable line of fixed points at u = 0 and x ≤ 0. For values outside this region
(including the unstable line u = 0 and x > 0) the cosine term is relevant and
the system flows to large (and positive) values of u and x , converging on the other
asymptote, u = x/A(1). Thus the SG theory describes two phases (see Fig. 4.3):
(a) a critical phase and (b) a massive phase.

1. In the critical phase all correlation functions exhibit power-law behavior with
a non-universal exponent equal to twice the scaling dimension of the opera-
tor. The exponent is non-universal and varies continuously with the stiffness,
reaching a universal value at the end of the fixed line at x = 0 (i.e. at Kc =
1/(8π)).

2. In the massive phase the cosine operator is relevant and the system flows to
strong coupling. In this regime the continuous shift symmetry of the field is
broken and (qualitatively) the field is pinned at values 2πn (n ∈ Z). In this phase
the fluctuations are massive and the correlation length is finite. In this system the
way the correlation length ξ scales is more complex than what we discussed in
the preceding sections. Thus, along the unstable trajectory on the asymptote u =
x/A(1), the correlation length diverges as x → 0+ with an essential singularity
ξ(x) ∼ exp(1/x), whereas away from the asymptote it has a different behavior
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(still with an essential singularity!) given by ξ(x) ∼ exp(A/
√|δx |), where δx

is the distance to the stable asymptote (the phase boundary of Fig. 4.3) and
A > 0 is a non-universal constant. These results follow from the solutions of
the RG flow.

3. How do we know that the correlation length is finite in the regime in which
the cosine operator becomes relevant? Or, which amounts to the same thing,
that the 2D Coulomb gas has a plasma phase with a finite screening length?
At the level of the perturbative RG we are implementing this is an assump-
tion whose justification is beyond the reaches of perturbation theory. We know
that this is correct for several reasons. One is that the (quantum) SG field the-
ory is integrable and its spectrum (and scattering matrix) have been computed
explicitly using a Bethe-ansatz approach similar to the one we will discuss in
the next chapter. From the Bethe-ansatz results in SG theory (Zamolodchikov
and Zamolodchikov, 1979; Faddeev, 1984) and in the (equivalent) massive
Thirring model (Bergknoff and Thacker, 1979) and earlier semi-classical results
(Dashen et al., 1975; Rajaraman, 1985), it is known that, in the regime in which
the cosine operators become relevant, β2 < 8π , the spectrum of the SG theory
is massive. It consists of a boson of (renormalized) mass M (i.e. the fluctuations
about any one of the classical ground states of the SG theory), which, as dis-
cussed above, generally vanishes as M ∼ exp

(−A/
√|δx |) as β2 → 8π from

below. In addition to these boson states, for β2 ≤ 4π there is also a set of soliton
states (and soliton bound states) with a finite mass Mn given by

Mn = M sin

(
n

πβ2/2√
1 − β2/8π

)
, n = 1, . . . <

8π

β2

√
1 − β2

8π
(4.92)

We will see in Chapter 5 that abelian bosonization methods show that at β2 =
4π the SG theory is equivalent to a theory of massive free Dirac fermions.

This analysis implies that there is a finite mass (energy) gap in the spectrum
and hence that the correlation length is finite. Notice that, as expected, the mass
gap vanishes as β2 → 8π (from below) Similarly, from the behavior of the
lattice models of interest we know that in this regime the system flows to a
phase with a finite energy gap and a finite correlation length.

We will see in Chapters 5 and 6 that the set of trajectories that are important (and
therefore the scaling behavior) depends on the problem of interest.



5

One-dimensional quantum antiferromagnets

In this chapter we will discuss the physical behavior of 1D quantum antiferromag-
nets. It is worthwhile to study them for several reasons: (a) in many cases we have
exact solutions (which are lacking in higher dimensions), (b) they exhibit a wealth
of ground states, including disordered phases, and (c) they are a natural testing
ground for methods and approximations. We shall first discuss the spin one-half
Heisenberg chain and later discuss its generalization to (a) higher spin-S and (b)
other symmetry groups.

5.1 The spin-1/2 Heisenberg chain

Consider the Heisenberg model on a one-dimensional chain of N sites. The
Hamiltonian is

H = J
N∑

n=1

�S(n)·�S(n + 1) (5.1)

where J > 0. I will assume that N is an even integer and that we have peri-
odic boundary conditions. Much of what we know about this system comes from
(a) the Bethe-ansatz solution for the ground state (Bethe, 1931) and excitation spec-
trum (Yang and Yang, 1969), (b) mapping to the sine–Gordon theory (Luther and
Peschel, 1975), (c) non-abelian bosonization (Affleck, 1985), and (d) mapping to
the sigma model (Haldane, 1983a, c).

The exact solution via Bethe ansatz is very peculiar to one-dimensional inte-
grable systems and hence is not generalizable. The other methods are also very
specific to one dimension but they are more generally applicable, and higher-
dimensional versions of them are currently being developed. Thus we shall
concentrate mainly on them. The mapping to the sine–Gordon system is based on
the abelian bosonization transformation (Lieb and Mattis, 1965; Coleman, 1975;
Luther and Peschel, 1975; Mandelstam, 1975). In a deep sense, it is a particular

90
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case of the non-abelian bosonization developed by Witten (1984) and by Polyakov
and Wiegmann (1984), and applied to spin systems by Affleck (1985). The main
advantage of all these approaches is that they are non-perturbative: they yield the
exact behavior of the ground-state properties at long distances, and, in principle,
one can find the low-energy spectrum. One important feature is the existence, in
addition to spin waves, of soliton states. These states are highly extended configu-
rations of spins that cannot be created locally and that comprise the lowest portion
of the spectrum of these systems.

5.1.1 The Bethe-ansatz solution

I will not attempt to give a detailed description of the Bethe-ansatz solution, which
is fairly technical. A good summary can be found in the Les Houches Lectures of
1982, in particular the articles by Faddeev (1984) and Lowenstein (1984).

Here I will review very quickly the method as given by Lowenstein. The main
idea is to consider the wave function for a pure state of N spins one-half, each
labeled by an index s(n) = ± 1

2 (n = 1, . . . , N ). The total spin of the system is
�S = ∑N

n=1
�S(n). We will consider states �(s(1), . . . , s(n)) in which (N − M)

spins are up (+ 1
2) and M are down (− 1

2). Thus, the total z-component of the
spin is

Sz�(s(1), . . . , s(N )) =
(

N∑
n=1

s(n)

)
�(s(1), . . . , s(N )) (5.2)

with
N∑

n=1

s(n) = N

2
− M (5.3)

We shall denote by

�(s(1), . . . , s(N )) ≡ φ(x1, . . . , xM) (5.4)

a state with the j th down spin located at the site x j (1 ≤ x1 ≤ . . . ≤ x j ≤ . . . ≤
xM ≤ N ). Thus, if �0 is the ferromagnetic state

�0 = |↑ . . . ↑〉 (5.5)

the most general state with M spins down has the form

� =
∑
{x j }

φ(x1, . . . , xM)S
−(x1) . . . S−(xM)�0 (5.6)

where S−(n) is the lowering operator at site n.
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The Heisenberg model is translationally invariant and on a chain with periodic
boundary conditions has the translation symmetry in which the nth site is identified
with the (N + n)th site. Thus we can look for a basis in which not only are �S2 and
Sz diagonal but also the cyclic permutation operator P̃ , given by

P̃�(s(1), . . . , s(N )) = �(s(N ), s(1), . . . , s(N − 1)) (5.7)

is diagonal.

5.1.2 The basis functions

Bethe’s method begins by first writing the Hamiltonian in terms of a spin-exchange
operator Pn,m , where

Pn,m�(s(1), . . . , s(n), . . . ,s(m), . . . , s(N ))

= �(s(1), . . . , s(m), . . . , s(n), . . . , s(N )) (5.8)

in the form

H = J
N∑

n=1

(
Pn,n+1 − 1

)
(5.9)

with periodic boundary conditions. Consider first a state with one spin down

�(s1, . . . , sN ) =
N∑

p=1

φ(p)|↑ . . . ↓ . . . ↑〉 (5.10)

where the spin at site p is down.
By using the cyclic translation operator P̃ we see that its main effect is just to

shift the location of the down spin by one. Thus an eigenstate of P̃ with eigenvalue
μ should satisfy

P̃φ(p) = φ(p + 1) = μφ(p) for p = 1, . . . , N − 1 (5.11)

and

P̃φ(N ) = φ(1) = μφ(N ) (5.12)

Hence

φ(p) = μp−1φ(1) (5.13)

and, if we set φ(1) = 1, we get

φ(p) = μp−1 (5.14)

and in particular μ must satisfy

1 = φ(1) = φ(N + 1) = μN (5.15)

i.e. it is an N th root of unity.
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Now, a state with one spin down can be a member either of the multiplet with
highest total spin N/2 or of the multiplet with total spin N/2− 1. In the latter case
the state is the highest-weight state in the multiplet and satisfies

S+� = 0 (5.16)

where

S+ =
N∑

n=1

S+(n) (5.17)

Thus we get

S+� =
N∑

p=1

φ(p)S+|↑ . . . ↓ . . . ↑〉

=
N∑

p=1

φ(p)S+(p)|↑ . . . ↓ . . . ↑〉

=
⎛⎝ N∑

p=1

φ(p)

⎞⎠�0 (5.18)

Using Eqs. (5.14) and (5.16), we obtain

0 =
N∑

p=1

φ(p) =
N∑

p=1

μp−1 = 1 − μN

1 − μ
(5.19)

Thus μN = 1 and μ �= 1. Hence we found N − 1 members of the spin-(N/2 − 1)
multiplet (the other members of the multiplet can be found by applying S−). The
case μ = 1 represents the state S = N/2 which belongs to the multiplet of the
ferromagnetic state.

If we now consider the case of M spins down, we can still find states with S =
Sz . They satisfy

P̃φ(p1, . . . , pM) = φ(p1 + 1, . . . , pM + 1) = λφ(p1, . . . , pM) (pM < N )
(5.20)

and

P̃φ(p1, . . . , pM−1, N ) = φ(1, p1 + 1, . . . , pM−1 + 1) = λφ(p1, . . . , pM−1, N )
(5.21)

We look for wave functions that are products of single down-spin wave functions

φ(p1, . . . , pM) = μ
p1−1
1 . . . μ

pM−1
M (5.22)
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By choosing

λ =
M∏

j=1

μ j (5.23)

we can satisfy Eq. (5.20). However, as it stands, this ansatz does not satisfy
Eq. (5.21), but if we permute the order of the parameters μ1, . . . , μM we can find
a solution. Thus, Bethe introduced the Bethe-ansatz solution

φ(p1, . . . , pM) =
∑

P∈SM

APμ
n1
P1 . . . μ

nM
P M (5.24)

where n j = p j − 1, and P belongs to the permutation group SM (i.e.
(P1, . . . , P M) is a permutation of (1, . . . , M)). Now everything is consistent,
provided that the identity

AP Q̃−1 ≡ AP M,P1,...,P(M−1) = APμ
N
P M (5.25)

where (Q̃1, Q̃2, Q̃3, . . . , Q̃M) = (2, 3, 4, . . . , M, 1) holds. The demand that φ be
a highest-weight state with S = N/2 − M ≡ Sz yields the constraint (Lowenstein,
1984)

AP ′

AP
= −2μP(k+1) − μPkμP(k+1) − 1

2μPk − μPkμP(k+1) − 1
(5.26)

for all k and for all pairs of permutations P and P ′ such that (P ′1 . . . P ′k P ′(k
+ 1) . . . P ′M) ≡ (P1 . . . P(k + 1)Pk . . . P M).

Define χ j ,

μ j = χ j + iπ/2

χ j − iπ/2
(5.27)

Then one finds
AP ′

AP
= χP ′ j − χP j + iπ

χP ′ j − χP j − iπ
(5.28)

By combining Eqs. (5.27) and (5.25) we get(
χP M + iπ/2

χP M − iπ/2

)N

= AP M P1...P(M−1)

AP1P2...P M
(5.29)

By using Eq. (5.28) repeatedly we obtain(
χP M + iπ/2

χP M − iπ/2

)N

=
M−1∏
j=1

(
χP M − χP j + iπ

χP M − χP j − iπ

)
(5.30)
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Since this equation should be valid for all permutations P , we get the Bethe-ansatz
equations (

χ j + iπ/2

χ j − iπ/2

)N

= −
M∏

l=1

(
χ j − χl + iπ

χ j − χl − iπ

)
(5.31)

Also we see that

λN ≡
∏

j

(
χ j + iπ/2

χ j − iπ/2

)N

= 1 (5.32)

Thus, for all M , the eigenvalue of P̃ is an N th root of unity. For a given value of
S = N/2 − M , the Hilbert space with given S and P̃ has a huge size. It is thus
generally unlikely that this basis will diagonalize a randomly chosen Hamiltonian.
It is now known that systems that can be diagonalized in this basis, such as the
nearest-neighbor Heisenberg chain, have this property because they are completely
integrable, i.e. obey an infinite number of conservation laws (Faddeev, 1984).

5.1.3 The spectrum

Let us now act with the Heisenberg Hamiltonian on a Bethe-ansatz wave function.
The result is

Hφ(p1, . . . , pM) = J
M∑

j=1
p j �=p j+1−1

φ(p1, . . . , p j + 1, . . . , pM)

+ J
M∑

j=1
p j �=p j−1+1

φ(p1, . . . , p j − 1, . . . , pM)

+ (N − 2M)Jφ(p1, . . . , pM)

+ 2J
M∑

j=1
p j �=p j+1−1

φ(p1, . . . , p j , . . . , pM)− N Jφ(p1, . . . , pM)

(5.33)

The first and second terms come from acting with
∑

n Pn,n+1 on ↑↓ and ↓↑ pairs.
The third and fourth terms come from acting with

∑
n Pn,n+1 on ↑↑ and ↓↓ pairs.

Using the Bethe ansatz, Eq. (5.24) and Eq. (5.31), we can put Eq. (5.33) into the
form

Hφ(p1, . . . , pM) = J
M∑

j=1

[μ(χ j )+ μ−1(χ j )− 2]φ(p1, . . . , pM)
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− J
M∑

j=1

[φ(. . . p j + 1, p j + 1 . . .)+ φ(. . . p j , p j . . .)

− 2φ(. . . p j , p j+1 . . .)] (5.34)

The last term (in brackets) is found to vanish. Thus the Bethe-ansatz state,
Eq. (5.24), is an eigenstate of the Heisenberg model with eigenvalue E given by

E = J
M∑

j=1

[μ(χ j )+ μ−1(χ j )− 2] = −J
M∑

j=1

π2

χ2
j + (π/2)2

(5.35)

We must now find solutions to the Bethe-ansatz equation, Eq. (5.31). Intuitively,
if J > 0 (an antiferromagnet), we expect the ground state to have Sz = 0 (“Néel”)
and thus M/N = 1

2 . Let us assume that the solutions of the Bethe-ansatz equations
are real roots χ j . By taking logarithms we can write the Bethe-ansatz equations in
the form

2N tan−1

(
χ j

π/2

)
− 2

M∑
i=1

tan−1

(
χ j − χi

π

)
= 2π I j (5.36)

for j = 1, . . . , M and where I j are integers (half-integers) for N − M odd (even).
Let us now assume that {χ j } is a set of real roots with N − M odd. The function

J (χ)

J (χ) = 1

2π

(
2N tan−1

(
χ

π/2

)
− 2

M∑
i=1

tan−1

(
χ − χi

π

))
(5.37)

is a monotonically increasing function of χ . If J happens to take the value of one of
the integers Ii , J−1(Ii ) = χ will be equal to the corresponding root χi . However, it
may happen that for some integers the value of χ might not be in the set {χ j }. Such
a χ is called a hole (not to be confused with the “holes” of a more general context).
If the roots are closely spaced (i.e. their separation vanishes in the thermodynamic
N → ∞ limit), we should be able to define a distribution of roots and holes ρ(χ)

ρ(χ) = d J (χ)

dχ
(5.38)

or, equivalently,

J (χ) = J (−∞)+
∫ χ

−∞
dχ ′ ρ(χ ′) (5.39)

Now d J/dχ is given by differentiating Eq. (5.37),

d J

dχ
= ρ(χ) = N/2

χ2 + (π/2)2 −
M∑

j=1

1

(χ − χi )2 + π2
(5.40)
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Let {θ j } j=1...n denote the positions of the holes. In the N → ∞ limit the following
approximation is valid:

M∑
i=1

f (χi ) =
∫ +∞

−∞
dχ ρ(χ) f (χ)−

n∑
i=1

f (θi ) (5.41)

where n is the number of holes. By using these results we find the integral equation

ρ(χ)+
∫ +∞

−∞
dχ ′ ρ(χ ′)

(χ − χ ′)2 + π2
= N/2

χ2 + (π/2)2 +
n∑

j=1

1(
χ − θ j

)2 + π2
(5.42)

Consider now the set {χ1, . . . , χM , θ1, . . . , θn} of roots and holes and let ξk denote
the kth element in this set, counting from left to right on the χ axis. This element
is defined by ∫ ξk

−∞
ρ(χ)dχ = J (ξk)− J (−∞) = Ik − M − N

2
(5.43)

The integral equation is solved by taking a Fourier transform:

ρ(χ) =
∫ +∞

−∞
dp

2π
eipχ ρ̃(p) (5.44)

One finds the solution

ρ̃(p) = ρ̃0(p)+
n∑

j=1

e−i pθ j− π |p|
2

2 cosh(πp/2)
(5.45)

with

ρ̃0(p) = N/2

2 cosh(πp/2)
(5.46)

Thus

ρ(χ) = ρ0(χ)+
∑

j

ρhole(χ − θ j ) (5.47)

and

ρ0(χ) = N

2 coshχ
(5.48)

The total number of roots M in a state with n holes is

M =
∫ +∞

−∞
dχ ρ(χ)− n = ρ̃(0)− n = N − n

2
(5.49)
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Since M is an integer, n must be even (odd) for N even (odd). This state has the
energy eigenvalue

E = −Jπ2
∫

dχ
σ(χ)

χ2 + (π/2)2 (5.50)

Here I introduced the density of roots for the Bethe-ansatz equations

σ(χ) = ρ(χ)−
n∑

i=1

δ(χ − θi ) (5.51)

In Fourier space, we get

E = −Jπ
∫

dp σ̃ (−p)e−
π |p|

2 (5.52)

with

σ̃ (p) = ρ̃(p)−
n∑

i=1

e−i pθi (5.53)

We find the result

E = E0 +
n∑

i=1

Eh(θi ) (5.54)

where E0 = −2N J ln 2 is the ground energy state, and the “excitation energy” (i.e.
that for “holes”) is

Eh(θ) = π J

cosh θ
(5.55)

Thus, we can minimize the energy by choosing the solution with real roots and no
holes (complex roots are irrelevant to this issue (Lowenstein, 1984)). The total spin
S for this state when N is even is obtained from Eqs. (5.3) and (5.49)

S = N

2
− M = 0 (5.56)

Thus the ground state is a singlet (S = 0). The excitations are “holes” with energy
π J/cosh θ . For a lattice with N sites, N even (odd), there is an even (odd) num-
ber of holes. A state with one hole constructed in this manner carries Sz = + 1

2 .
The spin-reversed hole is found by acting with S− on this state. These states are
degenerate, as required by the SU(2) symmetry.

The momentum of these states can be calculated by noting that the operator
P̃ that translates the wave function by one lattice spacing is related to the total
momentum P̄ of the state by

P̃φ(p1, . . . , pM) = ei P̄φ(p1, . . . , pM) (5.57)
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Before we found that the eigenvalue of P̃ was λ. Hence

P̄ = −i ln λ = −i
M∑

j=1

lnμ j = −i
M∑

j=1

ln

(
χ j + iπ/2

χ j − iπ/2

)
(5.58)

We can also write

P̄ = −2
M∑

j=1

tan−1

(
2χ j

π

)
+ Mπ (5.59)

In terms of “holes” θi and the distribution ρ(χ) we can write P̄ in the form

P̄ = P̄0 +
n∑

i=1

P̄i (5.60)

where P̄0 is the total momentum of the ground state,

P̄0 = −
∫ +∞

−∞
dχ ρ0(χ)2 tan−1

(
2χ

π

)
+ Mπ (5.61)

and P̄i is the contribution from the i th “hole” (see Eq. (5.45)),

P̄i =
∫ +∞

−∞
dχ

∫
dp

2π
2 tan−1

(
2χ

π

)
eip(χ−θi )

1 + e−π |p|
(5.62)

Since ρ0(χ) is even (see Eq. (5.48)), the total momentum of the ground state is
(mod 2π)

P̄0 = Mπ (5.63)

as predicted by Marshall’s theorem (Marshall, 1955).
What is the momentum of the first excited state? From mean-field theory, which

yields a Néel state, we expect that the lowest excited state should be a spin wave
with wave vector Q = π (i.e. momentum P̄ = π) and vanishing energy. From
the excitation energy, Eq. (5.54), we learn that there are massless excitations (i.e.
E → E0) if θ → ±∞. But, in this limit, P̄i has the value

lim
θi→±∞ P̄i = + lim

θi→±∞

∫
dχ

∫
dp

2π
2 tan−1

(
2χ

π

)
eip(χ−θi )

1 + e−π |p|

= + lim
θi→±∞

∫
dχ

∫
dp

2π
2 tan−1

(
2

π
(χ + θi )

)
eipχ

1 + e−π |p|

= ±π
∫

dχ
∫

dp

2π

eipχ

1 + e−π |p|

= ±π
∫

dp
δ(p)

1 + e−π |p|
(5.64)
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Thus we get

lim
θi→±∞ P̄i = ±π

2
(5.65)

This result means that the lowest excited state of a chain with N even, which has
two “holes,” has total momentum equal either to zero or to π (mod 2π). In fact
we can view this state as the sum of two “single” particle states (i.e. “holes”), each
with momenta ±π/2. In other words, this state is not a spin wave with momentum
π . Rather, the system behaves as if its elementary excitations had momenta close
to ±π/2. This resembles the physics of one-dimensional fermions on a half-filled
chain. The Fermi “surface” is just two points, kF = ±π/2. The elementary excita-
tions are particle–hole pairs with momenta close to the Fermi points. We will see
below that this system, with purely bosonic degrees of freedom, does indeed have
fermions in its spectrum.

5.2 Fermions and the Heisenberg model

5.2.1 The Jordan–Wigner transformation

At first sight it may appear to be obvious that there should be fermions in the spec-
trum of the Heisenberg model. After all, we derived the Heisenberg model as the
strong-coupling limit of a purely fermionic system, namely the half-filled Hubbard
model. However, the fermions found in the last section are not the “constituent”
band (Hubbard) fermions. For one thing, these states carry no electric charge. The
spin-up and spin-down species are only degenerate precisely at the Heisenberg
isotropic point. Furthermore, it is not possible to write the spin operators S± as
local bilinears in those fermions.

One may also argue that the states of the spin system can be viewed as a col-
lection of bosons with hard cores: a spin can be flipped once only. The algebra
of the Pauli matrices, on the other hand, seems to have mixed properties: they
commute on different sites and they anti-commute on the same sites. The anticom-
mutativity of the Pauli matrices guarantees that the bosons do indeed have hard
cores.

More formally, let us imagine that we are going to use a set of basis vectors in
which Sz ≡ S3 is diagonal. We can also consider the raising and lowering operators,
at each site n, S±(n)

S±(n) = S1(n)± i S2(n) (5.66)

where I am using the notation

Si ≡ 1

2
σi , i = 1, 2, 3 (5.67)
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and the σi s are the three Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(5.68)

The operators S±(n) commute on different sites[
S+(n), S+(m)

] = [
S−(n), S−(m)

] = [
S+(n), S−(m)

] = 0 (5.69)

for m �= n. But on the same sites they anti-commute

{S+(n), S−(n)} = 1 (5.70)

{S+(n), S+(n)} = {S−(n), S−(n)} = 0 (5.71)

This last condition implies that, if |F〉 is an arbitrary state not annihilated by S+(n),
then it is annihilated by S+(n)2

S+(n)
[
S+(n)|F〉] = 0 (5.72)

In other words, S+(n) creates bosonic excitation at the nth site but it is not possible
to have two such excitations at the same site. This is the hard-core condition.

Consider now the kink or soliton operators K (n)

K (n) = exp

⎛⎝iπ
n−1∑
j=1

S+( j)S−( j)

⎞⎠ (5.73)

In terms of S3(n) we can write

K (n) = exp

⎛⎝iπ
n−1∑
j=1

(
S3( j)+ 1

2

)⎞⎠ ≡ i n−1 exp

⎛⎝iπ
n−1∑
j=1

S3( j)

⎞⎠ (5.74)

Thus K (n) is a unitary operator which, up to a phase factor, rotates the spin con-
figurations by π around the z axis on all sites to the left of the nth site. Thus the
state | 1

2 . . .
1
2〉, an eigenstate of S1 on all sites, becomes

K (n)| 1
2 . . .

1
2〉 = i n−1|− 1

2 . . .− 1
2 ,

1
2 . . .

1
2〉 (5.75)

where the last flipped spin is at the site n − 1. The operator K (n) is said to create
a kink in the spin configuration. Clearly this operator cannot have a non-vanishing
expectation value in any state exhibiting long-range order. On the other hand, it
may have an expectation value on states without long-range order. For this reason
these operators are usually called disorder operators (Kadanoff and Ceva, 1971;
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Fradkin and Susskind, 1978). Consider now the operators c†(n) and c(n) obtained
by flipping a spin and creating a kink at the same place (Jordan and Wigner, 1928):

c(n) ≡ K (n)S−(n) = eiπ
∑n−1

j=1 S+( j)S−( j)S−(n)r

c†(n) ≡ S+(n)K †(n) = S+(n)e−iπ
∑n−1

j=1 S+( j)S−( j)
(5.76)

The following results are easy to prove (Lieb et al., 1961).
First of all,

c†(n)c(n) = S+(n)K †(n)K (n)S−(n)
c(n)c†(n) = K (n)S−(n)S+(n)K †(n)

(5.77)

But the kink operator is unitary,

K †(n)K (n) = K (n)K †(n) = 1 (5.78)

and, because S±(n) and K (n) commute, one finds

c†(n)c(n) = S+(n)S−(n) = 1

2
+ S3(n)

c(n)c†(n) = S−(n)S+(n) = 1

2
− S3(n)

(5.79)

Moreover, the hard-core condition
(
S±)2 = 0 implies that the same property holds

for the fermion operators, (
c†(n)

)2 = (c(n))2 = 0 (5.80)

What are the commutation relations obeyed by the operators c†(n) and c(m)?
Let us compute the products c(n)c(m) and c(m)c(n), say for m > n. Clearly S−(n)
commutes with all the operators in K (m) except for those at the site j = n, and
therefore

S−(n)K (m) =
m−1∏

j=1, j �=n

eiπ S+( j)S−( j)S−(n)eiπ S+(n)S−(n) (5.81)

By making use of the identity

e±iπ S+(n)S−(n) = e
±iπ

(
1
2+S3(n)

)
= −2S3(n) (5.82)

we get

S−(n)K (m) = −K (m)S−(n) (5.83)
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since {S−(n), S3(n)} = 0 on the same site. Thus

c(n)c(m) = K (n)S−(n)K (m)S−(m)
= −K (n)K (m)S−(n)S−(m)
= −K (m)S−(m)K (n)S−(n)
= −c(m)c(n) (5.84)

Similarly, we can also prove (n �= m)

c†(n)c(m) = S+(n)K †(n)K (m)S−(m)
= −K (m)S−(m)S+(n)K †(n)

= −c(m)c†(n) (5.85)

In summary, the operators c†(n) and c(n) obey canonical anticommutation
relations

{c(n), c(m)} = {c†(n), c†(m)} = 0 (5.86)

and

{c(n), c†(m)} = δn,m (5.87)

Thus the operator c†(n) (c(n)) creates (destroys) a fermion at site n. These opera-
tors are highly non-local. The states created by c†(n) are fermions. Conversely, we
can also write the inverse of the Jordan–Wigner transformation:

S−(n) = e−iπ
∑n−1

j=1 c†( j)c( j)c(n)

S+(n) = c†(n)eiπ
∑n−1

j=1 c†( j)c( j)
(5.88)

5.2.2 The Heisenberg chain: fermion representation

Let us apply these results to the Heisenberg model. In terms of S+ and S−, the
Heisenberg Hamiltonian (with anisotropy γ ) is

H = 1

2
J

N∑
j=1

(
S+( j)S−( j + 1)+ S−( j)S+( j + 1)

)
+ γ J

N∑
j=1

(
S+( j)S−( j)− 1

2

) (
S+( j + 1)S−( j + 1)− 1

2

)
(5.89)

For γ = 1 we recover the isotropic Heisenberg model. The case γ = 0 is known
as the spin one-half XY model.
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We can now use the Jordan–Wigner transformation, Eq. (5.88), to get

S+( j)S−( j + 1) = c†( j)e−iπc†( j)c( j)c( j + 1)

= c†( j)
(
1 − 2c†( j)c( j)

)
c( j + 1)

= c†( j)c( j + 1) (5.90)

and

S−( j)S+( j + 1) = c( j)e+iπc†( j)c( j)c†( j + 1)

= c( j)
(
1 − 2c†( j)c( j)

)
c†( j + 1)

= c( j)c†( j + 1)− 2c( j)c†( j)c( j)c†( j + 1)

= c( j + 1)c( j) (5.91)

The Heisenberg Hamiltonian takes the simple form (Luther and Peschel, 1975)

H = J

2

N∑
j=1

(
c†( j)c( j + 1)+ h.c.

) + γ J
N∑

j=1

(
n( j)− 1

2

) (
n( j + 1)− 1

2

)
(5.92)

where n( j) is the density (or occupation number) for spinless fermions

n( j) = c†( j)c( j) (5.93)

What boundary conditions do the c( j) operators obey? Suppose that the spin
problem has periodic boundary conditions, i.e.

Si (N + 1) = Si (1) for i = 1, 2, 3 (5.94)

In the fermion case, the periodic boundary conditions on the spin degrees of
freedom imply

c(N + 1) = exp

⎛⎝iπ
N∑

j=1

S+( j)S−( j)

⎞⎠S−(N + 1)

= exp

⎡⎣iπ
N∑

j=1

(
1

2
+ S3( j)

)⎤⎦S−(1) (5.95)

where

c(1) ≡ S−(1) (5.96)

Thus, the boundary condition on the fermionic degrees of freedom is

c(N + 1) = i N eiπ S3c(1) (5.97)
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where S3 is the total z-component of the spin. But
∑N

j=1 S+( j)S−( j) is just the
total fermion number NF, so S3 and NF are related by

S3 =
N∑

j=1

c†( j)c( j)− N

2
= NF − N

2
(5.98)

Hence, the S3 = 0 sector maps into the half-filled sector for the fermions under the
Jordan–Wigner transformation:

S3 = 0 ⇒ NF = N

2
(5.99)

provided that N is even. Conversely, the state with S3 = 1
2 has NF =

(N + 1)/2 provided that N is odd. The boundary condition, Eq. (5.97), depends
on the z-component of the total spin S3 or, alternatively, on the total number of
fermions NF

c(N + 1) = eiπNFc(1) (5.100)

For a lattice with N even and S3 = 0 (i.e. NF = N/2) we get periodic (anti-
periodic) boundary conditions if N/2 is even (odd). Thus the many-body fermion
wave functions obey different boundary conditions depending on whether NF is
even or odd.

The Hamiltonian, Eq. (5.92), has quartic terms and is not readily solvable except,
of course, by Bethe’s method. We can gain some insight by considering the case
γ = 0, the XY model.

For γ = 0, the Hamiltonian is simply

H0 = J

2

N∑
j=1

(
c†( j)c( j + 1)+ h.c.

)
(5.101)

This is a trivial problem. The fermions are free. As we saw before, this problem
can be solved by taking the Fourier transform. Let c(k) denote the Fourier modes,
with |k| ≤ π . The eigenvalues for a system with periodic boundary conditions are

H0 =
∫ π

−π
dk

2π
ε(k)c†(k)c(k) (5.102)

where

ε(k) = J cos k (5.103)

The ground state is found by filling up the negative-energy modes. In the case of
NF = N/2, we get two Fermi points, kF = ±π/2. The negative-energy states have
k in the interval π > |k| ≥ π/2.
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This system is gapless. In fact, there are no massive excitations in the one-
dimensional spin one-half spin chain. This system is critical in the sense that all its
correlation functions fall off as a power of the distance. We will discuss this issue
below. Also, there is no long-range order in the sense that (at equal times)

lim|m−n|→∞〈S
+(n)S−(m)〉 ≈ (−1)m−n constant

|m − n|η −→ 0 (5.104)

with an exponent η that will be computed below. Thus there is no Néel order for the
chain. (Kennedy, Lieb, and Shastri (Kennedy et al., 1988) have shown that for the
square lattice the spin one-half XY model does have long-range order 〈S+〉 �= 0.)

5.2.3 The continuum limit of the one-dimensional quantum Heisenberg
antiferromagnet

We are interested in the physics at large distances compared with the lattice
constant and at frequencies much lower than, say, J . In this limit some sort of
continuum theory should emerge. We will see now that the continuum theory asso-
ciated with this 1D system of fermions looks like a theory of “relativistic” fermions
moving at the speed of “light” (with c = vF = Ja0, the Fermi velocity, with
a0 being the lattice spacing). These results apply not only to the Hamiltonian of
Eq. (5.92) but, in fact, to all 1D Fermi systems with local hopping Hamiltonians.
A similar situation develops for fermions in a flux phase in two dimensions, as we
will see in Chapter 8.

Consider first the non-interacting problem

H0 = J

2

N∑
n=1

(
c†(n)c(n + 1)+ h.c.

)
(5.105)

which is equivalent to the XY model. We are assuming periodic boundary
conditions. The dispersion law for this system is

ε(k) = J cos k (5.106)

with Fermi points at kF = ±π/2. The elementary excitations will have a charac-
teristic momentum of ±kF and we should expect that the correlation functions of
the fermions should have a rapid variation of the type eikFn = i n with a slow vari-
ation on top. It is then natural to define new fermionic variables a(n) that should
exhibit only a slow variation in n and hence should have a simple continuum limit.
Define

a(n) = i−nc(n) (5.107)
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The Hamiltonian H0 now reads

H0 = J

2

N∑
n=1

(
i−na†(n)i (n+1)a(n + 1)+ h.c.

)
= J

2

N∑
n=1

(
ia†(n)a(n + 1)+ h.c.

)
= J

2

N∑
n=1

ia†(n)
(

a(n + 1)− a(n − 1)
)

(5.108)

where we have used the periodic boundary conditions in the last step. By separating
the sum into even and odd sites, one finds for N even

H0 = J

2

N/2∑
s=1

i
{

a†(2s)
(

a(2s + 1)− a(2s − 1)
)
+ a†(2s + 1)

(
a(2s + 2)− a(2s)

)}
(5.109)

We see that even sites couple to odd sites (and vice versa) but there is no even–even
or odd–odd coupling.

Define now the spinor field φα(α = 1, 2), by

φα(n) =
{
φ1(n) = a(2s) n even

φ2(n) = a(2s + 1) n odd
(5.110)

Thus we can write

H0 = i
J

2

N/2∑
s=1

{φ†
1(2s)[φ2(2s +1)−φ2(2s −1)]+φ

†
2(2s +1)[φ1(2s +2)−φ1(2s)]}

(5.111)
A Fermi field ψα(x) in the continuum is expected to obey the equal-time

canonical anticommutation relations

{ψ†
α(x), ψα′(x

′)} = δαα′δ(x − x ′) (5.112)

The φα(n) fields obey

{φ†
α(n), φα′(n

′)} = δαα′δn,n′ (5.113)

since they are defined on a lattice. We can make these relations compatible by
defining

ψα(x) = 1√
2a0

φα(n) (5.114)
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for x = 2sa0 and a0 the lattice spacing, which will be the unit of length. Thus
ψα has dimensions of [length]−1/2, whereas φα is dimensionless. We have assumed
that the distribution δ(x − x ′) is defined by the limit

δ(x − x ′) = lim
a0→0

δn,n′

2a0
(5.115)

which, of course, makes sense only as a limit.
By expanding φ, in Eq. (5.111), in a Taylor-series expansion,

φ2(2s + 1)− φ2(2s − 1) ≈ 2a0(2a0)
1/2 ∂xψ2(x)

φ1(2s + 2)− φ1(2s) ≈ 2a0(2a0)
1/2 ∂xψ1(x)

(5.116)

and using the fact that

lim
a0→0

∑
s

2a0 f (s) =
∫

dx f (x) (5.117)

one finds the effective Hamiltonian in the continuum H̃0 to be given by

H̃0 =
∫

dx ψ†(x)αi ∂xψ(x) (5.118)

where

H̃0 = H0

Ja0
(5.119)

and the matrix

α ≡ σ1 =
(

0 1
1 0

)
(5.120)

This is just the Hamiltonian for a Dirac spinor field ψα(x) in units in which � and
the Fermi velocity vF are set to unity. We will see below that interactions normally
lead to finite, non-universal, renormalizations of the Fermi velocity.

The upper (lower) component ofψα represents the amplitude on even (odd) sites.
Alternatively we could have used a basis in which σ1 is diagonal. In this basis, the
upper (lower) component R (L) represents fermions moving towards the right (left)
with speed vF = 1. It will be, in fact, more convenient to work in the chiral basis

ψ1(x) = 1√
2
(−R(x)+ L(x))

ψ2(x) = 1√
2
(R(x)+ L(x))

(5.121)

We get

ψ
†
1 i ∂xψ2 + ψ

†
2 i ∂xψ1 = −(R†i ∂x R − L†i ∂x L) (5.122)
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In the Dirac theory in (1 + 1) dimensions one defines the γ -matrices γ0, γ1, and
γ5 by requiring that they satisfy

{γμ, γν} = 2gμν, γ5 = iγ0γ1 (5.123)

We can choose the chiral representation, in which

γ5 = γ0γ1 = σ3

γ0 = σ1 (5.124)

γ1 = −iσ2

It is convenient to define a field ψ̄ by

ψ̄ = ψ†γ0 (5.125)

The Hamiltonian H̃0 now is

H̃0 =
∫

dx ψ̄(x)iγ1 ∂xψ(x) (5.126)

Let us write the interaction terms of Eq. (5.92) in this formalism.
First, we note that we can rewrite

Hint = γ J
N∑

j=1

(
c†( j)c( j)− 1

2

) (
c†( j + 1)c( j + 1)− 1

2

)
(5.127)

in the form

Hint = −γ J

2

N∑
j=1

(
c†( j)c( j)− c†( j + 1)c( j + 1)

)2 + 1

4
γ J N (5.128)

Following the same steps as those which led to Eq. (5.126), we find that H̃int,
defined by

H̃int = Hint

Ja0
(5.129)

has the form, up to the irrelevant additive constant γ N/(4a0),

H̃int = −2γ
∫

dx
(
ψ̄(x)ψ(x)

)2
(5.130)

which is the interaction term of the (1 + 1)-dimensional Gross–Neveu model. The
expression ψ̄ψ is the continuum limit of

1

2a0
(n(2s + 1)− n(2s)) ≈ −

(
ψ

†
1 (x)ψ1(x)− ψ

†
2 (x)ψ2(x)

)
= (

R†L + L† R
) ≡ ψ̄ψ (5.131)



110 One-dimensional quantum antiferromagnets

Thus a non-zero average for ψ̄ψ breaks chiral (i.e. left–right) symmetry down to its
Z2 (Ising) invariance. We see that this is equivalent to the development of a periodic
density modulation of the lattice fermion system. Tracing our steps backwards, we
interpret this state as a Néel antiferromagnet. In particular, Eq. (5.131) shows that in
the continuum limit the z-component of the Néel order parameter, the z-component
of the staggered magnetization Nz , is essentially the fermion mass term ψ̄ψ .

Equation (5.130) can also be written, up to an additive constant, in the form

H̃int = γ

∫
dx jμ jμ − 2γ

∫
dx

(
(R†L)2 + (L† R)2

)
(5.132)

where we have used the fermionic current jμ,

jμ = ψ̄γμψ (5.133)

which, in the chiral basis, has components

j0 = R† R + L†L (5.134)

and

j1 = R† R − L†L (5.135)

Thus j0 measures the total number of fermions, i.e. the total density, and j1 is
the difference in number of left and right movers. A system with the first term of
Eq. (5.132) as its only interaction is known as the (massless) Thirring or Luttinger
model.

The last term in Eq. (5.132) is peculiar. On the one hand, it appears to be super-
ficially zero, since it is a sum of squares of Fermi fields and Fermi statistics may
seem to imply that it is zero. However, all these expressions, written in the contin-
uum, are to be interpreted as a product of operators at short distances. Furthermore,
when inserted into the calculation of any expectation value, there should be singu-
lar contributions due to the presence of this operator. We are supposed to keep the
leading singular term in the product. Thus, expressions such as (ψ̄ψ)2 and the like
are to be taken in the sense of an operator product expansion (Kadanoff, 1969;
Wilson, 1969) in which only the leading singularity is kept.

What is more important the operators (R†L)2 and (L† R)2 break the continuous
left–right (chiral) symmetry down to a discrete subgroup. Terms of this sort arise
from Umklapp scattering processes (Emery, 1979; Haldane, 1982). In the language
of Feynman diagrams, these terms give contributions of the type shown in Fig. 5.1.
Such processes violate momentum conservation by 4kF, which equals 2π for a
half-filled system. Thus 4kF is a reciprocal-lattice vector and hence the process is
allowed, since on a lattice momentum is conserved mod 2π .
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Figure 5.1 Umklapp processes.

There is a continuous chiral symmetry

ψα = (
eiγ5θ

)
αβ
ψ ′
β (5.136)

where γ5 is given by Eq. (5.124), and θ is an arbitrary constant angle.
It is easy to check that operators, such as the current ψ̄γμψ and ψ̄ iγ μ ∂μψ , are

invariant. Indeed, upon a chiral transformation, ψ̄ transforms like

ψ̄ = ψ†γ0 = ψ ′†e−iγ5θγ0 = ψ̄ ′e+iγ5θ (5.137)

since γ0 and γ5 anti-commute. Thus

ψ̄γμψ = ψ̄ ′γμψ ′ (5.138)

and

ψ̄iγμ ∂
μψ = ψ̄ ′iγμ ∂μψ ′ (5.139)

again, since {γ5, γμ} = 0. However, ψ̄ψ is not invariant since

ψ̄ψ = ψ̄ ′ei2γ5θψ ′ ≡ cos(2θ)ψ̄ ′ψ ′ + i sin(2θ)ψ̄ ′γ5ψ
′ (5.140)

In particular (ψ̄ψ)2 has only the discrete invariance

ψ̄ψ = −ψ̄ ′ψ ′ (5.141)

In other words, θ = π/2. This is not so surprising. The chiral symmetry orig-
inates from the two-sublattice structure. There is always an arbitrariness in how
we choose a given sublattice. Thus the discrete symmetry is genuine, but the
continuous symmetry is a consequence of a carelessly taken continuum limit.
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5.3 The quantum Ising chain

In this section we will discuss a very simple spin chain of great conceptual (and his-
torical) significance: the 1D quantum Ising model, also known as the Ising model
in a transverse field. We will see that the 1D version of this problem (the chain)
is closely related (actually equivalent) to the 2D Ising model of classical statistical
mechanics.

Let us consider again a 1D chain of Ns sites. We will take Ns to be an even
number. As in the Heisenberg case, on each site n of the chain we define a
spin one-half degree of freedom. Thus at each site n we have two states, |↑〉n

and |↓〉n , which I will take to be eigenstates of the Pauli matrix σ3(n) such that
σ3(n)|σ(n)〉n = σ(n)|σ(n)〉n . Here σ = ±1, for the |↑〉 and |↓〉, respectively.
Thus, the dimensionality of the Hilbert space is 2Ns . For convenience we will let
the label n run from −Ns/2 + 1 to Ns/2. We will work with periodic boundary
conditions (PBCs). Here this means that the states (and the operators) on the site
following the Nsth site, “Ns/2 + 1,” are identified with the states (and operators)
on the first site, −Ns/2 + 1, e.g.

σ3

(
Ns

2
+ 1

)
≡ σ3

(
−Ns

2
+ 1

)
(5.142)

Thus, the chain is actually a circle of circumference L = Nsa, where a is the lattice
spacing. For now we will set a = 1.

The Hamiltonian of the quantum Ising chain (with PBCs) is

H = −
Ns
2∑

n=− Ns
2 +1

σ1(n)− λ

Ns
2∑

n=− Ns
2 +1

σ3(n)σ3(n + 1)− h

Ns
2∑

n=− Ns
2 +1

σ3(n) (5.143)

with coupling constant λ and symmetry-breaking (longitudinal) field h. The Ising
model in a transverse field is defined by setting the longitudinal field h = 0.
As before, σ1 is the off-diagonal real Pauli matrix. In one dimension this model
is exactly solvable by means of a Jordan–Wigner transformation to a system of
Majorana fermions, which we will explain below.

Let us first discuss the connection between Ising models in transverse fields,
for simplicity on a 1D lattice (a chain), and the classical Ising model on a square
lattice. Similar relations exist for other lattices in all dimensions. Thus, on each
site x of the 2D square lattice we have an Ising spin that can take two values,
σ(x) = ±1, which we regard as the two z projections of the spin in a magnet with
uniaxial anisotropy. Here {x} are a set of two-component vectors that label the sites
of the lattice. The classical energy functional for a spin configuration [σ ] is

E[σ ] = −
∑
〈x,x ′〉

Jσ(x)σ (x ′)−
∑

x

Hσ(x) (5.144)
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where x and x ′ are (for simplicity) nearest-neighboring sites of the 2D square lat-
tice. We have assumed that all the exchange coupling constants J and the external
magnetic field H are equal and that the system is translationally invariant. We
will restrict our discussion to the case of a system with ferromagnetic interactions,
J > 0.

The partition function for a system at temperature T is the sum over all
configurations of the Ising spins with a Gibbs weight for each state [σ ]

Z =
∑
[σ ]

e−
E[σ ]

T (5.145)

The square lattice is isotropic and hence invariant under the action of the symmetry
group of the square, known as C4. We will now use this invariance to arbitrarily
choose one direction, which will be denoted by x2 = τ . In what follows we will
further assume that we have imposed PBCs along this direction of the lattice. We
will call this the “direction of transfer” or “evolution” and assume that we have a
square lattice with Nτ rows, τ = 1, . . . , Nτ , and that each row has Ns sites, x1 =
n = 1, . . . , Ns. Let us write the position vectors of each site as x = (n, τ ), where
we will refer to n as the “space coordinate” and to τ as the “time coordinate.” In
this representation we can think of a configuration [σ ] as a “history” (or evolution)
of a spatial spin configuration (a state) from one row (labeled by τ ) to the next
(labeled by τ + 1). We will denote the state of a row by |[σ ]〉, where here [σ ] are
the σ3 eigenvalues at each site n of the row.

In other words, in this language the partition function of the classical system is
viewed as the path integral (in discretized imaginary time) of a quantum system in
one dimension, which we will see is the quantum Ising model. Using the assump-
tion of PBCs, we will now show that the partition function can be written as the
trace of a matrix called the transfer matrix (Schultz et al., 1964), denoted by T .
For a system in D dimensions, the transfer matrix T will play the role of the evolu-
tion operator of a quantum problem in d = D − 1 space dimensions (Fradkin and
Susskind, 1978). The transfer matrix T can be defined to be hermitian for any sys-
tem in classical statistical mechanics with local and positive Gibbs weights. This
feature, hermiticity of the transfer matrix, turns out to be the same as the statement
that the equivalent theory in one dimension fewer has a hermitian Hamiltonian and
hence a unitary time evolution.

For a system with nearest-neighbor interactions (this can be made more general)
we can classify the terms of the classical energy functional E[σ ], Eq. (5.144),
into terms describing the interactions between spins on the same row and others
describing interactions between two (neighboring) rows. It will be convenient to
break the isotropy of the lattice and to have the intra-row exchange (ferromagnetic)
interactions Js > 0 be different than the inter-row (also ferromagnetic) interactions
Jτ > 0 (above we had set J = Js = Jτ ).
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Let Ts and Tτ be two matrices each of rank 2Ns × 2Ns . We will define Ts to be
diagonal in the row states |σ 〉 and Tτ to be off-diagonal in that basis:

Ts = exp

(
βs

∑
n

σ3(n)σ3(n + 1)+ βh

∑
n

σ3(n)

)
(5.146)

Ts =
[

2 sinh

(
2Jτ
T

)]Ns/2

exp

(
β̃τ

∑
n

σ1(n)

)
(5.147)

where n = −Ns/2 + 1, . . . , Ns/2, and

tanh β̃τ = e−2βτ , βτ ≡ Jτ
T
, βs ≡ Js

T
, βh ≡ H

T
(5.148)

The transfer matrix T is defined to be

T = Tτ 1/2TsTτ 1/2 (5.149)

Since the matrices Tτ and Ts are separately hermitian, the transfer matrix T defined
above is hermitian as well.

With these definitions it is straightforward to see that, for a system with PBCs
along the direction of transfer τ , the partition function is

ZPBC = Z = tr T Nτ (5.150)

regardless of the boundary conditions along the “spatial” direction. For a system
with fixed boundary conditions along the τ direction, with initial and final states
|[σ ]τ=1〉 and |[σ ]τ=Nτ

〉, the partition function is

Zfixed = 〈[σ ]τ=1|T Nτ |[σ ]τ=Nτ
〉 (5.151)

It is straightforward to show that the correlation functions of the classical system

〈σ(n, τ )σ (n′, τ ′)〉 = 1

Z

∑
[σ ]

σ(n, τ )σ (n′, τ ′)exp

(
−E[σ ]

T

)
(5.152)

are equal to

〈T̂τ
(
σ3(n, τ )σ3(n

′, τ ′)
)〉 = 1

Z
tr

[
T̂

(
σ3(n, τ )σ3(n

′, τ ′)
)
T Nτ

]
(5.153)

where we used the generalized Heisenberg representation

σ3(n, τ ) = T Nτ σ3(n)T −Nτ
τ (5.154)

and the “time-ordering” symbol T̂ .
The transcription of the classical statistical-mechanical system to this

“algebraic” language suggests a mapping to a quantum system in one dimension
fewer. Indeed, the formalism we just sketched parallels the relation between the
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Hamiltonian (operator) and path-integral formulations of quantum mechanics (and
of quantum field theory). Given this observation, we are thus tempted to write the
transfer matrix T as an exponential of (the negative of) a quantum Hamiltonian.
The problem is that, since the factor matrices Ts and Tτ do not commute with each
other, the resulting effective quantum Hamiltonian is not local (it is a sum of nested
commutators of increasing order).

However, there is a procedure that will allow us to define a local quantum Hamil-
tonian (Fradkin and Susskind, 1978). Let us imagine stretching the lattice spacing
along the horizontal direction (the rows) and compressing it by a related amount
along the vertical direction (the columns). As a result the coupling Js will become
smaller while Jτ will grow bigger. Given the symmetries of this system, it is clear
that the partition function Z [Js/T, Jτ /T ] must be the same (invariant) on some
curves defined by a relation of the form f (Js/T, Jτ /T ) = constant. As we carry
on with this procedure, the curves on which the correlation functions are con-
stant become increasingly deformed, also being stretched along the horizontal axis
(“space”) and squashed along the vertical axis (“time”). However, we can now also
imagine increasing the number of rows by the precise amount required so that (in
lattice units) we restore isotropy. If we continue indefinitely with this procedure,
the spacing along the time direction becomes very small but the associated cou-
pling is very large. However, as we can see from the expressions for the matrices
Ts and Tτ , in this limit

Js

T
→ 0, β̃τ � exp

(
−2Jτ

T

)
→ 0 (5.155)

as well. Therefore, in this asymptotic regime we can write the transfer matrix in
the simpler form

T =
[

2 sinh

(
2Jτ
T

)]Ns/2

e−εH+O(ε2) (5.156)

where H is the Hamiltonian of the quantum Ising model with a symmetry-breaking
field. The coupling constant λ and the symmetry-breaking field h are given by

Js

T
= ελ,

H

T
= εh, ε = exp

(
−2Jτ

T

)
(5.157)

In the thermodynamic limit, Ns → ∞ and Nτ → ∞ (with Ns/Nτ fixed), the
partition function becomes

Z = lim
β→∞ tr e−βH (5.158)

where we keep β = Nτ exp (−2Jτ /T ) fixed as Nτ → ∞, and Jτ /T → ∞.
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5.4 Duality

From now on we will consider the quantum Ising chain of Eq. (5.143) at zero
external field, h = 0. This quantum spin chain has a discrete, Z2 global symmetry.
Let I be the identity transformation, I|[σ ]〉 → |[σ ]〉, and let R be a global spin-flip
transformation, R|[σ ]〉 → |[−σ ]〉, where [σ ] is a configuration of the spin degrees
of freedom in the σ3 basis. Under the composition operation (sequential action),
which we will denote by �, of these transformations they form a group with the
properties

I � I = R �R = I, I �R = R � I = R (5.159)

Thus, this is the group Z2, the permutation group of two elements, I and R.
If we denote by I (n) the identity operator on the nth site, we can construct a

representation for the symmetry operators I and R in terms of the states of the
quantum Ising spin chain,

I = I−1 =
∏

n

⊗ I (n), R = R−1 =
∏

n

⊗ σ1(n) (5.160)

These operators act on the spin operators as follows:

Iσ1(n)I−1 = σ1(n), Iσ3(n)I−1 = σ3(n)

Rσ1(n)R−1 = σ1(n), Rσ3(n)R−1 = −σ3(n)
(5.161)

Since, at h = 0, both operators commute with the Hamiltonian of Eq. (5.143),
[I, H ] = [R, H ] = 0, we conclude that the Ising model in a transverse field is
invariant under a global Z2 transformation.

As a function of the coupling constant λ, the quantum Ising chain has two phases,
separated by a quantum phase transition at λc = 1.

1. The λ < λc phase. This phase is best described in terms of the eigenstates of
σ1(n), |±, n〉. At λ = 0, the ground state is |�0〉λ=0 = ∏

n |+, n〉. In this phase
〈�0|σ3(n)|�0〉 = 0 to all orders in perturbation theory (in λ) and all correlators
decay exponentially with distance with a finite correlation length ξ(λ).

2. The λ > λc phase. This phase is best described in terms of the eigenstates of
σ3(n). For all λ > λc this phase has two degenerate ground states, |�±〉, related
to each other by a global spin flip, R|�±〉 = |�∓〉. Thus in this phase we find
the phenomenon of spontaneous symmetry breaking with 〈�±|σ3(n)|�±〉 ≡
M(λ) �= 0 which plays the role of the order-parameter field.

Let us introduce the concept of a duality transformation. This transformation
was first introduced by Kramers and Wannier (1941) as mapping between the low-
and high-temperature phases of the 2D classical Ising model. Here we will use an
equivalent mapping of the 1D quantum Hamiltonian (Fradkin and Susskind, 1978).
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To this end let us introduce the dual lattice as the set of midpoint lattice sites of a
1D chain (with PBCs). We will denote by ñ the site of the dual lattice midpoint
between the sites n and n + 1 of the chain. We will now define on each dual lattice
site the operators τ1(ñ) and τ3(ñ),

τ1(ñ) = σ3(n)σ3(n + 1), τ3(ñ) =
∏

− Ns
2 +1≤p≤n

σ1(p) (5.162)

The operators τ1(ñ), τ3(ñ), and τ2(ñ) = iτ1(ñ)τ3(ñ) form a representation of the
algebra of Pauli matrices.

It is trivial to see that

σ1(n) = τ3(ñ)τ3(ñ + 1), σ3(n)σ3(n + 1) = τ1(ñ) (5.163)

We recognize that the dual operator τ3(n) is essentially equivalent to the kink-
creation operator defined by Eq. (5.74) (up to a factor of i n and a rotation of basis).
We will refer to an operator which is the dual of an order parameter as a disorder
operator.

Using the identities of Eq. (5.163) it is apparent that the two terms of the Hamil-
tonian map into each other. Hence, under a duality transformation the Hamiltonian
of the quantum Ising chain (at h = 0) at coupling constant λ, H(λ), transforms
into its dual H̃(λ),

H̃(λ) = λH

(
1

λ

)
(5.164)

Thus, the strong-coupling and weak-coupling phases map into each other: this
Hamiltonian is self-dual. If one further assumes (as Kramers and Wannier did and
Onsager proved) that the transition is unique, then it must occur at the critical
coupling λc = 1 which is invariant under duality.

Similarly, one immediately finds that the dual of the spin–spin correlation func-
tion at coupling constant λ is the same as the correlation function of two disorder
operators in the dual theory at coupling constant 1/λ,〈

T
[
σ3(n, τ )σ3(n

′, τ ′)
] 〉

λ
=

〈
T

[
τ3(ñ, τ )τ3(ñ

′, τ ′)
] 〉

1/λ
(5.165)

This result also implies that the disorder operator has an expectation value in
the disordered phase of the Ising model (Kadanoff and Ceva, 1971; Fradkin and
Susskind, 1978).

Duality also tells us how to relate seemingly dissimilar systems. Let us consider
a system of two decoupled quantum Ising models with the same coupling constant
λ and on chains of the same length. We will depict this system as a single quantum
Ising model with only next-nearest-neighbor interactions, i.e. a system with twice
as many sites but with interactions only between neighboring even sites for one



118 One-dimensional quantum antiferromagnets

chain and between neighboring odd sites for the other. Hence, this is the same as
a system of two interpenetrating Ising models. Thus the Hamiltonian is the same
as in Eq. (5.143) with the proviso that the interaction acts only at distance 2a. This
system ostensibly has a Z2 × Z2 global symmetry, instead of a single Z2.

Let us now look for the dual of the Hamiltonian of this system of two decoupled
Ising models using the duality transformation of Eq. (5.163) for the combined sys-
tem. We find that the Hamiltonian of two decoupled Ising models, H2, is the dual
of an anisotropic X Z (equivalent to the spin one-half XY ) model

H2 = −
∑

n

σ1(n)− λ
∑

n

σ3(n)σ3(n + 2) (5.166)

= −
∑

ñ

τ3(ñ)τ3(ñ + 1)− λ
∑

ñ

τ1(ñ)τ1(ñ + 1) (5.167)

In this language the dual system still has a Z2 × Z2 global symmetry, and duality
reduces to a rotation of the basis. At the self-dual point of each Ising model, λ = 1,
the quantum dual XY model is isotropic and has a global U(1) symmetry whose
infinitesimal generator is

∑
ñ τ2(ñ). We will shortly see that at λ = 1 the system is

critical. This is an example of the enhancement of a symmetry at a critical point.
Finally, we will discuss briefly the transcription of the Ising correlators in this

case. However, instead of considering the usual two-point function of a single Ising
chain we will consider the following four-point function with two spins on each
chain:〈

T
[
σ3(n, τ )σ3(n + 1, τ )σ3(n

′, τ ′)σ3(n
′ + 1, τ ′)

]〉 = 〈T [
τ1(ñ, τ )τ1(ñ

′, τ ′)
]〉

(5.168)
Hence the correlator of two τ1 spin operators in the dual theory is equal to the prod-
uct of the correlation functions of the individual Ising chains, i.e. to the square of
the spin–spin correlation function of the quantum Ising chain. Later in this chapter
we will compute this correlator at λ = 1 using bosonization methods (Bander and
Itzykson, 1977; Zuber and Itzykson, 1977).

5.5 The quantum Ising chain as a free-Majorana-fermion system

In a seminal paper Schultz, Mattis, and Lieb (Schultz et al., 1964) calculated
the partition function of the 2D classical Ising model on an anisotropic square
lattice and reproduced, mapping the problem to a theory of fermions, the cele-
brated Onsager solution (Onsager, 1944). To this effect they used a Jordan–Wigner
transformation, such as the one we used earlier in this chapter for the quantum
Heisenberg antiferromagnet.

Here we will use a Jordan–Wigner transformation, similar to the one defined in
Eq. (5.76), to solve the quantum Ising chain at zero external field, h = 0. On every
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site n we define the operators χ1(n) and χ2(n),

χ1(n) = σ3(n)
∏
j<n

σ1( j)

χ2(n) = iσ3(n)
∏
j≤n

σ1( j)
(5.169)

with the additional definitions χ1(−Ns/2+ 1) = σ1(−Ns/2+ 1) and χ2(−Ns/2+
1) = −σ2(−Ns/2 + 1). These operators are self-adjoint, χ†

1 (n) = χ1(n) and
χ

†
2 (n) = χ2(n), anti-commute with each other and square to the identity. Hence

they obey the algebra{
χ1( j), χ1( j ′)

} = {
χ1( j), χ1( j ′)

} = δ j, j ′{
χ1( j), χ2( j ′)

} = 0
(5.170)

Operators that obey this algebra are known as Majorana fermions.
In terms of the Majorana operators, χ1(n) and χ2(n), the Hamiltonian of the

quantum Ising chain is

H = −
∑

n

iχ1(n)χ2(n)− λ
∑

n

iχ2(n)χ1(n + 1) (5.171)

The spin-flip operator R, which generates the global Z2 symmetry, takes the form

R =
∏

n

σ1(n) = i Ns
∏

n

(χ1(n)χ2(n)) (5.172)

which (as it should do) commutes with the Hamiltonian.

5.5.1 The Majorana-fermion universality class

It is instructive to derive the (Heisenberg) equations of motion of the Majorana
operators:

i ∂tχ1(n) = iχ2(n)− iλχ2(n − 1)

i ∂tχ2(n) = −iχ1(n)+ iλχ1(n + 1)
(5.173)

These equations of motion are linear. Hence, the Majorana fields χ1 and χ2 are free!
In contrast, it is simple to see that the equations of motion of the spin operators
σ1(n) and σ3(n) are not linear, and hence these fields are not free.

We will now restore a lattice constant a �= 1 and set xn = na0 to take the
continuum limit of the equations of motion of the Majorana fields, Eq. (5.173),

χ1(n + 1) ≈ χ1(xn)+ a0 ∂xχ1(xn)+ O(a2
0)

χ2(n − 1) ≈ χ2(xn)− a0 ∂xχ2(xn)+ O(a2
0)

(5.174)
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Hence we can rewrite Eqs. (5.173) in the form

1

a0λ
i ∂tχ1 � i

(
1 − λ

a0λ

)
χ2 + i ∂xχ2

1

a0λ
i ∂tχ2 � −i

(
1 − λ

a0λ

)
χ1 + i ∂xχ1

(5.175)

We now rescale the time coordinate t → (a0λ)x0, relabel the space coordinate as
x → x1, and rescale the Majorana fields χi (xn) → (1/

√
2a0)χi (x1) (i = 1, 2).

In this notation the equations of motion of the Majorana fields (in the continuum
limit) become

i ∂0χ1 − i ∂1χ2 + imχ2 = 0

i ∂0χ2 − i ∂1χ1 − imχ1 = 0
(5.176)

where we introduced the Majorana mass m(λ) defined by the scaling limit

m = lim
a0→0
λ→1

(
1 − λ

a0λ

)
(5.177)

which vanishes right at λ = 1.
The (continuum) Majorana fields satisfy the equal-time anticommutation rela-

tions (with i, j = 1, 2) {
χi (x), χ j (x

′)
} = δi jδ(x − x ′) (5.178)

Equations (5.176) are (in components) the Dirac equation for Majorana fields in
1+1 dimensions. Indeed, if we define the two-component Majorana spinor field χ ,

χ =
(
χ1

χ2

)
(5.179)

which satisfies the Majorana condition

χ† = χT = σ1χ (5.180)

we can write the equations of motion in the (Dirac–Majorana) form

i /∂χ − imχT = 0 (5.181)

In other terms, we have shown that the quantum Ising chain is equivalent, in the
continuum limit, to a theory of free Majorana fermions in (1 + 1) dimensions with
a (Majorana) mass that tunes the distance to the self-dual point λc = 1. Since at
λc = 1 the mass m → 0, we conclude that the Majorana fermions are massless at
λc. The mass m also defines a length scale that we will identify with the correlation
length,

ξ = 1

|m| ∼
1

|λ− λc| (5.182)
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from which we conclude that the correlation-length exponent is ν = 1. Hence the
universality class of the Ising quantum chain (and of the 2D classical Ising model)
is a theory of massless Majorana fermions.

5.5.2 Diagonalization of the Hamiltonian

We will now reexamine these results by diagonalizing the Hamiltonian of the quan-
tum Ising chain explicitly. To do this let us return to the operators χ1(n) and χ2(n)
of Eq. (5.169). Let us define the canonical (Dirac) fermion operator ψ(n) and its
adjoint ψ†(n),

ψ(n) = 1√
2
(χ1(n)+ iχ2(n)) , ψ(n)† = 1√

2
(χ1(n)− iχ2(n)) (5.183)

which satisfy the canonical anticommutator algebra{
ψ(n), ψ(n′)†

} = δn,n′,
{
ψ(n), ψ(n′)

} = 0 (5.184)

In terms of these fermions we obtain a Jordan–Wigner transformation

σ1(n) = 2ψ(n)†ψ(n)− 1

σ3(n) =
(
ψ(n)† + ψ(n)

)
exp

⎛⎝iπ
∑
j<n

ψ( j)†ψ( j)

⎞⎠ (5.185)

We will now be more careful with the choice of boundary conditions. We will
denote by η = 1 periodic and by η = −1 anti-periodic boundary conditions of the
spins,

σ3

(
Ns

2
+ 1

)
= ησ3

(
−Ns

2
+ 1

)
(5.186)

It follows that the fermions satisfy the boundary conditions

ψ

(
Ns

2
+ 1

)
= Rηψ

(
−Ns

2
+ 1

)
(5.187)

where R is the spin-flip operator, which now looks like

R = eiπN (5.188)

where

N =
∑

n

ψ(n)†ψ(n) (5.189)

is the total fermion number. However, in the Ising chain

[N , H ] �= 0, but [R, H ] = 0 (5.190)
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In other terms, the number of fermions N is not a conserved observable but con-
served modulo two. Thus, fermion parity, measured by R, is conserved. This is
a natural consequence of the fact that this is actually a theory of real (and hence
not complex) fermions, which do not have a conserved charge. Since the choice
of periodic (or anti-periodic) boundary conditions for the spins does not com-
pletely specify the boundary conditions for the fermions (since their parity needs
to be fixed), we conclude that there is a two-to-one relation between the system of
fermions and the system of spins.

In terms of the fermion operators the Hamiltonian is

H =−
Ns
2∑

n=− Ns
2 +1

[
2ψ†(n)ψ(n)+ λ(ψ†(n)− ψ(n))(ψ†(n + 1)+ ψ(n + 1))

]
+ Ns + Hb (5.191)

where Ns is the number of sites and Hb is a boundary term for the coupling
connecting the last with the first site:

Hb = −ληR(ψ†(Ns/2)−ψ(Ns/2))(ψ†(−Ns/2+ 1)+ψ(−Ns/2+ 1)) (5.192)

If we compare the fermion Hamiltonian of Eq. (5.191) with the analogous
fermion Hamiltonian for the fermionized version of the (anisotropic) quantum
Heisenberg antiferromagnet of Eq. (5.92), we see two important differences: (a)
in the Heisenberg case there is a fermion density-interaction term, which makes
the system interacting except at the XY -model point; and (b) in the Heisenberg
case the fermion number is conserved, whereas in the Ising case only the parity
is conserved. In the Heisenberg case fermion-number conservation is due to the
existence of the unbroken U(1) global symmetry of the anisotropic Heisenberg
antiferromagnet, whereas in the Ising case the global symmetry is Z2, which leads
to the conservation of fermion parity.

Since the flip operator R commutes with the Hamiltonian H , the energy eigen-
states can be chosen also to be fermion-parity eigenstates. In a system with PBCs,
η = +1, the ground state of the even-fermion-parity sector has lower energy than
the ground state of the odd-parity sector. This is so since, in a system with PBCs,
the odd-fermion-parity sector has at least one fermion and hence has an odd num-
ber of domain walls. Thus, we will work with PBCs for the spin system and within
the even-parity fermion sector. This forces also the fermions to obey PBCs. In this
sector the Hamiltonian is translationally invariant (and hence defect-free). Since
{σ3(n),R} = 0 (for all n), the spin operator σ3(n) changes the boundary conditions
for the fermions from periodic to anti-periodic.
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Using the translation invariance of the fermion Hamiltonian, Eq. (5.191), with
η = +1 and R = +1, we will attempt to find its spectrum by means of a Fourier
transform,

ψ(n) = 1

Ns

Ns
2∑

k=− Ns
2 +1

ei2πkn/Nsa(k) (5.193)

such that the operators a(k) obey the same usual anticommutator algebra{
a(k), a†(k ′)

} = δk,k′,
{
a(k), a(k ′)

} = {
a†(k), a†(k ′)

} = 0 (5.194)

In the thermodynamic limit, Ns → ∞, the integer variable k is replaced by the
(lattice) momentum variable k ≡ 2πk/Ns, which takes values in the interval −π ≤
k < π . In turn, the sums in Eq. (5.193) become momentum integrals

ψ(n) =
∫ π

−π
dk

2π
eikna(k) (5.195)

and the non-vanishing anticommutators now are{
a(k), a†(k ′)

} = 2πδ(k − k ′) (5.196)

where δ(k) is the periodic delta function,

2πδ(k) = lim
Ns→∞

Ns
2∑

n=− Ns
2 +1

eikn (5.197)

After some straightforward algebra we find that the Hamiltonian becomes

H = Ns −
∫ π

−π
dk

2π
2(1 + λ cos k)a†(k)a(k)

−
∫ π

−π
dk

2π
λ

(
eika†(k)a†(−k)− e−ika(k)a(−k)

)
(5.198)

This Hamiltonian violates fermion-number conservation but, as it should, con-
serves fermion parity as fermions are created and destroyed in pairs with equal
and opposite momentum. In this language this system is reminiscent of the pairing
Hamiltonian of the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity
(Schrieffer, 1964) (at the mean-field level).

It will be convenient to “fold” the momentum interval to 0 ≤ k < π and to
rewrite the Hamiltonian in the equivalent form

H = Ns −
∫ π

0

dk

2π
2(1 + λ cos k)

(
a†(k)a(k)+ a†(−k)a(−k)

)
−

∫ π

−π
dk

2π
2iλ sin k

(
a†(k)a†(−k)+ a(k)a(−k)

)
(5.199)
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Let us define the spinor field �(k) and its adjoint �†(k)

�(k) =
(
ψ†(k)
ψ(−k)

)
, �†(k) = (

a(k), a†(−k)
)

(5.200)

Notice that the two components of the spinor field �(k) are not independent.
Indeed, we find that the spinor field obeys the Majorana condition

�†(k) = [σ1�(−k)]T = �T(−k)σ1 (5.201)

where AT is the transpose of the operator (or matrix) A, and σ1 is the real and
symmetric Pauli matrix. We have thus rederived in this language the condition that
the fermions of the Ising model (and of superconductors!) are Majorana fermions.

As in the BCS theory of superconductivity, we will diagonalize the (pairing)
Hamiltonian of Eq. (5.199) by means of a Bogoliubov transformation to a new set
of fermions η(k),

a(k) = u(k)η(k)− iv(k)η†(−k)

a(−k) = u(k)η(k)+ iv(k)η†(k)
(5.202)

where the amplitudes u(k) and v(k) are chosen to be real functions of k. The inverse
transformation is

η(k) = u(k)a(k)+ iv(k)a†(−k)

η(−k) = u(k)a(−k)− iv(k)a†(k)
(5.203)

We will choose the amplitudes u(k) so that the transformation is canonical, i.e. so
that it preserves the (anti)commutation relations{

a(k), a†(q)
} = 2πδ(k − q) ⇒ {

η(k), η†(q)
} = 2πδ(k − q) (5.204)

This condition requires that

u2(k)+ v2(k) = 1 (5.205)

This condition is met by writing u(k) and v(k) in terms of a phase angle θ(k),

u(k) = cos θ(k), v(k) = sin θ(k) (5.206)

We will choose the phase θ(k) in such a way that the Hamiltonian for the
fermions η(k) and η(−k) does not contain fermion-non-conserving terms, i.e.
we have that in the transformed Hamiltonian the coefficient of terms of the form
i(η†(k)η†(−k)+ η(k)η(−k)) vanishes identically. This leads to the condition

tan(2θ(k)) = λ sin k

1 + λ cos k
(5.207)
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With these choices the Hamiltonian becomes

H = ε0(λ)Ns +
∫ π

0

dk

2π
ω(k)

(
η†(k)η(k)+ η†(−k)η(−k)

)
(5.208)

where ω(k) is found to be

ω(k) = 2
√
(1 + λ cos k)2 + λ2 sin2k (5.209)

The ground state of this system, |0〉, has no excitations and satisfies

η(k)|0〉 = 0, η(−k)|0〉 = 0 (5.210)

The ground-state energy density, ε0(λ), is found to be

ε0(λ) = −
∫ π

0

dk

2π
ω(k) < 0 (5.211)

which is negative. After some algebra we can write the ground-state energy
density as

ε0(λ) = − 2

π
(1 + λ)E

(
π

2
,
√

1 − γ 2

)
, γ =

∣∣∣∣1 − λ

1 + λ

∣∣∣∣ (5.212)

where E(π/2, k) (with k = √
1 − γ 2) is the complete elliptic integral of the second

kind

E

(
π

2
, k

)
=

∫ π/2

0
dθ

√
1 − k2 sin2θ (5.213)

where k is known as the modulus of the elliptic integral.
The excited states of this system are created by the fermion-creation operators

η†(k) and η†(−k). Thus the lowest-energy excited state is η†(k)|0〉, which has an
excitation energy ω(k). The lowest excited state has ω(k) smallest, which occurs
at k = π , with excitation energy Egap(λ) = 2|1 − λ|. Therefore, as λ → 1 the
excitation gap vanishes with a critical exponent ν = 1. As anticipated we will
identify λ = 1 with the (quantum) critical point of the quantum Ising chain. The
state η†(k)|0〉 has an odd number of fermions, and hence is not in this sector of the
Hilbert space. In this sector, the lowest-energy state is a two-fermion state, |k, p〉,
each with both momenta at π .

In classical statistical mechanics we know that as the critical temperature is
approached the specific heat c(T ) diverges as

c(T ) � constant × |T − Tc|−α (5.214)
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where α is a universal critical exponent. The ground-state energy density of the
quantum Ising model is the same as the free-energy density of the classical prob-
lem. Thus, we can determine the singular behavior of the specific heat of the 2D
classical Ising model by looking at the behavior of the ground-state energy density
ε0(λ). The quantity related to the singular part of the specific heat of the classical
problem is

csing

(
T − Tc

Tc

)
= −∂2ε

sing
0 (λ)

∂λ2
(5.215)

We can determine the singular part of the energy density by looking at its behavior
as λ → 1 (with t = |λ− 1|)

ε
sing
0 (t) = − 4

π

[
1 + t2

8

(
ln

(
8

|t |
)
− 1

2

)
+ · · ·

]
(5.216)

which tells us that the specific heat of the classical 2D problem has a logarithmic
divergence as T → Tc,

csing(t) = 1

π
ln

(
8

|t |
)

(5.217)

This is the Onsager result. Hence the exponent is α = 0, as expected since the
correlation length exponent is ν = 1.

The computation of the correlation functions of the Ising model is more subtle
and technically more demanding than what we have done here (see e.g. McCoy
and Wu (1973)). Nevertheless at the end of this chapter we will use bosonization
results to compute the square of the spin–spin correlation function at the critical
point.

5.6 Abelian bosonization

We now return to the fermion representation of the quantum Heisenberg anti-
ferromagnetic chain. We are now going to discuss some subtle but very important
properties of 1D Fermi systems. To date, these properties are not known to
generalize to higher dimensions.

A very important tool for the understanding of 1D Fermi systems is the bosoniza-
tion transformation. In its abelian form this transformation was first discussed by
Bloch (1933) and Tomonaga (1950). It was rediscovered (and better understood) by
Lieb and Mattis (1965) in the 1960s, and by Coleman (1975), Luther and Peschel
(1975), and Mandelstam (1975) in the 1970s. Witten (1984) solved the non-abelian
version of bosonization in 1984. In this section we will consider only the abelian
case. Non-abelian bosonization will be discussed in Chapter 7.
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Let us consider first a theory of non-interacting (spinless) fermions with
Hamiltonian H0 given (in units in which the Fermi velocity is vF = 1) by

H0 =
∫

dx ψ†iα ∂xψ (5.218)

where α = γ5 (defined in Section 5.2.3), with canonically quantized Fermi
fields, i.e.

{ψ†
α(x), ψα′(x

′)} = δαα′δ(x − x ′)

{ψα(x), ψα′(x
′)} = {ψ†

α(x), ψ
†
α′(x

′)} = 0
(5.219)

at equal times. The Hamiltonian H0 and the canonical anticommutation relations
follow from canonical quantization (for fermions!) of the system with Lagrangian
density

L0 = ψ̄iγ μ ∂μψ = ψ̄ iγ 0 ∂0ψ − ψ̄ iγ 1 ∂1ψ (5.220)

which has the form of the relativistic Dirac Lagrangian density in (1 + 1)
dimensions. All along I have assumed that the metric tensor gμν is

gμν =
(

1 0
0 −1

)
(5.221)

This Lagrangian density is clearly invariant under global continuous chiral trans-
formations. In fact, the Hamiltonian density, in the chiral basis, is

H0 = −
∫

dx(R†i ∂x R − L†i ∂x L) (5.222)

which implies that the right (left)-moving component R (L) moves towards the
right (left) at speed 1 (in units in which vF = 1).

5.6.1 Anomalous commutators

Consider now the “vacuum states” |0〉 and |G〉, where |0〉 is the empty state and
|G〉 is the filled Fermi sea obtained by having occupied all the negative-energy one-
particle eigenstates of the Hamiltonian Eq. (5.222). The Hamiltonian H0 relative to
both vacua differs by normal-ordering terms. Indeed, for any eigenstate |F〉 of H0

one can write

H0 = : H0 : +EF |F〉〈F | (5.223)

where : H0 : is the Hamiltonian normal ordered with respect to |F〉, i.e.

: H0 : |F〉 = 〈F | : H0 := 0 (5.224)
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and EF is the energy of |F〉,
H0|F〉 = EF |F〉 (5.225)

Clearly, if we choose |0〉 or |G〉 as the reference state, EF will be different.
The currents and densities also need to be normal-ordered. This is equivalent to

the subtraction of the (infinite) background charge of the reference state, say of the
filled Fermi sea. We will see that these apparently “formal” manipulations have a
profound effect on the physics.

Let us compute the commutator of the charge density and current operators
at equal times [ j0(x), j1(x ′)]. Relative to the empty state |0〉, both operators are
already normal-ordered since a state with no fermions has neither charge nor
current, i.e.

j0(x)|0〉 = 0, j1(x)|0〉 = 0 (5.226)

It will be useful to consider the right and left components of the current j±
defined by

j± = 1

2
( j0 ± j1) (5.227)

Clearly, we get that

j+ = R† R (5.228)

is the right-moving current, and

j− = L†L (5.229)

is the left-moving current. In Fourier components, we find

j+(p) = 1√
L0

∑
k

R†(k)R(k + p) (5.230)

which annihilates the empty state |0〉. In fact, for any state |φ〉 with a finite number
of particles, the result is

[ j±(p), j±(p′)]|φ〉 = 0 (5.231)

Consider now the filled Fermi sea, |G〉. Explicitly we can write

|G〉 =
∏
p<0

R†(p)
∏
q>0

L†(q)|0〉 (5.232)

In other words, in |G〉 all right-moving states with negative momentum and all
left-moving states with positive momentum are filled (see Fig. 5.2).

Let us compute the commutator [ j+(x), j+(x ′)] at equal times (see, for instance,
Affleck (1986a)). The operator j+(x) is formally equal to a product of fermion
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ε

p

Figure 5.2 Vacuum |G〉 is obtained by filling the right-moving states with neg-
ative momentum (filled circles) and filling the left-moving states with positive
momentum (empty circles).

operators at the same point. Since we anticipate divergences, we should “point-
split” the product

j+(x) = R†(x)R(x) = lim
ε→0

R†(x + ε)R(x − ε) (5.233)

and write j+ in terms of a normal-ordered operator : j+ : and a vacuum expectation
value

j+(x) = : j+(x) : + lim
ε→0

〈G|R†(x + ε)R(x − ε)|G〉 (5.234)

The singularities are absorbed into the expectation value.
Consider a system on a segment of length L0 with PBCs and expand R(x) in

Fourier series

R(x) = 1√
L0

+∞∑
p=−∞

Rpei 2πxp
L0 (5.235)

The vacuum expectation value to be computed is

〈G|R†(x+ε)R(x−ε)|G〉 = 1

L0

+∞∑
p,p′=−∞

ei 2π
L0

[(x−ε)p′−(x+ε)p]〈G|R†
p Rp|G〉 (5.236)

Using the definition of the filled Fermi sea, we get

〈G|R†
p Rp′ |G〉 = δp,p′θ(−p) (5.237)
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〈G|L†
p L p′ |G〉 = δp,p′θ(+p) (5.238)

Hence

〈G|R†(x + ε)R(x − ε)|G〉 = 1

L0

0∑
p=−∞

e−i 2πp
L0

(2ε) (5.239)

This is a conditionally convergent series. In order to make it convergent, we will
regulate this series by damping out the contributions due to states deep below the
Fermi energy. We can achieve this if we analytically continue ε to the upper half
of the complex plane (i.e. ε → ε + iη) to get the convergent expression

〈G|R†(x + ε)R(x − ε)|G〉 = lim
η→0

1

L0

∞∑
p=0

ei 4πp
L0

(ε+iη)

= lim
η→0

1

L0

(
1 − ei 4π

L0
(ε+iη)

)
= lim

η→0

1

L0 (−i(4π/L0)(ε + iη))

= i

4πε
(5.240)

Thus, the result is

〈G|R†(x + ε)R(x − ε)|G〉 = i

4πε
(5.241)

Similarly, the expectation value 〈G|L†(x + ε)L(x − ε)|G〉 is found to be given by

〈G|L†(x + ε)L(x − ε)|G〉 = − i

4πε
(5.242)

The current commutator can now be readily evaluated:

[ j+(x), j+(x ′)] = lim
ε,ε′→0

[
R†(x + ε)R(x − ε), R†(x ′ − ε′)R(x ′ + ε′)

]
= lim

ε,ε′→0

{
δ(x ′ − x + ε′ + ε)R†(x + ε)R(x ′ − ε′)

− δ(x − x ′ + ε′ + ε)R†(x ′ + ε′)R(x − ε)
}

(5.243)

The contributions from normal-ordered products cancel out (since they are regular).
The only non-zero terms are, using Eq. (5.239),

[ j+(x), j+(x ′)] = lim
ε,ε′→0

(
iδ(x ′ − x + ε′ + ε)

2π(x − x ′ + ε + ε′)
− iδ(x ′ − x + ε + ε′)

2π(x ′ − x + ε + ε′)

)
(5.244)
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Thus, in this limit we find

[ j+(x), j+(x ′)] = − i

2π
∂xδ(x − x ′) (5.245)

and

[ j−(x), j−(x ′)] = + i

2π
∂xδ(x − x ′) (5.246)

In terms of Lorentz components, we get

[ j0(x), j1(x
′)] = − i

π
∂xδ(x − x ′) (5.247)

whereas

[ j0(x), j0(x
′)] = [ j1(x), j1(x

′)] = 0 (5.248)

The commutator [ j0(x), j1(x ′)] has a non-vanishing right-hand side, which is a
c-number. These terms are generally known as Schwinger terms. They are perva-
sive in theories of relativistic fermions. But terms of this sort are also found in
non-relativistic systems of fermions at finite densities. In fact, these terms are the
key to the derivation of the f -sum rule (Pines and Nozières, 1966; Martin, 1967).

5.6.2 The bosonization rules

We thus notice that the equal-time current commutator [ j0(x), j1(x ′)] acquires a
Schwinger term if the currents and densities are normal-ordered relative to the filled
Fermi sea. The identity of Eq. (5.247) suggests that there should be a connection
between a canonical Fermi field ψ with a filled Fermi sea and a canonical Bose
field φ. Let �(x) be the canonical momentum conjugate to φ, i.e. at equal times

[φ(x),�(x ′)] = iδ(x − x ′) (5.249)

If we identify the normal-ordered operators

j0(x) = 1√
π
∂xφ(x) (5.250)

and

j1(x) = − 1√
π
∂tφ(x) ≡ − 1√

π
�(x) (5.251)

we see that Eq. (5.249) implies

1

π

[
∂xφ(x),�(x

′)
] = i

π
δ′(x − x ′) (5.252)
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which is consistent with the Schwinger term. These equations can be written in the
more compact form

jμ = 1√
π
εμν ∂

νφ (5.253)

where εμν is the (antisymmetric) Levi-Civita tensor and we are using from now on
the notation t → x0, x → x1, and x ≡ (x0, x1). We then arrive at the conclusion
that the current commutator with a Schwinger term, Eq. (5.247), is equivalent to
the statement that there exists a canonical Bose field φ whose topological current,
Eq. (5.253), coincides with the normal-ordered fermion current.

The fermion current jμ is conserved, i.e.

∂μ jμ = 0 (5.254)

which is automatically satisfied by Eq. (5.253). In the case of the free theory, the
numbers of left and right movers are separately conserved. This means that not
only should jμ be conserved, but also j5

μ, defined by

j5
μ = ψ̄γμγ

5ψ (5.255)

should be conserved. Using the identity

γμγ5 = εμνγ
ν (5.256)

we see that jμ and j5
μ are in fact related by

j5
μ = εμν jν (5.257)

The divergence of j5
μ can be computed in terms of the Bose field φ as follows:

∂μ j5μ = εμν ∂μ jν = 1√
π
εμνενλ ∂μ∂

λφ = 1√
π
∂2φ (5.258)

Thus, the conservation of the axial current j5
μ implies that φ should be a free

canonical Bose field

∂μ j5μ = 0 ⇒ ∂2φ = 0 (5.259)

where

∂2 ≡ ∂2
0 − ∂2

1 (5.260)

The Lagrangian for these bosons is simply given by

LB = 1

2

(
∂μφ

)2
(5.261)

Conversely, if φ is not free j5
μ should not be conserved. We will see below that this

is indeed what happens in the Thirring–Luttinger model.
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Before doing that, let us consider a set of identities originally derived
by Mandelstam (1975). By analogy with the Jordan–Wigner transformation of
Section 5.2.1, we should expect that these identities should be highly non-local,
although they should have local anticommutation relations. These identities, like
all others derived within the bosonization approach, only make sense within the
operator-product expansion (OPE): the operators so identified give rise to the same
leading singular behavior when arbitrary matrix elements are computed. Also, from
the Jordan–Wigner analogy, we should expect that the fermion operators, as seen
from their representation in terms of bosons, should act like operators that create
solitons.

The free Bose field φ can be written in terms of creation and annihilation oper-
ators. Let φ+(x) (φ−(x)) denote the piece of φ(x) which depends on the creation
(annihilation) operators only,

φ(x) = φ+(x)+ φ−(x) (5.262)

where φ(x) is a Heisenberg operator (x ≡ (x0, x1), see Eq. (5.253)). Obviously,
φ− annihilates the vacuum of the Bose theory. The operators φ+ and φ− obey the
commutation relations

[φ+(x0, x1), φ
−(x ′

0, x ′
1)] = lim

ε→0
�+(x0 − x ′

0, x1 − x ′
1) (5.263)

where �+ is given by

�+(x0 − x ′
0, x1 − x ′

1) = − 1

4π
ln

[
(x1 − x ′

1)
2 − (x0 − x ′

0 + iε)2

a2

]
(5.264)

where a is a short-distance cutoff, and it is necessary to make the argument of the
logarithm dimensionless.

Consider now the operators Oα(x) and Qβ(x) defined by

Oα(x) = eiαφ(x) (5.265)

and

Qβ(x) = eiβ
∫ x1−∞ dx ′1 ∂0φ(x0,x ′1) ≡ eiβ

∫ x1−∞ dx ′1 �(x0,x ′1) (5.266)

When acting on a state |{φ(x ′)}〉, Oα(x) simply multiplies the state by eiαφ(x). The
operator Qβ(x) has quite a different effect. Since �(x) and φ(x) are conjugate
pairs, Qβ(x) will shift the value of φ(x0, x ′

1) to φ(x0, x ′
1)+β for all x ′

1 < x1. Thus,
Qβ(x) creates a coherent state, which we can call a soliton:

Qβ(x)|{φ(x0, x ′
1)}〉 = |{φ(x0, x ′

1)+ βθ(x1 − x ′
1)}〉 (5.267)

Consider now the operator ψα,β(x) of the form

ψα,β(x) = Oα(x)Qβ(x) = eiαφ(x)+iβ
∫ x1−∞ dx ′1 ∂0φ(x0,x ′1) (5.268)
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and compute the product ψα,β(x)ψα,β(x ′) at equal times (x ′
0 = x0). Using the

Baker–Hausdorff formula

eÂeB̂ = eB̂eÂe−[ Â,B̂] = eÂ+B̂− 1
2 [ Â,B̂] (5.269)

where [ Â, B̂] is a complex-valued distribution, we get

ψα,β(x)ψα,β(x
′) = ψα,β(x

′)ψα,β(x)e
−i�(x,x ′) (5.270)

where �(x, x ′) is given (all the commutators are understood to be at equal times
and x0 = x ′

0 but x ′
1 �= x1) by

i�(x, x ′) = −α2[φ(x), φ(x ′)] − β2
∫ x1

−∞
dy1

∫ x ′1

−∞
dy′

1[�(y),�(y′)]

−αβ

∫ x ′1

−∞
dy′

1[φ(x),�(y′)] − αβ

∫ x1

−∞
dy1[�(y), φ(x ′)]

= −iαβ (5.271)

For the operatorsψα,β(x) to have fermion commutation relations we need to choose
αβ = ±π . It is useful to write left and right components of the Fermi field in the
form (Mandelstam, 1975)

R(x) = 1√
2πa

: e−i 2π
β

∫ x1−∞ dx ′1 �(x0,x ′1)+i β2 φ(x) : (5.272)

L(x) = 1√
2πa

: e−i 2π
β

∫ x1−∞ dx ′1 �(x0,x ′1)− iβ
2 φ(x) : (5.273)

The constant β is arbitrary and it can be chosen by demanding that the currents
satisfy the operator identity

jμ = 1√
π
εμν ∂

νφ (5.274)

From Eqs. (5.272) and (5.273), it follows that the free fermionic current is
identified with the bosonic operator (Mandelstam, 1975)

jμ = β

2π
εμν ∂

νφ (5.275)

Thus, we must choose β = √
4π for the free-fermion problem.

The free-scalar-field operator φ(x) and the canonical momentum �(x) have the
mode expansions
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φ(x) =
∫ ∞

−∞
dk

2π

1

2|k|
(

a(k)ei(|k|x0−kx1) + a†(k)e−i(|k|x0−kx1)
)

�(x) =
∫ ∞

−∞
dk

2π

1

2|k|
(

i |k|a(k)ei(|k|x0−kx1) − i |k|a†(k)e−i(|k|x0−kx1)
)

(5.276)

where the creation and annihilation operators obey standard commutation relations,
i.e. [a(k), a†(k ′)] = (2π)2|k|δ(k − k ′).

The field operator φ(x) and the canonical momentum �(x) admit a decomposi-
tion in terms of right- and left-moving chiral bosonic fields, φR(x) ≡ φR(x0 − x1)

and φL(x) ≡ φL(x0 + x1), which are given by

φR(x0 − x1) =
∫ ∞

0

dk

2π

1

2k

(
a(k)eik(x0−x1) + a†(k)e−ik(x0−x1)

)
(5.277a)

φL(x0 + x1) =
∫ 0

−∞
dk

2π

1

2k

(
−a(k)e−ik(x0+x1) + a†(k)eik(x0+x1)

)
(5.277b)

It is convenient to introduce the dual field ϑ(x), defined by

�(x) = ∂1ϑ(x) (5.278)

or, equivalently (up to a suitably defined boundary condition),

ϑ(x) ≡
∫ x1

−∞
dx ′

1 �(x0, x ′
1) (5.279)

The field operator φ(x) and the dual field operator ϑ(x) obey the Cauchy–Riemann
equations

∂0φ = ∂1ϑ, ∂1φ = −∂0ϑ (5.280)

as operator identities. The chiral decomposition reads

φ(x0, x1) = φR(x0 − x1)+ φL(x0 + x1)

ϑ(x0, x1) = −φR(x0 − x1)+ φL(x0 + x1)
(5.281)

In this subsection we will work primarily with the free-fermion problem. In this
case the Mandelstam identities, Eq. (5.272) and Eq. (5.273), take the simpler form

R(x) = 1√
2πa

: ei2
√
πφR(x) :

L(x) = 1√
2πa

: e−i2
√
πφL(x) :

(5.282)

It is interesting to consider products of the form limy1→x1 R†(x)L(y) and
limy1→x1 L†(y)R(x) at equal times. We will use Mandelstam’s formulas,
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Eqs. (5.282), to derive an operator product expansion for R†L and L† R, both to
leading order. We find

lim
y1→x1

R†(x)L(y) = 1

2πa
: ei2

√
πφR(x) :: e−i2

√
πφL(y) : (5.283)

We can make use of the Baker–Hausdorff formula once again, now in the form

: eÂ :: eB̂ : = e[ Â
+,B̂−] : eÂ+B̂ : (5.284)

and write down a bosonic expression for R†L . The normal-ordered operator is, by
definition, regular. Thus we can take the limit readily to find

lim
y→x

: eÂ+B̂ : = : e−iβφ(x) : (5.285)

This operator is multiplied by a singular coefficient that compensates for the fact
that R†L and e−iβφ have superficially different scaling dimensions. An explicit
calculation gives the operator identity

lim
y1→x1

R†(x)L(y) = 1

2πa
: e−i2

√
πφ(x) : (5.286)

Similarly, one finds the identification

lim
y1→x1

L†(x0, y1)R(x0, x1) = 1

2πa
: e+i2

√
πφ(x) : (5.287)

To sum up, the Dirac mass bilinear operator ψ̄ψ at β = √
4π is given by

ψ̄(x)ψ(x) ≡ lim
y1→x1

ψ̄(x0, x1)ψ(x0, y1) = 1

πa
: cos(

√
4πφ(x)) : (5.288)

In the Ising regime of the Heisenberg model, we expect 〈ψ̄ψ〉 to be different
from zero and therefore the bosonic theory should have a ground state such that
the expectation value 〈cos(

√
4πφ)〉 is not zero. Under a chiral transformation by

θ = π/2, ψ̄ψ transforms as

ψ̄ψ → −ψ̄ψ (5.289)

which is equivalent to a sublattice exchange. In bosonic language, this transforma-
tion amounts to

φ → φ + π√
4π

(5.290)

The Umklapp operators play a crucial role here (Emery, 1979; den Nijs, 1981;
Haldane, 1982). These operators enter the interaction Hamiltonian through terms
of the form (see Eq. (5.132))∫

dx1
{
(R†L)2 + (L† R)2

}
(5.291)
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These terms can be bosonized using the Mandelstam identities Eqs. (5.282).
Indeed, we get the (equal-time) operator expansion

lim
y1→x1

(R†(x)L(y))2 =
(

1

2πa

)2

: e−i
√

4πφ(x) :: e−i
√

4πφ(y) :

=
(

1

2πa

)2

: e−4π [φ+(x),φ−(y)] :: e−i2
√

4πφ(x) :

=
(

1

2πa

)2

e−4π�+(0+,x1−y1) : e−i2
√

4πφ(x) : (5.292)

where Eqs. (5.269) and (5.263) have been used. In short, the bosonized version of
the Umklapp terms is (at β = √

4π)

lim
y1→x1

(R†(x)L(y))2 =
(

1

2πa

)2

: e−i4
√
πφ(x) : (5.293)

and likewise

lim
y1→x1

(L†(y)R(x))2 =
(

1

2πa

)2

: e+i4
√
πφ(x) : (5.294)

5.6.3 The sine–Gordon theory

Now that we have done all the hard work and derived the necessary identities, we
are in position to write down the bosonized form of the Lagrangian. The fermionic
Lagrangian density (see Eqs. (5.220) and (5.132))

LF = ψ̄ iγ μ ∂μψ − γ (ψ̄γμψ)
2 + 2γ

(
(R†L)2 + (L† R)2

)
(5.295)

which we showed was equivalent to the Heisenberg model (in the continuum limit),
is thus equivalent to a bosonic theory with Lagrangian density (see Eqs. (5.261) and
(5.274))

LB = 1

2

(
∂μφ

)2 − γ

π
εμν ∂

νφ εμλ ∂λφ + γ

π2a2
: cos(4

√
πφ) : (5.296)

Lorentz invariance is kept in this form of the bosonized Lagrangian. In Chapter
6 we will do a somewhat different analysis in which in addition to a renormal-
ization of the stiffness (or compactification radius) there is a finite non-universal
renormalization of the speed.

Using the identity

εμνε
μλ = −δλν (5.297)

we can write

LB = 1

2

(
∂μφ

)2 + γ

π

(
∂μφ

)2 + γ

π2a2
: cos(4

√
πφ) : (5.298)
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Thus, the interactions in the fermions give rise to (a) a rescaling of the Bose field
φ and (b) a non-linear term.

This Lagrangian density can be brought into the canonical form by a simple
rescaling of the field φ(x) (

1 + 2γ

π

)1/2

φ(x) ≡ ϕ(x) (5.299)

If we define β by the expression

β2 = 4π

1 + 2γ /π
(5.300)

we can write the Lagrangian in the sine–Gordon form

LB = 1

2

(
∂μϕ

)2 + g : cos(2βϕ) : (5.301)

where g, the sine–Gordon coupling constant, is given by

g ≈ γ

π2a2
0

(5.302)

up to a finite non-universal multiplicative constant determined by the short-distance
cutoff (i.e. we have arbitrarily set cμa0 = 1). Thus, the effective bosonized theory
has the sine–Gordon form, a problem that we discussed in detail in Chapter 4.

The rescaling of φ implies that the canonical momentum � should also be
rescaled so as to keep the form of the canonical commutation relations. Thus �
is scaled as

� =
(

1 + 2γ

π

)−1/2

∂0ϕ (5.303)

The Mandelstam operators now read (see Eqs. (5.282))

R(x) = 1√
2πa

: e−i 2π
β
ϑ(x0,x1)+i β2 ϕ(x) :

L(x) = 1√
2πa

: e−i 2π
β
ϑ(x0,x1)−i β2 ϕ(x) :

(5.304)

with β given by Eq. (5.300), and ϑ is the field dual to the field ϕ.
Similarly, the order parameter field ψ̄ψ now becomes (see Eqs. (5.285), (5.299),

and (5.300))

ψ̄(x)ψ(x) = 1

πa
: cos (βϕ) : (5.305)

This formula will help us to determine the correlation function of the staggered lon-
gitudinal order parameter at long distances. We can also find bosonized expressions
for the transverse components of the order parameter, i.e. S±(2s + 1)− S±(2s).
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The same procedure as that which led to the relation between the (longitudinal)
staggered magnetization Sz(2s + 1) − Sz(2s) and ψ̄ψ , Eq. (5.131) (up to singu-
lar prefactors), now yields an operator correspondence for the transverse staggered
magnetization

N+(x) = S+(2s + 1)− S+(2s)

∼ e−iπ
∫ x1−∞ dx ′1 : ψ†(x0,x ′1)ψ(x0,x ′1) :

(
ψ

†
1 (x)− ψ

†
2 (x)

)
(5.306)

which, in the chiral basis, has the form

N+(x) ∼ e−iπ
∫ x1−∞ dx ′1: j0(x0,x ′1):R†(x) (5.307)

The other transverse component, N−, is just the hermitian conjugate of N+ =
(N−)†.

We can use the bosonization identities to find an expression for N± in terms of
the Bose field ϕ. The result is (up to singular coefficients, which we will not make
explicit)

N±(x) ∼ : e±i 2π
β
ϑ(x) : + · · · (5.308)

A similar analysis yields the following operator identifications for the three
components of the magnetization:

Mz ∼ 1

2
(Sz(2n)+ Sz(2n + 1)) ∼ j0 = β

2π
∂xϕ

M± ∼ 1

2
(S±(2n)+ S±(2n)) ∼ L†eiπ

∫ x
−∞ dx ′: j0(x ′): ∼ ei 2π

β
ϑ+iβϕ

(5.309)

The sine–Gordon potential cos(2βϕ) does not affect the behavior at long dis-
tances unless the operator is relevant, in the sense of the renormalization group.
This means that the (scaling) dimension � of this operator should be less than or
equal to 2, the dimension of space-time. The dimension �A of an operator A(x) is
found by considering the correlation function, say at equal times,

〈A(x)A(x ′)〉 ∼ 1

|x1 − x ′
1|ηA

(5.310)

The critical exponent ηA and the dimension �A are related by

ηA ≡ 2�A (5.311)

Thus, adding the operator A(x) to the Lagrangian density of the free theory, L0 =
1
2(∂μϕ)

2, does not alter the infrared behavior unless �A ≤ 2. For �A ≤ 2, the
infrared divergences grow more and more severe with the order of perturbation
theory in gA, the coupling constant for the operator A(x). Conversely, for �A > 2
the infrared behavior is, at every order of perturbation theory in gA, the same as
that of a theory with gA = 0.
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In addition to the fermions themselves, two operators Oa(x) and Qb(x) are of
importance to us:

Oa(x) = eiaϕ(x)

Qb(x) = eibϑ(x0,x1)
(5.312)

The equal-time correlation functions for Oa and Qb are

〈G| : Oa(x) :: O†
a(y) : |G〉 = constant × ea2[ϕ+(x0,x1),ϕ

−(x0,y1)] (5.313)

Similarly, we get

〈G| : Qb(x) :: Q†
b(y) : |G〉 = constant × eb2[ϑ+(x0,x1),ϑ

−(x0,y1)] (5.314)

After a short computation, we get for the equal-time correlation functions

〈G| : Oa(x) :: O†
a(y) : |G〉 = constant

|x1 − y1|a2/(2π)
(5.315)

and

〈G| : Qb(x) :: Q†
b(y) : |G〉 = constant

|x1 − y1|b2/(2π)
(5.316)

Thus, the scaling dimension � of the operator : cos(2βϕ) : is equal to

� = β2

π
(5.317)

For� ≤ 2 (i.e. β2 ≤ 2π ) this interaction is relevant in the infrared and for β2 ≥ 2π
it is infrared-trivial. Thus, for values of the anisotropy γ greater than a critical value
γc � π/2, we expect the non-linear term to be dominant. In this regime, the field
ϕ has small fluctuations around the classical value, which are determined by its
equations of motion. The order-parameter field ψ̄ψ has a non-zero expectation
value and the ground state is two-fold degenerate. This is the Ising regime of the
Heisenberg model.

For the lattice theory one expects, and this is confirmed by a Bethe-ansatz cal-
culation, that γc should be equal to unity (Luther and Peschel, 1975). In other
words, the quantum Heisenberg antiferromagnet should be at this critical point.
For γ < γc, XY anisotropy should dominate and the Mermin–Wagner theorem
would prohibit the spontaneous breaking of the continuous symmetry of the XY
model. The domain γ < γc is a line (or segment) of critical points. A detailed
theory of this phase transition in connection with the Kosterlitz–Thouless transi-
tion can be found in the work of Amit, Goldschmidt, and Grinstein (Amit et al.,
1980).
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5.7 Phase diagrams and scaling behavior

We have shown that the one-dimensional (1D) quantum antiferromagnet is equiva-
lent to a sine–Gordon model in (1+1) dimensions. We will now apply the methods
and results we derived in Chapter 4 to determine the phase diagram and the scaling
behavior of the antiferromagnet.

The RG flows of the sine–Gordon theory were discussed in Chapter 4. There we
saw that there is a (Kosterlitz–Thouless) transition when the value of the stiffness
K is such that the cosine operator is marginal and its scaling dimension equals
2. In the bosonized treatment of the 1D quantum Heisenberg antiferromagnet this
happens at γc � π/2. In the case of the Heisenberg antiferromagnet the bare values
of the sine–Gordon coupling constant g and the stiffness K = 1/

√
2β (notice the

factor of 2) are not independent since both of them depend on the coupling constant
γ of the Luttinger–Thirring model. This relation is not universal and depends on
the cutoff scheme used. It is also affected by irrelevant operators, which have been
neglected in our analysis. Nevertheless, it is useful to carry on with the analysis
taking the parameters at face value.

We also saw that the RG flow, see Eq. (4.88) and Fig. 4.3, has a simple structure
when expressed in terms of the SG coupling g and the parameter x = 2 − �,
where � is the scaling dimension of the cosine operator, which here depends also
on the parameter γ . Hence the initial values of the RG flow describing the quantum
Heisenberg chain lie on a curve g = g(x),

g = 1

2π

2 + x

2 − x
(5.318)

which is easily obtained by eliminating the dependence of g and K (and β) on γ .
The only part of this curve that matters to our analysis lies in the neighborhood of
x = 0. In that neighborhood, g = g(x) is a positive and monotonically increasing
function of x that crosses the stable asymptote (see Fig. 4.3) g = −x/A(1) (here
A(1) = √

32π3) at a value xc close to the origin, x = 0. Thus, for x < xc < 0 (i.e.
γ < γc) the RG flows converge on the fixed line: this is the anisotropic Heisenberg
model (with XY anisotropy). In this regime the power-law behaviors we obtained
are exact (up to contributions from irrelevant operators). Precisely at x = xc the
system is on the stable asymptote and it flows towards the end of the fixed line. We
will see below that there is a special behavior associated with this point. Finally,
for x > xc (γ > γc) the cosine operator is relevant and the RG flows to strong
coupling. This is the Ising regime. In this regime the discrete Z2 Ising symmetry
is spontaneously broken, there is long-range antiferromagnetism, and the energy
spectrum is massive (gapped).

The correlation functions for all interesting operators on the domain γ ≤ γc can
be calculated. All the expressions listed below acquire logarithmic corrections to
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Table 5.1 Scaling dimensions at the isotropic Heisenberg
antiferromagnetic point (β2 = 2π ) and at the XY -model
point (β2 = 4π).

�(ψ) �(Nz) �(N±) �(Mz) �(M±)

Heisenberg (β2 = 2π) 5/8 1/2 1/2 1 1
XY (β2 = 4π) 1/2 1 1/4 1 5/4

the scaling at γ = γc. The dimensions of the fermion �(ψ), longitudinal �(Nz)

(i.e. of the fermion mass term ψ̄ψ), and transverse �(N±) components of the stag-
gered (Néel) order parameter, and of the components of the uniform magnetization
(�(Mz) and �(M±)), are found to be

�(ψ) = π

β2
+ β2

16π
(5.319)

�(ψ̄ψ) = �(Nz) = β2

4π
, �(N±) = π

β2
(5.320)

�(Mz) = 1, �(M±) = β2

4π
+ π

β2
(5.321)

where we have kept only the contributions with smallest dimension (which are the
most relevant). The scaling dimensions of these operators for the isotropic Heisen-
berg antiferromagnet and for the XY model (the free-fermion point) are given in
Table 5.1.

At β2 = 4π , the free-fermion limit, we obtain results for the quantum XY model
which, as we also saw, is equivalent to two decoupled quantum Ising chains. In
particular the correlation function

〈T (S+(n, τ )S−(n′, τ ′)〉XY = 2〈T (σ3(n, τ )σ3(n
′, τ ′))〉2

Ising (5.322)

The results of Table 5.1 show that at β2 = 4π the scaling dimension of the Néel
order parameter, N±, which in the XY model is the same as the spin operators
S±, is � = 1/4. This result also tells us that the Ising correlator decays with
an exponent η = 1/4 and therefore that the Ising spin operator σ has scaling
dimension 1/8 (Bander and Itzykson, 1977; Zuber and Itzykson, 1977),

〈T (σ3(n, τ )σ3(n
′, τ ′)〉 ∼ 1

R1/4
(5.323)

where R2 = (n − n′)2 + (τ − τ ′)2.
From these results we conclude that the anisotropy disappears at γ = γc

since the longitudinal and transverse components of the Néel order parameter, the
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staggered magnetizations, have the same correlations functions at the critical point
γ = γc, where they behave, up to logarithmic corrections, like

〈G|N+(x)N−(y)|G〉|γc ∼ 〈G|ψ̄(x)ψ(x)ψ̄(y)ψ(y)|G〉|γc ∼
constant

|x1 − y1| (5.324)

Similarly, the scaling dimensions of the three components of the uniform magne-
tization Mz and M± are also equal to each other (and to 1) for β2 = 2π . This
result is very significant since, as we will see in Chapter 7, these three dimension-
1 operators generate a (chiral) SU(2) current algebra. However, the actual scaling
behavior is a little more subtle than what our analysis shows. For instance, the three
components of the Néel order parameter N z and N± have dimension 1/2 on the
fixed line but their correlators acquire a (multiplicative) logarithmic correction and
behave as (similarly for the transverse components)

〈N z(x)N z(y)〉 ∼ |ln(|x − y|)|1/2

|x − y| (5.325)

right at γc. This correction to scaling is due to the marginally irrelevant flow along
the stable asymptote towards the end of the fixed line (Affleck, 1998). However, the
three components of the local magnetization densities Mz and M± do not acquire
such corrections to scaling. This different behavior is due to the fact that the mag-
netization density is part of a locally conserved SU(2) current. Thus, although our
formalism does not keep track of the global SU(2) symmetry of the Heisenberg
model at the isotropic point, it recovers it as an effective (“dynamical”) symmetry
of the critical point.

For γ < γc the correlation functions are different, although both exhibit an alge-
braic decay (i.e. power-law behavior) with exponents ηz and η± satisfying ηz > η±.
These exponents are universal in the sense that their numerical values are indepen-
dent of the short-distance cutoff. However, the coupling constant itself does depend
on the precise definition of the cutoff. Thus the value of γc, which is equivalent to
unity in the lattice system, turns out to be close to π/2 for the continuum model.
Nevertheless, it is possible to find a relationship between the continuum and lattice
coupling constants (Luther and Peschel, 1975).

The fact that the correlation functions exhibit a power-law behavior means that
the system, for γ < γc, is critical. It has been argued (den Nijs, 1981) that this
is a line of critical points ending at γc, the Heisenberg point. That the system is
critical means that there are no energy gaps; that is, all the excitations are gapless.
For γ > γc an energy gap m(γ ) develops (den Nijs, 1981). The RG analysis we
discussed tells us that the energy gap exhibits the Kosterlitz–Thouless behavior

m(γ ) ∼ constant × exp

(
− constant√

γ − γc

)
(5.326)
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This is the regime with β2 < 2π in the sine–Gordon theory. Renormalization-
group arguments imply that the operator eiβφ exhibits long-range order and,
consequently, that 〈ψ̄ψ〉 �= 0.

It is natural to ask whether the fact that the spin-1/2 Heisenberg chain is at a
critical point with gapless (neutral) fermions in the spectrum does generalize to
other situations such as higher spin or higher dimensions. We will see below that
in general the behavior of the half-integer-spin chains is analogous to that of the
spin-1/2 chain, and that, in contrast, the integer-spin chains are not critical.
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The Luttinger liquid

6.1 One-dimensional Fermi systems

We will now consider the case of one-dimensional (1D) Fermi systems for which
the Landau theory fails. The way it fails is quite instructive since it reveals that in
one dimension these systems are generally at a (quantum) critical point, and it will
also teach us valuable lessons on quantum criticality. It will also turn out that the
problem of 1D Fermi systems is closely related to the problem of quantum spin
chains. This is a problem that has been discussed extensively by many authors, and
there are several excellent reviews on the subject (Emery, 1979; Haldane, 1981;
Gogolin et al., 1998). Here I follow in some detail the discussion and notation of
Carlson and coworkers (Carlson et al., 2004).

One-dimensional (and quasi-1D) systems of fermions occur in several experi-
mentally accessible systems. The simplest one to visualize is a quantum wire. A
quantum wire is a system of electrons in a semiconductor, typically a GaAs–AlAs
heterostructure built by molecular-beam epitaxy (MBE), in which the electronic
motion is laterally confined along two directions, but not along the third. An exam-
ple of such a channel of length L and width d (here shown as a two-dimensional
(2D) system) is seen in Fig. 6.1. Systems of this type can be made with a high
degree of purity with very long (elastic) mean free paths, often tens of microme-
ters or even longer. The resulting electronic system is a 1D electron gas (1DEG).
In addition to quantum wires, 1DEGs also arise naturally in carbon nanotubes,
where they are typically multi-component (with the number of components being
determined by the diameter of the nanotube).

Other 1D Fermi systems include the edge states of two-dimensional electron
gases (2DEGs) in large magnetic fields in the regime in which quantum Hall effects
are seen. (We will discuss this problem later on.) This case is rather special since
these edge states can propagate in only one direction, determined by the sign of the
perpendicular magnetic field.

145
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Figure 6.1 (a) A long quantum wire of length L and transverse width d (L � d):
a channel for the electron fluid. Only the 2D case is shown for simplicity. (b) The
square-well spectrum of the transverse quantum single-particle states confined by
the finite width d of the wire.

Other (quasi-) 1D systems occur in organic compounds, such as TTFTCNQ,
some Bechgaard salts (commonly called the “BEDTs” and the “ETs”), and TMSFs.
There are also quasi-1D chalcogenide materials, e.g. NbSe3, as well as complex
oxides. There are some oxides, e.g. Sr14−x Cax Cu24O41, that can be regarded as a set
of weakly coupled ladders (instead of chains). Quasi-1D Fermi systems are often
used to describe complex ordered states in 2D strongly correlated systems. Typical
examples are the stripe phases of the copper oxide high-Tc superconductors, such
as La2−x Srx CuO4 and La2−x Bax CuO4.

We will consider first the conceptually simpler example of the quantum wire.
We will assume that the electron density is such that the Fermi energy lies below
the energy of the first excited state. The result is that the single-particle states with
momenta in the range −pF < p< pF are occupied and the states outside this range
are empty. Thus the Fermi “surface” of this system reduces to two Fermi points
at ±pF. We will assume that the wire is long enough, L � d, so that the single-
particle states fill up densely the momentum axis, and that the density is high
enough that �p = 2π�/L � pF. On the other hand, we will assume that the wire
is narrow enough that the next band of (excited) states can effectively be neglected,
εF � �

2/(2md2). At higher electronic densities, more than one band can intersect
the Fermi energy. Each new partially occupied band is labeled by a pair of Fermi
points. In practice we will work in a regime in which the following inequality
holds:

L

d
� 1 � d

λF
(6.1)

where λF = �/pF is the Fermi wavelength, and we have only two Fermi points (see
Fig. 6.2).
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εF

pF−pF

ΔE = (2πh/L)vF

Δp =

ε

p

ε0(p)
ε1(p)

2πh/L

2md2
h2

Figure 6.2 Energy–momentum relation of the two lowest bands of propagating
non-relativistic free fermions along the length of the quantum wire; εF is the Fermi
energy, ±pF are the two Fermi points, and vF = pF/m is the Fermi velocity. The
filled Fermi sea (the occupied states) is shown as a dark segment; �E and �p are
the level spacings in a finite wire of length L . We have shifted the minimum of
the energy of the lowest band to be at zero.

The Hamiltonian for the 1DEG is H = H0 + Hint, where

H0 =
∑
σ=↑,↓

∫ L

0
dx ψ†

σ (x)
(
− �

2

2m

∂2

∂x2
− μ

)
ψσ (x) (6.2)

is the free-fermion Hamiltonian and

Hint =
∑

σ,σ ′=↑,↓

∫ L

0
dx

∫ L

0
dx ′ ψ†

σ (x)ψσ (x)U (x − x ′)ψ†
σ ′(x ′)ψσ ′(x ′) (6.3)

where U (x−x ′) is the interaction potential, which can be Coulomb or short-ranged,
depending on the physical situation. In what follows, for simplicity we will use
periodic boundary conditions, requiring

ψσ(x + L) = ψσ(x) (6.4)

which amounts to wrapping the system (“compactification”) onto a circle. Some-
times we may want to use the more physical open boundary conditions.

In many cases we will be interested in lattice systems. So, consider a 1D chain
of N sites (atoms) and lattice spacing a, and total length L = Na. A typical system
of interest is the Hubbard model, whose lattice Hamiltonian is

H =
N∑

j=1

∑
σ=↑,↓

t
(
ψ†
σ ( j)ψσ ( j + 1)+ h.c.

)
+

N∑
j=1

Un↑( j)n↓( j) (6.5)
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where nσ ( j) = ψ†
σ ( j)ψσ ( j) is the fermion occupation number with spin σ at site j

and n( j) = ∑
σ nσ ( j) is the total occupation number (i.e. the charge) at site j . Here

U is the on-site (Hubbard) interaction. This model describes a system of electrons
with hopping only between nearest neighboring sites; t , the hopping amplitude, is
the local kinetic energy. This system has only one band of single-particle states
with the dispersion relation

ε(p) = 2t cos(pa) (6.6)

In the thermodynamic limit, N → ∞, the momenta p lie in the first Brillouin zone,
−π/a < p ≤π/a. In general we will be interested in a system either at fixed chem-
ical potential μ or at fixed density n = Ne/N . The effective model for interacting
systems that we will discuss will describe equally well (with minor changes) the
low-energy physics of both continuum and lattice systems.

What is special about one dimension?

1. In the Landau theory of the Fermi liquid we considered the low-energy states
and we saw that they can be described in terms of particle–hole pairs. In dimen-
sions D> 1 the momentum δ�q of the pair is not necessarily parallel to the
Fermi wave vector pF of the location of the Fermi surface (FS) where the pair is
excited. However, in 1D δq must be either parallel or anti-parallel to the Fermi
momentum pF since the FS has collapsed to just two (or more) points (see
Fig. 6.3).

2. This kinematic restriction implies that particle–hole pairs effectively form long-
lived bound states, the collective modes, since the particle and the hole move
with the same speed (the Fermi velocity). We will see that this implies that the
low-energy effective theory is a theory of bosons. This is the main reason why
the non-perturbative theory of 1D fermions, bosonization, works.

3. Another insight can be gleaned by looking at the density correlators, whose
singularities are the collective modes. In D> 1 the retarded density–density
correlation function DR(q, ω) of a free fermion is

DR(q, ω) =
∫

d D p

(2π)D

np − np+q

ω − ε(p + q)+ ε(p)+ iη
(6.7)

pF−pF

δq

0

pF

Figure 6.3 One-dimensional kinematics: the momentum of a particle–hole pair
of momentum q is always parallel (or anti-parallel) to the Fermi wave vector pF.
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For low momenta |q|� pF and at low energies ω� EF, DR(q, ω) can be
written as an integral on the Fermi surface

DR(q, ω) �
∫

d D p

(2π)D

q · p̂F

ω − (
q · p̂F

)
vF + iη

δ (|p| − pF)

= pD−1
F

(2π)D

∮
FS

dp̂F
q · p̂F

ω − (
q · p̂F

)
vF + iη

(6.8)

For D> 1 the angular integration is a function of q and ω that has branch cuts.
For instance, in 3D the result is

DR(q, ω) ∼ 1 + ω

2qvF
ln

∣∣∣ω − qvF

ω + qvF

∣∣∣ + · · · (6.9)

The branch cuts mean that the collective modes (zero sound) eventually become
Landau damped (Abrikosov et al., 1963; Baym and Pethick, 1991).

4. However, in 1D there is no such angular integration (the FS is just two points!)
and the result is

DR(q, ω) ∼ q

2π

( 1

ω − qvF + iη
− 1

ω + qvF + iη

)
(6.10)

This expression contains two singularities, two poles, representing bosonic
states that move to the right (the first term) or to the left (the second term).
It is easy to check that this result is consistent with the f -sum rule.

Furthermore, these results suggests that a theory of free fermions in 1D must be,
in some sense, equivalent to a theory of a Bose field whose excitations obey the
dispersion relation ω = pvF. In other terms, the bosons are density fluctuations,
which in this case are just sound waves.

6.2 Dirac fermions and the Luttinger model

We will now proceed to construct an effective low-energy theory by following a
procedure similar to what led to the Landau theory of the Fermi liquid. The result,
however, will be quite different in 1D.

To this end we will first look at the free-fermion system and focus on the low-
energy excitations. We have already encountered this problem in Section 5.2.3.
We will follow a similar line of argument. In 1D, instead of a Fermi surface we
have (at least) two Fermi points at ±pF. The low-energy fermionic states thus have
momenta p ∼ ±pF and a single-particle energy close to εF:

ε(p) � εF + (|p| − pF)vF + · · · (6.11)
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We are interested in the electronic states near the Fermi energy. Thus, consider the
fermion operator ψσ(x), whose Fourier expansion is (we will set � = 1 from now
on), in the thermodynamic limit (L → ∞),

ψσ(x) =
∫

dp

2π
ψσ (p)eipx (6.12)

Only its Fourier components near ±pF describe low-energy states. This sug-
gests that we restrict ourselves to the modes of the momentum expansion in a
neighborhood of ±pF of width 2�, and that we write

ψσ (x) �
∫ �

−�
dp

2π
ei(p+pF)xψσ(p + pF)+

∫ �

−�
dp

2π
ei(p−pF)xψσ(p − pF) (6.13)

and that we define right- and left-moving fields ψσ,R(x) and ψσ,L(x) such that

ψσ (x) � eipFxψσ,R(x)+ e−i pFxψσ,L(x) (6.14)

Thus we have split off the rapidly oscillating piece of the field and we focus on the
slowly varying parts, ψσ,R(x) and ψσ,L(x), whose Fourier transforms are

ψσ,R(p) = ψσ(p + pF) and ψσ,L(p) = ψσ(p − pF) (6.15)

respectively.
The free-fermion Hamiltonian

H0 =
∑
σ

∫
dp

2π
ε(p)ψ†

σ (p)ψσ (p) (6.16)

becomes

H0 =
∑
σ

∫ �

−�
dp

2π
pvF

(
ψ

†
σ,R(p)ψσ,R(p)− ψ

†
σ,L(p)ψσ,L(p)

)
(6.17)

where we have linearized the dispersion ε(p) near the Fermi momenta ±pF. Let us
define the two-component spinor

ψσ (x) =
(
ψσ,R(x)
ψσ,L(x)

)
(6.18)

in terms of which the free-fermion Hamiltonian is

H0 =
∑
σ

∫
dp

2π
ψ†
σ (p)σ3 pvFψσ(p) =

∑
σ

∫
dx ψ†

σ (x)σ3ivF ∂xψσ(x) (6.19)

where

σ3 =
(

1 0
0 −1

)
(6.20)
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ε

p

Λ–Λ

D

−D

Figure 6.4 The Dirac dispersion; the slope is the Fermi velocity vF. The momen-
tum cutoff is � and the energy cutoff is D = vF�.

In this form the effective low-energy Hamiltonian reduces to the (massless) Dirac
Hamiltonian in 1D. In Fig. 6.4 we show the dispersion in the spinor notation.

Most of the interaction terms we discussed above can be expressed in terms of
the local densities of right- and left-moving fermions

jR,σ (x) = ψ
†
R,σ (x)ψR,σ (x), jL,σ (x) = ψ

†
L,σ (x)ψL,σ (x) (6.21)

from which we can write the slowly varying part of the charge-density operator
j0(x) (i.e. with Fourier component with wave vectors close to p = 0) and the
charge-current density j1(x) as

j0(x) = jR(x)+ jL(x), j1(x) = jR(x)− jL(x) (6.22)

which is a 2-vector of the form

jμ(x) = ( j0, j1) (6.23)

with μ = 0, 1 (not to be confused with the chemical potential!). Thus, the coupling
to a slowly varying external electromagnetic field Aμ(x) = (A0, A1) is represented
by a term of the form

Hem =
∫

dx

(
−eA0(x) j0(x)+ e

c
A1(x) j1(x)

)
(6.24)

The actual particle-density operator of the microscopic system,

ρ(x) =
∑
σ

ψ†
σ (x)ψσ (x) (6.25)
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can be written in the form (using the decomposition of the Fermi field into right
and left movers)

ρ(x) = ρ0 + j0(x)+
∑
σ

(
e2i pFxψ

†
R,σ (x)ψL,σ (x)+ e−2i pFxψ

†
L,σ (x)ψR,σ (x)

)
+ · · · (6.26)

where ρ0 = Ne/L = 2pF/π is the average total density of electrons (including
spin), and where · · · represents terms that oscillate more rapidly for large pF.

The significance of the oscillatory terms can be seen by adding a coupling to a
periodic potential V (x) (with wave vector 2pF). For simplicity here we consider
only potentials with wave vectors commensurate with the fermion density, Q =
2pF. More general cases can also be considered and lead to interesting physical
effects. We will take the potential to have the simple form

V (x) = V0 cos(2pFx) (6.27)

leading to a new term in the Hamiltonian of the form

Hpot =
∫

dx V (x)ρ(x)

= −e
∫

dp

2π

∫
dq

2π
V (q)ψ†(p + q)ψ(p)

=
∫

dp

2π
(−eV0)

(
ψ

†
R(p)ψL(p)+ ψ

†
L(p)ψR(p)

)
=

∫
dx(−eV0)

(
ψ

†
R(x)ψL(x)+ ψ

†
L(x)ψR(x)

)
(6.28)

In other terms, a periodic potential of wave vector Q = 2pF causes backscatter-
ing: it scatters a right-moving fermion into a left-moving fermion (and vice versa).
Similarly, a periodic potential of wave vector Q � 2pF scatters right movers into
right movers (and left movers into left movers). From now on we will drop the spin
indices, unless we state the contrary.

Thus, in the case of a free fermion coupled to a periodic potential V (x) with
wave vector Q = 2pF, the potential induces backscattering that mixes the two
Fermi points at ±pF. This leads to the existence of an energy gap at the Fermi
energy. In terms of the Dirac Hamiltonian, the periodic potential V (x) leads to the
Hamiltonian

H =
∫

dx ψ†(x)
(

ivFσ3 ∂x + eV0σ1)ψ(x) (6.29)

where

σ1 =
(

0 1
1 0

)
(6.30)

In Eq. (6.29) eV0 = � is the energy gap, and is usually denoted by � = mv2
F.
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In the Dirac theory it is useful to define the matrices α = σ3 (in 1D) and β = σ1,
such that the Dirac Hamiltonian reads

H =
∫

dx ψ†(x)
(
αivF ∂x + β�

)
ψ(x) (6.31)

The single-particle spectrum consists of particles and holes with energy ε(p) =√
v2

F p2 +�2. In the Dirac theory it is customary to define Dirac’s γ -matrices. In
this 1D case there are just two of them, γ0 = β = σ1 and γ1 = βα = iσ2. They
satisfy the algebra

{γ0, γ1} = 0, γ 2
0 = 1, γ 2

1 = −1 (6.32)

If we define ψ̄ = ψ†γ0, the fermion mass term is

ψ
†
RψL + ψ

†
LψR = ψ†γ0ψ = ψ̄ψ (6.33)

6.3 Order parameters of the one-dimensional electron gas

Similarly we can also define the matrix γ 5 = γ0γ1 = σ3, and the bilinear ψ̄γ 5ψ :

ψ̄γ5ψ = ψ
†
RψL − ψ

†
LψR (6.34)

It is straightforward to see that the density ρ(x) can be written as

ρ(x) = ρ0 + j0(x)+ cos(2pFx)ψ̄(x)ψ(x)+ i sin(2pFx)ψ̄(x)γ 5ψ(x) (6.35)

From here we see that if 〈ψ̄(x)ψ(x)〉 �= 0 (or 〈ψ̄(x)γ5ψ(x)〉 �= 0), then the expec-
tation value of the charge density 〈ρ(x)〉 has a modulated component (over
the background ρ0). If this were to occur spontaneously (i.e. in the absence of
an external periodic potential) then the ground state of the system would be a
charge-density wave (CDW). Hence, 〈ψ̄ψ〉 and 〈iψ̄γ 5ψ〉 play the role of the
order parameters of the CDW state. We can also see that the expectation value
of the density will be even (invariant) under inversion, x →−x (i.e. parity), if
〈ψ̄(x)γ 5ψ(x)〉 = 0; conversely, if this expectation value is not zero, the density
will not be even under parity, which amounts to a phase shift.

In the absence of the periodic potential the original system is translationally
invariant. The periodic potential breaks translation invariance. To see how that
works, we define the transformation

ψ(x) → eiθγ 5
ψ(x) =

(
eiθψR(x)

e−iθψL(x)

)
(6.36)

which is known as a chiral transformation. Under this transformation the two-
component vector (

ψ̄ψ

iψ̄γ 5ψ

)
(6.37)
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transforms as a rotation(
ψ̄ψ

iψ̄γ 5ψ

)
→

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

) (
ψ̄ψ

iψ̄γ 5ψ

)
(6.38)

under which the density operator becomes

ρ(x) → ρ0 + j0(x)+ ei2(pFx−θ)ψ†
R(x)ψL(x)+ e−i2(pFx−θ)ψ†

L(x)ψR(x)

= ρ

(
x − θ

pF

)
(6.39)

Therefore, a chiral transformation by an angle θ is equivalent to a translation of the
charge density by a distance d = θ/pF. Notice that transformations by θ = nπ
have no physical effect since they amount to translations by a distance nπ/pF =
2nπ/Q = n�, i.e. an integer number of periods � = 2π/Q of the CDW. Thus only
chiral transformations modulo π are observable.

In a similar fashion we can define an operator corresponding to a spin-density
wave (SDW). Indeed, the local magnetization (or spin-polarization) density is

ma(x) = ψ†
σ (x)τ

a
σ,σ ′ψσ ′(x) (6.40)

(where τ a are the three Pauli matrices, acting only on the spin indices σ and σ ′),
which can be expressed as

ma(x) = j a
0 (x)+ e2i pFxψ

†
R,σ (x)τ

a
σ,σ ′ψL,σ ′(x)+ h.c. (6.41)

where j a
0 (x) is the slowly varying spin density

j a
0 (x) = ψ

†
R,σ (x)τ

a
σ,σ ′ψR,σ ′(x)+ ψ

†
L,σ (x)τ

a
σ,σ ′ψL,σ ′(x) (6.42)

and, similarly, the spin current is

j a
1 (x) = ψ

†
R,σ (x)τ

a
σ,σ ′ψR,σ ′(x)− ψ

†
L,σ (x)τ

a
σ,σ ′ψL,σ ′(x) (6.43)

The SDW order parameters are

N a(x) = ψ̄s,σ (x)τ
a
σ,σ ′ψs,σ ′(x), N a

c (x) = iψ̄s,σ (x)τ
a
σ,σ ′γ 5

s,s′ψs′,σ ′(x) (6.44)

(where s, s ′ = R,L) and describe modulations of the local spin polarization with
wave vector Q = 2pF.

Finally let us discuss pairing operators, which are associated with supercon-
ductivity. Here we will be interested in pairing operators associated with uniform
ground states (although modulated states are also possible). Pairing operators that
create a pair of quasiparticles with total momentum (close to) zero have the form

OSP(x) = 〈ψ†
R,σ (x)ψ

†
L,−σ (x)〉, OTP(x) = 〈ψ†

R,σ (x)ψ
†
L,σ (x)〉 (6.45)
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where OSP(x) corresponds to (spin) single pairing, and OTP(x) to (spin) triplet
pairing. Differently from all the operators we discussed so far, the pairing operators
do not conserve particle number.

We will see below that all of these order parameters break some (generally con-
tinuous) symmetry of the system: translation invariance for the CDW, spin rotations
and translation invariance for the SDW, and (global) gauge invariance (associated
with particle-number conservation) for the superconducting case. There is a the-
orem, known as the Mermin–Wagner theorem, that states that in a 1D quantum
system continuous symmetries cannot be spontaneously broken. More precisely,
this theorem states that correlation functions of order parameters that transform
under a continuous global symmetry cannot decay more slowly than as a power-
law function of distance (or time). We will now see that in the case of the Luttinger
model the behavior is exactly a power law. We will interpret this as saying that
the system is at a (quantum) critical point. (In high-energy physics this theorem is
often attributed to S. Coleman.)

6.4 The Luttinger model: bosonization

We will now consider the Luttinger (Tomonaga) model (also known as the massless
Thirring model in high-energy physics). We will consider first the case of spinless
fermions. The Hamiltonian density H of the Luttinger model is

H = ψ†(x)
(
αivF ∂x +β�

)
ψ(x)+2g2ρR(x)ρL(x)+g4

(
ρR(x)

2+ρL(x)
2
)

(6.46)

where ρR(x)≡ψ
†
R(x)ψR(x) and ρL(x)≡ψ

†
L(x)ψL(x) denote the densities of right

and left movers, respectively. Here g2 = Ṽ (0)− Ṽ (2pF) and g4 = Ṽ (0)/2, where
Ṽ (q) is the Fourier transform of the interaction potential. Hence, g2 measures the
strength of the backscattering interactions and g4 that of the forward-scattering
interactions. For a model of spinless fermions on a lattice near half-filling with
nearest-neighbor interactions with coupling constant V , the coupling constants
become g2 = 2V and g4 = V .

Notice that the Hamiltonian of the Luttinger model has the same form as that
in the Landau theory of the Fermi liquid in which the quasiparticles have only
forward-scattering interactions, here represented by g4. Here we have also included
backscattering processes labeled by g2, with a wave vector 2pF (i.e. across the
“Fermi surface”). Owing to the kinematical restrictions of a curved Fermi surface,
in the Landau theory backscattering processes have negligible effects. We will see
that in 1D (where there is no curvature) they play a key role.

Precisely at half-filling, in addition to the backscattering and forward-scattering
interactions (Figs. 3.1(a) and (b)), an Umklapp interaction must also be considered:
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this is a scattering process in which momentum conservation is conserved up to a
reciprocal-lattice vector G = 2π (Fig. 3.1(c)). An Umklapp process has the form

HUmklapp = gu lim
y→x

(
ψ

†
R(x)ψ

†
R(y)ψL(x)ψL(y)+ R ↔ L

)
(6.47)

where gu = Ṽ (4pF � 2π). This coupling cannot be expressed in terms of den-
sities of right and left movers. Since the Hamiltonian of the Luttinger model is
written in terms of ρR(x) and ρL(x), it is invariant under a continuous chiral
transformation, i.e. it is invariant under an arbitrary continuous translation. An
Umklapp term reduces this continuous symmetry to the (discrete) symmetry of
lattice displacements.

We will now see that the Luttinger model can be solved exactly by abelian
bosonization (see Section 5.6). We will now use the identities we derived in
Chapter 5 to find the bosonized form of the Hamiltonian of the Luttinger model
and of the observables. As we saw, the free-fermion system maps onto the free-
boson system (with the same velocity vF). Hence the free-fermion Hamiltonian
density (the Dirac Hamiltonian density) becomes

H0 = vF

2

(
�2 + (∂xφ)

2
)

(6.48)

which, in terms of the field φ and the dual ϑ , has the symmetric (self-dual) form

H0 = vF

2

(
(∂xϑ)

2 + (∂xφ)
2
)

(6.49)

where ϑ is the dual field defined in Eqs. (5.278), (5.279), and (5.281). The right-
and left-moving (fermion) densities ρR and ρL map onto

ρR = 1

2
√
π

(
∂xφ −�

)
≡ 1

2
√
π
∂x(φ − ϑ) (6.50)

ρL = 1

2
√
π

(
∂xφ +�

)
≡ 1

2
√
π
∂x(φ + ϑ) (6.51)

In terms of the right- and left-moving densities the Hamiltonian takes the Sugawara
form

H = (πvF + g4)
(
ρ2

R + ρ2
L

) + 2g2ρRρL (6.52)

Hence, the forward-scattering term of the Luttinger Hamiltonian becomes

g4

(
ρ2

R + ρ2
L

)
→ g4

2π

(
�2 + (∂xφ)

2
)

(6.53)

Similarly, the backscattering term becomes

2g2ρRρL → g2

2π

(
(∂xφ)

2 −�2
)

(6.54)
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Thus, we see that the Hamiltonian of the Luttinger model can be represented by an
effective bosonized theory, which includes the total effects of forward-scattering
and backscattering interactions, and which has the (seemingly) free-bosonic
Hamiltonian of the form

H ≡ v

2

(
1

K
�2 + K (∂xφ)

2

)
(6.55)

with an effective velocity v and stiffness K (also known as the Luttinger parameter)
given by

v =
√(

vF + g4

π

)2

−
(

g2

π

)2

(6.56)

K =
√
vF + g4/π + g2/π

vF + g4/π − g2/π
(6.57)

In terms of the field φ and its dual field ϑ the bosonized Luttinger Hamiltonian has
the symmetric form

H = v

2

(
1

K
(∂xϑ)

2 + K (∂xφ)
2

)
(6.58)

which is manifestly invariant (self-dual) under the duality transformation

φ ↔ ϑ, K ↔ 1

K
(6.59)

In string theory this transformation is known as T-duality and the Luttinger
parameter is known as the compactification radius (see e.g. Polchinski (1998) and
Di Francesco et al. (1997)).

Thus, we see that the Luttinger model, which describes the density fluctuations
of a 1D interacting fermion system, is effectively equivalent to a free Bose field
with (in addition to the renormalized stiffness K ) an effective speed v for the
propagation of the bosons (the density fluctuations). We see immediately several
effects.

1. The only effect of the forward-scattering interactions, parametrized by the
coupling g4, is to renormalize the velocity.

2. The backscattering interactions, with coupling g2, renormalize the velocity and
the stiffness. Furthermore, for repulsive interactions g2 > 0, the stiffness is
renormalized upwards, K > 1, whereas for attractive interactions, g2 < 0, it is
renormalized downwards. We will see that these effects are very important.

3. The bosonized form of the Luttinger model has the obvious invariance under
φ → φ + θ , where θ is arbitrary. This is the bosonized version of the contin-
uous chiral symmetry of the Luttinger model or, equivalently, the invariance of
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the original fermionic system under a rigid displacement of the density profile.
Owing to this invariance the system has long-lived long-wavelength density
(particle–hole) fluctuations that propagate with speed v. In other words, the
system has long-lived (undamped) sound modes (i.e. phonons) much as a 1D
quantum elastic solid would.

4. We saw that in higher dimensions there are similar collective modes, zero sound,
which eventually become (Landau) damped. In 1D for a system with a strictly
linearized dispersion these modes are never damped.

5. This feature of the Luttinger model is, naturally, spoiled by microscopic effects
we have ignored, such as band curvature that can be shown to contribute
non-quadratic terms to the bosonized Hamiltonian of the form (∂xφ)

3 and
similar. These non-linear terms have two main effects: (a) they break the inher-
ent particle–hole symmetry of the Luttinger model, and (b) they cause the
boson (the sound modes) to interact with each other and decay, which leads
to damping.

At half-filling (obviously on a lattice) we have to consider also the Umklapp term,
which becomes

Hu ∼ gu cos(4
√
πφ) (6.60)

This term formally breaks the continuous U(1) chiral symmetry φ → φ + θ to a
discrete symmetry subgroup φ → φ+n

√
π/4, where n ∈ Z. We will see that when

the effects of this operator are important (“relevant”) there is a density modulation
(a CDW) which is commensurate with the underlying lattice and there is a gap in
the fermionic spectrum. In its absence, the fermions remain gapless and the CDW
correlations are incommensurate.

The local electron density in bosonized form becomes

ρ(x) = ρ0 + 1√
π
∂xφ + 1

2πa

{
ei2(pFx−θ)ei

√
4πφ(x) + e−i2(pFx−θ)e−i

√
4πφ(x)

}
(6.61)

and the total charge of the system is

Q = −e
∫

dx j0(x) = − e√
π

∫
dx ∂xφ(x) = − e√

π
�φ (6.62)

where �φ = φ(+∞) − φ(−∞). Hence, in the charge-neutral sector the system
must obey periodic boundary conditions, �φ = 0. Conversely, boundary condi-
tions involving the winding of the boson by �φ = N

√
π , where N ∈ Z, amount

to the sector with charge Q = −Ne.
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We now summarize our main operator identifications:

j0 → 1√
π
∂xφ, j1 → − 1√

π
∂xϑ (6.63)

ψR → 1√
2πa

ei2
√
πφR, ψL → 1√

2πa
e−i2

√
πφL (6.64)

ψ̄ψ → 1

πa
cos(2

√
πφ), iψ̄γ 5ψ → 1

πa
sin(2

√
πφ) (6.65)

ψ
†
Rψ

†
L → 1

πa
ei2

√
πϑ ψ

†
Rψ

†
LψRψL → 1

πa
ei4

√
πφ (6.66)

6.5 Spin and the Luttinger model

We will now consider the case of the Luttinger model for spin-1/2 fermions, and
use the same bosonization approach as before. In this context it is known as abelian
bosonization since the SU(2) symmetry of spin is not treated in full. A more correct
(and more sophisticated) approach that involves non-abelian bosonization (Witten,
1984) will be discussed in Section 7.10.

The Hamiltonian density for the Luttinger model for spin-1/2 fermions with
both chiralities, denoted below by s = +1 (for R) and s = −1 (for L), is

H = −ivF

∑
σ=↑,↓

∑
s=±1

sψ†
s,σ ∂xψs,σ

+ g4

∑
σ,s

ψ†
s,σψ

†
s,−σψs,−σψs,σ

+ g2

∑
σ,σ ′

ψ
†
1,σψ

†
−1,σ ′ψ−1,σ ′ψ1,σ

+ g1,‖
∑
σ

ψ
†
1,σψ

†
−1,σψ1,σψ−1,σ

+ g1,⊥
∑
σ

ψ
†
1,σψ

†
−1,−σψ1,−σψ−1,σ (6.67)

Here g4 represents forward-scattering processes of fermions of the same branch
(and opposite spin), g2 forward-scattering processes on opposite branches, g1,‖
backscattering processes without spin flip, and g1,⊥ scattering processes on oppo-
site branches with spin flip. There is also a possible Umklapp scattering term whose
form is

Hu = g3ei(4pF−G)xψ
†
−1,↑ψ

†
−1,↓ψ1,↓ψ1,↑ + h.c. (6.68)

where G is a reciprocal-lattice vector. As before, we will ignore Umklapp pro-
cesses unless we are at half-filling. For the special case of the 1D Hubbard model,
Eq. (6.5), the relations between the coupling constants of the spin-1/2 Luttinger
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model and the (Hubbard) coupling constant U are g2 = g4 = g1,⊥ = g1,‖ = U ,
and g3 = U (if the Umklapp process is allowed).

For the system to be manifestly invariant under SU(2) spin rotations (as the
Hubbard model is) it must be possible to rewrite the Hamiltonian in an explic-
itly SU(2)-invariant form. To see that this is true we introduce the right- and
left-moving SU(2) (chiral) spin currents J a

R(x) and J a
L (x) (a = 1, 2, 3)

J a
R(x) =

1

2
ψ

†
R,σ (x)τ

a
σ,σ ′ψR,σ ′(x), J a

L (x) =
1

2
ψ

†
L,σ (x)τ

a
σ,σ ′ψL,σ ′(x) (6.69)

where the τ a (again with a = 1, 2, 3) are the three Pauli matrices and the factor of
1
2 is included in order to use the standard normalization of the SU(2) generators.
The right- and left-moving U(1) (chiral) charge currents JR(x) and JL(x) are given
by

JR(x) = ψ
†
R,σ (x)ψR,σ (x), JL(x) = ψ

†
L,σ (x)ψL,σ (x) (6.70)

In Chapter 5 we derived the algebra of the chiral currents for the U(1) case, the
chiral U(1) Kac–Moody algebra of Eqs. (5.245) and (5.246). In the SU(2)× U(1)
(i.e. U(2)) case we are interested in here we find, instead, that the two chiral SU(2)
and U(1) currents obey the Kac–Moody algebras (Witten, 1984)[

J a
R(x), J b

R(y)
] = iεabc J c

R(x)δ(x − y)+ i
k

4π
δabδ′(x − y)[

J a
L (x), J b

L (y)
] = iεabc J c

L(x)δ(x − y)− i
k

4π
δabδ′(x − y)

(6.71)

and [
JR(x), JR(y)

] = i

π
δ′(x − y)[

JL(x), JL(y)
] = − i

π
δ′(x − y)

(6.72)

where, once again, the primes in Eqs. (6.71) and (6.72) denote derivatives of
the delta functions. The integer k (which in this case is k = 1) is called the level
of the SU(2)k Kac–Moody algebra. The current algebras defined by Eqs. (6.71)
are the basis of non-abelian bosonization (Witten, 1984), which we will discuss in
Section 7.10. Please note that there is a factor of 2 difference between Eqs. (6.72)
and Eqs. (5.245) and (5.246) due to the fact that, for SU(2)×U(1), the U(1) chiral
anomaly (the Schwinger term) is doubled.

The Hamiltonian of Eq. (6.67) is SU(2)-invariant if the couplings satisfy g1,‖ =
g1,⊥ ≡ g1. Indeed, if this condition holds it is possible to rewrite the effective
Hamiltonian of Eq. (6.67) (i.e. the effective Hamiltonian without Umklapp terms)
in the more compact and SU(2)× U(1)-invariant form
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H = π

2
vF

(
JR(x)JR(x)+ JL(x)JL(x)

)
+ 2π

3
vF

( �JR(x) · �JR(x)+ �JL(x) · �JL(x)
)

+ g4

4

(
JR(x)JR(x)+ JL(x)JL(x)

)
− g4

( �JR(x) · �JR(x)+ �JL(x) · �JL(x)
)

+ 1

2
(2g2 − g1)JR(x)JL(x)

− 2g1 �JR(x) · �JL(x) (6.73)

where we expressed the (free) kinetic-energy term as a quadratic form in the cur-
rents (Dashen and Frishman, 1975; Affleck, 1986a). This is the Sugawara form of
the Hamiltonian.

It is useful to write this effective-field theory also in the form of a Lagrangian
(density) for the two Dirac spinor fields, ψR,σ and ψL,σ (with σ = ↑,↓). Ignoring
the forward-scattering terms (with coupling constant g4), the effective
Lagrangian L is

L = ψ̄ iγ μ ∂μψ − 1

8
(2g2 − g1)

(
ψ̄γ μψ

)2 + g1

8

(
ψ̄γμ�σψ

)2
(6.74)

where we have dropped the spin indices for clarity. Forward-scattering terms
amount to finite renormalizations of the velocity of the collective modes of the
charge and spin sectors. Since spin and charge degrees of freedom are effectively
split this amounts to a separate rescaling of the dependence on the time (or space)
coordinates of these degrees of freedom.

The Lagrangian of Eq. (6.74) is known as the SU(2) × U(1) Thirring model.
Using the (Fierz) identity(

ψ̄γ μ�σψ)2 + (
ψ̄γμψ

)2 = −2
[(
ψ̄ψ

)2 − (
ψ̄γ5ψ

)2
]

(6.75)

the effective Lagrangian of Eq. (6.74) can be written in the equivalent form (again
we are dropping the spin indices)

L = ψ̄ iγ μ ∂μψ − g2

4

(
ψ̄γ μψ

)2 + g1

4

[(
ψ̄ψ

)2 − (
ψ̄γ5ψ

)2
]

(6.76)

which is known as the chiral Gross–Neveu model.
The effective Lagrangians of Eq. (6.74) and Eq. (6.76) are invariant under the

continuous chiral transformation ψ → exp(iθγ5)ψ , which, as we saw earlier in
this chapter, amounts to a rigid translation in space of the electronic charge den-
sity ρ(x) by an amount proportional to the chiral angle θ . As we saw, away from
half-filling, this is a symmetry of the Luttinger liquid. At half-filling this global
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continuous chiral symmetry is broken down to a discrete symmetry subgroup by
the Umklapp term in the Hamiltonian, which, in this notation, has the manifestly
SU(2)× U(1)-invariant form

LUmklapp ∼ εαβψ
†
L,αψ

†
L,βεγ δψR,γ ψR,δ + h.c. (6.77)

This interaction term represents a process in which a spin-singlet pair of right
movers is destroyed and a spin-singlet pair of left movers is created (and vice
versa).

6.5.1 Abelian bosonization of the Luttinger liquid

We are now ready to proceed with the (abelian) bosonization of the spin-1/2 Lut-
tinger model. Once again we begin with the free fermion. We then introduce two
Bose fields, φ↑ and φ↓, and their respective canonical momenta, �↑ and �↓. The
corresponding free-boson Hamiltonian is

H0 = vF

2

∑
σ

(
�2

σ + (∂xφσ )
2
)

(6.78)

We now define the charge and spin Bose fields φc and φs,

φc = 1√
2

(
φ↑ + φ↓

)
(6.79)

φs = 1√
2

(
φ↑ − φ↓

)
(6.80)

in terms of which H0 becomes a sum over the charge and spin sectors

H0 = vF

2

(
�2

c + (∂xφc)
2
)
+ vF

2

(
�2

s + (∂xφs)
2
)

(6.81)

where �c and �s are the momenta canonically conjugate to φc and φs. By analogy
with the spinless case we now define for the charge and spin fields φc and φs their
respective dual fields vc and vs (cf. Eq. (5.278) and Eq. (5.279)).

We now see that the interactions will lead to a finite renormalization of these
parameters, leading to the introduction of a charge and a spin velocity, vc and vs,
and of the charge and spin Luttinger parameters Kc and Ks.

The charge and spin densities and currents are

j c
0 = j↑0 + j↓0 = 1√

π
∂x(φ↑ + φ↓) =

√
2

π
∂xφc (6.82)

j s
0 = 1

2

(
j↑0 − j↓0

)
= 1√

π
∂x(φ↑ − φ↓) =

√
2

π
∂xφs (6.83)

Using the bosonization identities, we can write the Luttinger Hamiltonian in the
form
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H = vc

2

(
1

Kc
�2

c + Kc(∂xφc)
2

)
+ vs

2

(
1

Ks
�2

s + Ks(∂xφs)
2

)
+ Vc cos(2

√
2πφc)+ Vs cos(2

√
2πφs) (6.84)

where vc and vs are the charge and spin velocities,

vc =
√(

vF + g4

2π

)2

−
(

g1,‖
2π

− g2

π

)2

vs =
√(

vF − g4

2π

)2

−
(

g1,‖
2π

)2
(6.85)

Kc and Ks are the charge and spin Luttinger parameters,

Kc =
√

2πvF + g4 + 2g2 − g1,‖
2πvF + g4 − 2g2 + g1,‖

, Ks =
√

2πvF − g4 − g1,‖
2πvF − g4 + g1,‖

(6.86)

The couplings Vc and Vs, due to Umklapp and backscattering with spin flip,
respectively, are given by

Vc = g3

2(πa)2
, Vs = g1,⊥

2(πa)2
(6.87)

In what follows we will neglect Umklapp processes and hence set Vc = 0. In the
absence of backscattering, g1,‖ = g1,⊥ = 0 (and hence Vs = 0); this model is known
as the Tomonaga–Luttinger model. Notice that in this case Ks = 1 automatically.
This is a consequence of the SU(2) symmetry of spin.

1. We now see that this model describes a system with charge and spin bosons, the
charge and spin collective modes of the fermionic system. In general the charge
and spin velocities are different.

2. There is no mixing between charge and spin bosons: spin–charge separation.
3. We also see that for repulsive interactions the charge mode propagates faster

than the spin mode, vc >vs.
4. In the same regime, Kc > 1 while Ks < 1. This will have important conse-

quences.
5. The fermion operators, with chirality η = ± (for right and left) and spin σ can

now be expressed in terms of the right- and left-moving charge and spin Bose
fields φη,σ (by using Eq. (5.282)) as

ψη,σ = 1√
2πa

Fη,σ e−iη
√

2π(φη,c+σφη,s) (6.88)

where Fη,σ are Klein factors that ensure that fermions with different labels anti-
commute with each other,

{Fη,σ , Fη′σ ′ } = δη,η′δσ,σ ′ (6.89)

and a is a short-distance cutoff.
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We can now express all the operators in which we are interested in terms of
charge and spin bosons. In the following subsections we will use these expressions
to compute their correlation functions and several observables of physical interest.

1. SU(2) spin currents. The SU(2) chiral currents are given by

J 3
R = 1√

2π
∂xφR,s, J±

R = 1

2πa
e∓i2

√
2πφR,s (6.90)

J 3
L = 1√

2π
∂xφL,s, J±

L = 1

2πa
e±i2

√
2πφL,s (6.91)

It is straightforward to check that at the free-fermion point all these operators
have dimension 1 (as they should), are conserved, and obey the SU(2)1 Kac–
Moody algebra.

2. Charge-density wave. The CDW order parameter has the bosonized expression

OCDW = e−i2pFx
∑
σ

ψ
†
1,σ (x)ψ−1,σ → 1

πa
e−i2pFx cos

(√
2πφs

)
e−i

√
2πφc(x)

(6.92)

3. Spin-density wave. The bosonized forms of the three components of the SDW
order parameter are

O(3)
SDW = e−i2pFx

∑
σ,σ ′

ψ
†
1,σ (x)τ

3
σ,σ ′ψ−1,σ ′

→ − 1

πa
e−i2pFx 2i sin

(√
2πφs

)
e−i

√
2πφc(x) (6.93)

O(±)
SDW = e−i2pFx

∑
σ,σ ′

ψ
†
1,σ (x)τ

±
σ,σ ′ψ−1,σ ′

→ 1

πa
e−i2pFx e−i

√
2πφce±i

√
2πϑs(x) (6.94)

4. Singlet superconductivity. The singlet superconducting order parameter, i.e. the
singlet Cooper-pair amplitude, has the bosonized expression

OSS = ψ
†
R,↑ψ

†
L,↓ → ei

√
2πϑce−i

√
2πφs (6.95)

5. Triplet superconductivity. The triplet Cooper-pair operator is

O(1)
TS = ψ

†
R,↑ψ

†
L,↑ → ei

√
2πϑcei

√
2πϑs (6.96)

O(−1)
TS = ψ

†
R,↓ψ

†
L,↓ → ei

√
2πϑce−i

√
2πϑs (6.97)

6.6 Scaling and renormalization in the Luttinger model

We will now discuss the scaling behavior of the Luttinger model. We saw before
that it generally exhibits the phenomenon of spin–charge separation which, at the
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level of the effective low-energy Hamiltonian density H, means that it is a sum of
two decoupled terms

H = Hc +Hs (6.98)

where both the charge sector and the spin sector are represented at low energies by
sine–Gordon Hamiltonians. Indeed, the bosonized form of the Hamiltonian density
for the charge sector Hc is

Hc = vc

2

[
1

Ks
� 2

c + Ks(∂xφc)
2

]
+ Vc cos

(
2
√

2πφc

)
(6.99)

As we saw above, the last term is present only at half-filling, and is due to an
Umklapp process. In its presence the system develops a (Mott) charge gap and it is
an insulator.

The bosonized form of the sine–Gordon Hamiltonian density for the spin sector
Hs is

Hs = vs

2

(
1

Ks
� 2

s + Ks(∂rφs)
2

)
+ Vs cos(2

√
2πφs) (6.100)

In contrast to the cosine operator of the charge sector, the last term of the
Hamiltonian density of the spin sector Hs is always present since it represents
backscattering processes with spin flip.

Thus, we can use the analysis of the sine–Gordon model to derive scaling laws
for the Luttinger model. In the preceding sections we discussed the behavior of
several correlation functions and susceptibilities of interest in the absence of the
sine–Gordon operators. Following the same analysis as in Chapter 4, we begin by
computing the scaling dimensions of the cosine operators both in the charge sector
and in the spin sector.

6.6.1 The charge sector

The scaling dimension of the cosine operator (charge Umklapp processes) is

�c(2
√

2π) = (2
√

2π)2

4πKc
= 2

Kc
(6.101)

Since it is an Umklapp scattering process it is present only at half-filling. Away
from half-filling this process has zero amplitude. For free fermions the charge
Luttinger parameter is Kc = 1, the scaling dimension is �c = 2, and Umklapp pro-
cesses are marginal. For a Luttinger model with repulsive interactions, the charge
Luttinger parameter obeys Kc > 1, the scaling dimension is �c = 2/Kc < 2, and
Umklapp processes are relevant. This is the case of the 1D Hubbard model at half-
filling. Our analysis of the scaling behavior of sine–Gordon theory in Chapter 4 in
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terms of the Kosterlitz RG flow tells us that in this case the charge sector flows to
strong coupling where the charge boson φc is pinned and hence acquires an expec-
tation value. The charge fluctuations become massive and there is an energy gap in
the charge spectrum. This is a Mott insulating state. Conversely, for a system with
attractive interactions, the charge Luttinger parameter now has Kc < 1, the scaling
dimension is �c > 2, and Umklapp processes are not allowed by symmetry, and
the charge sector remains gapless.

6.6.2 The spin sector

In the spin sector we have to look at the relevance or irrelevance of the cosine
operator of the bosonized theory representing backscattering processes with spin
flip. The scaling dimension is

�s(2
√

2π) = 2

Ks
(6.102)

Once again, for free fermions the spin Luttinger parameter is Ks = 1, the scaling
dimension is �s = 2, and the operator is marginal. In the case of an inter-
acting theory, i.e. in the Luttinger model, for repulsive interactions the spin
Luttinger parameter satisfies Ks < 1, which implies that the scaling dimension is
�s = 2/Ks > 2 and, thus, these processes are irrelevant. Thus, for repulsive inter-
actions we expect the spin sector to remain gapless, and hence critical. With some
caveats (which we address below), this is what happens in the case of the 1D
Hubbard model in the repulsive regime. Conversely, for attractive interactions the
spin Luttinger parameter now obeys Ks > 1, the scaling dimension is �s < 2, and
backscattering processes with spin flip are relevant. In this regime the spin boson φs

becomes pinned and its fluctuations are massive. Hence, for attractive interactions
we generally expect that the spin sector becomes gapped.

6.6.3 Scaling analysis of the one-dimensional Hubbard model

In the case of the 1D Hubbard model all the Luttinger couplings are equal. As
we saw above, this condition in part is a consequence of the spin SU(2) symme-
try. However, this symmetry alone does not require that the other couplings be
equal. An examination of the charge and spin Luttinger velocities and parame-
ters, Eq. (6.85) and Eq. (6.86), reveals that the Hubbard model has an additional
symmetry:

Kc =
√

1 + U

πvF
, Ks =

√
1 − U

πvF
(6.103)

vc =
√(

vF + U

2π

)2

−
(

U

2π

)2

, vs =
√(

vF − U

2π

)2

−
(

U

2π

)2

(6.104)
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gc = U

2π2vc
, gs = U

2π2vs
(6.105)

where we introduced the dimensionless (sine–Gordon) couplings gc and gs. There
is a clear symmetry U ↔ −U , which amounts to exchanging the spin and charge
sectors.

However, since the spin sector has an SU(2) symmetry (and its associated
SU(2)1 Kac–Moody current algebra) we guess that there must be a “hidden”
SU(2) symmetry (and a current algebra) in the charge sector as well. Indeed, let us
decompose the charged (Dirac) Fermi fields ψη,σ (x) into their (real and imaginary)
Majorana fermion components,

ψη,σ = ξ1,η,σ + iξ2,η,σ (6.106)

The Majorana fermions ξi,η,σ (x) satisfy the (Majorana) anticommutation relations

{ξi,η,σ (x), ξi ′,η′,σ ′(x ′)} = δi,i ′δ(x − x ′) (6.107)

In terms of these Majorana fermions, the SU(2) × U(1) � U(2) symmetry actu-
ally becomes an SO(4) symmetry. In fact it is easy to construct an additional
set of SU(2) currents in terms of the Majorana fields ξi,η,σ . The three generators
are the chiral charge current ψ†

R,σψR,σ = 2iξ1,η,σ ξ2,η,σ and the chiral pair fields
ψ

†
R,↑ψ

†
R,↓ = −2iξ1,η,↑ξ2,η,↓. They also obey an SU(2)1 Kac–Moody algebra (and

the same applies to their left-moving counterparts).
This SO(4) symmetry is not an accident of the continuum Luttinger model,

since it is also present in the Hubbard model on general lattices. In the case of
the 1D chain, the SO(4) symmetry plays a key role in its exact solution (see Essler
et al. (2005)). In the 1D lattice model, the pairing operator is known as “eta pairing”
and is given by

η†
n =

N∑
n=1

(−1)nc†
n,↑c†

n,↓ (6.108)

which creates a spin-singlet pair on sites with momentum π .
Let us now apply our RG results (derived in Chapter 4) for the case of the 1D

Hubbard model (Fig. 6.5). Insofar as the charge sector is concerned there are two
cases: at half-filling (for which the Umklapp operator is present and we expect a
Mott (charge) gap) and away from half-filling (for which there is no Umklapp term
and there is no charge gap). In the latter case the charge sector remains strictly
marginal. However, even in this case, the spin sector still flows because there is
always a potentially (marginally) relevant cosine operator.

We consider first the half-filled case. Since the Kosterlitz RG is perturbative, we
will need to know only these relations in the weak-coupling regime of small gs (or,
which amounts to the same thing, small Hubbard U ). Clearly the SG couplings,



168 The Luttinger liquid

gc

xc

attractive repulsive
(a) Charge sector

gs

xs

attractiverepulsive
(b) Spin sector

Figure 6.5 Schematic RG flows for the (a) charge and (b) spin sectors of the
1D Hubbard model at half-filling. Here gc and gs are the effective sine–Gordon
coupling constants in the charge and spin sectors, xc = 2 − 2/Kc, and xs =
2 − 2/Ks. Attractive means U < 0 and repulsive U > 0. Away from half-filling,
the charge sector remains marginal and does not flow, and the spin sector has the
same flow as in (b).

gc (which is non-vanishing at half-filling) and gs (which is always non-zero), and
the stiffnesses, Kc and Ks, are related to each other. These relations set the allowed
initial values of the RG flow and only those points in the (xc, gc) and (xs, gs) planes
to which the RG flow has access are physically relevant (here we set xc = 2−2/Kc

and xs = 2 − 2/Ks, respectively). For small gc and gs the Luttinger parameters
become Kc = 1+ πgc + O(g2

c ), Ks = 1− πgs + O(g2
s ), xc = 2πgc + O(g2

c ), and
xs = −2πgs + O(g2

s ). Thus, we find that the initial values of the RG flows must
be such that x = ±2πg (see Eq. (4.88) and Figs. 4.3 and 6.5), which are just the
asymptotes of the Kosterlitz RG flows.

Thus, as expected, the charge and spin flows are not identical but are symmetric.
For repulsive interactions, U > 0, the charge flow is on the unstable trajectory
on one of the asymptotes, and the spin RG flow is on the stable trajectory, on the
opposite asymptote. For attractive interactions, U < 0, the two sectors switch roles.
It is straightforward to see that along the asymptotes the RG flows are given by the
beta functions

a
dgc

da
= 2πg2

c , a
dgs

da
= −2πg2

s (6.109)

Thus, for U > 0, the RG flow of the charge sector is marginally relevant while
the RG flow spin sector is marginally irrelevant, and conversely for U < 0. In the
next chapter we will examine the predictions of asymptotically free beta functions,
Eqs. (6.109), and find that in the marginally relevant case there is a gap in the
spectrum scaling as

M = constant × exp

(
− 1

2πg

)
(6.110)
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In the opposite case, for a marginally irrelevant operator, the system flows to g → 0
but very slowly, with logarithmic corrections to scaling. Thus, for a half-filled
repulsive Hubbard model, the charge sector is gapped while the spin sector is
gapless, and conversely for attractive interactions.

On the other hand, away from half-filling there is no Umklapp operator and
the charge sector remains gapless and marginal, and there is no Mott gap. The
spin sector is also gapless for repulsive interactions. In this regime the system is a
Luttinger liquid. In contrast, for attractive interactions there is a spin gap while the
charge sector is gapless. This regime is known as the Luther–Emery liquid.

We close this section by discussing briefly the consequences of breaking the
accidental symmetry of the Hubbard model explicitly. We noticed earlier that the
hidden SU(2) symmetry of the charge sector of the Hubbard model is a conse-
quence of the special form of the interaction. Indeed, the addition of a simple
interaction V between nearest-neighboring charge densities (i.e. a “Coulomb”
interaction) causes this accidental symmetry to become broken explicitly. In this
case only the U(1) charge symmetry remains, in addition to the SU(2) symmetry
of the spin sector. This slightly modified system is known as the extended Hubbard
model. In this case the RG flows of the charge sector become the generic Kosterlitz
flows and no longer lie precisely on the unstable asymptote. However, unless the
coupling g1 becomes large enough, the RG flows of the charge sector still approach
the unstable asymptote, and the charge sector remains gapped. On the other hand, if
the global (but not accidental) SU(2) symmetry of spin were to be explicitly broken
down to a Z2 (easy-axis, Ising symmetry) by a magnetic anisotropy of the material
the RG flows of the spin sector would no longer be on the stable asymptote and
would, in fact, converge to the stable asymptote, leading to a system with a finite
spin gap. Conversely, for an easy-plane (XY ) symmetry, the RG flows in the spin
sector converge on the line of fixed points and there is no spin gap.

6.7 Correlation functions of the Luttinger model

We will now compute the correlation functions of the Luttinger model. We will
first consider the spinless case.

6.7.1 The spinless case

The bosonized Luttinger Hamiltonian density for spinless fermions is

H = (πvF + g4)
(
ρ2

L + ρ2
R

) + 2g2ρRρL (6.111)

We will diagonalize this Hamiltonian by means of a Bogoliubov transformation
(which is canonical):

ρR = cosh λ ρ̃R + sinh λ ρ̃L (6.112)
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ρL = sinh λ ρ̃R + cosh λ ρ̃L (6.113)

where

ρ̃R = 1√
π
∂x φ̃R, ρ̃L = 1√

π
∂x φ̃L (6.114)

With the choice

tanh(2λ) = − g2

πvF + g4
(6.115)

the Hamiltonian becomes

H = πv
(
ρ̃2

R + ρ̃2
L

) = v

2

(
(∂x ϑ̃)

2 + (∂x φ̃)
2
)

(6.116)

where, as before,

πv =
√
(πvF + g4)2 − g2

2 (6.117)

and

cosh λ = K + 1

2
√

K
, sinh λ = K − 1

2
√

K
(6.118)

and

K =
√
πvF + g4 + g2

πvF + g4 − g2
(6.119)

The propagator of the field φ̃ = φ̃R + φ̃L, using a regularization in which it vanishes
as x ′ → x and t ′ → t , is given by〈

T
(
φ̃(x, t)φ̃(x ′, t ′)

)〉
= − 1

4π
ln

(
(x − x ′)2 − v2(t − t ′)2 + a2

0 + iε

a2
0

)
(6.120)

from which we get〈
T

(
φ̃R(x, t)φ̃R(x

′, t ′)
) 〉

= − 1

4π
ln

(
(x − x ′)− v(t − t ′)+ iε

a0

)
〈
T

(
φ̃L(x, t)φ̃L(x

′, t ′)
) 〉

= − 1

4π
ln

(
(x − x ′)+ v(t − t ′)+ iε

a0

) (6.121)

Using these expressions, we get

〈T (φR(x, t)φR(x
′, t ′))〉 = α〈T (φ̃R(x, t)φ̃R(x

′, t ′)〉 + β〈T (φ̃L(x, t)φ̃L(x
′, t ′)〉

〈T (φL(x, t)φL(x
′, t ′))〉 = β〈T (φ̃R(x, t)φ̃R(x

′, t ′)〉 + α〈T (φ̃L(x, t)φ̃L(x
′, t ′)〉
(6.122)

with

α = (K + 1)2

4K
, β = (K − 1)2

4K
(6.123)
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The fermion propagator

The propagator for right-moving fermions is

〈T (ψR(x, t)ψ†
R(x

′, t ′))〉 ∼ 1

2πa0
〈T (ei2

√
πφR(x,t)e−i2

√
πφR(x ′,t ′))〉

= 1

2πa0
e2π〈T(φR(x,t)φR(x ′,t ′))〉

= 1

2πa0

(
a0

(x − x ′)− v(t − t ′)+ iε

)(K+1)2/(4K )

×
(

a0

(x − x ′)+ v(t − t ′)+ iε

)(K−1)2/(4K )

(6.124)

and that for left-moving fermions is

〈T (ψL(x, t)ψ†
L(x

′, t ′))〉 ∼ 1

2πa0
〈T (e−i2

√
πφL(x,t)ei2

√
πφL(x ′,t ′))〉

= 1

2πa0
e4π〈T(φL(x,t)−φL(x ′,t ′))〉

= 1

2πa0

(
a0

(x − x ′)+ v(t − t ′)+ iε

)(K+1)2/(4K )

×
(

a0

(x − x ′)− v(t − t ′)+ iε

)(K−1)2/(4K )

(6.125)

In the free-fermion case, K = 1, for right-moving fermions this propagator just
becomes

〈T (ψR(x, t)ψ†
R(x

′, t ′))〉 = 1

2πa0

a0

(x − x ′)− v(t − t ′)+ iε
(6.126)

(and a similar expression applies for left-moving fermions). We see that while in
the free-fermion case the propagator has a simple pole, and hence a finite fermion
residue Z = 1, as soon as the interactions are turned on the pole disappears and is
replaced by a branch cut.

We also see that the fermion propagators given by Eqs. (6.124) and (6.125) fac-
torize into right- and left-moving contributions. This happens since the interactions
mix the right- and left-moving sectors, which leads to the electron operator acquir-
ing an anomalous dimension. From Eqs. (6.124) and (6.125) we see that the scaling
dimension of both right- and left-moving fermions now is

�fermion = 1

4

(
K + 1

K

)
(6.127)
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and it no longer scales as a free fermion. Notice that these fermion propagators
still describe fermions since they change sign under a permutation (understood as
a rotation by π in complex coordinates), i.e. the “spin” s is

s = (K + 1)2

8K
− (K − 1)2

8K
= 1

2
(6.128)

However, this also has the interpretation that the fermion factorizes (or fractional-
izes) into a right-moving soliton, with scaling dimension �R and “conformal spin”
sR (Di Francesco et al., 1997),

(�R, sR) =
(
(K + 1)2

2K
,
(K + 1)2

2K

)
(6.129)

and a left-moving soliton with scaling dimension and spin

(�L, sL) =
(
(K − 1)2

2K
,
(K − 1)2

2K

)
(6.130)

and vice versa for right-moving fermions. In this regime there are no states in
the spectrum with the quantum numbers of the electron, and instead the spectrum
is described by gapless solitons. Since the quasiparticle residue Z measures the
overlap between an asymptotic state with the quantum numbers of a free electron
and the actual eigenstates of the interacting system, the vanishing of the quasi-
particle residue means that the exact eigenstates are orthogonal to the asymptotic
(“incoming”) electron. This feature has been dubbed (by P. W. Anderson) the
“orthogonality catastrophe.”

Correlators of order parameters

The order parameters also exhibit anomalous dimensions, which can be read
off directly from their correlation functions. The correlator of the CDW order
parameter is found to be

1

(2πa0)2

〈
T

(
ei2

√
πφ(x)e−i2

√
πφ(x)

)〉
∼ 1

(2πa0)2

(
a2

0

(x − x ′)2 − v2(t − t ′)2 + iε

)1/K

(6.131)

Hence the scaling dimension of the CDW order parameter is �CDW = 1/K and
only takes the naive dimension 1 for free fermions (K = 1). The correlator for the
superconducting order parameter is, instead,

1

(2πa0)2

〈
T

(
ei2

√
πϑ(x)e−i2

√
πϑ(x)

)〉
∼ 1

(2πa0)2

(
a2

0

(x − x ′)2 − v2(t − t ′)2 + iε

)K

(6.132)
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Hence, the scaling dimension of the superconducting order parameter is �SC = K .
This order parameter only has its naive scaling dimension, 1, for free fermions.

6.7.2 The spin-1/2 case

The behavior of the correlation functions for the case of spin-1/2 fermions can
be computed similarly. Since the Hamiltonian of the Luttinger model decomposes
into a sum of terms for the charge and spin sectors, respectively, we will find that
the correlation functions factorize into a contribution from the charge sector and a
contribution from the spin sector. We will not examine all possible cases, just the
most interesting ones.

Since H = Hc + Hs, the propagators factorize. In other terms, the system
behaves as if the electrons have fractionalized into two independent excitations: (a)
a spinless holon with charge −e and (b) a spin-1/2 charge-neutral spinon. This fea-
ture is known as spin–charge separation. It is a robust feature of these 1D systems
in the low-energy limit.

We will follow the same approach as in the spinless case, although we will imple-
ment it less explicitly. Here too we define the densities of right- and left-moving
fermions with either spin polarization,

ρR,σ = 1√
π
∂xφR,σ , ρL,σ = 1√

π
∂xφL,σ (6.133)

and write the Luttinger Hamiltonian in terms of these densities. It reduces to

H = Hc +Hs (6.134)

where

Hc = 1

2
(πvF + g4)

(
ρ2

c,R + ρ2
c,L

) + 1

2

(
2g2 − g1,‖

)
ρc,Rρc,L (6.135)

Hs = 1

2
(πvF − g4)

(
ρ2

s,R + ρ2
s,L

) − 1

2
g1,‖ρs,Rρs,L (6.136)

We now perform Bogoliubov transformations (separately) for charge and spin,
whose parameters λc and λs are

tanh(2λc) = −2g2 − g1,‖
πvF + g4

(6.137)

tanh(2λs) = + g1,‖
πvF − g4

(6.138)

The Luttinger parameters Kc and Ks are

Kc = e2λc =
√
πvF − g4 + 2g2 − g1,‖
πvF + g4 − 2g2 + g1,‖

(6.139)
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Ks = e2λs =
√
πvF − g4 − g1,‖
πvF − g4 − g1,‖

(6.140)

and

πvc =
√
(πvF + g4)

2 − (
2g2 − g1,‖

)2
(6.141)

πvs =
√
(πvF − g4)

2 − g2
−1,‖ (6.142)

The transformed densities and bosons are denoted by

ρ̃c,R = 1√
π
∂x φ̃c,R, ρ̃c,L = 1√

π
∂x φ̃c,L (6.143)

ρ̃s,R = 1√
π
∂x φ̃s,R, ρ̃s,L = 1√

π
∂x φ̃s,L (6.144)

The fermion propagator

The operators for right- and left-moving fermions with spin σ now take the form

ψR,σ ∼ 1√
2πa0

ei
√

2πφR,ceiσ
√

2πφR,s (6.145)

ψL,σ ∼ 1√
2πa0

e−i
√

2πφL,ce−iσ
√

2πφL,s (6.146)

After some algebra we find

〈TψR,↑(x, t)ψ†
R,↑(0, 0)〉 = 〈TψR,↓(x, t)ψ†

R,↓(0, 0)〉

= aγc+γs
0

2π

(
a0 + i(vct − x)

)−1/2(
a0 + i(vst − x)

)−1/2

×
(

x2 + (a0 + ivct)
2
)−γc/2

×
(

x2 + (a0 + ivst)
2
)−γs/2

(6.147)

and

〈TψL,↑(x, t)ψ†
L,↑(0, 0)〉 = 〈TψL,↓(x, t)ψ†

L,↓(0, 0)〉

= aγc+γs
0

2π

(
a0 + i(vct + x)

)−1/2(
a0 + i(vst + x)

)−1/2

×
(

x2 + (a0 + ivct)
2
)−γc/2

×
(

x2 + (a0 + ivst)
2
)−γs/2

(6.148)
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where

γc,s = 1

4

(
Kc,s + 1

Kc,s

)
− 1

2
(6.149)

Just as in the spinless case, we see that the electron becomes fractionalized and
acquires an anomalous dimension, which we can read off immediately as

�fermion = 1

8

(
Kc + 1

Kc

)
+ 1

4
(6.150)

where we have set the spin Luttinger parameter Ks = 1 for the SU(2)-invariant
system. We have also neglected the logarithmic correction to scaling arising from
the spin sector as Ks flows to 1.

Correlators of the order parameters

It is now straightforward to find the correlators of the order parameters. The CDW
correlator is

〈TOCDW(x, t)O†
CDW(0, 0)〉

= 1

(πa0)2
〈T cos(

√
2πφs(x, t)) cos(

√
2πφs(0, 0))〉

× 〈T e−i
√

2πφc(x,t)ei
√

2πφc(0,0)〉

= 2

(πa0)2

(
a2

0

x2 − v2
c t2 + a2

0 + iε

)1/(2Kc) (
a2

0

x2 − v2
s t2 + a2

0 + iε

)1/(2Ks)

(6.151)

The scaling dimension of the CDW order parameter is

�CDW = 1

2

(
1

Kc
+ 1

)
(6.152)

where we set Ks = 1 for SU(2)-invariance (and also neglected the logarithmic
correction).

The (transverse) SDW correlator is

〈TO(±)
SDW(x, t)O(±)

SDW

†
(0, 0)〉

= 1

(2πa0)2
〈T e±i

√
2πϑs(x,t)e∓i

√
2πϑs(0,0)〉〈T e−i

√
2πφc(x,t)ei

√
2πφc(0,0)〉

= 1

(2πa0)2

(
a2

0

x2 − v2
c t2 + a2

0 + iε

)1/(2Kc) (
a2

0

x2 − v2
s t2 + a2

0 + iε

)Ks/2

(6.153)
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which, for an SU(2)-invariant system, has the same scaling dimension as the CDW
order parameter, although the logarithmic correction to scaling is different.

The singlet superconductor correlator is

〈TOSS(x, t)O†
SS(0, 0)〉

= 1

(2πa0)2
〈T ei

√
2πϑc(x,t)e−i

√
2πϑc(0,0)〉〈T e−i

√
2πφs(x,t)ei

√
2πφs(0,0)〉

= 2

(πa0)2

(
a2

0

x2 − v2
c t2 + a2

0 + iε

)Kc/2 (
a2

0

x2 − v2
s t2 + a2

0 + iε

)1/(2Ks)

(6.154)

with scaling dimension

�SC = 1

2
(Kc + 1) (6.155)

6.8 Susceptibilities of the Luttinger model

6.8.1 The fermion spectral function

The fermion (electron) spectral function As,σ (p, ω) (where s = R,L and
σ = ↑,↓) is defined by

As,σ (p, ω) ≡ − 1

π
Im Gret

s,σ (p, ω)

= 1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dt e−i(px−ωt)

(
G(x, t)+ G(−x,−t)

) (6.156)

where

Gret
s,σ (x, t) = −iθ(t)

〈{
ψs,σ (x, t), ψs,σ (0, 0)

}〉
(6.157)

is the fermion retarded Green function, G(x, t) = GR,↑(x, t) (since the system is
invariant under parity and spin-reversal) is the time-ordered propagator we derived
before, and p is measured from the Fermi point at pF. The detailed form of the
spectral function for the general case is complicated. Explicit expressions are
given in Chapter 19 of the book by Gogolin, Nersesyan, and Tsvelik (Gogolin
et al., 1998), where they use the notation ρs,σ (p, ω) for the spectral function. Here
we will just quote the main results and analyze its consequences.

For a free-fermion system the Luttinger parameters Kc = Ks = 1 and hence
γc = γs = 0. Similarly, the charge and spin velocities are equal in that case,
vc = vs = vF. Hence, in the free-fermion case, we see that the spectral function
As,σ (p, ω) reduces to the sum of two poles (resulting from the poles in the propa-
gator), for right- and left-moving fermions, respectively, each with a quasiparticle
residue Z = 1.
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The situation changes dramatically for the interacting case no matter how weak
the interactions are. For simplicity we will discuss only the case in which the sys-
tem has a full SU(2) spin invariance, in which case Ks = 1 and γs = 0. We see that,
instead of poles, the fermion propagator has branch cuts, whose tips are located at
ω = ±pvc,s (± here stands for right- and left-moving fermions). An analysis of the
integral shows that close to these singularities the spectral function has the behavior

A(p, ω � pvc) ∼ θ(ω − pvc)(ω − pvc)
(γc−1)/2 (6.158)

A(p, ω � −pvc) ∼ θ(−ω − pvc)(−ω − pvc)
γc (6.159)

A(p, ω � pvs) ∼ θ(ω − pvs)(ω − pvs)
γc−1/2 (6.160)

where p is the momentum of the incoming fermion measured from pF. For the
SU(2)-symmetric case, γs = 0 and there is no singularity at ω ∼ −pvs.

Thus, the free-fermion poles are replaced in the interaction system by power-
law singularities. These results show clearly the spin–charge separation: an
injected electron has decomposed into (soliton-like) excitations, namely holons and
spinons, that disperse at characteristic (and different) speeds.

In angle-resolved photoemission spectroscopy (ARPES) high-energy photons
impinge on the surface of a system. If the photons’ energy is high enough (typically
the photons are X-rays from synchrotron radiation of a particle accelerator), there is
a finite amplitude for an electron to be ejected from the system (a photo-electron),
leaving a hole behind. In an ARPES experiment the energy and momentum (includ-
ing the direction) of the photo-electron are measured. It turns out that the intensity
of the emitted photo-electrons is proportional to the spectral function of the hole
left behind at a known momentum and energy. Although it is not technically pos-
sible to do an ARPES experiment in a literally 1D system, it is possible to do
such experiments in quasi-1D systems, namely arrays of weakly coupled 1DEGs.
Experiments of this type have been done in systems of this type, such as the blue
bronzes, although their degree of quasi-one-dimensionality is not strong enough
for one to see the effects we discuss here.

The data from ARPES experiments are usually presented in terms of cuts of
the spectral function: (a) as energy-distribution curves (EDCs), in which case the
spectral function at fixed momentum is plotted as a function of energy; and (b)
as momentum-distribution curves (MDCs), in which case the spectral function at
fixed energy is plotted as a function of momentum (see Figs. 6.6(a)–(d)). Even
if an ARPES experiment could be done in a Luttinger liquid, it is important to
include the effects of thermal fluctuations since all experiments are done at finite
temperature. One important effect is that the singularities of the spectral functions
will be rounded at finite temperature. For example, the singularity of the EDC near
the charge right-moving branch for p = 0 (near pF), which diverges as ω(γc−1)/2
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as ω → 0 at T = 0, saturates at finite temperature T with a maximum ∼T (γc−1)/2

(which will increase as T is lowered). The same holds for the EDC at ω = 0 as a
function of momentum p (at pF), which will saturate at a value ∼(T/vc)

(γc−1)/2. A
more detailed study of the spectral function at finite temperature T (which must be
done numerically) shows that the EDCs are much broader than the MDCs and look
like what is shown in Fig. 6.6. Similar behaviors are seen in ARPES experiments
in high-temperature superconductors.

6.8.2 The tunneling density of states

In a scanning tunneling microscopy (STM) experiment (Fig. 6.7), a (very sharp)
metallic tip (typically made of a simple metal such as gold) is placed near a very
flat (and clean) surface of an electronic system. There a finite voltage difference
V is applied between the tip and the system, and, depending on its sign, electrons
will tunnel from the tip to the system or vice versa. An STM instrument is operated
by scanning the system (i.e. by displacing the tip) while keeping the tip at a fixed

pp − ω(p)
(a)

ωEF
(b)

pp − ω(p)
(c)

ωEF
(d)

Figure 6.6 ARPES spectra: (a) MDC in a Fermi liquid, (b) EDC in a Fermi liquid,
(c) MDC in a Luttinger liquid, and (d) EDC in a Luttinger liquid.
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V

xx = 0

Γ

Figure 6.7 A sketch of an STM setup.

distance from the surface and at a fixed voltage difference. If the tip is sharp enough
the intensity of the measured tunneling current (of electrons), which reflects the
local changes of the electronic structure, can be used to map the local environment
with atomic precision.

We will now see that the local differential conductance measured in STM con-
tains direct information on the local density of states. To see how this works, let
us consider a simple model of the operation of the STM. Let Htip be the Hamil-
tonian which describes the electronic states in the tip. Let us denote by ψtip(t) the
fermionic operator that removes an electron from the tip in some one-particle state
(which we will not need to know) close to the tip Fermi energy.

The tunneling process from the tip to the 1DEG at a point x = 0 is described by
a term in the Hamiltonian of the form

Htunnel = δ(x)�
∑
σ

ψ†
σ (0)ψtip + h.c.

≡ δ(x)�
∑
σ

(
ψ

†
R,σ (0)+ ψ

†
L,σ (0)

)
ψtip + h.c. (6.161)

To generate a tunneling current across the contact we need to couple the tip and
the system to an infinitesimal external electromagnetic field. Let A(t) be the (line
integral of the) component of the electromagnetic time-dependent vector poten-
tial connecting the tip and the system at the point contact. By virtue of gauge
invariance the electromagnetic coupling at the point contact amounts to modify-
ing the tunneling Hamiltonian by changing the amplitude � → � exp(ieA(t)/�).
The gauge-invariant tunneling-current operator J at the point contact is given by

J = �
δHtunnel

δA(t)

∣∣∣
A(t)=0

= ie�
∑
σ

[(
ψ

†
R,σ (0)+ ψ

†
L,σ (0)

)
ψtip − h.c.

]
(6.162)

We will assume that the energy of this state is higher than the Fermi energy in
the Luttinger liquid by an amount equal to eV , where V is the voltage difference.
We will assume that this is a rather uninteresting metal well described by a Fermi
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liquid with a density of one-particle states ρtip(E) that is essentially constant for the
range of voltages V used. Hence we can make the approximation that the density
of states of the tip is constant, ρtip(EF + eV ) � ρtip(EF).

A fixed voltage V is equivalent to a difference of the chemical potentials of eV
between the tip and the 1DEG. The same physics can be described by assigning to
the tunneling matrix element � the phase factor

� → �ei e
�

V t (6.163)

both in the tunneling Hamiltonian and in the definition of a tunneling current.
We recognize that the phase factor plays the same role as the vector potential we
invoked just above. This is equivalent to a time-dependent gauge transformation of
one of the Fermi fields, say that of the tip. The simplest way to see that this is true
is to write down the Lagrangian density involving the tip degrees of freedom,

Ltip = ψ
†
tip(i� ∂t − eV )ψtip −Htip −Htunnel (6.164)

and perform the time-dependent transformation

ψtip → ei e
�

V tψtip (6.165)

The only terms in Ltip affected by this transformation are the first (which involves
a time derivative) and the tunneling term, Htunnel. The change of the first term
amounts to an extra term, which precisely cancels out the second term, which
is where the voltage difference is specified. The change in the tunneling term is
equivalent to the substitution given in Eq. (6.163). Notice that the tunneling-current
operator, Eq. (6.162), is similarly affected by this transformation.

We now use perturbation theory in powers of the tunneling matrix element � to
find the expectation value of the current operator, which will be denoted by I . To
the lowest possible order in �, I is given by

I = 2π
e

�
|�|2

∫ 0

−eV
d E ρLL(E, T )ρtip(E + eV, T ) (6.166)

which follows from the well-known Fermi golden rule. The differential tunneling
conductance G(V, T ) is found by differentiation:

G(V, T ) = d I

dV
� 2πe

�
|�|2ρtip(0)ρLL(E, T ) (6.167)

Here ρLL(E, T ) is the one-particle local density of states of the Luttinger liquid

ρLL(E, T ) = − 1

π
Im Gret

LL(x = 0, ω = E, T )

= − 4

π
Im Gret

R,↑(x = 0, E, T ) = 4
∫ ∞

−∞
dp

2π
AR,↑(p, E, T )

(6.168)
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where AR,↑(p, E, T ) is the spectral function defined above, and the factor of 4
arises since right and left movers (with both spin orientations) contribute equally
at equal positions (denoted by x = 0). Alternatively,

ρLL(E, T ) = − 4

π
Im

∫ ∞

−∞
dt e−i E

�
t Gret

R,↑(x = 0, t, T ) (6.169)

At T = 0, by computing this Fourier transform one finds that ρLL(E) has a power-
law behavior,

ρLL(E) ∝ E2(γc+γs) (6.170)

Hence, the differential tunneling conductance essentially measures the local den-
sity of states of the Luttinger liquid. Therefore, at T = 0, the differential tunneling
conductance behaves as

GLL(V ) ∝ V 2(γc+γs) (6.171)

whereas for T > 0 one finds a saturation for V � T :

GLL(V, T ) ∝ T 2(γc+γs) (6.172)

The crossover between the T > 0, V → 0 Ohmic behavior and the T → 0, V > 0
Luttinger behavior occurs for eV ∼ kBT .

In contrast, for a free fermion (and for a Landau Fermi liquid)

GFL(V ) = constant (6.173)

since in this case γc = γs = 0.
Therefore, for a system of free fermions we find that the point contact is Ohmic,

I ∝ V . For a Luttinger liquid there is instead a power-law suppression of the
tunneling differential conductance for T � V (see Fig. 6.8), and Ohmic behav-
ior for T � V (with a conductance that scales as a power of T ). These behaviors
reflect the fact that there are no stable electron-like quasiparticles in the Luttinger
liquid: the electron states are orthogonal to the states in the spectrum of the Lut-
tinger liquid, leading to a vanishing of the quasiparticle residue and to characteristic
power-law behaviors in many quantities. This fact is known as the orthogonality
catastrophe.

6.8.3 The fermion momentum distribution function

We will now discuss the fermion momentum distribution functions at zero tem-
perature, T = 0. Since we have right and left movers, with both spin orientations,
in principle we have four such functions. However, the Luttinger liquid state is
invariant under global spin flips, ↑↔↓, and under parity, R ↔ L . Thus all four
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G = dI/dV

V

Figure 6.8 The differential tunneling conductance G = d I/dV as a function of
the bias voltage V , in a Fermi liquid (dashed line), and in a Luttinger liquid at
T = 0 (thick line) and at T > 0 (thin line).

momentum distributions are equal to each other. Let us compute, say, nR,↑(p),
which is given by the equal-time correlator

nR,↑(p) = lim
t ′→t+0+

〈ψ†
R,↑(p, t)ψR,↑(p, t ′)〉

= lim
L→∞

1

L

∫ +L/2

−L/2
dx

∫ +L/2

−L/2
dx ′ e−i p(x−x ′)

× lim
t ′→t+0+

〈Tψ†
R,↑(x, t)ψR,↑(x ′, t ′)〉

=
∫ ∞

−∞
dω

2π
AR,↑(p, ω) (6.174)

(here T means time-ordering!).
A lengthy computation of the Fourier transforms leads to the result at T = 0

(here p is measured from pF):

nR,↑(p) ∼ constant + A|p|2(γc+γs) sign(p) (6.175)

where A is a positive non-universal constant. At finite temperature T > 0 this sin-
gularity is rounded by thermal fluctuations, which dominate for momenta |p| �
kBT/vc, which lead to a smooth momentum dependence in this regime. This is why
Luttinger behavior is difficult to detect in the momentum distribution function.

Thus, instead of a jump (or discontinuity) of Z (the quasiparticle residue) at pF

(the Fermi-liquid result), in a Luttinger liquid there is no jump (since Z = 0!).
Instead we find that the momentum distribution function has a weak singularity at
pF (Fig. 6.9). This is what replaces the “Fermi surface” in a Luttinger liquid. We
will show below that this happens since the Luttinger liquid is a (quantum) critical
system and the fermions have an anomalous dimension given by 2(γc + γs).
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ppF

1

n(p)

Figure 6.9 The fermion momentum distribution function in a Luttinger liquid.

6.8.4 Dynamical susceptibilities at finite temperature

Finally, we will discuss the behavior of dynamical susceptibilities at finite T > 0.
In the preceding sections we gave explicit expressions for the correlators (time-
ordered) of various physical quantities (order parameters and currents) at T = 0
in real space and time. Here we will need the dynamical susceptibilities, which are
the associated retarded (instead of time-ordered) correlators at finite T > 0 in real
momentum and frequency.

We saw earlier that we can determine all of these properties from the tem-
perature correlators, i.e. in imaginary time τ , restricted to the interval 0≤ τ<

1/T (with kB = 1). We accomplish this by first implementing the analytic
continuation

vt → −ivt (6.176)

which implies introducing the complex coordinates

x − vt → z = x + ivt and x + vt → z̄ = x − ivt (6.177)

Next we perform the conformal mapping from the complex plane labeled by the
coordinates z to the cylinder, labeled by the coordinatesw = x+ivτ (see Fig. 6.10)

x + ivt → e2π T
v
(x+ivτ) (6.178)

Thus, the long axis of this cylinder is space (labeled by −∞ ≤ x ≤ ∞), and
the circumference is the imaginary time τ , 0 ≤ τ ≤ 1/T . Under the conformal
mapping the boson propagator (in imaginary time t) tuns out to transform as

〈φ(x, t)φ(x ′, t ′)〉 → 1

2π
ln

∣∣∣∣∣ πT

sinh
(
π(T/v)(w − w′)

) ∣∣∣∣∣ (6.179)

where w = x + ivτ . This is discussed in more detail in Section 7.11.
The computation of the correlators of the observables we are interested in is the

same as at T = 0, except that the boson propagator changes as shown above.
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x

vt z
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w

w
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O
P

1

−∞

Figure 6.10 The conformal mapping z = e2πTw/v which maps the complex plane
z = x + ivt to the cylinder w = x + ivτ . Under this mapping the origin O on the
plane maps onto −∞ on the cylinder.

The form of the boson propagator on the cylinder insures that the correlators
are translation-invariant and periodic (or anti-periodic for fermions). This result
can also be derived by an explicit calculation of the propagator (without using
conformal mappings).

Thus, to compute the temperature propagators we perform (a) the analytic con-
tinuation followed by (b) the conformal mapping. This leads to the following
identification for the power-law factors in the correlators (to restore proper units
we must set T/v → kBT /(�v)):(

1

(x − x ′)∓ v(t − t ′)+ iε

)γ

→
(

1

(x − x ′)± iv(t − t ′)

)γ

→
⎛⎝ πT /v

sinh
(
(πT/v)

[
(x − x ′)± iv(τ − τ ′)

])
⎞⎠γ

(6.180)

where γ is an exponent. Here we use kB = � = 1. Notice that the temperature
changes the behavior of the boson propagator on distance scales that are long
compared with the thermal wavelength v/T to

〈φ(x, t)φ(x ′, t ′)〉 → ln

(
πT

2

)
− πT

v

∣∣x − x ′∣∣ + · · · (6.181)

The long-distance behavior of the boson propagator at finite T changes the behav-
ior of the other correlators as well. In this regime they exhibit exponential decay of
correlations over distances that are long compared with the thermal wavelength.
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In contrast to what we did in perturbation theory, where the correlators are given
in momentum and frequency space, the bosonization approach yields the exact
correlators in real space and time. Thus, to compute spectral functions and other
quantities of interest we now must perform Fourier transforms on the analytic con-
tinuations of these expressions (some of which have a somewhat involved analytic
structure). But the expressions we have are not perturbative, they are exact!

The CDW susceptibility

The thermal CDW correlation function, i.e. the CDW propagator in imaginary time
at finite temperature T , is

DCDW(x, τ ; T ) =
〈
Tτ

(
OCDW(x, τ )O†

CDW(0, 0)
)〉

∼
[

(πT /vc)
2

sinh
[
(πT /vc)(x + ivcτ)

]
sinh

[
(πT /vc)(x − ivcτ)

]]1/(2Kc)

×
[

(πT /vs)
2

sinh
[
(πT /vs)(x + ivsτ)

]
sinh

[
(πT /vs)(x − ivsτ)

]]1/(2Ks)

(6.182)

The CDW dynamical susceptibility at finite temperature χCDW(p, ω; T ) is the
Fourier transform of this expression in x and τ (after an analytic continuation to
real time t). The Fourier transform has a complex analytic structure due to the
branch cuts and to the difference in the charge and spin velocities. Of direct phys-
ical interest is the imaginary time of the dynamical susceptibility, χ ′′

CDW(p, ω; T )
at finite temperature, which is measured by inelastic X-ray scattering (up to a Bose
factor χ ′′

CDW(p, ω) is proportional to the inelastic cross section).
Although the general form of χ ′′

CDW(p, ω; T ) can be determined numerically, a
simple expression (which captures the main physics) can be obtained by setting
vc = vs = v:

χ ′′
CDW(ω, p > 0; T ) ∼ −sin(πγ )

T 2(1−γ ) Im

{
f

(
ω − pv

4πT

)
f

(
ω + pv

4πT

)}
(6.183)

Here p is measured from 2pF, and

γ = 1

2

(
1

Kc
+ 1

Ks

)
(6.184)

The complex function f (x) is given by

f (x) = �(γ /2 − i x)

�(1 − γ /2 − i x)
(6.185)
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where �(z) is the Euler gamma function. At very low temperatures, such that |ω ±
pv| � T , χ ′′

CDW(p, ω; T ) converges to the T = 0 result:

χ ′′
CDW(p, ω; T = 0) ∝

∣∣∣∣ω2 − p2v2

4π2

∣∣∣∣−
1
2 (1−1/Kc) (

θ(ω − pv)+ θ(−(ω + pv)
)

(6.186)

where I have set Ks = 1 (we will see below that this is required by the SU(2)
spin rotational invariance). Since Kc > 1 (for repulsive interactions) we see that
the spectral function is largest near ω = ±pv (“on-shell”), where it diverges as
a power law. Notice that this is a one-sided singularity since the spectral function
vanishes on the other side of the mass-shell condition. This divergence is cut off at
finite temperature T , where it takes the maximum value determined by T .

The same behavior is found for the full static susceptibility at the ordering wave
vector (which here means p = 0). Although it can be determined from the gen-
eral expression for χ ′′

CDW(p, ω; T ), it is instructive to determine it more directly by
the following simple argument. At finite temperature, the long-distance behavior
of the correlators in real space for distances long compared with the thermal wave
length v/T is an exponential decay. This behavior effectively cuts off the infrared
singularities in many quantities such as the static susceptibility at the ordering
wavevector Q = 2pF, χCDW(ω = 0, p = 0) (again, the momentum p is mea-
sured from the ordering wave vector). This quantity can be computed directly from
a Fourier transform of the thermal CDW correlation function in imaginary time at
T = 0 with a long-distance cutoff of v/T :

χCDW(0, 0; T ) ∼
∫
|x |<v/T

dx
∫
|t |<1/T

dt DCDW(x, t; T = 0)

∼ 2π × constant ×
∫ v/T

a

r dr

r2γ
∝ T −(1−1/Kc) (6.187)

where we have set Ks = 1. Thus, for Kc > 1 (repulsive interactions) the CDW sus-
ceptibility at the ordering wave vector Q = 2pF diverges as T → 0. This means
that the T = 0 system is almost ordered. We will see below that this behavior
means that it is actually critical at T = 0, and we will identify the exponent γ with
the scaling dimension (or dimension in short) of the CDW order parameter.

A similar analysis can be used to find the structure factor S(p; T ) (once again
measured from Q = 2pF) at temperature T , the Fourier transform in space of the
equal-time correlation function,

S(p; T ) =
∫ ∞

−∞
dx e−i px D(x, t = 0; T ) (6.188)
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S(p; T ) is measured by X-ray-diffraction experiments. An analysis of this Fourier
transform (similar to what we did above) leads to the following result:

S(p; T ) ∝ 2Kca
−1/Kc − K 2

c�(1/Kc)

Kc − 1
×

{
cos[π/(2Kc)]|p|1/Kc, for T/v � |p|
(T/v)1/Kc, for T/v � |p|

(6.189)
Hence, in contrast with the static susceptibility, the structure factor at T = 0,
S(p, T = 0), does not diverge as T → 0, and instead has a weak singularity (a
cusp) at the ordering wave vector.

Finally, we note that for spin-rotational invariant systems (for which Ks → 1)
there are logarithmic corrections to these results due to corrections to scaling
effects (we will not give a derivation of these corrections here). We can put all
of this together in terms of the equal-time density correlation function (including
the logarithmic correction):

〈ρ(x)ρ(0)〉 = 1

Kc(πx)2
+ constant × cos(2pFx)

|x |1+1/Kc
|ln |x ||−3/2 + · · · (6.190)

and the 2pF static CDW susceptibility (including the logarithmic correction) is

χCDW(T ) ∼ |ln T |−3/2

T 1−1/Kc
(6.191)

The SDW susceptibility

The correlation function of the SDW order parameter can be analyzed in a similar
fashion. The dynamical susceptibility is measured by inelastic neutron scattering.
Here I will quote only the main results.

The equal-time transverse spin-correlation function turns out to be (setting
Ks = 1)

〈�S(x) · �S(0)〉 = 1

(πx)2
+ constant × cos(2pFx)

|x |1+1/Kc

√|ln|x || + · · · (6.192)

and the SDW transverse susceptibility (at the ordering wavevector 2pF) is

χ⊥
SDW(T ) ∼

√|ln T |
T 1−1/Kc

(6.193)

So, up to logarithmic corrections, it has the same behavior as the CDW correla-
tors and susceptibilities. This is a special property for the spin-rotational invariant
system.
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The superconducting susceptibility

Finally, we quote the results for the singlet superconductor equal-time correlation
function

〈O†
SS(x)OSS(0)〉 ∼ constant

|x |1+Kc
|ln|x ||−3/2 (6.194)

and finite-temperature susceptibility

χSS(T ) ∼ T Kc−1|ln T |−3/2 (6.195)

Hence, the superconducting static susceptibility does not diverge as T → 0 for
Kc > 1 (repulsive interactions) but it does for Kc < 1 (attractive interactions).
The different behavior of the superconducting and CDW susceptibilities follows
directly from duality.
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Sigma models and topological terms

7.1 Generalized spin chains: the Haldane conjecture

The phenomenology which emerges from the spin one-half Heisenberg
antiferromagnetic chain is quite striking: there is no long-range order, and there
are gapless states, in particular, gapless spinless fermions (which, in the Heisen-
berg picture, are solitons). From the point of view of the Hubbard model, the
Heisenberg model occurs at infinite coupling, where the charge-bearing degrees
of freedom acquire a gap that is infinitely large. Thus spin and charge degrees of
freedom are separated and the spin sector is at a critical point. This phenomenol-
ogy inspired Anderson (1987) to propose a similar picture for the two-dimensional
systems, the resonating-valence-bond (RVB) picture. However, most of this pic-
ture surely should not generalize. Critical points are not generic and, in general, it
is not possible to have gapless states without the spontaneous breaking of a con-
tinuous symmetry except in one dimension due to the Mermin–Wagner theorem.
In higher dimensions gapless states without a broken symmetry may be possible in
a Coulomb phase of a gauge theory with a continuous gauge group. Thus, the 1D
spin one-half case may be more the exception than the rule. For instance, it may be
possible that the system is in a state without long-range order, which is likely to be
massive. For this reason, it is important to consider generalizations of the Heisen-
berg model. This problem has been studied extensively. Two different approaches
have been considered in one dimension: (a) enlarging the representation (higher
spin, same symmetry group SU(2)) and (b) higher symmetry groups (SU(N ), for
instance).

Haldane considered the generalization to higher spin but keeping the symmetry
group SU(2) (Haldane, 1983a, 1983c, 1985b). He first considered the large-spin
limit, which should have semi-classical character. He showed that in this limit
the effective Lagrangian was almost the Lagrangian of the quantum non-linear
sigma model. That the non-linear sigma model should appear in a semi-classical
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(S → ∞) limit should be of no surprise: one finds the same answer in mean-field
theory. But there is something wrong with this picture. The non-linear sigma model
is known to have no long-range order and, in fact, it has a finite correlation length
(Polyakov, 1975). Thus, if the sigma model truly was the infrared limit of the
Heisenberg model, it could not possibly be a critical system, at least for S suffi-
ciently large. Haldane found that this is indeed the case for spin systems in which
S is an integer. For half-integer spins, he found that, in addition to the sigma model,
there is an extra term that changes the physics drastically. The extra term turned out
to be proportional to a topological invariant, namely the winding number or Pon-
tryagin index of the (smooth) spin configuration. Thus it would appear that integer
and half-integer spin chains behave rather differently.

Generalized spin systems with other symmetry groups have also been consid-
ered. These include SU(N ) generalizations of the (SU(2)) Heisenberg model for
various representations of the group. Affleck studied a large-N limit in which he
was able to show that the ground state does not have long-range order and that there
are no gapless states (Affleck, 1985). However, other SU(N ) generalizations of the
Heisenberg model have been considered. For special choices of parameters, these
systems are integrable (in the Bethe-ansatz sense), and they are also at a critical
point (Babujian and Tsvelik, 1986). Their critical behavior is, however, different
from the one we discussed in the Heisenberg case. Thus, it appears that, at least in
one dimension, these systems are either critical or in a disordered state, i.e. a state
without long-range order and with only short-range spin correlations.

Let us first discuss the spin-S quantum Heisenberg chain. I will do so by intro-
ducing a path-integral method for spin systems that does generalize to higher
dimensions, groups, representations, etc.

7.2 Path integrals for spin systems: the single-spin problem

In Section 3.2 we developed a path-integral method for Fermi systems of the
Hubbard type (i.e. with local interactions). Using a Hubbard–Stratonovich trans-
formation we were able to derive an effective action for the low-energy degrees of
freedom, the spin fluctuations. The result was a path-integral representation of the
long-range spin fluctuations, the quantum-mechanical non-linear sigma model.

We also showed that, in the strong-coupling limit, the half-filled Hubbard model
maps onto the quantum Heisenberg model. In this limit the “band” fermions are
tightly bound into localized spins. There is no motion of the fermionic degrees
of freedom since, in this limit, the energy gap for charge fluctuations is infinitely
large. It is natural to ask for an alternative derivation of the effective action for
the spin fluctuations that should not be based on the weak-coupling mean-field
theory, as we did in Chapter 3. Also we will now be careful enough to keep terms
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of topological significance, something we did not do in Chapter 3, and to assess
their importance.

We begin with the discussion of an extremely simple system: a spin-S degree
of freedom coupled to an external field through a Zeeman term. From the standard
treatment in elementary quantum mechanics (Baym, 1974) we know that the (2S+
1)-fold degeneracy is lifted by the Zeeman interaction, resulting in 2S + 1 non-
degenerate levels. The path integral will enable us to study the evolution operator
between arbitrary initial and final states.

There are several published path-integral treatments of spin degrees of freedom.
They all share the feature that they deal with coherent states rather than the more
familiar complete states (Schulman, 1981). The method of coherent states has been
extensively reviewed by A. Perelomov (1986). We will use a special version of the
method of coherent states that keeps the spin symmetry intact, which was first
introduced by Wiegmann (1988) and by Fradkin and Stone (1988).

Let us begin by describing the Hilbert space. It is very simple. We have 2S + 1
states that transform like a spin-S representation of SU(2). Let |0〉 denote the
highest-weight state in this representation,

|0〉 = |S, S〉 (7.1)

This state is an eigenstate both of S3, the (only) diagonal generator of SU(2), and
of the quadratic Casimir invariant �S2:

S3|0〉 = S|0〉 (7.2)
�S2|0〉 = S(S + 1)|0〉 (7.3)

Consider now the state |�n〉 labeled by the unit vector �n which is obtained by the
rotation (see Fig. 7.1)

|�n〉 = eiθ(�n0×�n)·�S|S, S〉 (7.4)

where �n0 is a unit vector along the quantization axis, θ is the co-latitude

�n · �n0 = cos θ (7.5)

and Si (i = 1, 2, 3) are the (three) generators of SU(2) in the spin-S representation.
For a review of SU(2) and its representations, see, for instance, Georgi (1982).

The state |�n〉 can be expanded in a complete basis of the spin-S irreducible
representation {|S, M〉}, where M labels the eigenvalue of S3,

S3|S, M〉 = m|S, M〉 (7.6)
�S2|S, M〉 = S(S + 1)|S, M〉 (7.7)



192 Sigma models and topological terms

0

Figure 7.1 The unit sphere S2 and the unit vectors �n0 and �n.

and −S ≤ M ≤ S, in integer steps. The coefficients of the expansion are the
representation matrices D(S)(�n)M S

|�n〉 =
S∑

M=−S

D(S)(�n)M S|S, M〉 (7.8)

Clearly, there are many other rotations, differing from one another by multiplica-
tion on the right by rotations about the z axis. This will give rise to the same state,
except for an overall phase. In more formal terms, the observable states are in a
one-to-one correspondence with the right cosets SU(2)/U(1), where U(1) repre-
sents phase transformations generated by the diagonal generator of SU(2). Clearly
the coset is isomorphic to the 2-sphere: SU(2)/U(1) � S2. In the language of dif-
ferential geometry, the coherent states form a hermitian line bundle associated with
the Hopf, or monopole, principal bundle.

The matrices D(S) do not form a group but rather satisfy the algebra

D(S)(�n1)D
(S)(�n2) = D(S)(�n3)e

i�(�n1,�n2,�n3)S3 (7.9)

where �n1, �n2, and �n3 are three arbitrary unit vectors on the unit sphere S2, and
�(�n1, �n2, �n3) is the area of the spherical triangle with vertices at �n1, �n2, and �n3 (see
Fig. 7.2). Equation (7.9) is simply saying that the D(S) matrices form a group up
to an element generated by the diagonal generators, the Cartan subalgebra. Since
the sphere S2 is a closed manifold (and hence without boundaries), the area of
a spherical triangle is not uniquely defined. The indicated areas of the sphere in
Figs. 7.2(a) and (b) are equally good definitions of the area. The difference of
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Figure 7.2 The spherical triangle with vertices at �n1, �n2, and �n3. Its area is
not unambiguously defined. The “inner” area is shown in (a) and the “outer”
area in (b).

the oriented areas is 4π . Since S3 has eigenvalues equal to M , which is either an
integer or a half-integer, this ambiguity has no physical manifestation since

ei4πM = 1 (7.10)

We can regard the requirement that the ambiguity in the definition of the area
should lead to no physical consequences as the origin of the quantization of spin.

Other useful properties of the spin coherent states |�n〉 are the inner product
〈�n1|�n2〉,

〈�n1|�n2〉 = 〈0|D(S)†(�n1)D
(S)(�n2)|0〉 (7.11)

= ei�(�n1,�n2,�n0)S

(
1 + �n1 · �n2

2

)S

(7.12)

the diagonal matrix elements of the SU(2) generators �S,

〈�n| �S|�n〉 = S�n (7.13)

and the “resolution of the identity,” which is an expression of the identity operator
Î in terms of the coherent-state operators |�n〉〈�n|,

Î =
∫

dμ(�n)|�n〉〈�n| (7.14)

The integration measure dμ(�n) is given by the invariant measure

dμ(�n) =
(

2s + 1

4π

)
d3n δ(�n2 − 1) (7.15)
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We are now in a position to write down an expression for the path integral in this
coherent-state representation. Its generalization to other groups is straightforward
and has been given by Wiegmann (1989). Let H(�S) = �B · �S be the Zeeman-like
Hamiltonian for a spin system with one spin-S degree of freedom. I will consider
the representation of the evolution operator in imaginary time:

Z = tr ei H T = tr e−βH (7.16)

In other words, we are assuming that the initial and final states are identified. Let
us split the imaginary-time interval into Nt steps each of length δt and consider the
limit Nt → ∞ and δt → 0 while keeping Nt δt = β constant. As usual we make
use of the Trotter formula

Z = tr e−βH = lim
Nt→∞
δt→0

(
e−δt H

)Nt (7.17)

and insert the “resolution of identity,” Eq. (7.14), at every intermediate time t j ,

Z = lim
Nt→∞
δt→0

⎛⎝ Nt∏
j=1

∫
dμ(�nj )

⎞⎠ ⎛⎝ Nt∏
j=1

〈�n(t j )|e−δt H |�n(t j+1)〉
⎞⎠ (7.18)

with periodic boundary conditions. Here {t j } is a set of intermediate times in the
imaginary-time interval [0, β]. Since δt is small we can approximate Eq. (7.18) as

Z = lim
Nt→∞
δt→0

⎛⎝ Nt∏
j=1

∫
dμ(�nj )

⎞⎠ ⎛⎝ Nt∏
j=1

[〈�n(t j )|�n(t j+1)〉 − δt〈�n(t j )|H |�n(t j+1)〉
]⎞⎠
(7.19)

Within the same approximation we can write

〈�n(t j )|H |�n(t j+1)〉
〈�n(t j )|�n(t j+1)〉 � 〈�n(t j )|H |�n(t j )〉 + O(δt) (7.20)

Using the inner-product formula, Eq. (7.12), we get

〈�n(t j )|�n(t j+1)〉 = ei�(�n(t j ),�n(t j+1),�n0)S

(
1 + �n(t j ) · �n(t j+1)

2

)S

(7.21)

We now insert Eqs. (7.20) and (7.21) into Eq. (7.19) to find the (formal) expression
for the path integral

Z = lim
Nt→∞
δt→0

∫
D�n e−SE[�n] (7.22)
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0

(t)

Figure 7.3 Closed smooth trajectories on S2.

where the measure D�n is given by

D�n =
Nt∏

j=1

dμ(�n(t j )) (7.23)

and the Euclidean action SE[�n] is given by

−SE[�n] = i S
Nt∑

j=1

�(�n(t j ), n(t j+1), �n0)+ S
Nt∑

j=1

ln

(
1 + �n(t j ) · �n(t j+1)

2

)

−
Nt∑

j=1

〈�n(t j )|H |�n(t j )〉 (7.24)

In this derivation, we have assumed that the unit vectors {�n(t j )} are closed tra-
jectories (because �n(t0) = �n(tN+1)) on the sphere S2 which are sufficiently smooth
that all the approximations of Eq. (7.20) make sense (see Fig. 7.3). This is not
quite the case, as emphasized by Klauder (1979). But these technicalities, as well
as operator-ordering problems, can be taken care of without affecting the physics.
We will ignore these difficulties from now on. Our path integral will be as good a
mathematical object as any other path integral.

The first term of the effective Euclidean action is complex. It leads to a sum over
trajectories weighted by phases (even though we are working in imaginary time!)
of the form

ei SA[�n] (7.25)

where A[�n] is the limit

A[�n] = lim
Nt→∞
δt→0

Nt∑
j=1

�(�n(t j ), �n(t j+1), �n0) (7.26)
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Σ+

Σ−

Γ

Figure 7.4 The trajectory � and the caps !+ and !−.

Since each term of this sum is the area of the spherical triangle with vertices at
�n(t j ), �n(t j+1), and �n0, the sum, i.e. the sum of these areas, is just equal to the
total area of the cap !+ bounded by the trajectory � parametrized by �n(t) (see
Fig. 7.4). Once again, since S2 has no boundaries, there are two caps, !+ and !−.
The oriented areas of !+ and !− also differ by 4π ,

A(!+)+A(!−) = 4π (7.27)

This is the same ambiguity as we encountered before. It does not lead us to any
observable effects since S is restricted to being an integer or a half-integer. The
area of the cap !, say !+, is given by (in the limit Nt → ∞, δt → 0)

A(!+) =
∫ 1

0
dτ

∫ β

0
dt �n(t, τ ) · (∂t �n(t, τ )× ∂τ �n(t, τ )) ≡ SWZ[�n] (7.28)

where �n(t, τ ) is an arbitrary, smooth parametrization of the cap !+ bounded by �
that satisfies the boundary conditions

�n(t, 0) ≡ �n(t), �n(t, 1) ≡ �n0, �n(0, τ ) = �n(β, τ ) (7.29)

where t ε [0, β] and τ ε [0, 1]. Terms of this sort are generically called Wess–
Zumino terms, although, for reasons that will be explained later, sometimes they
are also referred to as Chern–Simons terms.

We now proceed to take a naive continuum limit (Nt → ∞, δt → 0) and find
from Eqs. (7.28) and (7.24) the Euclidean action

SE[�n] = −i SSWZ[�n] + S δt

4

∫ β

0
dt (∂t �n(t))2 + S

∫ β

0
dt �B · �n(t) (7.30)

where �B is an external magnetic field.
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We can get back to real time x0, with

t = i x0, β = iT (7.31)

where T is the (imaginary) time span, by writing

Z =
∫

D�n eiSM[�n] (7.32)

where SM[�n] is given by

SM[�n] = SSWZ[�n] + S δt

4

∫ T

0
dx0(∂0�n(x0))

2 − S
∫ T

0
dx0 �B · �n(x0) (7.33)

This expression has a simple mechanical analogy. Let us imagine that �n(x0) is
the position vector of a charged particle at time x0. The particle has a small mass
m = S δt/2 (with m → 0) and is constrained to move on the surface of the unit
sphere, S2. A magnetic monopole with magnetic charge S is placed at the center of
the sphere. The usual minimal electromagnetic coupling gives a contribution to the
action of the form (Landau and Lifshitz, 1975b)

Sem =
∮

dx0 �A · ∂ �n
∂x0

(7.34)

where �A is the vector potential at position �n(x0). In order to represent a monopole,
the vector potential has to have a singular piece that describes the Dirac string. We
can use Stokes’ theorem to write Sem in terms of a two-form instead of the one-
form �A. Stokes’ theorem simply says that Sem is given by the flux of the magnetic
monopole through the area of S2 bounded by the trajectory � (see Fig. 7.5). This
is nothing but the magnetic charge S of the monopole multiplied by the area of S2

bounded by �, in other words, the cap ! of Fig. 7.4. This is precisely identical to
the first term in the action Eq. (7.33). Ideas of this sort were first popularized by
Witten (1983) in his discussion of Wess–Zumino terms; see also Stone (1986).

The magnetic monopole gives rise to a uniform radial magnetic field on the
surface of the sphere with total flux equal to the magnetic charge S. It is well
known that the eigenstates of such a particle are monopole spherical harmonics.
The ground state is (2S + 1)-fold degenerate and it is separated from the higher-
angular-momentum states (i.e. Landau “orbits”) by an energy gap that scales with
the mass of the particle like 1/m. Thus, in the small-mass limit (m → 0) the system
is projected onto the ground state. In this way the subspace of the “lowest-Landau
orbit” on a spherical geometry becomes identical to the space of the spin-S repre-
sentation of SU(2). In retrospect, it would have been possible to describe spin in
terms of the path integral with Eq. (7.33) for its action directly, without reference
to coherent states.
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(a)

Γ Σ+

(b)

Figure 7.5 A magnetic monopole at the center of the unit sphere in (a) and the flux
through the cap !+ bounded by the trajectory � in (b). The thick line represents
an infinitely long solenoid of infinitesimal thickness (a Dirac string).

Returning now to Eq. (7.34), we may consider the physical meaning of the vector
potential �A(x0) in terms of the states of the spin. It is straightforward to show that
the circulation of the vector field �A(x0) is just the accumulated change in the phase
of the spin state under an adiabatic time evolution, i.e.∮

d �n · �A[�n(t)] =
∫ T

0
dt〈�n(t)∣∣∂t �n(t)〉 (7.35)

(with |�n(0)〉 = |�n(T )〉), which is known as the Berry phase (Avron et al., 1983;
Simon, 1983; Berry, 1984), and the vector field �A[�n(t)] is known as the Berry
connection. In other chapters of this book we will encounter many manifestations
of the Berry phase (and of the Berry connection).

7.3 The path integral for many-spin systems

It is trivial to generalize the one-spin problem to a many (or infinitely many!)-spin
system. Once again, I will follow the treatment of Fradkin and Stone (1988).

The Hilbert space of a many-spin system is just the tensor product of the Hilbert
space of the individual spins. Let H be the (Heisenberg) Hamiltonian for a spin-S
system on an arbitrary lattice,
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H = J
∑
(�r ,�r ′)

�S(�r) · �S(�r ′) (7.36)

where (�r , �r ′) are pairs of sites on that lattice. We can now use the identity 〈�n| �S|�n〉 =
S�n to write down the imaginary-time action for the many-spin system

SE[�n] = −i S
∑
�r

SWZ[�n(�r)] + m

2

∫ β

0
dt

∑
�r
(∂t �n(�r , t))2

+
∫ β

0
dt

∑
(�r ,�r ′)

JS2�n(�r , t) · �n(�r ′, t) (7.37)

where we are supposed to take the limit m → 0 (it will be dropped from now on).
The sums in Eq. (7.37) run over all the sites of the lattice. The first term is just the
sum of the Wess–Zumino terms of the individual spins. Note that the only real-time
dependence enters through the Wess–Zumino terms.

We can Wick-rotate back to real time, t = i x0, β = iT , and write the correspond-
ing real-time action, SM, as

SM[�n] = S
∑
�r

SWZ[�n(�r)] −
∫ T

0
dx0

∑
(�r ,�r ′)

JS2�n(�r , x0) · �n(�r ′, x0) (7.38)

The effective action SM[�n] scales like S, the spin representation. Thus, in the large-
spin limit S → ∞, the path integral

Z =
∫

D�n eiSM[�n] (7.39)

should be dominated by the stationary points of the action SM[�n]. This is the
semi-classical limit. Corrections to the large-S limit can be arranged in an expan-
sion in powers of 1/S. This is the content of the Holstein–Primakoff expansion
(Holstein and Primakoff, 1940). Note, however, that we did not make use of the
semi-classical limit in order to derive the path integral. Let us consider a number
of cases of interest.

7.4 Quantum ferromagnets

In this case we set J = −|J |. I will consider the case of a hypercubic lattice
and restrict the sum over pairs of sites to nearest neighbors. The results can be
generalized very easily to any other lattice.

I first make use of the constraint �n2 = 1 to write the action in the form

SM[�n] = S
∑
�r

SWZ[�n(�r)] − |J |S2

2

∑
〈�r ,�r ′〉

∫ T

0
dx0[�n(�r , x0)− �n(�r ′, x0)]2 (7.40)
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up to an additive constant. Consider now the long-wavelength limit, in which
�n(�r , x0) is a smooth function of the spatial coordinates. If we denote by a0 a short-
distance cutoff (i.e. the lattice spacing) we can write an effective continuum action
for the long-wavelength fluctuations

SM[�n] =
∫

dd x
S

ad
0

SWZ[�n] − |J |S2

2ad−2
0

∫
dd x

∫ T

0
dx0(∇i · �n(�x, x0))

2 (7.41)

It is important to stress that the effective continuum action for the quantum ferro-
magnet does not have the standard non-linear sigma-model form which is of second
order in time derivatives, which leads to Goldstone bosons with a linear dispersion
law. As we will see (and as we already saw in Chapter 3), this is the correct result
for antiferromagnetic magnons but not for ferromagnetic ones. It is well known
that ferromagnetic magnons have a quadratic dispersion relation (Bloch, 1930).
Thus, in the ferromagnetic case we expect the effective action to have twice as
many spatial derivatives as temporal derivatives of the fields. In other terms, the
dynamic critical exponent for a quantum ferromagnet is z = 2, whereas for an
antiferromagnet it is z = 1.

To see how all this comes about, we will derive the classical equations of motion
for the effective action of the quantum ferromagnet, Eq. (7.41). We take care of the
local constraint

�n2(�x, x0) = 1 (7.42)

by introducing the Lagrangian multiplier field λ(�x, x0) which enforces the con-
straint in the path integral through an extra term in the action

Sextra[�n, λ] =
∫

dd x
∫ T

0
dx0

λ(�x, x0)

2

(�n2(�x, x0)− 1
)

(7.43)

The classical equations of motion result from demanding that the total action

Stot[�n, λ] = SM[�n] + Sextra[�n, λ] (7.44)

be stationary,

δStot = 0 (7.45)

The variation of the local Wess–Zumino action is very simple. Indeed, SWZ is
essentially the area of the sphere bounded by the trajectory �n(�x, x0) (at each point
�x) on the “target manifold” (the 2-sphere S2). Thus the variation δSWZ due to a
small change of the trajectory δ�n is simply equal to

δSWZ = δ�n · (�n × ∂0�n) (7.46)
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Hence, we get the classical equations of motion

δStot

δ�n = ∇i

(
δStot

δ∇i �n
)

(7.47)

supplemented by the constraint Eq. (7.42). More explicitly, we get

S

ad
0

�n × ∂0�n + λ�n = −|J |S2

ad−2
0

∇2�n (7.48)

The classical value of the Lagrange multiplier field λ can be evaluated by
computing the scalar product of Eq. (7.48) with �n. The result is

λ = −|J |s2

ad−2
0

(�n · ∇2�n) (7.49)

On substituting Eq. (7.49) back into Eq. (7.48) we get the equation of motion for
the quantum ferromagnet:

S

ad
0

�n × ∂0�n + |J |S2

ad−2
0

(∇2 − (�n · ∇2�n)) �n = 0 (7.50)

By using elementary algebra as well as Eq. (7.42), this equation can be brought to
the form

∂0�n = |J |Sa2
0 �n ×∇2�n (7.51)

This equation is known as the Landau–Lifshitz equation. The derivation shown
here is due to M. Stone.

The Landau–Lifshitz equation has several interesting properties. It is a non-
linear equation with first-order time derivatives and second-order space derivatives.
Thus the solutions of Eq. (7.51) have a quadratic dispersion law, as they should.
The spins move in a precessional fashion with an angular velocity �� given by

�� = −|J |Sa2
0 ∇2�n (7.52)

The Landau–Lifshitz equations can be solved in the linear regime. Let us
parametrize �n by the components

�n =
(
σ

�π
)

(7.53)

where σ and πi (i = 1, 2) satisfy the constraint

σ 2 + �π2 = 1 (7.54)

The (linearized) Landau–Lifshitz equations are

∂0π1 ≈ −|J |Sa2
0 ∇2π2

∂0π2 ≈ +|J |Sa2
0 ∇2π1

(7.55)
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to leading order in �π . From Eqs. (7.55) we find the dispersion relation for
ferromagnetic spin waves

|p0| ≈ |J |Sa2
0 | �p|2 (7.56)

which is known as Bloch’s law (Bloch, 1930). As expected, we find that the fre-
quency of the low-energy excitations of a quantum ferromagnet scales as the square
of the momentum.

7.5 The effective action for one-dimensional quantum antiferromagnets

We will not consider here frustrated systems. Thus, and for the sake of simplicity,
we will consider the case of quantum antiferromagnets on bipartite lattices, such as
the hypercubic lattice. We will see that, unlike in the case of the ferromagnets, the
effective low-energy action is different for 1D systems and for higher-dimensional
cases such as the square and cubic lattices. In all cases we will find a non-linear
sigma model, in agreement with our previous discussion (see Chapter 3) that was
based on a mean-field weak-coupling treatment of the Hubbard model. But we will
get more. For the spin-chain case we will find that the action has an extra term, a
topological term.

The starting point will be, once again, the real-time action of Eq. (7.39) with a
nearest-neighbor antiferromagnetic coupling constant J > 0. Since we expect that
at least the short-range order should have Néel character, it is natural to consider
the staggered and uniform components of the spin field �n. This construction, as is,
works only for two-sublattice systems close to a Néel state, although it is possible
to generalize it to other cases.

Consider a spin chain with an even number of sites N occupied by spin-S degrees
of freedom. The sites of the lattice are labeled by an integer j = 1, . . . , N . The
real-time action is

SM[�n] = S
N∑

j=1

SWZ[�n( j)] −
∫ T

0
dx0

N∑
j=1

JS2�n( j, x0) · �n( j + 1, x0) (7.57)

where we have assumed periodic boundary conditions. Since we expect to be close
to a Néel state, we will stagger the configuration

�n( j) → (−1) j �n( j) (7.58)

On a bipartite lattice, the substitution of Eq. (7.58) into Eq. (7.57) will change the
sign of the exchange term of the action to a ferromagnetic one. The Wess–Zumino
terms are odd under the replacement of Eq. (7.58) and thus become staggered.
Thus, it is the Wess–Zumino term, a purely quantum-mechanical effect, which will
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distinguish ferromagnets from antiferromagnets. After staggering the spins we get,
up to an additive constant,

SM[�n] = S
N∑

j=1

(−1) jSWZ[�n( j)] − J S2

2

∫ T

0
dx0

N∑
j=1

(�n( j, x0)− �n( j + 1, x0))
2

(7.59)
We now split the (staggered) spin field �n into a slowly varying piece �m( j), the order
parameter field, and a small rapidly varying part, �l( j), which roughly represents
the average spin (Affleck, 1990). Hence, we write

�n( j) = �m( j)+ (−1) j a0�l( j) (7.60)

The constraint �n2 = 1 and the requirement that the order-parameter field �m should
obey the same constraint, �m2 = 1, demand that �m and �l be orthogonal vectors:

�m · �l = 0 (7.61)

The Wess–Zumino terms are rewritten as

S
N∑

j=1

(−1) jSWZ[�n( j)] = S
N/2∑
r=1

(SWZ[�n(2r)] − SWZ[�n(2r − 1)]) (7.62)

which, by making use of the approximation

�n(2r)− �n(2r − 1) = �m(2r)− �m(2r − 1)+ a0(�l(2r)+ �l(2r − 1))

= a0

(
∂1 �m(2r)+ 2�l(2r)

)
+ O(a2

0) (7.63)

becomes

S
N∑

j=1

(−1) jSWZ[�n( j)] ≈ S
N/2∑
r=1

∫ T

0
dx0 δ�n(2r, x0) · (�n(2r, x0)× ∂0�n(2r, x0))

≈ S
N/2∑
r=1

∫ T

0
dx0

(
a0 ∂1 �m(2r, x0)+ 2a0�l(2r, x0)

)
× ( �m(2r, x0)× ∂0 �m(2r, x0)) (7.64)

Thus, in the continuum limit, one finds

lim
a0→0

S
N∑

j=1

(−1) jSWZ[�n( j)] ≈ S

2

∫
d2x �m · (∂0 �m × ∂1 �m)

+ S
∫

d2x �l · ( �m × ∂0 �m) (7.65)
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Similarly, the continuum limit of the potential-energy terms can also be found to
be given by

lim
a0→0

JS2

2

N∑
j=1

∫ T

0
dx0(�n( j, x0)− �n( j + 1, x0))

2

� a0 JS2

2

∫
d2x

(
(∂1 �m)2 + 4�l2

)
(7.66)

On collecting terms we find a Lagrangian density involving both the order-
parameter field �m and the local spin density �l,

LM( �m, �l ) = −2a0 J S2�l2 + s�l · ( �m × ∂0 �m)− a0 J S2

2
(∂1 �m)2

+ S

2
�m · (∂0 �m × ∂1 �m) (7.67)

The fluctuations in the average spin density �l can be integrated out. The result is
the Lagrangian density of the non-linear sigma model,

LM( �m) = 1

2g

(
1

vs
(∂0 �m)2 − vs(∂1 �m)2

)
+ θ

8π
εμν �m · (

∂μ �m × ∂ν �m
)

(7.68)

where g and vs are, respectively, the coupling constant and spin-wave velocity:

g = 2

S
(7.69)

vs = 2a0 JS (7.70)

The last term in Eq. (7.68) has topological significance. We have chosen the
normalization so that the coupling constant θ is given by

θ = 2πS (7.71)

The tensor εμν is the usual Levi-Civita antisymmetric tensor in two dimensions.
Thus, apart from an anisotropy determined by the spin-wave velocity vs and

apart from the topological term, we find that the effective action for the low-
frequency, long-wavelength fluctuation about a state with short-range Néel order
is given by the non-linear sigma model. We reached the same results within the
weak-coupling mean-field theory of the half-filled Hubbard model of Chapter 3.
Indeed, using that approach, it is also possible to get the topological term (Wen
and Zee, 1988).
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7.6 The role of topology

In the past section we reached the conclusion that the low-energy excitations of a
1D quantum antiferromagnet with short-range Néel order can be described by the
path integral of a non-linear sigma model with a topological term

Z =
∫

D �m
∏

x

δ( �m2(x)− 1)ei Seff[ �m(x)] (7.72)

with the effective action obtained from Eq. (7.68). Before considering the role of
local quantum fluctuations, which are of fundamental importance here, we look at
the role of the last term in the action, the topological term Stopo:

Stopo = θ

8π

∫
d2x εμν �m · (

∂μ �m × ∂ν �m
)

(7.73)

Let us consider first the Euclidean sector of the theory (i.e. we are back to
imaginary time x2 = i x0) with the Lagrangian density LE,

LE = 1

2g

(
vs(∂1 �m)2 + 1

vs
(∂2 �m)2

)
+ i

θ

8π
εi j �m · (

∂i �m × ∂ j �m
)

(7.74)

We now define the Pontryagin index or topological charge (or winding number) Q
of the Euclidean-space spin configuration { �m(x)} by the expression

Q = 1

8π

∫
d2x εi j �m · (

∂i �m × ∂ j �m
)

(7.75)

We impose the boundary condition that the Euclidean action
∫

d2x LE[ �m] be finite.
This is equivalent to the requirement that asymptotically �m becomes a constant (but
arbitrary) vector �m0 at spatial-time infinity,

lim
|�x |→∞

�m(�x) = �m0 (7.76)

Thus, topologically, 2D Euclidean space-time is isomorphic to a sphere S2 since the
fields are identified with �m0 at the point of infinity (Fig. 7.6). However, the order-
parameter manifold (the “target space”) is also isomorphic to a sphere S2, since the
constraint �m2 = 1 has to be satisfied everywhere. Therefore, a field configuration
�m(x) with finite Euclidean action is thus a smooth (differentiable) mapping from
the S2 of Euclidean space-time to the S2 of the order-parameter manifold (the target
space) (Fig. 7.7).

The Pontryagin index Q[ �m] is the topological charge (or winding number) in the
sense that it counts how many times the spin configuration �m has wrapped around
the sphere S2, as can be checked by comparing the definition of Q, Eq. (7.75), with
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(a) (b)

Figure 7.6 A finite-action spin configuration in Euclidean space-time (a) is
isomorphic to one on the sphere S2 (b).

S2 base space S2 target space

( )

Figure 7.7 The mapping �m(�x) : S2 → S2 of the 2-sphere base space to the
2-sphere target space.

the area formula of Eq. (7.28). We can make these ideas more concrete by consid-
ering a configuration �m(x) representing an instanton (Fig. 7.8(a)). Let the field at
infinity point parallel to �m0, the north pole of S2. In the case of an instanton, the
field near the origin points oppositely to �m0, i.e. in the direction of the south pole.
Alternatively, we can look at the configuration on S2. Here it looks like a magnetic
monopole or a hairy ball (Fig. 7.8(b)). The winding number Q of this configuration
is determined by the area of the sphere divided by 4π (i.e. the “magnetic flux”),

Q =
(

1

4π

)
4π = +1 (7.77)

Thus, an instanton has winding number (or topological charge) Q = +1. An anti-
instanton has Q = −1. It is also possible to find multi-instanton configurations
with arbitrary integral winding number Q.

We conclude that the smooth configurations �m(x) can be classified accord-
ing to their winding number or topological charge Q: configurations that can be
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0− 0

(a)

0

− 0
(b)

Figure 7.8 (a) An instanton configuration in 2D Euclidean space-time, with topo-
logical charge Q = 1. In (2 + 1) dimensions this configuration is known as a
skyrmion or hedgehog (see the more artistic version of the skyrmion on the cover
of this book). (b) An instanton on S2 has the same topology as a monopole, that
of a “hairy ball.”

smoothly deformed into each other have the same topological charge Q. Thus
smooth configurations { �m(x)} can be classified into a discrete set of equivalence
classes, each labeled by an integer, their topological charge. Such smooth configu-
rations, known as homotopies, form a group, known as a homotopy group, since the
composition of two configurations (two smooth mappings) yields another smooth
configuration whose topological charge is the sum (with their signs) of the individ-
ual topological charges. In other words, the configurations �m(x) are mappings of
S2 into S2 with homotopy classes classified by a topological invariant, namely the
Pontryagin index Q, which can take only integer values (positive or negative). In
mathematical terms this homotopy group is represented by the expression

π2 (S2) = Z (7.78)

A clear and detailed explanation of homotopy theory in condensed matter physics
is given in Mermin (1979).

Similarly, the vortices of a 2D superfluid (or, equivalently, of a classical XY
model), as discussed in Chapter 4, are topological excitations classified by a topo-
logical invariant n ∈ Z, the winding number of the vortex. This winding number
classifies the maps of the phase of the order-parameter field on a large circumfer-
ence S1 onto the target space of the complex order-parameter field itself, which is
another S1. Hence the homotopy classes for 2D vortices are

π1(S1) � Z (7.79)
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0

− 0

x

0

Figure 7.9 A half-twist soliton: the circles represent the precession of the spins.

0

− 0

Figure 7.10 The history of a half-twist soliton: the circles (“parallels”) represent
the precession of the spins.

Back in real time we can consider soliton configurations, such as the half-twist
of Fig. 7.9. As time goes by, each spin traces a closed path on the target sphere S2

and hence it sweeps an area bound by the path. If we define that the area swept by
a spin at −∞ is equal to zero, we see that as we move from left to right the spins
sweep an increasingly large area. At +∞ the area swept is that of a full sphere, 4π .
It is easy to see that Q is also equal to 1 for the half-twist. At each point in space,
the spins are coherently precessing and keeping their relative angles constant. In
other words, the spins trace lines of longitude on a sphere. The global configu-
ration still looks like a monopole and hence also has winding number Q = +1
(Fig. 7.10).

The final conclusion is that the topological term, Eq. (7.73), is proportional
to an integer Q. The action in the path integral of Eq. (7.72) has a contribution
equal to 2π SQ, which should be added to the standard sigma-model term. Since
S is an integer or a half-integer, we find that the extra, topological, term gives a
contribution to the weight of a configuration in the path integral of

ei2π SQ = (−1)2SQ (7.80)
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Thus, if S is an integer, the spin chain is described at low energies by the standard
non-linear sigma model, without a topological term. On the other hand, for half-
integral S, each topological class contributes to the weight of the path integral with
a sign that is positive (negative) if the winding number Q is even (odd). Note that
the sign does not depend on the actual value of the spin S, but only on whether it
is an integer or a half-integer. This means that the physics of this problem is not
analytic in S: the integer- and half-integer-spin chains fall in different universality
classes. We will now see that this property implies a very important result, known
as Haldane’s conjecture, that states that the integer-spin chains are massive (i.e.
have an energy gap), whereas the half-integer-spin chains are massless as in the
spin one-half case.

7.7 Quantum fluctuations and the renormalization group

In the previous section we saw that the configuration space of the non-linear sigma
model can be partitioned into classes classified by their winding numbers

Q = 1

8π

∫
d2x εabcεi j ma ∂i mb ∂ j mc (7.81)

which is a topological invariant. Thus, the partition function can be represented as
a sum over distinct topological sectors, labeled by the topological charge Q,

Z =
∫

D �m e−SE[ �m] =
∞∑

Q=0

∫
Q
D �m e−S

E
0 [ �m]ei2π SQ (7.82)

where the subindex Q indicates that the path integral is to be taken over config-
urations with a fixed winding number Q and SE

0 [ �m] is the standard action of the
non-linear sigma model

SE
0 [ �m] =

∫
d2x

1

2g
(∇i �m)2 (7.83)

where space and time have been rescaled so as to have vs = 1.
In this section we will consider the role of quantum fluctuations. We can do

so by considering each topological class separately since these quantum fluctua-
tions are local and do not alter the winding number. In other words, the winding
number of a class of configurations cannot be changed by local fluctuations, since
the former is a global property, whereas the latter are purely local. Naturally, for
this picture to hold it is necessary that the short distance (ultraviolet) and the long
distance (infrared) of the theory remain separate. We will see that this is not the
case in one space dimension. The behavior of the non-linear sigma model is domi-
nated by infrared fluctuations. Thus the actual role, in detail, of topological sectors
is unclear.
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We will pretend that the fluctuations are local and reasonably small. This
assumption amounts to a semi-classical treatment of the path integral. Formally,
this can be achieved only if the coupling constant g is small, i.e. in the limit
S → ∞. The standard perturbative treatment of the non-linear sigma model is thus
equivalent, at low energies, to the 1/S expansion of the Heisenberg antiferromag-
net (Haldane, 1983a, 1983c). The classical action of the non-linear sigma model,
Eq. (7.83), has a very important property: it is scale-invariant. In other words the
scale transformation

(x, t) → λ(x, t), �m → �m (7.84)

leaves the action invariant. Recall that �m is dimensionless, and that the coupling
constant g is also dimensionless in (1 + 1) dimensions. In higher dimensions, g is
dimension-full. Let us define the dimensionless coupling constant u,

u = ga2−d
0 (7.85)

where d is the dimension of space-time. Thus the action now reads

SE
0 [ �m] = 1

2uad−2
0

∫
dd x(∇i �m)2 (7.86)

where i = 1, . . . , d. For the sake of simplicity the discussion will be carried out in
Euclidean space (i.e. imaginary time).

In renormalization-group theory (Wilson and Kogut, 1974), which was discussed
in detail in Chapter 4, the fact that the classical action is scale-invariant means
that g = 0 is a fixed point of the renormalization group (RG). I will define a
renormalization-group transformation for the non-linear sigma model by progres-
sively integrating out the faster modes and obtaining an effective theory for the
slower modes. This procedure involves only local degrees of freedom. Topological
invariants, such as a θ term in the Lagrangian of the non-linear sigma model, do not
get renormalized under the effects of integrating out local fluctuations. In addition,
as we saw before, the value of θ = nπ (with n ∈ Z) is fixed by the requirement of
time-reversal invariance, a symmetry that the antiferromagnet has (in combination
with a unit lattice translation).

In general, the field �m will have Fourier components with momenta �p ranging
from the infrared (| �p| ≈ 0) to the ultraviolet (| �p| ≈ 1/a0). We can also use the
constraint �m2 = 1 to demand that one of the components of the field �m, say m3,
has only fast components and that it be small (Kogut, 1979). Let m1 and m2 be
parametrized by m3 and φ (0 ≤ φ ≤ 2π),

m1 =
√

1 − m2
3 cosφ, m2 =

√
1 − m2

3 sinφ (7.87)
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so as to solve the constraint �m2 = 1. The Euclidean Lagrangian density now reads

LE
0 = 1

2uad−2
0

(∇i �m)2

= 1

2uad−2
0

[
(∇i m3)

2 + (1 − m2
3)(∇iφ)

2 + (m3 ∇i m3)
2

1 − m2
3

]
(7.88)

Let us rescale the field m3,

m3 =
√

uad−2
0 ϕ (7.89)

and write

LE
0 = 1

2
(∇iϕ)

2 + 1

2uad−2
0

(1 − uad−2
0 ϕ2)(∇iφ)

2

+ 1

2

(
uad−2

0

1 − uad−2
0 ϕ2

)
(ϕ ∇iϕ)

2 (7.90)

We will be interested in the behavior for small g (i.e. small u). In this limit we
can approximate LE

0 by the expression

LE
0 = 1

2
(∇iϕ)

2 + 1

2uad−2
0

(∇iφ)
2 − 1

2
ϕ2(∇iφ)

2

+ 1

2
uad−2

0 (ϕ ∇iϕ)
2 + 1

2
u2a2(d−2)

0 ϕ2 (ϕ ∇iϕ)
2 + O(u3) (7.91)

Both ϕ and θ have Fourier components all the way from zero momentum up to
the cutoff �∼ 1/a0. The behavior at large momenta | �p| ∼ � should not affect
very strongly phenomena taking place for small values of �p. It is then natural to
integrate out such fluctuations.

Consider the momentum shell b� < | �p| < � with b < 1 and the fluctuations
with momenta inside that shell (fast modes). We now will carry out the functional
integral∫

b�<| �p|<�
Dϕ e−SE

0 [ϕ,φ]

=
∫

b�<| �p|<�
Dϕ( �p)exp

[
−1

2

∫
dd x

(
(∇iϕ)

2 + 1

uad−2
0

(∇iφ)
2 −ϕ2(∇iφ)

2 + O(u)

)]
(7.92)

I will assume that φ is slowly varying and, hence, that (∇iφ)
2 is small and does not

have Fourier components in the shell b� < | �p| < � provided that b → 1. Thus,
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b�<| �p|<�

Dϕ( �p) exp

(
−1

2

∫
ddp

(2π)d
�p2|ϕ( �p)|2 + 1

2

∫
ddp

(2π)d
|ϕ( �p)|2(∇iφ)

2

)
≈

∏
b�<| �p|<�

[
2π

�p2 − (∇φ)2

]1/2

(7.93)

The right-hand side of Eq. (7.93) can be exponentiated and approximated by the
expression

exp

[
1

2

∫
b�<| �p|<�

ddp

(2π)d
ln

(
2π

�p2

)
+ 1

2
(∇iφ)

2
∫

b�<| �p|<�
ddp

(2π)d

1

�p2

]
(7.94)

To lowest order in u, the main effects of integrating out the fast modes in ϕ are
twofold: (a) a shift of energy and (b) a shift, or renormalization, of the coupling
constant u. Indeed, we can recast Eqs. (7.92)–(7.94) into the effective Lagrangian
density

LE
eff[φ] = −1

2

∫
b�<| �p|<�

ddp

(2π)d
ln

(
2π

�p2

)
+ 1

2
(∇iϕ)

2 + 1

2

(
1

uad−2
0

−
∫

b�<| �p|<�
ddp

(2π)d

1

�p2

)
(∇iφ)

2

− 1

2
ϕ2(∇iφ)

2 + O(u), (7.95)

with a momentum cutoff �′ which has been reduced by b. Equivalently, the spatial
cutoff a′

0 has been increased by 1/b:

�′ = b�, a′
0 = a0

b
(7.96)

The effective Lagrangian density for the slow modes LE
eff[φ] has the same form

as the old Lagrangian density except for a constant shift (of the energy density),
a new rescaled cutoff a′

0 (a
′
0 > a0), and a new renormalized coupling constant u′

defined by

1

u′a′
0

d−2 = 1

ua0
d−2

−
∫

b�<| �p|<�
ddp

(2π)d

1

�p2
(7.97)

After evaluating the integral, we get

1

u′a′
0

d−2 = 1

uad−2
0

− Sd

(2π)d

(
1 − bd−2

d − 2

)
�d−2 (7.98)

where Sd is the area of the d-dimensional unit sphere. Since b → 1 and a′
0 = a0/b,

we can write

−ln b = da0

a0
(7.99)
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uu = 0

u0

Figure 7.11 Renormalization-group infrared flow for 1D quantum spin chains; u0

is the bare coupling constant (u0 = (2/S)a2−d
0 ).

and find the (one-loop) RG β-function

β(u) = a0
du

da0
(7.100)

to be given by

β(u) = −εu + u2

2π
+ O(u3) (7.101)

for ε = d − 2 small.
In particular in (1 + 1) dimensions (d = 2) we find a positive β-function

(Polyakov, 1975).

β(u) = u2

2π
+ O(u2) (7.102)

This result means that as the cutoff a0 is increased, and we look at longer and longer
distances, the fluctuations increase the effective value of the coupling constant at
such scales (see Fig. 7.11). Thus, even though the bare coupling constant u0 ∝ 1/S
may be initially small, as we consider the effective theory at lower energies we
find that the effective coupling (“effective S”) increases (decreases). From classical
statistical mechanics we know that the sigma model at strong coupling (i.e. the
classical Heisenberg ferromagnet at high temperatures) is disordered and has a
finite correlation length. Thus, in the language of the quantum spin chains, we
get that as the “effective S” decreases the semi-classical behavior gets wiped out.
Instead we find a state without spontaneous symmetry breaking and with short-
range correlations.

7.8 Asymptotic freedom and Haldane’s conjecture

In the last section we found the result that the effective coupling constant of the
non-linear sigma model in (1 + 1) dimensions increases with the length scale.
We have chosen to present this result in the form of a β-function, Eq. (7.102),
which measures the change of the coupling constant u as the cutoff a0 (the lattice
constant) is increased and the fast degrees of freedom of the system are progres-
sively integrated out. Alternatively, we could have kept the cutoff fixed and varied
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Figure 7.12 Euclidean space-time for a system of length L at temperature T . With
periodic boundary conditions in imaginary time, the time axis becomes a circle of
length 1/T and Euclidean space-time is a cylinder.

a physical scale such as the length L of the chain or an energy scale such as the
temperature T .

At finite temperature T, the system can be viewed (in imaginary time) as a non-
linear sigma model on a strip of length L (the linear size of the chain) and width
1/T with periodic boundary conditions in imaginary time. This is the standard
statement that the partition function of a quantum system, with a global sym-
metry, in d space dimensions is equivalent to a classical mechanics problem in
(d + 1) dimensions with imaginary time being the extra dimension (Fradkin and
Susskind, 1978) (Fig. 7.12). The renormalization group of the last section can eas-
ily be generalized to an anisotropic system with spin-wave velocity vs �= 1, which
is kept fixed in the RG process.

We begin our RG process with some lattice constant a0, bare coupling u0 ∝ 1/S,
and spin-wave velocity vs. As we integrate out degrees of freedom the effec-
tive coupling grows and the spatial cutoff increases. At some point, the cutoff a
becomes of the order of vs/T . At this point the quantum fluctuations are negligible
since the cutoff is as large as the width of the strip and we have effectively a non-
linear sigma model at finite temperature T . In turn the non-linear sigma model,
in imaginary time, is identical to the classical Heisenberg model in d space-time
Euclidean dimensions. It can be easily proven that a classical Heisenberg model (or
non-linear sigma model) in one dimension, like all 1D classical systems with short-
range interactions, has a finite correlation length ξc at all temperatures (Landau and
Lifshitz, 1975a).

We can now ask how much the effective coupling u differs from the bare cou-
pling u0 if the cutoff is changed from a0 to ā0 ∼ vs/T . The β-function tells us the
dependence of u on the cutoff, at least for small enough u. The result of integrating
the differential equation
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β(u) ≡ a0
du

da0
= u2

2π
(7.103)

is
1

u(ā0)
= 1

u(a0)
+ 1

2π
ln

(
a0

ā0

)
(7.104)

By choosing ā0 to be of the order of 1/T ,

ā0 = vs

T
(7.105)

we find the temperature dependence of the coupling constant u to be

1

u(T )
= 1

u0
+ 1

2π
ln

(
a0T

vs

)
(7.106)

Equivalently, we can write

u(T ) = u0

1 + (u0/(2π))ln(a0T /vs)
(7.107)

Thus, at high temperatures, T � vs/a0, we find that the effective coupling u(T )
becomes small,

u(T ) ≈ 2π

ln(a0T /vs)
→ 0 for T → ∞ (7.108)

In other words, the effective coupling at short distances or at high temperatures is
small. This result is known as asymptotic freedom and, in this context, was first
discussed by Polyakov (1975).

Conversely, as the temperature is lowered, the effective coupling u becomes
large (Fig. 7.13). Equation (7.107) exhibits an apparent divergence at a temperature
T0, where

T0 ≈ vs

a0
e−

2π
u0 = vs

a0
e−π S (7.109)

The meaning of T0 is that of the temperature at which the weak-coupling (i.e. 1/S)
expansion breaks down. To continue down to lower temperatures, we must take into
account the fact that for T ≤ T0 the sigma model has a large effective coupling.
At this point we notice that, at large values of the coupling constant, the sigma
model is disordered no matter what the dimensionality of space-time is. Thus we
expect a finite, and short, correlation length ξ and a finite mass (or energy) gap
� = vs/ξ . The effective coupling should saturate due to lattice effects and the
constraint �m2 = 1. These ideas have been confirmed by Monte Carlo RG studies
(Shenker and Tobochnik, 1980).
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ueff

T
1/T0

Figure 7.13 Crossover of the effective (or running) coupling ueff(T ). Here T is
the temperature.

We can also use the RG to estimate the dependence of the correlation length ξ

on the bare coupling constant u0 = 2/S. Under the RG, the correlation length ξ ,
like all other physical observables, remains invariant. From dimensional analysis
we expect ξ , which is a length scale, to have the form

ξ(u) = a0 f (u) (7.110)

where f is a function of u, the coupling constant at the scale a0. Being an RG
invariant, the correlation length ξ must obey

a0
dξ

da0
= 0 (7.111)

which implies that f (u) satisfies the differential equation

β(u)
d f

du
+ f (u) = 0 (7.112)

The solution to Eq. (7.112) is

f (u) = f (u′)exp

(
−

∫ u

u′

dz

β(z)

)
= f (u′)exp

[
2π

(
1

u
− 1

u′

)]
(7.113)

where u and u′ are connected by the RG flow.
Consider now the correlation length ξ at two different values of u, namely u1

and u2, for the same value of the lattice constant a0. Let u∗ be a large reference
value of the coupling u. From Eqs. (7.110) and (7.113), we find that the correlation
length ξ obeys

ξ(ui ) = a0 f (ui ) = a0 f (u∗)exp

(
−

∫ u1

u∗

du

β(u)

)
(7.114)



7.8 Asymptotic freedom and Haldane’s conjecture 217

for i = 1, 2. Thus the ratio of two values of ξ for two different couplings and the
same lattice spacing, a0, is given by

ξ(u1)

ξ(u2)
=

a0 f (u∗)exp

(
−

∫ u1

u∗

dz

β(z)

)
a0 f (u∗)exp

(
−

∫ u2

u∗

dz

β(z)

) (7.115)

Thus, we get
ξ(u1)

ξ(u2)
= exp

(
−

∫ u1

u2

dz

β(z)

)
(7.116)

The integral can be easily evaluated to find

ξ(u1)

ξ(u2)
= exp

(
2π

u1
− 2π

u2

)
(7.117)

For the case in which u1 = u0 = 2/S and u2 is large, we find that

ξ(u0) ≈ ξ(u2)e
π S (7.118)

What value should we assign to limu2→∞ ξ(u2)? The answer depends on whether
the spin is integer or half-integer.

Integer spin. In this case we do not get a topological term. As was emphasized
above, the sigma model is always disordered at strong coupling. Thus, we expect
ξ(u2) ≈ a0 and we find a finite correlation length

ξ0 = ξ(u0) ≈ a0eπ S (7.119)

There is no long-range order (i.e. no Néel state). The spectrum has a gap

� = vs

ξ0
(7.120)

and the ground state is unique. Equation (7.119) shows that the correlation length
is non-perturbative in the 1/S expansion.

Half-integer spin. The sigma-model coupling constant u still scales to strong
coupling but the topological term remains unchanged at the value θ = 2π S (mod
2π). However, the coupling constant g ∝ u is related to the spin through S = 2/g.
Thus strong coupling is equivalent to low spin. Hence the behavior of all half-
integral-spin chains is qualitatively identical to the spin one-half case for which
u0 ∝ 4. The spin one-half case is gapless, as we saw from the Bethe-ansatz and
other approaches. Thus, ξ(∞) is still infinite. All half-integral-spin chains are at
a critical point with infinite correlation length. At first sight, this result seems to
be paradoxical. We started with smooth configurations with well-defined winding
numbers and a weak coupling g. As the energy scale was lowered the effective cou-
pling of the sigma model grew but the topological coupling remained unaffected.
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Figure 7.14 Schematic RG flows of quantum Heisenberg antiferromagnetic
chains for S = 1

2 , 1, 3
2 , 2. The open circles represent their sigma-model bare cou-

pling constant u ≈ 2/S. They all iterate to u∗ = ∞. The difference in their
behavior is a consequence of the presence of a θ = π term in the sigma model for
the half-integer-spin chains. Notice that the value of θ does not flow under the RG.

Thus, at low energies, the configurations become rough and the actual meaning
of the topological term in this situation is unclear. This poses no problems for
the integer-spin chains since the topological term does not contribute in this case
(θ = 2πS). In contrast, for half-integer-spin chains, this result simply means that,
for all half-integer values of S > 1

2 , the systems behave qualitatively in the same
way as in the S = 1

2 case.
This result, namely S integer is disordered and S half-integer is critical, is known

as Haldane’s conjecture (Haldane, 1983a, 1983c). It has also been checked by accu-
rate numerical calculations using exact diagonalization on finite (but large) chains
(Moreo, 1987; Ziman and Schulz, 1987) and by Green-function Monte Carlo sim-
ulations (Liang, 1990b). Affleck and Haldane (1987) have also found the same
result using non-abelian bosonization (Witten, 1984). The RG flows are shown in
Fig. 7.14.

7.9 Hopf term or no Hopf term?

The 1D spin chains have a very unusual behavior: disorder (integer spin) or crit-
ical (half-integer spin) ground states, neutral fermions that are massless for the
half-integer case and massive for S integer, etc. There is nothing in this picture
that is remotely close to the physics that emerges from the mean-field theory of
Chapter 3. It is then natural to ask whether or not this picture is peculiar to 1D sys-
tems or whether there is a natural generalization to higher dimensions. It is a trivial
matter to generalize the 1D formalism to the case of a square lattice. The lattice
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action is a simple generalization of Eq. (7.57). Let �r span a square lattice of size
N × N : �r = (x1, x2), where x1, x2 = 1, . . . , N . I will assume that N is even. The
action is

SM[�n] = S
∑
�r

SWZ[�n(�r)] −
∫ T

0
dx0

∑
〈�r ,�r ′〉

JS2�n(�r , x0)�n(�r ′, x0) (7.121)

where �r and �r ′ are nearest-neighboring sites on the square lattice. Since the square
lattice is bipartite and we expect short-range Néel order, we will once again stagger
the field configurations and find

SM[�n] = S
∑
�r
(−1)x1+x2SWZ[�n(�r)] +

∫ T

0
dx0

∑
〈�r ,�r ′〉

JS2�n(�r , x0)�n(�r ′, x0) (7.122)

It is straightforward, but tedious, to derive the effective action for the slowly vary-
ing fields. Once again, on the basis of symmetry, we expect a non-linear sigma
model. The issue is whether or not there is a topological term in the effective action.

Before deriving the effective action by an explicit calculation, let us consider
what topological terms are possible. In the (1+1)-dimensional case we saw that the
configurations were classified in terms of an index, the topological charge, which
labels the homotopy class of the configuration. The existence of such an index was
guaranteed by the fact that the configurations fall into homotopy classes that form
the group π2(S2) of smooth maps of the 2D Euclidean space-time S2 into the S2 of
the order-parameter manifold. This homotopy group π2(S2) is isomorphic to Z, the
group of integers, i.e. the winding numbers of the topological classes. In (2 + 1)
dimensions the situation is rather different. Once again, the Euclidean space-time
can be regarded as a sphere S3 and the configurations are maps of S3 → S2.

However, there are no smooth solutions of the classical Euclidean equations of
motion with non-trivial winding numbers. There are singular solutions known as
hedgehogs (see Fig. 7.8(b)), which have a linearly divergent action. Haldane has
argued that these hedgehogs may become relevant if the sigma model becomes
disordered by some mechanism (Haldane, 1988b). In the next chapter, we will
see that a next-nearest-neighbor antiferromagnetic interaction can trigger a quan-
tum phase transition to a dimerized state, a state with a spin gap that does not
break the SU(2) symmetry of spin and breaks translation invariance and the point-
group symmetry of the lattice. A scenario known as deconfined quantum criticality
(Senthil et al., 2004a), in which hedgehog configurations may play a central role
in this quantum phase transition, has been proposed.

On the other hand, there are non-trivial configurations in Minkowski space-time
(i.e. in real time). Consider at some time t = t0 a configuration of sigma-model
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fields identical to one of the instantons of Section 7.6, see Fig. 7.8(a). Now it rep-
resents the snapshot of an eigenstate, a soliton known as a skyrmion. Thus the
configuration space of a 2D quantum non-linear sigma model is also a sphere S2

and is usually denoted by �2S2. Consider now the real-time evolution of such a
state with periodic boundary conditions in time, i.e. consider histories in which the
initial state is the same as the final state. Thus, a history is a closed curve in the
configuration space �2S2. In quantum mechanics we are told to sum over all histo-
ries and to assign a phase to each history, i.e. to each curve in �2S2. Since a phase
is an element of S1 (the unit circle) we have constructed the set of maps π1(�2S2).
However, we know that the configurations at any given time are maps of S2 (space)
into S2 (field), i.e. homotopy classes of π2(S2), which we saw was isomorphic to
the group of integers Z. Hence the configuration space �2S2 is decomposed into a
disjoint union of path-connected pieces, each characterized by the winding number
or soliton number Q. Thus each disconnected piece of the Hilbert space will have
a separate time evolution and will have to be summed with separate phases. Since
the classical paths are continuous curves in �2S2 classified by π3(S2) = Z, the
relevant issue is now what topological invariant is associated with such histories.

Consider a history of the order-parameter field �m(�x, t) in (2 + 1) dimensions.
We can define a topological current Jμ by

Jμ = 1

8π
εμνλεabcma ∂

νmb ∂
λmc (7.123)

with μ= 0, 1, 2 and a, b, c= 1, 2, 3. The topological current Jμ is clearly
conserved,

∂μ Jμ = 0 (7.124)

Therefore the total topological charge Q = ∫
d2x J 0(�x, t) is constant in time,

Q =
∫

d2x J 0(�x, t) =
∫

d2x
1

8π
ε0i jεabcma ∂

i mb ∂
j mc (7.125)

Clearly Q is identical to the winding number Q of Eq. (7.75).
Consider now a soliton state with Q = 1 (Fig. 7.8(a)). Imagine a time evolution

in which the soliton skyrmion rotates slowly around its center and executes exactly
n turns during its lifespan. Each point on the equator of the soliton traces a curve
(“worldline”) which wraps n times around the other curves traced by the other
points, a “world-tube” (Fig. 7.15). An easy way to compute the winding number
of this history is to imagine that each worldline is a wire carrying a unit of current.
As the soliton rotates, the worldlines (“wires”) are braided. The natural topological
invariant is the linking number of these worldlines (Fig. 7.16). If we denote by �j
the current carried by the wires and by �B the magnetostatic field they create, the
linking number is simply given by Ampère’s law
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Figure 7.15 A world-tube with linking number +2.
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Figure 7.16 (a) Two worldlines PP′ and QQ′ with linking number +1. (b) Smooth
deformation of the worldline PP′ and QQ′. (c) Periodic boundary conditions in
time are enforced, P and P′ as well as Q and Q′ are identified and the worldlines
form a braid.

∫
d3x �j · �B = 2πn (7.126)

where n is an integer that counts the number of turns.
We can make this analogy more precise by using the Hopf map, which maps the

3-sphere S3 of Euclidean space-time onto the 2-sphere S2 of the target manifold of
the O(3) non-linear sigma model. Let z1 and z2 be two complex numbers satisfying
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|z1|2 + |z2|2 = 1 (7.127)

Clearly (z1, z2) span the 3-sphere S3. Define now the spinor zα (α = 1, 2). The
order-parameter field �m is related to the complex spinor zα through the map

ma = z∗ασ
a
αβzβ (7.128)

where {σ a}a=1,2,3 are the Pauli matrices. The order parameter �m also satisfies
�m2 = 1. This is the Hopf map.

It is clear that (z1, z2) has three independent parameters, whereas �m has only
two. But one of these parameters, or degrees of freedom, is unobservable since a
global charge of phase of the spinor zα(

z1

z2

)
→ eiφ

(
z1

z2

)
(7.129)

does not lead to any observable effects because �m is invariant under such gauge
transformations.

Furthermore, the action of the non-linear sigma model itself can be written in
terms of the spinor field zα. This is the C P1 model. To simplify matters I will
consider the problem with spin-wave velocity vs = 1. Let zα be a C P1 field and
Aμ an unconstrained gauge field, with Lagrangian density

LC P1 = 1

2g
|Dμz|2 (7.130)

where g is a coupling constant and Dμ is the covariant derivative

Dμ = ∂μ − i Aμ (7.131)

The functional integral is

Z =
∫

Dz̄ Dz δ(|z|2 − 1)
∫

DA eiSC P1 [z,A] (7.132)

Since LC P1 is quadratic in the gauge field Aμ, it can be integrated out exactly by a
saddle-point calculation. The saddle-point condition

δLC P1

δAμ

= 0 (7.133)

yields the gauge field as a function of the C P1 field:

Aμ = i

2
(z∗α ∂μzα − zα ∂μz∗α) ≡ − i

2
z∗α ∂

↔
μ zα (7.134)
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By substituting Eq. (7.134) into the Lagrangian density, Eq. (7.130), one finds

1

2g
(∂μ �m)2 = 1

g
|Dμz|2 (7.135)

In other words, the C P1 model and the O(3) non-linear sigma model are
equivalent.

The topological invariant, or Hopf invariant, has a very simple and natural form
in terms of the vector potentials Aμ. Consider a term in the Lagrangian density of
the form

LCS = θ

4π
εμνλAμFνλ (7.136)

which is known as a Chern–Simons term. The gauge field Aμ is constrained to be
given by Eq. (7.134), and its field strength Fμν can be related back to the sigma-
model field �m by

Fμν = ∂μAν − ∂ν Aμ ≡ �m · (∂μ �m × ∂ν �m) (7.137)

Thus, the flux associated with the gauge field Aμ is simply related to the topological
current. The Hopf invariant H is simply

H = θ

8π

∫
d3x εμνλAμFνλ (7.138)

with Aμ and Fνλ given by Eqs. (7.134) and (7.137). We will see in Chapter 9 that
a non-zero value of θ will change the statistics of the solitons (skyrmions).

But is there a Hopf term in the effective action of the quantum Heisenberg
antiferromagnet in a 2D square lattice? The only way to determine that is to
compute the effective action carefully. Dzyaloshinskii, Polyakov and Wiegmann
(Dzyaloshinskii et al., 1988; Wiegmann, 1988) have conjectured that the effective
action of the quantum antiferromagnet is a non-linear sigma model with a Hopf
term with θ = 2πS. This is a subtle business since Wu and Zee have shown that, in
its C P1 form, the Hopf term is a total derivative that does not alter the equations
of motion but changes the spin and statistics of the topological excitations (Wu and
Zee, 1984).

To see whether a Hopf term does (or does not) arise, let us first derive the effec-
tive action, following the methods of Fradkin and Stone (1988). The result will be
a sigma model without a topological term (Dombre and Read, 1988; Fradkin and
Stone, 1988; Haldane, 1988b; Ioffe and Larkin, 1988; Wen and Zee, 1988).

First, we need to integrate out the fast degrees of freedom. We write

�n(�r) = m(�r)+ (−1)x1+x2a0�l(�r) (7.139)
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Following the same procedure as that which in the 1D case led to a sigma model
with a topological term (see Eq. (7.67)), we find

LM
eff( �m, �l) = − J S2

2

(
(∂i �m)2 + 8�l 2

)
+ S

a0

�l · ( �m × ∂0 �m) (7.140)

If we now proceed to integrate out the fast modes, the �l field, we find a non-linear
sigma model without a topological term. The (bare) coupling constant and (bare)
spin-wave velocity are given by (see Eqs. (7.69) and (7.70))

g = √
2a0

2

S
vs =

√
22a0 J S (7.141)

The terms which in the 1D case gave rise to the topological term now have can-
celled each other out (at least for smooth configurations). The reason for this
cancellation can be traced back to the staggered character of the Néel state. Naively,
we expect that each row will make a contribution similar to the 1D result. But
neighboring rows are staggered in the opposite way. The result is that the terms
originating from each pair of neighboring rows now effectively cancel out. We are
assuming a lattice with an even number of rows and columns. In the case of an
odd number of rows, we may get a non-zero contribution from the last row. How-
ever, this is a boundary-condition effect which, incidentally, was not needed in the
case of the chains. But we do expect to see changes in the spectrum of elementary
excitations if we change the boundary conditions.

The argument which led to the cancellation is a bit too naive and maybe it is
dangerous. We know from the work of Wu and Zee that, at least in the CP1 rep-
resentation, the Hopf term is a total derivative. Thus, a local cancellation is not a
sufficient argument for the study of a global effect. Slowly varying configurations
may have an accumulated effect near the boundaries and yield a non-zero answer.
We can check this by computing the alternating sum �,

� = s
∑
�r
(−1)x1+x2SWZ[�n(�r)] (7.142)

for a configuration that, in the continuum limit, has soliton number Q = 1. If
we let this soliton configuration rotate slowly around its center such that it turns
exactly once during its history, the history of this configuration should have Hopf
number or linking number +1. We should choose a lattice configuration that, in
the limit of soliton radius rs large compared with the lattice spacing a0, should go
smoothly over to the continuum soliton. Any soliton profile should do the job. For
instance, we can imagine a configuration obtained by a stereographic configuration
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P = (n, m)

Figure 7.17 A soliton configuration can be generated using a stereographic pro-
jection. The spin is parallel-transported from the sphere to point P = (n,m). Its
history is pictured as an ellipse.

(Fig. 7.17). The area swept by each spin is a = 2πR2(1 − cos θ). Thus the sum
�(N ), for a system of size 2N × 2N , is given by

�(N ) =
N∑

n,m=−N+1

2πs R2(1 − cos θ(n,m))(−1)n+m (7.143)

The sphere has radius R and its south pole, which has coordinates (α1, α2), is in
the first unit cell. The radius of the soliton rs is equal to the diameter 2R of the
sphere, if we define the radius as the location in which the spins are orthogonal to
the asymptotic configuration at spatial infinity. Hence we find

�(N ) =
N∑

n,m=−N+1

16πs R4eiπ(n+m)

4R2 + (n − α1)2 + (m − α2)2
(7.144)

In the thermodynamic limit, N →∞, and by making use of the Poisson summation
formula

+∞∑
n=−∞

f (n) =
+∞∑

n=−∞

∫ +∞

−∞
dk

2π
ei2πkn f (k) (7.145)

we get for � ≡ limN→∞�(N )

� =
∫

d2k

(2π)2

∑
�n

16πs R4ei2π(�k+�α)·(�n+ �G)

4R2 + �k2
(7.146)
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where �G = ( 1
2 ,

1
2). In the limit R → ∞ it is easy to see that � is exponentially

small since we can write

� =
+∞∑

n1,n2=−∞
8s R4ei2π �α·(�n+ �G)K0(πrs|�n + �G|) (7.147)

where K0(x) is the modified Bessel function. Thus, for rs � 1, we may keep just
the leading terms:

� ≈ 4s

(
rs√

2

)5/2

e
− 2π√

2
rs+i2π(α1+α2) cos(πα1)cos(πα2) (7.148)

This expression vanishes exponentially fast for solitons with radius rs � 1/(π
√

2).
Notice that even fairly small solitons with radius rs ≈ 1 are “large” according to
this criterion. We must conclude that if we expect to see Néel order (even if this
were true only at short distances!) the effective theory at long distances is given
by a non-linear sigma model with renormalized coupling constant and spin-wave
velocity. Phenomenologically this is what the experiments in La2CuO4 indicate
(Chakravarty et al., 1988). In Section 7.7 we calculated the one-loop β-function
for the non-linear sigma model in (2 + ε) dimensions (here 2 means (1 + 1)). We
found the result (see Eq. (7.101))

β(u) = −εu + u2

2π
+ O(u3) (7.149)

For space-time dimensions D > 2, the fixed point at the origin, u∗ = 0, is infrared-
stable. This means that, if the bare dimensionless coupling constant u is sufficiently
small, the effective coupling flows toward the u = 0 fixed point and we have a Néel
state with weakly coupled spin waves. However, for space-time dimensions D > 2
(ε > 0), Eq. (7.101) has another fixed point at u∗ ≈ 2πε, which is infrared-
unstable. This fixed point is the location of a second-order (continuous) quantum
phase transition as a function of the coupling constant. Beyond this fixed point, i.e.
for u > u∗, the effective coupling flows toward the u = ∞ fixed point just as in
the (1+ 1)-dimensional case. However, now we no longer have a topological term.
Thus, we must conclude that, for u > u∗, the system is disordered (and hence has a
finite energy gap) at distances longer than some correlation length ξ ∼ |u − u∗|−ν ,
where ν = 1/(D − 2) + O(D − 2), and Néel-like order at scales between the
lattice constant a0 and the correlation length ξ . Such a state is a zero-temperature
quantum paramagnet (QP), i.e. a paramagnetic state driven purely by quantum
fluctuations, with the absence of thermal fluctuations. A finite correlation length
without long-range order means that the ground state is unique, and there is an
energy gap � = vs/ξ for the elementary excitations (“spin waves”).
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The theory described here, which is based on the (2+ ε) expansion, is too crude
to reliably predict the value of u∗, and hence of the gap. Since we saw that our
approximations were equivalent to (a resummation of) the 1/S expansion, we must
also conclude that u∗ cannot be calculated with confidence from the 1/S expan-
sion either. Qualitatively, we should still expect a non-trivial fixed point for ε = 1.
The perturbative β-function predicts that for ε≈ 1 even S = 1

2 on a square lat-
tice is on the Néel side of the phase transition, although not far from it. This
result appears to be consistent with existent experimental data on quasi-2D sys-
tems believed to be reasonably well described by the S = 1

2 quantum Heisenberg
antiferromagnet such as La2CuO4. Experimentally (Shirane et al., 1987) one sees
a Néel state but with a magnetic moment about 50% of its classical value. The
dynamical structure factor predicted by the non-linear sigma model (Chakravarty
et al., 1988) is also consistent with these experiments. Numerical calculations on
2D quantum Heisenberg models also exhibit a similar behavior (Liang et al., 1988;
Liang, 1990a; Manousakis, 1991).

7.10 The Wess–Zumino–Witten model

We will now go back to the problem of the quantum Heisenberg antiferromagnet in
one dimension. In Section 7.5 we found that the effective action for a model with
spin degrees of freedom in the spin-S representation is described by a non-linear
sigma model with a topological θ term, Eq. (7.68). Here θ = 2πS, which is an even
multiple of π for S integer and an odd multiple of π for S a half-integer. We saw
that the role of the topological term was to weight by exp(iθQ) the contribution to
the path integral of configurations with topological charge Q. Since the topological
charge is an integer the weight is equal to 1 for integer-spin chains and (−1)Q for
half-integer-spin chains.

A subsequent RG analysis showed that the non-linear sigma model is asymp-
totically free and hence that the effective coupling constant always flows to strong
coupling. For integer-spin chains this implies that there is a finite mass (or energy)
gap in the spectrum and that there is no long-range antiferromagnetic order. On the
other hand, for half-integer-spin chains the coupling constant still flows to strong
coupling under the RG flow, but the topological term does not, since (being topo-
logical) it is unaffected by local fluctuations. Hence all half-integer-spin chains
flow to the same strong-coupling fixed point, which we identified as that of the
spin-1/2 chain, which is gapless (and hence critical) according to the Bethe ansatz.
This is the essence of Haldane’s result.

This result is very elegant and clearly shows why the two classes of spin chains
must behave differently, but it does not identify the non-trivial fixed point for the
half-integer-spin chains. In this section we will show (Affleck, 1986a; Affleck and
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Haldane, 1987) that this fixed point is the SU(2)1 (“level 1”) Wess–Zumino–Witten
(WZW) model (Witten, 1984), which is a scale-invariant field theory in (1 + 1)
dimensions that is exactly solvable using methods of conformal field theory (CFT)
(Knizhnik and Zamolodchikov, 1984). We will not go over the full structure of
CFT, a subject for which there are extensive reviews (Belavin et al., 1984; Di
Francesco et al., 1997), but instead we will discuss the basic results and their phys-
ical consequences. Since all half-integer-spin chains flow to the same fixed point,
it will be sufficient to study this question for the spin-1/2 chain. The key tool in
the construction of the fixed-point theory of the spin-1/2 chain is the concept of
non-abelian bosonization (Witten, 1984).

We begin with a brief description of non-abelian bosonization. As in the abelian
case, discussed in detail in Section 5.6, non-abelian bosonization expresses the
algebra of the currents and densities, in this case the spin currents and densities. We
will seek a bosonic theory with the same global symmetries as the fermionic theory
and whose currents satisfy the same algebra as that satisfied by their fermionic
cousins. Thus we consider a system with two chiral fermionic fields ψR,σ and ψL,σ

(with σ = ↑,↓) and the associated spin currents J a
R(x) = 1

2ψ
†
R,σ (x)τ

a
σ,σ ′ψR,σ ′(x)

and J a
L (x) = 1

2ψ
†
L,σ (x)τ

a
σ,σ ′ψL,σ ′(x) (with a = 1, 2, 3) (Eq. (6.69)), which satisfy

the SU(2)1 Kac–Moody (current) algebra of Eq. (6.71),[
J a

R(x), J b
R(y)

] = iεabc J c
R(x)δ(x − y)+ i

k

4π
δabδ′(x − y)[

J a
L (x), J b

L (y)
] = iεabc J c

L(x)δ(x − y)− i
k

4π
δabδ′(x − y)

(7.150)

with level k = 1. Since we are dealing with charged (Dirac) fermions, there are also
two chiral currents associated with the global U(1) symmetry, which we associate
with charge and hence with gauge invariance. In the more general case in which
there are N chiral fermions (instead of two for the case of spin), the symmetry
becomes SU(N ). In this case the εabc tensor in Eq. (7.150) (the same as Eq. (6.71))
is replaced by the structure constants f abc of SU(N ).

Since both up and down fermions contribute to the U(1) current, the associated
U(1) Kac–Moody algebra has level k = 2. The total symmetry of the free fermions
with spin is thus U(1)2×SU(2)1. Equivalently, we can represent each Dirac fermion
in terms of a pair of (neutral) Majorana fermions, ψR,σ (x) = χR,σ (x) + iηR,σ (x)
(and similarly for the left-moving fields). We can regard our set of 2N (N = 2
for SU(2)) chiral Majorana fermions as forming a vector of 2N components. The
symmetry is now (in general) O(2N ) � U(1)×SU(N ) and the fermions transform
as the 2N (fundamental) representation of O(2N ).

Following Witten (1984) we seek a representation of this current algebra in terms
of a set of bosonic fields. (An alternative derivation of non-abelian bosonization
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using an analysis of field-theoretic anomalies in the path-integral formulation was
developed by Polyakov and Wiegmann (1983, 1984).) However, unlike in the
abelian case, the bosonic fields are not free. Rather the bosonized theory is a special
type of non-linear sigma model whose fields will be denoted by g(x), which, in the
case of electrons with spin 1/2, are 2 × 2 matrices that take values on the elements
of the group SU(2). In the general case the matrix field g(x) takes values on a
compact Lie group G. Thus, the non-linear sigma model will in general be given in
terms of a matrix-valued field, i.e. an element of a compact Lie group at every point
of space-time. In quantum field theory, a non-linear sigma model taking values on a
group manifold is known as the principal chiral field (Polyakov, 1987). On the other
hand, a matrix-valued field has a larger GL × GR symmetry g(x) → hLg(x)h−1

R

since the field can be multiplied by two independent constant matrices h−1
R (multi-

plying on the right), with hR ∈ GR, and hL (multiplying on the left), with hL ∈ GL.
We will see that these two symmetries are associated with the two chiral currents.

In what follows we will discuss a theory of N free Dirac (charged) Fermi fields
ψ i

R(x) and ψ i
L(x), with i = 1, . . . , N , in terms of which we can construct a U(1)

current

JR = ψ
i†
R ψ

i
R, JL = ψ

i†
L ψ

i
L (7.151)

and the SU(N ) currents

J a
R = ψ

i†
R ta

i jψ
j

R, J a
L = ψ

i†
L ta

i jψ
j

L (7.152)

where {ta
i j } are N × N (hermitian) matrices, the N 2 − 1 generators of SU(N ) (in

the fundamental representation). (We use the normalization tr(tatb) = 1
2δab.)

The Lagrangian for free massless Dirac fermions in (1 + 1) dimensions is

L = ψ̄
†
i (x)iγμ ∂

μψi (x) (7.153)

where ψ̄i = ψ
†
i γ0. The free massless Dirac fermion Lagrangian of Eq. (7.153) is

a fixed point under the renormalization group and it represents a scale-invariant
system.

For free (massless) fermions the chiral currents J i j
R and J i j

L obey the conservation
laws

∂− J i j
R = 0, ∂+ J i j

L = 0 (7.154)

where I use so-called light-cone components with x± = (1/
√

2)(x0 ± x1) and
∂± = ∂/∂x±. These conservation laws can be satisfied by writing (Witten, 1984)

JR(x) = i

2π
g−1(x)∂+g(x), JL(x) = − i

2π
(∂−g(x))g−1(x) (7.155)

where I have suppressed the indices i, j . The two conservation laws are now
∂−(g−1 ∂+g) = 0 and ∂+((∂−g)g−1) = 0 (which are equivalent to each other).
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Now we ask which action the scalar (bosonic) field g(x) should obey. Witten
showed that the simple guess that it should be the action of the principal chiral-field
non-linear sigma model (with coupling constant λ)

L = 1

4λ2

∫
d2x tr

(
∂μg ∂μg−1

)
(7.156)

(where tr is a matrix trace) does not work, for several reasons. One important rea-
son is that the RG beta function is in general non-vanishing (unless the (Ricci)
curvature of the group manifold G vanishes and the manifold is then said to be
“Ricci flat”) (Friedan, 1985) and hence it is not scale-invariant. For G = SU(N )
the beta function is positive, β(λ) > 0, and hence this theory is asymptotically
free. Thus, for any λ > 0, the theory of Eq. (7.156) represents a theory with a
non-vanishing mass gap while the theory of free fermions is massless. Hence, they
cannot be equivalent to each other.

The equivalent bosonized theory turns out to be more subtle. Witten showed that
the action of the bosonized theory is the action of the non-linear sigma model of
Eq. (7.156) with an additional term, a Wess–Zumino term �[g], which we will
now define. Let us consider for the moment the theory in Euclidean space-time and
work with boundary conditions in which the fields take an arbitrary but constant
value at infinity. In this case, as we did before in our discussion of the skyrmion and
of the instanton, the Euclidean space-time becomes isomorphic to a 2-sphere S2.
For any compact Lie group G, such as O(N ) or SU(N ), the field configurations are
maps S2 → G, which are topologically trivial and have a trivial homotopy group,
π2(G) = 0. Hence, it is possible to extend smoothly the field configuration g(x)
from S2 to a function ḡ(y) defined in the ball B, the interior of S2 (here yi are the
coordinates in B). The Wess–Zumino action is given by

�[g] = 1

24π

∫
B

d3 y εi jk tr
(
ḡ−1 ∂i ḡḡ−1 ∂ j ḡḡ−1 ∂k ḡ

)
(7.157)

However, this action is not single-valued as there are topologically inequivalent
ways to extend a configuration g(x) from S2 to the ball B. To see why this is
so, let us consider that, if we work on a compactified 3D space, isomorphic to
S3, there is an ambiguity in what we regard as the “interior” of the 2-sphere S2,
and hence on how to extend the configuration. The difference of two extensions
(defined on the “interior” of S2 and on the “exterior” of S2) is a map from S3 →G.
For G =SU(N ), such maps are topologically non-trivial and are classified by the
homotopy group

π3(SU(N )) � Z (7.158)

It follows from this result that the Wess–Zumino action is multivalued and that for
two inequivalent extensions �[g] is defined only modulo 2π , � → � + 2πr , with
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r ∈ Z. The reader should by now have seen the close analogy between this line of
argument and the one we used in the path integral for spin at the beginning of this
chapter.

These considerations led Witten to conjecture that the correct non-linear sigma
model has the following action:

S[g] = 1

4λ2

∫
d2x tr

(
∂μg ∂μg−1

) + k�[g] (7.159)

where k ∈ Z for the weight of the path integral to be single-valued. The action
of Eq. (7.159) is known as the Wess–Zumino–Witten (WZW) model. The integer-
valued coupling constant k is known as the level of the WZW model and of the
associated Kac–Moody algebra, Eq. (7.150).

For the WZW model to be equivalent to a theory of free fermions (or to some
other fixed-point theory) it must have a fixed point for some value of the coupling
constant λ and of the level k. At small λ the non-linear sigma-model term domi-
nates and we know that in this regime this theory has a positive beta function and it
is asymptotically free. Thus, the fixed point we are looking for must occur at some
finite value of the coupling constant. A one-loop computation of the beta function
(Witten, 1984) yields the result for G = SU(N ):

β(λ, k) =
(

N

4π

)
λ2

[
1 −

(
λ2k

4π

)2
]
+ · · · (7.160)

The constraint that the path integral be single-valued fixes the level k to be an
integer. As such, it does not flow under the local fluctuations, and it is invariant
under the action of the RG. Nevertheless, the Wess–Zumino term does contribute
to the beta function of the coupling constant λ, as shown in Eq. (7.160).

Thus, provided that this one-loop result turns out to be exact, this result predicts
the existence of a stable fixed point at a critical value of the coupling constant λ2

c =
4π/k. Furthermore, Witten also showed that at the classical level the WZW model
is compatible with the chiral conservation laws of Eq. (7.154) for the bosonized
currents of Eq. (7.155) only if the coupling constant λ and the level k satisfy λ2 =
4π/k. In particular, the level k of the WZW model and that of the Kac–Moody
algebra are the same. This led to the conjecture that the WZW model must indeed
have an exact fixed point (i.e. an exact zero of the beta function) at this value of the
coupling constant even beyond perturbation theory. This was proven to be correct
by Knizhnik and Zamolodchikov (1984) using methods of CFT.

Returning to the relation between the free Dirac fermion theory (with G =
SU(N ) global symmetry) and the WZW theory, we are led to conclude that this
identification should hold for level k = 1. Thus, a theory of N free Dirac fermions
is equivalent to an SU(N )1 WZW model at its fixed point and a U(1) free boson.
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Thus, the conjectured equivalent bosonized action is a sum of two terms, one
representing the U(1) currents and another a WZW model with SU(N ) symmetry

S =
∫

d2x
1

2

(
∂μϕ

)2 + Sk=1
WZW[g] (7.161)

where Sk=1
WZW[g] is the action of the WZW model at its fixed point λ2 = 4π/k at

level k = 1.
At the operator level this implies that the non-abelian chiral currents of the

fermionic theory, Eq. (7.152), must be identified with the chiral currents of the
WZW model, Eq. (7.155):

J a
R = ψ

i†
R ta

i jψ
j

R = 1

2π
tr
(
tag−1(∂+g)

)
J a

L = ψ
i†
L ta

i jψ
j

R = 1

2π
tr
(
ta(∂−g)g−1

) (7.162)

The abelian U(1) currents are bosonized as before,

Jμ =
√

N

π
εμν ∂

νϕ (7.163)

A similar identification can be made between the currents of the WZW model
and the fermionic currents. Indeed, the operators of Eq. (7.162) have the same
correlation functions as their fermionic counterparts,

〈J a
R(z)J b

R(0)〉 =
δab

z2
, 〈J a

L (z̄)J b
L (0)〉 =

δab

z̄2
(7.164)

where (in Euclidean space-time) z = x1 + i x0 and z̄ = x1 − i x0. Hence, the
respective operators have the same scaling dimension �J = 1. They also have the
same three-point functions (and hence they also have the same OPEs) because they
satisfy the same Kac–Moody algebra (as it turns out, this holds for all values of the
level k). Since the Kac–Moody currents generate the spectrum, their spectra are
also the same.

It remains to find an identification (a bosonization identity) for the Dirac fermion
bilinears which mix right- and left-moving sectors, i.e. mass terms, of the form

Qa = tr
(
ψ

i†
R ta

i jψ
j

L

)
. In the free-fermion theory this operator has scaling dimension

1 and it transforms as a group element under the SU(N ) × U(1) symmetry (both
right and left). The natural candidate identification is

tr
(
ψ

i†
R ta

i jψ
j

L

)
∝ tr

(
tag(x)

)
ei
√

4π
N ϕ(x) (7.165)

The last factor is due to the U(1) sector and has scaling dimension 1/N . On the
other hand, since the WZW field g(x) is classically dimensionless, for this identity
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to hold it is required that at the quantum level it should have an anomalous dimen-
sion (N − 1)/N so that the free Dirac bilinear has scaling dimension 1. We will
see that this is indeed the case.

7.11 A (brief) introduction to conformal field theory

To prove that the operator identifications we just discussed are correct it is neces-
sary to have an exact solution of the WZW at its fixed point, λ2

c = 4π/k. This
is a non-trivial problem whose solution was found by Knizhnik and Zamolod-
chikov (1984) using methods of conformal field theory (CFT). We will not give
a derivation of these results, but instead give a brief description suitable for our
purposes (Affleck, 1986a, 1990). An in-depth treatment of CFT can be found in
several texts, see e.g. Di Francesco et al. (1997) and Polchinski (1998).

In Eq. (6.73) we showed that the free (Dirac)-fermion Hamiltonian density can
be written as a Sugawara form, a quadratic form of the SU(2) and U(1) currents
in which the chiral components are decoupled. For a system with SU(N ) × U(1)
symmetry the free-Dirac-fermion Hamiltonian density is

H = TR + TL (7.166)

where TR and TL are the right- and left-moving components of the energy–
momentum tensor, which in this system can be written in terms of the currents
(here we have set the velocities to 1 for simplicity)

TR = π

N
JR JR + 2π

N + 1
J a

R J a
R

TL = π

N
JL JL + 2π

N + 1
J a

L J a
L

(7.167)

which implies that the spectrum is generated by the Kac–Moody currents.
In a theory with translation and Lorentz invariance, the energy–momentum

tensor Tμν is locally conserved and symmetric,

∂μTμν = 0, Tμν = Tνμ (7.168)

If the system is also scale-invariant, Tμν is also traceless, T μ
μ = 0. Since T 00 = and

T 01 are the Hamiltonian and linear momentum densities, H and P , we have

T 00 = −T 11 = H = TR + TL, T 01 = T 10 = P = TR − TL (7.169)

On the other hand, the chiral components of the energy–momentum tensor, TR and
TL, are the local generators of the (infinite-dimensional) group of local conformal
transformations in (1 + 1) dimensions (Di Francesco et al., 1997). They obey the
equal-time commutation relations
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TR(x), TR(x

′)
] = iδ(x − x ′)T ′

R(x)+ i2δ′(x − x ′)TR(x)+ i
c

24π
δ′′′(x − x ′)[

TL(x), TL(x
′)
] = iδ(x − x ′)T ′

L(x)+ i2δ′(x − x ′)TL(x)− i
c

24π
δ′′′(x − x ′)

(7.170)

These operator identities are known as the Virasoro algebra. The last term is known
as the conformal anomaly of the Virasoro algebra, and the (positive) real number c
is the central charge of this algebra.

Conformal field theory is a symmetry-based theory of the classification of
fixed points in (1 + 1) dimensions (Belavin et al., 1984; Cardy, 1984; Friedan
et al., 1984). It works much in the same way as group theory allows for a classi-
fication of wave functions and quantum numbers of states in quantum mechanics
without reference to a specific Hamiltonian. A key CFT result is the statement
that the fixed-point theories in (1 + 1)-dimensional quantum systems and, equiv-
alently, 2D classical critical statistical-mechanical systems, are representations of
the (infinite-dimensional) conformal group generated by the energy–momentum
tensor (which satisfies the Virasoro algebra). A given fixed point is characterized
by a complete set of operators {φ�(x)}, called primary fields, which transform sim-
ply (irreducibly) under the action of the conformal group, i.e. under a local scale
transformation x → λx ,

φ�(λx) → λ−��φ�(x) (7.171)

where we recognize {��} as the set of the scaling dimensions which play the role
of the quantum numbers. Similarly, under a Lorentz transformation (or a rotation
in the Euclidean metric), the primary fields transform with a well-defined (confor-
mal) spin, {s�}. In CFT the chiral components of the energy–momentum tensor,
TR and TL, act independently. This leads to two separate conformal dimensions
(or weights), usually denoted by h� and h̄�. For a chirally invariant (symmet-
ric) system, the scaling dimension and spin are expressed as �� = h� + h̄� and
s� = h� − h̄�. A CFT is given by a specific value of the central charge c, a com-
plete set of primary fields, their scaling dimensions (and conformal spins, not to be
confused with the conventional spin), and the full set of universal coefficients of
their OPE.

The central charge c of the Virasoro algebra, Eq. (7.170), plays a key role in
CFT. As we noted above, in a CFT the energy–momentum tensor Tμν is conserved,
symmetric, and traceless. These symmetry properties follow from the definition of
the energy–momentum tensor as the response to a change of the metric gμν ,

Tμν(x) = δS

δgμν(x)
(7.172)
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and from the Lorentz invariance of the action (rotational invariance in the Euclidean
metric, where it is interpreted as a stress tensor).

We will now consider a general (1 + 1)-dimensional CFT in (2D) Euclidean
space-time (i.e. in imaginary time) and consider the system to be defined on a
cylinder: an infinitely long strip of width β (with periodic boundary conditions
along this direction). The path integral of the CFT can be regarded as the partition
function of a system in classical statistical mechanics on a finite-sized region or,
equivalently, as the quantum partition function of a conformally invariant quantum
field theory at temperature T = β−1. An operator φ (a primary field) with scaling
dimension �φ has the (connected) correlation function in the infinite Euclidean
plane

〈φ(z1)φ(z2)〉c = 1

|z1 − z2|2�φ
(7.173)

The correlator on the strip can be found by the conformal mapping

w = β

2π
ln z (7.174)

Under a conformal mapping the correlator of a primary field obeys the transforma-
tion law (Belavin et al., 1984)

〈φ(z1)φ(z2)〉 = |w′(z1)|�φ |w′(z2)|�φ 〈φ(w(z1))φ(w(z2))〉 (7.175)

Thus, at “equal times” (the same value of the periodic or compactified coordinate)
the correlator becomes

〈φ(0)φ(w)〉 = 1

[(β/π)sinh(πw/β)]2�φ
(7.176)

This shows that on the cylinder (i.e. at finite temperature T ) the correlation function
decays exponentially at long separations as

〈φ(0)φ(w)〉 ∼ e−|w|/�φ (7.177)

with

�φ = (2πT�φ)
−1 (7.178)

If we now regard the cylinder as running along the imaginary-time direction and
having circumference L , this result can be interpreted as the statement that the
autocorrelation function (i.e. at equal position in space) decays exponentially in
(imaginary) time, with a characteristic energy gap �(L) for the excitation created
by the primary field φ which scales to zero as L → ∞ (since the theory in the
thermodynamic limit must be gapless to be conformal) with the law

�(L) = 2π�φ

L
(7.179)
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These results offer a direct and practical way to compute scaling dimensions and
this method is used extensively in numerical simulations.

The energy–momentum tensor is traceless only if the action, and hence the par-
tition function, is scale-invariant. However, if the metric gμν has a non-vanishing
scalar curvature R(x) (i.e. in the Euclidean case the system is placed on a curved
surface), which now supplies a scale, the energy–momentum tensor can have a
non-vanishing trace. A key result from CFT is an identity, known as the trace (or
conformal) anomaly, that relates the expectation value of the trace of the energy–
momentum tensor, 〈T μ

μ (x)〉, to the central charge c of the CFT (Polyakov, 1981;
Friedan, 1984):

−gμν(x)
δZ

δgμν(x)
= 〈T μ

μ (x)〉 =
c

48π

(
R(x)+ μ2

)
(7.180)

where R(x) is the scalar curvature andμ2 is a non-universal constant (of dimension
L−2). This general result has many important consequences.

On an infinitely long strip geometry, the free energy F = −ln Z for large values
of the strip width β (i.e. low temperatures in the quantum version) is expected to
obey the finite-size scaling behavior

F = fβ + f ∗ + A

β
+ O(β−2) (7.181)

where f is the free energy per unit length, f ∗ is a constant term due to edge contri-
butions (and hence absent for systems with periodic boundary conditions such as a
cylinder), and A is a dimensionless constant that is (presumably) universal (though
dependent on the choice of boundary conditions).

We will see now that CFT predicts a specific relation between the constant A and
the central charge c: A = −πc/6 for periodic boundary conditions (A = −πc/24
for fixed and free boundary conditions) (Affleck, 1986b; Blöte et al., 1986). We
will follow Blöte et al. (1986) and consider a coordinate transformation xμ →
xμ+ αμ (of the strip), which is not a conformal transformation (and hence it is not a
symmetry transformation), e.g. a shear distortion. Such a coordinate transformation
causes a change in the action S of the system of the form

δS = −
∫

∂αμ

∂xν
Tμν(x)d

2x (7.182)

If we denote the coordinates on the strip by (u, v) we can denote an infinitesimal
non-conformal transformation as u′ = u(1 − λ) and v′ = v(1 + λ) with λ � 1.
Indeed, the change in the expectation value of the action (or the internal energy in
the classical statistical-mechanical version) is (for a system with periodic boundary
conditions)

δ〈S〉 = 2βλ
∫ ∞

−∞

(〈T 〉 + 〈T̄ 〉)du (7.183)



7.11 A (brief) introduction to conformal field theory 237

The invariance of the partition function implies that there is a compensating change
in the free energy δF = −2λA/β. Therefore, A = 2β2〈T 〉 (since 〈T 〉 = 〈T̄ 〉). On
the other hand, the (response) change in 〈T 〉 to a change δS in the action, to lowest
order (“linear response”), is

δ〈T (0)〉 = −2λ
∫ ∞

−∞
du

∫ β

0
dv〈T (0, 0)T (u, v)〉c (7.184)

We now note that the (connected) correlators of the energy–momentum tensor on
the strip also obey a scaling law

〈T (0)T (w)〉c = c/2

[(β/π)sinh(πw/β)]4 (7.185)

which follows from the fact that the scaling dimension of the energy–momentum
tensor is 2. This is an exact property of the energy–momentum tensor in all CFTs,
which is protected by the fact that it is a conserved current (and hence cannot
have an anomalous dimension). The prefactor of c/2 arises from the conformal
anomaly of the Virasoro algebra. Here we work in the Euclidean metric and denote
TR = T and TL = T̄ , which are holomorphic and antiholomorphic functions of
z = x1 + i x2 and z̄ = x1 − i x2, respectively. Even if 〈T 〉 = 0 on the infinite plane,
it is generally non-vanishing on the strip geometry. It is precisely this change that
we will need in order to derive Eq. (7.181) and to evaluate the constant A. By
evaluating the integrals in Eq. (7.184) we find δ〈T 〉 = π2c/(6β2), which must
equal δ〈T 〉 = −Aλ/β2. Hence, A = −(π/6)c.

Two conclusions can be drawn from this result. The first is that the ground-
state energy density ε(L) at T = 0 of a critical system with length L with
periodic boundary conditions in space obeys the finite-size scaling behavior
(Affleck, 1986b; Blöte et al., 1986)

ε(L) = ε0 − πc

6vL2
+ · · · (7.186)

where ε0 is the (non-universal) ground-state energy density, c is the central charge,
and v is the speed of the excitations (which above we have set to 1). The second
term in Eq. (7.186) is the Casimir energy. It represents the leading finite-size cor-
rection, and also has the interpretation of an effective interaction between the edges
due to the quantum vacuum fluctuations.

For the second case, we now consider an infinite system at finite temperature
T > 0, whereupon this result becomes an asymptotic expansion for the free-energy
density f (T ) at low temperatures,

f (T ) = ε0 − πc

6v
T 2 + · · · (7.187)
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From this result it follows that the low-temperature heat capacity C(T ) is

C(T )

L
= πck2

BT

3�v
+ · · · (7.188)

(where we restored standard units). Therefore, the specific heat of a critical
(Lorentz-invariant) 1D quantum system has the universal form of Eq. (7.188), and
is proportional to the central charge c of the CFT. This result motivates the inter-
pretation of the central charge c as counting the number of degrees of freedom in a
physical system.

7.12 The Wess–Zumino–Witten conformal field theory

In the case of systems with a locally conserved current (associated with a global
continuous symmetry), such as free Dirac fermions (among others), the representa-
tions of the Kac–Moody algebras are automatically representations of the Virasoro
algebra since the energy–momentum tensor can (in that case) be expressed in terms
of the Kac–Moody currents which generate the spectrum. Thus, in this case the
central charge c, the scaling dimensions of the primary fields, and their OPE coef-
ficients are fully determined in terms of the level k of the Kac–Moody algebra and
by the transformation laws of the states under the symmetry generated by these
currents. The level k is the central charge (or extension) of the Kac–Moody algebra
of the currents.

For example, this is the case for free Dirac fermions with a U(1) symmetry. In
the free-Dirac-fermion system the primary fields are the Fermi fields themselves
and the composite operators such as fermion bilinears, i.e. the U(1) currents and
the order parameters that we discussed in Section 5.6. In that section we introduced
abelian bosonization and saw that there is an equivalent bosonic theory in which the
operators of the fermionic theory are represented by vertex operators with the form
of exponentials of the bosonic field. Both theories, the free Dirac fermion and the
free bosonic (scalar) field, are fixed-point theories and are conformally invariant.
However, not all possible vertex operators of the bosonic system have a counterpart
in the fermionic system. In fact the number of allowed vertex operators is certainly
smaller than the set of all possible ones. The way we constructed the set of allowed
vertex operators was to first find a mapping of the currents and then a mapping of
the fermionic operators themselves in their Mandelstam representation. The other
operators were then obtained using the OPE.

We can reverse the logic of this construction and ask which vertex operators of
the bosonic theory should be allowed in the first place. The key property obeyed by
all the allowed vertex operators we constructed is that they are local with respect to
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the Dirac field (or, more properly, with respect to its bosonized version). This prop-
erty means that at equal times the allowed operators commute (or anti-commute)
with the Dirac fermion. The vertex operators which obey this property are those of a
bosonic field φ(x) with compactification radius R = 1/

√
4π (in the normalization

used in Section 5.6), presented in Eqs. (6.63)–(6.66). Recall that the free bosonic
field is a scalar field with the global U(1) shift symmetry φ(x) → φ(x)+ α (with
α real and arbitrary).

In the Dirac theory this U(1) (shift) transformation corresponds to a continuous
chiral transformation, ψ(x) → exp(iαγ5)ψ(x), which, as we saw in our discus-
sion of the Luttinger liquid, corresponds to a rigid translation of the charge-density
profile. Thus, the quantum numbers of the vertex operators of the bosonic theory
are the charges of these operators under the U(1) chiral symmetry. More impor-
tantly, it can be shown (Di Francesco et al., 1997) that the bosonic theory (with
compactification radius R = 1/

√
4π ) and that of the free Dirac fermion have the

same partition function and therefore that their spectrum is the same.
Conformal field theory is a theory of fixed points (in the RG sense). Thus, we

are interested in looking at the operators that survive under the action of the RG
flow. As we know, the only operators that survive the RG flow are either relevant
(those whose weight in the effective action grows indefinitely under the action of
the RG) or marginal (those whose weight in the action either remains unchanged
or changes by a finite amount under the RG). In contrast, the weight of irrelevant
operators to the effective action flows to zero under the RG. The counterpart of
these observations is that in the OPE of the primary fields irrelevant operators enter
in the form of analytic (non-singular) terms that vanish in the asymptotic limit.

These observations motivate the consideration of CFTs with a finite number of
primary fields, which are either relevant or marginal, i.e. with scaling dimension
less than or equal to 2, and hence their OPEs are singular. In such a theory each
primary field has an associated set of states, called a Verma module, created by
the so-called descendants (irrelevant operators) of the primary field. A CFT with a
finite number of primary fields is called a rational CFT (RCFT) (Ginsparg, 1989).
The bosonized theory of the Dirac fermion is an example of an RCFT.

Perhaps the best-known (and most famous) and simplest example of an RCFT is
the fixed-point theory of the classical 2D Ising model (which was solved originally
by Onsager in 1944) and its quantum counterpart, the quantum Ising chain in a
transverse field (see Chapter 5). The transfer matrix of the classical 2D model, or
alternatively the Hamiltonian of the transverse Ising model chain, can be mapped
using a Jordan–Wigner transformation to a system of 1D lattice fermions, qualita-
tively representing domain walls of the spin system (Schultz et al., 1964). However,
due to the Z2 symmetry of the Ising model, the quantum Hamiltonian of the equiv-
alent system does not conserve fermion number but only fermionic parity. In the
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critical regime, in which the gap of the fermionic spectrum becomes vanishingly
small, this system is represented by an effective field theory of Majorana fermions,
instead of Dirac fermions, whose mass is tuned to zero at the (quantum) critical
point. Since a theory of Majorana fermions has half the number of degrees of free-
dom of the Dirac field, the central charge of the Ising CFT is c = 1/2 (instead
of c = 1 for Dirac fermions). In addition to the identity operator I , the CFT 2D
Ising model has only three primary fields: (a) the spin field σ , the order-parameter
field of the Ising model, with scaling dimension 1/8; (b) the Majorana fermion
ψ with scaling dimension 1/2; and (c) the energy density ε of the Ising model
(the mass term of the Majorana field) with scaling dimension 1. The spin field
is also known as the twist field since it changes the boundary conditions of the
Majorana fermion from periodic to anti-periodic. Other examples of RCFTs are the
fixed points of the three-state Potts model, the Ising antiferromagnet in an uniform
field, and many other so-called “minimal models” (Belavin et al., 1984; Friedan
et al., 1984; Ginsparg, 1989; Di Francesco et al., 1997).

The Wess–Zumino–Witten model is another important example of an RCFT
(Knizhnik and Zamolodchikov, 1984), which is the main focus of our interest in
this chapter. For simplicity we will discuss WZW models with symmetry group
G = SU(2) at general level k. We will not derive these results here because this
is fairly technical and it is done in several excellent and standard texts devoted to
CFT (Di Francesco et al., 1997).

The central charge of SU(N )k WZW models was found by Knizhnik and
Zamolodchikov,

c(SU(N )k) = k dim G

k + g
= k(N 2 − 1)

k + N
(7.189)

where dim G is the rank of the algebra of G and g is the “dual Coxeter number”
of G. For SU(N ) they are given by dim G = N 2 − 1 and g = N , respectively. For
the special case of SU(N )1 (k = 1), the central charge reduces to

c(SU(N )1) = N − 1 (7.190)

which is an integer. Thus, one expects the SU(N )1 WZW models must also be
describable as N − 1 free fields. We will see below that this is indeed the case and
that it is the content of non-abelian bosonization.

The one-loop beta function of the WZW model (accurate in the limit k → ∞)
was given in Eq. (7.160) and predicted the existence of an infrared-stable fixed
point at the value of the coupling constant λ2 = 4π/k. This result was (essentially)
confirmed by the CFT of the WZW model, which yields the slope of the beta
function at the fixed point λ2 = 4π/k as



7.12 The Wess–Zumino–Witten conformal field theory 241

dβ

dλ2

∣∣∣
λ2=4π/k

= − 2N

N + k
(7.191)

which agrees with the one-loop result for k large and confirms that λ2 = 4π/k is
indeed an infrared-stable fixed point (and hence a CFT).

Let us now discuss the primary fields of the WZW CFT (only for SU(2))
and their scaling dimensions. Since the global symmetry of WZW models is
SU(2) × SU(2) the primary fields carry the labels ( j,m) of the representations
of the Lie group SU(2), where j is a positive integer or half-integer and |m| ≤ j
(in integer steps). Thus, the WZW field g(x) is a 2 × 2 unitary matrix whose rows
(and columns) transform as the fundamental (spinor) representation of each SU(2)
and hence carries both quantum numbers,

g(x) =
(

g 1
2 ,

1
2

g 1
2 ,− 1

2

g 1
2 ,− 1

2
g− 1

2 ,− 1
2

)
(7.192)

However, while for the Lie group SU(2) there is no upper bound to the value
of j , for an SU(2)k WZW model (or equivalently for an SU(2)k Kac–Moody
algebra) the tower of “angular-momentum” states is truncated at the upper bound
j ≤ jmax = k/2. In other words, there is a finite number of allowed primary fields
labeled by 0 ≤ j ≤ k/2. This is a general feature of WZW models.

Thus, the SU(2)1 WZW model has only two primary fields: (a) the identity I
and (b) the spinor representation given by the WZW field g(x) itself. This is also
the spectrum of primary fields of the SU(N )1 WZW model. The drastic effects of
truncation can be seen in the OPE of the field g(x) with itself: the OPE of g with
itself reduces to the identity field. Symbolically we denote this as 1/2 ⊗ 1/2 = 0
and we say that two WZW fields fuse into the identity (only for SU(2)1!). Notice
that the (expected) fusion into the spin-1 representation is absent since this is not
allowed by the truncation of the spectrum of primary fields.

More generally, SU(2)k has the primary fields with quantum numbers ( j,m),
labeled by �( j,m), where j is an integer or half-integer in the range 0 ≤ j ≤ k/2
for k even (or up to (k − 1)/2 if k is odd), m are integers or half-integers in the
range − j ≤ m ≤ j , and the identifications ( j,m) ∼= (k/2− j,m + k/2), ( j,m) ∼=
( j,m + k) hold. The fields �( j,m) have scaling dimensions

�( j,m) = j ( j + 1)

k + 2
(7.193)

In the case of SU(2)2 there are three primary fields: (a) the identity I , (b) the WZW
field (again the spinor representation) with scaling dimension �(1/2,±1/2) = 3/16,
and (c) the spin-1, or adjoint, representation, with scaling dimension �(1,m) = 1

2 .
Thus, at level k = 2 two WZW fields can now fuse either into the identity I or
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into the adjoint primary field. However, due to the truncation, two adjoint primary
fields can fuse only into the identity.

The two-point function of the WZW field g is (in Euclidean space-time with
z = x1 + i x2 and z̄ being the complex conjugate)

〈gβ1
α1
(z, z̄)g−1α2

β2
(0, 0)〉 = M−2�g

δα2
α1
δ
β2
β1

(zz̄)�g
(7.194)

where �g is the scaling dimension of the field g, and M is an ultraviolet cutoff with
units of mass (or length−1). For an SU(N )k WZW theory �g is given by

�g(SU(N )k) = N 2 − 1

N (N + k)
(7.195)

The WZW field g (just like the other fields such as the adjoint primary) is classi-
cally dimensionless and hence has scaling dimension 0 at the trivial (and unstable)
λ → 0 fixed point. Thus, the non-trivial scaling dimension of Eq. (7.195) is the
anomalous dimension of the field g at the non-trivial (infrared-stable) fixed point
of the WZW model.

From Eq. (7.195) we see that, for SU(N )1, the scaling dimension of the WZW
field g is indeed

�g(SU(N )1) = N − 1

N
(7.196)

as we deduced it should be the case for non-abelian bosonization to work; see
the discussion below Eq. (7.165). Hence, at least at the level of matching the
scaling dimensions, this result justifies this operator identification of non-abelian
bosonization for fermionic bilinears.

However, to prove that this is an operator identity it is necessary to show not
only that the scaling dimensions match but also that their correlation functions
are the same. Knizhnik and Zamolodchikov (1984) showed that the correlators of
Eq. (7.165) are identical for SU(N )1. In the derivation of this result the important
fact that the OPE of the WZW field contains only the identity field (and that no
other representations appear) was used. Hence the truncation of the spectrum of
primaries is essential in order for the non-abelian bosonization identity to hold.

In general the four-point function of the WZW field has the form (i = 1, . . . , 4)

G[zi , z̄i ] = 〈g(z1, z̄1)g
−1(z2, z̄2)g

−1(z3, z̄3)g(z4, z̄4)〉
= [(z1 − z4)(z2 − z3)(z̄1 − z̄4)(z̄2 − z̄3)]

−�g G(x, x̄)
(7.197)

where G(x, x̄) is a function that depends only on the cross ratio x (and its complex
conjugate x̄),

x = (z1 − z2)(z3 − z4)

(z1 − z4)(z2 − z3)
(7.198)
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For general level k the structure of the function G(x, x̄) is complex and reflects
the fusion channels available to the primary field. We will return to this problem
in Chapters 14 and 15, where we discuss non-abelian quantum Hall states. Here
we will focus on the case of SU(N )1, where the structure of G(x, x̄) is simple
(reflecting the fact that for k = 1 the WZW field can only fuse into the identity):

G(x, x̄) = [x x̄(1 − x)(1 − x̄)]1/N

(
δα2
α1
δα4
α3

x
+ δα4

α1
δα2
α3

1 − x

) (
δ
β1
β2
δ
β4
β3

x̄
+ δ

β4
β2
δ
β1
β3

1 − x̄

)
(7.199)

7.13 Applications of non-abelian bosonization

We will now discuss a few applications of non-abelian bosonization. Our principal
aim is to consider quantum spin chains.

7.13.1 Free fermions

We are now ready to discuss the bosonization of free fermions. Again we consider
a theory of N free Dirac fields in (1+ 1) dimensions with both chiralities, i.e. ψR,α

and ψL,α with α = 1, . . . , N . The free Dirac theory has a U(N ) symmetry that
can be regarded as U(N ) � SU(N ) × U(1), where U(1) is the charge sector and
SU(N ) is the “spin” sector. We return to the conjecture that the fermionic bilinears
are given by a factorized operator of the form (which is the same as Eq. (7.165))

: ψR,α(z)ψ
†β

L(z̄) : ∼ Mei
√

4π
N φ(z,z̄)gβα (z, z̄) (7.200)

The correlation functions of the right-hand side (r.h.s.) factorize into a con-
tribution of the scalar field φ and a contribution of the WZW field g
since these two fields are decoupled from each other. Using the results of
the previous section and similar results for the vertex operator of the φ-
field with the lowest charge, exp(i

√
4π/Nφ), with scaling dimension 1/N ,

we find that the four-point function of the r.h.s. of Eq. (7.200) has the
same form as Eq. (7.197) but with a shifted scaling dimension �̃, which is
the sum of the scaling dimensions of the WZW field g and of the vertex
operator,

�̃ = �g(SU(N )1)+ 1

N
= N − 1

N
+ 1

N
= 1 (7.201)

Hence, the composite operator of the r.h.s. of Eq. (7.200) has scaling dimension
1, as it should be for a free-fermion bilinear. However, notice that the individ-
ual factors separately have non-trivial scaling dimensions. Similarly, the central
charge of the theory is the sum of the central charge of the φ-field and the central
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charge of the WZW field. For a level k = 1 WZW theory we find that the central
charge is

c = c(U(1))+ c(SU(N )1) = 1 + N − 1 = N (7.202)

which is the central charge of N free Dirac fields.
These arguments prove that the composite operator of the r.h.s. of Eq. (7.200)

is indeed equivalent to the fermionic operator (the l.h.s.), including the SU(N )
group-theoretic tensors given by the function G(x, x̄). This completes the proof of
non-abelian bosonization.

These results have been generalized to the case of a theory of Dirac fermions
with Nc colors and Nf flavors (Affleck, 1986a), ψR,i, f and ψL,a,α with i =
1, . . . , Nc and f = 1, . . . , Nf. This theory has a U(Nc Nf) symmetry that can be
decomposed into a U(1) charge sector, an SU(Nc) color sector and an SU(Nf) fla-
vor sector. The energy–momentum tensor (and the Hamiltonian) decompose again
into a sum of right- and left-moving terms, each of which has again a Sugawara
form and is expressed as a bilinear of the charge, color and spin currents J , J A

(with A = 1, . . . , N 2
c ), and J a (with a = 1, . . . , Nf) respectively. The currents

obey a level-Nc Nf U(1) Kac–Moody algebra (charge sector), a level-Nf SU(Nc)

Kac–Moody algebra (color sector), and a level-Nc SU(Nf) algebra (flavor sector).
Thus we have decomposed a level-1 U(Nc Nf) theory as

U(Nc Nf)1 � U(1)Nc Nf × SU(Nc)Nf × SU(Nf)Nc (7.203)

The Hamiltonian for the right-moving fields is

H = π

Nc Nf
J J + 2π

Nc + Nf
J A J A + 2π

Nc + Nf
J a J a (7.204)

and similarly for the left-moving fields. Each non-abelian sector has a bosonized
effective action in terms of SU(Nc)Nf and SU(Nf)Nc WZW theories (of each chi-
rality). It is easy to see that the (Virasoro) central charges add up to the right
value

c(U(Nc Nf)1) = c(U(1))+ c(SU(Nc)Nf)+ c(SU(Nf)Nc)

= 1 + Nf(N 2
c − 1)

Nc + Nf
+ Nc(N 2

f − 1)

Nf + Nc
= Nf Nc (7.205)

In particular the generalization of Eq. (7.200) for the fermion bilinears is now

: ψR,i, f (z)ψ
† j,l

L (z̄) : ∼ Me
i
√

4π
Nc Nf

φ(z,z̄)
g j

i (z, z̄)hl
f (z, z̄) (7.206)
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where g ∈ SU(Nc) and h ∈ SU(Nf). The scaling (trivial!) dimension of the fermion
bilinear is the sum of the (non-trivial!) scaling dimensions of the factors.

� = 1

Nc Nf
+ N 2

c − 1

Nc(Nc + Nf)
+ N 2

f − 1

Nf(Nc + Nf)
= 1 (7.207)

7.13.2 Fermions with repulsive interactions: gapping the charge sector

One physical system in which the fermions acquire a charge gap but not a spin
gap is the 1D Hubbard model (see Chapter 6). In the weak-coupling regime the
Hubbard model is equivalent to a theory of N = 2 Dirac fermions with various
interactions, cf. Eq. (6.67) and Eq. (6.73). In that framework the gap in the charge
sector (with U(1) symmetry) arises due to an Umklapp process. A key feature
of the Hubbard model is spin–charge separation. Thus, the effective interacting
fermionic field theory involves two Dirac fermions (one for each spin component)
with current–current interactions (as well as an Umklapp term at half-filling), all
of which exhibit the phenomenon of spin–charge separation.

As we also saw in Chapter 6, spin–charge separation is also apparent in the
abelian bosonization form of the theory in which the effective Lagrangian decou-
ples into a sum of two terms, one for the charge sector and one for the spin sector,
with the charge sector becoming gapped at half-filling due to the effects of the
marginally relevant Umklapp interaction.

Here we will consider again the same system using the non-abelian bosonization
discussed in detail by Affleck and Haldane (1987). To simplify the discussion I will
ignore the purely forward-scattering interaction g4, which merely renormalizes (in
opposite ways) the velocities of the charge and spin modes. (I will also choose
“relativistic” units in which the Fermi velocity is set to unity, vF = 1.) As we saw
earlier in this section, the free-fermion piece of the Hamiltonian of Eq. (6.73) maps
into a free scalar φc for the charge sector and an SU(2) level k = 1 WZW field g
for the spin sector, with the following action:

S0 =
∫

d2x
1

2

(
∂μφc

)2 + Sk=1
WZW[g] (7.208)

The charge sector of the theory has an effective Lagrangian that includes the effects
both of the backscattering interaction term of the Lagrangian of the U(1) currents,

Lcharge
int = −1

2
(2g2 − g1)JR JL (7.209)

a marginal perturbation whose effect is to renormalize the Luttinger charge parame-
ter away from the free-fermion value Kc = 1, resulting again in Kc > 1 for repulsive
interactions, and of the Umklapp interaction term. Here we have kept the theory
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Lorentz-invariant and set the velocity of the charge and spin modes to 1. Because
of this, the resulting expression for Kc = [1 + (2g2 − g1)/(2π)]1/2 differs from
that given in Eq. (6.139).

After bosonization the Lagrangian for the charge sector changes to

Lcharge[φc] = Kc

2

(
∂μφc

)2 + constant × cos(2
√

2πφc) (7.210)

Here we have used the fact that the Umklapp term describes processes in which
a spin-singlet pair of right movers becomes a spin-singlet pair of left movers (and
vice versa). Since the operators involved are separately spin singlets, they are inde-
pendent of the WZW field g (more precisely, they involve det g, which is a spin
singlet and is equal to 1 for a unitary group). Moreover, as before, the Umklapp
term is marginally relevant at the free-fermion fixed point. Thus, the charge sec-
tor flows to a strong-coupling fixed point corresponding to the massive phase of a
sine–Gordon field theory in which the operator cos(2

√
2πφc) has a non-vanishing

expectation value. The mass gap of the sine–Gordon theory is the charge gap of the
Hubbard model (in the scaling regime).

Classically this phase corresponds to pinning of the charge boson to the classi-
cal ground states φc = √

π/2nc, where nc is an arbitrary integer. Semi-classically,
one can qualitatively describe this phase using a harmonic approximation, which
amounts to expanding the fluctuations of the charge boson φc about these classical
ground states, leading to a finite effective mass of the field φc. A more accurate
description uses the mass gap of the quantum sine–Gordon theory, a quantum
integrable system which is also solvable by a generalization of the Bethe ansatz
(Faddeev, 1984; Rajaraman, 1985). Nevertheless, in spite of this “classical” behav-
ior, the expectation value of the (spin-singlet) CDW order-parameter operator,
〈ψ†

R,αψL,α〉 + c.c. ∝ 〈cos(
√

2πφc)〉, vanishes in this phase since this operator is
odd under the exact remaining symmetry of the Hamiltonian, nc → nc + 1. Hence,
in this phase with a gapped charge sector the charge density remains uniform.

Similarly, the backscattering coupling term of the chiral SU(2) spin currents
leads to a term in the (non-abelian) bosonized action, which now becomes

Sspin
int = Sk=1

WZW[g] +
∫

d2x 2g1 �JR · �JL (7.211)

where the currents are given by their bosonized expressions in Eq. (7.155). We
will now compute the one-loop beta function for the coupling constant g1 using the
perturbative RG method of Section 4.5. As we saw there, we need to know the scal-
ing dimension of the perturbation and the coefficients of the OPE, cf. Eq. (4.61).
The fermionic spin currents �JR and �JL obey the SU(2)1 Kac–Moody algebra of
Eq. (7.150). It is easy to show that as a result they also obey the following OPEs
(Knizhnik and Zamolodchikov, 1984; Di Francesco et al., 1997):
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J a
R(z)J b

R(w) ∼
1

2π(z − w)2 δab + i
1

2π(z − w)
εabc J c

R(w) (7.212)

and similarly for the left movers. Here z and w are complex coordinates and z̄ and
w̄ are their complex conjugates.

To compute the one-loop beta function we need the OPE of the operator �JR · �JL

with itself fusing into itself,[ �JR(z) · �JL(z̄)
] [ �JR(w) · �JL(w̄)

]
∼ C

|z − w|2 �JR(w) · �JL(w̄) (7.213)

where we have kept only the term we are interested in of this OPE. For SU(N )1

the OPE coefficient C is

C = N

2π2
(7.214)

where we used the fact that for the group SU(N ) the structure constants f abc satisfy∑
a,b

f abc f abd = 2Nδcd (7.215)

and that the SU(N ) generators {ta} satisfy∑
a

ta
i j t

a
kl = Nδilδ jk − δi jδkl (7.216)

For SU(2), the structure constants are given by the Levi-Civita tensor, f abc = εabc.
On the other hand, the scaling dimension of the chiral current backscattering

interaction is � = 2, which is to say that this is a marginal operator. Hence,
Eq. (4.61) tells us that the one-loop beta function for the coupling g1 is given by
(using that SD = 2π for D = 2)

β(g1) = −N

π
g2

1 + O(g3
1) (7.217)

This result implies that for repulsive interactions, for which g1 > 0, the backscat-
tering coupling of the chiral spin currents is a marginally irrelevant operator.
Therefore, the effective backscattering coupling in the spin channel flows to zero,
although very slowly. The main effect of this slow flow to zero coupling is that
there are logarithmic corrections to scaling in the correlators of the (Néel) order
parameter.

So, tentatively, we will identify the WZW CFT with the fixed point for the spin
sector. There is a possible pitfall in this argument. The WZW theory has a relevant
operator, the WZW field g, which, as we saw for SU(2), has scaling dimension 1

2
(cf. Eq. (7.196)). However, the WZW field g breaks the symmetry g → −g. This
amounts to a change in the sign of the trace of the order parameter, represented here
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by the mass term ψ
†
R,αψL,β ; see Eq. (7.165). Since this operator involves the mix-

ing of right and left movers, it carries (lattice) momentum π and breaks translation
invariance. Therefore this operator is not allowed in the Hamiltonian unless trans-
lation invariance is explicitly broken in the system, say by a spin-Peierls period-2
modulation of the effective exchange interaction, which is a spin-singlet operator
that breaks translation invariance of displacements by one lattice spacing (but not
two), or by a staggered magnetic field, which couples linearly to the Néel order
parameter, the staggered magnetization, and breaks translation invariance (again
of displacements by one lattice spacing) and global SU(2) symmetry. Thus, if
translation and global SU(2) invariance are global symmetries of the Hamiltonian,
the WZW field g cannot appear linearly in the effective field theory. The same
argument applies to models with SU(N )1 symmetry.

7.13.3 Back to spin chains

We end this discussion by analyzing the implications of these results for the case of
the spin- 1

2 quantum Heisenberg antiferromagnetic chains. From the above analysis
we conclude, again up to logarithmic corrections, that the spin sector of the inter-
acting fermionic system is described at low energies by the SU(N )1 WZW fixed
point. Since the charge sector is massive (gapped) for SU(2)1, the charge degrees
of freedom effectively decouple at low energies and, effectively, are projected out.
Thus the WZW CFT is the actual description of the long-distance physics of the
1D Hubbard model at half-filling. Since the charge gap grows monotonically as
the interaction increases, this result should apply all the way to the strong-coupling
limit where the half-filled Hubbard model reduces to the 1D spin- 1

2 quantum anti-
ferromagnet, albeit with a finite non-universal renormalization of the spin-wave
velocity.

In Section 5.7 we discussed the scaling behavior of the quantum Heisenberg
antiferromagnetic chain using abelian bosonization and computed the scaling
dimensions of the operators (see Table 5.1). We can now see that the results
from non-abelian bosonization are consistent with this analysis. Indeed, the Néel
order-parameter operator N a of the interacting fermionic system is given by

N a(x) ∼ ψ
†
R,α(x)t

a
αβψL,β(x)+ h.c. ∼ cos(

√
2πφ)tr(tag(x)) (7.218)

Since the charge field φ is effectively massive (due to the charge gap), we can set
the factor corresponding to the vertex operator of the charge boson field φ to its
non-vanishing expectation value, 〈cos(

√
2πφ(x))〉 = constant. Hence, the Néel

order-parameter field is effectively the WZW field g(x), N a(x) ∼ tr(tag(x)).
This identification allows us to read off the scaling dimension of the Néel

order-parameter field given that the correlator of the WZW g field is known from
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Eq. (7.194). Thus, we conclude that the scaling dimension of the Néel order-
parameter operator is � = 1

2 , which agrees with what we have already found using
abelian bosonization. This result was also confirmed numerically (including the
effects of the logarithmic corrections to scaling) by Moreo (1987), as well as from
a scaling analysis (Essler et al., 2005) of the exact Bethe-ansatz solution of the 1D
Hubbard model (Lieb and Wu, 1968). This operator identification also allows us
to draw the non-trivial conclusion that the four-point function of the Néel order
parameter is given (up to a multiplication constant) by the four-point function of
the WZW field, Eq. (7.197) and Eq. (7.199).

7.13.4 Fermions with attractive interactions: gapping the spin sector

We can also apply these ideas to the case of a system with generic interactions g1

and g2. This corresponds to a generalized (or extended) Hubbard model. Before we
considered the case of repulsive interactions for which g1 > 0 and saw that, for a
half-filled system, the charge sector flows to a gapped state while the spin sector
flows to the fixed point of an SU(2)1 WZW model and remains gapless.

Let us consider now the case in which g1 < 0, which for the lattice model cor-
responds to an attractive Hubbard interaction U < 0. The RG flow of Eq. (7.217)
still applies. However, for g1 < 0 the beta function now has the opposite sign,

β(|g1|) = +N

π
g2

1 + O(g3
1) (7.219)

which now has the same form as in the 2D non-linear sigma model. Hence we
conclude that for attractive interactions the backscattering interaction of the chiral
spin currents is marginally relevant and flows to strong coupling. Therefore, in this
regime we expect the spin sector to be massive. Indeed, if g1 < 0 flows to strong
(attractive) coupling, the SU(2) currents, Jμ(x)a ∼ 1

2 ψ̄α(x)γ μta
αβψβ(x), as local

operators must vanish when acting on the low-energy Hilbert space of states,

J a
μ(x)|Phys〉 = 0 (7.220)

Thus, in this phase the ground state is an SU(2) singlet and all excited states with
non-trivial SU(2) quantum numbers are massive. In the strong-coupling limit, all
states with SU(2) (spin) quantum numbers are effectively projected out, or gauged
away, much in the same way as the charge degrees of freedom become projected
out in the repulsive case. The effective field theory of the strong-coupling fixed
point is a gauged WZW model. In this case it is an SU(2) subgroup that has been
gauged.

On the other hand, the fate of the charge sector at half-filling depends now on the
sign of the combination of coupling constants gc = 2g2 − g1 for the chiral charge
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currents. If the microscopic interactions are such that this effective coupling is still
repulsive, gc > 0, then the Umklapp term will also be marginally relevant and also
flows to strong coupling. Thus, in this case both the spin and the charge sectors
are massive. An analysis of the lattice model reveals that this phase has a broken
symmetry of translations by one lattice spacing, i.e. a period-2 CDW phase such
as one with a dimerized ground state. On the other hand, if the effective coupling
constant for backscattering interaction of the chiral charge currents also changes
sign, gc < 0, as in the case of the 1D Hubbard model, the phase diagram for the
charge sector now involves the full Kosterlitz–Thouless RG flow, resulting either in
a massive phase (dimerized) or in a line of fixed points and a massless charge phase.
In the case of the Hubbard model the charge sector is gapless. A uniform phase with
gapless charge excitations and gapped spin excitations is a Luther–Emery liquid
and is effectively a 1D superconductor.



8

Spin-liquid states

In the previous chapters we discussed mostly ordered Néel-like ground states of
spin systems. The sole exception was the case of the spin chains in which the
ordered state is always destroyed by quantum fluctuations. In this chapter we begin
a discussion of the ground states of quantum magnets, which, as a result of strong
fluctuations, lose the long-range order of their spin degrees of freedom. The key
driving force behind this quantum disorder is frustration.

8.1 Frustration and disordered spin states

It is possible to drive a Heisenberg model toward a disordered state. One way to
do that is to add extra interactions, which, if they are strong enough, may destroy
the Néel behavior. A popular choice is to consider next-nearest-neighbor inter-
actions with strength J2 (Fig. 8.1). These interactions frustrate the system in the
sense that, for nearest-neighbor interaction J1 close to J2, the classical Néel state
becomes degenerate in energy with other classical configurations that differ from
it by local spin flips. Quantum mechanically, one may expect a substantial increase
of fluctuations, which should further decrease the value of the moment.

By following the steps that led to the non-linear sigma model (see Sections 7.5
and 7.9) and to the bare coupling constant g and spin-wave velocity vs

(Eq. (7.141)), we can compute the new values of g and vs if we assume that at least
the short-range order has the Néel structure of J2 = 0. Clearly, this assumption is
correct only for small J2 and should break down for J2 ≈ J1. We find

g′ = g√
1 − 2J2/J1

≡ u′a0 (8.1)

v′s = vs

√
1 − 2J2/J1 (8.2)

Thus, the main effects of frustrating interactions, in the neighborhood of a Néel
ordered state, are the increase of the bare coupling g and the decrease of the
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J1

J1

J2 J2

Figure 8.1 A square lattice with nearest-neighbor J1 and next-nearest-neighbor
J2 interactions.

Figure 8.2 A �Q = (π, 0) Néel state.

spin-wave velocity vs. It is also clear that, for values of J2 that are sufficiently
large, the bare dimensionless coupling constant u′ will become larger than the
critical value u∗. Consequently, there should be a critical value of the next-
nearest-neighbor coupling strength J2c beyond which the long-range Néel order
is destroyed. This theory would then predict that for J2 ≥ J2c the system becomes
a quantum paramagnet.

It is also clear that if J2 becomes large enough a new form of long-range
order should be found. Indeed, if J2 � J1 a Néel-like state but with wave vector
�Q = (π, 0) or (0, π) is favored, instead of the usual �Q = (π, π) ordered state

(Fig. 8.2). This Néel-like state is antiferromagnetic along the x axis but ferromag-
netic along the y axis. This form of antiferromagnetism occurs, for instance, in the
iron pnictide materials, which are also high-tempertature superconductors.

The low-energy effective action for this state should be a mixture of a sigma
model that describes antiferromagnetism and a ferromagnetic Lagrangian of the
form of Eq. (7.41). As a matter of fact, the Wess–Zumino terms of the individual
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spins do not completely cancel out in this case. A term of the form

γ

∫
d3x �m · (∂0 �m × ∂1 �m) (8.3)

is found, where γ is a parameter. However, this is not a topological (Hopf) term. It
merely states that nearby chains exhibit the same antiferromagnetic order and that
the spins on one chain precess in the average field of the neighboring chains. In
reality the effective-field theory of this state is somewhat more complex.

The �Q = (π, 0) state can also be described as two Néel states on two inter-
penetrating square lattices (rotated by 45◦) with order parameters �n1 and �n2. The
effective action is that of a non-linear sigma model with two coupled fields with
an extra coupling ∼λ(�n1 · �n2)

2. For λ < 0 this coupling favors a state in which
�n1 · �n2 = ±1. Thus suggests that there is a possible state in which the expectation
values 〈�n1〉 = 〈�n2〉 = 0 but 〈�n1 · �n2〉 �= 0, an (Ising) nematic spin state (Chandra
et al., 1990).

These states should also become unstable for values lower than J2 ≈ J1. Thus,
near the classically frustrated limit, J1 = 2J2, new phases should appear. There
are several possibilities. One possible phase is a state without long-range mag-
netic order, with a gap for spin excitations and a unique ground state. This is
the usual paramagnetic state in the quantum zero-temperature limit (QP). We
can think of other possible states by considering that when the spin-correlation
length becomes very short (i.e. of the order of the lattice constant), the ground
state is more naturally described in terms of pairs of spins forming S = 0 sin-
glet states over fairly short distances. These states are dubbed valence-bond (VB)
states. Various disordered states that are based on the VB picture have been pro-
posed. They include VB crystals and resonating-valence-bond (RVB) states, of
both long- (Anderson, 1987) and short-range (Kivelson et al., 1987) varieties.
Yet other proposals entertain the idea of ground states with broken time-reversal
invariance. Such is the case of the Kalmeyer–Laughlin (KL) state for the triangular
lattice (Kalmeyer and Laughlin, 1987), the chiral spin states for frustrated square
lattices of Wen, Wilczek, and Zee (WWZ) (Wen et al., 1989), and states with non-
collinear long-range order such as the multi-sublattice Néel states including spirals
of Shraiman and Siggia (1989) and of Kane et al. (1990). In this chapter we will
deal with the disordered phases. Affleck and collaborators (Affleck et al., 1988b)
found a class of lattice models whose exact ground states are disordered.

8.2 Valence bonds and disordered spin states

Imagine for the moment a microscopic spin system with interactions which are so
strong that the Néel state is destroyed. If the local coupling between the spins is
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i

j

Figure 8.3 A valence bond |(i j)〉 on a 4 × 4 square lattice.

very strong, we should expect that a picture based on spin waves, even massive
ones, will not work very well. An alternative is to pair up the spins into singlet
pairs or valence bonds (Anderson, 1973).

Our basic building block will be a singlet pair (valence bond) of two spins at
sites i and j of the lattice, which are not necessarily nearest neighbors. Let |(i j)〉
denote a valence bond pairing up sites i and j (Fig. 8.3). The state |(i j)〉 is the
antisymmetric combination of up and down spins on sites i and j :

|(i j)〉 = 1√
2

(|↑i↓ j 〉 − |↓i↑ j 〉
)

(8.4)

This is a spin-singlet state with respect to the total spin operators �S2 and S3,

�S2|(i j)〉 = 0 (8.5)

S3|(i j)〉 = 0 (8.6)

with

�S = �Si + �Sj (8.7)

Next, we proceed to partition the sites of a lattice (with an even number of sites)
into sets of all possible pairs of sites. If we assign a valence bond to each pair of a
given partition, we can define a VB state for the partition as a tensor product of the
valence bonds for each pair of sites (Fig. 8.4):

|VB〉 =
∏
pairs

|(ik jk)〉 (8.8)

Since each valence bond is odd under the exchange of sites, the overall sign of the
VB state is defined only up to a convention regarding how one labels the sites. I will
assume that a fixed convention has been chosen. Since each pair is a spin singlet,
the total spin of the system is necessarily equal to zero. However, zero total spin is
not a good definition of a disordered spin state, as we will see below.
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Figure 8.4 A VB state |VB〉 on a 4 × 4 square lattice is the product of eight
valence bonds |(i, j)〉.

A priori we are tempted to consider an arbitrary spin-singlet state as a linear
superposition of VB states

|�〉 =
∑

P

A(P)
∏
pairs

|(ik jk)〉 (8.9)

which is a sum over all partitions P = {(ik jk)} with amplitude A(P). However,
we run into a difficulty here. The VB states are not orthogonal and, which is more
important, in general they cannot all be linearly independent at the same time. The
set of VB states is, in general, an over-complete set of states. Therefore, they are
not good states for expanding a general wave function. On the other hand, if one
is interested in just constructing a variational wave function, it may be convenient
to write expressions of the type of Eq. (8.9) with variational parameters. One pop-
ular wave function has a factorized amplitude. In other words, A(P) is written in
the form

A(P) =
∏
pairs

a(ik, jk) (8.10)

and the total wave function looks like

|�〉 =
∑

P

∏
pairs

a(ik, jk)|(ik jk)〉 (8.11)

If we further assume that a(ik, jk) is only a function of the distance between the
paired sites ik and jk

a(ik, jk) = a(|ik − jk |) (8.12)

we have a resonating-valence-bond (RVB) state (Anderson, 1973). This state has
“resonances” in the sense that all valence bonds with sites at the same rela-
tive distance enter with the same amplitude. The optimal function a(|�x |) can be
determined by a variational calculation.
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The most extensive study of the Heisenberg model using states of this sort was
carried out by Liang, Douçot, and Anderson (Liang et al., 1988). The physical
properties of a system depend on how fast the function a(|�x |) decays at infinity.
For a power-law ansatz

a(|�x |) ∼ constant

|�x |σ for large |�x | (8.13)

They found that for σ < 5 there is Néel long-range order, even though the wave
function is a global spin singlet. Conversely, for σ ≥ 5 they do not find Néel order
beyond a scale ξ , the correlation length, which is finite.

An extreme case of an RVB state is the short-range RVB state, which is defined
as follows. Consider the VB states in which the paired sites are nearest neighbors to
each other. There is a one-to-one correspondence between the underlying configu-
rations of valence bonds and the configurations of classical dimers (Fig. 8.5) which
occupy the bonds. The short-range RVB state, or nearest-neighbor RVB (NNRVB)
state, is simply the linear superposition of all such configurations with equal ampli-
tude (Kivelson et al., 1987). Thus, states that differ by a local change in the dimer
covering have exactly the same amplitude (resonance).

The NNRVB states have one important useful property: they are linearly inde-
pendent. However, they are not orthogonal. To see this, consider two dimer
coverings (a dimer covering is when every lattice site is connected to exactly one of
its nearest neighbors by a dimer) that differ only by a local rearrangement of a few
nearby spins, such as the example of Fig. 8.6. I will pick the following convention
for the signs of the VB states. We will discuss here the case of a bipartite lattice
(square). Later in this chapter, and in the next, we will consider the case of the
triangular lattice, which is non-bipartite and frustrated. Since the lattice is bipar-
tite, it can be partitioned into two interpenetrating sublattices called R (red) and B
(black). A valence bond, or dimer, always joins a red site to a black site. The sign

Figure 8.5 A short-range VB state on a 4 × 4 square lattice. The dark links
(“dimers”) are valence bonds.
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Figure 8.6 In (a) and (b) are shown two configurations of dimers that differ only
in the local arrangement of the dimers at the sites 1, 2, 3 and 4. In (c) is shown the
superposition of (a) and (b). The closed loop with non-vanishing area connects
the sites 1, 2, 3, and 4 with four dimers, and represents the overlap of the non-
orthogonal VB states |a〉 and |b〉 associated with the dimer covering in (a) and (b).

convention I pick assigns a positive amplitude for every VB state, provided that the
red site appears (in the wave function) to the left of the black site. Equivalently, we
can give an orientation to the valence bonds: positive for red → black and negative
for black → red (Kivelson et al., 1987). We can picture this either by assigning an
arrow to each VB or by coloring the sites, i.e. the endpoints of the bonds.

Once we have picked a sign convention, we can unambiguously compute over-
laps. The overlap between the short-range VB states shown in Figs. 8.6(a) and (b),
call them |a〉 and |b〉, reduces to the overlap between the product of the two valence
bonds which have been rearranged, since the other valence bonds have norm 1 by
definition. Let sites 1 and 4 (2 and 3) belong to the red (black) sublattice. The
overlap 〈a|b〉 is equal to

〈a|b〉 = 〈12, 43|13, 42〉 (8.14)

where |12〉, for instance, denotes the VB

|12〉 = 1√
2
(|↑1↓2〉 − |↓1↑2) (8.15)

Thus, 〈a|b〉 is simply given by

〈a|b〉 = 1

4
(〈↑1↓2↑4↓3 ||↑1↓2↑4↓3〉 + 〈↓1↑2↓4↑3 ||↓1↑2↓4↑3〉) = 1

2
(8.16)

More generally, overlaps between two arbitrary short-range VB states, say |�a〉
and |�b〉, will not be zero. These overlaps can be represented, and calculated, as
a sum over all the closed loops on the square lattice obtained by superposing the
dimer coverings associated with |�a〉 and |�b〉. The length of a loop � in units of
the lattice spacing is 2L(�), where L(�) = 1, 2, ... Its contribution to the overlap
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is equal to 2 × 2−L(�) (the factor 2−L(�) comes from the choice of normalization,
Eq. (8.4), while the factor 2 counts the number of ways to antiferromagnetically
assign the spins on the sites of a loop) and therefore

〈�a|�b〉 =
∏
�

2 × 2−L(�) = 2
∑

� × 2− 1
2

∑
� 2L(�) (8.17)

= 2P(a,b) × 2−N/2 (8.18)

where P(a, b) (P2L(a, b)) is the total number of loops (of loops of length 2L) in
the loop covering (a, b) and N is the (even) number of sites. For example, the loop
covering of the 4 × 4 square lattice shown in Fig. 8.6(c) has seven loops: six of
length 2, which, with our normalization, give factors of 1; and one of length 4,
which gives a factor of 1

2 . Thus, the NNRVB state |�〉 = ∑
a |�a〉 has a wave-

function normalization 〈�|�〉 that can be written as a sum of contributions from
loops (Sutherland, 1988) of the form

〈�|�〉 =
∑
a,b

〈�a|�b〉 (8.19)

= 2−N/2
∑
a,b

2P(a,b) × 2P(a,b)−P2(a,b) (8.20)

≡ 2−N/2
∑
a,b

x P2(a,b)y P(a,b)−P2(a,b) (8.21)

with x = 2 and y = 4. Here, the factor 2P(a,b)−P2(a,b) accounts for the fact that
there are two ways to have a loop of length 2L > 2 with a given antiferromagnetic
spin assignment on the sites of the loop.

Not only can 〈�|�〉 be written as a statistical sum such as Eq. (8.21), but also
the staggered spin–spin correlator can be written in a similar form. Let G(�x) denote
the staggered correlation function

G(�x) = 4(−1)x1+x2
〈�|σz(�0)σz(�x)|�〉

〈�|�〉 (8.22)

For any loop covering (a, b), there are two possibilities (Kohmoto and
Shapir, 1988): (i) the two points �0 and �x are on the same loop, in which case,
due to the antiferromagnetic ordering on the loop, the contribution to the stag-
gered correlation function is independent of their relative position; and (ii) the two
points belong to different loops and the loop covering does not contribute to the
correlation function. In other words,

G(�x) =
∑

a,b χ(�x)x P2(a,b)y P(a,b)−P2(a,b)∑
a,b x P2(a,b)y P(a,b)−P2(a,b)

(8.23)
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where

χ(�x) =
{

1 if �0 and �x are on the same loop

0 otherwise
(8.24)

We can recast Eq. (8.23) in terms of sums over loops of non-vanishing area. If
L(a, b) is the total length of all loops with non-vanishing area for the loop covering
(a, b), then 2P2(a, b)+ L(a, b) = N . Now,

G(�x) =
∑

χ(�x)x−L/2 y P−P2d(P2)∑
x−L/2 y P−P2d(P2)

(8.25)

where the summations are only for configurations of loops with non-vanishing
areas and d(P2) is the number of configurations of loops of length 2. Thus the
staggered correlation function gives us the probability that the two sites belong to
the same loop in a “gas” of loops. Since x and y are fairly small, the loop gas is rea-
sonably dilute. A “quick and dirty” argument shows that the leading contribution
to G(�x) should come from the smallest loop that contains both �0 and �x

G(�x) = x
1
2 (N−2(|�x |/a0+1))y1 + · · ·

x N/2 y0 + · · · ∝ e−(|�x |/a0) ln 2 (8.26)

Kohmoto and Shapir (1988) have given a more refined argument, which shows that
G(�x) is bounded from above by an exponentially decreasing function with corre-
lation length ξ ≈ a0e+1/

√
2. Thus, short-range RVB wave functions represent states

with total spin equal to zero and exponentially decreasing correlation functions.
But are any of these RVB states, of either short or long range, good approxi-

mations to the ground-state wavefunction of a quantum Heisenberg model? The
numerical evidence (Liang et al., 1988) indicates that for the unfrustrated model
an RVB-like wave function with fairly long range is a good approximation to the
ground state, but it is a Néel state! The short-range RVB is not a good approxima-
tion for this system. In fact the short-range spin correlations of the (short-range)
RVB state indicate that it may describe the ground state of a Hamiltonian with a
finite gap to all spin excitations, a spin gap.

The overlaps and the norm of the RVB wave function thus map onto a problem
associated with the classical statistical mechanics of loop models on a given lattice.
Classical loop models in two dimensions have a rich phase diagram that depends
on the lattice on which the loops are defined. The arguments given above imply
that the spin-correlation functions are short-ranged. However, the loops them-
selves have a more complex behavior. Quite generally a loop model will assign
to a loop configuration a weight that will depend on the number of loops and on
their length (Nienhuis, 1987; Kondev and Henley, 1996; Kondev, 1997; Fendley
et al., 2006). We will see in the next chapter that quantum-dimer models, which
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have a short-range RVB wave function, are critical on bipartite 2D lattices but
not on non-bipartite lattices, such as the triangular lattice. The short-range RVB
state on a triangular lattice is gapped and is a Z2 topological fluid (Moessner and
Sondhi, 2001b).

In the case of a frustrated system, such as the Heisenberg antiferromagnet on
a triangular lattice, the situation is less clear. The best available numerical calcu-
lations yield a non-collinear magnetically ordered state in which the moments on
the vertices of each triangle are rotated by an angle of 120◦ relative to each other
(depicted in Fig. 8.7), with a much smaller magnetic moment than that for the
square lattice (Singh and Huse, 1992; Elstner et al., 1993). In contrast, the spin-1/2
quantum Heisenberg antiferromagnet on a kagome lattice (the medial lattice of the
honeycomb lattice), which is a frustrated system, appears to be quantum disordered
and has a spin gap. In this case there is no long-range magnetic order, and it is a
good candidate for either a spin liquid phase or a valence-bond solid phase (Elstner
et al., 1993; Leung and Elser, 1993).

On the other hand, density-matrix renormalization-group (Jiang et al., 2011)
and tensor-product state (Wang et al., 2011) simulations of the J1−J2 spin-1/2
quantum antiferromagnet on a square (frustrated) lattice find strong evidence for a
gapped Z2 spin-liquid phase in the region 0.41 ≤ J2/J1 ≤ 0.62, separating con-
ventional Néel and striped antiferromagnetic states for smaller and larger J2/J1,
respectively. In 1991 Wen (Wen, 1991c) had proposed using mean-field-theory
arguments of the type described later in this chapter (which were later extended
by Mudry and Fradkin (1994)) that the J1−J2 quantum antiferromagnet may
have a Z2 topological (spin) liquid phase qualitatively similar to the short-range
RVB state.

Cano and Fendley found an SU(2)-invariant Hamiltonian with local interactions
(involving local clusters of eight spins on the square lattice!) for which the short-
range RVB state is the exact ground state (Cano and Fendley, 2010). Although this

A

B

C

Figure 8.7 The 120◦ non-collinear three-sublattice magnetic order on the trian-
gular lattice.
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state has a finite spin gap, in the case of the square lattice Monte Carlo simulations
of this wave function have found that it has long-range (power-law) correlations of
valence-bond operators (Albuquerque and Alet, 2010; Tang et al., 2011b) similar
to what it is found in the simpler quantum-dimer models (which will be discussed
in the next chapter).

8.3 Spinons, holons, and valence-bond states

We will now turn to other states that have been proposed. Since there is good
evidence that the Heisenberg antiferromagnet may be in a Néel state, I will take the
point of view that these phases may be realized by relatively small modifications of
this Hamiltonian. Thus, I will carry out most of the discussion with the Heisenberg
(or Hubbard) model in mind as a rather generic example.

At this point, it is convenient to go back to a representation of the spins in terms
of either fermion operators or Bose operators. For the most part we have been using
a fermion representation of the spins,

�S(�x) = 1

2
c†
α(�x)�σαβcβ(�x) (8.27)

The main motivation for this choice is that the fermion operators c†
α(�x) are the

fermion operators of the Hubbard model. Equation (8.27) reproduces the angular-
momentum algebra for spin S = 1

2 only if the Hilbert space is restricted by the
condition

n(�x) = c†
α(�x)cα(�x) = 1 (8.28)

which implies that each site is occupied by a single fermion with either up or down
spin.

Alternatively we may use bosons to represent spin. Let aα(�x) be a set of boson-
destruction operators. The boson bilinears

�S(�x) = 1

2
a†
α(�x)�σαβaβ(�x) (8.29)

obey the angular-momentum algebra for S = 1
2 only if the bosons obey the hard-

core constraint

a†
α(�x)aα(�x) = 1 (8.30)

These formulas, known as the Schwinger boson representation of the spin-1/2
algebra, are reminiscent of the C P1 representation of the non-linear sigma model
of Section 7.5. Indeed, it is possible to derive the C P1 model using bosons as
a starting point. There is an extensive literature on this approach (see Arovas
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and Auerbach (1988) and Auerbach (1994)), so we will not do this here. This
boson representation is closely related to standard spin-wave theory (Holstein and
Primakoff, 1940).

Let us begin by looking for a representation of the valence bonds in terms of
fermions. Let |0〉 represent the empty state. The valence bond on a pair of sites i
and j is simply given by

|(i j)〉 ≡ εαβc†
α(i)c

†
β( j)|0〉 ≡

(
c†
↑(i)c

†
↓( j)− c†

↓(i)c
†
↑( j)

)
|0〉 (8.31)

We will be interested, for the moment, in the half-filled system. Thus the aver-
age number of particles per site is one and, because of the constraint, no doubly
occupied sites are allowed. For finite Hubbard U some doubly occupied sites, as
well as empty sites, will occur. We may try to solve the constraint of there being
no doubly occupied sites by using a “slave-boson” construction (Coleman, 1984;
Read and Newns, 1983). This leads to the RVB theories of Baskaran, Zou, and
Anderson (BZA) (Baskaran et al., 1987) and Ruckenstein, Hirschfeld, and Appel
(Ruckenstein et al., 1987). In principle, there are several ways of implementing the
slave-boson approach. Let us consider the fermion operators to be normal ordered
with respect to the half-filled state. In other words, we will assume that we are not
too far from half-filling. Let us now define a set of Bose and Fermi operators at
each site, b(�x) and fα(�x), respectively, satisfying the constraint (at each site)

b†(�x)b(�x)+ f †
α (�x) fα(�x) = 1 (8.32)

Let |0̄〉 be the reference state for these operators and define the states |h〉, |↑〉, and
|↓〉 representing a “hole” (or holon) with charge +e and spin zero and a spinon
|↑〉 (|↓〉) with spin up (down) and no charge:

|h〉 ≡ |e, 0〉 = b†|0̄〉
|↑〉 ≡ |0,↑〉 = f †

↑ |0̄〉 (8.33)

|↓〉 ≡ |0,↓〉 = f †
↓ |0̄〉

Thus, the only possible states are a holon and a spinon of either orientation. More
formally, we can write the operator c†

σ (�x) which creates a band fermion of charge
e and spin σ at site �x in the form

c†
σ (�x) = b(�x) f †

σ (�x) (8.34)

Alternatively, we can also write c†
σ (�x) in the form

c†
σ (�x) = a(�x)z†

σ (�x) (8.35)
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where a is a spinless charged fermion and the zσ are Schwinger bosons satisfying
the constraint

z†
α(�x)zα(�x) = 1 (8.36)

In this representation, the hole (or holon) is a fermion and the spinon is a boson.
In either representation, at half-filling, there are no holons. Away from half-filling
a number of holons will be present. In the boson-holon version, the holons will
superficially appear to undergo a condensation transition, which originally was
mistakenly confused with “high-Tc.”

8.4 The gauge-field picture of the disordered spin states

I will consider now a particular form of mean-field theory for the Heisenberg anti-
ferromagnet, which was first proposed by Affleck and Marston (1988) and by
Kotliar (1988). In this mean-field theory, one focuses on the valence-bond oper-
ator of Eq. (8.31). The spin-exchange interaction term, �S(�x) · �S(�y), can be written
in the form

�S(�x) · �S(�y) = 1

2
c†
α(�x)cβ(�x)c†

β(�y)cα(�y)−
1

4
n(�x)n(�y) (8.37)

Thus, up to an additive constant, we have the fermion problem with the
Hamiltonian

H = J

2

∑
�x, j=1,2

c†
α(�x)cβ(�x)c†

β(�x + e j )cα(�x + e j ) (8.38)

which has to be supplemented by the local constraint

n(�x) ≡ c†
α(�x)cα(�x) = 1 (8.39)

In Eq. (8.37), an underlying square lattice has been assumed and j = 1, 2 repre-
sents the x1 and x2 directions, with e1 and e2 being the corresponding unit vectors.
This approach can be easily generalized to other lattices as well.

The path-integral picture of this system involves the use of the Lagrangian

L =
∑
�x

c†
α(�x, t)(i ∂t +μ)cα(�x, t)+

∑
�x
ϕ(�x, t)(c†

α(�x, t)cα(�x, t)−1)− H (8.40)

The second term in Eq. (8.40) contains the Lagrange multiplier field ϕ(�x, t) which
enforces the constraint of single occupancy, Eq. (8.39), at all times.

The Affleck–Marston mean-field theory involves a Hubbard–Stratonovich fac-
torization in terms of the link variables χ j (�x), which are complex Bose (c-number)



264 Spin-liquid states

fields. The Lagrangian L ′ is given by

L ′ =
∑
�x

c†
α(x)(i ∂t + μ)cα(x)+

∑
x

ϕ(x)(c†
α(x)cα(x)− 1)− 2

J

∑
�x, j

|χ j (x)|2

+
∑
�x, j

(
c†
α(�x, t)χ j (�x, t)cα(�x + e j , t)+ c†

α(�x + e j , t)χ∗
j (�x, t)cα(�x, t)

)
(8.41)

where x ≡ (�x, t). This Lagrangian is equivalent to L upon a Gaussian integration
of the Hubbard–Stratonovich fields χ j (x). Here, the link variables χ j (x) satisfy
the relations χ j (�x, t) = χ∗

− j (�x + e j , t) since the current operator associated with
an electron hopping from �x to �x + e j is the adjoint of the operator associated with
the (reverse) hopping from �x + e j back to �x .

The mean-field theory (MFT) consists, as usual, in integrating out the fermions,
at a fixed density, and treating the Bose (c-number) fields χ j (x) within a saddle-
point expansion. The fields χ j (x), being complex, can be parametrized in terms
of two real fields ρ j (x) and A j (x) representing the amplitude and phase of
χ j (x), respectively. Before carrying out the MFT, it is important to consider
the symmetries of this Lagrangian. Consider the local time-dependent gauge
transformations

A j (�x, t) = A′
j (�x, t)+� jφ(�x, t)

ϕ(�x, t) = ϕ′(�x, t)+ ∂tφ(�x, t) (8.42)

cα(x) = eiφ(x)c′α(x)

These transformations leave the Lagrangian unchanged up to a total time derivative,
the term

∑
�x ∂tφ. Thus, the Lagrange multiplier field, ϕ, transforms like the time

component A0 of a U(1) gauge field. We must then conclude that this system has
a “secret” gauge (local) symmetry.

The effective Lagrangian Eq. (8.41) is reminiscent of the Lagrangians of lattice
gauge theories (Kogut, 1984). There are a few significant differences: (a) here the
amplitude field |χ j (x)| = ρ j (x) fluctuates; (b) there is no explicit kinetic-energy
term for the gauge fields Aμ (i.e. an F2

μν); and (c) there is an extra term in the
Lagrangian that is proportional to ϕ, i.e. to A0. This last term may seem to break
gauge invariance, since, according to Eq. (8.42), ϕ transforms like ϕ → ϕ′ + ∂tφ.
However, we must keep in mind that what matters is not the Lagrangian but the
action, S,

S =
∫

dt L (8.43)
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Under a gauge transformation, the extra term will transform the action by

S → S −
∑
�x

∫
dt ∂tφ(�x, t)

= S −
∑
�x
(φ(�x, t → +∞)− φ(�x, t → −∞)) (8.44)

If we impose periodic boundary conditions (in time) on the gauge fields, as we must
when computing a trace over Bose (or Fermi) fields, we must allow only for local
gauge transformations that respect the boundary conditions. Thus, the field φ(�x, t)
must obey periodic boundary conditions in time, φ(�x, t → +∞) = φ(�x, t →
−∞), which leave the action unchanged. We can relax this condition to a small
extent. Let us notice that the “extra term” can be extracted from the action and
written into the integrand in the form of a product of operators of the form

e−i
∫

dt
∑

�x ϕ(�x,t) ≡
∏
�x

e−i
∫

dt ϕ(�x,t) (8.45)

Since ϕ can be identified with A0, the time component of a vector potential Aμ

that obeys periodic boundary conditions, we can write the extra terms in the form
of time-ordered exponentials of line integrals over loops �(�x) that close around the
time direction (see Fig. 8.8). These operators are generally called Wilson loops:

e−i
∑

�x
∫

dt ϕ(�x,t) ≡
∏
�x

e−i
∮

dt A0(�x,t) ≡
∏
�x

e−i
∮
�(�x) dxμAμ

(8.46)

For the Wilson loops to be gauge-invariant operators,∮
�(�x)

dxμAμ =
∮
�(�x)

dxμA′μ +
∮
�(�x)

dxμ ∂
μφ =

∮
�(�x)

dxμA′μ (8.47)

it is sufficient that dφ is exact, i.e. the gauge transformation is non-singular every-
where. Recall that these Wilson loops appeared in our problem since we had to
enforce the constraint of single occupancy at every site and at all times.

Γ

x

Figure 8.8 A Wilson loop along the closed curve �(�x) in the time direction.
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Because of the gauge invariance, we need to impose the constraint of single
occupancy, Eq. (8.39), only on the configuration space at some initial time surface,
t = t0. The local gauge invariance implies that the spin configurations at an
arbitrary later time t must still obey the same constraint; i.e. they are smooth
deformations of the initial configuration. For instance, we cannot try to fix the
gauge A0 = 0 if only non-singular gauge transformations are allowed. This
gauge is not consistent with the constraint of single occupancy since a configu-
ration with A0 = 0 has

∮
dt A0 = 0 and, because of gauge invariance, it cannot

evolve into configurations with
∮

dt A0 �= 0. At best we can fix A0(�x, t) to be a
time-independent arbitrary function A0(�x) through∮

dt A0(�x, t) ≡ TA0(�x) ≡ Ā0(�x) (8.48)

where T is the time span. Alternatively, we may also choose the gauge

A′
0(�x, t) ≡ Ā0(�x)δ(t − t0) (8.49)

which yields the same value of the line integral. This choice means that, at t = t0,
we restrict the space of configurations to obey the constraint n(�x) = 1 at all
points �x . Gauge invariance then takes care of choosing only the time-evolving
configurations which satisfy this property.

However, it is worth noticing that, from the point of view of quantum mechan-
ics, what matters is not the invariance of the action S but the invariance of the
amplitude eiS assigned to a given history (Feynman and Hibbs, 1965). Thus gauge
transformations that change during the time span T by �φ(�x) = 2πm(�x) (an arbi-
trary integer modulo 2π at each point �x) are allowed, since they do not change
the amplitude, although they do change the action. These are the so-called large
gauge transformations. These transformations change the time-like Wilson loops
accordingly: ∮

dt A0 =
∮

dt A′
0 + 2πm(�x) (8.50)

and thus are singular or large gauge transformations. A correct description of these
systems, particularly at non-zero temperatures, requires a careful treatment of these
large gauge transformations.

We wish to evaluate the functional integral for a system with a Lagrangian of the
form of Eq. (8.41). We will attempt a semi-classical treatment of this theory. One
difficulty that we will encounter will be that there is no small parameter to organize
this semi-classical expansion. Thus we should have every reason to suspect that the
results might not be quite reliable. Indeed, using this approach, it is quite hard to
reproduce a Néel state. This is so because the approximations that we will make
will be accurate for systems that can be described in terms of valence bonds. In
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this representation we deal with local spin singlets and the spins fluctuate very fast.
Conversely, in a Néel state, the spins are slow variables but the VBs are fast ones.
These are complementary descriptions.

Several systematic procedures have been devised in order to control the fluctu-
ations in this problem. Affleck and Marston (Affleck and Marston, 1988; Marston
and Affleck, 1989) proposed studying generalizations of the quantum Heisen-
berg model to a system with an SU(N ) symmetry by attaching a “color” index
α = 1, . . . , N to the fermionic degrees of freedom. The spin-1/2 model was
obtained by considering the N = 2 (SU(2)) case. The Affleck–Marston Lagrangian
has, after an RVB decoupling by means of a link variable χ j (�x, t), the same form
as the Lagrangian of Eq. (8.41) except that (a) α = 1, . . . , N (not just 1 and 2,
or ↑ and ↓) and (b) the local occupancy is equal not to 1 but to a suitably chosen
function n(�x),

N∑
α=1

c†
α(�x)cα(�x) = n(�x) (8.51)

which they proposed could take one of two forms on a system with two interpene-
trating sublattices, A and B (suitable for bipartite lattices such as the square of the
honeycomb lattice):

n(�x) =
{

1 �x ∈ A

N − 1 �x ∈ B
(8.52)

or

n(�x) = N

2
�x ∈ A or �x ∈ B (8.53)

Read and Sachdev (1989) further generalized this model and considered an SU(N )
“Heisenberg antiferromagnet” of the form

H = J

N

∑
(�x,�x ′)

N∑
α,β=1

Sβα (�x)Sαβ (�x ′) (8.54)

where �x ∈ A and �x ′ ∈ B. The operators Sαβ (�x) are generators of the Lie group
SU(N ). If we choose a representation of SU(N ) with a Young tableau with m
rows and nc columns (0<m < N ) on sublattice A and N −m rows and nc columns
on sublattice B (i.e. the conjugate of the representation on sublattice A) (Fig. 8.9)
we can write Sαβ (�x) in terms of fermions as follows:

Sβα (�x) =
nc∑

a=1

c†
αa(�x)cβa(�x)− δβα

nc

2
(8.55)
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m N − m

nc

nc

Figure 8.9 Conjugate representations of SU(N ) on a bipartite lattice. The case
shown here is the (m, nc)= (3, 5) representation of SU(8) and its conjugate (5, 5).

at the price of introducing an extra (“flavor”) index a = 1, . . . , nc. The representa-
tion is fixed by the constraint (Read and Sachdev, 1989)

N∑
α=1

c†
αa(�x)cαb(�x) =

{
δb

am �x ∈ A

δb
a(N − m) �x ∈ B

(8.56)

Hence, there are mnc fermions on sublattice A and (N − m)nc fermions on sub-
lattice B. For example, for N = 2 (SU(2)), the only available value of m is 1
and nc is arbitrary. It is easy to show that this representation has nc spins one-half.
The constraint means that the allowed states are symmetric under a permutation
of the spins. This is the representation (or multiplet) with spin s = nc/2. Thus,
all the representations of SU(2) have been included. This is important since the
limit nc →∞, N = 2, is the spin-wave theory. The 1/S expansion discussed in
Chapter 7 is simply the 1/nc expansion here (since S = nc/2).

A general difficulty of using this approach is that it breaks translation invari-
ance if non-self-conjugate representations are placed on the two sublattices, and,
even in that case, it can be implemented only for bipartite lattices. To sidestep
this problem Read and Sachdev (1991) introduced a different generalization of
the Heisenberg model for general, including non-bipartite, lattices, such as the tri-
angular and kagome lattices. This approach amounts to generalizing the SU(2)
spin-1/2 degrees of freedom to the symplectic group Sp(N ) (instead of the unitary
group SU(N )): the group of 2N × 2N unitary matrices U that leave the (fermion
or boson) bilinear, the valence-bond operator on lattice sites i and j ,

J aa′
σσ ′c†

iaσ c†
ja′σ ′ (8.57)

(where J aa′
σσ ′ = δaa′εσσ ′ , σ, σ ′ = 1, 2, and a, a′ = 1, . . . , N ) under the transforma-

tion c → Uc. For N = 1 this reduces to SU(2). As in the other generalizations, the
number of particles, fermions nf or bosons nb, must be constrained at every given
site to specify the chosen representation of Sp(N ).
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Here we will follow the analysis of Affleck and Marston and consider only the
case of self-conjugate representations of SU(N ) (i.e. the Young tableaux have the
same number of rows m = N/2 for both sublattices). This is possible only for N
even. We will consider only the fundamental representation, which has nc = 1.
The limit nc large is more conveniently described in terms of Schwinger bosons
(Arovas and Auerbach, 1988) or in terms of a coherent-state path integral (Read
and Sachdev, 1989). Both representations lead to a generalization of the non-linear
sigma model of Chapter 7. We will not pursue this approach here.

The Lagrangian density of Eq. (8.41) now has the form

L′ = c†
αa(�x, t)(i ∂t + μ)cαa(�x, t)+ ϕab(�x, t)

(
c†
αa(�x, t)cαb(�x, t)− δab

N

2

)
− N

J
|χab

j (�x, t)|2 + c†
αa(�x, t)χab

j (�x, t)cαb(�x + e j , t)

+ c†
αb(�x + e j , t)χab

j (�x, t)∗cαa(�x, t) (8.58)

where χab
j (�x, t) is an nc×nc complex matrix field on each link of the square lattice

(labeled by the site �x and the direction j = 1, 2) satisfying

χab
j (�x, t) = χba

− j (�x + e j , t)∗ (8.59)

The field χab
j (�x, t) is a generalization of χ j (�x, t) in Eq. (8.41). This Lagrangian

density has a non-abelian gauge invariance that is a generalization of Eq. (8.42).
The functional integral is

Z =
∫

Dχ DϕDc† Dc eiS
∏
�x

e−i N
2

∮
dtϕaa(�x,t) (8.60)

The action S is a bilinear form in fermions. Hence, once again, they can be inte-
grated out at the expense of a determinant. The effective action Seff, resulting from
integrating out the fermions, is

Seff[ϕ, χ j ] = N S̄[ϕ, χ j ] (8.61)

where

S̄[ϕ, χ j ] = −i tr ln[((i ∂t + μ)δab + ϕab(�x, t)) δ�x,�x ′δt,t ′

+ (χab
j (�x, t)δ�x ′,�x+e j + χba

j (�x − e j , t)∗δ�x ′,�x−e j )δt,t ′ ]
−

∫
dt

∑
�x

1

J
|χab

j (�x, t)|2 (8.62)

We can also decompose χab
j (�x, t) into an amplitude and a phase,

χab
j (�x, t) = ρab

j (�x, t)eiAab
j (�x,t) (8.63)
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where ρab
j (�x, t) is a positive-definite real symmetric matrix and Aab

j (�x, t) is in
the Lie algebra of SU(N ) (i.e. eiA is a group element). Clearly, ϕab(�x, t) can
be regarded as the time component Aab

0 (�x, t) of the non-abelian vector potential
Aab
μ (�x, t), while Aab

j (�x, t) are its space components. The saddle-point approx-
imation is justified if we take the limit N →∞ keeping nc <∞. In the Bose
representation, on the other hand, the limit one is forced to consider has N <∞
and nc → ∞. Thus, although the theories should be equivalent, their saddle-point
approximations have quite different physics. The limit nc → ∞ means high repre-
sentations and Néel-like behavior. The opposite limit, N → ∞, nc fixed, has VB
states and flux phases but no Néel states.

8.5 Flux phases, valence-bond crystals, and spin liquids

For the most part I will consider only the case nc = 1, which is simplest. However,
there are some important new features that arise for nc > 1, which I will mention
in passing. For nc = 1, the symmetry is abelian.

The saddle-point approximation implies considering configurations of ρ̄ j (�x, t)
and Āμ(�x, t) such that

δStot

δρ̄ j (�x, t)
= 0 (8.64)

and
δStot

δĀμ(�x, t)
= 0 (8.65)

where Stot is given from Eqs. (8.61) and (8.60) by

Stot = Seff − 1

2

∑
�x

∮
dt A0 = Seff −

∑
�x

∮
dt JμAμ (8.66)

with Jμ = 1
2δμ0. Equation (8.64) determines the value (or configuration) of ρ(�x, t)

which extremizes the action. Similarly, Eq. (8.65) implies the absence of fermion
currents jF

μ in the ground state

δStot

δĀμ(x)
= δSeff

δĀμ(x)
− Jμ(x) ≡ jF

μ(x)− Jμ(x) = 0 (8.67)

In other words, the average fermion density is equal to unity, as required by the
constraint, and the average current vanishes.

Two types of solutions have been proposed to solve the saddle-point equations:
(i) flux phases and (ii) valence-bond-crystal (or Peierls) phases.
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Let us look first for solutions of the saddle-point equations with maximal sym-
metry. For instance, we want solutions of Eq. (8.64) that are independent of (�x, t)
and of j :

ρ̄ j (�x, t) = ρ̄ (8.68)

We may also ask for a possible solution with non-zero value of Ā j (�x, t) but with
Ā0 = 0. The value of Ā j (�x, t) may be chosen to be time-independent but not
constant in space since, in that case, it would be gauge equivalent to zero. Thus we
require that the circulation of Ā j (�x, t), or flux B̄, around any elementary plaquette
be constant, ∑

plaquette

Ā j (�x, t) = B̄ (8.69)

In general, a non-zero flux B̄ violates time-reversal invariance since the time-
reversal transformation maps B̄→−B̄. But this system is periodic in A j , i.e. A j

and A′
j = A j+2πn j (here n j is an arbitrary integer) cannot be distinguished. Thus

B̄ is defined up to an integer multiple of 2π. There are two values of B̄ compatible
with time-reversal invariance: B̄ = 0, π . Any other value of B̄ represents a state
with broken time-reversal symmetry, and the state is chiral. We will see below that
phases of this type can arise in frustrated quantum antiferromagnets. These phases
are called chiral spin liquids, and will be discussed in Chapter 10.

On the other hand, there are also solutions that break translation and/or rotation
invariance, namely valence-bond crystals. In these VB states, the field χ̄ j (�x, t)
has an amplitude ρ̄ j (�x, t) that takes non-zero values only on dimer configurations:
ρ̄ j (�x, t) = ρ̄ on those links covered by dimers and zero elsewhere. In Chapter 9
we will see that the quantum fluctuations of dimer configurations are described
by quantum-dimer models. These models have crystalline phases. They also have
phases in which translation and rotation invariance are restored. These are Z2 spin-
liquid phases.

Let us consider the saddle-point equations for nc = 1 in more detail. We look for
solutions that are time-independent and have Ā0 = 0. Thus, ρ̄ j and B̄ are constant
in time. From Eq. (8.58) we infer that the dynamics of the fermions, the spinons of
this system, is governed by the effective Hamiltonian

HMF =−
∑
�x, j

ρ̄ j (�x)
(

c†
α(�x)eiĀ j (�x)cα(�x + e j )+ c†

α(�x + e j )e
−iĀ j (�x)cα(�x)

)
+ N

J

∑
�x, j

ρ̄2
j (�x) (8.70)

in the background {ρ̄ j (�x), B̄(�x)}. Here, we have 1
2 N L2 fermions in a system with

the linear dimension L .
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The BZA phases. Let us consider first the uniform solutions which have ρ̄ j (�x) =
ρ̄ (constant). We saw above that there are only two allowed values of B̄ consistent
with time-reversal invariance. For B̄ = 0, the spinons have a square Fermi surface
(see Fig. 2.2). This is the state found by Baskaran, Zou, and Anderson (BZA). The
total energy of the BZA state is

EBZA = 2N L2

J
ρ̄2 − 8

π2
N L2ρ̄ (8.71)

The minimum is attained for ρ̄ = 2J/π2 and EBZA = −8N L2 J/π4. Superficially,
this state looks like a Fermi liquid of spinons. However, the fluctuations are likely to
destroy this state. There are, naturally, amplitude fluctuations, ρ̃ j (x) = ρ j (x)− ρ̄.
These fluctuations are essentially local in character and may trigger an instability
towards a Peierls state in which ρ̄ may have a periodic component in space. More
importantly, the gauge fields are completely unconstrained. The result is a state
in which the constraint of single occupancy is enforced and in which there is no
current flow.

Flux phases. The state with ρ̄ j (�x) = ρ̄ (constant) and B̄ = π , everywhere, is
called the flux phase. In the flux phase, the dynamics of the spinons is also governed
by a mean-field Hamiltonian Hflux of the form of Eq. (8.70),

Hflux =−ρ̄
∑
�x, j

(
c†
α(�x)eiĀ j (�x)cα(�x + e j )+ c†

α(�x + e j )e
−iĀ j (�x)cα(�x)

)
+ 2N L2

J
ρ̄2 (8.72)

The vector potentials Ā j (�x) should have circulation equal to π around every
elementary plaquette, ∑

plaquette

Ā j (�x) = π (8.73)

We can solve this requirement by the (gauge-dependent) choice

Ā1(�x) = +π

2

Ā2(�x) = −π

2
(−1)x1

(8.74)

In this phase, the (spinon) Fermi fields cα(�x, t) satisfy the equation of motion

i ∂t cα(�x, t) = [
cα(�x, t), Hflux

]
= −ρ̄

∑
j=1,2

(
eiĀ j (�x)cα(�x + e j , t)+ e−iĀ j (�x−e j )cα(�x − e j , t)

)
(8.75)
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f (1) f (2)

f (3) f (4)

(o, e)

(e, e) (e, o)

(o, o)

Figure 8.10 The four sublattices associated with a flux phase; (e, e), (e, o), (o, e)
and (o, o) denote four sublattices with x1 even (e) or odd (o), and x2 even or odd,
respectively.

It is convenient to split the square lattice into four sublattices, as shown in
Fig. 8.10, and to introduce a separate amplitude fα (with α = 1, . . . , 4) for each
sublattice

i ∂0 f (1)α (�x) =−i ρ̄
[

f (2)α (�x + e1)− f (2)α (�x − e1)
]

+ i ρ̄
[

f (3)α (�x + e2)− f (3)α (�x − e2)
]

i ∂0 f (2)α (�x + e1) =−i ρ̄
[

f (1)α (�x + 2e1)− f (1)α (�x)]
− i ρ̄

[
f (4)α (�x + e1 + e2)− f (4)α (�x + e1 − e2)

]
i ∂0 f (3)α (�x + e2) =−i ρ̄

[
f (4)α (�x + e1 + e2)− f (4)α (�x − e1 + e2)

]
+ i ρ̄

[
f (1)α (�x + 2e2)− f (1)α (�x)]

i ∂0 f (4)α (�x + e1 + e2) =−i ρ̄
[

f (3)α (�x + 2e1 + e2)− f (3)α (�x + e2)
]

− i ρ̄
[

f (2)α (�x + e1 + 2e2)− f (2)α (�x + e1)
]

(8.76)

If we denote by � jφ(�x, t) the finite symmetric difference

� jφ(�x, t) = φ(�x + e j , t)− φ(�x − e j , t) (8.77)

we can write the equation of motion, Eq. (8.76), in vector form (with a =
1, 2, 3, 4),

i ∂t f (a)α (�x, t) = −i ρ̄Mab f (b)α (�x, t) (8.78)

provided that �x stands for an (e, e) site and the f (1), f (2), f (3), and f (4) components
have the coordinates shown in Fig. 8.10. The matrix Mab is given in terms of the
symmetric difference operators � j ( j = 1, 2) by
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Mab =

⎛⎜⎜⎝
0 �1 −�2 0
�1 0 0 �2

−�2 0 0 �1

0 �2 �1 0

⎞⎟⎟⎠ (8.79)

Consider now the linear combinations, the two-component spinor u(a)

u(1)α (�x, t) = f (1)α (�x, t)+ f (2)α (�x + e1, t)

u(2)α (�x, t) = f (3)α (�x + e2, t)− f (4)α (�x + e1 + e2, t)
(8.80)

and v(a)

v(1)α (�x, t) = f (3)α (�x + e2, t)+ f (4)α (�x + e1 + e2, t)

v(2)α (�x, t) = f (1)α (�x, t)− f (2)α (�x + e1, t)
(8.81)

In terms of the spinors u(a)α and v(a)α (a = 1, 2) we can write the equation of motion
in the standard (two-component) Dirac form

i ∂0u(a)α (�x, t) = −i ρ̄(σ3)ab�1u(b)α (�x, t)+ i ρ̄(σ1)ab�2u(b)α (�x, t) (8.82)

and the same equation for v(a)α (�x, t).
Let us now define the 2 × 2 Dirac matrices γ0, γ1, and γ2:

γ0 = −σ2, γ1 = −iσ1, γ2 = −iσ3 (8.83)

In this notation Eq. (8.76) has the simpler form

i
(
γ0 ∂0 − vF �γ · �∇

)
ab

u(b)α = 0

i
(
γ0 ∂0 − vF �γ · �∇

)
ab
v(b)α = 0

(8.84)

where I have taken the continuum limit and the Fermi velocity vF is

vF = 2a0ρ̄ (8.85)

The eigenvalues of these Dirac operators are, in momentum space,

ε( �p) = ±2ρ̄
√

sin2 p1 + sin2 p2 (8.86)

with |pi | ≤ π/2. These dispersion relations form conical surfaces near �p = 0
that are characteristic of a continuum relativistic system (shown in Fig. 8.11).
Such “Dirac cones” are also found in the band structure of materials such as
graphene, a 2D material of carbon atoms arranged on a honeycomb lattice, and in
the quasiparticle spectrum of d-wave superconductors. In other words, the spinon
quasiparticles of the mean-field flux phases are Dirac fermions.
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ε(p)

p1

p2

Figure 8.11 The Dirac cone: the dispersion law for spinons in a flux phase.

The ground-state energy in the flux phase is given by

Eflux = 2N L2

J
ρ̄2 − 2 × 2N L2ρ̄

∫
|pi |≤ π

2

d2 p

(2π)2

√
sin2 p1 + sin2 p2

≡ 2N L2

J
ρ̄2 − N L2αρ̄ (8.87)

where the factor of 2 is due to the contribution of both u and v spinon branches.
The minimum is attained at ρ̄ = 1

4α J and the total energy of the flux phase is

Eflux = −α2

8
N L2 J ≈ −0.115N L2 J (8.88)

which is lower than that of the BZA state, namely EBZA =−8N L2 J/π4 ≈
−0.082N L2 J.

Quantum dimer phases. Let us now turn our attention to a different set of
solutions of the saddle-point equations, which is based on valence-bond states.
Consider a configuration of ρ̄ j (�x) that equals ρ̄ on a set of links occupied by dimers
such as in Figs. 8.12(a) and (b),

ρ̄ j (�x) =
{
ρ̄ if the link (�x, �x + e j ) is occupied by a dimer

0 otherwise
(8.89)
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(a) (b)

Figure 8.12 Valence-bond crystalline states: (a) one of the four columnar (or
Peierls) states and (b) a staggered state.

The mean-field Hamiltonian, Eq. (8.70), with ρ̄ j (�x) as given in Eq. (8.89),
describes a set of spinons tightly confined (bound) inside the links, the VB states.
Thus, we do not have spinon states propagating beyond the size of a dimer (one
lattice spacing) in this dimer limit. Fluctuations will enable the effective size of a
VB state to grow from the lattice-spacing scale up to some finite length scale ξ .
This scale is the spin-correlation length for this system in this VB crystal phase.
It is also clear that, at the level of mean-field theory, the average flux is not deter-
mined. This is simply reflecting the fact that the fluctuations of the gauge field are
so strong that the average flux is wiped out. We will see later that, if the effects of
the dynamics of holes are taken into account, a flux phase may also develop. The
energy of a VB crystal state is

EVB = 2N L2

J
ρ̄2 − N L2ρ̄ (8.90)

which is minimized by the choice

ρ̄ = J

4
(8.91)

and has the ground-state energy

Edimer = − J

8
N L2 (8.92)

for all dimer configurations. These states clearly have less energy, −0.125J N per
site, than both BZA and flux states.

However, now we no longer get a unique ground state at N = ∞. This degen-
eracy is lifted by fluctuations in the amplitude that appear at order 1/N . Several
possible phases can result from the effects of these fluctuations. For example, Dom-
bre and Kotliar (1989) as well as Read and Sachdev (1989) found that, for the case
nc = 1, the four columnar or Peierls states are chosen (shown in Fig. 8.12(a)).
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However, another possible state is a spin liquid, which in this language appears
as a condensate of valence bonds on next-nearest-neighbor bonds. These states are
possible in the case of a frustrated antiferromagnet, and formally break the U(1)
local symmetry down to a local Z2 gauge symmetry that can lead to a Z2 spin liquid
(Read and Sachdev, 1991; Wen, 1991c; Mudry and Fradkin, 1994). This case will
be discussed in Chapter 9.

8.6 Is the large-N mean-field theory reliable?

Both BZA and flux solutions have gapless excitations that carry a spin- 1
2 degree

of freedom (for SU(2)) or, more generally, SU(N ) color quantum numbers. While
this spectrum appears to be stable at the level of mean-field theory, we will find
problems once fluctuations are taken into account. First of all, we will find that a
set of dimer states has lower energy both than the BZA states and than the flux
states. It is plausible, however, that reasonable generalizations of this Hamiltonian
such that the flux state may be preferred do exist. Affleck and Marston have indeed
found such generalizations.

But what is more serious about these mean-field theories is the fact that they
violate the local gauge invariance present in the full theory. In fact, we find
spin-non-singlet excitations that are not gauge-invariant: the spinon states them-
selves. In lattice gauge theories, there is a theorem, known as Elitzur’s theorem,
which states that, in a theory with local interactions and with local gauge invari-
ance, only locally gauge-invariant operators can have non-zero vacuum expectation
values. In other words, the only states present in the spectrum are local gauge
singlets.

This result may appear to be puzzling at first glance. After all, even in theories
with a global symmetry, such as the Ising model, the low-temperature magneti-
zation is zero if the averages are computed over the entire configuration space.
The procedure to remedy this problem is well known, and it is crucial to a correct
understanding of spontaneous breaking of global symmetries. First one considers
a finite system of linear size L and the allowed space of configurations is reduced
either by choosing a boundary condition (that fixes the asymptotic behavior of the
spins at spatial infinity) or by turning on a weak external symmetry-breaking field.
Next, the thermodynamic limit L → ∞ is considered in the presence of a fixed
symmetry-breaking procedure, which is removed after the thermodynamic limit
has been taken. This procedure yields a non-zero magnetization because in the
thermodynamic limit it takes an infinite order in the low-temperature expansion,
i.e. the expansion around the state with broken symmetry, to mix the two degen-
erate classes of configurations. Hence, there is no mixing and the magnetization is
non-zero if the expansion has a finite radius of convergence.
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However, if the symmetry is local, the situation is radically different. It always
takes a finite order (of the order of the coordination number) in perturbation the-
ory to mix states related through local gauge transformations. The behavior of
the system at the boundaries has little effect on the behavior near its center. The
expressions for local expectation values are analytic functions of the coupling
fields, even in the thermodynamic limit, L → ∞. Thus, in the absence of external
fields or gauge-fixing conditions, expectation values of locally gauge-non-invariant
operators must be zero. This is the content of Elitzur’s theorem (see also Chapter 9).

However, a gauge theory may be in a non-confined phase in which a gauge-
invariant operator creates a quark (spinon in the terminology of magnetism) and
an antiquark (anti-spinon) at distances R, which can be separated all the way to
infinity and still yield a non-zero amplitude. But, for that to happen, the fluctua-
tions of the gauge fields, or rather of their field strengths, need to be controlled.
This is not the case for the “RVB-type” mean-field theories since there is no term
to control the fluctuations of the gauge fields here. The gauge fields fluctuate so
strongly that (a) they are able to enforce the local constraint and (b) they project
out all current-carrying states. The conclusion is that the BZA and flux states need
not only a Gutzwiller projection but also an additional procedure to eliminate all
processes involving transport of spin over any significant distance. In conclusion,
the physical stability (and significance) of gauge-symmetry-breaking mean-field
states, such as the flux phases and their generalizations, the projective-symmetry
group states (PSG) (Wen, 2002), must be assessed by a non-perturbative procedure
that satisfies the requirements of Elitzur’s theorem.

There is a possible loophole in this argument. Although the gauge theory alone
may be in a confined phase, it may possibly become confined when it is coupled
to a matter field. In Chapter 9 we will see that this scenario is possible only if
the matter fields “condense” in such a way that they spontaneously break the U(1)
gauge symmetry down to a discrete subgroup such as Z2. In this case the theory
effectively becomes a Z2 gauge theory, which in (2 + 1) dimensions has a decon-
fined (topological) phase, namely, the Z2 spin liquid, which is a fully gapped phase.
Another mechanism that will be discussed extensively in Chapter 10 is to have a
phase that breaks time-reversal invariance dynamically. We will see that in this case
the monopoles are suppressed and the flux phase is stable, even though it becomes
massive.

On the other hand, unless some mechanism is found to suppress the monopole
configurations, it is much more difficult to stabilize the gapless phases such as the
BZA or flux states. One way to accomplish this goal is to consider a theory with
flavor degrees of freedom, which so far we have set to unity. Indeed, if the number
of flavors is large enough, it is possible to suppress the monopoles by making them
irrelevant. This has been shown to hold in the limit in which the number of flavors
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is also taken to infinity (Metlitski et al., 2008). This result is similar, and closely
related, to the well-known fact that a gauge theory with a compact gauge group
coupled to a large number of fermionic flavors becomes deconfining since it has
an infrared-stable perturbative expansion. However, in the case of the BZA state,
the suppression of the monopoles is not sufficient, since there remains the coupling
between the spinons close to the Fermi surface and long-wavelength gauge fields.
This coupling is known to lead to infrared singularities in the fermion propagators
(in all gauges). This problem also arises in the context of quantum chromodynam-
ics at finite density (such as in heavy-ion collisions) and in the compressible phases
of 2D electron gases in large magnetic fields (i.e. when there are no fractional quan-
tum Hall states allowed). Although many solutions have been proposed (e.g. Kwon
et al., 1994; Polchinski, 1994; Lee, 2008; Metlitski and Sachdev, 2010) this is still
an unsolved problem. However, the available quantum Monte Carlo data do not
favor these scenarios for the case of systems with SU(2) symmetry such as the
quantum Heisenberg antiferromagnets (Assaad, 2005; Armour et al., 2011).

On the other hand, the valence-bond states are manifestly local singlets, are
locally gauge-invariant, and are thus free from these problems. Thus gauge-field
fluctuations will play a rather small role in this case. We should expect states that
are based on a VB description to be more stable. The problem of finding a “true”
spin-liquid state, i.e. a state without broken symmetries and with spinon states in
its spectrum, is a subtle one and for the most part remains essentially an open issue.
We will return to this problem in Chapter 9.

8.7 SU(2) gauge invariance and Heisenberg models

There is something peculiar in the way we have treated the spin degrees of freedom.
For the most part, the spin degrees of freedom are either “swallowed” by dimers
or appear in an almost trivial factor as in the large-N limit (N being the number
of spin degrees of freedom!). Nowhere in our discussion do we see even a hint of
the fact that the spins, say for S = 1

2 , have an SU(2) symmetry. The reason for
this can be traced back to the way we decoupled the quartic interaction in terms
of an abelian field χi j living on the links. In the past section, we showed that, for
N = 2, there are two types of spinors, up and down, coupled to amplitudes and
gauge fields. (In reality, there are four because of the doubling.) It may seem that,
if there are spinons in the excitation spectrum, then even without doubling there
should be four elementary excitations bearing spin: spinon particles and holes of
either spin orientation. The gauge fields, however, make sure that the constraint
of single occupancy is strictly enforced. Thus, at each site, only two, not four,
degrees of freedom are allowed, each allowed by the orientation of the spin. We
must conclude that the particle and hole excitations of the spinons cannot possibly
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be independent degrees of freedom. We also know that, in the absence of holes,
particle–hole symmetry is strictly respected. Hence, the natural conclusion is that
the spinon hole with, say, spin down must be the same physical excitation as the
spinon particle with spin up, and vice versa. It is clear, then, that a combination of
particle–hole and spin symmetries is playing a fundamental role in these systems.
The gauge symmetry must then be larger than the local U(1) symmetry implied by
the 1/N expansion or, for that matter, by any RVB-like abelian decoupling of the
Heisenberg interaction.

We will show now that a spin- 1
2 Heisenberg antiferromagnet, on any lattice and

in any dimension, is equivalent to the strong-coupling limit of an SU(2) gauge
theory coupled to fermions (Affleck et al., 1988a; Dagotto et al., 1988). Let �x and
�x ′ be two sites of a lattice. The term in the Heisenberg Hamiltonian which describes
the antiferromagnetic coupling between spins at points �x and �x ′ (not necessarily
nearest neighbors) is

J �S(�x) · �S(�x ′) (8.93)

Once again, we will use a fermion description of the spins,

�S(�x) = c†
α(�x)�ταβcβ(�x) (8.94)

where �τ is the set of 2 × 2 Pauli matrices and we require single occupancy at �x
and �x ′:

1 = c†
α(�x)cα(�x) = c†

α(�x ′)cα(�x ′) (8.95)

Let us perform a particle–hole transformation at every site so as to ensure that the
reference state satisfies Eq. (8.95). We define new fermion operators ψ1(�x) and
ψ2(�x) given by the relationships

c↑(�x) = ψ1(�x), c†
↑(�x) = ψ

†
1 (�x)

c↓(�x) = ψ
†
2 (�x), c†

↓(�x) = ψ2(�x)
(8.96)

This canonical transformation amounts to an “exchange” of charge and spin
operators since

c†
↑(�x)c↑(�x)+ c†

↓(�x)c↓(�x) = ψ
†
1 (�x)ψ1(�x)− ψ

†
2 (�x)ψ2(�x)+ 1

c†
↑(�x)c↑(�x)− c†

↓(�x)c↓(�x) = ψ
†
1 (�x)ψ1(�x)+ ψ

†
2 (�x)ψ2(�x)− 1

(8.97)

Hence, the constraint

c†
↑(�x)c↑(�x)+ c†

↓(�x)c↓(�x) = 1 (8.98)

is equivalent to

ψ
†
1 (�x)ψ1(�x)− ψ

†
2 (�x)ψ2(�x) = 0 (8.99)
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In other words, we are projecting onto the subspace with an equal number of quan-
tum numbers 1 and 2 per site. Such states are denoted by |Phys〉. The constraint,
Eq. (8.99), has the equivalent form

ψ†(�x)τ3ψ(�x)|Phys〉 = 0 (8.100)

However, Eq. (8.99) implies that the following identities must also hold:

ψ†(�x)τ1ψ(�x)|Phys〉 =
(
ψ

†
1 (�x)ψ2(�x)+ ψ

†
2 (�x)ψ1(�x)

)
|Phys〉 = 0

ψ†(�x)τ2ψ(�x)|Phys〉 = i
(
ψ

†
1 (�x)ψ2(�x)− ψ

†
2 (�x)ψ1(�x)

)
|Phys〉 = 0

(8.101)

Indeed, Eq. (8.101) is equivalent to the statements(
c†
↑(�x)c†

↓(�x)+ c↓(�x)c↑(�x)
)
|Phys〉 = 0

i
(

c†
↑(�x)c†

↓(�x)− c↓(�x)c↑(�x)
)
|Phys〉 = 0

(8.102)

which are true since the states |Phys〉 are singly occupied. Therefore, we have the
local constraint on the space of allowed states

ψ†(�x)�τψ(�x)|Phys〉 = 0 (8.103)

at each site of the lattice. Note, however, that ψ†(�x)�τψ(�x) is not a spin operator.
Rather, the spin operators Sa(�x), a = 1, 2, 3, are now given by

S1(�x) ≡ c†
↑(�x)c↓(�x)+ c†

↓(�x)c↑(�x) = ψ
†
1 (�x)ψ†

2 (�x)+ ψ2(�x)ψ1(�x)
S2(�x) ≡ i

(
c†
↑(�x)c↓(�x)− c†

↓(�x)c↑(�x)
)
= i

(
ψ

†
1 (�x)ψ†

2 (�x)− ψ2(�x)ψ1(�x)
)

S3(�x) ≡ c†
↑(�x)c↑(�x)− c†

↓(�x)c↓(�x) = ψ
†
1 (�x)ψ1(�x)+ ψ

†
2 (�x)ψ2(�x)− 1 (8.104)

This set of operators has a remarkable local symmetry. Let ψ ′(�x) be a new spinor
related to ψ(�x) by means of an SU(2) transformation U (�x):

ψ ′
α(�x) = Uαβ(�x)ψβ(�x) (8.105)

Clearly, under such a transformation, we have

ψ ′†
α(�x)τ a

αβψ
′
β(�x) = ψ†

α(�x)
(
U−1(�x)τ aU (�x))

αβ
ψβ(�x)

≡ Rab(�x)ψ†
α(�x)τ b

αβψβ(�x) (8.106)

where R(�x) is the SO(3) rotation associated with the SU(2) transformation U (�x).
The spin operators Sa(�x), a = 1, 2, 3, are invariant under this SU(2) transfor-

mation. First, S3(�x) is clearly invariant:

S3(�x) = ψ†
α(�x)ψα(�x)− 1 = ψ ′†

α (�x)ψ ′
α(�x)− 1 (8.107)
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Secondly, the invariance of S1(�x) and S2(�x) follows from the fact that the operators
χ(�x) and χ†(�x), defined by

χ(�x) ≡ 1

2
εi jψi (�x)ψ j (�x) (8.108)

are also invariant under SU(2).
It is convenient to introduce the SU(2)-invariant operator M(�x),

M(�x) ≡ ψ†
α(�x)ψα(�x) (8.109)

It is easy to show now that the Heisenberg Hamiltonian on any lattice and in any
dimension with a translationally invariant interaction J (�l) (�l is the relative position
vector of a pair of spins) is equivalent to the following Hamiltonian:

H =−Ns

⎛⎝∑
�l

J (�l)
⎞⎠ (1 + 2m3)

+
∑
�x,�l

J (�l)
(

M(�x)M(�x + �l)+ 2
(
χ†(�x)χ(�x + �l)+ χ†(�x + �l)χ(�x)

))
(8.110)

where Ns is the total number of sites on the lattice and m3 is the total polarization
of the allowed Hilbert space,

1

Ns

∑
�x

S3(�x)|Phys〉 = m3|Phys〉 (8.111)

The Heisenberg Hamiltonian in the form given by Eq. (8.110) is manifestly invari-
ant under the local SU(2) transformations of Eq. (8.105) since it is written in terms
of M(�x), χ(�x), and m3, which are locally invariant.

It is important to stress that this local SU(2) symmetry, which involves both
spin rotations and a particle–hole transformation, is unrelated to the global SU(2)
invariance

cα(�x) → c′α(�x) = Vαβcβ(�x) (8.112)

which induces global rotations of the spin polarization,

Sa(�x) → S′
a(�x) = Rab Sb(�x) (8.113)

In Section 2.3.1, we showed that the Heisenberg antiferromagnet is the U → ∞
limit of a half-filled Hubbard model. I will now show that it is also the strong-
coupling limit of an SU(2) lattice gauge theory. Consider a system of fermions,
with creation and annihilation operators ψ†

α(�x) and ψα(�x), respectively, coupled to
a set of SU(2) gauge degrees of freedom U (�x, �x ′) on the bonds (�x, �x ′) of a lattice.
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The Hilbert space of this system is a tensor product of fermionic states on the sites
of the lattice multiplied by states on the links associated with gauge degrees of
freedom. Let Aa(�x, �x ′) be an operator that transforms like a vector under SU(2),
i.e. �A(�x, �x ′) · �τ is an element of the Lie algebra. Let us label the states on the links
by the (real) eigenvalues of Aa(�x, �x ′), e.g. |{Aa(�x, �x ′)}〉. The operators U (�x, �x ′)
are 2 × 2 matrices defined by

U (�x, �x ′) = eiτa Aa(�x,�x ′) (8.114)

where the τ a are the generators of SU(2) in the fundamental (spinor) representa-
tion. Moreover, we demand

Aa(�x, �x ′) = −Aa(�x ′, �x) (8.115)

Equivalently, the U (�x, �x ′) operators must satisfy the condition

U (�x, �x ′) = U †(�x ′, �x) (8.116)

Let Ea(�x, �x ′) be a set of operators acting on this Hilbert space. We will require that
these operators be canonically conjugate to the Aa(�x, �x ′), i.e.

[Aa(�x, �x ′), Eb(�y, �y ′)] = iδab · δ�x,�yδ�x ′,�y′ (8.117)

In addition, the operators Ea(�x, �x ′) satisfy the SU(2) (angular-momentum) algebra

[Ea(�x, �x ′), Eb(�y, �y′)] = iεabc Ec(�x, �x ′) · δ�x,�yδ�x ′,�y′ (8.118)

In other words, the operators Ea(�x, �x ′) transform like group generators. Clearly,
the operators Ea(�x, �x ′) and the SU(2) matrices U (�x, �x ′) satisfy the commutation
relations

[Ea(�x, �x ′),U (�y, �y ′)] = τ aU (�x, �x ′) · δ�x,�yδ�x ′,�y′ (8.119)

All the commutators so defined (Eqs. (8.117)–(8.119)) vanish if the operators act
on the Hilbert spaces associated with different links.

Consider now the Hamiltonian H̃ acting on the Hilbert space of gauge-invariant
states:

H̃ = G

2

∑
(�x,�x ′)a

Ea(�x, �x ′)Ea(�x, �x ′)+ i

2

∑
(�x,�x ′)αβ

(
ψ†
α(�x)Uαβ(�x, �x ′)ψβ(�x ′)− h.c.

)
(8.120)

where G is a coupling constant and (�x, �x ′) are pairs of sites on an arbitrary lattice.
On a given lattice, the equivalence between the system described by the Hamil-

tonian H̃ and the Heisenberg model holds in the limit G → ∞. The argument goes
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as follows. First we note that H̃ is invariant under time-independent local SU(2)
gauge transformations,

Uαβ(�x, �x ′) = W−1
αγ (�x)U ′

γ δ(�x, �x ′)Wδβ(�x ′)

ψα(�x) = W−1
αβ (�x)ψ ′

β(�x)
(8.121)

In the limit G → ∞, the ground state of the system has a huge degeneracy. In
fact, to leading order in an expansion in powers of 1/G, the low-lying states are
the gauge singlets which satisfy

Ea(�x, �x ′)Ea(�x, �x ′)|�〉 = 0 (8.122)

(on all links) and obey the constraint

Qa(�x)|�〉 ≡ ψ†
α(�x)τ a

αβψβ(�x)|�〉 = 0 (8.123)

The last condition implies that at each site �x we have either a state with no fermion,
|0〉, or a “baryon” state, |χ〉 = χ†|0〉. We now can apply a degenerate perturbation
theory exactly identical to the one we used to derive the Heisenberg model from
the Hubbard model. The first available excited state, |�exc〉, has a link excited to a
state with angular-momentum quantum number 1

2 ,

Ea(�x, �x ′)Ea(�x, �x ′)|�exc〉 = 3

4
|�exc〉 (8.124)

only on that link. The effective Heisenberg exchange interaction thus obtained is
equal to J = 2/(3G).

What is the physical meaning of this symmetry? What we have actually shown is
that the strong-correlation limit of the Hubbard model at half-filling has an effective
local SU(2) gauge invariance. This gauge invariance, which is a mixture of a local
particle–hole transformation and a spin rotation, merely reflects the fact that in the
strong-correlation limit the only excitations left do not violate the local constraint.
Hence no charge motion is possible and the system is an insulator. The charge-
carrying states are either holes or doubly occupied sites, both of which violate the
constraint and pay a large energy penalty of order U , the Hubbard coupling con-
stant. The remaining states are charge-neutral states, which may, or might not, carry
spin. It is thus no surprise that the gauge theory satisfies not only the constraint

Qa(�x)|Phys〉 = 0 (8.125)

but also the related condition for the current,

J a
i (�x)|Phys〉 = 0 (8.126)

In other words, the current must also be zero.
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In a sense, we can think of the Heisenberg model as a “free-particle” problem
with its large Hilbert space projected onto a subspace of states with zero current
and zero charge, at the scale of the lattice spacing. The insulating phase of the Hub-
bard model, on the other hand, satisfies the same condition at length scales larger
than the inverse of the charge gap. Thus, the low-energy behavior of the Hubbard
insulator is also described by a system with a gauge symmetry. This property is
clearly violated once one considers states with non-zero charge. Indeed, the chem-
ical potential, which couples to the charge density c†

α(�x)cα(�x), yields a term in the
Hamiltonian H̃ of the form

H̃charge = μ
∑
�x
ψ†(�x)τ3ψ(�x) (8.127)

which clearly violates the SU(2) symmetry. Similarly, the fermion-hopping term
becomes

H̃hop = t
∑
〈�x,�x ′〉

c†
σ (�x)cσ (�x ′) = t

∑
〈�x,�x ′〉

ψ†
α(�x)τ αβ3 ψβ(�x ′) (8.128)

which also violates the local SU(2) gauge invariance. We will come back to these
issues later on. Let us point out now that the symmetry does imply that the spinon
particle (hole) state with spin up is the same state as a spinon hole (particle) with
spin down. Thus local SU(2) tells us that there are only two spinon states, which is
as it should be.
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Gauge theory, dimer models, and topological phases

In the last chapter we introduced the concept of valence-bond states and discussed
several quantum disordered phases in this language. Here we will see that the
quantum fluctuations of valence-bond systems are best captured in terms of a
much simpler effective theory, the quantum-dimer models. An understanding of
these types of phases is best accomplished in terms of gauge theories. The phases
of gauge theories and their topological properties will allow us to introduce the
concept of a topological phase of matter in a precise way.

9.1 Fluctuations of valence bonds: quantum-dimer models

The valence-bond crystal of Section 8.5 has a spin-correlation length of the order
of one lattice constant. It represents a quantum paramagnet. However, it is not a
translationally invariant state, unlike the equal-amplitude short-range RVB state.
It has crystalline order of its valence bonds and it is a four-fold degenerate
state.

Alternatively we can imagine that the amplitude fluctuations, which represent
transitions to states with broken valence bonds, are suppressed. The only way the
system has to minimize its energy is by finding a coherent rearrangement of valence
bonds. If the amplitude fluctuations are frozen out, the system has states labeled by
quantum numbers that describe the covering of the lattice by dimers. For the rest of
our discussion we will ignore the SU(N ) structure. In this approximation the space
of states is identified with the set of configurations {C} of dimer coverings of the
lattice. In particular we will take this basis to be orthonormal,

〈C|C ′〉 = δC,C′ (9.1)

and complete (although the valence-bond singlet states are over-complete).
Quantum-dimer models also arise in certain limits of frustrated Ising models

in transverse fields (Moessner et al., 2000; Moessner and Sondhi, 2001b). Two

286
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examples are the Ising antiferromagnet in a transverse field on a triangular lat-
tice and the fully frustrated Ising model (also in a transverse field). In these cases,
as in their classical counterparts, dimer coverings of the lattice represent the con-
figurations of “unsatisfied bonds.” These are classically degenerate configurations
(states). The quantum-dimer model is the effective quantum Hamiltonian acting on
this degenerate manifold of states, much in the same way as the quantum Heisen-
berg antiferromagnet arises as the strong-coupling limit of the Hubbard model (at
half-filling).

The structure of quantum-dimer models and of their phase diagrams depends
on whether the lattice is bipartite or not, and, if it is, on the coordination number.
We will focus primarily on the cases of the square and triangular lattices. Let us
consider first the case of a square lattice and let l j (�x) be an integer-valued variable
associated with the bond (�x, �x + e j ). The Hilbert space is the space of states of
the form {|{l j (�x)}〉}, where the integer l j is either equal to zero (no dimer) or one
(dimer). Every site has to belong to one and only one dimer. This requirement leads
to the local constraint

l1(�x)+ l2(�x)+ l1(�x − e1)+ l2(�x − e2) = 1 (9.2)

For the case of the triangular and honeycomb lattices there is an analogous con-
struction with a space of states labeled by an integer l, the dimer occupation number
of the link, taking the values l = 0, 1. The dimer occupation numbers are subject
to the same constraint that their sum on links sharing a given site is fixed to be
1, indicating that a lattice site belongs to one and only one dimer at a time. Each
lattice is composed of sites, nearest-neighboring pairs of which denote the links.
Planar lattices are uniformly tiled by plaquettes (squares, triangles, hexagons, etc.).

The Hamiltonian of the quantum-dimer model (QDM) is in all cases a sum of a
resonance term (the kinetic energy) and a diagonal term (the potential energy) with
a structure that is different for each type of lattice,

HQDM = Hres + Hdiag (9.3)

which acts on a space of states subject to the local constraint of Eq. (9.2).
The “resonance” process of Fig. 9.1 is represented by an off-diagonal matrix ele-

ment in which the integer degrees of freedom l j for parallel bonds of a plaquette are
raised from zero to one if the values for the other two bonds are lowered from one
to zero. This process can be described by a term in the effective Hamiltonian of the
form Hres, which for the case of the square lattice is (Rokhsar and Kivelson, 1988)

Hres = J̄
∑

plaquettes

(∣∣∣∣ 〉 〈 ∣∣∣∣ + ∣∣∣∣ 〉 〈 ∣∣∣∣) (9.4)
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Figure 9.1 The resonance process. The integers l = 0, 1 represent the bond
occupation by a dimer (or valence bond).

where J̄ is an effective coupling constant, J̄ ∝ J . When acting on a given pla-
quette, this operator annihilates states with no dimer or only one dimer on that
plaquette because these states are orthogonal. For the case of the triangular and
hexagonal lattices there is also a resonance term describing resonant processes for
dimer configurations covering every other link of the smallest possible plaque-
ttes of the lattice (hexagons for the honeycomb lattice and parallelograms for the
triangular lattice) (Moessner and Sondhi, 2001a, 2001b).

The diagonal matrix elements are described by a term in the Hamiltonian Hdiag,
which gives an energy V to a pair of neighboring parallel dimers. For the square
lattice it has the form

Hdiag = V
∑

plaquettes

(∣∣∣∣ 〉 〈 ∣∣∣∣ + ∣∣∣∣ 〉 〈 ∣∣∣∣) (9.5)

This operator assigns a plaquette energy 0 to all states with no dimer or only
one dimer on that plaquette. For the case of triangular and hexagonal lattices the
structure of Hdiag is analogous and it is also associated with the smallest possible
plaquettes.

In spite of its apparent simplicity, the QDM is not easy to solve for arbitrary
values of the parameters. A partial exact solution exists for a particular set of values
of the parameters (which will be discussed below). We will now describe its phases
and phase diagrams, which turn out to depend on whether the lattice is bipartite
or not. In most (but not all) cases the ground state is a VB crystal. Thus, even
the QDM, which was originally proposed by Rokhsar and Kivelson (1988) as a
model with a short-range RVB state as its ground state, has, in general, a crystalline
ground state.

This is easy to see in the “classical limit” in which |V | � |J |. Indeed, if V
is large and negative, the diagonal term tells us that dimers on parallel links of a
plaquette attract each other. Thus in this case we need to maximize the number of
parallel dimers on each plaquette (regardless of the lattice structure). For the case
of the square lattice the result is the columnar ordered state shown in Fig. 8.12(a).
Similar “ideal” ordered phases also occur for the triangular and honeycomb lattices.
In the opposite limit, with V large and positive, dimers on parallel links repel each
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other. In this limit too the ground state is a VB crystal, which for the case of the
square lattice is the staggered crystal shown in Fig. 8.12(b). Again, analogous VB
crystalline phases exist for other lattices as well.

From a symmetry point of view, a state with columnar order can be regarded
as a phase with a unidirectional modulation of the dimer density, a “VB den-
sity wave.” Such a phase breaks (spontaneously) translational invariance as well
as rotational invariance or, more properly, the point-group symmetry of the lat-
tice. In the cases we discuss here the VB density wave is commensurate with the
underlying lattice, and in the particular case of columnar order the period is 2.
Valence-bond crystalline states with more complex orders can also exist (Frad-
kin et al., 2004; Vishwanath et al., 2004; Papanikolaou et al., 2007a). Crystalline
phases that respect the point-group symmetry can also exist. One such example is a
state with “plaquette” order (Jalabert and Sachdev, 1991), which can be regarded as
a state with a bidirectional VB density wave (or as a state in which dimers resonate
on a subset of plaquettes).

For general values (and signs) of the coupling constants V and J the QDM
Hamiltonian must be diagonalized numerically. This is a numerically hard prob-
lem even for this very simple system. Quantum Monte Carlo simulations (Jalabert
and Sachdev, 1991) and finite-size exact diagonalizations (Leung et al., 1996) have
been performed and confirm the statement that the “generic” ground state is a
crystal rather than a liquid. For V > | J̄ |, the staggered valence-bond crystal of
Fig. 8.12(b) is the exact ground state and it has zero energy for all V > |J |.

The exact ground state of the QDM is known for a particular value of J̄/V ,
namely J̄/V = −1 (with V > 0), which is known as the Rokhsar–Kivelson (RK)
point. At this value of J̄/V Rokhsar and Kivelson (1988) found that the short-
range RVB wavefunction is the exact ground-state wave function and that it has
zero energy. The reason for this behavior is that precisely at J̄ = −V the QDM
Hamiltonian (in all planar lattices) can be written as a sum of projection operators
that locally project out the linear superposition of the two parallel configurations of
dimers on each plaquette. Thus, at the RK point and for all lattices the Hamiltonian
is a positive semi-definite hermitian operator whose eigenvalues are non-negative.
Hence, all zero-energy states are exact (zero energy!) ground states.

Up to the effects of boundary conditions (which we will discuss below) the
ground state of the QDM Hamiltonian at the RK point is the short-range RVB
state |�sRVB〉, the equal-amplitude superposition of dimer configurations {C},

|�sRVB〉 =
∑
{C}

|C〉 (9.6)

which, at the RK point, clearly obeys

HQDM|�sRVB〉 = 0 (9.7)
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This state has a number of simple and remarkable properties. Owing to the
orthonormality of the dimer configurations,

〈C |C ′〉 = δC,C ′ (9.8)

the norm of this state, ||�sRVB||2, is simply the sum of the dimer configurations on
the given lattice. In other terms,

||�sRVB||2 = Zdimer (9.9)

where Zdimer is the classical dimer partition function for that lattice. In addition, the
equal-time correlation functions of local operators of the QDM that are diagonal
in the dimer basis, e.g. the local dimer-density operator, is equal to the correlation
function of the same physical observable in the classical dimer model about which
much is known!

We saw before that the correlation length of the spins in short-ranged valence-
bond states is short-ranged (Kohmoto and Shapir, 1988). In the dimer limit which
we are considering here, the spins are permanently bound inside dimers and the
spectrum of spin excitations has effectively an infinite energy gap for all spin-
carrying excitations. In particular, in this limit the spin-correlation length cannot
exceed the size of a dimer and it is effectively zero. However, this does not imply
that all other correlation functions must also necessarily be short-ranged. The
actual behavior turns out to depend on whether the lattice is bipartite or not.

9.2 Bipartite lattices: valence-bond order and quantum criticality

For the square and honeycomb lattices, both of which are bipartite, the RK point
dimer-density correlation function is not short-ranged. This correlation function,
which measures the probability on finding two dimers separated by some distance
R (say on parallel links) on the lattice is, in this state, equal to the correla-
tion function for finding two parallel dimers in a random distribution of classical
dimers covering the lattice. For the case of the square lattice, Fisher and Stephen-
son (1963) solved this problem exactly (using Pfaffian methods), and found that
this correlation function, G(R), obeys a power law

G(R) ∝ 1

R2
(9.10)

The precise form of the correlation function is actually more complicated. In
addition to the power law shown in Eq. (9.10), it depends also on the relative sub-
lattices on which the dimers reside as well as on their relative orientation (Fisher
and Stephenson, 1963; Youngblood et al., 1980). The same result essentially also
holds for the honeycomb lattice. This result implies that the ground state at the
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RK point of the QDM on the square lattice, the short-range RVB state, does not
have long-range dimer order and it is not a VB crystal. However, it is not a liquid
either, since the connected correlator does not decay exponentially with distance as
it should in a liquid state. In fact, both on the square and on the honeycomb lattices
the short-range RVB state is at a critical point between two VB crystals, which are
dimer solids. Fisher and Stephenson also calculated the correlation function C(R)
of two holes (monomers) separated by a distance R and found the result (again up
to a dependence on the relative sublattice)

C(R) = constant

Rη
(9.11)

with the anomalous dimension η = 1
2 . In the QDM this corresponds to the equal-

time correlation function of an operator that creates two holes (or holons) separated
by the same distance R. In the classical dimer model this corresponds to the corre-
lator of two monomers (Rokhsar and Kivelson, 1988) (a detailed description was
given by Papanikolaou and coworkers (Papanikolaou et al., 2007b)).

If the equal-time correlation functions of local operators have a power-law
behavior (at long distances) we expect the excitation spectrum to be gapless, with
the energy gap scaling as some power z of the momentum of the excitation. In the
case of QDMs at the RK point on the square lattice, where the dimer correlation
has the power-law decay of Eq. (9.10), a variational calculation by Rokhsar and
Kivelson (1988) (using a standard argument due to Feynman (1972)) of the excited
state created by the local dimer-density operator predicts the value of the dynami-
cal quantum critical exponent to be z = 2, i.e. that the “resonon” excitation energy,
ωresonon( �p), of a state with small momentum �p (measured from (π, π)) scales as

ωresonon( �p) = constant × | �p|2 (9.12)

We will see below why this result is natural and probably exact. However, we
expect that the existence of this gapless state is a special feature of the RK point
and that this excitation should be unstable with respect to perturbations away from
the RK point. We will also see below that the RK point (if it is actually accessible)
is a quantum critical point with special properties.

9.3 Non-bipartite lattices: topological phases

The behavior is markedly different on a triangular lattice. Numerical simula-
tions (Moessner and Sondhi, 2001b) and exact results (Fendley et al., 2002) (also
obtained using Pfaffian methods) for the classical dimer model on the triangu-
lar lattice indicate instead that the (connected) dimer correlation function also
does not exhibit long-range order but instead is now short-ranged, i.e. it decays
exponentially with distance with a correlation length ξ ∼ a, where a is the lattice
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spacing. Thus, the short-range RVB state describes a dimer liquid, a uniform state
without any type of long-range order. As we will discuss below, this state is a topo-
logical fluid and hence a true spin-liquid state. Similarly, the (connected) monomer
(hole) correlation function also decays exponentially at long distances with a finite
(and quite short) correlation length.

In the same work, Fendley, Moessner, and Sondhi also investigated the behavior
for an anisotropic lattice, namely a square lattice with extra links running along
one of the directions of its diagonal bonds (say SW–NW), and assigned a separate
fugacity t for dimers on the diagonal bond. For t = 1 this system is equivalent
to the isotropic triangular lattice, while for t = 0 it reduces to the square lattice.
Using the same methods, they found that t = 0 is indeed a critical point, and that
for all t > 0 the dimer system is in a liquid phase with a correlation length that
diverges as the square lattice limit is approached (t → 0) as ξ(t) ∼ t−1.

On the other hand, since the RVB state on the triangular (and, hence, non-
bipartite) lattice has a finite correlation length and the Hamiltonian is local, it is
natural to expect that the excitation spectrum be gapped. This expectation is known
to be correct in systems with a relativistic spectrum in which energy scales like
the momentum (and hence these systems have a dynamical exponent z = 1). It
is believed to hold more generally, and it is believed to be rigorously correct for
generic systems with local interactions. A theorem by Hastings and Koma (2006)
proves that algebraically decaying correlators imply a gapless spectrum for local
Hamiltonians. Since the energy gap is finite at the RK point, we expect that it will
remain finite at least for some neighborhood of the RK point. Thus, the liquid state
should describe a phase of the QDM on the triangular lattice.

The ground state on a bipartite lattice turns out to depend in subtle ways on
the boundary conditions. For a system with open boundary conditions (essentially
a disk or, equivalently, a sphere), the ground state is unique. However, for a sys-
tem with periodic boundary conditions (a surface that has the topology of a torus)
the ground state is four-fold degenerate. This degeneracy is not the result of any
broken symmetry, since this state is translationally invariant and the correlation
functions of all local operators are short-ranged. More importantly, the degeneracy
depends only on the topology of the surface. In Section 9.6 we show that states
with these properties are topological phases. This topological phase is known as a
Z2 topological fluid.

9.4 Generalized quantum-dimer models

It is possible to construct generalized QDMs whose Hamiltonians are also the sum
of local projection operators at their respective RK points (Ardonne et al., 2004;
Castelnovo et al., 2004; Papanikolaou et al., 2007b). The configuration spaces (the
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Hilbert spaces) of these models in some cases are dimer coverings of the lattice,
and in others are arrows defined on links. The amplitudes described by these states
always have the form of a product of local weights for a given configuration C :

|�〉 =
∑
{C}

w[C]|C〉 (9.13)

where w[C] is a product of amplitudes assigned to sites, links, plaquettes, etc., of
the lattice. For example Papanikolaou et al. (2007b) and Castelnovo et al. (2004)
considered a generalized QDM with an exact ground state at its “RK point” of the
form of Eq. (9.13) with

w[C] =
∏

p

e−
u
2�p[C] (9.14)

where p spans the plaquettes of the square lattice, and u is a parameter. Here
�p[C] = 1 if configuration C has a pair of parallel dimers (vertical or horizon-
tal) on plaquette p, and �p[C] = 0 otherwise. Since this state depends on the
arbitrary parameter u, the RK point is actually a line. Once again, the norm of this
state is a classical partition function, a sum over dimer configurations with a Gibbs
weight |w[C]|2,

Z =
∑
{C}

|w[C]|2 ∼
∑
{C}

e−u
∑

p �p[C] =
∑
{C}

e−uN‖[C] (9.15)

where N‖ is the number of plaquettes in configuration C with parallel dimers. For-
mally, this is a classical dimer problem at “finite temperature” T = u−1. This
classical system remains critical from the dimer-model limit at u = 1 up to a criti-
cal value uc, where it has a Kosterlitz–Thouless transition. For u > uc this system
has columnar order (Alet et al., 2005; Papanikolaou et al., 2007b). Generalizations
of the QDMs whose configurations are loops and nets defined on various lattices
have been discussed in the context of topological phases (Freedman et al., 2004;
Fendley and Fradkin, 2005; Levin and Wen, 2005; Fidkowski et al., 2009) and will
be discussed in a later section.

How much do these results change if instead of dimer configurations we con-
sider a short-range RVB state? This is important since, as we noted, valence-bond
states are over-complete and hence do not constitute an orthonormal basis. This
problem has been investigated numerically by Monte Carlo simulations (Albu-
querque and Alet, 2010; Tang et al., 2011b) for the case of the square lattice. The
results of the Monte Carlo simulations show that the correlation function GRVB(R)
of valence-bond densities obeys (on the square lattice) power-law correlations as
does G(R), but with an exponent αRVB � 1.15 instead of α = 2 for the dimer
states (see Eq. (9.10)). In a later section we will see that α = 2 is a consequence
of the conservation law of dimer models. Thus, although the RK-type dimer states
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and the short-range RVB state have similar power-law correlations, they describe
somewhat different physics.

9.5 Quantum dimers and gauge theories

We wish to consider the full quantum dynamics of the QDM. We will find it
most profitable to map this problem into a lattice gauge theory (Kogut, 1979).
In a sense this mapping is suggested by the RVB mean-field decoupling that we
have been using all along. Baskaran and Anderson (1988) first introduced a map-
ping of the static interactions of the RVB mean-field theory to a gauge theory.
Here I am following the work by Kivelson and me (Fradkin, 1990b; Fradkin and
Kivelson, 1990).

Let us begin by defining an enlarged Hilbert space on the links of the lattice.
Let {l j (�x)} be a set of integer-valued variables defined on the links {(�x, �x + e j )} of
the lattice. The states |{l j (�x)}〉 span the unrestricted Hilbert space. The angular-
momentum operators L j (�x) have the integers l j (�x) as their eigenvalues and
|{l j (�x)}〉 as their eigenstates. If we wish to restrict this Hilbert space to the sub-
space in which l j = 0, 1, we can do so by assigning an infinite energy to all
unwanted states. Thus, let us define a dimer contribution, or kinetic-energy term,
which enforces the restriction and is nothing other than a hard-core condition. We
can write Hdimer in the form

Hdimer = 1

2k

∑
�x, j

[(
L j (�x)− 1

2

)2

− 1

4

]
(9.16)

For any value of the coupling constant k, the configurations with l j = 0, 1 have
exactly zero energy, while any other state will have energy growing like 1/k as
k → 0.

We need two terms: one for resonance and the other for the diagonal terms. In
order to discuss resonance we need to introduce the variable a j (�x) at each link,
which should be the eigenvalue of the operator a j (�x) canonically conjugate to
L j (�x), i.e.

[a j (�x), L j ′(�x ′)] = iδ j j ′δ�x,�x ′ (9.17)

Since the spectrum of L j (�x) is the integers l j (�x), a j (�x) should be an angle

0 ≤ a j (�x) < 2π (9.18)

and the Hilbert space is the space of the periodic functions of a j (�x) with period
2π , independently at each link. Using the commutation relations Eq. (9.17), we



9.5 Quantum dimers and gauge theories 295

see that the operator eim j a j acts like a ladder operator with step size m j , where m j

is an integer. Indeed, we can write for any site

L j e
im j a j |l j 〉 = eim j a j

(
e−im j a j L j e

im j a j
) |l j 〉 (9.19)

The commutation relations tell us that the operator within brackets in Eq. (9.19) is
the shifted operator

e−im j a j L j e
im j a j = L j + m j (9.20)

Thus, we get

L j e
im j a j |l j 〉 = eim j a j (l j + m j )|l j 〉 = (l j + m j )e

im j a j |l j 〉 (9.21)

and we can identify

eim j a j |l j 〉 = |l j + m j 〉 (9.22)

The resonance term should remove from a plaquette two parallel dimers and
replace them by another pair of parallel dimers but in the orthogonal direction (Fig.
9.1). We can accomplish this by writing, in terms of raising and lowering operators,
the term

Hres = J̄
∑
�x
(ei[a1(�x)+a1(�x+e2)−a2(�x)−a2(�x+e1)]

+ ei[a2(�x)+a2(�x+e1)−a1(�x)−a1(�x+e2)]) (9.23)

The diagonal terms are now

Hdiag = V
∑
�x
(L1(�x)L1(�x + e2)+ L2(�x)L2(�x + e1)) (9.24)

and the constraint is

Q(�x) = L1(�x)+ L1(�x − e1)+ L2(�x)+ L2(�x − e2)− 1 = 0 (9.25)

This equation looks peculiar since the left-hand side is an operator and the right-
hand side is a number. The meaning of this equation is that the allowed states of
the Hilbert states, which I will call |Phys〉, satisfy

Q(�x)|Phys〉 = 0 (9.26)

For this condition to be consistent, Q(�x) should be diagonalizable simultaneously
with the total Hamiltonian H , i.e.

[Q(�x), H ] = 0 (9.27)

where

H = Hdimer + Hres + Hdiag (9.28)
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This is indeed the case, since Q(�x) simply counts all the dimers touching a given
site and this number is a constant of motion.

The operator Q(�x) generates a set of local time-independent transformations
that leave the physical states invariant,

ei
∑

�x α(�x)Q(�x)|Phys〉 = |Phys〉 (9.29)

which therefore leave H unchanged. Since the spectra of the operators {Q(�x)}
are the integers, the gauge transformations are parametrized by phases, periodic
variables {α(�x)} defined on the interval [0, 2π).

Thus we discover that H has a local gauge symmetry and Q is the generator of
local gauge transformations. The constraint equation is simply a version of Gauss’s
law. This local symmetry simply reflects the fact that we are free to change the
phases of the valence bonds on each site independently. In this language, the wave
functions which are being considered must have the form

|�〉 =
∑
{c}

A(c)ei�(c)|c〉 (9.30)

where {c} is a set of (linearly independent) VB states (i.e. dimer coverings), A(c)
is a real amplitude for configuration c, and �(c) is the phase. The phase �(c)
depends on the configuration and we have chosen to write �(c) in the form of a
sum over links,

�(c) =
∑
�x, j

a j (�x) (9.31)

States of the form of Eq. (9.30) are coherent states parametrized by the variables
a j (�x).

We can write these formulas in a much more transparent and familiar way, by
staggering the configuration {a j (�x)}. Clearly this can be done consistently only for
a bipartite lattice. Let us define the staggered gauge field A j (�x) and “electric fields”
E j (�x) by

A j (�x) = ei �Q0·�xa j (�x) (9.32)

E j (�x) = ei �Q0·�x L j (�x) (9.33)

with �Q0 = (π, π). It should be stressed that these fields do not represent the elec-
tromagnetic fields. With these definitions, we can rewrite the constraints of Eq.
(9.26) in the form

[� j E j (�x)− ρ(�x)]|Phys〉 = 0 (9.34)

where � j is the lattice divergence

� j E j (�x) ≡ E1(�x)− E1(�x − e1)+ E2(�x)− E2(�x − e2) (9.35)
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and the density ρ(�x) is

ρ(�x) = ei �Q0·�x (9.36)

Equation (9.34) now has the standard form of Gauss’s law. Note that ρ(�x) repre-
sents a background staggered charge density that equals +1 (−1) on red (black)
sites, and enforces the condition that each site should belong to one and only one
dimer. In the presence of holes, ρ(�x) will vanish on sites occupied by holes.

In this formulation the Hamiltonian reads

H = 1

2k

∑
�x, j

([E j (�x)− α j (�x)]2 − α2
j (�x)

) + 2 J̄
∑
�x

cos

⎛⎝ ∑
plaquette

A j (�x)
⎞⎠

− V
∑
�x
(E1(�x)E1(�x + e2)+ E2(�x)E2(�x + e2)) (9.37)

where
∑

plaquette A j (�x) stands for the oriented sum of staggered vector potentials
A j (�x) around the elementary plaquette labeled by �x (its southwest corner):∑

plaquette

A j (�x) ≡ ei �Q0·�x (a1(�x)+ a1(�x + e2)− a2(�x)− a2(�x + e1))

= A1(�x)− A1(�x + e2)− A2(�x)+ A2(�x + e1)

= �2 A1(�x)−�1 A2(�x) (9.38)

and is interpreted as a plaquette flux, and α j (�x) is

α j (�x) = 1

2
ei �Q0·�x (9.39)

By expanding the square in the first term in Eq. (9.37), and using Eq. (9.39), we
can write the first term of the Hamiltonian in the form

1

2k

⎛⎝∑
�x, j

E2
j (�x)−

L2

2

⎞⎠ (9.40)

where L is the linear size of the square lattice.
We can take all these considerations into account by writing the full Hamiltonian

in the form

H = 1

2k

⎛⎝∑
�x, j

E2
j (�x)−

L2

2

⎞⎠ + 2 J̄
∑
�x

cos

⎛⎝ ∑
plaquette

A j (�x)
⎞⎠

+ V

2

∑
�x

(
(�1 E2(�x))2 + (�2 E1(�x))2

) − V

2
L2 (9.41)
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and considering the limit k → 0. The states are restricted by demanding that
Gauss’s law, Eq. (9.34), be exactly satisfied.

9.6 The Ising gauge theory

In this section we will discuss results from lattice gauge theory that are relevant
to understanding the problem at hand. We will be interested in the spectrum of
states and of allowed observables in the different phases that these theories have.
Although the problems we are interested in are, as we saw, gauge theories, we will
typically be interested not in the vacuum sector but, as we saw in the last section,
in sectors with lots of background charges. This sector, which is sometimes called
the “odd” gauge-theory sector (Moessner et al., 2001), has distinct properties. Here
we will focus on the standard vacuum sector.

The simplest example of a gauge theory is the Ising gauge theory, which, as
we will see, is relevant to the problems we discuss here. This is a gauge theory
with a discrete gauge group Z2. In this theory the degrees of freedom are Ising
variables, the diagonal Pauli matrices σ z

j (�x), with j = 1, 2. The Hamiltonian
for the Ising gauge theory (on a square lattice) is written in terms of the “vector
potentials” {σ z

j (�x)} (defined on the links of the square lattice) and of the “electric
fields,” the off-diagonal Pauli matrices {σ x

j (�x)}. The Hamiltonian is (Fradkin and
Susskind, 1978)

H = −g
∑
�x, j

σ x
j (�x)−

1

g

∑
�x
σ z

1 (�x)σ z
2 (�x + e1)σ

z
1 (�x + e2)σ

z
2 (�x) (9.42)

In what follows we will refer to the first term in the Hamiltonian as the kinetic
energy and to the second term as the potential energy. We will also refer to the first
term as the “electric-field” term and to the second as the magnetic (or flip) term.

The gauge-invariant states of this theory satisfy the “Gauss-law” condition,
which here takes the form

σ x
1 (�x)σ x

1 (�x − e1)σ
x
2 (�x)σ x

2 (�x − e2)|Phys〉 = |Phys〉 (9.43)

Indeed, the Hamiltonian of Eq. (9.42) is invariant under the local gauge transfor-
mations generated by the operators

Q(�x) = σ x
1 (�x)σ x

1 (�x − e1)σ
x
2 (�x)σ x

2 (�x − e2) (9.44)

For all �x these local operators commute with each other, [Q(�x), Q(�y)] = 0, and
with the Hamiltonian, [Q(�x), H ] = 0. Hence, for all �x , the eigenstates of the
Hamiltonian are also eigenstates of the generators {Q(�x)} and satisfy the local
constraint of Eq. (9.43).
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At every point �x in space we can define two operators, the identity I and Q,
where we see that Q2 = I . Hence the local symmetry group of this problem is the
discrete group Z2, the permutation group of two elements. The main (and impor-
tant) difference between this theory and the standard Ising model in a transverse
field is that this theory has a local Z2 symmetry, whereas the Ising model has a
global Z2 symmetry.

The most important and central result that we will need is known as Elitzur’s
theorem (already discussed in Section 8.5), which states that local (gauge) sym-
metries cannot be spontaneously broken (Elitzur, 1975). A key consequence of
this theorem is the fact that only locally gauge-invariant operators can have a non-
vanishing expectation value. Thus, in contrast to what happens in systems with
global symmetries (such as the antiferromagnets discussed in earlier chapters), the
phase diagrams of gauge theories are classified in terms of the behavior of their
gauge-invariant operators and the associated spectrum of gauge-invariant states. In
particular, except in the trivial case of Maxwell’s electrodynamics, a local order
parameter does not generally exist (Fradkin and Shenker, 1979).

The gauge-invariant observables of this theory are as follows.

1. The Wilson loop operator on the closed loop �,

W� =
∏

(�x, j)∈�
σ z

j (�x) (9.45)

where {(�x, j)} (with j = 1, 2) are the links of the loop �. The plaquette operator
of the Hamiltonian is a particular case of a Wilson loop.

2. The electric-field operator on link (�x, j), σ x
j (�x).

3. An (“electric”) charge created at point �x amounts to requiring that the physical
states have Q(�x) = −1, where Q(�x) is defined by Eq . (9.44). Owing to the Z2

symmetry, only the parity of the charge is well defined.
4. In a system with periodic boundary conditions (i.e. on a torus) the magnetic

’t Hooft loop operator (’t Hooft, 1979) W̃�̃ along a non-contractible loop �̃ on
the dual lattice of the torus (shown in Fig. 9.2(a)) is

W̃�̃ =
∏

(�x, j)∈�̃
σ x

j (�x) (9.46)

This operator represents the product of σ x operators of the links of the lattice
threaded by the loop �̃. By gauge invariance, Q(�x) = 1 everywhere, the actual
path is unimportant; only the fact that it is globally non-contractible matters.

5. The magnetic charge operator τ z(�r)
τ z(�r) =

∏
(�x, j) pierced by γ̃ (�r)

σ x
j (�x) (9.47)
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Γ̃

(a)

γ̃

τz( )

(b)

Figure 9.2 (a) A magnetic (’t Hooft) loop on a non-contractible loop �̃ of the dual
lattice; the dark links pierced by the loop represent a product of σ x operators on
each link. (b) A Dirac string of σ x operators on the open path γ̃ of the dual lattice
creates magnetic charge (a “vison”) at the dual site �r .

Here too, in the gauge-invariant sector, with Q(�x) = 1 everywhere, this operator
depends only on the location �r of the dual lattice and it is independent of the
shape of the Dirac string, the rest of the path γ̃ (�r) with its endpoint at �r .

It is straightforward to see that the magnetic-charge operator τ z(�r) on the dual
site �r (the center of a plaquette) anti-commutes with the plaquette Wilson loop
operator Wp(�r),

{Wp(�r), τ z(�r)} = 0 (9.48)

Since Wp(�r)2 = 1 and τz(�r)2 = 1, we can identify the plaquette Wilson loop oper-
ators with the Pauli matrices Wp(�r) = τ x(�r) defined on the dual sites. Similarly,
the operator σ x

j (�x) on a link of the direct lattice is easily seen to be given by

σ x
j (�x) = τ z(�r)τ z(�r + e j ) (9.49)

which automatically satisfies the condition Q(�x) = 1 everywhere.
It is now easy to see that, in terms of the operators {τ z(�r)} and {τ x(�r)} defined

on the dual lattice, the Hamiltonian of the gauge theory becomes

H = −g
∑
�r , j

τ z(�r)τ z(�r + e j )− 1

g

∑
�r
τ x(�r) (9.50)

which we recognize as the Hamiltonian of the Ising model in a transverse field (or
quantum Ising model) on a 2D square lattice. What we have done is to prove that
the transverse-field Ising model and the Ising gauge theory in (2+1) dimensions are
dual to each other. In particular, the operator τ z plays the role of the order param-
eter of the transverse-field Ising model and of the magnetic-charge (or monopole)
operator in the gauge theory (Fradkin and Susskind, 1978; Kogut, 1979).
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As discussed in Chapter 5, the Ising model in a transverse field in d space dimen-
sions is equivalent to to the classical Ising model in (d+1) dimensions (Fradkin and
Susskind, 1978). This relationship follows from the fact that the partition function
of the classical model in (d + 1) dimensions (with periodic boundary conditions)
can be written as

Z = tr T N (9.51)

where T is the transfer matrix and N is the number of rows (or hyperplanes) along
the discrete “imaginary-time” direction. For the case of the Ising model (in all
dimensions) the transfer matrix T has the form of a product of two matrices, each
involving the kinetic- and potential-energy terms of the Hamiltonian of Eq. (9.50).
A well-defined sequence of approximations (equivalent to taking the time con-
tinuum limit) maps the classical problem in (d + 1) dimensions to the quantum
Hamiltonian in d dimensions (Fradkin and Susskind, 1978).

For a system that satisfies the property of reflection positivity, that is that its
correlation functions are real, positive, and invariant under reflection across a
hyperplane, the transfer matrix can always be constructed to be a hermitian matrix.
This relation is, of course, the same as that between the path-integral and Hamil-
tonian formulations of quantum field theory, with reflection positivity being the
Euclidean version of unitarity. It holds for many problems of interest, not just the
Ising model, and it holds in all dimensions. It also holds for the gauge theory. In par-
ticular, the dual of the classical Ising model in three dimensions is a 3D theory with
a local Z2 invariance, the Ising gauge theory (Wegner, 1971; Balian et al., 1975).
In systems that are isotropic, as classical systems in (d + 1) dimensions (as are the
Ising model and gauge theory), the direction chosen to be the “imaginary-time”
direction (i.e. the direction of transfer) is arbitrary. From this it follows that at
their critical points these systems are equivalent to Lorentz-invariant field theories.
Hence, they have an associated quantum-dynamical critical exponent of z = 1.

The Z2 gauge theory has two phases: (a) a weak-coupling, g < gc, deconfined
phase; and (b) a strong-coupling, g > gc, confined phase.

9.7 The Z2 confining phase

Let us now turn to the strong-coupling phase, which we will find is confining.
Although we will focus our discussion on the case of two space dimensions, the
results apply to higher dimensions as well. In the strong-coupling regime, the spec-
trum can be determined using the strong-coupling expansion. In this expansion,
which is conceptually a Brillouin–Wigner expansion similar to the one we used
to derive the Heisenberg Hamiltonian from the Hubbard model in Chapter 2, the
ground state is approximately an eigenstate of the electric-field operators σ x

j (�x). To



302 Gauge theory, dimer models, and topological phases

leading order in an expansion in powers in 1/g, the ground state |G〉 is an eigen-
state of the kinetic-energy term, and hence of the link “electric-field” operators
σ x

j (x):

|G〉g→∞ =
∏
(�x, j)

|σ x
j (�x) = 1〉 (9.52)

Thus, in this state

σ x
j (�x)|G〉g→∞ = +|G〉g→∞ (9.53)

It is also easy to see that there is a finite energy gap. Indeed, due to the Gauss-law
condition, Eq. (9.43), the allowed states must have an even number of links sharing
site �x with σ x = −1 on those links. The allowed states which obey this constraint
are closed loops on the lattice, i.e. the set of links on which σ x = −1. Hence, the
spectrum of states in the strong-coupling regime consists of electric loops. Since
the energy cost over the ground state of each excited link is 2g, the total energy of
an allowed excited state consisting of loops of length � is �Eloop = 2g�. Thus, the
lowest excited state is the elementary loop or plaquette state, a state created by the
magnetic (flip) term, and consists of electric fields being excited on the perimeter
of the elementary plaquette. The energy of the plaquette state is �Eplaquette = 8g.

Hence, the spectrum of excited states has a finite (and large) energy gap in the
strong-coupling limit. It is easy to show that for finite but large g this state is stable
in the strong-coupling expansion, and that it is separated from the first excited
state by a finite energy gap up to some critical coupling gc. Indeed, the general
form of the ground state in the strong-coupling phase is a superposition of states
with loops of varying length, with the contribution of long loops to the amplitude
becoming exponentially small as the length of loop increases. Using this line of
argument it is possible, with a moderate amount of work, to show that the strong-
coupling expansion has a finite radius of convergence, with the critical coupling gc

limiting the convergence of the expansion (Kogut, 1984). Clearly, as the quantum
phase transition at gc is approached, the loops contributing to the ground state
progressively grow in length (and number). If the transition at gc is continuous,
their size diverges as g → gc, and the electric loops proliferate. At the same time,
the energy gap �Eplaquette(g) to the lowest excited state, which as we saw is large
and of the order of 8g in the strong-coupling regime, becomes smaller as g → gc

and vanishes with a universal critical exponent

�Eplaquette(g) = constant × |g − gc|� (9.54)

The critical coupling and the gap exponent have been calculated numerically using
quantum Monte Carlo methods (Rieger and Kawashima, 1999) and RG methods
(Evenbly and Vidal, 2009) (for the dual Ising model in a transverse field) with
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γ( )

Figure 9.3 The ground state with two charges at �x and �y in the confinement phase
in which the energy grows linearly with separation; σ x = −1 on each link of the
path γ (�x, �y).

the estimates 1/g2
c = 3.044 and � = 0.622, which are consistent with a quantum

critical point with a Lorentz-invariant value of the dynamic critical exponent z = 1,
and a correlation-length exponent ν = �.

To see that this phase is confining, we will simply compare the ground-state
energy of the vacuum state (without electric charges) with the ground state in the
sector with a charge located at �x and another at �y, |G; �x, �y〉, i.e. Q = −1 at �x and
at �y, and Q = +1 everywhere else. The ground state of this sector is defined, to
leading order, by σ x

j = 1 on every link of the lattice except along the path γ (�x, �y)
(shown in Fig. 9.3) stretching from �x to �y on whose links σ x

j = −1. Thus, in this
sector the ground state has a string along the shortest path γ (�x, �y) between sites �x
and �y. The energy difference between the ground state with the two charges and the
vacuum state (the ground state without charges) is �E = 2gR + O(1/g), where
R is the distance (in lattice units) between �x and �y, which grows linearly with
separation. From the convergence of the strong-coupling expansion we expect the
same behavior throughout this phase,

�E(R) = σ R (9.55)

where σ = 2g + O(1/g) is the “string tension.” Hence in this phase the energy
needed to separate the sources at infinite distance is infinite. Hence, this phase is
said to be confining. The string tension has units of energy per unit length. The
characteristic energy scale of this system is the energy gap, which scales as (g −
gc)

�, and the characteristic length scale is the correlation length (or confinement
scale) ξ(g), which at the quantum phase transition scales as

ξ(g) ∼ (g − gc)
−ν (9.56)
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Therefore, the string tension σ(g) must scale as

σ(g) ∼ (g − gc)
2ν (9.57)

(since � = zν = ν in this case) near the quantum phase transition. Hence, as the
quantum critical point at gc is approached the string tension vanishes.

Similarly, in the strong-coupling phase the Wilson loop operator W� obeys an
area law. Indeed, the action of the Wilson loop on the strong-coupling state |G〉g→∞
yields an orthogonal state, and hence 〈G|W�|G〉g→∞ = 0. The lowest order in
perturbation theory (in powers of 1/g2) in which these states mix is n, which is the
number of plaquettes enclosed by the loop �, i.e. the area A[�] = n of the region
inside �. Hence the leading non-vanishing contribution to the expectation value of
the Wilson loop operator is

〈G|W�|G〉 = constant ×
(

1

g2

)n

+ · · · = constant × e−μ(g)A[�] (9.58)

with μ(g) = ln(g2) + O(1/g2). The quantity μ(g) is related to the string tension
σ(g) and also vanishes as g → gc with the same exponent 2ν.

The duality transformation offers an alternative and intuitive picture of the con-
fining phase. In the dual picture, the strong-coupling phase maps onto the ordered
phase of the Ising model, which is the weak-coupling phase of this model. In this
phase, the ground-state expectation value of the magnetic-charge (or monopole)
operator maps onto the expectation value of the order parameter of the (dual)
Ising model, the local magnetization, which in this phase is finite. Hence, in the
strong-coupling phase of the gauge theory we find that the magnetic-charge opera-
tor has an expectation value of order unity and vanishes as the critical coupling gc

is approached with an exponent

〈G|τ z(�r)|G〉 = constant × (g − gc)
β (9.59)

with β = 0.326 (Rieger and Kawashima, 1999; Evenbly and Vidal, 2009).
We can then picture the confining phase as a condensate of magnetic charges

and regard the magnetic-charge operator as a disorder operator, an operator that
has an expectation value in the disordered (strong-coupling) phase of the theory.
This picture of a quantum disordered phase as a condensate of a disorder opera-
tor goes back to the work of Kadanoff and Ceva in the 2D classical Ising model
(Kadanoff and Ceva, 1971) and to the work of Susskind and myself (Fradkin and
Susskind, 1978) in gauge theory. We have already encountered an analogous dis-
order operator in the kink operator of the quantum disordered phase of the 1D
Ising model in a transverse field, as discussed in Chapter 5. Moreover, in the dual-
Ising-model picture, the string tension corresponds to changing the sign of the
Ising coupling constant from ferromagnetic to antiferromagnetic on all the bonds
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of the dual theory pierced by the path of Fig. 9.3. In the ordered phase of the dual
Ising model this is equivalent to a defect favoring a fractional domain wall (of
length R) along that path. In the ordered phase of the Ising model this defect does
indeed have an energy cost that is linear in the length of the wall, as in Eq. (9.55).

9.8 The Ising deconfining phase: the Z2 topological fluid

Let us now turn to the weak-coupling phase. As with the strong-coupling phase, we
will begin with the extreme weak-coupling limit, g → 0 in this case, and construct
the ground state and the spectrum in this regime. After that we will show (or rather
argue) that there is a convergent weak-coupling expansion, which implies that the
ground state and spectrum found in the g → 0 limit are stable.

At g = 0 the eigenstates of the Hamiltonian are eigenstates of the magnetic (flip)
operator. The ground state at g = 0 is in the sector in which all the plaquette opera-
tors are equal to one on all the plaquettes of the lattice (i.e. there is no flux). Excited
states are created by the monopole (or vison)-creation operator τ z(�r), which flips
the state of the plaquette centered at �r .

In this limit, we can choose the states to be in the representation of the eigenstates
of the link operators σ z

j (�x). This is the analog of the standard representation of the
quantum states of quantum electrodynamics in terms of configurations of vector
potentials. Since the vector potentials, here represented by the operators {σ z

j (�x)},
are not gauge-invariant (they do not commute with the generators of gauge trans-
formations {Q(�x)}), this representation requires that a gauge be fixed. For a system
on a disk (or rectangle) with free boundary conditions, a suitable (but certainly not
unique) gauge-fixing condition is to impose that the states satisfy the axial gauge
condition σ z

1 (�x) = 1 on all links in the x1 direction. In this gauge, a state is fully
specified by giving the states of the σ z

2 (�x) operators on the links in the x2 direction.
Thus, in the axial gauge the ground state at g = 0 is simply

|G〉g=0 =
∏
�x, j

|σ z
j (�x) = 1〉 (9.60)

However, it is also possible to construct an explicitly gauge-invariant state at g = 0,
a state which is simultaneously an eigenstate of all the plaquette (or flip) oper-
ators and of the gauge generators Q(�x) (for all �x), i.e. to satisfy the Z2 version
of the Gauss law everywhere. This state was constructed by Kitaev (2003) in
his work on the toric code, which is equivalent to the g = 0 limit of the Z2

gauge theory. Since the state is required to be an eigenstate of the generators of
the time-independent gauge transformation, Kitaev’s state is in the “electric-field”
representation in which the states are eigenstates of the operators σ x

j (�x) used above
to describe the strong-coupling limit.
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Figure 9.4 (a) The eight configurations of σ x eigenstates on the links allowed by
the Z2 Gauss-law condition, Eq. (9.43). (b) The corresponding loop configura-
tions: broken lines have σ x = 1 and full lines have σ x = −1.

Let us denote by C the configurations allowed by the Z2 Gauss law of Eq. (9.43).
We can denote a σ x = 1 state on a horizontal link by an arrow pointing to the right,
→, a σ x = −1 state by a left-pointing arrow on that link, ←, a σ x = 1 state on
a vertical link by an up arrow, ↑, and a σ x = −1 state by a down arrow, ↓. The
condition that Q(�x) = 1 at every site �x implies that the allowed configurations C
have an even number of arrows pointing in or out of the site (or vertex), as shown
in Fig. 9.4(a).

We can also give an equivalent graphical representation of the allowed states
by painting all links with a σ x = 1 state (states without a Z2 electric field) with a
broken line and all links with a σ x = −1 state with a full line (states with a Z2 elec-
tric field), as shown in Fig. 9.4(b). In the latter picture the allowed configurations
are the set of possible loop coverings of the square lattice. An example of such a
state is the elementary loop excitation created by the magnetic plaquette operator,
which we discussed in the strong-coupling phase. Thus the Z2 gauge theory can be
viewed as a quantum-loop model.

However, the plaquette operators are not diagonal in this representation. Indeed,
the action of a plaquette operator centered at dual site �r (and with SW corner at the
direct site �x) on a state in which its links have the general configuration {σ x(i)}
(with i = 1, . . . , 4 the four links of the plaquette) is to flip this state to the opposite
configuration, {−σ x(i)}. The result is that the state is the equal-amplitude superpo-
sition of all states of the lattice (in the σ x representation) satisfying the Gauss-law
condition. Let C represent the set of all such configurations. The Kitaev state is then

|G〉Kitaev =
∑
C

|C〉 (9.61)

Thus, the Kitaev representation of the ground state at g = 0 is the linear superposi-
tion of all loop configurations C with equal amplitude. In this phase the loops have
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proliferated (or “condensed”) and have all possible lengths. In particular this state
includes loops stretching between opposite boundaries of the lattice, even in the
thermodynamic limit, with the same amplitude as short loops. We will see shortly
that the deconfined phase is actually a topological phase and that this is related to
the fact that it represents a state in which loops have proliferated (Freedman, 2003;
Levin and Wen, 2005).

The Kitaev state and the |G〉g=0 state constructed above in the σ z representa-
tion are obviously the same state since the eigenstates of σ z are the symmetric and
antisymmetric superpositions of the eigenstates of σ x (and vice versa). However,
although the Kitaev state is formally analogous to the ground state of the QDM
at the RK point, i.e. the short-range RVB state, in that they are both the equal-
amplitude sum over all the allowed configurations, its properties are actually dra-
matically different on the square lattice but are analogous on the triangular lattice.

To see that the weak-coupling phase is deconfining, we will compute for this case
the energy of two point sources separated by a distance R. It is easy to see that in
the limit g → 0 this energy vanishes. In this limit we must find first the ground state
with two sources, i.e. a state with two points �x and �y on the lattice where Q = −1.
We saw that in the strong-coupling limit the ground state in this sector has a string
of smallest possible length R, the straight line between �x and �y if they lie on the
same row or column of the lattice (other cases are similar but more complicated).
We also saw that the vacuum sector at g = 0 (with Q = 1 everywhere) is the
Kitaev state in which loops of all sizes (and numbers) have the same amplitude.

In the sector with two sources the ground state is also a linear superposition
(with equal amplitude in the g → 0 limit) of all possible configurations of closed
loops but with an open string stretching from �x to �y with all possible lengths.
This is so since the plaquette operator acting on a string only deforms the string,
yielding another string configuration. Thus the state now is also a superposition
of all possible strings (in additions to loops). However, this state has exactly the
same energy as that of the vacuum sector. Therefore, the energy cost �E(R) = 0
at g = 0. On the other hand, the first-order correction, in an expansion in powers
of g2 now, of both ground states yields a finite energy cost (which is independent
of the distance R for large separations). In general, in this phase �E(R) has the
long-distance behavior

�E(R) = 2E0(g)+ V (g, R) (9.62)

where E0(g) ∝ g2 + O(g4) is the self-energy of the sources (which is vanishingly
small as g → 0) and

V (g, R) ∼ A(g)e−R/ξs (g) (9.63)
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is the effective interaction between the sources, which in this phase is screened (as
would be expected, since the energy spectrum is gapped) with a screening length
ξs(g) that vanishes as g → 0, i.e. in this phase the effective interaction is short-
ranged. Therefore in the weak-coupling phase the external sources can be separated
at an infinite distance with a finite self-energy and a weak (exponentially small)
interaction. This is what we mean by deconfinement.

This result can also be understood by computing the expectation value of the
Wilson loop operator W�. Since the Wilson loop operator is a product of the σ z

operators on the perimeter of the loop �, this can be done more easily in the σ z

representation of the ground-state wave function. Indeed, since in the axial gauge
(σ z

1 = 1) the ground state is simply σ z = 1 on all links, the Wilson loop operator
is simply

〈G|W�|G〉g=0 = 1 (9.64)

and we see that the effective interaction vanishes at g = 0. It is also straightforward
to see that for g > 0 the Wilson loop obeys a perimeter law in this phase,

〈G|W�|G〉 = e−ρ(g)L[�] (9.65)

where L[�] is the perimeter of the loop � and ρ(g) is a function of g that vanishes
smoothly as g → 0.

We close this subsection with some comments on the behavior of the Wilson
loop and of the effective interaction at the quantum critical point gc. As g → gc

from above the string tension σ(g) vanishes (following a power law) and the con-
finement scale ξ diverges (also with a power law), and as g → gc from below the
screening length ξs(g) diverges. If the quantum phase transition at gc is continuous,
and in this case it is, in both observables we expect to obtain a behavior intermedi-
ate between confinement and deconfinement. In the case of the Wilson loop, scale
invariance suggests that it should be a universal function of the aspect ratio of the
loop. This assumption presumes that the loop is smooth and that it has no corners
or cusps. However, on a lattice corners in closed Wilson loops are unavoidable. It is
well known that in Wilson loops with corners, corners (and more generally cusps)
contribute (logarithmic) singularities that we will not be concerned with here.

An elegant scaling (actually RG) argument (Peskin, 1980) shows that the effec-
tive interaction in all dimensions at the quantum critical point has the universal
form

V (R) = − c

R
(9.66)
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where c is a universal number. Hence, at gc we expect the effective interaction to
obey a universal 1/R (“Coulomb”) law even in two dimensions, even in this theory
with a discrete symmetry.

Returning to the eight possible configurations of σx eigenstates shown in
Fig. 9.4, we can define a generalized eight-vertex wave function of the form
(Ardonne et al., 2004)

|�〉 =
∑
C

aNa[C]bNb[C]cNc[C]d Nd[C]|C〉 (9.67)

where a, b, c, and d are four real and positive amplitudes, and Na[C], Nb[C], Nc[C],
and Nd[C] are the numbers of vertices of types a, b, c and d present in configuration
C, respectively. This eight-vertex state has the property that its norm is equal to the
partition function of the 2D classical Baxter eight-vertex model (Baxter, 1982).
Therefore this wave function represents a generalized dimer-type model whose
phase diagram is that of the classical 2D Baxter (eight-vertex) model. Ardonne and
coworkers showed that it is possible to write a quantum Hamiltonian that is the
sum of projection operators for which the eight-vertex wave function is the ground
state (Ardonne et al., 2004).

A case of special interest is the choice a = b = 1. The phase diagram for this
case is shown in Fig. 9.5. It has two ordered phases and a disordered topological
phase, separated by lines of continuous phase transitions with continuously varying
exponents. The bottom line of the phase diagram is the scaling limit of the clas-
sical six-vertex model. The special point with weights c = √

2 and d = 0 is the
dimer model on the square lattice, which, as we saw, is a critical system. There is
a Kosterlitz–Thouless transition at (c2, d2) = (2, 0) to an ordered phase.

9.9 Boundary conditions and topology

Let us now consider the effects of boundary conditions on the phases of the Z2

gauge theory. In the preceding subsections we assumed that the system was defined
to be a large disk (or rectangle) with fixed boundary conditions. We will now exam-
ine what happens when we impose periodic boundary conditions or, which amounts
to the same thing, place the system on a torus.

The choice of boundary condition clearly does not affect the confinement phase
in any essential way. Indeed, in our analysis of the state in the strong-coupling
regime we found that it has a unique gauge-invariant ground state and, in fact, we
did not even have to fix a gauge. Thus, in the strong-coupling phase we expect
(and get) a unique ground state regardless of the choice of boundary conditions.
However, there is a subtlety. If a link is in the state σ x = 1, then in this state the



310 Gauge theory, dimer models, and topological phases

c2

d2

Quantum Disordered

Topological

Ordered

Ordered
2

2

Kitaev

Six-vertex model

Figure 9.5 The phase diagram for the eight-vertex wave function. The phase
boundaries are lines of continuous phase transitions. The topological phase is the
quantum disordered phase. The Kitaev toric-code state is the special point in the
middle of the disordered phase. The bottom line, d = 0, is the six-vertex model,
and the special point (c2, d2) = (

√
2, 0) is the dimer model on the square lattice.

The effective-field theory along this line is the quantum Lifshitz model discussed
at the end of this chapter (Ardonne et al., 2004).

product of the τ z operators for the two surrounding dual sites must also be equal
to 1. Hence, the strong-coupling state of the gauge theory is equivalent to all the
states of the dual Ising model that do not have any domain walls (as these will lead
to some τ z = −1). There are two domain-wall free states in the dual Ising model:
all up and all down. Thus, the duality transformation is a two-to-one mapping and
does not distinguish one broken symmetry state from the other.

Another way to see this is to ask how the generator of global Z2 transformations
of the dual Ising model, which I will denote by Q̃, behaves in the gauge-theory
picture. The generator Q̃ is the product of all the τ x(�r) of the dual lattice. Under
duality this operator maps to the Wilson loop acting on links of the boundary � of
the entire system:

Q̃ =
∏
�r
τ x(�r) =

∏
(�x, j)∈�

σ z
j (�x) (9.68)

This operator has a vanishing expectation value in the strong-coupling phase of the
gauge theory, since the latter is essentially an eigenstate of σ x , 〈G|Q̃|G〉g→∞ = 0.
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This is also the case in the dual Ising model since Q̃ maps one broken symmetry
ground state into the other and these states are orthogonal.

In the weak-coupling phase the choice of boundary condition has an even sub-
tler and more interesting effect. We saw that in the weak-coupling phase in the
σ z representation a gauge-fixing condition is required, and that for a system with
an open boundary the axial gauge condition (such as σ z

1 = 1) completely and
unambiguously fixes the gauge and defines the state. Notice that in this state the
expectation value 〈G|Q̃|G〉g=0 = 1, which is also correct in the dual Ising model
in its disordered phase.

Let us now consider the weak-coupling phase for a system on a torus. A torus
is a topologically non-trivial surface (or manifold) that has the defining property
that it has two non-contractible closed curves (or loops), denoted in Fig. 9.6 by γ1

and γ2. The Wilson loop operators on γ1 and γ2, Wγ1 and Wγ2 , respectively, are
gauge-invariant operators whose expectation values cannot be changed by local
gauge-fixing conditions. Since the Wilson loop operators are products of σ z

j link
operators, in the g = 0 limit Wγ1 = ±1 and Wγ2 = ±1. Hence we find four
inequivalent versions of the weak-coupling state, and conclude that on a torus the
axial gauge condition does not completely specify the state.

We can also define magnetic ’t Hooft operators on non-contractible loops, W̃γ1

and W̃γ2 (as defined in Eq. (9.46) and Fig. 9.2), which are also gauge-invariant,
and play a key role in this problem (Moessner et al., 2001). Gauge-invariant
observables defined on non-contractible curves of a manifold (such as the torus)
define non-trivial (magnetic) holonomies of the system. The Wilson loop and

γ1( )

γ2( )

Figure 9.6 A square lattice with periodic boundary conditions is isomorphic to a
torus. The two non-contractible loops γ1(�r) and γ2(�r) are shown.
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’t Hooft loop operators on non-contractible closed loops obey the commutation
relations

{Wγ1, W̃γ2} = 0, {Wγ2, W̃γ1} = 0

[Wγ1, W̃γ1] = 0, [Wγ2, W̃γ2] = 0
(9.69)

In addition the holonomies of the ’t Hooft magnetic operators, W̃γ j , commute with
the Hamiltonian of the Z2 gauge theory. Hence the eigenstates (and consequently
the ground states as well) of the Hamiltonian are also eigenstates of the magnetic
holonomies.

Precisely at g = 0 the Wilson loop (“electric”) holonomies Wγ j also commute
with the Hamiltonian. Hence, at g = 0 all four states are exactly degenerate. For
all g > 0 the Wilson loop holonomies no longer commute with the Hamiltonian
(although the ’t Hooft holonomies still do). Hence these four states are no longer
degenerate. However, given their topological nature, on a torus of infinite size (the
thermodynamic limit) these four states do not mix at any finite order in this (con-
vergent!) perturbation theory. On a finite-sized torus, of linear size L , the mixing is
a finite-size effect and it first occurs at order gL . Hence the resulting energy split-
ting is exponentially small, ∼e−| ln g|L , and vanishes in the thermodynamic limit
(L → ∞). Therefore the ground-state degeneracy is an exact property of the
deconfined phase.

We saw that the ground state of the deconfined theory can be written as a Kitaev
state, i.e. as a linear superposition of electric-loop configurations. As a conse-
quence of the Z2 Gauss law only the parity of these loops (and not their number)
is conserved under the quantum evolution (by the action of the Hamiltonian). On
a surface with non-trivial topology, such as the torus, one can classify the states
by how many electric-loop operators wind around the non-contractible loops of
the manifold. However, only their parity is a conserved quantity. Thus, there are
four classes of states: states with an even or odd number of electric loops winding
around each holonomy of the torus. Let us denote these classes by (s1, s2) with
si = ±1 (i = 1, 2) representing states with even (+1) and odd (−1) numbers of
winding loops.

Let us consider the class of states (+,+) with an even number of loops winding
on each direction. These states are eigenstates of the magnetic holonomies W̃γ j

(with j = 1, 2) with eigenvalue +1:

W̃γ j |+,+〉 = +|+,+〉 (9.70)

Let us also consider the state resulting from the action of the Wilson loop opera-
tors Wγ j on these states. Since these Wilson loop holonomies are products of σ z

operators on closed non-contractible paths γ1 and γ2, they change the parity of the
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winding states. Indeed, it is easy to see that, if |+,+〉 is any state in the (+,+)
class, then

W̃γ2 Wγ1 |+,+〉 = −Wγ1 W̃γ2 |+,+〉 = −|−,+〉 (9.71)

Thus the state resulting from the action of Wγ1 maps the class (+,+) onto the class
(−,+). Similarly, Wγ2 maps the (+,+) class onto the (+,−) class, and Wγ1 Wγ2

maps the (+,+) class onto the (−,−) class.
Therefore we can construct a total of four Kitaev ground states, each defined by

the eigenvalues of the corresponding magnetic holonomy ’t Hooft operators. Each
of these equally deconfined ground states is linearly independent, and they are
orthogonal to each other. We have then to conclude that on a torus the deconfined
ground state of the Z2 gauge theory is four-fold degenerate. It is also easy to see
that if we consider the theory being placed on a manifold with a more complex
topology, say a closed surface with g handles (known as the genus of the surface),
the ground-state degeneracy is 4g. For example, on a surface with no handles (the
sphere or the disk) g = 0 and the theory has a unique ground state.

We are very familiar with the concept of a ground-state degeneracy arising from
the spontaneous breaking of a global symmetry (such as the examples discussed
in Chapter 3 or in the case of the dual Ising model discussed in this section). In
those cases the degenerate sectors are identified with the symmetries broken by
the order-parameter field. Thus in an Ising model the two degenerate sectors are
labeled by the sign of the expectation value of the order-parameter field in that
state. In these systems the degeneracy is determined completely by the nature of
the broken symmetry and it is independent of the topology of the surface on which
the system lives. In other terms, the degeneracy does not know about topology.

What we just found in the deconfined phase is a very different situation. To
begin with, the deconfined phase is not associated with the spontaneous breaking
of any symmetry. More important is the fact that the degeneracy is determined by
the topology of the surface and grows with its complexity. Phases of matter with
these features are called topological phases (Wen, 1990c). However, the deconfined
phase does not break any symmetry of the system. In particular the ground-state
degeneracy we just found is not the result of spontaneous symmetry breaking. It
is, however, the consequence of the topological nature of the state. Indeed, we saw
that the deconfined phase is a state in which electric loops proliferate (or condense)
and hence the wave functions of these states include states in which the loops wind
around the non-contractible loops of the torus. In contrast, the ground state in the
confined phase is unique and it is dominated by finite (and typically small) electric
loops.

The deconfined phase of the Z2 gauge theory is in fact the simplest topological
phase, known as the Z2 topological fluid. In Section 9.3 we saw that QDMs on
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non-bipartite lattices are also in topological phases with the same properties as the
Z2 topological fluid. Spin-liquid phases, whenever they have been found to be the
ground states, are actually deconfined phases and are also topological, as we will
see. In later chapters we will discuss the quantum Hall phases of 2D electron gases
in large magnetic fields, which are also topological phases. In that context we will
see that the low-energy sector of topological phases is described by topological
field theories. Density-matrix RG and tensor-product-state results for the spin- 1

2
quantum Heisenberg antiferromagnet on a frustrated square lattice suggest that it
has a Z2 topological phase (Jiang et al., 2012; Wang et al., 2011).

9.10 Generalized Z2 gauge theory: matter fields

We will now discuss a more general Z2 gauge theory in which we will include a
dynamical matter field. Since the local symmetry is Z2 the matter field must also
transform under this symmetry, and the simplest example is just a quantum Ising
model. To this end, we define an Ising degree of freedom represented by the Pauli
matrix τ z(�x) on each site �x of the lattice (not to be confused with the dual Ising
model whose degrees of freedom reside on the dual lattice!). The Hamiltonian for
the Z2 gauge theory with (Ising) matter is

H = −g
∑
�x, j

σ x
j (�x)−

1

g

∑
�x
σ z

1 (�x)σ z
2 (�x + e1)σ

z
1 (�x + e2)σ

z
2 (�x)

−1

λ

∑
�x
τ x(�x)− λ

∑
�x, j

τ z(�x)σ z
j (�x)τ z(�x + e j ) (9.72)

This Hamiltonian commutes with the new operators Q(�x) (defined on each site �x
of the lattice)

Q(�x) = σ x
1 (�x)σ x

1 (�x − e1)σ
x
2 (�x)σ x

2 (�x − e2)τ
x(�x) (9.73)

which square to the identity, Q2(�x) = 1.
Since these operators commute with each other, [Q(�x), Q(�y)] = 0, and with

the Hamiltonian, they generate local Z2 gauge transformations. The physical states
|Phys〉 are thus simultaneous eigenstates of the Hamiltonian H and of all the gen-
erators Q(�x). We will define the new Hilbert space of gauge-invariant states by
Q(�x)|Phys〉 = |Phys〉. However, if we compare the generator Q(�x) as defined by
Eq. (9.73) with that of the pure gauge theory, Eq. (9.44), we see that they differ
by a factor of τ x(�x). Thus the new Hilbert space modifies the Gauss-law condition
of the pure gauge theory of Eq. (9.43) by allowing for dynamical sources in the
form of matter fields.
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The presence of dynamical matter fields changes the spectrum in important
ways. Thus, in addition to closed Z2 electric loops and Z2 magnetic charges,
the spectrum now also contains bound states of matter fields, which can be
regarded as open Z2 electric strings. States of the latter type are associated with
the gauge-invariant operator

Cγ (�x,�y) = τ z(�x)
⎛⎝ ∏
(�z, j)∈γ (�x,�y)

σ z
j (�z)

⎞⎠ τ z(�y) (9.74)

where γ (�x, �y) is an open path on the lattice with endpoints at �x and �y. There is still
the possibility of the existence of states representing isolated Z2 electric charges.
We will see that these states do exist in the deconfined (and topological) phase,
although these states are not created by local operators. In some sense, the free
Z2 electric charges are solitons of this theory. The existence of such “free” (in the
sense of isolated) states in the deconfined phase is a form of “fractionalization” and
it is one of the main interests of this theory in the context of possible spin-liquid
phases.

Except at λ = 0 and at g = 0 the states of the system with the Hamiltonian of
Eq. (9.72) can be fully specified in the unitary gauge (the analog of the London
gauge in superconductivity)

τ z(�x)|Phys〉 = |Phys〉 (9.75)

Unlike the axial gauge, this gauge is always globally well defined. In this gauge
the Ising degrees of freedom can be eliminated (provided that the generalized
Gauss law implied by Eq. (9.73) is imposed), resulting in the following effective
Hamiltonian involving only the gauge fields:

H = −g
∑
�x, j

σ x
j (�x)−

1

g

∑
�x
σ z

1 (�x)σ z
2 (�x + e1)σ

z
1 (�x + e2)σ

z
2 (�x)

−1

λ

∑
�x
σ x

1 (�x)σ x
1 (�x − e1)σ

x
2 (�x)σ x

2 (�x − e2)− λ
∑
�x, j

σ z
j (�x) (9.76)

where the second term acts on the plaquettes and the third term acts on the sites.
Since the degrees of freedom of this Hamiltonian reside on the links of the lattice,
it is automatically self-dual in the sense that they also reside on the links of the
dual lattice. Thus, a duality transformation effectively amounts to exchanging pla-
quettes with sites and rotating the basis from σ z to σ x . Under this transformation
the Hamiltonian remains invariant up to the replacement

λ ↔ 1

g
(9.77)
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Figure 9.7 A schematic phase diagram for the Z2 gauge theory with Ising mat-
ter fields. Notice that the confinement phase of the gauge theory and the “Higgs”
phase (the ordered phase of the Ising model) are smoothly connected and belong
to the same phase. As a consequence of self-duality the phase diagram is sym-
metric under reflection across the anti-diagonal. P is a critical endpoint and T is a
tricritical point. The smooth curves are continuous transitions and the broken line
is a line of first-order transitions.

Thus the physics of this system is symmetric under a reflection of the anti-diagonal
of the phase diagram of Fig. 9.7. In the limit g → 0 and λ → 0 the Hamiltonian
reduces to the Hamiltonian for the Kitaev toric code (Kitaev, 2003), which is given
by the second and third terms of the Hamiltonian Eq. (9.76).

Let us analyze the phase diagram of this system (Fradkin and Shenker, 1979),
which is shown in Fig. 9.7. We will do this by looking at extreme regimes of the
two coupling constants g and λ.

We will begin at the bottom of Fig. 9.7. This axis represents the phase diagram
of the pure Z2 gauge theory, which, as we saw, has a quantum critical point at a
critical value gc of the coupling constant. Right on this axis the coupling constant of
the Ising model vanishes, λ = 0. For λ small enough the matter fields are massive
(have a large energy gap ∼λ−1). Hence their fluctuations can be integrated out,
resulting in a finite (and analytic) renormalization of the coupling constant of the
gauge theory. Thus, no new phase transitions can possibly occur for λ small, and
the only significant effect is that the critical coupling gc becomes a smooth function
λ. There are, however, some qualitative changes at small but finite λ.

Let us discuss first the confinement regime, g large and λ small. We saw before
that in this regime the ground state is most easily described in the σ x basis. At
λ = 0 the ground state and the excitation spectrum can be pictured in terms of small
closed electric loops on the square lattice (representing links where σ x = −1).
However, if λ > 0, no matter how small, then, in addition to closed loops, we will
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have states represented by open strings, and at λ small they are suppressed. How-
ever, the fact that there are open-string states does not imply deconfinement since
the open strings (which carry the quantum numbers of the Z2 Ising matter field at
their endpoints) have finite spatial extent. Thus even in this case deconfinement can
take place only if the open and closed strings become macroscopic in size.

Nevertheless, the existence of open strings changes the behavior of the Wil-
son loop operator. Since dynamical Z2 Ising matter fields carry the same charge
as the external sources, the Wilson loop operator W� becomes screened by the
fluctuations of the matter field. It is straightforward to see that the lowest-order
contribution of the matter field to a Wilson loop of perimeter L is of order ∼λL in
an expansion in powers of λ, which for loops that are large enough always prevails
over the area-law contribution, ∼g−A. Hence area-law behavior of the pure gauge
theory crosses over to a perimeter law for large enough loops (no matter how small
λ is, provided that it is not zero). Likewise, the ground-state energy of two sources
now will grow linearly with separation up to a scale of order λ−1.

Let us now increase λ to arbitrary values (while keeping g large). By examin-
ing the Hamiltonian of Eq. (9.76) we see that the ground state and the excitation
spectrum evolve smoothly as λ increases. Although the basis for the simplest
description of the spectrum rotates smoothly from the σ x basis at λ = 0 to the
σ z basis as λ → ∞, this does not require the crossing of any phase boundary: the
spectrum has an analytic evolution. In fact, the spectrum evolves with an analytic
dependence on λ and g on a finite strip of the phase diagram ranging from the con-
finement regime (the lower-left corner of the phase diagram of Fig. 9.7), up the λ
axis, turning right along the top of the phase diagram, and stretching all the way to
large λ and g → 0 (the upper-right corner of the phase diagram of Fig. 9.7). In par-
ticular, this implies that the ground-state energy is an analytic function of g and λ in
that region. This argument was proved rigorously by Fradkin and Shenker (1979),
who showed that these expansions have a finite radius of convergence inside this
strip. However, analyticity means that there are no phase transitions (continuous
or discontinuous) in this regime. Hence there is no global qualitative difference
between the seemingly opposite regimes of λ small and g large (“confinement”)
and λ large and g small (“Higgs”), which are as smoothly connected to each other
as liquid water is to steam.

On the other hand, on the extreme right of the diagram the gauge coupling van-
ishes, g → 0. In this limit the plaquette term of the Hamiltonian forces the gauge
fields to be a pure gauge (no flux). Up to the effects of boundary conditions, we can
locally fix the gauge σ z

1 = 1 everywhere and the zero-flux condition then forces
that σ z

2 = 1 also everywhere. Thus, in this limit the gauge fields are frozen out
and we recover the Hamiltonian for the Ising model in a transverse field along the
entire λ axis. At large λ the Ising model is ordered and has an order parameter
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with a non-vanishing expectation value. However, the Ising order parameter is not
locally gauge-invariant, and by Elitzur’s theorem its expectation value will vanish
for any g > 0. One may wonder whether there is an operator that, in a suitable
gauge, reduces to the order parameter. Such an operator does exist in Maxwell’s
electrodynamics, which has a non-compact gauge group. In the theory of super-
conductivity this is the conventional pair field defined in the Coulomb gauge. We
will encounter an analog of this operator in the theory of quantum Hall effects.
However, for a system with a compact gauge group (such as Z2) it is not possible
to construct a locally gauge-invariant order parameter. Nevertheless, the spectrum
still has an analytic (“adiabatic”) evolution reaching all the way to the ordered
phase. This is the Higgs phase (Fradkin and Shenker, 1979).

Let us finally discuss the stability of the deconfined phase, the lower-right cor-
ner of the phase diagram. Above we constructed the ground state at λ = 0 and
showed that in this state the (electric) loops have divergent sizes and proliferate.
We also showed that on a torus this phase has a four-fold degenerate ground state,
labeled by the eigenvalues of the magnetic ’t Hooft loop operators. The expansion
in powers of g and λ is also convergent with a finite radius of convergence. This is
expected since at g = λ = 0 the spectrum has a large energy gap. Thus the decon-
fined phase occupies a finite region of the phase diagram (as depicted in Fig. 9.7),
and the deconfinement phase transition at g = gc (and λ = 0) and the Ising phase
transition at λ = λc (and g = 0) survive at finite λ and at finite g, respectively. It
is a deconfined phase in the sense that there are finite-energy states in the spectrum
that carry the Z2 “charge” and are free (and hence are not confined). This is possi-
ble since in this phase the electric strings have proliferated and are of macroscopic
size. However, this phase is not characterized by a local order parameter. Never-
theless, it is still characterized by a finite ground-state degeneracy on a torus in the
thermodynamic limit. This is true even though the ’t Hooft magnetic holonomies
do not commute with the Hamiltonian for any finite λ > 0.

Thus we conclude that matter fields make qualitative changes in the phase
structure. The resulting phase diagram, shown in Fig. 9.7, has two phases: (a) a non-
topological phase ranging from the confinement regime to the broken-symmetry
regime and (b) a topological deconfined phase. The features of the theory that we
described here, including the topology of the phase diagram and the existence of
a critical endpoint P and of a tricritical point T, have been confirmed by several
numerical Monte Carlo simulations (Jongeward et al., 1980; Trebst et al., 2007;
Tupitsyn et al., 2010). This phase diagram turns out to be generic for all gauge the-
ories with a compact symmetry group and matter fields that carry the fundamental
representation of the gauge group (i.e. the lowest allowed charge). Some important
details of the phases do depend on the gauge group. In particular the deconfined
phase is topological (i.e. with a finitely degenerate ground state on a torus) only for
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discrete gauge groups, but not if the symmetry group is continuous. It also holds for
a theory with a compact gauge group spontaneously broken to a discrete subgroup
(Krauss and Wilczek, 1989; Preskill and Krauss, 1990; Bais et al., 1992).

9.11 Compact quantum electrodynamics

The Hamiltonian of the QDM of Eq. (9.41) is closely related to a problem solved by
Polyakov in 1977 (Polyakov, 1977): compact quantum electrodynamics (CQED)
in (2 + 1) dimensions. It is compact in the sense that its degrees of freedom, the
gauge fields A j , or rather the exponentials ei A j (�x), are elements of the compact Lie
group U(1). The Hamiltonian of CQED has the simpler form (Kogut, 1979)

HCQED = g

2

∑
�x; j

E2
j (�x)−

1

g

∑
�x; j,k

cos Fjk(�x) (9.78)

where the gauge variables A j (�x) and the conjugate “electric” fields E j (�x) sat-
isfy canonical equal-time commutation relations, [E j (�x), Ak(�y)] = iδ jkδ�x,�y , and
Fjk(�x) = ∑

plaquette A j (�x) is the gauge flux for the plaquette (�x; j, k).
As before, the local operator Q(�x) = � j E j (�x) is the generator of local time-

independent gauge transformations of the form

U [α(�x)] = exp

(
i
∑
�x
α(�x)Q(�x)

)
(9.79)

which are elements of the gauge group U(1). Since the gauge generators {Q(�x)}
commute with each other and with the Hamiltonian,

[Q(�x), Q(�y)] = 0, [Q(�x), H ] = 0 (9.80)

the states in the Hilbert space of physical states, {|Phys〉}, are simultaneous eigen-
states of all the gauge generators {Q(�x)} and hence are gauge-invariant, i.e. they
obey Gauss’s law

� j E j (�x)|Phys〉 = 0 (9.81)

The Hamiltonian of Polyakov’s compact QED, Eq. (9.78), differs from the
Hamiltonian of the QDM, Eq. (9.41), in that (a) J̄ has the wrong sign and (b)
the constraint selects a space of states that is not the usual vacuum (ρ = 0) but
has an array of sources, ρ(�x) = ±1. The first problem can be solved very easily
(in the absence of holes) by shifting the gauge variables A j = A′

j + δA j in such
a way that

∑
plaquette δA j = π . For instance, we can shift A1 by π on every other

horizontal row. Once this has been done, the first two terms of the Hamiltonian
of Eq. (9.41) become essentially identical to the Hamiltonian for compact electro-
dynamics (Kogut, 1979). The second caveat, (b), is intrinsic and cannot be done
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away with by any redefinition of variables. The shift δA j says that Eq. (9.41) rep-
resents a system that likes to have flux π per plaquette, on average. This result is
reminiscent of the flux phase. Thus, in terms of shifted variables, H has exactly
the same form but with J̄ ↔ − J̄ . Thus, although the Hamiltonian QDM can be
written as a lattice gauge theory, related to compact QED in this case, the physical
sector of the QDM is not the vacuum sector of CQED. We will see below that this
makes a significant difference.

In (2 + 1) dimensions Polyakov’s compact electrodynamics is in a confining
phase for all values of the coupling constant g > 0. In fact, the lowest (space-time)
dimension for a deconfined phase of a pure gauge theory with a continuous com-
pact gauge group is D = 4 (3 + 1), the dimension at which the gauge coupling
constant is dimensionless. In (2 + 1) dimensions all gauge theories (again with a
compact gauge group) have only one phase, confinement. This is easy to see in the
strong-coupling limit (large g), where the ground state is an eigenstate of the elec-
tric fields on the links (just as we saw in the Z2 gauge theory). In the case of CQED
the ground state has E j (�x) = 0 in all links of the lattice. This state, |{E j (�x) = 0}〉,
obviously satisfies the Gauss-law constraint of Eq. (9.81), and hence it is gauge-
invariant. In the presence of two static sources, say a source with charge +1 at
�x and another one with charge −1 at �y, the ground-state energy will increase
by an amount �E(�x, �y). The lowest-energy state in the strong-coupling limit has
E j (�z) = 1 on the links of the shortest path between �x and �y, and E j (�x) = 0 every-
where else. Thus the excess energy is once again linear in the (lattice) distance R
between the two sources, �E(R) = σ R, with σ = g. Thus, this is the confining
phase. The strong-coupling expansion in powers of 1/g is once again convergent,
with a finite radius of convergence. Therefore we expect that at sufficiently large
coupling the theory will be in a confining phase, just as in the Z2 case.

What is less obvious is the fact that the confining phase extends all the way to
g = 0. This result, which was obtained originally by Polyakov (1977) is based on
an analysis of the role of instantons on the imaginary-time path integral. It is a semi-
classical analysis that considers the effects of the compact nature of the U(1) group
and, hence, of the periodicity requirements on the vector potentials and fluxes. The
instantons of this theory are magnetic monopoles and represent tunneling events
between vacua with different flux periods. A detailed analysis is given in Section
9.14, where we use the same approach to discuss the physics of the QDM. For a
semi-classical description of monopoles see e.g. Rajaraman (1985). An insightful
discussion of monopoles was given by Goldhaber (1998).

What matters here is Polyakov’s result, which shows that the path integral for
compact electrodynamics in (2 + 1) Euclidean dimensions is equivalent (actu-
ally dual) to the partition function of the 3D Coulomb gas. In contrast to the
2D Coulomb gas, a system with a Kosterlitz–Thouless transition, the 3D neutral



9.12 Deconfinement and topological phases in the U(1) gauge theory 321

Coulomb gas is always in the plasma phase. This is so since the self-energy of a
3D (magnetic) charge is finite in the infrared. Hence, the entropy effects always
overwhelm the energy in the partition function. Thus, the 3D neutral Coulomb
gas always exhibits Debye screening of external static (magnetic!) charges. On
the other hand, since this is a magnetic condensate (or more properly a phase in
which monopoles and anti-monopoles proliferate) the electric Wilson loop has an
area-law decay due to the violent fluctuations of unbound magnetic charges pass-
ing through its area. In the weak-coupling limit the theory is still confining, with
an effective potential between two oppositely charged sources that remains a lin-
ear function of their separation, with a finite string tension that vanishes with an
essential singularity as g → 0, σ(g) ∼ e−A/g, where A is a non-universal constant
(since in (2 + 1) dimensions the gauge coupling constant is not dimensionless).

Thus, in the absence of dynamical matter fields, due to the monopole-
proliferation mechanism compact electrodynamics (the U(1) gauge theory) in
(2 + 1) dimensions has only one phase, confinement. All gauge theories with
a non-abelian gauge group are confining below four space-time dimensions, the
lowest critical dimension for a deconfined phase to occur (Kadanoff, 1977). As is
well known, even in four dimensions non-abelian gauge theories are asymptoti-
cally free, and hence the non-linearities of these theories are marginally relevant
operators that lead to a confined phase at all values of the coupling constant. The
U(1) gauge theory is special in that it also has a deconfined (Maxwell) phase in
four dimensions with massless photons and heavy (but free) magnetic monopoles.

9.12 Deconfinement and topological phases in the U(1) gauge theory

Let us now briefly consider the more general problem of compact electrodynamics
coupled to charged (bosonic) matter fields with some integer charge q ∈ Z. In
quantum field theory this problem is known as the abelian Higgs model. Many of
the arguments we use below apply to the more general case of a theory with a
compact gauge group G coupled to a matter (scalar) field that carries the quantum
numbers of a representation of G (Fradkin and Shenker, 1979). At the classical
level this is the typical situation of what is usually called a gauge theory that is
“spontaneously broken” in a Higgs phase. As it stands, this concept is well defined
only in perturbation theory. However, it violates Elitzur’s theorem since, as we
noted above for compact gauge groups, it is not possible to define locally gauge-
invariant order parameters.

We will represent the matter field by an element of the U(1) group, defined by a
set of angle-valued variables {θ(�x)} residing at the sites to the lattice each carrying
charge q and coupled minimally to the gauge fields {A j (�x)}. Since the matter fields
are parametrized by the angular variables θ(�x), they can be regarded as planar rigid
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rotors whose associated canonical conjugate variables are the angular momenta
{L(�x)} and obey the commutation relations

[θ(�x), L(�y)] = iδ�x,�y (9.82)

Therefore the spectrum of the momenta L(�x) are the integers and measure the
amount of charge at site �x . The rigid-rotor representation is often used to describe
Josephson-junction arrays where θ(�x) is the phase of a superconducting “grain” at
�x and L(�x) is the quantized electric charge, the number of Cooper pairs.

The Hamiltonian for the U(1) gauge theory coupled to a charge q ∈ Z matter
field is

H =
∑
�x

1

2λ
L2(�x)−

∑
�x, j=1,2

λ cos
(
� jθ(�x)− q A j (�x)

)
+ g

2

∑
�x; j

E2
j (�x)−

1

g

∑
�x; j,k

cos Fjk(�x) (9.83)

where � jθ(�x) = θ(�x + e j ) − θ(�x) is the finite difference along the direction j .
The generators of time-independent gauge transformations now are

Q(�x) = � j E j (�x)− L(�x) (9.84)

and the gauge-invariant states satisfy Q(�x)|Phys〉 = 0.
The physics and phase diagram for the case in which the matter field carries the

smallest charge, q = 1, which we will refer to as “the fundamental representation,”
are essentially the same as in the Z2 gauge theory shown in Fig. 9.7. In that case
only the fundamental “charge” is allowed. However, for a matter field with charge
q > 1 the phase diagram (shown in Fig. 9.8) has important differences that we will
now discuss.

The pure gauge theory, obtained in the limit λ = 0, is confining for all values of
the gauge coupling constant g. Hence in the U(1) case the bottom axis of the phase
diagram of Fig. 9.7 does not have a phase transition. In this case too the confining
phase is stable and survives at finite λ > 0. The behavior of the Wilson loops has
some subtleties discussed below.

The vertical axis on the right extreme of the phase diagram now describes a
quantum-rotor model with global U(1) symmetry. We will call it the XY or pla-
nar model (not to be confused with the spin-1/2 quantum XY model discussed in
Chapter 5). This model is in the universality class of the 3D classical XY model,
the standard model of the superfluid transition and easy-plane classical ferromag-
nets. It has a phase transition at a critical coupling constant λc. For λ < λc the
XY model has a unique ground state, roughly described by setting L(�x) = 0 on
all sites (the exact ground state at λ = 0). The spectrum in this disordered phase
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Figure 9.8 A schematic phase diagram for the U(1) gauge theory with charge-q
matter fields (with q ≥ 2). The confinement phase of the gauge theory and the
“Higgs” phase (the ordered phase of the XY model) are no longer smoothly con-
nected as in Fig. 9.7. The top of the phase diagram is the Zq discrete gauge
theory and gc(q) is its critical point. T is a tricritical point. The smooth curves
are continuous transitions and the broken line is a line of first-order transitions.

has a finite energy gap �E(λ) > 0. The phase transition at λc is the universality
class of the 3D classical XY model and hence it is also continuous with universal
critical exponents. This transition too is relativistic-like and has a dynamic critical
exponent z = 1. For λ > λc this system exhibits long-range order, with exp(iθ)
playing the role of the order parameter. For λ > λc, M(λ) = 〈eiθ 〉 �= 0. The
broken-symmetry phase (the “Higgs” phase) has a gapless Goldstone mode, which
propagates with a linear dispersion ω( �p) = vs| �p| for small | �p|.

The behavior at the top end of the phase diagram now depends on the value of the
charge q carried by the matter field. This is most easily seen in the unitary gauge,
θ = 0 (mod 2π). This is literally the same as the London gauge of superconductors.
In this gauge, in the limit of λ → ∞ the gauge field on each link is constrained to
take the values

A j (�x) = 2π

q
p j (�x) (9.85)

where p j (�x) = 0, 1, . . . , q − 1 are integers (mod q). This means that the gauge
fields are now q discrete possible angles, the integer multiples of 2π/q.

Hence, in this limit we obtain a gauge theory with a discrete gauge group Zq .
In particular, for q = 2 the U(1) gauge group has been “broken” down to Z2, and
becomes a Z2 gauge theory. For general q, along the top of the phase diagram the
U(1) gauge theory coupled to a charge-q matter field is equivalent to a discrete
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gauge theory with gauge group Zq . For q > 1 this theory has a phase transition
at a critical value gc(q) from a confining strong-coupling phase to a deconfining
weak-coupling phase. However, for q = 1 the gauge fields are effectively frozen
out because they have to take the value 0 (mod 2π ). Hence, for q = 1 there is no
phase transition along the top of the diagram, whereas there is a (continuous) phase
transition for q ≥ 2 between a confining phase and a deconfining phase.

The behavior of the Wilson loops depends on the charge q of the matter field
and on the charge r of the Wilson loop. Let us consider here only the Wilson loops
with the smallest charge r = 1. If the matter fields also carry charge q = 1 the
arguments used in the Z2 case also apply here: the “probe” loop is “algebraically”
screened by the dynamical matter field (which carries the same charge) by means
of the pair-creation process we described above. Thus for q = 1 the Wilson loops
have a perimeter law but the theory is still confining.

However, for q ≥ 2 we can either probe the system with a Wilson loop with
charge r = 1 or r = 2 (or higher). If the Wilson loop carries charge r = 1, the
pair-creation mechanism no longer works since charge-2 particles cannot screen
charge-1 particles (unless the charges condense). Thus, the charge r = 1 Wilson
loop retains its area-law behavior but a charge r = 2 Wilson loop will obey a
perimeter-law scaling. Thus, in U(1) gauge theories with matter fields that carry
charge q > 1, charge r = 1 Wilson loops obey an area law in the confining region
of the phase diagram. On the other hand, in the deconfined phase all Wilson loops
follow a perimeter law, regardless of their charge r . The local excitations of the
deconfined phase are plaquette excitations with magnetic flux 2πp/q (with p =
1, . . . , q − 1) and essentially free electric charges that carry charge 1. Therefore,
we do have two distinct phases.

The deconfined phase is topological. It has a non-trivial behavior under the large
gauge transformations of the discrete gauge symmetry, Zq . Indeed we can now
repeat almost verbatim the arguments we used in the Z2 case. In this system too
we can define magnetic ’t Hooft holonomies along the two non-contractible paths
of the torus. The elementary magnetic (’t Hooft) holonomy now is

W̃ j = ei 2π
q

∑
�x "[γ j ]ε jk Lk (�x) (9.86)

where γ j are the two non-contractible loops (of the torus) on the dual lattice, with
"[γ j ] = 1 on the links of the direct lattice crossed by the path γ j and "[γ j ] = 0
otherwise (as in the example depicted in Fig. 9.2(a)). The fundamental Wilson and
’t Hooft holonomies now form an algebra that generalizes Eq. (9.69) to

Wγ1 W̃γ2 = ei 2π
q W̃γ2 Wγ1, Wγ2 W̃γ1 = ei 2π

q W̃γ1 Wγ2

[Wγ1, W̃γ1] = 0, [Wγ2, W̃γ2] = 0
(9.87)

For q > 2 this type of algebraic structure gives rise to the concept of an anyon.
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Deep in the deconfined phase the low-energy states are simultaneous eigenstates
of the Hamiltonian and either the electric or the magnetic holonomies (but not both
since they don’t commute). We can once again take the eigenstates of the Hamil-
tonian to be eigenstates of the magnetic holonomies. Hence they are eigenstates
of W̃γ j . It is straightforward to see that their eigenvalues are simply ei2πp/q , with
p = 0, 1, . . . , q − 1. Hence on a torus we have a degeneracy of q2 since we have
two non-contractible loops. These states are created by the repeated action of the
two electric Wilson loops, which act as ladder operators. For a surface of genus g,
i.e., with g handles, the degeneracy is (q2)g.

In the rest of this chapter we will see how the ideas that we presented in the
context of these gauge theories apply in the context of the problem of the phases
of strongly correlated systems without long-range spin order. We will see that the
valence-bond crystal phases result in the confining regimes of the effective gauge
theories and that the spin-liquid phases occur when the gauge theory is deconfined.
The condensation of objects carrying charges larger than the fundamental charge
turns out to be a generic way to generate a deconfined phase. If the charge of
the condensing field is such that the remaining gauge symmetry is discrete, the
resulting phase is topological.

9.13 Duality transformation and dimer models

The suggestive analogy with CQED may lead us to think that the ground state of
this system (after shifting) has weakly fluctuating gauge fields. In such a case one
may expect that the elementary excitation should have A j small, slowly varying,
and gapless, and that there should be a “photon” excitation in the spectrum. How-
ever, we must recall that we are working with staggered variables, and hence this
“photon” should have wave vectors close to �Q0 = (π, π). This is the resonon of
Kivelson and Rokhsar, who argued that it exists for − J̄ = V .

However, this choice of couplings is very special. In fact, on the square lattice
it represents a quantum critical point, and, away from | J̄ | = V, the resonon exci-
tation does not exist! This is so since, as Polyakov showed, compact QED is a
confining theory. His results, which he derived for the case ρ(�x) = 0 (i.e. the usual
vacuum sector), imply that (i) the ground state is unique and it is a gauge singlet,
(ii) the spectrum has a gap, and (iii) only gauge-invariant states are present (in par-
ticular, there is no “photon”). We will see now, by following Polyakov’s ideas and
using the methods of Banks, Myerson, and Kogut (Banks et al., 1977), and Fradkin
and Susskind (1978), how these results are modified by the presence of a non-zero
ρ(�x). Here I have kept the description, used in the first edition of this book, of
QDMs in terms of compact quantum electrodynamics. The QDM can be described
equally well by an Ising gauge theory in its “odd” sector, as is is done by Moessner
et al. (2001).
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Figure 9.9 The sites of the direct lattice (filled circles) are labeled by �x , and the
sites of the dual lattice (empty circles) are labeled by �r .

Since we expect, after Polyakov, that the physics of the ground state and low-
lying excitations might not be accessible by means of a perturbative expansion
around a state with some background classical field A j , it is useful to identify
the topological excitations of this system. If we consider the Euclidean evolution
of the system (i.e. imaginary time), the field configurations which disorder the
long-range properties of the classical background state look like Dirac magnetic
monopoles with integer charge. Polyakov’s observation was, and this will also be
crucial to our problem, that fluctuations around a background configuration with
monopoles induce an interaction among them that is identical to that of a (neu-
tral) Coulomb gas in three (Euclidean) dimensions. Since the Coulomb gas has the
property of screening of external charges for all values of the coupling constant,
the ground state is unique and has a gap � ∼ 1/ξs, where ξs is the screening length
of the monopole–anti-monopole plasma. Let us rederive these results and, at the
same time, keep track of the sources ρ(�x).

The first step is a dual transformation. We will define this transformation in
terms of the solution of the constraint equation, Eq. (9.34). Let �r label the sites of
the dual lattice, which is also a square lattice (Fig. 9.9). Let N (�r) be an operator
defined on sites of the dual lattice with a spectrum labeled by the integers N (�r).
Similarly, B j (�r) is a classical background real-valued field that resides on the links
of the dual lattice. I require that

E j (�x) = ε jk(�k N (�r)+ Bk(�r)) (9.88)

where ε jk is the Levi-Civita tensor and i, j = 1, 2. If we now substitute Eq. (9.88)
into the constraint Eq. (9.34), then, in the subspace of physical states, we get
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� j E j (�x) = ε jk
(
� j�k N (�r)+� j Bk(�r)

)
= ε jk� j Bk(�r)
= ρ(�x) (9.89)

where I used the antisymmetry of the ε jk . Thus, the background fields Bk(�r) are
determined by the condition

ε jk� j Bk(�r) = ρ(�x) = (−1)x1+x2 (9.90)

Notice that the electrostatic-like constraint Eq. (9.34) (i.e. Gauss’s law) has become
the magnetostatic constraint Eq. (9.90). This is the usual electric–magnetic duality.

The set of solutions of Eq. (9.90) is in one-to-one correspondence with the dimer
configurations of the lattice since this equation is the dual version of the constraint,
Eq. (9.26). Moreover, two different solutions Bk(�r) and B ′

k(�r) are related through
a gauge transformation since their difference B̄k(�r) ≡ Bk(�r)− B ′

k(�r) must satisfy

ε jk� j B̄k(�r) = ε jk� j Bk(�r)− ε jk� j B ′
k(�r)

= ρ(�x)− ρ(�x)
= 0 (9.91)

In other words, B̄k(�r) is curl-free. Hence, at least locally, B̄k(�r) must be a pure
gradient

B̄k(�r) ≡ �k�(�r) (9.92)

Without loss of generality, �(�r) is taken to be an integer-valued function on the
dual lattice.

A local change in the gauge of Bk(�r) can thus be absorbed into an appropriate
redefinition of the operators N (�r),

N (�r) = N ′(�r)− �(�r) (9.93)

There exists, however, a set of B̄k(�r) that cannot be done away with by a suitable
redefinition of the variables N (�r). They correspond to large gauge transformations,
i.e. gauge transformations that change the value of the line integral (or sum) of
B̄k(�r) along a non-contractible loop around the torus (see Fig. 9.6).

There are two generically non-contractible loops: one along the x1 direction,
γ1(�r), and the other along the x2 direction, γ2(�r); where γ1(�r) and γ2(�r) go through
the dual site �r (Fig. 9.6). Thus the line integrals Iγ1(�r)[ �B] and Iγ2(�r)[ �B], usually
referred to as holonomies, defined by
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Iγ1(�r)[ �B] ≡
∑
γ1(�r)

B1(�r) ≡
L∑

n1=1

B1(�r + n1e1)

Iγ2(�r)[ �B] ≡
∑
γ2(�r)

B2(�r) ≡
L∑

n2=1

B2(�r + n2e2

(9.94)

are invariant under (“small”) gauge transformations (which satisfy periodic bound-
ary conditions). However, (“large”) gauge transformations, which do not respect
the periodic boundary conditions, do change the values of Iγ1(�r)[ �B] and Iγ2(�r)[ �B].

The constraint of Eq. (9.40) ∑
�x, j

E2
j (�x) =

L2

2
(9.95)

requires that there should be no bond occupied by more than one dimer. These
restrictions imply that the only allowed large gauge transformations have to sat-
isfy a uniformity condition. For instance, a large gauge transformation that raises
Iγ1(�r)[ �B] by +1 everywhere has the form (see Fig. 9.10)

B̄k(�r) = δr2,n0δk,1 (9.96)

where n0 is an integer 1 ≤ n0 ≤ L .
What is the meaning of these large gauge transformations? Recall that E j (�x) is

given by

E j (�x) = ε jk(�k N (�r)+ Bk(�r)) (9.97)

r2 = n0

1

2

Figure 9.10 A large gauge transformation.
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If we regard the operators N (�r) as the quantum fluctuations and Bk(�r) as a classi-
cal background, we see that the configurations with N (�r) = 0 (or constant) have
E j (�x) = ε jk Bk(�r). In other words, the classical background fields Bk(�r) represent
a set of classical dimer configurations that can be regarded as the parent states for
the quantum evolution of the system. Indeed, the line integral Iγi (�r)[ �B] is then, from
Eq. (9.33),

Iγi (�r)[ �B] =
∑
γi (�r)

Bi (�r)

=
∑
γi (�x)

ε j i E j (�x)

= ε j i

L∑
ni=1

(−1)x1+x2+ni L j (�x + ni ei ) (9.98)

Thus, Iγi (�r)[ �B] is the sum of the differences in the number of dimers occupying
neighboring parallel links. This quantity is invariant under the dynamics of the
QDM. Solutions that differ by local gauge transformations are equivalent to clas-
sical dimer configurations that differ by the “resonating” (or flipping) of a set (or
sets) of plaquettes whose boundaries are contractible loops. Large gauge transfor-
mations correspond to processes in which a set of valence bonds circulate all the
way around a non-contractible loop. Thus, the dimer configurations can be clas-
sified by the value of the circulation

∑
γi (�r) Bi (�r) along a non-contractible loop.

We can then identify Iγi (�r)[ �B] with the winding number introduced by Rokhsar and
Kivelson (1988).

Consider, for instance, configurations that belong to the class with vanishing
winding numbers

∑
γi (�r) Bi (�r) = 0. In the gauge B1(�r) = 0, there are two possible

solutions to Eq. (9.90):

B(1)
1 (�r) = 0, B(1)

2 (�r) = −
(

1 + (−1)r1

2

)
(−1)r2 (9.99)

B(2)
1 (�r) = 0, B(2)

2 (�r) = +
(

1 − (−1)r1

2

)
(−1)r2 (9.100)

In the gauge B2(�r) = 0, there are also two analogous solutions. It is easy to see
that these solutions are in a one-to-one correspondence with the four degenerate
columnar or Peierls states (Fig. 9.11). It is clear that there should be a connection
between the degeneracy of the ground state and its winding number. Indeed, the
number of distinct solutions of Eq. (9.90) for a sector with a given winding number
is equal to the degeneracy of the ground state in that sector. Since the line inte-
grals do not change under the dynamics and the Bk terms determine the subspaces
of states which are being considered, we expect that the winding number should
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Figure 9.11 A columnar state and the background configuration of the Bk terms
associated with it.

determine the ground-state degeneracy of these broken-symmetry states of the full
quantum theory unless extra degeneracies occur, as a result of one or more modes
becoming gapless. These arguments can be generalized to systems with valence
bonds of finite but arbitrary length. In terms of the 1/N expansion, this means that
this degeneracy is valid order by order in the 1/N expansion.

There also exist states with non-vanishing winding numbers, Iγi (�r). In this case
the columns cannot reach all the way to the boundaries. For instance, a typical
state with non-zero winding number Iγ2 can be found by taking columnar states of
total height n and stacking them on top of each other after a horizontal shift of one
lattice unit. States of this type are said to be tilted with a tilt (or slope) of 1/n. The
staggered state, shown in Fig. 8.12(b), is an example of a tilted state with n = 1
and has maximal winding number.

The columnar states (tilted or not) can be regarded as unidirectional dimer-
density waves. Their ground-state degeneracies are specified by the period (or
wave length) of the density wave. For example, the columnar state has period 2.
Other types of phases with bidirectional dimer-density-wave order can also exist.
More generic states of this type have non-vanishing winding numbers along the
two orthogonal directions. Although in the extreme classical limit not all of these
states are allowed, some of them become possible once quantum fluctuations are
taken into account. An example is the plaquette state in which the valence bonds
resonate on a sublattice of plaquettes with period 2. States of this type are also
found in the large-N limit of the Sp(N ) Hamiltonian (Read and Sachdev, 1991)
and in some finite-size exact diagonalizations of the QDM (Leung et al., 1996).
Numerical results indicate that the QDM on the square lattice has a direct quantum
phase transition from a columnar phase to a staggered phase at the Rokhsar–
Kivelson (RK) point (with a possible plaquette phase intervening in between).
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However, simple short-range modifications of the interactions described in the
QDM Hamiltonian also allow a variety of other tilted states to become accessi-
ble, including states with asymptotically incommensurate values of the tilt that
exhibit complex phase diagrams (Fradkin et al., 2004; Vishwanath et al., 2004;
Papanikolaou et al., 2007a).

Now that we have solved the constraint Eq. (9.34), we can write the dual form of
the Hamiltonian. I will assume that the constraint has been solved in a sector with
winding number Iγi (�r)[ �B], i = 1, 2. We will have to find which sector yields the
lowest ground-state energy. The solution of the constraint, Eq. (9.34),

E j (�x) = ε jk[�k N (�r)+ Bk(�r)] (9.101)

is one of the equations we need. We also need to define the momentum P(�r)
canonically conjugate to N (�r) such that

[P(�r), N (�r ′)] = iδ�r ,�r ′ (9.102)

Since the spectrum of N (�r) is the set of integers, the operator P(�r) should have
eigenvalues P(�r) in the range 0 ≤ P(�r) < 2π . It is easy to see that the circulation∑

plaquette A j (�x), around an elementary plaquette centered at dual site �r , has the
same effect on its Hilbert space as P(�r) has on the integer N (�r). More specifically,
according to Eqs. (9.22) and (9.33), the raising operator exp(i

∑
plaquette A j (�x))

shifts the eigenvalues of E j (�x) by +1 on the oriented path around the plaquette.
This has exactly the effect of raising N (�r), on the dual lattice, also by +1. Thus,
we identify ∑

plaquette

A j (�x) ≡ P(�r) (9.103)

Alternatively, it is easy to check the consistency of this identification by an explicit
calculation of the commutation relations.

The Hamiltonian dual to that of Eq. (9.41) is

H = 1

2k

⎛⎝∑
�r ,k
(�k N (�r)+ Bk(�r))2 − L2

2

⎞⎠ − 2 J̄
∑
�r

cos (P(�r))

+ V

2

∑
�r

[
(�1(�1 N (�r)+ B1(�r)))2 + (�2(�2 N (�r)+ B2(�r)))2

]
− V L2

2
(9.104)

where the limit k → 0 is always meant.
Also, in principle, all winding sectors have to be considered. We will keep the

sector which minimizes the ground-state energy. All the inequivalent solutions of
Eq. (9.90) will represent degenerate states. The manifold of degenerate states is
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Figure 9.12 The configuration {N (�r)} parametrizes a surface in the solid-on-solid
model.

closed under the group of lattice translations and rotations by π/2. From now on
we will work within a given winding sector.

On comparing the QDM Hamiltonian, Eq. (9.41), and its dual, Eq. (9.104),
we notice several features: (i) the kinetic- and potential-energy terms have been
exchanged; (ii) the degrees of freedom in Eq. (9.41) are phases (i.e. elements of
the group U(1)), whereas the degrees of freedom in Eq. (9.104) are integers; and
(iii) the Hamiltonian of Eq. (9.104) has a global symmetry N (�r) → N ′(�r) + n0

(with n0 an arbitrary integer), whereas Eq. (9.41) has a local gauge symmetry.
These features are present for all systems related through a duality transformation
except (iii), which holds only in (2+ 1) dimensions (Fradkin and Susskind, 1978).

A system with integer-valued degrees of freedom is usually referred to as a dis-
crete Gaussian (DG) or solid-on-solid (SOS) model. It was originally introduced by
Onsager for the study of the statistical mechanics of classical interfaces (Chaikin
and Lubensky, 1995). In that context N (�r) represents the height of a column of
identical atoms standing atop the lattice site �r . The set of values of {N (�r)} can then
be regarded as the surface (or interface) of a 3D solid (Fig. 9.12). The constraint
implied by the limit k → 0 represents a restriction on this DG model. The last
term in Eq. (9.104), which represents a next-nearest-neighbor interaction between
atoms, has the form of a Laplacian coupling. The second term is responsible for
the quantum dynamics of the system. There is a very large body of literature on
SOS and DG models. We will not discuss it here. The most studied such system
has the classical Hamiltonian

Hc = γ

2

∑
�r ,k=1,2

(�k N (�r + ek))
2 (9.105)
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where γ is a constant. Most studies deal with this classical problem, although the
role of quantum fluctuations has also been considered.

Classically, systems such as the SOS model usually exhibit two distinct phases.
At high temperatures, T > TR, the interface has large transversal fluctuations and
the surface is rough: the r.m.s. 〈N 2〉 ∼ log L (where L is the linear size of the
system) and has power-law decaying correlations. Instead, at low temperatures,
T < TR, the interface is smooth: the r.m.s. fluctuations of the surface are mas-
sive with exponentially decaying correlations. The temperature TR is the location
of a critical point at which this roughening transition takes place. The natural
correlation functions of this problem are the height–height correlation function
G(�r − �r ′),

G(�r − �r ′) = 〈N (�r)− N (�r ′)〉 (9.106)

and the order-parameter correlation function gα(�r − �r ′),
gα(�r − �r ′) = 〈eiαN (�r)e−iαN (�r ′)〉 (9.107)

where α is an arbitrary angle.
For the classical unrestricted system, one finds the asymptotic behavior of

gα(R), where R ≡ |�r − �r ′| � a0 (a0 is the lattice constant), to be

gα(R) ≈
{

M2 + constant × e−
R

ξ(T ) for T < TR (smooth phase)

constant × R−η(α,T ) for T > TR (rough phase)
(9.108)

where ξ(T ) is the correlation length, M2 is the square of the order parameter, and
the exponent η is a function of α and the temperature. The corresponding behavior
of G(R) is

G(R) ≈
{

m2 + constant × e−
R

ξ(T ) for T < TR (smooth phase)

constant × ln(R/a0) for T < TR (rough phase)
(9.109)

where m2 represents the square of the average height, 〈N (�r)〉.
The quantum fluctuations change this picture completely. If we ignore the

restriction (k → 0) and neglect the effects of frustration (introduced by the fields
Bk), we arrive at the quantum DG model.

Let us introduce a path integral for this system. It will be convenient for us
to work in imaginary time so that we can also discuss thermal fluctuations. At a
non-zero temperature T, the partition function of the quantum system is

Z = tr e−βH (9.110)

where β = 1/T and H is the Hamiltonian of Eq. (9.104). In order to derive a path
integral we proceed in the usual fashion (Feynman and Hibbs, 1965). We first split
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up the imaginary-time interval 0 ≤ τ ≤ β into Nτ time-steps, each of size �τ ,
such that

Nτ�τ = β (9.111)

The limit �τ → 0 and Nτ → ∞ is always implied. Next, we write

Z = lim
�τ→0

Nτ→∞
tr
([e−(�τ )H ]Nτ

)
≡ lim

�τ→0
Nτ→∞

tr
([e−(�τ )Hkine−(�τ )Hpot]Nτ

)
(9.112)

where we have split the Hamiltonian into a kinetic-energy term (the second term
of Eq. (9.104)) Hkin and a potential-energy term Hpot (the rest). The next step is
to introduce a resolution of the identity in terms of a complete set of eigenstates
|{N (�r , t)}〉 of the operators {N (�r , t)} between neighboring factors of e−βH :

Z = lim
�τ→0

Nτ→∞

+∞∑
{N (�r , j)}=−∞

Nτ∏
j=1

〈{N (�r , j)}|e−�τ H |{N (�r , j + 1)}〉 (9.113)

with periodic boundary conditions in time, i.e.

|{N (�r , Nτ + 1)}〉 ≡ |{N (�r , 1)}〉 (9.114)

In Eq. (9.113) the integer j represents the j th time-step and τ j = τ0 + j�τ .
Let us compute the matrix elements

〈{N (�r , j)}|e−�τ H |{N (�r , j + 1)}〉
≈ 〈{N (�r , j)}|e−�τ Hkine−�τ Hpot |{N (�r , j + 1)}〉 (9.115)

= 〈{N (�r , j)}|e−�τ Hkin |{N (�r , j + 1)}〉e−�τ Hpot({N (�r , j+1)})

where I used the facts that �τ is small and that Hpot is diagonal in the basis
|{N (�r , j)}〉. In fact,

e−�τ Hpot |{N (�r , j)}〉 = e−�τ Hpot({N (�r , j+1)})|{N (�r , j)}〉 (9.116)

with an eigenvalue Hpot({N (�r , j)}) given by

Hpot({N (�r , j)}) = 1

2k

⎛⎝ ∑
�r ,k=1,2

(�k N (�r , j)+ Bk(�r , j))2 − L2

2

⎞⎠
+ V

2

∑
�r , k=1,2

(
�2

k N (�r , j)+�k Bk(�r , j)
)2 − V L2

2
(9.117)
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The off-diagonal matrix elements

〈{N (�r , j)}|e−�τ Hkin |{N (�r , j + 1)}〉
= 〈{N (�r , j)}|e2(�τ ) J̄

∑
�r cos(P(�r))|{N (�r , j + 1)}〉 (9.118)

can be evaluated by repeated use of the expansion

ez cos p =
∞∑

l=−∞
Il(z)e

ilp (9.119)

where Il(z) is the Bessel function of order l of imaginary argument. The matrix
elements of Eq. (9.118) are products of matrix elements of the form

〈N j |e2(�τ ) J̄ cos(P)|N j+1〉 (9.120)

which we can write in the form
+∞∑

l=−∞
〈N j |eil P |N j+1〉Il(2 J̄�τ) = I|N j+1−N j |(2 J̄�τ) (9.121)

In this equation we have used the orthogonality of the states |N j 〉. For convenience,
and simplicity, we will use the following approximate expression for the Bessel
function:

Il(z) = 1√
2π

eze−
l2
2z

(
1 + O(z−1)

)
(9.122)

On putting it all together, we can write the partition function in the suggestive
form

Z = lim
�τ→0

Nτ→∞

∑
{N (�r , j)}

e−S[N ] (9.123)

where the Euclidean (discretized) action S [N ] is given by ( j = 1, . . . , Nτ )

S[N ] = 1

4 J̄�τ

∑
�r , j

[
�0 N (�r , j)

]2

+ �τ

2k

⎛⎜⎝∑
�r , j

l=1,2

(�l N (�r , j)+ Bl(�r , j))2 − L2

2
Nτ

⎞⎟⎠
+ V�τ

2

∑
�r , j

l=1,2

((
�2

l N (�r , j)+�l Bl(�r , j)
)2

)
(9.124)

I have also used the notation

�0 N (�r , j) ≡ N (�r , j)− N (�r , j − 1) (9.125)
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Thus the quantum partition function of the dimer model is given by the classical
partition function of a discrete Gaussian model in three Euclidean dimensions on
a cubic lattice of size L2 Nτ . This system looks very similar to its 2D classical
counterpart Eq. (9.105), except for the fact that it is frustrated (Bk �= 0), restricted
(k → 0), and has second-nearest-neighbor interactions (V �= 0) in space.

If we work in the sector with zero winding number, the configurations with
N (�r , j) = n0, which is a constant, represent the columnar states. Conversely,
in the sector with maximal winding number, for instance

∑
γ1(�r) B1(�r) = L/2,

the configuration N (�r , j) = n0 is a staggered crystal. Which state dominates can
be discerned only by solving the partition function Eq. (9.123). The action S[N ],
Eq. (9.124), is such that, for small �τ , the fluctuations of N (�r , t) in time tend to
be suppressed. The columnar states have a finite degeneracy and a finite entropy,
whereas the staggered states, due to the constraints, have virtually no excitations.
Numerical simulations indicate that, for V small and positive, the columnar state is
stable. For large V the staggered state should win, at least at low temperatures.
Hence we expect that the QDGM should be in a smooth phase, albeit degen-
erate (see the discussion above). We will see below that at the quantum phase
transition between the columnar (or plaquette) phase and the staggered phase the
higher-derivative terms of Eq. (9.124) (associated with V ) play an important role.

9.14 Quantum-dimer models and monopole gases

In Section 9.5 we used an intuitive argument which indicated that monopole con-
figurations of the gauge fields play a fundamental role in this problem. We will
now examine this issue more closely for the case V = 0.

The easiest way to relate the QDM to a gas of monopoles is to apply the Poisson
summation formula

+∞∑
n=−∞

f (n) =
+∞∑

m=−∞

∫
dφ ei2πmφ f (φ) (9.126)

to the three-dimensional discrete Gaussian model with action Eq. (9.124). This
amounts to replacing all the integer variables {N (�r , j)} by a continuous variable
{φ(r)} and another set of integers {m(r)}, where now r = (r0, r1, r2) are 3D lattice
vectors in Euclidean space-time:

Z = lim
�τ→0

Nτ→∞

∑
{S}

e−S[S]
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= lim
�τ→0

Nτ→∞

∑
{m(r)}

∫
Dφ exp

(
2π i

∑
r

m(r)φ(r)− S[φ]
)

= lim
�τ→0

Nτ→∞

∑
{m(r)}

∫
Dφ exp

⎡⎣�τ

2k

⎛⎝ Nτ L2

2
−

∑
r;l=1,2

B2
l (r)

⎞⎠
−V�τ

2

∑
r;l=1,2

(�l Bl(r))
2

⎤⎦
× exp

{
−

∑
r

[
1

4 J̄�τ

(�0φ(r))
2

+ �τ

2k

∑
l=1,2

(�lφ(r))
2 + V�τ

2

∑
l=1,2

(
�2

l φ(r)
)2

]}

× exp

[
−

∑
r

φ(r)

(
2π im(r)+ �τ

k

∑
l=1,2

�l Bl(r)

+ V�τ

∑
l=1,2

(�l Bl(r))
2

)]
(9.127)

We now notice the important fact that the action of Eq. (9.127) (and the partition
function) is invariant under a uniform constant (in space and imaginary time) shift
of the field φ(r) → φ(r) + φ̄, provided that the integer-valued fields m(r) satisfy
the “neutrality” condition ∑

r

m(r) = 0 (9.128)

We will see below that this condition translates into the requirement that the
monopole gas be neutral.

Since S[φ] is quadratic in φ, these fields can be integrated out. Assuming
periodic boundary conditions and working in the zero-tilt sector, we obtain the
result

Z = lim
�τ→0

Nτ→∞
exp

[
�τ

2k

(
Nτ L2

2
−

∑
r,k=1,2

B2
k (�r)

)] (
Det M

2π

)−1/2

× exp

⎡⎣+1

2

(
�τ

k

)2 ∑
r,r ′

εαμλ�
r
λBμ(r)G0(r − r ′)εανρ�r ′

ν Bρ(r
′)

⎤⎦ZCG

(9.129)
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where ZCG (defined below) is the partition function for a generalized Coulomb
gas and

Det M = Det

⎛⎜⎝ 1

2 J̄�τ

�2
0 +

�τ

k

∑
j=1,2

�2
j − V�τ

⎛⎝ ∑
j=1,2

�2
j

⎞⎠2
⎞⎟⎠ (9.130)

The Green function associated with the operator M is G0(r−r ′), the 3D anisotropic
lattice Green function, which is defined by

−
⎛⎜⎝ 1

2 J̄�τ

�2
0 +

�τ

k

∑
j=1,2

�2
j − V�τ

⎛⎝ ∑
j=1,2

�2
j

⎞⎠2
⎞⎟⎠ G0(r − r ′) = δr,r ′ (9.131)

(the minus sign comes from a “partial integration”).
Then the partition function Z or Eq. (9.129) is, up to an essentially uninteresting

factor, proportional to the partition function of a generalized 3D Coulomb gas ZCG,
which is given by

ZCG =
∑
{m(r)}

′
exp

(
−2π2

∑
r,r ′

m(r)G0(r − r ′)m(r ′)

)
exp

(
2π i

∑
r

m(r)�(r)

)
(9.132)

where r = (�r , τ ) runs over the labels of the 3D cubic lattice. Just as in our
discussion of the 2D Coulomb gas of Chapter 4, this partition function is con-
strained (indicated by the prime label in Eq. (9.132)) to configurations that obey the
condition of overall charge (monopole charge in this case) neutrality, Eq. (9.128).

This partition function differs from the usual one for a Coulomb gas by the
complex phase factors in Eq. (9.132), which are expressed in terms of the phase
�(r),

�(r) =
∑

r ′
G0(r − r ′)�r ′

l Bl(r
′) (9.133)

In the thermodynamic limit (L , Nτ → ∞) (Banks et al., 1977) and at zero
temperature, G0(r − r ′) is given by

G0(r − r ′) =
∫ π

−π
d3q

(2π)3

×
1
4 ei �q·(�r−�r ′)

(1/(2 J̄�τ)) sin2(q0/2)+ ∑
j=1,2(�τ/k) sin2(q j/2)

(9.134)
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In the time-continuum limit we find (ω ≡ �τq0)

lim
�τ→0

G0(�r − �r ′, τ − τ ′) = lim
�τ→0

∫ π
�τ

− π
�τ

dω

2π

∫ π

−π
d2q

(2π)2

× ei(ω(τ−τ ′)+�q·(�r−�r ′))

ω2/(2 J̄ )+ (4�τ/k)
∑

j=1,2 sin2(q j/2)
(9.135)

At long distances (R = |�r − �r ′| � a0), and at long (Euclidean) times (τ̄ =
|τ − τ ′| � �τ), G0(R, τ̄ ) has the asymptotic behavior

G0(R, τ̄ ) ≈ k

4π

1√
τ̄ 2 + (2 J̄�τk)R2

(9.136)

Except for the anisotropy (2 J̄�τ/k �= 1), this is just the 3D Coulomb interaction.
Thus, this problem is equivalent to a gas of monopoles (and anti-monopoles)

obeying overall (magnetic) charge neutrality. The monopoles behave like a gas of
charged particles (of both signs) in three dimensions, with an effective interac-
tion Veff (again regularized at short distances), which in the long-distance limit is
given by

Veff(R, τ̄ ) = 2π2G0(R, τ̄ ) ≈ πk

2

1√
τ̄ 2 + (2 J̄�τ/k)R2

(9.137)

The total partition function is

Z = constant

(
Det M

2π

)−1/2

×
∑
{m(r)}

′
exp

⎛⎝−1

2

∑
r,r ′

m(r)Veff(r, r ′)m(r ′)+ 2π im(r)�(r)

⎞⎠ (9.138)

where Det M is given in Eq. (9.130).
The time-independent phase θ(r) = 2π�(r) (see Eq. (9.132)) turns out to take

one of four possible values, one for each sublattice:

θ(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−π/4 for r1 even, r2 even

+3π/4 for r1 odd, r2 odd

+π/4 for r1 odd, r2 even

−3π/4 for r1 even, r2 odd

(9.139)

The conclusion is that in this case, just as in Polyakov’s compact electrodynamics
(Polyakov, 1977), the system is also equivalent to a 3D Coulomb gas. The main
difference between Polyakov’s case (and the 2D case discussed in Section 4.6)
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and the present problem is the presence of the phases θ(r) in the weight factors
of the Coulomb gas. These phases can be thought of as Berry phases, since they
arise from non-trivial overlaps of the evolution of state of the system at nearby
times. They originate from the requirement that every site of the lattice belongs to
one (and only one) dimer and that the time evolution can occur only by moving
dimers around in a manner compatible with this constraint. In other terms, the
Berry phases reflect the fact that the QDMs are described not by the vacuum sector
of the gauge theory but by the sector of the Hilbert space with alternating sources
on the lattice. Read and Sachdev (1991) derived these phases, following Haldane’s
original suggestion, by means of an adiabatic-process calculation. It is remarkable
that we find the same answer even though we started from a regime in which a
non-linear sigma model cannot possibly work. However, the Berry phases make a
profound difference both in terms of the nature of the ground states and in terms of
the quantum phase transitions.

In Chapter 4 we showed that there is a close connection between the 2D (neu-
tral) Coulomb gas and the sine–Gordon field theory also in two dimensions. The
same relationship also exists in three dimensions and it is at the root of Polyakov’s
analysis. To understand the differences between compact QED and the QDM, we
will revisit the derivation of this effective theory and compare the two cases.

Let us return to Eq. (9.127) and, instead of integrating out the fields φ(r), we will
attempt to integrate out the integer-valued monopole fields m(r). We will assume
that the monopoles are dilute and we will keep only the lowest charges, m(r) =
±1, 0. This amounts to assuming that the monopole fugacity is low and, at least
formally, adding to the action of Eq. (9.127) an extra term of the form

Score = u
∑

r

m(r)2 (9.140)

where the coupling constant u can be regarded as a core energy of the monopoles
and the fugacity is z = 2e−u . This term penalizes charges with |m| ≥ 2.

In the absence of the Berry phase terms of Eq. (9.139) (or, equivalently, if
the background fields Bl are absent), the gradient terms penalize fluctuations of
the field φ varying on short length scales while the cosine operator will penalize
fluctuations of the φ field away from constant integer values. Thus, in this case
it is possible to effectively derive (or to propose) a simple candidate continuum
field theory to describe this system, namely the sine–Gordon field theory, with the
effective (Euclidean) action

S =
∫

d Dx

[
K

2

(
∂μφ

)2 − g cos(2πφ)

]
(9.141)
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where once again the sine–Gordon coupling constant g = z/aD is (essentially) the
fugacity z of the Coulomb gas, and the stiffness K , determined by the parameter
J , is related to the inverse temperature of the Coulomb gas.

This is Polyakov’s result (Polyakov, 1977). The main difference between the 2D
and 3D cases is that the 3D Coulomb gas is always in a plasma phase. This can
be seen by generalizing the RG that we discussed for the sine–Gordon theory in
Section 4.6 for 2D to the 3D case. The extension of the RG for D > 2 was done
by Kosterlitz (1977), who showed that D = 2 is a special case, and that for D > 2
the Coulomb gas is always in a screening phase. In the language of the RG, for
D > 2 the cosine term is always relevant and its coupling constant g flows to
strong coupling. In this regime the discreteness of the charges of the Coulomb gas
is obliterated by the strong fluctuations, leading to a phase with perfect (Debye)
screening. For the same reason, the fluctuations of the field φ become suppressed,
since in this phase the cosine operator pins the fluctuations of the coarse-grained
height field φ to one of its minima. Thus, the field φ is effectively massive. In this
phase monopoles with the lowest magnetic charge condense (or proliferate). As
shown by Polyakov, monopole condensation implies that the Wilson loop has an
area law and fundamental electric charges are confined.

The Berry phases change the structure of the effective-field theory. If we were
to proceed naively, we would now integrate out the monopoles and obtain a
discretized effective action for the field φ. In this representation (as in the rep-
resentation in terms of the height fields N (r)) the action is real, and here the fields
B j couple to the field φ as a background static spatial gauge field whose curl repre-
sents the constraints of the quantum dimer model. In contrast, in the monopole-gas
representation the action has an imaginary part, the Berry phases �(r), which is
due to the background gauge fields B j . However, what we want is an effective
action for slowly varying fields. The background fields Bl (which are the version
of the Berry phases in this representation) make the low-energy configurations
vary rapidly on the scale of the lattice spacing, corresponding to the changes in
the height field needed to describe dimer configurations. In this form, the height
configurations are not single-valued.

Thus, in order to derive an effective-field theory for this problem it is necessary
to first coarse-grain the φ field. We note that the Berry phases take different values
on different sublattices and hence favor states that break translation invariance.
However, the average of the Berry phases on the four sublattices (or equiva-
lently the average of the electric charges in the dual gauge-theory picture) is zero.
Thus the “flat” configurations (coarse-grained over blocks of size 2 × 2) see zero
background fields and are suitably slowly varying.

On the other hand, while fluctuations due to unit-charge monopoles are strongly
affected by the Berry-phase terms, monopoles with charge multiples of 4 are not
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affected by the Berry phases. Now, the Berry phases, and the background gauge
fields Bl which they represent, reflect the fact that the square lattice has two sub-
lattices and that, in order to represent dimer configurations, we placed equal and
opposite unit electric charges on the two sublattices. The redundancy of the height
representation with period 4 simply reflects the fact that on a square lattice there
are four possible dimer configurations associated with each site. This also means
that configurations of the dual-height model are physically equivalent if the height
variables are shifted by multiples of 4. This condition restricts the structure and the
allowed operators of the effective theory. In other terms, the effective-field theory
we are seeking must describe fluctuations relative to some ideal state such as the
columnar configurations. The theory we need must then treat all columnar states
and therefore must also be able to describe the spontaneous breaking of rotational
and translation invariance.

9.15 The quantum Lifshitz model

We have seen that QDMs (and their generalizations) can have different types of
ordered and topological phases. We will now discuss the nature of the quantum
phase transitions between them. We saw that on the square lattice the QDM at the
RK point has a ground state with power-law correlations and gapless excitations.
This result is surprising since the surrounding phases are either ordered VB crystals
or a topological phase. This seemingly violates a general result from the theory of
phase transitions, which is largely based on the analysis of Landau and Ginzburg,
and was refined (and extended) by Wilson and Kadanoff (and Fisher) with the
development of the RG, which states that (quantum and thermal) phase transi-
tions between ordered phases are typically of first order. Thus we should generally
expect that the phase transitions between different ordered dimer phases should
also be first-order transitions.

This standard result of critical behavior in classical (Goldenfeld, 1992;
Cardy, 1996) and quantum (Sachdev, 1999) critical phenomena, and in quantum
field theory (Zinn-Justin, 2002), is based on the notion that the phase transitions
occur primarily due to the strong fluctuations of local fields representing order
parameters. Since the order parameters break spontaneously global symmetries,
the associated field theories in general also have a global symmetry. Gauge theories
also have phase transitions, which may be also either of first order or continuous
(“second order”). Phase transitions in gauge theories, as we saw, also have uni-
versality classes and are classified not according to the behavior of local operators
but according to that of their (generally non-local) observables such as Wilson
loops. In fact, from an RG perspective, local quantum field theories are defined
by the scaling behavior of theories in the vicinity of continuous phase transitions
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(with global or local symmetries). It is only in this regime that local field theories
(without reference to a “microscopic” cutoff) can be defined as continuum field the-
ories (Wilson, 1973, 1974, 1983; Polchinski, 1984). From this framework it seems
that a continuous quantum phase transition between two dimer-ordered phases is a
violation of these basic Landau rules.

A conceptually important feature of QDMs is that they have topological defects,
namely “holons” and “spinons,” which are forbidden to exist (and actually confined
into bound states) in the ordered phases but are allowed, and hence “deconfined,”
as gapless excitations at these quantum critical points. These topological defects
are gapped and free in the topological phase. A related problem that has been
the focus of a lot of work is that of the possible quantum phase transitions in 2D
spin-1/2 quantum Heisenberg antiferromagnets with four-spin (“ring-exchange”)
interactions between a Néel phase and a VB crystal (a state with columnar order)
at a critical value of the ring-exchange coupling. Extensive numerical quantum
Monte Carlo simulations have provided strong evidence both for a first-order tran-
sition (Kuklov et al., 2008) and for a continuous phase transition (Sandvik, 2007,
2010) depending on details of the four-spin-interaction term. It has been proposed
that these “Landau-forbidden” continuous quantum phase transitions have spin-1/2
gapless excitations, which are thus “deconfined,” a form of deconfined quantum
criticality (Senthil et al., 2004a, 2004b).

We will now see that the quantum critical points of QDMs are actually the sim-
plest deconfined quantum critical points (Moessner et al., 2001). This interpretation
is based on the gauge-theory description of QDMs. A more direct way to derive an
effective-field theory is to adapt the methods used in classical dimer and loop mod-
els (Nienhuis, 1987; Kondev and Henley, 1996) to the generalized QDMs (Ardonne
et al., 2004; Fradkin et al., 2004). We will first take a step back and change the rep-
resentation of dimers in terms of height models. As before we will assign heights
to plaquettes, taking into account the two sublattices (even and odd) of the square
lattice. Thus, while going around a site of the even sublattice in a counterclockwise
fashion, we will require that the heights on neighboring plaquettes change by +3
if the link they share is occupied by a dimer and by −1 if it is not. Conversely, for
a site on the odd sublattice the heights change by −3 if the link is occupied and by
+1 if it is empty (see Fig. 9.13). To avoid over-counting we identify the height h
with the height h + 4. Notice that the assigned heights locally have jumps across
a dimer. In this language, in a columnar state the average height field, defined by
the average of the heights on the four plaquettes surrounding a given site of the
original lattice, has a non-vanishing uniform expectation value, and in a staggered
(or tilted) state the gradients of the height have an expectation value. Similarly, the
action of the plaquette (flip) operator on a plaquette amounts to a shift of the height
on that plaquette by one unit, h → h ± 1.
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Figure 9.13 Dimer configurations around a site of the even sublattice and their
associated heights on the dual lattice. The heights on the dual lattice are defined
up to a uniform shift by 4, and wind around the sites of the direct lattice.

These assignments can also be represented in terms of electric fields (or currents)
on the links of the direct lattice. Thus, a dimer on the x link (going from the even
site to an odd site) corresponds to an electric field of 3 units leaving the even
site, and to three electric fields of unit strength entering the even site on the three
remaining links. Thus the allowed configurations of electric fields are ±3 and ±1
and satisfy a local conservation law, � · �E = 0.

We will now seek an effective continuum field to describe the ordered phases
of the QDM and their quantum phase transitions. The degrees of freedom of the
effective field theory are coarse-grained height variables, which we will denote
by h. We will give a heuristic construction of the effective-field theory for the
QDMs on the square lattice. It is based on the following requirements (Ardonne
et al., 2004; Fradkin et al., 2004) (a similar construction holds for the hexagonal
lattice).

1. The Hamiltonian for the field h must select h ∈ Z as the preferred values.
2. Field configurations h that differ by integer multiples of 4 (corresponding to

the period-4 condition of the lattice heights) must be equivalent. Hence we will
make the identification h ≡ h + 4n, with n ∈ Z. This condition defines the
compactification radius to be R = 4.

3. All the allowed operators (including the Hamiltonian) must be blind under the
equivalency condition.

4. The effective-field theory must have four classical (“ideal”) ground states, h =
0, 1, 2, 3, each corresponding to the four possible columnar states on the square
lattice.

5. For a special value (or values) of the parameter(s) of the effective action, the
equal-time correlation functions of the effective-field theory must be equal to
the asymptotic long-distance correlation functions of the generalized classical
dimer models. This defines the RK point.
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In what follows it will be more convenient to work with the rescaled (angular)
field ϕ = (π/2)h, which is 2π periodic and has compactification radius R = 1.
The ideal states are now ϕ = 0, π/2, π, 3π/2. The states with ϕ = 0, π corre-
spond (respectively) to the two columnar states modulated along the x axis (i.e.
with horizontal dimers), while those with ϕ = π/2, 3π/2 correspond to the two
columnar states modulated along the y axis (vertical dimers).

9.15.1 Field theory for two-dimensional classical dimers

An effective-field theory of the type we are seeking has been known for a long
time in 2D classical critical phenomena, where it is known as the Gaussian model,
the free “compactified” boson in the language of conformal field theory (CFT).
It successfully describes the long-distance behavior of many systems of interest,
including dimer models, two decoupled Ising models, Baxter and Ashkin–Teller
models, and planar (XY ) models (Kadanoff, 1979; Kadanoff and Brown, 1979).
The derivation (or “mapping”) of the Gaussian model for classical dimer models on
bipartite lattices can be found in Nienhuis (1987) and Kondev and Henley (1996).
The degree of freedom of the Gaussian model is a free real scalar field ϕ(�x) in 2D
(Euclidean) space whose effective action (or “free energy”) is simply given by

S2D[ϕ] =
∫

d2x
K

2

( �∇ϕ(�x)
)2

(9.142)

We have already encountered this model in Chapter 4, where we discussed its con-
nection with the Kosterlitz–Thouless transition, and in Chapters 5 and 6, where
it was discussed in the context of the 1D quantum Heisenberg model and of the
Luttinger model, respectively. In all of these cases the field ϕ is treated as an angu-
lar variable with a compactification radius, which here we will set to be R = 1.
This means that the observables of this theory are the electric and magnetic vertex
operators Vn(�x) (with an “electric” charge n) and Ṽm(�x) (with magnetic charge m)

Vn(�x) = einϕ(�x), Ṽm(�x) = eimϑ(�x) (9.143)

The dual field ϑ(�x) and the field ϕ(�x) are related by the Cauchy–Riemann relation,

∂iϑ = εi j ∂ jϕ (9.144)

In the case of the free-dimer model on bipartite lattices its correlation functions
are known explicitly (Fisher and Stephenson, 1963; Youngblood et al., 1980). An
identification of the dimer-model densities on the links (�x, �x + ex) and (�x, �x + ey)

of the direct lattice, nx(�x) and ny(�x), in terms of the observables of the Gaussian
model (for the case of the square lattice) is (see Fradkin et al. (2004))
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nx − 1

4
= 1

2π
(−1)x+y ∂yϕ + 1

2
[(−1)x eiϕ + h.c.] (9.145)

ny − 1

4
= 1

2π
(−1)x+y+1 ∂xϕ + 1

2
[(−1)yieiϕ + h.c.] (9.146)

where we have used the fact that the average dimer density is 1/4. These expan-
sions of dimer densities are analogous to the expansion we used in Chapter 6 for
the electron density in Luttinger liquids, and constitute the standard description of
density-wave order (Chaikin and Lubensky, 1995).

Although the system is critical, the bipartite nature of the lattice enters into the
structure of the correlation functions. In addition, on finite geometries, such as a
long cylinder of finite diameter, the classical dimer model is known to have long-
range columnar order (with the columns running around the circumference of the
cylinder). Extensive 2D Monte Carlo numerical simulations show that, if dimer
interactions are included, the classical dimer model can also exhibit columnar or
staggered order below a critical temperature (Alet et al., 2005, 2006; Papanikolaou
et al., 2007c).

As in the case of charge-density waves, we will identify the (normalized) n = 1
electric operator

V1(�x) = eiϕ(�x) ≡ Oc(�x) (9.147)

(taking the classical values 0, i,−1,−i) with the columnar order parameter Oc(�x).
Similarly, the n = 2 electric operator

V2(�x) = ei2ϕ(�x) ≡ Oo(�x) (9.148)

is the order parameter for orientational order, Oo(�x). Indeed, this operator takes the
values 1,−1, 1,−1 on the respective ideal states and distinguishes the orientation
of the dimers but not their displacements.

In Chapter 4 we showed that the (regularized) correlator of the classical field ϕ is

G2D(|�x − �y|) = 〈ϕ(�x)ϕ(�y)〉 = − 1

4πK
ln(|�x − �y|2) (9.149)

and, as a result, the correlators of the vertex operators Vn(�x) and Ṽm(�x) are

〈Vn(�x)Vn′(�y)〉 = δn,−n′

|�x − �y|2�n
, 〈Ṽm(�x)Ṽm′(�y)〉 = δm,−m′

|�x − �y|2�̃m
(9.150)

where the scaling dimensions �n and �̃m are

�n = n2

4πK
, �̃m = πK m2 (9.151)
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Similarly, we find that the slowly varying density operators δn j (�x) =
(1/(2π))∂ jϕ(�x) have scaling dimension 1 and hence have a power-law decay
∼1/|�x − �y|2.

The expressions for the scaling dimensions of the “electric" and “magnetic” ver-
tex operators, Vn(�x) and Ṽm(�x), given in Eqs. (9.150) show that they transform into
each other under the duality transformation which maps (Kadanoff, 1979)

K ↔ 1

K
, n ↔ m (9.152)

This transformation is closely related to the Kramers–Wannier duality of the 1D
quantum Ising model, discussed in Chapter 5, or equivalently to the classical 2D
Ising model. It is formally equivalent to the duality (or T -duality) symmetry of the
Luttinger liquid discussed in Chapter 6.

The exactly known correlators of dimer densities (Youngblood et al., 1980) have
a long-distance behavior with a single power law 1/|�x − �y|2 (with a sublattice
structure). Our identification of the dimer-density operators of Eq. (9.145) and Eq.
(9.146) predicts the same correlation functions, provided that the charge n = 1
vertex operator V1(�x) = Oc(�x) has scaling dimension �1(free) = 1 at the free-
dimer point. This leads us to identify, for the free-dimer model, the (non-universal)
stiffness Kfree as being given by

Kfree = 1

4π
(9.153)

Let us now considered the correlation function of two monomers, two sites of the
lattice that do not belong to a dimer. In our language we will call this the hole
operator. Fisher and Stephenson (1963) showed that in the free-dimer model (on
a square lattice) the correlator of two monomers has instead a power-law decay
∼1/

√|�x − �y|. Hence the scaling dimension of a monomer (or hole) is 1/4. We can
see by inspection that this is precisely the scaling dimension of the magnetic oper-
ator Ṽ1 at the free-dimer point. This is not an accident, since magnetic operators
correspond to violations of the dimer rule.

The periodic nature of the height variable and the requirement that configura-
tions which differ by 4 units be physically equivalent imply that the charge n = 4
electric operator ∼g cos(4ϕ) should also be allowed in the effective action. How-
ever, at the free-dimer point, K = 1/(4π), the charge n = 4 operator has scaling
dimension �4(1/(4π)) = 16. This operator is strongly irrelevant and hence in
practice can be ignored.

Away from the free-dimer point, the interacting-dimer model also maps to a
Gaussian CFT with the same compactification radius R = 1 (and hence the same
set of allowed operators), but with a non-universal stiffness K (u), which is now
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a (non-universal) function of the interaction parameter u. Thus, classical dimer
models also have a line of fixed points. Much as in the case of the classical XY
model, the interacting-dimer model has a KT transition at some value of the inter-
action parameter uc at which K (uc) = 2/π . At this point the charge n = 4
electric operator has scaling dimension �4(2/π) = 2 and is marginal. Hence, the
interacting-dimer model has a KT phase transition at uc to an ordered columnar
phase (Alet et al., 2005; Papanikolaou et al., 2007a).

9.15.2 Field theory for two-dimensional quantum-dimer models

Let us now develop an effective-field theory for quantum-dimer models. We will
follow the same approach as in the classical case and use the same operator
identifications. However, we will need to define the quantum dynamics of the
effective-field theory and to relate that to the Hamiltonians of generalized QDMs
(and eight-vertex models).

The degree of freedom of the effective-field theory of the quantum case in (2+1)
dimensions will also be the coarse-grained phase field ϕ(�x, t). Let us define �(�x)
to be the momentum canonically conjugate to the field ϕ(�x), which now satisfy
standard equal-time commutation relations

[ϕ(�x),�(�y)] = iδ(2)(�x − �y) (9.154)

The simplest translation- and rotation-invariant free Hamiltonian which obeys all
the requirements is

H0 =
∫

d2x

[
1

2
�(�x)2 + A

2
( �∇ϕ(�x))2 + κ2

2
(∇2ϕ(�x))2

]
(9.155)

where A and κ are non-universal constants that will be determined shortly using
the mapping to the QDM. We will discuss below two cases.

1. A �= 0, in which case space scales the same way as time, [T ] = [L], and
the dynamic critical exponent is z = 1. In this case the field has the canonical
units of a relativistic field in (2 + 1) dimensions, [ϕ] = [L−1], as does the
canonical momentum, [�] = [L−1]. We will see that this case describes the
ordered phases.

2. A = 0, in which case time scales as two powers of space, [T ] = [L2], and the
dynamic critical exponent is z = 2. In this case the field ϕ is dimensionless,
[ϕ] = [L0], and the canonical momentum has units of [�] = [L−2]. We will
see that this case describes a quantum critical point.
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The associated action in (2 + 1) (Euclidean) dimensions is (with x = (�x, τ ))

S0 =
∫

d2x dτ

[
1

2
(∂τϕ(x))

2 + A

2
( �∇ϕ(x))2 + κ2

2
(∇2ϕ(x))2

]
(9.156)

For the effective action (and Hamiltonian) to describe the QDM we need to add to
S0 (and to H0) a term of the form

Sint =
∫

d2x dτ g cos(2πh) =
∫

d2x dτ g cos(4ϕ) (9.157)

which enforces the periodicity condition. In this form the partition function is

Z =
∫

Dϕ e−S0[ϕ]−Sint[ϕ] (9.158)

Let us consider first the case in which the constant A > 0. In this case, the
(∇2ϕ)2 term is irrelevant compared with the (∇ϕ)2 term, which has two fewer
derivatives. The free-field action now looks like a standard free-field theory. How-
ever, the cosine operator of Sint is always a relevant operator that must be included.
The result is the sine–Gordon theory, and we are back to Polyakov’s case:

Seff =
∫

d2x dτ

[
1

2
(∂τϕ(x))

2 + A

2
( �∇ϕ(x))2 − g cos(4ϕ(x))

]
(9.159)

This theory is relativistic since space scales the same way as time, and hence we
have a dynamic critical exponent z = 1.

From Polyakov’s analysis (or using the Kosterlitz RG) we saw that in this the-
ory the cosine operator is always relevant and that the theory is controlled by a
strong-coupling (large-g) fixed point. At this fixed point the field ϕ is pinned at
the minima of the cosine operators and its fluctuations are gapped and have a
finite effective mass (squared) m2

eff � 16g/
√

A. We can determine what dimer
state is described by this theory (for A > 0 and all g) by noting that, if the field
ϕ is pinned, the columnar order parameter Oc = exp(iϕ) has a non-vanishing
expectation value. If we include the effects of quantum fluctuations in the pinned
state to lowest (quadratic) order we find that the order parameter takes the values
1, i,−1,−i times a function of

√
A, g, and a (sharp) ultraviolet (UV) momentum

cutoff �

〈eiϕ〉 ≈ {1, i,−1,−i} × exp

(
− 1

2π2

�√
A

(
�− π

2
meff

))
(9.160)

Therefore, for A > 0 this effective-field theory describes a state with columnar
order.
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Let us now consider the special but important case of a theory at A = 0 and
examine a theory with the following effective action:

SQLM =
∫

d2x dτ

[
1

2
(∂τϕ)

2 + κ2

2
(∇2ϕ)2

]
(9.161)

We will refer to this action as the quantum Lifshitz model.
On the other hand, for A < 0 the free-field part of the action (with terms with

only two derivatives) is unstable since it has a negative stiffness (A < 0). In this
case the momentum (or wave vector) of the ordered state shifts away from (π, 0)
or (0, π), the ordering wave vector(s) of the columnar states. The stable state (and
the shift of the ordering wave vector, �Q) is determined by terms not included in
the quantum Lifshitz model, Eq. (9.161). The leading perturbations involve the
commensurability operator cos(4ϕ) (which is already included in the action of
Eq. (9.159)) and the quartic operator

S4 =
∫

d2x dτ g4( �∇ϕ(�x))4 (9.162)

We will see shortly that this operator is marginally irrelevant at the quantum critical
point described by the quantum Lifshitz model. However, despite being irrelevant,
it stabilizes the ordered phase for A < 0. Indeed, if A < 0, the minimum-energy
state has a wave vector shifted by an amount �Q,

ϕ(x) = �Q · �x + δϕ(x) (9.163)

which we will describe as the tilt of the columnar state. �Q is determined by mini-
mizing the action SQLM + S4 + Sint. If we assume that g4 > 0 and we momentarily
neglect the effects of the commensurability interaction term, Sint, we find that the
tilt �Q is

| �Q| =
√
|A|
4g4

(9.164)

On the other hand, if g4 ≤ 0 the tilt grows without limit and is stabilized by lat-
tice effects as is the case in the QDM, which for V > J has a staggered phase,
with wave vector (π, π). This, however, is not the full story. A tilted phase with
| �Q| varying continuously is an incommensurate state, which is in conflict with the
commensurability interaction Sint. It turns out that the resulting state is either com-
mensurate and pinned (and hence confining), or incommensurate and not pinned
(and gapless) and hence deconfined. However, the incommensurate (deconfined)
gapless phases form a Cantor set (of finite measure) (Fradkin et al., 2004).

Let us now discuss the special but important case of A = 0 which plays the
role of the quantum critical point. We call this a quantum Lifshitz model by anal-
ogy with the theory of the Lifshitz point in liquid crystals and in helical magnets
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(Grinstein, 1981; Chaikin and Lubensky, 1995). If we regard the imaginary-time
coordinate as the z coordinate of a 3D system, the field ϕ(�x, τ ) can be regarded as
the spatial modulation of the height of a set of smectic layers of nematic molecules
(essentially rod-shaped objects) stacked along the z axis.

The quantum Lifshitz model is dual to a gauge theory. However, since the quan-
tum Lifshitz model has dynamic exponent z = 2, the dual-gauge theory cannot
be the Maxwell theory since the latter has photons (with only one polarization
state since we are in (2 + 1) dimensions) whose energy is a linear function of the
momentum. We will show that the Hamiltonian of the dual-gauge theory has the
unconventional form

HQLM-gauge =
∫

d2x

[
κ2

2

( �∇ × �E
)2 + 1

2
B2

]
(9.165)

where E j is the electric field and B = ε jk ∂ j Ak is the magnetic field (a pseudo-
scalar in 2D). The electric field E j and the vector potential A j obey canonical
commutation relations in the gauge A0 = 0,

[E j (�x), Ak(�y)] = iδ jkδ
(2)(�x − �y) (9.166)

The physical states, |Phys〉, as usual obey Gauss’s law

∂ j E j |Phys〉 = 0 (9.167)

In the absence of external sources (or “matter fields”) the Gauss-law constraint can
be solved trivially by writing

E j = ε jk ∂kϕ (9.168)

where ϕ is a scalar. Then the canonical commutation relation becomes

[ϕ(�x), B(�y)] = iδ(2)(�x − �y) (9.169)

and we identify the magnetic field B with �, the momentum canonically conjugate
with ϕ. Hence, the gauge theory and the quantum Lifshitz model are physically
equivalent.

What is the gauge-theory picture of the observables of the quantum Lifshitz
model? Let us consider first the operator On(�x) of the gauge theory that creates a
magnetic charge (in the gauge-theory language) of charge n at location �x . On(�x) is
given by

On(�x) = exp

(
in

∫
γ (�x)

dy j ε jkθ(y j − x j )δ(yk − xk)Ek(�y)
)

= exp

(
in

∫
γ (�x)

dx j∂ jϕ(�y)θ(y j − x j )δ(yk − xk)

)
= einϕ(�x) (9.170)
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where γ (�x) is any curve beginning somewhere on the boundary of the system and
ending at �x ; here x j and xk (and y j and yk) are the tangent and normal directions
to the path γ . As we can see, it is what we call an electric operator in the quantum
Lifshitz model. These vertex operators are consistent with the compactification
radius R = 1 that we have imposed on the field ϕ since they are invariant under
shifts of the field variable by integer multiples of 2π .

Similarly, let us consider an operator that creates an electric charge in the gauge
theory, i.e. leads to the condition

∂ j E j (�y) = mδ(2)(�y − �x) (9.171)

The solution now is

E j (�y) = ε jk(∂kϕ(�y)+ Bk(�y)) (9.172)

which requires that

ε jk ∂ jBk(�y) = mδ(2)(�y − �x) (9.173)

In other terms, the dual-scalar field ϕ is coupled to a background gauge field Bk(�y)
whose magnetic charge is m: this is the magnetic-charge operator of the quantum
Lifshitz model.

We now need to determine (or interpret the meaning of) the constants A and
κ . In terms of the QDM we tentatively assign the RK point (which we know is
critical) to the point A = 0 of the effective theory. Hence, close to the RK point
we will write A = c(J − V ), where c is a constant. To determine the value of κ in
Eq. (9.161) we will discuss now the behavior of this theory and find a mapping to
the RK point. We will do this in two different ways.

Let us first find the wave function of the ground state of the quantum Lifshitz
model (Ardonne et al., 2004). To do this, we turn to the Schrödinger representation
of the quantum Lifshitz field theory. We will work in the field representation in
which the states are eigenstates of the field operator ϕ(�x). In this representation the
wave functions (functionals) are

�[{ϕ(�x)}] = 〈�|{ϕ(�x)}〉 (9.174)

Notice that the field representation of the quantum Lifshitz model is the same as the
electric-field representation of the states in the gauge theory (instead of the vector-
potential representation). In this representation the canonical momentum �(�x) is a
functional differential operator

�(�x) = i
δ

δϕ(�x) (9.175)
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The quantum Lifshitz Hamiltonian, Eq. (9.155), with A = 0, now leads to a
Schrödinger equation for �[ϕ] of the form

H�[ϕ] =
∫

d2x

[
−1

2

δ2

δϕ(�x)2
+ κ2

2

(∇2ϕ(�x))2
]
�[ϕ] = E�[ϕ]

=
∫

d2x
1

2

{
Q[ϕ], Q†[ϕ]}�[ϕ] (9.176)

where the braces denote (as usual) the anticommutator. Here we introduced
the “creation” operator Q†[ϕ] and its adjoint, the “annihilation” operator Q[ϕ],
defined by

Q[ϕ] = 1√
2

[
− δ

δϕ(�x) + κ ∇2ϕ(�x)
]

(9.177)

As in the theory of the linear harmonic oscillator in quantum mechanics, the
ground-state wave function(al) is annihilated by the “annihilation” operator Q[ϕ].
This leads to the simple first-order equation

Q�0[ϕ] = 1√
2

[
− δ

δϕ(�x) + κ ∇2ϕ

]
�0[ϕ] = 0 (9.178)

whose (normalized) solution is

�0[ϕ] = 1√
Z0

exp

(
−

∫
d2x

κ

2

( �∇ϕ(�x)
)2

)
(9.179)

where Z0, the norm (squared) of the wave function, is

Z0 =
∫

Dϕ exp

(
−

∫
d2x κ

( �∇ϕ(�x)
)2

)
(9.180)

We see that the amplitude of a field configuration |[ϕ]〉 in the ground-state wave
function �0[ϕ] has the form of the Gibbs weight for a 2D Gaussian model and that
its norm Z0 has the form of the partition function of the Gaussian model. Thus
we find a relation between the stiffness K of the 2D classical Gaussian model (cf.
Eq. (9.142)) and the parameter κ of the quantum Lifshitz model:

K = 2κ (9.181)

We find that the ground-state wave function of the quantum Lifshitz model is scale-
invariant! Since 2D classical scale-invariant systems are also conformally invariant
(and are examples of CFTs), we will refer to this as a conformal quantum critical
point (Ardonne et al., 2004).

We should note that a scale-invariant wave function is not generic of quantum
critical systems but rather is a peculiar feature of this theory. Although this means
that it represents a quantum critical point, the converse is not true: the ground-state
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wave function of a quantum critical system, although it must scale, is not neces-
sarily scale-invariant. A simple counterexample is the Luttinger model (Fradkin
et al., 1993).

It is also interesting to rewrite the ground-state wave function�0[ϕ], Eq. (9.179),
in the language of the dual-gauge theory. Since the coarse-grained height field ϕ is
simply the curl of the dual electric field, �E = �∇ × ϕ, it is easy to show that in the
gauge theory the wave function is a state in the electric-field representation:

�0[ �E(�x)] = 1√
Z0

exp

(
−

∫
d2x

κ

2
�E(�x)2

) ∏
�x
δ( �∇ · �E(�x)) (9.182)

In other terms, it is a simple Gaussian function of the electric-field configuration
subject to the Gauss-law constraint without sources.

In this representation the equal-time correlation function of N charge operators
On(�x) in the quantum Lifshitz ground state |�0〉 is given by

〈�0|On1(�x1) . . . OnN (�xN )|�0〉κ
= 1

Z0

∫
Dϕ On1(�x1) . . . OnN (�xN ) exp

(
−

∫
d2x κ

( �∇ϕ(�x)
)2

)
= 〈On1(�x1) . . . OnN (�xN )〉K=2κ (9.183)

where the last line is the expectation value of the same operators in the classical
Gaussian model with stiffness K = 2κ . Since we know how to relate the stiffness
K of the classical model to the “microscopic” (classical) dimer model, this identity
shows that the equal-time correlation functions of the quantum Lifshitz model do
indeed reproduce the correlation functions of the classical dimer model, provided
that we set κfree = 1/(8π). In particular, this mapping also tells us that the scal-
ing dimensions are the same in both theories. Thus, the scaling dimensions of the
charge operators On[ϕ] of the quantum Lifshitz model are

�n = n2

8πκ
(9.184)

We can also find a representation of the magnetic (vortex) operators. The vortex
operators are

Õm(�x) = exp

(
i
∫

d2z α(�z)�(�z)
)

(9.185)

where

α(�z) = m arg(�z − �x) (9.186)

where 0 ≤ arg(�z − �x) ≤ 2π is the argument of the vector �z − �x (with a branch cut
defined arbitrarily along the negative-x axis). The action of the operator Õm(�x) on
an eigenstate of the field operator |[ϕ]〉 is simply a shift
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exp

(
i
∫

d2z α(�z)�(�z)
)
|[ϕ]〉 = |[ϕ(�x)− α(�x)]〉 (9.187)

In other words, it amounts to a singular gauge transformation. Therefore, its action
is equivalent to coupling the field ϕ to a vector potential whose space components
�A satisfy ∮

γ

d�z · �A[�z] = 2πm (9.188)

for all closed paths γ that have the point �x in their interior, and zero otherwise.
In particular, the wave function of the state resulting from the action of the vortex
operator on the ground state is

�m[�x] = 〈[ϕ]|Õm(�x)|�0〉 = 1√
Z0

exp

(
−κ

2

∫
d2z

( �∇ϕ − �A
)2

)
(9.189)

where �A is any vector field that satisfies Eq. (9.188). The (equal-time) ground-state
expectation value of a product of vortex operators with magnetic charges {ml}, i.e.
the overlap of the state with M vortices at locations �xl and magnetic charge ml

with the vortex-free ground-state wave function, is therefore

〈�0|Õm1(�x1) . . . ÕmM (�xM)|�0〉κ
= 1

Z0

∫
Dϕ exp

(
−κ

∫
d2z

( �∇ϕ − �A
)2

)
= 〈Õm1(�x1) . . . Õmk (�xM)〉K=2κ (9.190)

where Z0 is given by Eq. (9.180), and the last line is an expectation value of M vor-
tex operators in the Gaussian model, namely the 2D classical compactified boson.
The vector potential in Eq. (9.190) satisfies

εi j ∂i A j = 2π
M∑

l=1

mlδ
2(�z − �xl) (9.191)

These results also show that the scaling dimensions of the vortex operators �̃m are
also the same in both theories (if we set K = 2κ). Therefore the scaling dimensions
of the vortex operators (or holes) in the quantum Lifshitz model are

�̃m = 2πκm2 (9.192)

We can also gain insight into this problem by looking at the time dependence
of the correlation functions. To this end, we return to the path-integral picture and
compute the propagator of the field ϕ(�x, τ ). It is now easy to see that the boson
propagator of this theory, in imaginary time τ , is
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G(�x − �x ′, τ − τ ′) = 〈ϕ(�x, τ )ϕ(�x ′, τ ′)〉

=
∫

dω

2π

∫
d2q

(2π)2

eiω(τ−τ ′)−i �q·(�x−�x ′)

ω2 + κ2
(�q 2

)2 (9.193)

From the denominator of the integrand of Eq. (9.193) we learn that, in terms of real
frequencies, the excitations of the field ϕ are states that propagate with an energy–
momentum relation ω(�q) = κ �q 2. This is the same as the resonon state of Rokhsar
and Kivelson (1988).

This propagator has a short-distance logarithmic divergence. From now on we
will use instead the regularized (subtracted) propagator

Greg(�x, τ ) ≡ G(�x, τ )− G(a, 0)

= − 1

8πκ

[
ln

( |�x |2
a2

)
+ �

(
0,

|�x |2
4κ|τ |

)]
(9.194)

where a is a short-distance cutoff and �(0, z) is the incomplete Gamma function

�(0, z) =
∫ ∞

z

ds

s
e−s (9.195)

The regularized propagator has the asymptotic behaviors

Greg(�x, τ ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1

4πκ
ln

( |�x |
a

)
, for |t | → 0

− 1

8πκ
ln

(
4κ|τ |
a2γ

)
, for |�x | → a

(9.196)

where ln γ = C = 0.577 . . . is the Euler constant.
The time-dependent correlation functions of the charge operators are

〈On(�x, τ )†On(�x ′, τ ′)〉 = en2Greg(�x−�x ′,τ−τ ′) (9.197)

At equal (imaginary) times, |τ − τ ′| → 0, it behaves like

〈On(�x, 0)†On(�x ′, 0)〉 =
(

a

|�x − �x ′|
)n2/(4πκ)

(9.198)

and we recover the result that the operator On has (spatial) scaling dimension�n =
n2/(8πκ). For |�x − �x ′| → a, its asymptotic behavior is instead given by

〈On(�0, τ )†On(�0, τ ′)〉 =
(

a2γ

4κ|τ − τ ′|
)n2/(8πκ)

(9.199)

This behavior is manifestly consistent with a dynamical critical exponent z = 2.
Similar results can be derived for the magnetic (vortex) operators.
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9.15.3 Scaling at the quantum Lifshitz multicritical point

The scaling properties of this system were studied by Grinstein (1981) in the con-
text of the theory of anisotropic scaling at Lifshitz points in helimagnets and by
Grinstein and Pelcovits (1982) in the context of the theory of non-linear elastic-
ity in smectic liquid crystals in three dimensions. As noted by Grinstein (1981),
this system is in many ways a 3D analog of the Gaussian model. Hence its phase
transitions are very similar to the Kosterlitz–Thouless transition of 2D statistical
mechanics.

With some caveats, most of these results from classical statistical mechanics
apply to this quantum critical point. Here we list the scaling properties of the main
operators and how they affect the physics (Grinstein, 1981; Fradkin et al., 2004;
Vishwanath et al., 2004). The quantum Lifshitz model is a 2D quantum critical
system with dynamic critical exponent z = 2. Thus, its scaling properties are those
of a system with total effective (Euclidean) dimension D = z+d = 4. This tells us
that all operators with scaling dimension � > 4 are irrelevant, whereas operators
with scaling dimension � < 4 are relevant. This system is actually a multicritical
point with an exact line of fixed points parametrized by the coupling constant κ ,
the stiffness of the operator (∇2ϕ)2. This operator has scaling dimension � = 4
and it is marginal. Since this fixed point is a free-field theory, the operator (∇2ϕ)2

is also exactly marginal and, in the absence of all other operators, has a vanishing
beta function.

On the other hand, the operator ( �∇ϕ)2 has scaling dimension � = 2 < 4 and
it is relevant. As we saw, the sign of its coupling constant A tunes this quantum
phase transition. Similarly, the operator ( �∇ϕ)4 has scaling dimension � = 4 and is
(superficially) marginal. However, Grinstein (1981) showed that the beta function
for its coupling constant g4 (defined in Eq. (9.162)) is negative,

β(g4) = a
∂g4

∂a
= −cg2

4 + · · · (9.200)

where a is a length scale and c is a positive dimensionless constant. Therefore, this
operator is actually marginally irrelevant and its coupling constant g4 scales (loga-
rithmically slowly) to zero at long distances. If g4 �= 0 its flow leads to logarithmic
corrections to scaling in the correlation functions.

The quantum criticality of the dimer model on the square lattice at the RK point
is well described by the quantum Lifshitz model (Fradkin et al., 2004). In this
case even the marginally irrelevant coupling g4 is absent, so it leads to no cor-
rections to scaling effects. However, for the case of the honeycomb lattice, the
quantum Lifshitz model admits a possible cubic term in the action of the form
g3(∂xϕ)((∂xϕ)

2 − 3(∂yϕ)
2), which is invariant under a π/3 rotation and an inver-

sion ϕ → −ϕ. This operator has scaling dimension �3 = 3 and it is relevant. For
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g3 �= 0 the coupling constant g3 grows, and the system flows to a fixed point with a
finite correlation length and a first-order phase transition. By symmetry, operators
of this type cannot arise for a system on the square lattice.

The scaling dimension of the charge operators On[ϕ], �n = n2/(8πκ), varies
continuously as a function of κ . These operators are irrelevant for n >

√
32πκ

and relevant otherwise. For the QDM at the RK point (on the square lattice),
all operators with n > 2 are irrelevant. In particular, at the free-dimer point,
κ = 1/(8π), the operator O4 has dimension �4 = 16 and it is strongly irrele-
vant. Additional interactions in the lattice model cause dimers to attract each other,
leading to an increase in the value of κ > 1/(8π) and a decrease of the scaling
dimensions. On the other hand, the combined effect of the marginally irrelevant
operator ( �∇ϕ)4 and of the (commensurability) charge operator O4 drives the sys-
tem into a sequence of commensurate phases known as an (incomplete) devil’s
staircase (Fradkin et al., 2004), thus avoiding the quantum Lifshitz critical point.
This, however, is not what happens in the simple QDM on the square lattice where
it is accessible.

How about magnetic (vortex) operators Õm? As we saw, operators of this type
violate the dimer constraint. For instance, we associated the operator Õ1 with
the hole-creation operator. Similarly, dimers (or valence bonds) connecting two
nearest-neighboring sites of the same sublattice also violate the constraint. On the
square lattice operators of this type, formally operators with magnetic charge 2,
cause a crossover to the QDM on the triangular lattice (Ardonne et al., 2004), a
system that is known to be in a topological phase (Moessner and Sondhi, 2001b)
akin to the deconfined phase of the Z2 gauge theory. At the free-dimer point these
operators have scaling dimension �̃m = m2/4 and are relevant for all m < 4. In
particular, the operators with magnetic charge 2 have dimension 1, and are strongly
relevant. When added to the action, these operators destabilize the quantum Lif-
shitz fixed point since they cause the magnetic excitations to proliferate. Their
condensation caused the gauge symmetry to be reduced to its Z2 subgroup and the
system is in a deconfined phase. The mechanism of proliferation (or condensation)
of charge-2 operators driving the system into a topological (deconfined) Z2 phase
was noted by Sachdev and Read (1991) and by Mudry and Fradkin (1994) on the
basis of earlier work in gauge theories by Fradkin and Shenker (1979) that we have
already discussed.



10

Chiral spin states and anyons

10.1 Chiral spin liquids

In Chapter 8 we considered solutions of the mean-field equations of quantum
antiferromagnets, Eq. (8.64) and Eq. (8.65), that respect time-reversal invariance.
We will now consider a frustrated quantum antiferromagnet and look for states for
which time-reversal invariance is spontaneously broken. In terms of the mean-field
theory of Section 8.4, we will consider situations in which the phase Ā j (�x, t) of the
link variable χ̄ j (�x, t) has a non-zero curl B̄(�x, t) around an elementary plaquette

B̄(�x, t) =
∑

plaquette

Ā j (�x, t) = �1Ā2(�x, t)−�2Ā1(�x, t) (10.1)

In Section 8.5 we argued that such flux states violate time-reversal invariance
unless B̄(�x, t) = 0, π . A solution χ̄ j (�x, t) of the saddle-point equation applied
to Eq. (8.41) satisfies

2

J
〈χ̄∗

j (�x, t)〉 = 〈c†
α(�x, t)cα(�x + ê j , t)〉 (10.2)

For a solution with ρ̄ j (�x, t) = ρ̄ j a constant and Ā j (�x, t) �= 0, we get

2

J
ρ̄ j e

−iĀ j (�x,t) = 〈c†
α(�x, t)cα(�x + ê j , t)〉 (10.3)

Thus a flux phase implies that the product of the band amplitudes
〈c†
α(�x, t)cα(�x + ê j , t)〉 around a closed loop γ of the lattice should have a phase

determined by the flux going through the loop. Alternatively, we can consider not
the product (around the loop) of expectation values 〈c†

α(�x, t)cα(�x + ê j , t)〉, but the
expectation value of the Wilson loop operator, the path-ordered product

W (γ ) =
〈 ∏
(�x,�x ′)∈γ

c†
α(�x, t)cα(�x ′, t)

〉
(10.4)

359
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where (�x, �x ′) denotes a link of the lattice, with endpoints at �x and �x ′, which
belongs to the closed path γ. The expectation value 〈c†

α(�x, t)cα(�x + ê j , t)〉 is
not gauge-invariant. Accordingly, Elitzur’s theorem implies that this expectation
value is actually equal to zero. As a matter of fact, the solutions of the saddle-
point equations are not unique. All the configurations which can be reached by
means of a local gauge transformation from a given solution are solutions too. The
saddle-point approximation violates this condition. The invariance is restored by
fluctuations. The main effect of fluctuations is to rid the system of spurious states
that violate gauge invariance. We will come back to this point shortly, when we
discuss the spectrum of disordered spin states more generally.

How can we compute expectation values such as W (γ ) from a path integral
written in terms of χ j (�x, t) fields? Let us go back to the path integral for this system
with the effective Lagrangian density of Eq. (8.58). I will discuss only the simpler
nc = 1 case. Let us shift the A0(�x, t) and χ j (�x, t) variables each by a fixed, but
arbitrary, amount Ã0(�x, t) and χ̃ j (�x, t). This is essentially a mathematical device
to compute expectation values involving Fermi field currents. We can regard the
Ã0 and χ̃ j as external sources in terms of which the shifted Lagrangian density, L′,
reads (for nc = 1)

L′ = c†
α(x)(i ∂t + μ)cα(x)+

(
A0(x)+ Ã0(x)

) (
c†
α(x)cα(x)−

N

2

)
− N

J
|χ j (x)|2 + c†

α(�x, t)
(
χ j (�x, t)+ χ̃ j (�x, t)

)
cα(�x + ê j , t)+ h.c. (10.5)

where we recall that according to Eq. (8.59) χ̃ j (�x, t) = χ̃∗
− j (�x + ê j , t). Since

χ̃ j (�x, t) couples to the term for hopping from site �x + ê j to site �x , it is clear that
the functional differentiation of the action S by χ̃ j (�x, t) yields

δS

δχ̃ j (�x, t)
=

N∑
α=1

(
c†
α(�x, t)cα(�x + ê j , t)

)
(10.6)

while functional differentiation with respect to Ã0(�x, t) gives

δS

δÃ0(�x, t)
=

N∑
α=1

c†
α(�x, t)cα(�x, t)− N

2
= 0 (10.7)

as follows from the constraint of Eq. (8.56).
Thus, by computing functional derivatives we can compute the desired expecta-

tion values. For instance,

δZ

δχ̃ j (�x, t)
=

∫
D χ DA0 Dc† Dc ei Si

δS

δχ̃ j (�x, t)
(10.8)



10.1 Chiral spin liquids 361

and

− i

Z

δZ

δχ̃ j (�x, t)
=

〈
δS

δχ̃ j (�x, t)

〉
=

〈
N∑
α=1

(
c†
α(�x, t)cα(�x + ê j , t)

)〉
(10.9)

In particular, the path-ordered product W (γ ) can also be computed. Let p label the
pth link on the path γ and χ̃(p) the corresponding χ j (�x, t), i.e. the link (�x, �x +
ê j , t) is the pth link of the path starting at some arbitrary site �x0 on the path. We
can write, for a closed path γ with perimeter L(γ ),

1

Z

δL Z

δχ̃(1) . . . δχ̃(L(γ ))
= i L(γ )

〈
L(γ )∏
p=1

(
N∑
α=1

c†
α(�x, t)cα(�x + ê j , t)

)〉
≡ i L(γ )W (γ ) (10.10)

On the other hand, the χ j (�x, t) degrees of freedom can be shifted without
affecting the value of the partition function:

A0(�x, t) = A′
0(�x, t)− Ã0(�x, t)

χ j (�x, t) = χ ′
j (�x, t)− χ̃ j (�x, t) (10.11)

After this has been done, all the information about the sources is in the quadratic
term of L′,

L′ = c†
α(x)(i ∂t + μ)cα(x)+A′

0(x)

(
c†
α(x)cα(x)−

N

2

)
− N

J

(
χ ′

j (x)− χ̃ j (x)
)(
χ ′∗

j (x)− χ̃∗
j (x)

)
+ c†

α(�x, t)χ ′
j (�x, t)cα(�x + ê j , t)+ c†

α(�x + ê j , t)χ ′∗
j (�x, t)cα(�x, t)

(10.12)

Thus,〈
δS

δχ̃ j (�x, t)

〉∣∣∣∣
χ̃ j=0

=
〈

N∑
α=1

c†
α(�x, t)cα(�x + ê j , t)

〉
= 2N

J
〈χ ′∗

j (�x, t)〉 (10.13)

Similarly, W (γ ) is given by

W (γ ) =
〈

L(γ )∏
p=1

2N

J
χ∗(p)

〉
(10.14)

Notice that there is no quadratic term in the action for A0. Thus, all functional
derivatives of Z with respect to Ã0 are identically equal to zero:

δZ

δÃ0

= 0 (10.15)



362 Chiral spin states and anyons

This merely means that the constraint

N∑
α=1

c†
α(�x, t)cα(�x, t)− N

2
= 0 (10.16)

is strictly enforced at all times and everywhere.
The quadratic terms in L′ express the fluctuations of the amplitude ρ j (�x, t) of

χ j (�x, t) but not of its phase, the gauge field A j (�x, t). Thus, if we imagine a state
with ρ̄ j (�x, t) = ρ̄, we will still have the fluctuations of the gauge fields A j to deal
with. The path-ordered product is, in this approximation, equal to

W (γ ) ≈
(

2N

J
ρ̄

)L(γ ) 〈
ei

∑
lεγ Ā(l)

〉
(10.17)

This last expectation value, 〈exp(i
∑

lεγ Ā(l))〉, is the Wilson loop operator which
we have already discussed in Chapter 9. It was introduced in the context of gauge
theories of strong interactions (in particle physics) as a way to measure the inter-
action between quarks. In the present context, it measures the interactions between
ideal static spinons that are carried around the loop γ . The interaction is mediated
by the fluctuations of the field χ j . The relevance of Wilson loops for flux spin states
was first emphasized by Wiegmann (1988).

If the saddle-point approximation were exact, the fluctuations of the gauge field
A j could be neglected. In this case, W (γ ) would yield the result

W (γ ) ≈
(

2N

J
ρ̄

)L(γ ) 〈
ei

∑
lεγ Ā(l)

〉
(10.18)

Let a(γ ) be the area of the lattice enclosed by the path γ . Using Stokes’ theorem,
we would then get

W (γ ) ≈
(

2N

J
ρ̄

)L(γ ) 〈
eia(γ )B̄

〉
(10.19)

where B̄ is the flux per plaquette. If we denote by δA j (�x, t) the fluctuating part of
the gauge field A j (�x, t), i.e. the deviation from the saddle-point configuration, we
get for W (γ )

W (γ ) ≈
(

2N

J
ρ̄

)L(γ ) 〈
eia(γ )B̄ei

∑
lεγ δA(l)

〉
(10.20)

where the expectation value involves only the fluctuating pieces. It has been argued
that flux phases can generally be defined as phases in which ln W (γ ) has an imag-
inary part that scales like the area enclosed by the loop γ (Wiegmann, 1988; Wen
et al., 1989). It is also constructive to consider the situation in which an extra
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fermion, i.e. a spinon, is added at some site �x and another one is removed from site
�x ′. The constraints at �x and �x ′ are

N∑
α=1

c†
α(�y, t)cα(�y, t)− N

2
= δ�y,�x − δ�y,�x ′ (10.21)

This means that two extra factors enter into the partition function. They have the
form exp(±i

∫
dt A0(�x, t)). We can close the paths both in the remote past and in

the remote future (assuming an adiabatic switching on and off, i.e. a smooth path)
and write the extra contribution as an integral over a closed path γt ,

W (γt) ∝
〈
ei

∑
lεγt

A(l)
〉∣∣∣
γt

(10.22)

where γt stands for a space-time closed loop (see Fig. 10.1) of time span τ and spa-
tial extent R. Thus W (γt) measures the change of the ground-state energy �E(�x)
of the system as a result of the presence of the static spinons,

W (γt) = eiτ�E(�x) (10.23)

This expression is valid for τ � R. Thus the effective interaction between static
sources Veff(�x) is

Veff(�x) = �E(�x) = lim
τ→∞

[
− i

τ
ln(W (γt))

]
(10.24)

Notice that there is no classical flux associated with space-time loops γ . Thus
W (γt) does not necessarily exhibit the area law of Eq. (10.19) associated with the
flux phase which we found for space loops. In fact, both W (γt) and the fluctuating

time

R

τ1 −1

γt

Figure 10.1 A space-time loop γt of size R×τ , showing a static spinon (+1) and
anti-spinon (−1) separated by a distance R.
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components of the space-like loops have a phase that decays like the perimeter
of the loop, not its area. This is so because, unlike the case of confining gauge
theories without dynamical matter fields, we have only gauge fields associated
with a dynamical matter field. The gauge fields themselves do not have any other
dynamics of their own. We will return to this important point in the next section.

There is an alternative way of understanding the products over closed loops.
Consider the case of three spins, �S(1), �S(2), and �S(3). Let us form the mixed
product Ê123 which Wen, Wilczek, and Zee call the chiral operator,

Ê123 ≡ �S(1) ·
(�S(2)× �S(3)

)
(10.25)

Under time reversal T̂ we have

T̂ −1 �ST̂ = −�S (10.26)

Thus Ê123 is odd under T̂ ,

T̂ −1 Ê123T̂ = −Ê123 (10.27)

Similarly, under parity, P̂, which in two space dimensions is the same as reflection
through a link, we have

P̂−1 Ê123 P̂ = �S(1) ·
(�S(3)× �S(2)

)
= +E132 = −Ê123 (10.28)

where we have exchanged sites 2 and 3, keeping site 1 fixed. Thus, for the three
spins, parity implies turning an even permutation of the three spins into an odd
permutation.

Let us now write Ê123 in terms of the link operators χ̂(i, j)≡ c†
α(i)cα( j).

Explicitly one finds (Wen et al., 1989)

Ê123 = i

4

(
χ̂(1, 2)χ̂(2, 3)χ̂(3, 1)− χ̂(1, 3)χ̂(3, 2)χ̂(2, 1)

)
(10.29)

If we consider now four spins, 1, 2, 3, and 4, we get

χ̂(1, 2)χ̂(2, 3)χ̂(3, 4)χ̂(4, 1)− χ̂(1, 4)χ̂(4, 3)χ̂(3, 2)χ̂(2, 1)

= 2i
(
−Ê123 − Ê134 − Ê124 + Ê234

)
(10.30)

Thus, if Ê123 acquires an expectation value, then we should expect the spatial
Wilson loops implied by Eq. (10.29) and Eq. (10.30) to exhibit a now-trivial
phase (which can be regarded as a Berry phase). At the level of the saddle-point
approximation, we expect
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〈Ê123〉 = i

4
〈χ̂(1, 2)χ̂(2, 3)χ̂(3, 1)− χ̂(1, 3)χ̂(3, 2)χ̂(2, 1)〉

≈ i

4

(
2N ρ̄

J

)3 (
eiB̄� − e−iB̄�

)
= −1

2

(
2N ρ̄

J

)3

sin(B̄�) (10.31)

where B̄� is the flux through the triangle with vertices at sites 1, 2, and 3. Thus, in
a chiral phase, Ê123 should have a non-zero expectation value. Please notice that
for the non-chiral flux phase, B̄� = π , 〈Ê123〉 = 0 since in this case time-reversal
invariance is not broken.

For a system with just three spins one-half we can get a very simple inter-
pretation of this statement. For three spins one-half, the Hilbert space is 23 =
8-dimensional. The total spin is �S = �S(1) + �S(2) + �S(3). The quadratic Casimir
operator �S2 and, say, S3 commute with each other. What is important is that they
also commute with Ê123. Thus, �S2, S3, and Ê123 can be diagonalized simultane-
ously. I will refer to the eigenvalues of Ê123 as the chirality χ of the state. The
states of the three spins will thus be labeled accordingly by |S, M;χ〉, where S is
the spin quantum number, M is the total spin z-projection, and χ is the chirality.
The total spin S is either 1/2 or 3/2. The spin-3/2 sector can be obtained trivially
by applying the lowering operator S− to the highest-weight state |↑↑↑〉:

|↑↑↑〉 = | 3
2 ,

3
2 ; 0〉

| 3
2 ,

3
2 − M; 0〉 = (S−)M | 3

2 ,
3
2 ; 0〉 (10.32)

The state |↑↑↑〉 has zero chirality since it is invariant under a permutation of any
pair of spins. In terms of raising and lowering operators S± and S3, Ê123 has the
form

Ê123 = i

2

( − S−(1)S+(2)S3(3)+ S+(1)S−(2)S3(3)

+ S−(1)S3(2)S
+(3)− S+(1)S3(2)S

−(3)
− S3(1)S

−(2)S+(3)+ S3(1)S
+(2)S−(3)

)
(10.33)

Clearly

Ê123| 3
2 ,

3
2 ;χ〉 = Ê123|↑↑↑〉 = 0 (10.34)

which proves that χ↑↑↑ = 0. From the form of Ê123 in Eq. (10.34) we see that all
the states in the same multiplet defined by S and M have the same chirality.

There are two, orthogonal, sectors with S = 1/2, M = ±1/2. They differ by
their chirality χ . Consider the state |+〉, defined by the linear superposition
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|+〉 = 1√
3

(
|↑↑↓〉 + |↑↓↑〉ei 2π

3 + |↓↑↑〉e−i 2π
3

)
(10.35)

This state |+〉 is an eigenstate of Ê123 with eigenvalue χ+ given by

Ê123|+〉 = −1

2
sin

(
2π

3

)
|+〉 (10.36)

Thus χ+ = − 1
2 sin(2π/3). Similarly the state |−〉,

|−〉 = 1√
3

(
|↑↑↓〉 + |↑↓↑〉e−i 2π

3 + |↓↑↑〉ei 2π
3

)
(10.37)

has eigenvalue χ− = + 1
2 sin(2π/3). Both states, |+〉 and |−〉, have S3 = + 1

2 . Thus
we denote |±〉 as the states | 1

2 ,
1
2 ;±〉. Similarly the states with spin down can also

have either chirality. These two remaining states are denoted by | 1
2 ,− 1

2 ;±〉.
The most singlet-like states, i.e. those with smallest spins, can thus be arranged

to have non-zero chirality. By inspection of Eq. (10.35) and Eq. (10.37), we see
that a state with non-zero chirality is a state in which a spin down moves around
the triangle with a non-zero angular momentum l = ±1. Thus, a state with non-
zero chirality is a state in which there is a non-zero spin current since a down spin
is being transported, at a fixed rate, around the triangle.

For a macroscopic system, we can picture a situation in which 〈Ê123〉 is differ-
ent from zero everywhere, as in a flux state, by saying that flux states are states in
which there are non-vanishing orbital spin currents around every elementary pla-
quette. If we demand that the flux B̄ be uniform throughout the system, we are in
fact requiring that the state should exhibit an orbital ferromagnetism of some sort
(Volovik, 1988).

There is one interesting analogy here with the behavior of orbital angular
momentum in the A phase of 3He. As is well known, 3He becomes a superfluid
by forming bound states of two 3He atoms. The bound state has total spin S = 1
(triplet) and orbital angular momentum l = 1 (p-wave) (Leggett, 1975). In 3He A,
the orbital angular-momentum vector �l and the spin �S of the state are orthogonal to
each other. In a thin-film geometry, the orbital angular momenta �l are all parallel to
each other and perpendicular to the surface of the film. This superfluid has orbital
ferromagnetism.

10.2 Mean-field theory of chiral spin liquids

Let us consider the mean-field theory, i.e. the large-N limit, of the frustrated
Heisenberg antiferromagnet on a square lattice. We have two coupling constants:
J1 (for nearest neighbors) and J2 (for next-nearest neighbors). We considered this
problem in Section 8.1, in which we discussed the effects of J2 on the Néel state.
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The effective Lagrangian Eq. (8.41) can be easily generalized in order to include
the effects of the J2 coupling. All we have to do is decouple the next-nearest-
neighbor term using the same procedure as for the nearest-neighbor term (Wen
et al., 1989). The Lagrangian density now is, including both J1 and J2,

L′ = c†
σ (x)(i ∂t + μ)cσ (x)+A0(x)

(
c†
α(x)cσ (x)−

N

2

)
− N

J1
|χ j (x)|2 − N

J2
|χ j ′(x)|2

+ c†
σ (�x, t)χ j (�x, t)cσ (�x + ê j , t)+ h.c.

+ c†
σ (�x, t)χ j ′(�x, t)cσ (�x + ê1 + j ′ê2, t)+ h.c. (10.38)

where j ′ = ±.
The saddle-point procedure can be carried out along very similar lines. At this

level, we assume that the amplitudes χ̄ j (�x, t) and χ̄ j ′(�x, t) are constant in time and
as uniform as possible in space. If we choose the gauge of Eq. (8.74), as in our
earlier discussion of the flux phase, we get (Wen et al., 1989)

χ̄1(�x) = ρ̄e+i π2 , χ̄2(�x) = ρ̄e−σ i π2

χ̄+(�x) = λ̄e+σ i π2 , χ̄−(�x) = λ̄e+σ i π2
(10.39)

with σ = (−1)x1 . Notice that the flux per plaquette Bplaquette = π , but for the trian-
gles we have B� = +π/2 for λ̄ > 0 and B� = −π/2 for λ̄ < 0 (see Fig. 10.2).

3
4

1 2

Figure 10.2 Gauge-field conventions for a chiral spin state on a frustrated square
lattice. The lower-left corner is an even–even site. The arrows on the links repre-
sent a phase of π/2. The flux on a plaquette is π if the lower-left corner is on an
even column. Otherwise it is −π .
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Thus, this state is chiral. At this level of approximation, the spinons behave like
fermions moving on a frustrated lattice with the amplitudes listed in Eq. (10.39).
Since the flux on the triangles is ±π/2, some of the amplitudes must be complex no
matter what gauge we choose. Thus, the effective one-particle Hamiltonian which
controls the motion of spinons is complex (but still hermitian!). This means that
time-reversal invariance (and parity) are broken. Since in this system we do not
have any terms that explicitly break time-reversal invariance, what we are looking
for is states with spontaneously broken time-reversal invariance and parity.

Using once again the notation of Section 8.5, and the symbol �+
i , with i = 1, 2,

for the symmetric lattice-difference operator �+
i f (�x) ≡ f (�x + êi )− f (�x − êi ), we

can write down the equations of motion Eq. (8.76) including the effects of λ̄. The
new equations of motion are

i ∂t f (1)σ (�x) =−i ρ̄�1 f (2)σ (�x)+ i ρ̄�2 f (3)σ (�x)
− i λ̄�+

2 f (4)σ (�x + ê1)− i λ̄�+
2 f (4)σ (�x − ê1)

i ∂t f (2)σ (�x + ê1) =−i ρ̄�1 f (1)σ (�x + ê1)− i ρ̄�2 f (4)σ (�x + ê1)

+ i λ̄�+
2 f (3)σ (�x + 2ê1)+ i λ̄�+

2 f (3)σ (�x)
i ∂t f (3)σ (�x + ê2) =−i ρ̄�1 f (4)σ (�x + ê2)+ i ρ̄�2 f (1)σ (�x + ê2)

− i λ̄�+
2 f (2)σ (�x + ê2 + ê1)− i λ̄�+

2 f (2)σ (�x + ê2 − ê1)

i ∂t f (4)σ (�x + ê1 + ê2) =−i ρ̄�1 f (3)σ (�x + ê1 + ê2)− i ρ̄�2 f (2)σ (�x + ê1 + ê2)

+ i λ̄�+
2 f (1)σ (�x + 2ê1 + ê2)+ i λ̄�+

2 f (1)σ (�x + ê2)

(10.40)

In Fourier space, Eq. (10.40) becomes

i ∂t f (1)σ ( �p) = 2ρ̄ sin p1 f (2)σ ( �p)− 2ρ̄ sin p2 f (3)σ ( �p)− 4i λ̄ cos p1 cos p2 f (4)σ ( �p)
i ∂t f (2)σ ( �p) = 2ρ̄ sin p1 f (1)σ ( �p)+ 2ρ̄ sin p2 f (4)σ ( �p)+ 4i λ̄ cos p1 cos p2 f (3)σ ( �p)
i ∂t f (3)σ ( �p) = 2ρ̄ sin p1 f (4)σ ( �p)− 2ρ̄ sin p2 f (1)σ ( �p)− 4i λ̄ cos p1 cos p2 f (2)σ ( �p)
i ∂t f (4)σ ( �p) = 2ρ̄ sin p1 f (3)σ ( �p)+ 2ρ̄ sin p2 f (2)σ ( �p)+ 4i λ̄ cos p1 cos p2 f (1)σ ( �p)

(10.41)

As with Eq. (8.80) and Eq. (8.81), we define the spinors u(a)σ and v(a)σ (a = 1, 2)

u(1)σ ( �p) = f (1)σ ( �p)+ f (2)σ ( �p) (10.42)

u(2)σ ( �p) = f (3)σ ( �p)− f (4)σ ( �p) (10.43)

and

v(1)σ ( �p) = f (3)σ ( �p)+ f (4)σ ( �p) (10.44)

v(2)σ ( �p) = f (1)σ ( �p)− f (2)σ ( �p) (10.45)
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In matrix notation, we can now write (a, b = 1, 2)

i∂t u
(a)
σ ( �p) = (

2ρ̄ sin p1σ3 − 2ρ̄ sin p2σ1 − 4λ̄ cos p1 cos p2σ2
)

ab
u(b)σ ( �p) (10.46)

where σ1, σ2, and σ3 are the three Pauli matrices. The other spinor, v(a)σ ( �p), obeys
the same equation.

We can also write Eq. (10.46) in a Dirac form by defining the α and γ matrices
through

α1 ≡ γ0γ1 ≡ +σ3, α2 ≡ γ0γ2 ≡ −σ1, β ≡ γ0 ≡ −σ2 (10.47)

In this notation, the equation of motion Eq. (10.46) takes the Dirac form

i ∂t u
(a)
σ ( �p) =

(
2ρ̄

∑
i=1,2

sin piαi + 4λ̄ cos p1 cos p2β

)
ab

u(b)σ ( �p) (10.48)

Thus, in the small-momentum limit | �p| → 0, we obtain the equation for two Dirac
spinors, uσ and vσ , in the continuum with the same Fermi velocity vF = 2a0ρ̄

and, more importantly, the same effective mass mc = λ̄/(ρ̄2a2
0). Notice that both

species (or “valleys” in the jargon of graphene), uσ and vσ , have the same sign of
the effective mass mc. The one-particle Hamiltonian

Hchiral( �p) = 2ρ̄
∑
i=1,2

sin pi αi + 4λ̄ cos p1 cos p2 β (10.49)

is complex (and hermitian) since all three Pauli matrices are present. This fact is, in
turn, the result of the breaking of time-reversal invariance. We will see in another
section of this chapter that this result gives rise to a parity anomaly, which greatly
changes the behavior of the low-lying excitations.

The eigenvalues of Hchiral are

ε( �p) = ±
√

4ρ̄2(sin2 p1 + sin2 p2)+ 16λ̄2 cos2 p1 cos2 p2 (10.50)

This is what we found for the flux phase, Eq. (8.86), except for a mass term
proportional to the next-nearest amplitude λ̄. The two branches nearly touch at
(p1, p2) = (0, 0).

Thus far, we have not discussed energetics. Wen, Wilczek, and Zee (Wen
et al., 1989) studied this problem in some detail. They found that, as J2 increases,
the energy of the chiral state drops below that of the flux state and becomes close
to the energy of the ordered dimer state. For the square lattice, even in the classi-
cally frustrated limit J1 = 2J2, it appears that the dimer states are still preferred,
although not by much. Furthermore, at least in the large-N limit, the Néel states
are not favored when J1 ≈ 2J2. There is numerical evidence, from the exact diag-
onalization of small clusters of up to 30 sites, that the Néel states are not favored
for J1 ≈ 2J2. In fact, at least for such small systems, the columnar states appear
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to be the ground states in this regime (Dagotto and Moreo, 1989). Thus, although
the chiral states are locally stable, they do not appear to be the global minimum
of energy. But it is quite conceivable to imagine slight modifications of the Hamil-
tonian that will drive the mean-field ground-state energy of the chiral states down
and make them a global minimum. Results from more recent density-matrix RG
studies strongly indicate that there is a time-reversal-invariant Z2 spin-liquid state
in the strong-frustration regime (Jiang et al., 2012).

What appears to be more serious is the fact that the chiral mean-field theory has
low-lying excited states, namely the spinons, which are not gauge-invariant. The
removal of gauge-non-invariant states is likely to raise the energy of the ground
state. We will come back to these issues in the next section.

Finally, it is instructive to consider the effects of a Peierls gap, i.e. the gap which
appears in the presence of a columnar state. This problem was studied by Dombre
and Kotliar (1989). Consider a columnar state of the type depicted in Fig. 8.12(a).
There are four such states. With the choice of gauge, Eq. (10.39), the simplest
case to consider has a columnar state with the “dimers” on the y axis and the
columns running along the x axis. We can represent such a state by a modulation
of the amplitude ρ̄ j (�x) such that ρ̄ j (�x) equals ρ̄ + δρ̄ if there is a dimer in the
bond (�x, �x + ê j ) and equals ρ̄ − δρ̄ if there isn’t a dimer in that bond. The next-
nearest-neighbor hopping terms have the same form as in Eq. (10.39). Thus, we
can consider the competition between the Peierls state and the chiral state. We will
see that, unlike the chiral state, which breaks parity and thus leads to a complex
Hamiltonian, the Peierls state does not break parity. If we assume that the selected
Peierls state has the (vertical) dimers with their lower endpoints on even rows, the
modified equations of motion are

i ∂t f (1)σ (�x) =−i ρ̄�1 f (2)σ (�x)+ i ρ̄�2 f (3)σ (�x)
+ i δρ̄ �+

2 f (3)σ (�x)
− i λ̄�+

2 f (4)σ (�x + ê1)− i λ̄�+
2 f (4)σ (�x − ê1)

i ∂t f (2)σ (�x + ê1) =−i ρ̄�1 f (1)σ (�x + ê1)− i ρ̄�2 f (4)σ (�x + ê1)

− i δρ̄ �+
2 f (4)σ (�x + ê1)

+ i λ̄�+
2 f (3)σ (�x + 2ê1)+ i λ̄�+

2 f (3)σ (�x)
i ∂t f (3)σ (�x + ê2) =−i ρ̄�1 f (4)σ (�x + ê2)+ i ρ̄�2 f (1)σ (�x + ê2)

− i δρ̄ �+
2 f (1)σ (�x + ê2)

− i λ̄�+
2 f (2)σ (�x + ê2 + ê1)− i λ̄�+

2 f (2)σ (�x + ê2 − ê1)

i ∂t f (4)σ (�x + ê1 + ê2) =−i ρ̄�1 f (3)σ (�x + ê1 + ê2)− i ρ̄�2 f (2)σ (�x + ê1 + ê2)

+ i δρ̄ �+
2 f (2)σ (�x + ê1 + ê2)

+ i λ̄�+
2 f (1)σ (�x + 2ê1 + ê2)+ i λ̄�+

2 f (1)σ (�x + ê2)

(10.51)
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In terms of the spinors uσ and vσ of Eq. (10.43) and Eq. (10.45), we get a modified
mass term, which is different for uσ and vσ .

The one-particle Hamiltonian now is

HPeierls( �p) = 2ρ̄
∑
i=1,2

sin pi αi +
(
4λ̄ cos p1 cos p2 ± 2 δρ̄ cos p2

)
β (10.52)

where the + (−) sign stands for the uσ (vσ ) spinor. Thus, the low-energy spectrum
still looks like two massive Dirac fermions that are propagating at the same speed
but with different masses. What matters here is that the sign of the mass term
depends on the relative strengths of δρ̄ and λ̄. Indeed, for | �p| → 0, we find that
HPeierls( �p) takes the form

HPeierls( �p) ≈ 2ρ̄

(∑
i=1,2

αi pi + (mc ± δm)β

)
(10.53)

where mc is the chiral mass and δm is the splitting (a0 ≡ 1)

mc = λ̄

ρ̄2
, δm = δρ̄

2ρ̄2
(10.54)

Hence, for δm < mc, the uα and vα have different masses mu and mv (mu >

mv, for δρ̄ > 0), both with the same sign. Conversely, for δm > mc, mu and mv

are not only different but also have opposite signs. If λ̄ is set to zero (i.e. there is
no chiral state), there is a perfect symmetry. Thus, the Peierls mass does not lead
to a complex Hamiltonian and consequently it does not break parity. We will see
later in this chapter that the relative sign of the masses of the elementary excita-
tions has very important consequences for the overall behavior of the system in the
generalized flux states. The eigenvalues of HPeierls are

ε( �p) = ±
√

4ρ̄2(sin2 p1 + sin2 p2)+ (4λ̄ cos p1 cos p2 ± 2 δρ̄ cos p2)2 (10.55)

10.3 Fluctuations and flux phases

So far we have considered only flux states at the mean-field level and fluctuations
have not been taken into account. We have already pointed out that this approach
is not consistent, since the fluctuations of the gauge fields, unlike the fluctuations
of the amplitude, are completely out of control.

We shall consider first amplitude fluctuations around a flux phase with flux
π per plaquette. The Lagrangian density of Eq. (10.38) has degrees of free-
dom which, in addition to inducing both chiral and non-chiral mass terms in the
low-energy sector of the theory, can effectively drive the system into a highly
anisotropic state, a dimer state. Since we are interested in understanding how these
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different mechanisms compete with each other, it is convenient to parametrize the
fluctuations of the bond lengths in such a way that these processes are most appar-
ent. Thus, we are led to consider configurations in which the bond amplitudes vary
slowly at the scale of the lattice spacing (I will refer to these processes as being
uniform or unstaggered). In addition, there are fluctuations that vary rapidly at the
scale of the lattice constant. These fast fluctuations induce scattering processes
that mix different sublattices very strongly. We will refer to them as staggered
amplitude fluctuations. Hence, the bond amplitude for the bond (�x, �x + ê j ) has the
form

ρ j (�x) = ρu
j (�x)+ ρs

j (�x) (10.56)

where ρu
j (�x) is the unstaggered (or uniform) amplitude and ρs

j (�x) is the staggered
amplitude. While ρu

j (�x) is slowly varying, ρs
j (�x) changes its sign from one bond to

the next. Since we anticipate that the system may choose an average uniform bond
length ρ̄ j , we write ρu

j (�x) and ρs
j (�x) in the form

ρu
j (�x) = ρ̄ j

(
1 + δρu

j (�x)
)

ρs
j (�x) = δρs

j (�x)
(10.57)

Although these amplitudes vary very slowly and over long wavelengths, they can
be significantly different from each other. Thus the effective Dirac fermions may
have different Fermi velocities along the x1 and x2 directions. More importantly,
since these generalized Heisenberg models do not have any intrinsic length scale,
apart from the lattice constant itself, there is an essential “softness” in the system,
which favors strong anisotropy. This can be clearly seen by writing down the spinon
energy of such a state, which for a non-chiral state has the form (see Eq. (10.55))

ε( �p) = ±
√
(2ρu

1 sin p1)2 + (2ρu
2 sin p2)2 + (2 δρs

2 cos p2)2 (10.58)

This energy can be made large and negative by setting

δρu
1 = −1, |δρs

2| = |ρu
2 | (10.59)

which is the dimer limit. The symmetric amplitude δρu
j cannot grow any larger

than this without driving the total amplitude into negative values. Thus, this is the
saturation limit. In this limit, the spin gap is infinitely large since all spinons are
in singlet bond states one lattice spacing long, namely the valence-bond states.
The fluctuations of the gauge fields only cause dimer rearrangements, as in our
discussion of the QDM. This phase does not break time-reversal invariance.

The tendency to a collapse towards dimers can be suppressed by a suitable
local modification of the Hamiltonian (Marston and Affleck, 1989). All that is
needed is to have a scale ρ̄0 for the average bond amplitude around which they
fluctuate. In the SU(N ) model, this involves an interaction that is quartic in the
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spins. This possibility is not available for the case of interest, the nearest-neighbor
spin one-half Heisenberg model, but it may occur in further-neighbor interactions.
There is strong numerical evidence that strong enough four-spin (ring-exchange)
interactions do lead to a dimerized state (Sandvik, 2010).

Let us assume for the moment that dimer collapse has been avoided. Now
the flux phase may be unstable against the development of both chiral and non-
chiral mass terms. In turn, it is easy to write down an effective theory for the
low-energy modes. The effective Lagrangian density should include the (doubled)
spinon modes (uα and vα). It should also contain both staggered amplitudes, which,
after normalization, can be denoted by two real Bose fields, φ1 and φ2. The chiral
modes are also bosonic and real and can be denoted by χ . The effective Lagrangian
density should then have the form

L = (
ūαiγμDμuα + v̄αiγμDμvα

)
− φ1(ūαvα + v̄αuα)− φ2(ūαuα − v̄αvα)− N

J
U (φ2

1, φ
2
2)

− χ(ūαuα + v̄αvα)− N

J ′U
′(χ2) (10.60)

where the potentials U and U ′ are even functions of φ1, φ2, and χ separately. The
phases of the bond amplitudes, the gauge fields, have been included through the
covariant derivatives Dμ,

Dμ = ∂μ − iAμ (10.61)

The potentials U and U ′ are assumed to have a sharp minimum at φ1 = φ2 =
χ = 0 and to grow rapidly as the values of their arguments increase. The latter
condition is needed in order to avoid collapse towards a dimer state. The require-
ment that the potentials U and U ′ be even functions of their arguments implies a
four-fold degeneracy of the ground state. In the absence of collapse the symmetric
amplitude modes, which represent local fluctuations of the length scale (i.e. the
Fermi velocity) and of anisotropy, do not change the qualitative physical proper-
ties of the system. The assumption that there is a well-defined, and sharp, average
bond amplitude ρ̄0 means that local dilatations and shears are strongly suppressed.
When integrated out, these fluctuations merely lead to effective interactions of
the fermions that involve operators with many derivatives. In an RG sense, such
terms are irrelevant. This is equivalent to saying that, if the physics of the system
is correctly described by the continuum model, then operators with many deriva-
tives may become important only if the fluctuations have large Fourier components
at large values of the momentum. However, the main assumption of the contin-
uum model is precisely that such Fourier components are small, since only smooth
configurations are correctly described by this model. Under these assumptions, the
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effective Lagrangian density of Eq. (10.60) is a good description of the physics of
the system.

The fluctuations which are described in detail by Eq. (10.60) are the fluctuations
of the gauge field Aμ and of the amplitudes φi and χ . The fluctuations of the ampli-
tudes φi and χ lead to a phase transition, in which one or several amplitudes have
a non-zero expectation value, only if N is not too large. This can be checked by
looking for solutions of the saddle-point equations. These equations, in the absence
of a dimer solution, do not have a solution with 〈φ0〉 �= 0 (or 〈χ〉 �= 0) unless N is
smaller than some critical value Nc. The value of Nc depends on the details of the
model. This regime is still described correctly by the 1/N expansion. Thus, unless
one happens to be interested in unphysically large values of N , one of 〈φ1〉, 〈φ2〉
or 〈χ〉 will become non-zero. The fluctuations around this state are small and have
very short correlation lengths.

From this discussion, we may conclude that, unless N > Nc � 1, there are
spinons in the spectrum but they have a finite gap. This result would hold if we can
ignore the fact that the gauge group is compact and hence that there are magnetic-
monopole configurations in its space of states. Provided that this can be done
consistently, we conclude that, for N > Nc, the spinons would be massless (i.e.
there is no gap) and deconfined. Thus this model appears to predict the existence
of electrically neutral spin-bearing excitations. However, this conclusion is not well
founded, since the fluctuations of the gauge field Aμ have been ignored altogether.
A massless deconfined phase may still occur in the large-N limit since this is equiv-
alent to increasing the number of flavors rather than the rank of the gauge group.
In this limit the monopole operators are irrelevant (Metlitski et al., 2008), and the
compact nature of the gauge group is not important. However, monopoles play a
dominant role for smaller values of N . This problem has been investigated in detail
by Monte Carlo simulations. The most recent results indicate that for N ≤ 4 the
ground state is gapped and confining (Armour et al., 2011). We will also see in
the next sections that in states that break time-reversal invariance monopoles are
suppressed and the results of the large-N theory are at least qualitatively correct
even for smaller values of N .

What are the effects of the gauge fields Aμ? We will examine this problem now
assuming that the fluctuations of the gauge fields are arbitrary but smooth enough
so that we can ignore monopole configurations. A simple inspection of the effective
Lagrangian density, Eq. (10.60), shows that the gauge fields appear only in the
kinetic-energy term of the spinons, through the covariant derivatives. There is no
separate term in this Lagrangian density that will control the fluctuations of the
gauge field, such as FμνFμν in electrodynamics. Since the Lagrangian density is
linear in the gauge field Aμ, we can integrate the gauge fields out exactly. The
integral over the gauge field Aμ yields
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DAμ ei S[u,v,φ1,φ2,χ,Aμ] = ei S[u,v,φ1,φ2,χ ]

×
∫

DAμ exp

(
i
∫

d3x Aμ Jμ
)

(10.62)

where Jμ is the total spinon gauge current density

Jμ = ūαγ
μuα + v̄αγ

μvα (10.63)

The last factor in Eq. (10.60) shows that the integral over the gauge field Aμ is just
a constraint ∫

DAμ exp

(
i
∫

d3x Aμ Jμ
)
=

∏
x

δ3(Jμ(�x, t)) (10.64)

Hence, the only states allowed in the Hilbert space, let’s call them |Phys〉, satisfy

Jμ(�x, t)|Phys〉 = 0 (10.65)

which is a local condition. In components, this constraint is equivalent to the
statement that the normal-ordered spinon density j0(�x, t),

j0(�x, t) ≡ ρ(�x, t)− 〈ρ(�x, t)〉 (10.66)

with ρ(�x, t) being the electron density, and the currents ji (�x, t) (i = 1, 2) annihi-
late the physical states. Thus, the condition of N/2 occupancy is exactly satisfied.
However, this also means that the allowed states carry zero spinon current and that
there are no states in the spectrum of this system carrying the spinon quantum
numbers, i.e. spin one-half in the SU(2) case. As a result, these spin-liquid phases
do not have spinon states in their spectra. This is not to say that the spinons do
not have a role. Gauge-invariant spinon bound states do not have spinon quantum
numbers and hence are allowed. In spin one-half language, these states are either
spin singlets (valence bonds) or triplets. These bound states have large energy gaps,
with the singlets being the states of lowest energy.

10.4 Chiral spin liquids and Chern–Simons gauge theory

In Section 10.1 we encountered a state, the chiral spin state (CSS), which sponta-
neously violates time reversal and parity invariance. We will see in this chapter that
this feature of the CSS has far-reaching novel consequences. There are other states
of condensed matter in which time-reversal invariance is broken. A ferromagnet
has such a property. However, unlike the CSS, the ferromagnetic ground state does
not violate parity, and its properties are quite different from what we will find in
the CSS.
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A system of electrons moving on a plane, in the presence of a perpendicular
magnetic field, does not have time-reversal invariance. It is explicitly broken by
the magnetic field. If the electrons are spin-polarized, then in some sense parity is
also broken due to the orbital nature of the coupling. The results are the fascinating
properties of the quantum Hall effect (QHE), in its integer and fractional forms. In
this chapter and the coming ones, we will discuss the deep connections between the
CSS and the QHE. We will see that, as a result of the combined effect of violation of
parity and time-reversal invariance, both systems have an extra term, the so-called
Chern–Simons term, in the effective Lagrangians for their low-energy degrees of
freedom. These Lagrangians also provide a natural phenomenological description
of the physics. In particular, both systems have low-energy excitations with frac-
tional statistics or anyons. We will see in the next chapter that, if the system is
compressible, these excitations lead to a novel form of superconductivity called
anyon superconductivity. Deep and far-reaching connections among the CSS, the
QHE, the mathematical theories of knots, and, more generally, topological field
theory will be described. We begin this chapter by going beyond the discussion of
the previous section on the fluctuations around a CSS.

Under what circumstances should we expect to get “free spinons,” i.e. states with
finite energy that carry spinon quantum numbers? The arguments at the end of the
last section show that this is not possible unless the fluctuations of the gauge fields
are somehow suppressed. Terms of the F2

μν type do not efficiently suppress fluctu-
ations. Gauge-field mass terms are, on the other hand, very efficient at suppressing
fluctuations. In (2+1) space-time dimensions two gauge-field mass terms can arise.
The simplest one, A2

μ, explicitly breaks the gauge symmetry and can arise only if
the system becomes superconducting. This is a possible scenario at non-zero hole
density but not at half-filling.

In (2 + 1) dimensions, there is another possible source of mass for the gauge
fields: the topological or Chern–Simons mass terms (Schonfeld, 1981; Deser
et al., 1982). The Chern–Simons term is a locally gauge-invariant Lagrangian that
breaks parity P and time-reversal T invariance. For the case of an abelian gauge
field it has the form

LCS = θ

4
εμνλAμFνλ (10.67)

The coupling constant θ is dimensionless and measures the strength of P and T
(but not C) violations.

We will see below that a Chern–Simons term arises in the effective action of
the RVB gauge field Aμ from the fermionic fluctuations in a CSS. Since the gauge
fields now have a mass, one does expect to get spinon states in the spectrum. These
states are massive, i.e. have a non-vanishing mass. We will also see in the next chap-
ter that, if holes are allowed, the system develops a novel form of superconductivity
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driven by excitations with fractional statistics called anyons. We will also see in
later chapters that the Chern–Simons action plays a key role in the theory of the
quantum Hall effects.

In the absence of mass terms for the fluctuations of the gauge fields the spinons
disappear from the spectrum. The only low-lying excitations of the system are asso-
ciated with the gauge field Aμ. It is then natural to ask for the effective Lagrangian
which governs the dynamics of the gauge fields. The 1/N expansion provides a
simple way to determine not only the effective action of the gauge field Aμ, but also
that of the amplitudes φi and χ introduced in Eq. (10.60). This is done by first inte-
grating out the spinon fields and later expanding around one of the saddle-points
of the resulting action. The effective action determined in this way is

Seff[φi , χ, Aμ] =
∫

d3x

(
−N

J
U (φ2

1, φ
2
2)−

N

J ′U
′(χ2)

)
− i N ln det

(
iγμDμ − χ − φ2 −φ1

−φ1 iγμDμ − χ + φ2

)
(10.68)

where the 2 × 2 matrix in Eq. (10.68) occurs because of the spinon doubling in
terms of u and v components of Eqs. (10.43) and Eq. (10.45). At the saddle-point
level we have

〈Aμ〉 = 0, 〈φi 〉 = φ̄i , 〈χ〉 = χ̄ (10.69)

Let us now consider the effects of fluctuations around this state. Let φ̃i and
χ̃ denote the fluctuation components of the amplitude fields. The vector poten-
tial Aμ has zero average, Eq. (10.69), and hence it represents a fluctuation. The
fluctuations of the amplitude fields are massive and thus do not lead to any new
physics, provided, of course, that the saddle-point represents a stable state. We will
not consider the effects of such fluctuations here. Qualitatively, amplitude fluctua-
tions are important in the dimer limit. We have already considered such effects in
Chapter 8.

The fluctuations of the vector potentials Aμ lead to interesting effects. Their
effective action can be calculated by expanding Seff of Eq. (10.68) in powers of
Aμ. To second order, we get S(2)gauge[Aμ] given by

S(2)gauge[Aμ] = 1

2

∫
d3x d3 y Aμ(x)�μν(x, y)Aν(y) (10.70)

where �μν(x, y) is the one-particle irreducible fermion current–current correlation
function (or polarization tensor)

�μν = 〈Jμ(x)Jν(y)〉 (10.71)
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Figure 10.3 The one-loop contribution to the effective action of the gauge field.

In momentum space, we can write S(2)gauge[Aμ] in the form

S(2)gauge[Aμ] = i
N

2

∫
d3 p

(2π)3

∫
d3q

(2π)3
tr

[
S

(
p

2
+ q

)
γ μS

(
− p

2
+ q

)
γ ν

]
× Aμ(p)Aν(−p) (10.72)

in terms of the fermion propagator in momentum space S(p),

S(p) = 1

pμγ μ − χ̄ − φ̄i Ti
(10.73)

where the 2 × 2 matrices T1 and T2 are given by the Pauli matrices σ1 and σ3,
respectively. This one-loop contribution to the effective action of the gauge field
can be represented by the Feynman diagram of Fig. 10.3.

An explicit computation of the operator �μν(p) (in momentum space) yields the
result

�μν(p) =
∫

d3q

(2π)3 i N tr

[
S

(
q + p

2

)
γ μS

(
q − p

2

)
γ ν

]
= (p2gμν − pμ pν)�0(p2)− iεμνλ pλ�A(p2)

(10.74)

The kernels �0(p2) and �A(p2) have the following explicit forms:

�0(p2) = −N |m+|
4πp2

+ N

8π
√

p2

(
4m2+

p2
+ 1

)
sinh−1

⎛⎝ 1√
4m2+/p2 − 1

⎞⎠
+ (m+ ↔ m−) (10.75)

�A(p2) = − m+N

2π
√

p2
sinh−1

⎛⎝ 1√
4m2+/p2 − 1

⎞⎠ + (m+ ↔ m−) (10.76)
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where m± denotes the mass gaps (from the poles of the propagator of Eq. (10.73))
for the two species of fermions (including their signs),

m± = χ̄ ±
√
φ̄2

1 + φ̄2
2 (10.77)

These expressions can now be used to find the effective Lagrangian L(2)
gauge[Aμ]

that governs the dynamics of the “RVB” gauge field Aμ at low energies. By virtue
of gauge invariance we know that only locally gauge-invariant terms can possibly
occur. To lowest order in a gradient expansion, i.e. in powers of p2/m2, we expect a
Maxwell-like term FμνFμν . However, in (2+1) dimensions a Chern–Simons (CS)
term, Eq. (10.67), is also allowed. The CS term, although gauge-invariant, breaks
parity (P) and time reversal (T ). Thus, it may occur in a chiral spin state. Indeed,
this is what actually does happen!

By explicit calculation we find that the effective Lagrangian L(2)
gauge[Aμ] does

have the low-energy form

L(2)
gauge[Aμ] = − 1

4g2
FμνFμν + θ

4
εμνλAμFνλ (10.78)

The gauge coupling constant g2 (“spinon charge”) and the CS coupling constant θ
are equal to

1

g2
= N

π

(
1

| m+ | +
1

| m− |
)

(10.79)

and

θ = N

4π
(sgn(m+)+ sgn(m−)) (10.80)

This result was first obtained by Redlich (1984).
Clearly, θ vanishes if sgn(m+) = −sgn(m−). This is to be expected, since time

reversal is not violated if the masses have opposite signs. This is the non-chiral
spin-liquid state. In the chiral state, sgn(m+) = sgn(m−) and either sign, plus or
minus, can occur. Thus, in a chiral spin-liquid state we find that the CS coupling
constant is θ = ±N/(2π) and does not vanish. In other terms, in a massive rel-
ativistic system of Dirac spinors, the effective CS coupling θ is equal to 1/(4π)
per species of Dirac fermion. A two-component Dirac spinor is known as a Weyl
spinor. We will see below, in Section 11.5.1, and in more detail in Section 12.5,
that the prefactor of the CS term is equal to σxy/4, where σxy is the Hall conduc-
tance. Thus this calculation predicts that each species of 2D Weyl fermions has a
Hall conductance of 1

2 e2/h. We will return to this question in Chapter 16, where it
plays an important role.

We can gain some insight into the meaning of this result by considering the
propagator of the gauge field. In particular, we want to know whether there is a
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massless “photon” state in the spectrum. If such a state were to be present the
whole approach would be in doubt, since in our problem the vector potentials Aμ

would fluctuate wildly and, as we showed in Chapter 8, the spinons would in fact
be confined by the monopoles of the field Aμ. However, if the field Aμ were to
become massive, the scenario would be completely different. Let us consider this
question more closely. The propagator of the gauge fields Gμν(x, x ′) is

Gμν(x, x ′) = 〈T Aμ(x)Aν(x
′)〉 (10.81)

and it is not gauge-invariant. It only makes sense after a gauge has been fixed.
We do this by the standard procedure (Itzykson and Zuber, 1980) of adding to the
Lagrangian L(2)

gauge[Aμ] a gauge-fixing term of the form

L(2)
fixing[Aμ] = α

2g2
(∂μAμ)2 (10.82)

In particular, I will work in the Lorentz gauge in which α→∞ (i.e. ∂μAμ = 0).
The propagator of the gauge fields, in the Lorentz gauge, is given in momentum
space by

Gμν(p) = g2

p2 − g4θ2

(
gμν − pμ pν

p2

)
− g4θ iεμνλ

p2(p2 − g4θ2)
pλ (10.83)

This propagator has a pole at p2 − g4θ2 = 0. This “photon” state is massive and
its mass mγ is equal to g2|θ |. Hence a chiral state implies a massive RVB gauge
field. This mass term does not spoil gauge invariance, and it does not imply the
occurrence of superconductivity. However, it is just as efficient in suppressing the
fluctuations of the RVB gauge field. We have already discussed in Chapter 9 how
the wild fluctuations of this gauge field, parametrized in terms of monopoles, are
responsible for the confinement of excitations bearing the fundamental quantum
number, the spin. Conversely, we are led to suspect that the presence of an induced
CS term may signal the liberation of the spinons by suppressing the monopoles.
We saw that monopoles were responsible for disordering the Wilson loops, lead-
ing to confinement, which, in the present context, means a valence-bond crystal.
However, the presence of the induced CS term makes a significant difference.

Let us first discuss the fate of the monopoles. Consider a configuration A(c)
μ that

represents a set of monopoles (with their strings) and assume that they are well
separated. A configuration of monopoles and anti-monopoles is generated by a set
of sources in the form of infinitesimally thin solenoids joining each monopole to
an anti-monopole. The issue here is the existence of a long-range monopole field
in the presence of the (induced) CS term. But the CS term causes the gauge field to
be massive. In such a situation, an elementary study of the Euclidean equations of
motion reveals that, for instance, in the case of a simple monopole–anti-monopole
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pair, the RVB magnetic field does not extend beyond a distance R ∼ 1/(g2θ) away
from the solenoid. Thus, the dominant contribution to the Euclidean action comes
from this effective flux tube. If the linear size of the monopole–anti-monopole pair
is R, the action of a monopole–anti-monopole pair grows linearly with their separa-
tion R. Hence, monopoles and anti-monopoles are confined and their contribution
to the expectation value of gauge-invariant operators is exponentially small and can
be neglected.

There is a further subtlety here. Under a local gauge transformation the CS
Lagrangian density changes by a total derivative. If the space-time has boundaries
(for instance, if 2D space has the topology of a disk), the CS action is not gauge-
invariant. In that case there are degrees of freedom at the boundary, which play a
key role since these are the only low-energy states left. As we will see in later chap-
ters, this is what happens in the quantum Hall states in which there are edge states.
On the other hand, we will also see below that even if the space-time manifold is
closed (and hence has no boundaries) one has to carefully consider the effects of
large gauge transformations, which (as we will see) force the CS coupling constant
to be quantized.

The quantization of the coupling constant can be seen in the more general case
of a non-abelian gauge field Aμ that takes values in the algebra of a compact Lie
group G, such as SU(N ). The general form of the CS action is (Deser et al., 1982)

SCS[Aμ] =
∫
!

d3x
θ

4
εμνλ tr

[
AμFνλ + 2

3
AμAν Aλ

]
(10.84)

where ! is a closed 3D manifold, e.g. the sphere, the torus, etc. Under a gauge
transformation U (x) ∈ G the vector potential Aμ transforms as

Aμ → U−1 AμU + U−1∂μU (10.85)

Under a local gauge transformation U (x) the CS action is invariant. However,
under a large gauge transformation it transforms as

SCS → SCS + 4π2w[U ] (10.86)

where w[U ], given by

w[U ] = 1

24π2

∫
!

d3x εμνλ tr
[(

U−1 ∂μU
)(

U−1 ∂νU
)(

U−1 ∂λU
)]

(10.87)

is a topological invariant of the maps of the manifold ! to the group G, known as
the winding number (or first Chern invariant). Thus, in the case of the sphere, ! =
S3, the winding number w[u] labels the homotopy classes π3(G) � Z, which we
have already encountered in Section 7.10. On the other hand, on physical grounds
we must require that the weight of the path integral exp(i SCS) be gauge-invariant,
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which can happen only if the coupling constant is quantized, θ = k/(2π), with
k ∈ Z. The integer k is known as the level of the Chern–Simons gauge theory.

These considerations affect the behavior of this theory in the presence of
monopoles (and anti-monopoles). Indeed, from the point of view of the CS action,
the core of the monopoles is effectively an edge, and our gauge-fixing proce-
dure fails near the core. A careful consideration of the fermion determinant in the
background of gauge-field configurations shows that it vanishes identically if the
monopoles are present (Affleck et al., 1989; Fradkin and Schaposnik, 1991). In
other terms, the fermion path integral, in a chiral spin state, loses its gauge invari-
ance in the presence of monopoles. The result is the suppression of the monopoles
and the deconfinement of the spinons. In consequence, in the chiral spin liquid
there is genuine separation of spin and charge.

10.5 The statistics of spinons

What properties do liberated spinons have? The best way to address this ques-
tion is to look at how spinons propagate in this system. Consider the amplitude
W (1)(�x, �x; T ) for a spinon, of any type, created in the remote past at site �x , to
propagate throughout the system and finally return to the same place �x , in the same
state, in the remote future, T → ∞. The (imaginary-time) path integral for this
amplitude is

lim
T→∞ W (1)(�x, �x; T ) = lim

T→∞ tr SF

(
�x,−T

2
; �x,+T

2

)
=

∫
DAμ tr

〈
�x,−T

2

∣∣∣∣ 1

Dμγ μ + m

∣∣∣∣ �x, T

2

〉
e−Seff(A)

(10.88)

where I have used the (imaginary-time) spinon propagator in a fixed background
configuration of RVB vector potentials. We can now use the Feynman picture of a
sum over paths by first writing (Polyakov, 1987) the spinon propagator in the form

tr

〈
�x,−T

2

∣∣∣∣ 1

Dμγ μ + m

∣∣∣∣ �x, T

2

〉
= tr

〈
�x,−T

2

∣∣∣∣(−Dμγ
μ + m)

∣∣∣∣ z

〉 〈
z

∣∣∣∣ 1

−D2 + m2

∣∣∣∣ �x,+T

2

〉
(10.89)

where we have introduced a complete set of states |z〉, labeled by the space-time
coordinate z. The sum (integral) over all values of z is left implicit here and below.

The proper-time representation of the propagator yields the following expression
for the trace in Eq. (10.89):

tr

〈
x,−T

2

∣∣∣∣(−Dμγ
μ + m)

∣∣∣∣ z

〉 ∫ ∞

0
dτ

〈
z
∣∣∣e+τD2

∣∣∣ �x, T

2

〉
e−τm2

(10.90)
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The operator Dμ is the Euclidean covariant derivative, Dμ=∇μ+ i Aμ. The
(Euclidean) Dirac matrices are present only in the prefactors.

Notice that by taking a trace we are effectively summing over all spinon
polarizations. A standard path-integral argument now yields an expression for
W (1)(�x, �x; T ) in terms of sums over paths �, the worldlines of the histories of
the quasiparticle, of arbitrary length τ . The boundary conditions that we are using
here imply that the sum over paths runs over contributions with paths which close
on the imaginary-time direction (i.e. run around the cylinder). The result is the path
integral〈

z
∣∣∣e+τD2

∣∣∣ �x,+T

2

〉
=

∫
Dx exp

{
−

∫ τ

0
dt

[
1

2

(
d �x
dt

)2

+ i �A · d �x
dt

]}
(10.91)

which is the sum over paths � of length τ satisfying the boundary condition
x(0)= z and x(τ ) = (�x, T ).

The amplitude W (1)(�x, �x; T ) can now be written in the form

W (1)(�x, �x; T ) =
∫

DAμ e−Seff(Aμ) tr

〈
�x,−T

2

∣∣∣∣(−Dμγ
μ + m)

∣∣∣∣ z

〉
×

∫ ∞

0
dτ e−τm2

〈
z
∣∣∣e+τD2

∣∣∣ �x,+T

2

〉
. (10.92)

Equivalently, W (1)(�x, �x; T ) can be written in the form∫ ∞

0
dτ e−τm2

∫
Dxμ

∫
DAμ tr

〈
�x,−T

2

∣∣∣∣(−Dμγ
μ + m)

∣∣∣∣ z

〉
× exp

[
−

∫ τ

0
dt

1

2

(
d �x
dt

)2
]

exp

(
i
∮
�

Aμ dxμ

)
(10.93)

where I have used the fact that the paths � are closed and, consequently, the term∫ τ

0 dt �A · d �x/dt is simply the circulation of �A around �. Notice that this quantity
is gauge-invariant and it arises because we are considering paths that close (wrap)
around the cylinder. The path integral requires that this amplitude be averaged over
all the configurations of the RVB gauge fields, for each path �. After doing that we
get, using an obvious notation,

〈W (1)〉 ∼
∑
�

(amplitude)� × 〈ei
∮
� dxμ Aμ〉 (10.94)

which involves the Wilson loop operator.
If we ignore the contribution of the monopoles, the amplitude W (1) can be esti-

mated just by using the effective action of Eq. (10.78). The average in Eq. (10.94),
the expectation value of the Wilson loop operator for trajectory �,
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exp

(
i
∮
�

dxμ Aμ

)〉
(10.95)

can now be calculated quite easily. Let Jμ(�) be a current in (2 + 1)-dimensional
Euclidean space defined by

Jμ(�) =
{

Sμ(x), x ∈ �

0, otherwise
(10.96)

where Sμ(x) is the unit vector tangent to the path � at x . The expectation value to
be computed has the form〈

exp

(
i
∮
�

dxμ Aμ

)〉
=

〈
exp

(
i
∫

d3x Jμ(x)Aμ(x)

)〉
(10.97)

Since the effective action of Eq. (10.78) is quadratic in Aμ, the average, Eq. (10.95)
is simply given by〈

exp

(
i
∮
�

dxμ Aμ(x)

)〉
CS

= exp

(
− i

2

∫
d3x

∫
d3x ′ Jμ(x)G

μν(x − x ′)Jν(x
′)
)

(10.98)
where the propagator Gμν(x, x ′) in the Lorentz gauge has the Fourier transform
given in Eq. (10.83). In real space-time Gμν(x, y) is given by

Gμν(x, y) =
∫

d3 p

(2π)3
Gμν(p)e

�i p·(�x−�y)

= −g2

〈
x

∣∣∣∣( 1

∂2 + g4θ2

) (
gμν − ∂μ∂ν

∂2

)∣∣∣∣ y

〉
+ g4θεμνλ

〈
x

∣∣∣∣ 1

∂2(∂2 + g4θ2)
∂λ

∣∣∣∣ y

〉
(10.99)

Thus, the argument I of the exponential on the right-hand side of Eq. (10.98) reads

I ≡ − i

2

∫
d3x

∫
d3 y Jμ(x)G

μν(x − y)Jν(y)

= − ig2

2

∫
d3x

∫
d3 y Jμ(x)G0(x, y;m2)Jμ(y)

− i

2
g4θ

∫
d3x

∫
d3 y Jμ(x)ε

μνλ

〈
x

∣∣∣∣ 1

∂2(∂2 + g4θ2)
∂λ

∣∣∣∣ y

〉
Jν(y)

(10.100)

Here I used G0(x, y;m2) as the propagator for a massive field with m2 = g4θ2,
which obeys

(−∂2 − m2)G0(x, y;m2) = δ(x − y) (10.101)
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If we restrict our discussion to long and smooth loops, we can make the long-
distance approximation in Eq. (10.101), which now becomes ultra-local

G0(x, y;m2) ≈ 1

m2
δ(3)(x − y). (10.102)

In this limit we find the exponent I to be given by

I � − i L(�)

2g2θ2
+ i

2θ

∫
d3x

∫
d3 y Jμ(x)ε

μνλG0(x, y; 0)∂λ Jν(y) (10.103)

where L(�) is the perimeter of the loop �, and G0(x, y; 0) is the propagator of a
massless scalar field, which, in (2 + 1) (Euclidean) space-time dimensions, is

G0(x, y; 0) = 1

4π |x − y| (10.104)

We will see below that the non-local term in Eq. (10.103) plays a crucial role in the
determination of the exponent I .

The first term in Eq. (10.103) embodies the quantum corrections to the propaga-
tion amplitude of the spinon. Hence it can be interpreted as a finite renormalization
of its mass. The second term in Eq. (10.103) is more interesting. Let us examine
the quantity R(�) given by

R(�) =
∫

d3x
∫

d3 y Jμ(x)ε
μνλG0(x, y; 0)∂ y

λ Jν(y) (10.105)

Below we will see that R(�) is in fact a topological invariant known as the Hopf
invariant or linking number. After integration by parts and using the definition of
the current Jμ(x), we can write R(�) in the form

R(�) =
∮
�

dxμ

∮
�

dyν ε
μνλ ∂ x

λG0(x, y; 0) (10.106)

We can make more sense of R(�) by means of the following magnetostatic anal-
ogy. In order to make these ideas precise, it is necessary to momentarily go to
Euclidean space. Now G0(x, y; 0) is just the inverse Laplacian in three dimensions:

G0(x, y; 0) ≡
〈
�x
∣∣∣∣ 1

−∇2

∣∣∣∣ �y〉
(10.107)

Let us regard Jμ(x) as an electric current in 3D space. This current establishes the
static magnetostatic field Bμ(x), which satisfies

�∇ × �B = �J , �∇ · �B = 0 (10.108)

i.e. Ampère’s law. This observation allows us to solve for Bμ by means of the
Green function G0(x, y; 0) in the form

Bμ(x) =
∫

d3 y G0(x, y; 0)εμνλ ∂ν Jλ(y) (10.109)
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Thus, R(�) can be written in the more compact form

R(�) =
∫

d3x Jμ(x)Bμ(x) (10.110)

where Bμ is the field established by Jμ. This is a self-interaction effect. Now we
can use the definition of Jμ and Stokes’ theorem to get R(�) in the form of a
surface integral,

R(�) =
∮
�

dxμ Bμ =
∫
!

dσ nμεμνλ ∂νBλ (10.111)

where ! is an open surface whose boundary is �. By substitution of Eq. (10.108)
into Eq. (10.111) we get

R(�) =
∫
!

d �σ · �J (10.112)

i.e. R(�) is the flux of �J , the current, through a surface bounded by itself (see
Eq. (10.98)).

Thus, at least qualitatively, R(�) should be equal to the self-linking, or writhing,
number of the path �, which measures the number of times a vector normal to �
winds as the loop is traced. Polyakov (1988), who was the first to put these argu-
ments forward, argued that the writhing R(�) of the path should be interpreted as
an intrinsic spin. On the other hand, this spin makes sense only after one has cho-
sen a specific prescription for measuring lengths along the path (i.e. made a choice
of metric) and a short-distance regularization of the integrals involved in R(�). In
his seminal work relating the theory of knots and CS gauge theory, Witten (1989)
showed that these definitions depend on the choice of regularization at short dis-
tances (“the framing of the knot”). In the problem that we are considering here, the
CS gauge theory (abelian in our case) appears as the effective theory at distances
long compared with the inverse spinon gap of the mean-field theory. It is unclear
what regularization one should adopt in this case. It is conceivable that the anoma-
lous spin predicted by Polyakov may, but need not, be present depending on the
size of the spinon gap.

Let us consider the properties of spinons upon exchange processes. That is to
say, we want to know which statistics they obey. Microscopically, we have defined
the spinons to be fermions. The CS term may change that. To see how that can
happen, let us consider the propagation amplitude W (2)({�x, �y}, {�x, �y}; T ) for two
spinons, which in the remote past were located at �x and �y, either to end up at the
same locations in the remote future (T → +∞) or to exchange their positions.
Once again, we will carry out the computation in the imaginary-time formalism in
which the time direction is real and periodic, i.e. the space-time has, at least, the
topology of a cylinder. The two-particle amplitude will be represented as a sum
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over paths that close on the time direction. In principle, we will be dealing with
two different paths �1 and �2, representing the evolution of each spinon. These
paths may, or may not, be linked. In other words, the paths are equivalent to knots
or braids. We will see that the path integral can be written as a sum over classes
of topologically inequivalent knots. Each class will be characterized by a phase
factor. These phase factors can effectively alter the statistics of the spinons. The
two-spinon amplitude W (2) has the form

W (2) = ±
∞∑
ν=0

W (2)
ν eiφν (10.113)

where ν is the linking number of the paths (or worldlines), to be defined below.
The ± sign represents the two possible processes, direct and exchange. We will
primarily be interested in the computation of the phases φν . The amplitudes W (2)

ν

are renormalizations of the spinon self-energies, scattering amplitudes, etc.
In terms of a sum over paths �, which is the union of the individual paths of the

spinons, W (2) has the form

W (2) = ±
∑

�≡�1∪�2

A(�)
〈
exp

(
i
∮
�

dxμ Aμ(x)

)〉
(10.114)

where A(�) is the absolute value of the amplitude. After a little algebra we get

W (2) = ±
∑
�

A(�) exp

(
i

2

∫
d3x

∫
d3x ′ Jμ(x)Gμν(x, x ′)Jν(x

′)
)

(10.115)

where Jμ is the sum of the currents which define the paths �1 and �2, and
Gμν(x, x ′) is the analytic continuation to imaginary time of the propagator of the
gauge fields. We will be interested only in the behavior of very large loops in the
Euclidean space. The paths for direct and exchange processes become closed on
identifying their endpoints. Thus, exchange and direct processes have an extra rel-
ative linking number. It is this extra linking number which is responsible for the
fractional statistics.

It will be sufficient for our purposes to compute just the relative linking number.
Thus, we can consider a simple direct process, in which the paths �1 and �2 are not
linked, and a simple exchange process in which the two paths are linked in such
a way that they form a single path. Now, the linking number of a single path is
its writhing number R(�). However, there are no regularization ambiguities now,
since the path winds around the cylinder exactly once.

The cylinder (of periodic boundary conditions in imaginary time) represents a
topological obstruction and no redefinition of the metric on the path (for example
by stretching it) can change this number. Thus the exchange process and the direct
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process have a relative linking number of ±1. The sign depends on the process by
which we define exchange. If we define exchange by a counterclockwise (clock-
wise) rotation of one spinon around the other by an angle of π , followed by a
translation equal to their relative separation, the sign is +1 (−1).

In the phase of the amplitude of the path integral the relative linking number
R(�) enters multiplying a factor of 1/(2θ). Hence, the total amplitude changes by
a factor of −e±

i
2θ when two particles are exchanged, i.e.

W (2)
d = −e±

i
2θ W (2)

e (10.116)

Equation (10.116) implies that the spinons have fractional statistics with a
statistical angle δ equal to

δ = 1

2θ
≡ π

N
(10.117)

defined relative to the fermion sign. In particular, Eq. (10.116) and Eq. (10.117)
require that the two-spinon state should have a multivalued wave function
(Wilczek, 1982)

ψ(2)(1, 2) = −e±iδψ(2, 1) (10.118)

For the case of physical interest, N = 2, the statistical angle δ = π/2 and the
wave function is multiplied by ±i when two spinons are exchanged. Since this
phase factor is exactly half-way between fermions (− sign) and bosons (+ sign),
these excitations have been dubbed semions (Laughlin, 1988b). In general, they
are anyons, particles with fractional statistics (Wilczek, 1982). When the anyon is
characterized by a single phase factor, it constitutes a one-dimensional represen-
tation of the braid group, and it is said to be an abelian anyon. We will see in
later chapters that there are multi-dimensional representations in which the anyon
is characterized by a matrix of phase factors. Such anyons are non-abelian since
the matrices do not commute. For a discussion of the braid group and fractional
statistics see Section 10.7.

It remains only to compute the phases φν in Eq. (10.113) and Eq. (10.115). Let
us write the phase φν in the form

φν = 1

2θ
R(�1, �2) (10.119)

Clearly, since R(�1, �2) is bilinear in the currents, we can write R(�1, �2) in terms
of the writhing numbers of the individual paths and of the linking number ν =
R̄(�1, �2),

R(�1, �2) = R(�1)+ R(�2)+ 2R̄(�1, �2) (10.120)

with

R̄(�1, �2) = 1

2

∮
�1

dxμ

∮
�2

dx ′
ν Gμν(x − x ′) (10.121)
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We can now use the magnetostatic analogy once again. Let J (1)μ and J (2)μ be the two
currents which establish the static fields B(1)

μ and B(2)
μ , respectively. We get

ν = R̄(�1, �2) =
∫

d3x J (1)μ (x)B(2)
μ (x) ≡

∮
�1

d �x · B̄(2)(�x) (10.122)

as a circulation of the field �B(2) (established by �2) around �1. Using now Stokes’
theorem, we write ν as the surface integral

ν =
∮
�1

d �x · �B(2)(�x)

≡
∫
!1

dσ �n · �∇ × �B(2)

=
∫

dσ �n · �J (10.123)

where !1 is an arbitrary surface with boundary �1. Thus, ν counts how many times
the loop �2 winds around �1.

After putting it all together, we get a formula for the two-spinon amplitude W (2)

of the form

W (2) =
∑
�1,�2

[
A(�)e i

2θ ((R(�1)+R(�2))
]

e
i
θ
ν(�1,�2) (10.124)

which, for an exchange process, acquires an additional factor −e±iδ. The quan-
tity in brackets in Eq. (10.124) is a renormalized amplitude including possibly an
anomalous spin. It represents the total two-spinon amplitude in the topological
sector with fixed linking number ν.

In the next sections we will find that the remarkable properties of the spinons in
the CS theory are generically present for any system with anyons.

10.6 Fractional statistics

One of the fundamental, and most cherished, axioms of local quantum field theory
is the spin-statistics theorem. In the way in which it is most commonly stated,
it says that particles with integer (half-integer) spin are bosons (fermions) and
that the corresponding second-quantized fields obey canonical equal-time com-
mutation (anticommutation) relations. At the root of this theorem is the need to
preserve causality in a theory with local interactions, as well as the requirement
for the existence of a lowest energy state. Spin can only be integer or half-integer
since the fields should transform as an irreducible representation of the Lorentz
group in (3+ 1) dimensions: SO(3, 1). Even in a non-relativistic setting, the same
requirements arise since the group of rotations SO(3) is a subgroup of SO(3, 1).
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Furthermore, the many-particle wave functions should be either symmetric or anti-
symmetric under the exchange of any pair of particles, giving rise again to bosons
and fermions. Thus, it may appear that these are the only possibilities.

The situation becomes radically different if the dimension of space-time is less
than four. It has been known for a very long time (Jordan and Wigner, 1928) that in
one space dimension the statistics is essentially arbitrary. This is basically a kine-
matic effect. Fermions on a line cannot experience their statistics since they cannot
get past each other, and neither can bosons with hard cores. The Jordan–Wigner
transformation, which we discussed in Sections 5.2 and 5.5, gives an explicit con-
struction of a boson operator a†( j) at the j th site of a 1D lattice as a non-local
function of fermion densities (see Eq. (5.88)),

a†( j) = c†( j)eiπ
∑

m< j c†(m)c(m) (10.125)

where the operators c†( j) and c( j) obey canonical anticommutation relations.
In continuum quantum field theory, there exists an analogous construction

known as bosonization (see Section 5.6), which yields a connection between a
canonical Dirac Fermi field ψα(x) (α = 1, 2) and a canonical Bose field φ(x)
in (1 + 1) dimensions given by the Mandelstam formula (see Eq. (5.272) and
Eq. (5.273))

ψα(x) = e
i√
π

∫ x
−∞ dy ∂0φ(y) ± i

√
πφ(x)

(10.126)

with α = 1 (2) for + (−).
Both constructions are based on the idea that in order to change the statistics one

has to multiply an operator that creates a particle, such as c†( j), by an operator that
creates a kink, i.e. a topological soliton. This idea, to some extent, can be general-
ized to higher dimensions. For instance, in (3+1) dimensions a dyon, a bound state
of a charged Bose particle and a Dirac magnetic monopole, behaves as a fermion.
However, unlike the 1D cases, all the examples in (3 + 1) dimensions are semi-
classical in character. Furthermore, in one space dimension, it is also possible to
get fractional statistics (i.e. a case intermediate between Fermi and Bose statis-
tics). A simple way to do that is to change the exponent of the kink operator in the
Jordan–Wigner formula by replacing π by an arbitrary angle δ. The resulting oper-
ators a†( j) do not obey Bose commutation relations, but instead exhibit fractional
statistics, i.e.

a( j)a†(k) = δ jk − eiδa†(k)a( j) (10.127)

These operators, which are also known as parafermion operators (Fradkin and
Kadanoff, 1980), are generalizations of the fermion operators which are essen-
tial to the solution of the 2D classical Ising model (Kadanoff and Ceva, 1971).
They occur naturally in a number of quantum theories in (1 + 1) dimensions,
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such as the Gross–Neveu model, and in 2D classical statistical mechanics. These
operators have been found to play an important role in the critical behavior of the
clock (or ZN ) models in two dimensions, when studied using the methods of CFT
(Dotsenko, 1984).

We will consider now the construction of anyon or parafermion operators more
closely (Fradkin and Kadanoff, 1980). From the point of view of our discussion,
the interest of this classical construction is that it has a natural generalization to
(2 + 1) dimensions that has turned out to be quite useful. Consider a 2D classical
statistical-mechanics model such as the ZN model on a square lattice. In the ZN

model, one defines an angle-like variable θ(�r) residing at each site of a lattice. The
angle θ(�r) takes the discrete values θ = 2πp/N at each site, where p and N are
positive integers and p = 1, . . . , N . The classical Hamiltonian H is chosen to be
a local function of the angles θ(�r) and invariant under global ZN transformations
θ(�r) → θ(�r)+2πm/N , where m is a constant integer (1 < m ≤ N ). The classical
partition function is

Z =
∑
{θ(�r)}

eβ
∑

�r ,μ cos(�μθ(�r)) (10.128)

where β = 1/T is the inverse temperature and μ= 1, 2. In this case, the
parafermion consists of an order operator Om(�r) = exp(i(2πm/N )φ(�r)) that
measures the order at a site �r of the lattice that is the endpoint of a defect or
domain wall, which flips the ZN spins by a fixed angle 2πq/N . This defect, which
tries to create a fractional vortex of strength 2πq/N , is most easily described by
means of a gauge field A j (�x) defined on all the links of the square lattice. The ZN

spins and the gauge fields are minimally coupled through the covariant difference
� jθ(�r) + A j (�r). The vector potential can be chosen to have non-vanishing curl
equal to 2πq/N on any arbitrary closed loop on the lattice that contains the site �R
on the dual lattice at the plaquette north-east of the site �r . A popular choice is to
have A j = 0 except on a path on the dual lattice ending at �R (a Dirac string). From
this construction it is apparent that the fractional statistics of these operators results
from a mechanism closely related to the Aharonov–Bohm effect.

It is now easy to check that the correlation functions of these operators are mul-
tivalued. Consider for instance the two-point function Gpq(�r , �r ′) that measures
the correlations between operators Op, in the presence of defects of strengths
±2πq/N , at sites �r and �r ′, respectively. Let Kq be the operator which creates
a defect of strength 2πq/N . Imagine carrying the site �r ′ around site �r on a closed
loop �. After a full round trip, the spin operators have returned to their original
locations but the Dirac strings are now misplaced: if in the original situation the
spin at �r was north of the string, now it is located south of it. The string can be
returned to its original position by means of a gauge transformation. However, the
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spin operator is not invariant under this operation. As a result, the correlation func-
tion acquires a phase of (4π/N )pq . Hence the composite operator �pq = OpKq

creates an excitation that is an anyon with statistical angle δ = (2π/N )pq .
From the discussion outlined above, in terms of a quantum-mechanical inter-

pretation, it is apparent that any statistics is possible in one space dimension.
Furthermore, the states created by operators that obey fractional statistics are, up
to a boundary condition, completely determined by the coordinates of the particles
on the line. In three dimensions, on the other hand, there does not seem to be room
for particles with exotic statistics. However, ’t Hooft (1978) showed that there can
be string-like states in 4D gauge theories that obey commutation relations with
fractional statistics.

In two dimensions, however, one finds a very interesting situation. The Lorentz
group for a 2D system is SO(2, 1). The rotation group, which is crucial to both
relativistic and non-relativistic systems, is SO(2). This group has only one gen-
erator Lz , the generator of infinitesimal rotations in the plane, and hence it is
abelian. Thus, all of its representations are one-dimensional and labeled by the
angular-momentum quantum number �. If the wave functions of the excitations
are required to be single-valued, the angular momentum � can only be an inte-
ger. However, fractional shifts of � are also compatible with the algebra of SO(2).
States with fractional angular momentum have multivalued wave functions. In
the Hilbert space which represents particles that move on the plane but are not
allowed to sit on top of each other (a “punctured” plane) such wave functions
are indeed allowed (Leinaas and Myrheim, 1977). The plane becomes isomor-
phic to a Riemann surface punctured at the locations of the particles, and different
points are identified up to a phase determined by the fractional angular momen-
tum. This framework provides for a natural construction of wave functions that
obey fractional statistics.

Wilczek (1982) proposed the first fully quantum-mechanical prescription regard-
ing how to make such particles. He dubbed them anyons. Wilczek’s model makes
use of the Aharonov–Bohm effect experienced by a particle of charge q moving
on the plane in the presence of a magnetic solenoid with flux φ perpendicular
to the plane. More precisely, he assumed that each particle is rigidly bound to a
solenoid that moves along with it. Consider now two such bound states. Let us per-
form the Gedankenexperiment of adiabatically carrying one bound state around the
other along some closed curve �. Because of the Aharonov–Bohm effect, the wave
function � of the bound state changes by an overall phase factor

� → exp

(
i
qe

�c

∮
�

�A(�x) · d �x
)

� (10.129)
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where �A is the vector potential associated with the magnetic flux of the solenoid.
The angular momentum � of the state is then equal to (qe/(hc))φ. If we denote
by φ0 the flux quantum, φ0 = hc/e, we can write the angular momentum � in the
form � = qα, where α = φ/φ0. The angular momentum is not an integer if the
Dirac quantization condition is not satisfied. The statistics obeyed by the bound
states can be computed by considering an exchange process in which one bound
state goes half its way around the other and, afterwards, both objects are shifted
rigidly in such a way that they now have exchanged their initial positions. In this
process their joint wave function has picked up a phase factor exactly equal to
half of that for a full round trip around the other particle, i.e. eiπα. This definition
is peculiar in the sense that the statistics of a state is determined by an adiabatic
transport of the bound states in such a way that they never get on top of each
other. Clockwise and counterclockwise processes yield complex-conjugate phase
factors. These wave functions are not representations of the permutation group.
These states form representations of the braid group. These states are not defined
in terms of the coordinates of the bound states alone. We have seen in Section 10.5
that the amplitude for the propagation of a pair of spinons in a chiral spin liquid has
precisely these properties. In that case, the fractional statistics was a consequence
of the presence of an induced Chern–Simons term in the effective action for the
low-energy degrees of freedom. We will see below that the Chern–Simons term is
the most general local gauge-invariant Lagrangian which binds particles and fluxes
together. In Chapter 13 we will see that the quasiholes of the Laughlin ground state
for the FQHE have very similar properties.

10.7 Chern–Simons gauge theory: a field theory of anyons

In order to make further progress we need a theory that will bind particles and
fluxes together. Fluxes are most simply described as curls of a gauge field, which
is usually called the statistical gauge field. Also, we want the particles to feel
the fluxes through an Aharonov–Bohm mechanism. This means that the particles
have to be minimally coupled to the statistical gauge fields through the covariant
derivative. There is a problem with this approach. In most cases, a fluxoid that is
electromagnetically coupled to a charged particle is not usually bound to it. The
Aharonov–Bohm effect is not a bound-state problem. Rather, the amplitudes for
the propagation of the particle are modified, by a phase factor, in the presence of
flux. Thus, in the usual case, particles and fluxoids move quite independently of
each other. In the problem that we are discussing, we want to force particles and
fluxes to move together, as if they were the constituents of a bound state. There
is a theory that does all of that in a simple and straightforward way, namely the
Chern–Simons gauge theory.
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Let us imagine that we have a set of N particles. In a path-integral picture, the
motion of the particles is described in terms of a set of trajectories � = �1 + · · · +
�N with specified initial and final conditions. Quantum mechanics tells us that we
have to sum over all possible trajectories, weighting each history by the usual phase
factor exp((i/�)S(γ )) in terms of the classical action of that particular history. If
the particles have mass m, the classical action Sm of the particles is

Sm(γ ) =
∫ tf

ti

dt
N∑

j=1

(
1

2
m

(
d �x j

dt

)2

+ d �x j

dt
· �A(�x j , t)−A0(�x j , t)

)
(10.130)

The second term implies that the particle trajectories can also be regarded as a set
of currents (and densities) Jμ = (J0, �J ) (μ = 0, 1, 2) that are different from zero
only on the trajectories of the particles and carry the unit of charge.

What should the action for the statistical gauge fields be? It cannot have the
standard Maxwell form since purely electrodynamic processes do not yield bound
states of particles and fluxes. What is needed is a constraint that will rigidly bind
particles and fluxes. There is only one gauge-invariant, local expression that does
the job: the Chern–Simons action. Let us consider a theory of a vector field, Aμ,
minimally coupled to a current Jμ (representing matter fields), with the Chern–
Simons action

S[Aμ] =
∫

d3x
θ

4
εμνλAμF νλ −

∫
d3x Aμ Jμ (10.131)

The Chern–Simons term, the first term of this action, is the unique local Lagrangian
which is locally gauge-invariant (up to some caveats discussed below) with the
smallest number of derivatives (one!), that breaks 2D parity P , x → −x and y →
y, and time reversal T , while keeping the product PT invariant. We will see in
Chapters 12 and 13 that these features of the Chern–Simons term will enable us
to construct a natural effective hydrodynamic theory of the quantum Hall effects
(integer and fractional).

To clarify the physical implications of this action it is useful to expand it in
components. We find, up to total derivatives, that the Lagrangian density is

L[Aμ] = A0(x)[θB(x)− J0(x)] − θ

2
εi jAi (x)∂0A j (x)− Ji (x)Ai (x) (10.132)

where B = εi j ∂iA j is the local flux (or “magnetic” field).
The binding (or attachment) of particles and fluxes follows from the observation

that in the Lagrangian of Eq. (10.132) the time component of the statistical vector
potential A0 plays the role of a Lagrange multiplier field, which enforces the local
constraint

J0 = θ

2
εi jF i j ≡ θB (10.133)
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This constraint simply means that a statistical flux of strength 1/θ is present wher-
ever there is a particle. In Section 10.5 we saw that the presence of a Chern–Simons
term modifies the two particle amplitudes in such a way that they exhibit fractional
statistics.

However, as we can also see from Eq. (10.132), the Chern–Simons term does
more than attaching particles to fluxes. It also determines the canonical structure of
this system. Indeed, we can apply the formalism of canonical quantization, which
in a gauge theory is most transparent in the temporal (A0 = 0) gauge. We see
that, in this gauge, the canonical momentum conjugate to the component A1 of
the gauge field is not the electric field (as is the case in Maxwell’s electrody-
namics) but (essentially) the other component, θA2. Thus the canonical equal-time
commutation relations of Chern–Simons gauge theory are[

A1(�x),A2(�y)
] = i

θ
δ(2)(�x − �y) (10.134)

In fact, the choice of A1 and A2 as canonical pairs is arbitrary, since we could have
chosen other linear combinations (called polarizations). A convenient choice that
is often used is the holomorphic polarization with canonical pairs Az = A1 + iA2

and Az̄ = A1 − iA2 (a deeper and more general discussion can be found in the
work of Elitzur et al. (1989)).

In addition, in this gauge, the physical states |Phys〉 are required to satisfy (as
usual) the Gauss-law condition, which here reduces to the constraint

(θB(�x)− J0(�x))|Phys〉 = 0 (10.135)

What about the Hamiltonian? From Eq. (10.132) it is easy to see that the
Hamiltonian is

H =
∫

d2x Ji (�x)Ai (�x) (10.136)

Thus, in the absence of external currents (i.e. matter fields), the Hamiltonian of the
Chern–Simons theory vanishes identically.

We conclude that the Chern–Simons gauge theory is equivalent to (a) a constraint
relating flux to charge, (b) a set of commutation relations, and (c) a vanishing
Hamiltonian. These seemingly peculiar properties follow from the fact that the
Chern–Simons gauge theory is a topological field theory. As such it is independent
of the choice of coordinates of space-time and thus it does not depend of the metric
gμν , from which it follows that the energy–momentum tensor must vanish,

T μν = δSCS

δgμν
= 0 (10.137)

As a consequence, the Hamiltonian vanishes identically. It also follows from the
independence of the metric that the choice of polarization (canonical pairs) must
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be to a large extent arbitrary since it requires a choice of gauge and a choice of
coordinates (all of which explicitly break the topological invariance).

In Section 10.4 we showed that the Chern–Simons action is invariant under
local (and smooth) gauge transformations, and that the invariance of the path
integral under large gauge transformations requires that the weight of the path inte-
gral be single-valued on space-times without boundaries. As we saw, this leads
to the quantization of the coupling constant of the Chern–Simons gauge theory,
θ = k/(2π), with k being an integer. Witten showed that the expectation values of
the gauge-invariant observables, the Wilson loops, are topological invariants and
provided a way to compute them (Witten, 1989). On the other hand, on a space-
time manifold with boundaries, the Chern–Simons action is not invariant under
gauge transformations that do not vanish at the boundary.

This observation is relevant in two cases of interest. One is a system defined on
a finite region of space (for example a disk D of circumference L) for all times. In
this case the space-time manifold is the filled cylinder! = D×S1, where the circle
S1 represents imaginary time. In this case the only states of the Chern–Simons
theory (in the absence of matter fields) have vanishing flux, B = 0, and hence
are gauge transformations, Aμ = ∂μφ (for the abelian case) and Aμ = U−1 ∂μU
for the non-abelian case. Furthermore, a set of coordinates must be specified at
the boundary. The effective action for these states depends only on the boundary
values of φ (or U ). If we define the boundary to be tangent to the direction x1, we
can write

SCS[φ] =
∫

dx0

∫ L

0
dx1

k

4π

(
∂0φ ∂1φ − (∂1φ)

2
)

(10.138)

which is a (1 + 1)-dimensional scale-invariant (and conformal!) field theory, the
chiral boson theory. In the non-abelian case the theory also projects to the boundary
with an action

SCS[U ] = kSWZW[U ] (10.139)

where kSWZW[U ] is the action of the level-k Wess–Zumino–Witten model (see
Chapter 7), another conformal field theory in (1 + 1) dimensions. Both systems,
abelian and non-abelian, will play a key role in the theory of the edge states of
quantum Hall fluids. We will discuss this problem in Chapter 13.

The other case of interest is the path integral for the wave functional of Chern–
Simons theory. By definition, the ground-state wave function �0 is the amplitude
of the evolution from some specified initial state to the final (vacuum) state. Thus
in this case the space-time manifold is open and has a boundary, the initial time
surface. This discussion tells us that the wave function depends on a choice of
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coordinates to define the initial state (which hence breaks general coordinate invari-
ance) and also on the choice of polarization. Since the path integral is no longer
gauge-invariant (it depends on the choice of gauge for the initial state) neither is
the wave function. This is analogous to the gauge covariance of the wave func-
tions of charged particles in magnetic fields. Nevertheless, the inner products of
these states and the expectation values of (gauge-invariant) physical observables
are gauge-invariant (Witten, 1992).

The key result from Witten’s development of Chern–Simons gauge theory (Wit-
ten, 1989) is the identification of the expectation value of the Wilson loop operators
with the topological invariants of the theory of knots, the Jones polynomial.
Since the action is topological, the expectation values of the Wilson loops depend
not on the shape and size of the loops but only on the topological character of the
knots they form. The Wilson loops, on the other hand, are idealized representations
of the worldlines of heavy particles in different physical processes (as we have seen
earlier in this chapter).

The expectation values of the Wilson loops describe the quantum-mechanical
amplitudes for adiabatic processes of these heavy excitations. These adiabatic
processes are equivalent to an exchange of the particles, the braiding of their
worldlines. For this reason, the fractional statistics that results, Eq. (10.117), is
better called (abelian) braiding statistics. Braids satisfy a group property, in the
sense that two consecutive braids are equivalent to a braid. This defines the braid
group. The Hilbert space of states described by Chern–Simons gauge theory and
its observables, the Wilson loops, can be classified by their braiding properties.
Thus, these quantum states are representations of the braid group. The spinons of
the chiral spin liquid and the quasiparticles of the Laughlin states of the FQHE
(which we will discuss later) are one-dimensional representations of the braid
group, described by a single phase, the statistical angle. Since these representa-
tions are one-dimensional, this type of fractional statistics is said to be abelian
since different processes commute with each other.

However, the braid group has finite-dimensional representations. Witten showed
that this happens in a Chern–Simons gauge theory with a non-abelian gauge group,
such as SU(2), provided that the level k > 1. These representations are labeled by a
matrix of phases. Consequently exchange processes of particles with this property
do not commute. This type of fractional statistics is called non-abelian. We will
see in Chapter 13 that the quasihole excitations of certain fractional quantum Hall
states are examples of non-abelian fractional statistics. A key feature of these states
is that the wave function for N of these particles is not fully specified by their
coordinates. This results in a finite degeneracy of these states. A braiding process
of two of the particles in one of these states is equivalent to a linear combination
of the degenerate states. These different linear combinations define their braiding
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matrices. This startling property led Kitaev (2003) and Freedman et al. (2002b)
to propose the use of these states to make a topological quantum computer! (Das
Sarma et al., 2008).

The previous discussion tells us that Chern–Simons gauge theory does not have
local degrees of freedom, which is natural since it is a topological field theory.
However, this does not mean that its Hilbert space is trivial. On a closed topo-
logically non-trivial manifold, such as the torus, Chern–Simons gauge theories
have a finite-dimensional Hilbert space whose dimension is determined by the
quantized coupling constant, the gauge group, and the topology of the manifold
(Witten, 1989).

10.8 Periodicity and families of Chern–Simons theories

The results of the last section allow us to conclude that a theory of anyons with
statistical phase δ can be defined in terms of a theory of fermions coupled to a
Chern–Simons gauge field with a coupling constant θ = 1/(2δ). Likewise, the
same theory of anyons can also be defined in terms of a theory of bosons with
hard cores coupled to a Chern–Simons gauge field but with a coupling constant
θ = 1/(2(δ ± π)). This equivalence is the starting point of the boson approach.

However, there is an apparent discrepancy between the fermion (or boson) and
anyon theories. The problem is that the anyon commutation relations are periodic
in the statistical phase δ. Nothing changes in the anyon problem if the statistical
phase is shifted by δ → δ + 2πn, where n is an arbitrary integer, not necessarily
positive. On the other hand, the only information in Chern–Simons theory about
the statistics of the particles is in the coupling constant θ . It is not obvious that the
Chern–Simons theory is invariant under the change in its coupling constant 1/θ →
1/θ + 4πn as is required by the anyon commutation relations. This issue is of
particular importance, since all of the approximations which are commonly made,
such as the average-field approximation of Laughlin, work only in one particular
period, i.e. for a choice of n. Fortunately, it is possible to show that the Chern–
Simons theory is indeed invariant under shifts. Notice that a shift of δ by 2πn is
equivalent to attaching an additional even number 2n of flux quanta to each one of
the particles. The argument is the following.

Let us first prove that “an even number of flux quanta is the same as noth-
ing.” Consider a system of fermions coupled to a Chern–Simons gauge field
with coupling constant θ = 1/(4πn). In first quantization, the functional inte-
gral reduces to a sum over all the histories of the particles and gauge fields. In
Section 10.5 we showed that the trajectories of the fermions form braids. If we
compare two histories that differ just by the relative braiding of two particles, the
propagation amplitude changes just by a phase factor exp(i �ν/(2θ)), where �ν is
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the change in the linking number. Thus, for θ = 1/(4πn), all scattering amplitudes
remain unchanged since the phase change is just an integer multiple of 2π .

This suggests that, if we want to attach an additional even number of fluxes
to each particle, then we have to couple the system of fermions to a new Chern–
Simons gauge field, let us call it A′

μ, with a coupling constant θ ′ = 1/(4πn). Thus,
the fermions end up being coupled to two Chern–Simons gauge fields, of which
one is responsible for the fractional statistics and the other for the periodicity.

However, the resulting theory seems to be unnecessarily complicated. This prob-
lem can be remedied quite easily. Since the (abelian!) Chern–Simons action is
bilinear in the fields, we can integrate out one of the two gauge fields. More pre-
cisely, let us consider a problem in which two Chern–Simons gauge fields, Aμ and
A′
μ, are both coupled to the same Fermi field ψ through the Lagrangian density L

(I drop the subindex of the gauge fields)

L = LF[ψ,A+A′] + θ1LCS[A] + θ2LCS[A′] (10.140)

where LF[ψ,A+A′] is the fermion part of the Lagrangian. Note that the fermions
are assumed to couple in the same way to both gauge fields. This is needed in order
for the fluxes to be additive. We can use the invariance of the integration measure
to define a new gauge field A = A+A′. The fermion couples only to the field A.

Let us now compute the functional integral over the fields A′. After the shift the
Lagrangian reads

L = LF[ψ, A] + θ1LCS[A −A′] + θ2LCS[A′]
= LF[ψ, A] + (θ1 + θ2)LCS[A′] + θ1LCS[A] − θ1

2
εμνλA′

μFνλ (10.141)

The functional integral over the A′
μ fields can be carried out exactly. As usual, one

first shifts the field A′
μ → A′

μ+ Ãμ, and Ãμ is then determined from the condition
that the terms linear in A′

μ are exactly cancelled out. This condition yields the result

Ãμ =
(

θ1

θ1 + θ2

)
Aμ (10.142)

The fermions are coupled to a single Chern–Simons gauge field Aμ with the
effective Lagrangian

Leff = LF[ψ, Aμ] + θeffLCS[Aμ] (10.143)

The effective Chern–Simons coupling θeff given by

1

θeff
= 1

θ1
+ 1

θ2
(10.144)

If we now make the choice θ2 = 1/(4πn) we get the desired result.
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Thus, Chern–Simons theories with coupling constants θ of the form 1/θ =
2δ + 4πn have the same physical properties. This result is often called the
flux-attachment transformation. Although this equivalence is an exact result,
approximations for each member of this sequence yield quite different results. This
property will be of great importance for our discussion of the FQHE in Chapter 13.

10.9 Quantization of the global degrees of freedom

In this section we consider the role and quantization of global degrees of freedom.
Here I follow the results of Wen, Dagotto, and myself (Wen et al., 1990), and of
Section 9.9. The global gauge degrees of freedom Ā j are completely unaffected
by the Jordan–Wigner transformation, which involves only local transformations.
They satisfy the homogeneous constraint equation

ε jk� j Āk = 0 (10.145)

As was discussed above, these degrees of freedom cannot be eliminated by local
(“small”) gauge transformations since they have non-vanishing circulation � j

along any large circles C j of the torus, i.e. the holonomies of the torus. The “best”
we can do, for instance, is to pick the gauge in which the fields Ā j are constant in
space (but not in time!),

Ā j = � j (t)

L j
(10.146)

(no sum over j is implied).
These relations allow us to derive an effective Lagrangian for the global degrees

of freedom � j (t) and to extract from it the quantum dynamics of the global degrees
of freedom. By carrying out the canonical formalism to completion, it is easy to
check that the non-integrable phases obey the commutation relations

[�1, �2] = i

θ
(10.147)

Hence, �1 and θ�2 form a canonical pair and cannot be diagonalized simulta-
neously. This feature is not present in 1D systems, for which there is only one
non-integrable phase, which is just a c-number. The global degrees of freedom in
one dimension are just boundary conditions. In (2 + 1) dimensions, we discover
that the global degrees of freedom acquire a life of their own. We will see now that,
as a result of this feature, the states of anyon systems on a torus are not determined
by the location of the particle alone.

It is now easy to check that the operators exp(i� j ) satisfy the algebra

ei�1ei�2 = e−
i
θ ei�2ei�1 (10.148)
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Let us denote the exponential operators exp(i� j ) by Tj . These operators will give
an extra phase to any state as the anyons move around each other. Furthermore,
since �1 and �2 do not commute, the eigenstates of the Hamiltonian are functions
of either variable but not of both at the same time. Also, both �1 and �2 enter only
through the exponential operators Tj . Thus we can always choose, say, �1 to be
an angle with a range [0, 2π]. Hence θ�2 is an angular-momentum-like operator
whose spectrum is the set of integers. In all cases of physical interest, the statistical
angle θ can only take the restricted set of values θ = m/(2πn), where m and n are
integers. After all local gauge degrees of freedom have been eliminated, we find
that the effective Hamiltonian for the anyon system has the form

H =
∑

�x, j=1,2

a†(�x) exp

[
i

(
A j (�x)+ � j

L j

)]
a(�x + e j )+ h.c. (10.149)

where A j is given by the solution of the local constraint. This Hamiltonian is
almost identical to the “free-anyon” Hamiltonian. The only difference here is the
presence of the global degrees of freedom � j , which were not included in our orig-
inal naive expression. We will adopt this generalized version as the definition of the
anyon Hamiltonian. In other words, the global degrees of freedom are an intrinsic
feature of the anyon system on a torus. Clearly, if the manifold on which the anyons
move is not a torus, but some other manifold, the properties of the global degrees
of freedom will be different. For instance, if the system is quantized on a manifold
with a boundary, such as a disk, there are no global degrees of freedom. Instead,
gauge invariance requires the existence of edge states, which have very interesting
properties.

The form of the Hamiltonian suggests that its eigenstates are not functions only
of the coordinates of the anyons, since H involves the global degrees of freedom
as well. Let us denote by �0 an eigenstate of H . We can also choose �0 to be an
eigenstate of �1 with zero eigenvalue or, which is equivalent, to be an eigenstate of
T1 with unit eigenvalue

T1�0 = �0 (10.150)

Thus |�0〉 is the “highest-weight state.” Let us consider now the state�p defined by

�p ≡ T p
2 �0 (10.151)

The state �p is an eigenstate of T1,

T1�p ≡ T1T p
2 �0 = e−

i p
θ T p

2 T1�0 = e−
i p
θ �p (10.152)

with the eigenvalue e−
i p
θ . Thus, for all cases of physical interest (θ = m/(2πn)),

there are m distinct eigenstates, each labeled by the integer p. The states of the
Hilbert space are thus labeled by the anyon coordinates and by the quantum number
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p describing the state of the global degrees of freedom. In particular, the condensed
states of the anyon system do exhibit this degeneracy. The idea that such topolog-
ical degeneracies occur quite generally in spin-liquid states and other topological
fluid states, which we discussed extensively in Chapter 9, was originally due to
Wen (1989).

10.10 Flux phases and the fractional quantum Hall effect

In Section 8.5 we considered solutions to the saddle-point equations, Eq. (8.64)
and Eq. (8.65), with a spontaneously generated flux of π per plaquette. The prob-
lem was shown to be equivalent, at the saddle-point level, to a system of fermions
moving in a uniform average field with a one-half flux quantum per plaquette. In
Section 10.1, we saw that a next-nearest-neighbor exchange coupling, which frus-
trates the system, effectively lowers the energy of the flux state. Furthermore, it
drives the flux state into a chiral phase with spontaneously broken time-reversal
invariance. The flux phase has two bands that become degenerate at four points of
the Brillouin zone. The chiral states have gaps at those points, and the gaps grow
larger as the frustrated regime J1 � 2J2 is approached.

If the fluctuations around the mean field are ignored (in the first stage), a flux
phase is then equivalent to two species (up and down spinons) of fermions moving
in that flux. In the chiral phase we also have a gap, which grows larger as frus-
tration increases (i.e. for increasing J2/J1). The one-particle spinon states can, in
this limit, be approximated by the eigenstates of the lowest Landau level of a con-
tinuum problem in which the fermions move in a field with the same total flux.
This approximation should be qualitatively correct, provided that no level crossings
occur. However, as we stressed previously, it is not possible to ignore the fluctua-
tions around the mean field. Nevertheless, such an analogy offers the possibility of
a new sort of spin liquid: a Laughlin state.

Laughlin states (Laughlin, 1983) are condensed states of N fermions moving
on a plane in the presence of an external magnetic field. These incompressible
states, which have been shown to exhibit the fractional Hall effect, represent a
featureless liquid. It is tempting to speculate that the spin-liquid states, which are
also incompressible if there is a gap, may be described in terms of a Laughlin wave
function, which we will discuss below.

Kalmeyer and Laughlin (1987) showed that, in the case of frustrated quantum
spin systems, there is indeed a close analogy with the Hall-effect system except
for the fact that, here, we have bosons instead of fermions. Let us discuss the
Kalmeyer–Laughlin picture in more detail. Consider a frustrated quantum spin sys-
tem, such as the square lattice with J1 = 2J2 or the triangular lattice. Let us assume
that the Hamiltonian is still given by the usual Heisenberg exchange Hamiltonian.
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Instead of representing spins in terms of constituent bands of fermions, one can
use hard-core bosons instead. This idea goes back to Holstein and Primakoff. Let
|F〉 represent the ferromagnetic state, which we will use as a reference state, not
necessarily the ground state. Relative to |F〉, the raising operator S+(�r) acts like a
boson-creation operator, a spin-flip being the boson. Since it is not possible to flip
a spin twice, the bosons should have hard cores: a site cannot be occupied by more
than one boson. More formally, we can write

S+(�r) = S1(�r)+ i S2(�r) ≡ a†(�r)
S−(�r) = S1(�r)− i S2(�r) ≡ a(�r) (10.153)

and

Sz(�r) = a†(�r)a(�r)− 1

2
(10.154)

where the operators a and a† are bosons and, hence, satisfy the commutation
relations

[a(�r), a†(�r ′)] = δ�r ,�r ′ (10.155)

The Pauli spin algebra requires that these operators also satisfy a hard-core
condition,

a2 = (a†)2 = 0 (10.156)

Using these identities, it is now easy to write the Heisenberg Hamiltonian in terms
of hard-core bosons. Notice that these identities follow just from the nature of the
states at each site. Thus, they hold for any lattice and dimension.

Thus, the quantum Heisenberg antiferromagnet can be written as an equivalent
model of hard-core bosons with a Hamiltonian of the form

H = J

2

∑
〈�r ,�r ′〉

(
a+(�r)a(�r ′)+ a+(�r ′)a(�r))

− γ J
∑
�r

a+(�r)a(�r)

+ J
∑
〈�r ,�r ′〉

a+(�r)a(�r)a+(�r ′)a(�r ′)

+ γ N J

4
+ U∞

∑
�r

a+(�r)a(�r)(a+(�r)a(�r)− 1) (10.157)

where 〈�r , �r ′〉 stands for the nearest-neighboring sites �r and �r ′ (on that lattice), γ is
the coordination number, and N is the total number of sites. The last term enforces
the hard-core condition since at U∞ → ∞ the only states in the Hilbert space with
finite energy are occupied by at most one boson.
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We are interested in studying the sector of the Heisenberg model with Stot
z = 0.

This implies that the bosons half-fill the system. Thus, if NB is the number of
bosons, we have

Stot
z =

∑
�r

(
1

2
− a+(�r)a(�r)

)
= N

2
− NB = 0 (10.158)

i.e. the number of bosons equals half the number of sites, NB = N/2.
The first term of the Hamiltonian Eq. (10.157) can be regarded as a kinetic-

energy term for the bosons. However, it has the wrong sign. We can remedy this
problem by means of the following trick. Let A(�r , �r ′) be a fixed gauge field defined
on each link. Let us write the Hamiltonian Eq. (10.157) in the form

H = − J

2

∑
〈�r ,�r ′〉

(
a+(�r)ei A(�r ,�r ′)a(�r ′)+ h.c.

)
+ J

∑
〈�r ,�r ′〉

a+(�r)a(�r)a+(�r ′)a(�r ′)

+ U∞
∑
�r

a+(�r)a(�r)a+(�r)a(�r)−
(
γ N J

4
+ U∞N

2

)
(10.159)

This expression is consistent with Eq. (10.157) provided that A(�r , �r ′) = π for all
bonds of the lattice. Now, the first term does have the interpretation of the kinetic-
energy operator for the bosons, but there is an external fixed gauge field A(�r , �r ′).
This gauge field, or rather its circulation, represents the frustration of the spin sys-
tem. For the case of a bipartite lattice, such as the square lattice, this gauge field
can be removed. This is so because the circulation of A(�r , �r ′) around any elemen-
tary plaquette of the square lattice is always equal to 2π, which, by periodicity, is
equivalent to zero. Indeed, on the square lattice, the transformation

a(�r) → (−1)x1+x2a(�r) (10.160)

flips all the signs and we get a kinetic-energy operator with a proper sign.
However, for a frustrated lattice, it is not possible to do this. In the case of a

triangular lattice the circulation is 3π , which is equivalent to π (mod 2π). Thus, the
flux is intrinsic and it is determined by the lattice structure. Moreover, we conclude
that the bosons behave like particles of charge e moving in an external magnetic
field B with a flux of half of the flux quantum per triangle. This result motivates
the following approximation (Kalmeyer and Laughlin, 1987).

Consider a system of hard-core bosons with an effective mass M moving on a
plane in the presence of an external magnetic field B and of a periodic potential
V (�r) that localizes the bosons on the lattice sites. The bosons also have a short-
range interaction. Now one imagines varying the periodic potential from some
weak value to the strong tight-binding limit, in which Eq. (10.159) holds. The
magnetic field B is fine-tuned so as to always give one-half of a flux quantum per
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triangle. If we denote the lattice spacing by a0 and the magnetic (or cyclotron)
length by l0, we can fulfill the requirements mentioned above by setting B = 1/l2

0

and l0 = a0(
√

3/(4π))1/2, in units in which the flux quantum φ0 equals 2π .
Assume for the moment that we can make the further approximation that the

tight-binding (lattice) limit and the weak-potential limit are smoothly connected.
In this limit a simple physical picture can be drawn. The problem we are dealing
with is that of a set of bosons with hard cores and short-range interactions, which
carry the unit of charge and are moving on a plane in the presence of an external
magnetic field perpendicular to the plane. Except for the fact that these particles
are bosons, this situation appears to be identical to the problem of the fractional
quantum Hall effect. In that case fermions (electrons each with charge e) move on a
plane in the presence of a magnetic field B with the same geometry. The electrons
have short-range interactions. This problem was solved by Laughlin (1983) who
guessed a wave function for it that appears to have exceedingly good properties.
It then appears that the chiral spin state and the fractional quantum Hall effect
(FQHE) belong to a general class of problems that are characterized by strong
correlation and broken time-reversal invariance. In the FQHE case, time reversal
is broken explicitly by the presence of the external magnetic field. In the chiral-
spin-state case time-reversal symmetry is spontaneously broken. We will see below
that, at long distances and low energies, both problems have effective Lagrangians
that include a Chern–Simons term. In a sense it is this Chern–Simons term which
defines this problem.

10.11 Anyons at finite density

In this section we consider a simple model that describes a gas of anyons at finite
density. Since we are interested in systems in their thermodynamic limit, this the-
ory is necessarily a field theory of anyons. The model that we will discuss is a
system of “free” anyons on a square lattice (in space) with the topology of a torus.
We choose to work on a spatial lattice both in order to avoid regularization prob-
lems and with an eye on applications to theories of high-Tc superconductors. The
time variable will remain continuous. This choice simplifies the formalism with-
out any significant loss of generality. The model can also be defined rigorously on
a space-time lattice (Fröhlich and Marchetti, 1988). The results have much wider
applications than our derivation may suggest. For instance, as a byproduct, we will
derive a Jordan–Wigner transformation for systems in two space dimensions. This
transformation is of great use for the study of 2D quantum magnets. The theory can
also be considered in the continuum, although some care has to be exercised at short
distances. Chen, Wilczek, Witten, and Halperin (Chen et al., 1989) considered
the continuum non-relativistic theory in great detail. In this section, I discuss the
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problem on a 2D square lattice, following the results of Fradkin (1989), which were
expanded and clarified (and corrected) by Eliezer and Semenoff (1992a, 1992b).

In the model that we consider, the anyons are free in the sense that the Hamilto-
nian contains only a nearest-neighbor hopping term. However, the anyons will be
assumed to have hard cores. This requirement is essential to the whole construc-
tion, since otherwise the anyon worldlines can cross and the notion of braids falls
apart.

Let us now show that the problem of a gas of Na anyons with hard cores on a
square lattice is equivalent to a gas of Nf = Na fermions, on the square lattice, cou-
pled to a Chern–Simons gauge field defined on the links of that lattice. To be more
precise, let a†(�x) and a(�x) be a set of anyon-creation and -annihilation operators
defined on the sites {�x} of the square lattice that satisfy the generalized equal-time
commutation relations

a(�x)a†(�y) = δ�x,�y − eiδa†(�y)a(�x) (10.161)

The angle δ indicates that we are dealing with fractional statistics. The choice
of sign is such that for δ = 0 we have fermions, whereas for δ = π we have
bosons. The hard-core condition implies that, when acting on physical states, these
operators obey

a†(�x)a†(�x) = a(�x)a(�x) = 0 (10.162)

The second quantized Hamiltonian is simply given by

H =
∑
〈�x,�y〉

a†(�x)a(�y)+ h.c. (10.163)

where 〈�x, �y〉 are nearest-neighboring sites on the square lattice.
Consider now a set of fermion-creation and -annihilation operators c†(�x) and

c(�x) on the same square lattice. Let A j (�x) be a set of boson operators defined on
the links of the lattice {(�x, �x + e j )} (with j = 1, 2) representing statistical gauge
fields. A naive transcription of the commutation relations of the Chern–Simons
gauge theory in the continuum to a discrete lattice would lead to the requirement
that the gauge fields defined on the links of the lattice must satisfy equal-time
commutation relations of the form[

A1(�x), A2(�y)
] = i

θ
δ�x,�y (10.164)

Notice that, at every point �x of the lattice, the component of the vector potential
along the direction x1 is the canonical pair of the component along the direction x2.
We will see below that these commutation relations are not quite correct, and that
this leads to inconsistencies.
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The dynamics of the system is governed by the Hamiltonian

Hf =
∑
�x, j

c†(�x)ei A j (�x)c(�x + e j )+ h.c. (10.165)

and the physical states {|Phys〉} are required to satisfy a local constraint (“Gauss’s
law”) between the fermion density ρ(�x) and the local magnetic flux B(�x) of the
statistical gauge fields,

(ρ(�x)− θB(�x))|Phys〉 = 0 (10.166)

This constraint implies that a fluxoid of strength 1/θ is attached to each particle
at the level of the lattice scale. The local statistical flux B(�x) is given by the usual
formula

B(�x) = �1 A2(�x)−�2 A1(�x) (10.167)

where � j is the finite-difference operator in the direction j . The flux thus defined
effectively exists only on the dual lattice. This formulation has the additional
advantage that the particles are not allowed to get “inside” the flux.

However, we must now check that the Gauss-law generators G(�x) defined by
Eq. (10.166) commute with each other at all lattice points[

G(�x),G(�y)] = 0 (10.168)

This condition, a requirement for the consistency of a gauge theory, is not satis-
fied with the naive commutation relations we assumed in Eq. (10.164). There is,
however, a consistent set of commutation relations compatible with the Gauss-law
constraints, which can be derived from the following lattice action (in continu-
ous time) for the Chern–Simons gauge field (Eliezer and Semenoff, 1992a, 1992b)
(i, j = 1, 2):

SCS[A] =
∫

dt
∑
�x

A0(�x, t)εi j A j (�x, t)− 1

2

∫
dt

∑
�x

Ai (�x, t)Li j ∂t A j (�x, t)

(10.169)
where Li j is the following lattice operator:

Li j = −1

2

(
�+

2 +�−
2 −2 − 2�+

1 + 2�−
2 +�−

2 �
+
1

2 + 2�+
2 − 2�−

1 −�−
1 �

+
2 −�+

1 −�−
2

)
(10.170)

where �±
i are the forward (+) and backward (−) difference operators along direc-

tion i : �±
i f (�x) = f (�x±ei )− f (�x), with ei the lattice unit vector along direction i .

The second term of this action defines the canonical commutation relations, which,
although they are less local than the naive ones of Eq. (10.164), lead to compatible
constraints.



408 Chiral spin states and anyons

The Hamiltonian H , together with the constraint and the commutation relations,
follows from the canonical quantization in the gauge A0 = 0 of the lattice action
(again with continuous time)

S =
∫

dt
∑
�x

c†(�x, t)(i ∂0 + A0 + μ)c(�x, t)−
∫

dt Hf(c
†, c, �A)− SCS[A]

(10.171)

Here Hf is the fermion Hamiltonian of Eq. (10.165), μ is the chemical potential,
x = (�x, t), and SCS is the Chern–Simons action of Eq. (10.169). This action is
explicitly invariant under local, time-dependent, gauge transformations.

The equivalence between the anyon Hamiltonian and the Chern–Simons gauge
theory coupled to fermions is established by solving the constraint Eq. (10.166),
the flux-attachment condition that relates the local flux to the local density. This can
be accomplished by fixing the remaining invariance under local time-independent
gauge transformations. We will choose the Coulomb or anyon gauge �∇ · �A(�x) = 0.
The statistical vector potential �A(�x) which is the solution of the constraint in this
gauge is an explicit function only of the local particle density. Thus it may appear
that there are no gauge degrees of freedom left. This, however, is not generally the
case. Whether or not there are any gauge degrees of freedom left depends on the
boundary conditions. On a torus, there are global gauge degrees of freedom that
are not affected by the local fixing of the gauge.

We now have to solve the constraint, Eq. (10.166), for a square lattice with the
topology of a torus. Let L1 and L2 be the linear dimensions of the lattice along
directions 1 and 2, respectively. It is impossible to eliminate all the gauge degrees of
freedom by solving the constraint equation no matter what gauge is chosen unless
large gauge transformations that wrap around the torus along direction 1 or 2 are
included. Following our discussion in Chapter 9, let us consider the circulation of
the statistical vector potential on a non-contractible closed loop wrapping around
the torus along one of its large circles C j ( j = 1, 2). Any local time-independent
gauge transformation shifts the spatial components of the vector potential Ak by the
gradient of a smooth function of the coordinates �(�x), i.e. Ak(�x, t) → Ak(�x, t)+
�k�(�x). Thus, the circulation � j , with � j =

∮
C j

d �x · �A(�x) (which can be defined
on the square lattice in an obvious way), is unchanged since � is a smooth and
single-valued function of �x . Notice that this is the case even in the absence of
fermions! Thus, the circulations � j , or non-integrable phases, are global degrees
of freedom of the gauge field. A consistent treatment of this problem must take into
account their dynamics.

There is a simple way to take care of both global and local gauge degrees of
freedom. The local gauge degrees of freedom are non-local functions of the local
particle density ρ(�x, t) given by the solution of the local constraint equation in
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some particular gauge. The global degrees of freedom are the non-integrable phases
� j . To make any further progress it is necessary to fix the gauge. At the level of the
functional integral, we first observe that the component A0 of the statistical gauge
field can always be integrated out, giving rise to the local constraint at all times. We
next write the spatial components of the statistical vector potential A j in the form

A j (x) = A j (x)+ Ā j (x) (10.172)

where A j is a particular solution of the constraint equation and Ā j generates the
non-integrable phases which are solutions to the homogeneous constraint equation
(i.e. without fermions). We can completely determine all of these fields by choosing
a particular gauge.

Let us consider first the local gauge degrees of freedom. In the Coulomb gauge,
the inhomogeneous solution for the constraint equation is given in terms of the
scalar field �(�r):

A j (�x) = ε jk�k�(�r) (10.173)

where �r are the sites of the dual lattice (Fradkin, 1989). Here the scalar field � is
the solution to the equation (see Eq. (10.166) and Eq. (10.167))

�2�(�r) = −1

θ
ρ(�x) (10.174)

where �r is the site on the dual lattice located northeast of the site �x on the direct
lattice and �2 is the lattice Laplacian.

In this approach, fluxes are on the dual lattice while particles are on the direct lat-
tice. Particles and fluxes never sit on top of each other and we have no ambiguities.
On the other hand, we could have chosen to put the flux southeast of the particle,
or some other similar prescription. These different prescriptions are related to the
possible existence of a self-linking number and an anomalous spin. We will not
explore these issues any further. Let us simply note that this lattice regularization
provides a natural way to separate particles and fluxes while keeping all the relevant
symmetries intact. Also note the close analogy with the order–disorder operator
construction for 2D classical statistical-mechanical systems. This feature is also
present in the 2D classical Ising model and it reflects the fact that the Onsager
fermions are two-component spinors (Kadanoff and Ceva, 1971).

We now use the lattice Green function G(�r , �r ′), that is, the solution of the
partial-difference equation

�2
�r G(�r , �r ′) = δ�r ,�r ′ − 1

L1L2
(10.175)

The last term of this equation, while unimportant in the thermodynamic limit,
is necessary in order to define the Green function in a finite system without
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boundaries, no matter how large it is. The solution for the scalar field has the
form

�(�r) = 1

θ

∑
�r ′

G(�r , �r ′)ρ(�x ′) (10.176)

Thus, by inserting Eq. (10.176) into Eq. (10.173), we can write the vector potentials
A j in the form

A j (�x) = 1

θ
ε jk�k

∑
�r ′

G(�r , �r ′)ρ(�x ′) (10.177)

Let us define the multivalued function"(�x, �r ′) as the solution for the lattice version
of the Cauchy–Riemann equation

−� j G(�r , �r ′) = ε jk�k"(�x, �r ′) (10.178)

The function "(�x, �r ′) is found by integrating the Cauchy–Riemann equation
along a path �(�x, �x ′), on the direct lattice, going from �x to �x ′ which leaves the point
�r to its left. For a finite system, the function "(�x, �r ′) obtained by this procedure is
path-dependent. Moreover, along a closed path � on the direct lattice, which has
the point �r of the dual lattice in its interior region, the function" has a discontinuity
(�")�. We can compute this discontinuity by using the Cauchy–Riemann equation

(�")� =
∑
�

s j (�)� j" =
∑
�

s j (�)ε jk�k G (10.179)

where s j (�) is a vector field that is equal to unity on the path� and zero everywhere
else. The last “line integral” in this equation can be computed by first using a
discrete version of Gauss’s theorem and then inserting Eq. (10.175) to yield

(�")� =
∑
�̄

�2G = 1 − A(�̄)
L1L2

(10.180)

where �̄ is the region of the dual lattice inside the closed path � and A(�̄) is its
area. Thus, in the thermodynamic limit, the function " has a jump equal to unity
as a closed path � is traversed. Equivalently, we can say that " is a multivalued
function that has a branch cut representing a jump by one unit. Using the same line
of reasoning, one can show that the following important identity holds:

"(�x, �r ′)−"(�x ′, �r) = 1

2
(10.181)

This equation can be derived by using the following geometric construction. Draw
a rectangle centered at �x that has corners at �x + �R and �x − �R along a diagonal.
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We now consider the paths �1, �x + �R → �x − �R without crossing the cut, and �2,
�x + �R → �x − �R crossing the cut. By symmetry, we have(

"(�x − �R, �r)−"(�x + �R, �r)
)
�1

=
(
"(�x + �R, �r)−"(�x − �R, �r)

)
�2

(10.182)

Since the total discontinuity of " is unity, [�"]�1+�2 = 1, we get just half that
result for a “half-way trip.”

We can now use the Cauchy–Riemann equation, Eq. (10.178), to write the vector
potential A j in Eq. (10.177) as the gradient of a scalar “function” φ(�x):

A j (�x) = � jφ(�x) (10.183)

where φ is given by

φ(�x) = 1

θ

∑
�x ′
"(�x, �r ′)ρ(�x ′) (10.184)

Therefore, the vector potentials associated with the local gauge degrees of freedom
are pure gradients, and they can be “eliminated” by means of the (singular) “gauge
transformation”

a(�x) = e−iφ(�x)c(�x) (10.185)

However, since φ is a function of the local density ρ(�x), the phase factor e−iφ is
not a c-number but an operator. This operator creates a coherent state of vector
potentials, which represents the flux attached to the particles. The operators a(�x)
so defined satisfy the anyon commutation relations and the hard-core condition.
Indeed, after some straightforward algebra we get that the operators a(�x) satisfy
the commutation relations

â(�x)â†(�y) = δ�x,�y − eiδâ†(�y)â(�x) (10.186)

where the statistical phase δ is given by

δ = 1

θ

(
"(�x, �r ′)−"(�x ′, �r)

)
= 1

2θ
(10.187)

The hard-core condition a(�x)2 = 0 is a consequence of the fact that the operator
c(�x) is a fermion. Thus, the operators a(�x) and a†(�x) are anyon-destruction and
-creation operators. The statistical angle δ and the Chern–Simons coupling constant
θ are related by

δ = 1

2θ
(10.188)

This is the same result as that we derived in Section 10.5 by considering a first-
quantized path-integral approach.
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It is clear that much of what was done above for a lattice theory can also be done
in the continuum case. Thus, the identification of anyons with either fermions or
bosons coupled to Chern–Simons gauge fields is also valid for continuum systems
(Semenoff, 1988), but with one caveat. The notion of attaching fluxes to particles in
the continuum is a very tricky one. We remarked in Section 10.5 that, in addition to
fractional statistics, the particles may acquire a fractional induced spin depending
on the definition of the problem at short distances. For example, if the particle
and the charge literally “sit on top of each other,” there is no relative winding and
no extra phase can possibly appear. But, if the particle and the flux are separated
by some distance, they can wind around each other. As a result an extra phase
may appear in the propagation amplitudes. This extra phase can be interpreted as
an induced fractional spin. The lattice theory that we have discussed above does
separate particles from fluxes in a natural and gauge-invariant way. We then expect
that lattice anyons should have an induced fractional spin.

10.12 The Jordan–Wigner transformation in two dimensions

The identity

â(�x)â†(�y) = δ�x,�y − eiδâ†(�y)â(�x) (10.189)

leads to the 2D analog of the Jordan–Wigner transformation discussed in Chapter
5. In particular, for θ = 1/(2πm) we get δ = πm. Hence, for m odd the operators
a(�x) obey equal-time boson commutation relations and a hard-core condition. If we
recall the mapping in Section 10.6 between bosons with hard cores and spin-1/2
Pauli operators:

σ+(�x) = a†(�x), σ−(�x) = a(�x), σ3(�x) = 2a†(�x)a(�x)− 1 (10.190)

we get from Eq. (10.185)

σ+(�x) = c†(�x)e+iφ(�x), σ−(�x) = e−iφ(�x)c(�x), σ3(�x) = 2c†(�x)c(�x)− 1
(10.191)

These equations tell us that the 2D quantum Heisenberg antiferromagnet on a
square lattice is exactly equivalent to a theory of spinless fermions on the same
lattice coupled to a Chern–Simons gauge field. In addition, there is a direct density–
density repulsive force among nearest neighbors. Thus, unlike the familiar results
from one dimension, in which the fermions are free (see Chapter 5) in the XY
limit, there is a long-range gauge interaction in two dimensions even in the XY
limit. This property is due to the fact that, in one dimension, the only possi-
ble flux that the fermions can feel is a global effect determined by the boundary
conditions. In two dimensions, the fermions feel both a local and a global flux.
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As we will see next, even the global flux is non-trivial. Although the resulting
fermion theory is not free, approximations and perturbation theory in one scheme
still turn into a non-perturbative feature in the other. The approach employing
the Jordan–Wigner transformation, combined with an average field approximation
(and quantum corrections), has been applied with success to the case of the 2D
spin-1/2 antiferromagnet (López et al., 1994). At the mean-field (average-field)
level it has also been applied to the quantum antiferromagnet on some frustrated
lattices (Yang et al., 1993; Misguich et al., 2001).
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Anyon superconductivity

11.1 Anyon superconductivity

In this chapter we will consider the problem of predicting the behavior of an
assembly of particles obeying fractional statistics. We have already considered the
problem of the quantum mechanics of systems of anyons. However, we did not
consider what new phenomena may arise if the system has a macroscopic number
of anyons present. At the time of writing, the physical reality of this problem is still
unclear. However, this is such a fascinating problem that we will discuss it despite
the lack of firm experimental support for the model.

There are two different physical situations in which the problem of anyons
at finite density is important. Halperin (1984) observed that the quasiparticles
of the Laughlin state for the FQHE obeyed fractional statistics (i.e. they are
anyons). In Chapter 13 we will discuss Halperin’s theory. Furthermore, Halperin
and Haldane suggested that, for filling fractions of a Landau level different from
the 1/m Laughlin sequence, the ground state of a 2D electron gas in a strong
magnetic field could be understood as a Laughlin state of anyons. Shortly after-
wards, Arovas, Schrieffer, Wilczek, and Zee (Arovas et al., 1985) studied the
high-temperature behavior of a gas of anyons and calculated the second virial
coefficient.

Much of the original interest in this problem was connected to its possible rel-
evance to high-temperature superconductors. Since anyons “interpolate” between
fermions and bosons, it is natural to ask whether an assembly of anyons at finite
density is more “fermion-like” or “boson-like.” Fermions have non-condensed
ground states with Fermi surfaces, whereas bosons undergo Bose condensation
and are superfluids. In two remarkable papers, Laughlin (1988a, 1988b) argued that
anyons generally form “condensates” in the sense that their ground states exhibit
superfluid properties. Fetter, Hanna, and Laughlin (Fetter et al., 1989) developed a
mean-field theory for the free-anyon gas in the continuum that has generally con-
firmed these conjectures. They argued that, if one represents anyons in terms of

414
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fermions coupled to fractional fluxoids, then the fermions feel an effective average
flux determined by the particle density. A quantum-Hall-effect-like picture could
then be used, at least within mean-field theory. In a sense this is a very surpris-
ing result since a quantum-Hall-effect system is incompressible and, thus, does
not have any low-energy modes. However, the flux is uniform only on average
since the constraints force it to fluctuate together with the particle density. Fetter,
Hanna, and Laughlin showed that this was indeed the case. They did a calculation
with the flavor of a random-phase approximation (RPA) and found a Goldstone
pole in the (fermion) current–current correlation function. Hence, the fluctuations
restore the compressibility which is necessary in order for the system to behave
like a condensate. They argued that this pole implies the presence of a Meiss-
ner effect for an external electromagnetic field. This picture relies on two crucial
assumptions: (1) the fermions can effectively be stripped of their fluxes and (2) the
Goldstone pole is robust against fluctuations.

The predictions of Fetter, Hanna, and Laughlin have, to some extent, been con-
firmed by extensive numerical calculations (Canright et al., 1989). Chen, Wilczek,
Witten, and Halperin (Chen et al., 1989) offered an argument to explain why the
Goldstone pole is exact that is based on the f-sum rule, which is a consequence of
gauge invariance (see Chapter 12). For a nice derivation see, for instance, the book
by Martin (1967).

Wen and Zee (1990), Lee and Fisher (1989), and Kitazawa and Murayama
(1990) considered this problem from a bosonic point of view. In this language, one
focuses more directly on the role of vortices, anyons binding into “Cooper bound
states,” etc. The emerging picture is complementary to the fermion description.
Local operators in one language are non-local “disorder” operators in the other. It
is worth noting that a similar picture has been developed for the FQHE (Girvin and
MacDonald, 1987; Read, 1989; Zhang et al., 1989), as we will see in Chapter 13.

In our discussion here, I will follow my own work, which is based on the
path-integral approach for fermions coupled to the Chern–Simons theory (Frad-
kin, 1990a) (see also Randjbar-Daemi et al. (1990) and Hosotani and Chakravarty
(1990)). In this approach, the exactness of the Goldstone modes follows from the
topological invariance of an effective Hall conductance. In Chapters 12 and 13,
we discuss these issues of topological invariance and quantization at great length
within the framework of the theory of the quantum Hall effect.

11.2 The functional-integral formulation of the Chern–Simons theory

In this section I consider the functional-integral formalism for a system of Na

anyons at zero temperature. I will use the fermion formalism discussed above. I will
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work with a chemical potential μ, which will be determined later from the require-
ment that the density ρ be equal to Na/L2 for a system with L2 sites (I assume a
square lattice of L2 sites with lattice constant a0 = 1).

The functional-integral representation for the partition function of this system
at zero temperature (in real time) with chemical potential μ and background
electromagnetic fields Aμ (μ = 0, 1, 2) is given by

Z =
∫

Dψ̄ Dψ DA ei
∫

dt L (11.1)

whereψ and ψ̄ are Grassmann fields and some gauge-fixing procedure is implicitly
assumed. This functional integral has to be understood as a coherent-state path
integral. Let us consider the gauge-field sector for the moment. The fermion sector
is already known to be a coherent-state path integral. In Section 10.9, I showed,
with some caveats, that A1 and θA2 form a canonical pair. Notice that A1 resides
on the link (�x, �x+ê1), whereas θA2 resides on the orthogonal link (�x, �x+ê2). In the
derivation of the path integral one has to introduce complete sets of states at every
intermediate time of the evolution. However, since A1 and A2 do not commute, we
cannot define a complete set of states in which both are diagonal. Let us say we
choose a basis in which A1 is diagonal and that we now insert a complete set of
such states at every intermediate time. In addition, the states have to be restricted
so as to satisfy the local constraint. This is implemented by means of a Lagrange
multiplier A0(�x, t) at every lattice site and at all times. The matrix elements of the
time-evolution operator for an infinitesimal time δt are not easy to compute in such
a basis. Thus, it is convenient to introduce also a complete set of states in which
A2 is diagonal. It is easy to show that, in addition to a term of the form θA0B that
arises from the constraint, we get an extra term of the form θ

∑
�x A2(�x)∂0A1(�x)

in the Lagrangian. This term is generated by the overlaps of A1 and A2 states
on neighboring time slices. The two sets of terms can be condensed into a single
expression: the Chern–Simons Lagrangian. Hence, the functional integral is just
the phase-space integral for the canonical pair A1 and θA2.

The anyons are coupled to the electromagnetic field via the minimal-coupling
prescription. Thus, all we need to do in order to include the chemical potential μ
and the electromagnetic fields Aμ is to modify the derivatives and amplitudes in
the usual manner:

D0 = ∂0 − iA0 → ∂0 − i(A0 + A0 + μ)

eiA j (x) → ei(A j (x)+A j (x))
(11.2)

Notice that, as usual, the chemical potential μ can be regarded as a constant shift
of A0. The integration measures are invariant measures.
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11.3 Correlation functions

The response of the system to slowly varying electromagnetic fields can be studied
in terms of the current correlation functions. In addition, we will be interested also
in correlations that probe other features of the spectrum of the system. In particular,
it is of interest to study the gauge-invariant fermion propagator

G�(x, x ′) =
〈
ψ̄(x)ei

∫
� Aψ(x ′)

〉
(11.3)

where
∫
�
A is shorthand for the line integral of the statistical vector potentials along

some path �. Likewise the pair correlation function can be calculated in terms of
the gauge-invariant four-point function, and so on. Other probes of interest are
Wilson loops for the statistical vector potential A along a closed path �:

WA[�] =
〈
ei

∮
� A

〉
(11.4)

In particular a space-like Wilson loop for a closed path � on the square lattice must
represent, as a result of the constraint, the fluctuation in the number of fermions
Na(!) (and hence anyons) inside the region ! bounded by the loop �:

Wspace [� = ∂!] =
〈
ei

∮
� A

〉
=

〈
e

i
θ

∫
! j0(x)

〉
≡

〈
e

i
θ
Na(!)

〉
(11.5)

In the case of a time-like loop �, the constraint implies that a static particle has
been added at one point and subtracted at another point. Thus 〈ei

∮
� A〉 for time-

like loops roughly represents the energy cost for adding a particle, say at �r , and
removing it at �r ′. This is the standard interpretation of the Wilson loop. Notice,
however, that now a particle is added without adding a flux. Hence we are creating
a mismatch between charge and flux.

Analogously, we can create a coherent state that represents a (static) flux piercing
a given plaquette at a dual site �r . The operator which creates this state is

K (�x) ≡ eiθ
∑

�x ′ ε jkAk (�x ′)Ac
j (�x ′) (11.6)

where Ac
j (�x ′) is a background static vector potential with a curl equal to the flux.

For Ac
j (�x ′) to represent a flux we must demand that Ac

j (�x ′) = (1/θ)� j"(�x ′, �r).
It is easy to show that this operator K (�x) is precisely identical to the operator eiφ

defined in Eq. (10.184). Indeed, using Gauss’s law, Eq. (10.166),

θε jk� jAk − j0 = 0 (11.7)
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one finds (up to boundary terms)

θ
∑
�x ′
ε jkAk(�x ′)Ac

j (�x ′) =
∑
�x ′
ε jkAk(�x ′)� j"(�x ′, �r)

= −
∑
�x ′
ε jk

(
� jAk(�x ′)

)
"(�x ′, �r)

= −1

θ

∑
�x ′

j0(�x ′)"(�x ′, �r) (11.8)

By means of the identity (see Eq. (10.181))

"(�x, �r ′)−"(�x ′, �r) = 1

2
(11.9)

one finds

θ
∑
�x ′
ε jkAk(�x ′)Ac

j (�x ′) = 1

2θ

∑
�x ′

j0(�x ′)− 1

θ

∑
�x

j0(�x ′)"(�x, �r ′)

≡ + 1

2θ
Na − φ(�x) (11.10)

Hence

K (�x) = e
i

2θNae−iφ(�x) (11.11)

Clearly K (�x) is not invariant under local gauge transformation of the statisti-
cal gauge field. Indeed, for a gauge transformation A j (�x) → A j (�x) + � jϕ(�x),
we get

θ
∑
�x ′
ε jkAk(�x ′)Ac

j (�x ′) → θ
∑
�x ′
ε jkAk(�x ′)Ac

j (�x ′)+ θ
∑
�x ′
ε jk�kϕ(�x)Ac

j (�x)
(11.12)

By integrating by parts and with the help of Eq. (10.178) and Eq. (10.175) one
finds

K (�x) → K (�x)e+iϕ(�x) (11.13)

and thus the product

a(�x) = K (�x)c(�x) (11.14)

is gauge-invariant. Obviously the operator a(�x) is nothing other than the anyon
operator.

11.4 The semi-classical approximation

We are interested in studying the physical properties of the partition function of
a gas of anyons. In particular we want to understand the following issues: (1)
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the spectrum of low-lying excitations, (2) the statistics of the quasiparticles, (3)
whether it exhibits superfluidity, (4) whether there is a Meissner effect, and (5) the
behavior of correlation functions.

I will study this problem by treating the functional integral within the semi-
classical (saddle-point) expansion. Formally this requires the presence of a large
coefficient in front of the action S = ∫

dt L . This system does not have such a coef-
ficient (apart from 1/� itself). It is plausible that at large densities the saddle-point
approximation may become accurate. Such is the case for the (weakly interact-
ing) electron gas, for which the RPA works very well. Since the statistical angle
δ happens to be equal to 1/(2θ) one expects that this approximation may also
work for large values of θ (i.e. almost a fermion). This is the limit studied
by Chen, Wilczek, Witten, and Halperin. In the Bose limit (θ = 1/(2π)) the
results depend crucially on the density. In fact it is well known that the hard-
core Bose gas, at moderate densities, can be treated within the RPA due to the
effective softening of the hard cores at such densities. At high densities on a lat-
tice, this approximation breaks down and the hard cores cause the existence of
crystalline states or off-diagonal long-range order (ODLRO) for the spin one-
half XY model. However, it is conceivable that there may exist regimes of Bose
systems for which the results of a fermion mean-field theory may still be qual-
itatively correct. The results of Lee and Fisher (1989) suggest that this may be
the case.

The saddle-point approximation (SPA) may also be formally justified by con-
sidering a system of M species of anyons (each with Na particles), which are
“free” in the sense that there is no explicit interaction term in the Hamiltonian.
The requirement of fractional statistics, of course, amounts to an interaction since
it is equivalent to the statement that all M species of fermions interact through the
same statistical vector potential Aμ. At large M , with θ = θ0 M , the SPA is for-
mally correct. For the sake of simplicity I will consider only M = 1 and assume
that the approximation is, at least, qualitatively correct.

The SPA is now carried out in the usual fashion. One first observes that the
action is a bilinear form in fermion variables. Thus the fermions can be integrated
out explicitly. The result is naturally a determinant,∫

Dψ̄ Dψ ei SF = det
[
i D0 − h[A j + A j ]

]
(11.15)

where SF is the fermion part of the action,

SF =
∫

dt
∑
�x,�x ′

ψ̄(x)
(

i D0δ�x,�x ′ − h[A j + A j ]
)
ψ(x ′) (11.16)
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and the one-particle Hamiltonian h[A] is

h[A j ] = τ
∑
j=1,2

eiA j (x)δ�x ′,�x+ê j (11.17)

The condition A j (x) = −A− j (x + e j ) guarantees the hermiticity of the
Hamiltonian.

Therefore, the statistical vector potentials Aμ have the effective action Seff

given by

Seff[Aμ, Aμ] = −i tr ln
(

i D0 − h[A+ A]
)
− i

θ

4
SCS[A] (11.18)

We can use the invariance of the measure to shift the statistical vector potentials
Aμ + Aμ → Aμ. The result is that the effective action now reads

Seff[Aμ, Aμ] = −i tr ln(i D0 + μ− h[A])− i
θ

4
SCS[A− A] (11.19)

where we have pulled the chemical potential μ out of the definition of D0. In this
form, the electromagnetic fields appear only in the Chern–Simons term which is
quadratic in the fields. We can thus write

SCS[A− A] = SCS[A] + SCS[A] − εμνλ
(
AμFνλ + AμF νλ

)
(11.20)

We will assume that the electromagnetic field Aμ is small and has zero average
strength. In this case we may treat Aμ as a perturbation (i.e. linear-response theory).
Note that a non-zero uniform external magnetic field cannot be treated in pertur-
bation theory. This is crucial for the correct study of the Meissner effect. Let us
consider, for the moment, the SPA in the absence of external electromagnetic fields.

We demand that Seff be stationary around some configuration Aμ, which is
assumed to be time independent (i.e. zero “electrical” statistical field Ē) and with
uniform statistical “magnetic” field B̄. Thus

δSeff

δAμ

∣∣∣∣
Āμ

= 0 (11.21)

yields the saddle-point equation (SPE)〈
jF
μ

〉
Ā = θ

2
εμνλ

(
F̄ νλ − Fνλ

)
(11.22)

where 〈 jF
μ〉 is the gauge-invariant fermion current.

Since the electromagnetic field will be assumed to be small and with zero aver-
age, we will set Fνλ = 0 in the SPE for the rest of this section. In this case, and for
solutions with B̄ = constant, Ē = 0, we find

ρ = θ B̄ (11.23)

where ρ is the fermion density.
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The requirement that there should be Na particles is met by requiring

− i

Z

∂Z

∂μ
= Na (11.24)

Since μ is nothing but a constant shift of A0, one finds

Na = θ� (11.25)

where � is the total flux

� = B̄L2 (11.26)

Thus, we find

θ B̄ = Na

L2
(11.27)

which is Laughlin’s result. Thus, at the saddle-point level, the fermions feel an
effective flux B̄ per plaquette.

The spectrum of this problem was studied by Hofstadter, and its properties are
summarized in Chapter 12. He found that, if the number of particles is fixed, then
as B̄ varies the spectrum of the effective one-particle Hamiltonian is very rich and
complex and, as a function of B̄, it has a fractal structure. However, in the problem
at hand, B̄ is determined by the number of particles. In fact, for a system of Na

anyons on a lattice with L2 sites, the density ρ is Na/L2 and therefore can be
written as a ratio of two relatively prime integers r and q, i.e.

ρ = r

q
(11.28)

Similarly, we can also write the statistical phase δ in the form of an irreducible
fraction in terms of two relatively prime integers n and m,

δ = π
n

m
(11.29)

Equivalently, the Chern–Simons coupling constant θ is given by

θ = m

2πn
(11.30)

The effective field B̄ is a fraction of the flux quantum, 2π ,

B̄ = 2π
P

Q
(11.31)

where the two relatively prime integers P and Q are given from Eq. (11.27) by

2π
P

Q
= ρ

θ
(11.32)
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Hence, we can write
P

Q
= nr

mq
(11.33)

The spectrum of one-particle states, the Hofstadter problem, for rational fluxes B̄ =
2π P/Q, consists of q Landau bands each with L2/Q degenerate states (see Section
12.2). In the continuum limit, these bands become the usual Landau levels. If we
denote by f the fraction of occupied Landau bands, then f must be Na × Q/L2

since there is a total of Na particles. The density is then f/Q. Using Eq. (11.28),
we get f = (r/q)Q. Thus, f is an integer if and only if q is a factor of Q.

Let (a, b) denote the largest common factor of the pair of integers a and b. Let
k and l be two integers defined satisfying k = (n, q) and l = (m, r). Hence, there
exist four integers n̄, m̄, r̄ , and q̄ such that

n = kn̄, q = kq̄

m = lm̄, r = lr̄ (11.34)

(n̄, q̄) = 1, (m̄, r̄) = 1

(n̄, m̄) = 1, (r̄ , q̄) = 1

Thus,
P

Q
= n̄r̄

m̄q̄
(11.35)

and
P = n̄r̄ , Q = m̄q̄ (11.36)

Therefore, the fraction f of occupied Landau bands is

f = r

q
Q = l

k
r̄ m̄ (11.37)

It is easy to show that k does not have any common factors with any one of l, r̄ ,
and m̄. In general, f is an irreducible fraction, unless one of the following
conditions is satisfied:

(n, q) = 1, (n, q) = m

(m, r)
, (n, q) = r

(m, r)
(11.38)

If f is not an integer, then there is no gap. Fluctuation effects should overwhelm
the saddle-point results and this theory will generally be unstable. Hence, whenever
possible, one must have f integer since, except for one special case, there is always
a gap. In summary, for arbitrary density ρ and Chern–Simons coupling constant
θ , it is not always possible to require f to be an integer. On the other hand, for
the “happy fractions” listed above f is an integer and we have an integer number
f of filled Landau bands. The physical behavior of the system will depend on
which of the conditions listed above is realized. Thus, the physics of this problem
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is determined not just by the density and the statistics, but also by number-theoretic
conditions, i.e. commensurability conditions.

Of particular importance will be the sequence θ = m/(2π), i.e. n = 1. In this
case we have k = (n, q) = 1 and f is indeed an integer, f = mr/(m, r). For this
sequence, we have an integer number f of Landau bands filled for a system with
arbitrary density ρ = r/q and statistical parameter δ = π/m. This is the case con-
sidered by Chen, Wilczek, Witten, and Halperin. The saddle-point approximation
is expected to work for θ large (i.e. large m), which is the limit in which the anyons
are almost fermions. The case of semions has m = 2.

An exceptional case occurs if ρ = 1
2 (i.e. for half-filling) and θ = m/(2πn), with

n an odd integer. In this case we get P = n, Q = 2m, and f = m. This means
that all states with energy less than zero are filled and that the Fermi level is at
E = 0. It has been known since Hofstadter’s work that, in this case, there is a band
crossing in the spectrum (see Chapter 12). These bands cross at E = 0 at Q points
of the Brillouin zone. In fact the case m = 1 and ρ = 1

2 corresponds to a “flux
phase” with B̄ = π (i.e. half-flux quantum per plaquette). In this case the fermion
spectrum is effectively relativistic. In fact, it has long been recognized that hopping
in a frustrated lattice is an efficient way to set up the Dirac equation on a lattice.
In general one finds Q species of Dirac fermions. Fluctuations in the statistical
gauge fields may open up a gap in the spectrum. It is possible that this may be done
in a manner in which time-reversal invariance is violated explicitly, or it may be
spontaneously broken by fluctuations. In the field-theory language, one is asking
whether a parity anomaly is present. This problem is exactly the same as the one
we have already encountered in our study of the chiral spin liquid in Chapter 10.
For lattice systems one has to deal with the “fermion-doubling” problem (here it is
Q-fold!). In most cases one expects no anomalies unless a perturbation that breaks
time reversal is explicitly introduced. We are going to see in the next section that
these issues are quite relevant for our problem.

Thus, the SPA to the partition function yields Laughlin’s result that the mean-
field theory for the anyon system should be equivalent to a system of particles (say
fermions) moving in an effective magnetic field determined by their density. It is
clear that this approximation assumes that the flux subsystem is rigid in the sense
that the average field, determined at the saddle-point level, will not be modified by
the fluctuations. In this high-density-like approximation, the fluctuations around
the average field B̄ should be small in order for this approximation to be stable.
The local value of the field is, however, still being determined by local fluctuations
of the density. In this sense, the system is compressible. If the local fluctuations are
massive, the spectrum should have a gap and the system will truly be rigid. But,
if the fluctuations have a gapless state, the system will not be rigid. Indeed, this
“fluctuation-induced compressibility” is the very origin of the superfluidity.
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11.5 Effective action and topological invariance

11.5.1 Effective action

In the previous section we discussed the SPA to the path integral for the anyon
gas. Fetter, Hanna, and Laughlin claimed that the fluctuations around the state
with average flux B̄ = 2π/Q induce a pole in the current–current correlation
function, which, in turn, is responsible for the superfluidity. This is the Fetter–
Hanna–Laughlin Goldstone boson. At first sight, this result seems to be quite
surprising. In fact, fermions in a background magnetic field always lead to a spec-
trum with a gap, as in quantum-Hall-effect systems. What is different here is that
the magnetic fields do not constitute a fixed background, since they are generated
by the particles themselves. The fluctuations of the system retain this character.
The SPA fixes only the average field, not its fluctuations, and one is led to study
the effects of fluctuations of the statistical gauge fields about the mean field. It is
natural to compute the effective action of the statistical gauge fields including the
effects of fermion loops. In this sense this calculation is close to the standard RPA.

Purely on the grounds of gauge and translation invariance, we can assert that the
effective action for the statistical gauge fields at low energies and long distances
(i.e. to leading order in a gradient expansion) should only be a function of the
fluctuating part of Fμν (with the smallest number of gradients) plus a term with
the same form as the bare Chern–Simons term. Banks and Lykken (1990) argued
that, if the effective action has an induced Chern–Simons term that happens to can-
cel out the bare one, then the Goldstone boson is found, and it is nothing other
than the massless transverse component of the fluctuating statistical vector poten-
tial. However, it is necessary to explain why this crucial cancellation, present to
leading order, survives renormalization. This is in fact far from obvious, since the
coefficients of the other terms do get renormalized.

Let us now investigate how the Goldstone pole appears within this path-integral
framework. We will see that the exactness of the Goldstone boson is a consequence
of the topological invariance of the quantized Hall conductance for this system of
fermions. Thus our problem is naturally related to the integer quantum Hall effect
(IQHE) on lattices. In fact, we are going to be using many results of the theory of
the quantum Hall effect. Most of these results are discussed in Chapter 12.

Let us first consider the quadratic (i.e. Gaussian) fluctuations around the mean
field. The effective action for the fluctuating part of the statistical gauge fields,
hereafter denoted by Aμ, to quadratic order, S(2), is given by

S(2)[Aμ] =
∑
x,x ′

δ2Seff

δAμ(x)δAν(x ′)
Aμ(x)Aν(x

′) (11.39)

where x ≡ (�x, t) and x ′ ≡ (�x ′, t ′), �x and �x ′ take values on the square lattice, and t
and t ′ are continuous (time) variables. Since Seff is a sum of a fermionic part and a
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Chern–Simons term, S(2) also is a sum of two terms. The first term, which comes
from the fermion loops, is nothing but the polarization operator �μν(x, x ′). The
second term is just the Chern–Simons term itself,

S(2)[Aμ] =
∑
x,x ′

�μν(x, x ′)Aμ(x)Aν(x
′)− θ

4
SCS[Aμ] (11.40)

where �μν(x, x ′) is the polarization operator for a system of fermions on a lattice
in the presence of the background magnetic field B̄. Thus it is just the usual linear-
response-theory kernel, the current–current correlation function of fermions.

However, the polarization tensor �μν of the fermions in this mean-field state
should not be confused with the actual polarization tensor of the full theory,
which we will denote by Kμν . While �μν is the current-correlation function of
the fermions of the mean-field theory, Kμν is the current-correlation function of
the anyon system. These two tensors are not the same and their properties are quite
different. We will discuss their different behaviors in detail in Chapter 13, where
we will discuss the fermion Chern–Simons theory of the FQHE, in which context
similar questions arise. For the purposes of our discussion of the anyon system, it
will be sufficient to note that, while a system of fermions in a magnetic field has
an explicitly broken time-reversal invariance and a finite Hall conductance, a sys-
tem of anyons at finite density (in zero external field) is time-reversal invariant and
should not have a “zero-field” Hall conductance (i.e. in the absence of an external
magnetic field). We will postpone the discussion of the electrodynamic properties
of the anyon system to Chapter 13, where it will be discussed together with the
theory of the FQHE. Here we will just derive an effective action for the low-energy
modes.

The polarization operator �μν has an interesting structure, whose form is
strongly constrained by gauge invariance and translation invariance. This structure
will be discussed in detail in Chapter 13. Here we will use a few important features
of its structure. The long-distance, low-energy behavior of S(2) can be obtained
simply by noting that it has to satisfy the requirements of translation and gauge
invariance. If there is a gap in the spectrum, �μν is also local and it has a gradi-
ent expansion. Thus the effective action for fluctuations at distances larger than the
inter-particle separation and energies less than the gap has the form

S(2)[A] ≈
∫

d2x dt

[
ε

2
�E 2(�x, t)− χ

2
B2(�x, t)+ 1

4
(σxy − θ)εμνλAμF νλ

]
+ h.o.t.

(11.41)

where ε, χ , and σxy are the (long-wavelength, low-frequency) dielectric constant,
diamagnetic susceptibility, and Hall conductance of the Fermi system, respectively.
Note that the term which contains the Hall conductance has the same form as but
opposite sign to the bare Chern–Simons term which determines the statistics of the
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anyons. This effective action is correct in the limit in which the frequencies of the
modes are small while their momentum is held fixed, but not in the opposite limit
of small momentum and fixed frequency.

The parameters (ε, χ , and σxy) are in principle determined by integrating out
all fluctuations from the highest energies allowed in this problem down to the
only physical scale this system has: the gap. One expects that these coefficients
will be heavily renormalized away from their saddle-point values. For the “almost-
fermion” limit of large θ , the renormalizations are expected to be small, of order
1/θ . Thus, although explicit expressions for these coefficients can be found (they
are given by various pieces of the polarization operator �μν), their precise form is
not in principle very important due to the above-mentioned renormalization effects.

While these considerations apply to ε and χ , as well as to the higher-order terms
in the effective action which we have neglected, the value of σxy is completely
determined already at the saddle-point level. This is so because σxy is the Hall
conductance for a system of fermions on a lattice, with an integer number f of
Landau bands exactly filled, which has been shown to be quantized.

11.5.2 Quantized Hall conductance and compressibility

The quantization of σxy has been studied extensively in the context of the quan-
tum Hall effect. Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) (Thouless
et al., 1982) showed that the σxy associated with the Hofstadter problem is quan-
tized in terms of an integer t in the range −Q/2 < t < Q/2, which, in turn,
is determined by a Diophantine equation. The theory of TKNN is discussed in
Chapter 12. The following results are relevant to our problem. If j denotes the j th
gap of a Hofstadter problem with B̄ = 2π P/Q, there exist two integers t j and s j

(with t j in the same range as t and s j unconstrained) such that

j = Qs j + Pt j (11.42)

If the Fermi energy lies in the f th gap, the Hall conductance is given by

σxy = e2

�

f∑
j=1

(t j − t j−1) (11.43)

with t0 = 0. Thus, in units in which e2 = � = 1, we find

σxy = t f

2π
(11.44)

where t f is the solution of the Diophantine equation for the f th gap. We may now
combine these results to get
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σxy = θ

(
1 − s f

ρ

)
(11.45)

The Diophantine equation has solutions in the form of a pair of integers
(
s f , t f

)
.

The solution is, in most cases, unique and, in general, both s f and t f will be dif-
ferent from zero. Under special circumstances, we will find families of solutions
with s f = 0. Also, in some special cases, the solution is not unique. The solutions
with s f = 0 play a special role for, as we will see, they represent the compressible
states.

Let us first consider the sequence θ = m/(2π) and ρ arbitrary. The mean-field
theory yields the values P = r/(m, r), Q = mq/(m, r) and it requires that exactly
f = mr/(m, r) Landau bands are filled. The Diophantine equation has, for j = f ,
the unique solution

s f =
{

0, t f = m, if |m| < mq/(2(m, r))

r/(m, r), t f = m − mq/(m, r), if |m| > mq/(2(m, r))
(11.46)

There are degenerate solutions whenever |m| = mq/(2(m, r)). In this case both
solutions are possible and the value of t f is ambiguous. It is easy to see that a degen-
eracy occurs whenever m = mq/(2(m, r)), i.e. for q = 2(m, r) and q even. This
includes the half-filled even-denominator case ρ = 1

2 . Which solution is realized
depends on how this degeneracy is lifted by additional terms in the Hamiltonian.
It is natural to assume that it is always possible to find terms that will remove
this degeneracy. The physical properties of the system will depend on the way we
choose to render the system non-degenerate.

Thus, in the absence of degeneracies, the solution is unique and one finds t f = m
and s f = 0 if q > 2(m, r). Hence, we get

σxy = m

2π
(11.47)

which is exactly identical to θ! We then conclude that, at least at the level of the
SPA and in the absence of degeneracies, σxy = θ and the Chern–Simons term in the
effective action for the fluctuating statistical gauge fields is cancelled out provided
that q > 2(m, r). As Banks and Lykken observed, this is a sufficient condition for
the existence of the Goldstone boson. Conversely, for q < 2(m, r), the solution has
s f = r/(m, r) �= 0, and there is no cancellation and no Goldstone boson.

For other sequences, such as n �= 1, it is not possible to find a solution of the
Diophantine equation with s f = 0. It is easy to check that this solution exists only
if n is a factor of m, which is impossible since (n,m) = 1 except for the case n = 1.
Thus, the other sequences do not exhibit superfluidity. These non-superfluid states
cannot be found in the continuum theory. They are the result of diffraction effects
generated by the underlying lattice. It is clear that, in the low-density limit, these
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effects do not impose an overwhelming constraint, provided that the Fermi energy
lies in one of the main energy gaps. In this case, there is a smooth continuum limit at
low densities. However, if the Fermi energy is in one of the lower gaps, we will not
get a cancellation, even in the low-density limit. Thus, the continuum limit is tricky
to get. We should then expect that the properties of the ground state should depend
on some details of the behavior of the system at short distances. This problem will
come back when we consider the role of higher-order fluctuations.

11.5.3 Stability of the mean-field state

One might wonder about the stability of this crucial result once fluctuations about
mean-field theory are considered. Two problems naturally arise. First of all, one
must worry about infinite renormalizations. In continuum relativistic-field theories
it is known that the Chern–Simons term does not acquire infinite renormalizations
(Semenoff et al., 1989). Non-relativistic theories are not expected to be any more
singular. Thus divergent renormalizations of σxy are not to be expected. However,
finite renormalizations are not excluded by such arguments. The stability of the
Goldstone boson requires no renormalization at all, neither infinite nor finite.

No-renormalization theorems usually follow from symmetry considerations or
as a result of topology (or both). For the case of the lattice system, Kohmoto, and
Avron, Seiler, and Simon, showed that σxy is a topological invariant (see Chapter
12). The topological invariance of σxy follows from the fact that the Brillouin zone
of a 2D system with periodic boundary conditions is a 2-torus. The integer tm is
the first Chern number of the fiber bundle associated with the Berry connection
induced by the wave functions on the 2-torus. Small changes in the microscopic
Hamiltonian will not change this number, provided that no band crossings occur
as a result of such changes. Qualitatively speaking, fluctuations about a solution
with a finite gap are expected to have the same effect. After all, the fluctuations,
configuration by configuration, will modulate the gap. Since each configuration
yields the same value for σxy , the final result should be the same, provided that
the sum over configurations makes sense. Once again, this argument requires the
existence of a non-zero energy gap. Niu, Thouless, and Wu have also given an
argument for the stability of the quantization of σxy including many-body effects
(i.e. fluctuations). They showed that, if the many-body wave function for the ground
state winds by the phases α and β along the x1 and x2 directions, then the value
of σ av

xy , averaged over α and β, is a topological invariant and hence it is quantized
in the full theory. For a system with specific boundary conditions, say periodic,
they showed that σ pbc

xy differs from σ av
xy by terms that vanish exponentially fast in

the thermodynamic limit, provided that the system has a non-zero energy gap. For
more details, see the discussion in Chapter 12.
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I thus conclude that the topological invariance of σxy guarantees that the
Goldstone boson is stable to all orders in perturbation theory.

11.5.4 Low-energy spectrum

We must then conclude that the anyon gas can exist in only one of two possible
states, each defined by a low-energy effective action of the form of a QED-type
theory with possibly a Chern–Simons term with some effective coupling. For the
case of the “happy fractions,” θ = m/(2π) and ρ = r/q, the effective action does
not have a net Chern–Simons term. The effective action has the form

S(2)[A] =
∫

d2x dt

[
ε

2
�E2(�x, t)− χ

2
B2(�x, t)

]
+ h.o.t. (11.48)

which is the action of free “Maxwell” electrodynamics in (2+1) dimensions. Here
I have neglected terms that vanish in the infrared limit.

Let us now consider the dual of this theory. Here we understand duality in the
statistical-mechanical sense in which a gauge theory in (2 + 1) dimensions is dual
to a theory with a global symmetry. Since the gauge field of this problem, the sta-
tistical gauge field, has a U(1) symmetry, its dual is a phase field. Let �μν(�x, t) be
a real antisymmetric tensor field. Since we are dealing with an anisotropic theory,
it is convenient to define �0i = �ei and �i j = εi j b, where �ei and b are real functions
of space and time.

Consider now the modified action S′

S′ =
∫

dt d2x

(
− 1

2ε
�e 2 + 1

2χ
b2 + 1

2
�μνFμν

)
(11.49)

We can identify the path integrals with actions S and S′ after a shift of the Gaussian
variables �μν , except for an irrelevant constant. The fluctuating statistical gauge
fields Aμ can now be integrated out, yielding the constraint on the �μν fields

∂μ�μν = 0 (11.50)

This constraint can be solved by means of the phase field ω defined by

�μν = 1

2π
εμνλ ∂

λω (11.51)

By substituting back into the effective action, we get the effective Lagrangian
density in terms of the ω field

L = 1

8π2χ
(∂0ω + m A0)

2 − 1

8π2ε
(∂iω + m Ai )

2 + h.o.t. (11.52)



430 Anyon superconductivity

which has the same form as in a conventional superfluid. This effective Lagrangian
was first obtained by Banks and Lykken. In this derivation I used the fact that
θ = m/(2π).

This theory has only one transverse degree of freedom, the “photon.” Note that
this has nothing to do with the real electromagnetic field. It originates from the
fluxes associated with the anyons. This “photon” is the only massless excitation
of this theory. It is precisely the Goldstone boson. It is responsible both for the
phase mode necessary for superconductivity and for a direct Coulomb-like static
interaction among sources (or excitations) that couple to the statistical gauge field.
At long distances, the (2 + 1)-dimensional Coulomb interaction goes like ln R,
where R is the separation between two sources of the field A. Thus, the energy
necessary to create a fermion diverges logarithmically with the size of the system.
The same happens with the energy required in order to add a flux to the system.

An anyon, however, is a gauge-invariant state. As such it couples only weakly to
the fluctuations of the statistical gauge field since it is neutral but not quite point-
like. Thus, we expect the energy of an anyon-like excitation to be finite and its value
to be determined primarily by short-distance effects. Let us consider an operator
that creates an anyon at point �x . It is easy to compute correlation functions of these
gauge-invariant operators in the Coulomb (or anyon) gauge. In this gauge, we can
write

A j (�x, t) = ε jk�kφ(�x, t) (11.53)

where φ also obeys periodic boundary conditions. If we now substitute Eq. (11.53)
back into Eq. (11.6) then, after an integration by parts of the argument of the
exponential, we find

K (�x, t) = eiθ!�yφ(�y,t)� jAc
j (�y) (11.54)

If we also choose the Coulomb gauge to describe the classical fluxes, i.e.
� jAc

j = 0, we see that, in this gauge, K (�x, t) is equivalent to the identity oper-
ator. Thus, the correlation function for anyon operators is, in the Coulomb gauge,
the same as the (gauge-dependent) fermion propagator evaluated in the same gauge.
In the Coulomb gauge, the fermion propagator has the following properties: (a) it
is multivalued and (b) it is short-ranged. It is multivalued, since the one-particle
wave functions are multivalued in this gauge. It is short-ranged, since the ground
state has filled Landau bands and the only possible one-particle states available are
in the next unfilled Landau band. These states are separated from the ground state
by the energy gap between Landau bands, which is finite.

In contrast, the elementary fermion excitations have a logarithmically divergent
self-energy. This is so because the operators that create these states are not gauge-
invariant, reflecting the fact that these are not neutral states. A gauge-invariant
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fermion operator can be defined. This is achieved by inserting the usual exponential
of the line integral, along some path �, of the statistical vector potential between a
pair of fermion-creation and -annihilation operators some distance apart from each
other:

c†(�x, t) exp

(
i
∫

�

Aμ dxμ
)

c(�x ′,t ′)
(11.55)

The massless “photon” gives rise to a logarithmically divergent fermion self-
energy. A similar treatment can be given to flux states. The operator K which
creates fluxes is not gauge-invariant. A way to make it invariant is to multiply this
operator by a fermion operator that represents anyons, not fermions or fluxes. How-
ever, it is still possible to multiply K (�x, t) by a line integral, just as in the fermion
case. The resulting operator is a boson, and it is manifestly gauge-invariant. The
one-particle states created by these operators also have logarithmically divergent
energy and exactly for the same reason: the exchange of massless “photons.”

Let us end this section by briefly considering the state in which the effective
action has a non-zero effective Chern–Simons term. I will call this phase the
quantum Hall state. The effective Chern–Simons coupling constant θ̄ equals

θ̄ = −s f
θ

ρ
(11.56)

Thus, a non-zero s f means θ̄ �= 0. A theory with a non-zero Chern–Simons cou-
pling constant is known to contain a massive photon. The mass of the photon is
proportional to θ̄ and hence it is determined by s f . Thus, the quantum Hall state
has short-range gauge interactions mediated by the statistical gauge field. These
fluctuations are effectively suppressed and the state is effectively incompressible.
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Topology and the quantum Hall effect

In this chapter I discuss the problem of electrons moving on a plane in the presence
of an external uniform magnetic field perpendicular to the system. This is a subject
of great interest from the point of view of both theory and experiment. The explana-
tion of the remarkable quantization of the Hall conductance observed in MOSFETs
and in heterostructures has demanded a great deal of theoretical sophistication.
Concepts drawn from branches of mathematics, such as topology and differential
geometry, have become essential to the understanding of this phenomenon. In this
chapter I will consider only the quantum Hall effect in non-interacting systems.
This is the theory of the integer Hall effect. The fractional quantum Hall effect
(FQHE) is discussed in Chapter 13. The related subject of topological insulators is
discussed in Chapter 16.

The chapter begins with a description of the one-electron states, both in the
continuum and on a 2D lattice, followed by a summary of the observed phe-
nomenology of the quantum Hall effect. A brief discussion of linear-response
theory is also presented. The rest of the chapter is devoted to the problem of
topological quantization of the Hall conductance.

12.1 Quantum mechanics of charged particles in magnetic fields

Let us review the Landau problem of the states of charged particles moving on a
plane in the presence of a perpendicular uniform magnetic field B. We will consider
both continuum and lattice versions of the problem.

We consider first the continuum problem. Let us think of a spinless particle
of mass M and charge −e. The one-particle Hamiltonian which describes the
dynamics of this system is

H = 1

2M

[(
−i�

∂

∂x1
− e

c
A1

)2

+
(
−i�

∂

∂x2
− e

c
A2

)2
]

(12.1)

432
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The vector potential �A is such that its curl is equal to B, the perpendicular
component of the field,

B = εi j ∂i A j (12.2)

If the linear size of the plane is L , the total flux � is

� = BL2 (12.3)

In what follows, I will assume that there is an exact integer number Nφ of flux
quanta φ0 piercing the plane

� = Nφφ0 ≡ Nφ

hc

e
(12.4)

If we choose units such that � = e = c = 1, the flux quantum φ0 is just equal to
2π . In these units we can write � = 2πNφ . Also, we are going to measure lengths
in units of the magnetic length l0 defined to be l0 = B−1/2.

We will work in the isotropic gauge

Ai = −1

2
Bεi j x j (12.5)

In this gauge, it is convenient to work in complex coordinates z = x1 + i x2. Let
us factor an exponentially decaying function of |z|2 out of the wave function. This
procedure automatically introduces an apparently special point, the origin z = 0.
Since the location of the origin must be arbitrary, there should exist an operator
that will remove this arbitrariness. We will see that this is the case. As a byprod-
uct, we will also find not only that the energy eigenvalues, the Landau levels, are
degenerate but also that this degeneracy is generated by a special group of trans-
formations, the group of magnetic translations (Zak, 1964). If we are dealing with
a rotationally invariant system, such as a disk, it is convenient to write the wave
functions in the form

�(z, z̄) = f (z, z̄)e−λ|z|
2

(12.6)

which decays exponentially fast at infinity. For this Hilbert space, the disk is
topologically equivalent to a 2-sphere.

If we now choose for λ the value

λ = e|B|
4�c

=
( e

�c

) |B|
4

≡ 1

4l2
0

(12.7)

(where we introduced the magnetic length l0), the function f (z, z̄) is found to
satisfy an equation that, in complex coordinates, has the form

− 2�
2

M
∂z∂z̄ f + e|B|�

Mc
z̄ ∂z̄ f + e|B|�

2Mc
f = E f (12.8)
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for B > 0. For B < 0 we must replace z by z̄. In Eq. (12.8), we have introduced
the operators ∂z and ∂z̄ defined by

∂z = 1

2
(∂1 − i ∂2), ∂z̄ = 1

2
(∂1 + i ∂2) (12.9)

It will be sufficient to discuss the case of B > 0.
Any analytic function f (z) is a solution of Eq. (12.8). A complete basis { fn(z)}

has the form

fn = zn (12.10)

which are also eigenstates of the angular-momentum operator Lz

Lz = −i�(x1 ∂2 − x2 ∂1) ≡ +�(z ∂z − z̄ ∂z̄) (12.11)

with energy and angular-momentum eigenvalues

E0 = �ωc

2
, Lz = n� (12.12)

An antianalytic function, z̄m is an eigenstate of the mth Landau level with energy

Em = �ωc

(
m + 1

2

)
(12.13)

where

ωc = eB�

Mc
(12.14)

is the cyclotron frequency. The Landau levels have a huge degeneracy, which is the
same for all the Landau levels and is equal to Nφ .

In order to make this degeneracy more apparent, let us introduce the operators
of magnetic translation and the group of transformations induced by them. Let �a
and �b be two vectors on the plane. For a system in a magnetic field B (B > 0), the
canonical momentum operator �P is given by the usual minimal-coupling definition

�P = −i� �∇ − e

c
�A

B = εi j ∂i A j

(12.15)

The generator of infinitesimal magnetic translations �k (Zak, 1964) is

ki = Pi − eB

c
εi j x j ≡ Pi (−B) (12.16)

A finite magnetic translation by a vector �a is represented by the operator t̂(�a),
t̂(�a) = ei �a· �k

� (12.17)
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These magnetic translation operators obey the so-called magnetic algebra

t̂(�a)t̂(�b) = exp

(
−i(�a × �b) · ẑ

l2
0

)
t̂(�b)t̂(�a) (12.18)

where ẑ is a unit vector normal to the plane.
The magnetic translations form a group in the sense that the operators t̂(�a) obey

the composition law

t̂(�a)t̂(�b) = exp

(
i

2l2
0

(�a × �b) · ẑ

)
t̂(�b + �a) (12.19)

Thus, the operators t̂(�a) form a representation of the group of magnetic transla-
tions. Equation (12.19) has an extra phase factor that is not present in the usual
group composition law. The existence of this phase, which is known in mathemat-
ics as a cocycle, indicates that the operators t̂(�a) form a ray representation of the
group of magnetic translations.

The Hamiltonian for a charged particle moving in a magnetic field can now be
written in the standard form, H = �P2/(2M). The canonical momentum operators
�P and the generators of magnetic translations �k commute with each other,

[ki , Pj ] = 0 (12.20)

although the different components of �k (and �P) do not commute among themselves,

[ki , k j ] = −[Pi , Pj ] = i
e�B

c
εi j (12.21)

Thus, the two components of �k commute with the Hamiltonian,

[ki , H ] = 1

2M
[ki , �P2] = 0 (12.22)

and are constants of motion. However, since k1 and k2 do not commute with each
other, they cannot be diagonalized simultaneously. We can then use k1 or k2, or
some linear combination thereof, to label the degenerate states. Which combination
is convenient depends on the choice of boundary conditions.

Let us assume, for the moment, that the system has the shape of a rectangle with
linear dimensions L1 and L2 along the (orthogonal) directions ê1 and ê2, respec-
tively (êi · ê j = δi j , i = 1, 2). The total flux � passing through the rectangle is
� = BL1L2. In units of the flux quantum φ0 = hc/e, the total flux is an integer
Nφ = �/φ0. Alternatively, Nφ can be given in terms of the magnetic length l0 and
the area of the system L1L2 in the equivalent form

L1L2

l2
0

= 2πNφ (12.23)
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Let us now consider the operators T̂1 and T̂2 which represent magnetic translations
by L1/Nφ and L2/Nφ along the directions ê1 and ê2, respectively:

T̂1 ≡ t̂

(
L1

Nφ

ê1

)
T̂2 ≡ t̂

(
L2

Nφ

ê2

)
(12.24)

The operators T̂1 and T̂2 obey the algebra

T̂1T̂2 = e
−i 2π

Nφ T̂2T̂1 (12.25)

which is often also referred to as the magnetic algebra. In Chapter 10 we discussed
this algebra in the context of the commutation relations for anyon operators.

Let us now assume that we have a state �n,0 that is an eigenstate of the
Hamiltonian in the nth Landau level and that it is also an eigenstate of, say, T̂1, i.e.

Ĥ�n,0 = En�n,0

T̂1�n,0 = eiλ0�n,0

(12.26)

where En and λ0 are the eigenvalues. Consider now the state �n,m ,

�n,m = T̂ m
2 �n,0 (12.27)

Since both T̂1 and T̂2 commute with Ĥ , it follows that all the states �n,m have
energy En ,

Ĥ�n,m = Ĥ T̂ m
2 �n,0 = T̂ m

2 Ĥ�n,0 = En�n,m (12.28)

However, the states �n,m have different eigenvalues of T̂1,

T̂1�n,m = e
−i2π m

Nφ
+iλ0

�n,m (12.29)

Thus, there are exactly Nφ linearly independent degenerate eigenstates of the
Hamiltonian in a given Landau level. For a system with wave functions vanish-
ing at spatial infinity (i.e. a “disk”) the operators k1 and k2 are replaced by their
counterparts in complex coordinates, k and k̄,

k = i

2�
(k1 − ik2) = ∂z − z̄

4l2
0

k̄ = i

2�
(k1 + ik2) = ∂z̄ + z

4l2
0

(12.30)
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which also commute with the momenta (in complex coordinates) P and P̄ ,

P = i

2�
(P1 + i P2) = ∂z̄ − z

4l2
0

P̄ = i

2�
(P1 − i P2) = ∂z + z̄

4l2
0

(12.31)

The complex-coordinate analogs of T̂1 and T̂2, namely T and T̄ , are defined by

T = e
2L
Nφ

k

T̄ = e
i L

Nφ
k̄

(12.32)

for a system with L1 = L2 = L . The operators T and T̄ also satisfy the magnetic
algebra Eq. (12.25). The operator k̄ annihilates the wave function �n(z, z̄):

k̄�n = 0 with �n = cnzne
− |z|2

4l20 (12.33)

Thus, �n is an eigenstate of T̄ with unit eigenvalue

T̄�n = e
i L

Nφ
k̄
�n = �n (12.34)

A complete set of eigenstates of the nth Landau level {�n,m} can now be
constructed quite easily (m = 1, . . . , Nφ):

�n,m(z, z̄) = T m�n(z, z̄) ≡ Cn,me
+2L m

Nφ
k
�n(z, z̄) (12.35)

The states in the set {�n,m(z, z̄)} have eigenvalues

H�n,m(z, z̄) = En�n,m(z, z̄)

T̄�n,m(z, z̄) = e
−i2π m

Nφ �n,m(z, z̄)
(12.36)

with

H = 2�
2

M

[
−P P̄ + eB

4�c

]
(12.37)

If instead of open (or vanishing) boundary conditions we want to consider a sys-
tem on a torus, i.e. periodic boundary conditions along the directions ê1 and ê2 of
a rectangle, the wave functions will have to satisfy a periodicity condition. It is
customary to demand that

�(x1, x2) = �(x1 + L1, x2) = �(x1, x2 + L2) (12.38)

However, it is not possible to satisfy this condition if a non-zero magnetic field
is present. The vector potential violates translation invariance. Thus, the wave
functions cannot obey periodic boundary conditions (PBCs) since no flux could
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possibly go through the system if PBCs are to be obeyed. In such a case, the circu-
lation of �A around the boundary equals zero. In order to accommodate a non-zero
external flux, the vector potentials and the wave functions have to change by a large
gauge transformation as we traverse the system (Haldane and Rezayi, 1985),

Ai (x1 + L1, x2) = Ai (x1, x2)+ ∂iβ1(x1, x2)

Ai (x1, x2 + L2) = Ai (x1, x2)+ ∂iβ2(x1, x2)
(12.39)

such that the circulation around the boundary � equals the flux�. This requirement
implies that β1 and β2 must satisfy the condition

[β2(x1 + L1, x2)− β2(x1, x2)] − [β1(x1, x2 + L2)− β1(x1, x2)] = � (12.40)

It is sufficient to give just one solution to this equation, which we choose to be

βi = −1

2
�εi j

x j

L j
(12.41)

The requirement of gauge invariance forces the wave functions �(x1, x2) to
transform as

�(x1, x2) → exp
(
−i

e

�c
�(x1, x2)

)
�(x1, x2) (12.42)

under a gauge transformation in which Ai changes by ∂i�(x1, x2).
Thus, under the large gauge transformation of Eq. (12.39), the wave functions

must change like

�(x1 + L1, x2) = ei e
�c β1(x1,x2)�(x1, x2)

�(x1, x2 + L2) = ei e
�c β2(x1,x2)�(x1, x2)

(12.43)

The boundary conditions of Eq. (12.39) and Eq. (12.43) are consistent provided
that the translations (x1, x2) → (x1 + L1, x2) → (x1 + L1, x2 + L2) and
(x1, x2) → (x1, x2 + L2) → (x1 + L1, x2 + L2) lead to the same value of the
wave function. It is easy to check that this consistency condition leads to the flux
quantization � = Nφφ0. This result should come as no surprise, since we are in
the situation of the Aharonov–Bohm effect. In other words, the system has single-
valued wave functions on the torus only if the flux is quantized. The (single-valued)
wave functions constructed with this prescription are (doubly) periodic and form
Nφ-fold-degenerate multiplets. If the flux is not quantized (e.g. a rational multiple
of φ0) the wave functions are multivalued and have branch cuts.

12.2 The Hofstadter wave functions

In the last section we considered the quantum-mechanical motion of charged parti-
cles moving in a plane in the presence of an external magnetic field perpendicular
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to the plane. There are many physical situations in which the presence of a lattice
cannot be ignored. In most cases these effects are quite small. Magnetic fields are
relativistic effects and, if we want to pass a sizable fraction of the flux quantum
φ through a plaquette of a physical lattice (with spacing a0 ≈ 10 Å), astronom-
ically large magnetic fields are required. Thus, for problems such as electrons in
a heterostructure, lattice effects are, in practice, negligible. However, when we are
dealing with a chiral spin state, we discover the existence of dynamically generated
gauge fields with large fluxes. Here, of course, lattice effects become dominant.

The problem of the quantum motion on 2D lattices in external magnetic fields
was first studied by Hofstadter (1976). He considered the problem of a particle of
charge e hopping on a square lattice, with hopping amplitude t , in the presence of
an external uniform magnetic field B. Let |�x〉 denote the (Wannier) state localized
at site �x of the square lattice. The hopping (tight-binding) Hamiltonian H is

H = −t
∑

�x, j=1,2

|�x〉ei e
�c A j (�x)〈�x + e j | + h.c. (12.44)

The vector potentials A j (�x) reside on the links and represent the external flux. The
total flux � going through any individual plaquette (with lattice spacing a0 = 1)
is B, ∑

o A j = �1 A2 −�2 A1 = B (12.45)

If we demand that the system be a torus, it is customary to work in the Landau
gauge

A1 = −Bx2, A2 = 0 (12.46)

where x1 and x2 are integers (0 ≤ xi ≤ Li , i = 1, 2). From now on, I will assume
that Ba2 = (p/q)φ0, with p and q a pair of relatively prime integers. In other
words, the flux going through an elementary plaquette is a finite fraction (p/q) of
the flux quantum φ0.

The eigenstates |�〉 of the system can be expanded in terms of a set of site (or
Wannier) states

|�〉 =
∑
�x
�(�x)|�x〉 (12.47)

and obey the discrete Schrödinger equation

−t
{

e−i2π p
q x2�(x1 + 1, x2)+ e+i2π p

q x2�(x1 − 1, x2)
}

− t{�(x1, x2 + 1)+�(x1, x2 − 1)} = E�(x1, x2) (12.48)
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This Hamiltonian is not invariant under translations by one lattice spacing.
However, in the Landau gauge, it is invariant under the translations

(x1, x2) → (x1 + q, x2)

(x1, x2) → (x1, x2 + 1)
(12.49)

Hence, the unit cell has q elementary plaquettes. With the present choice of gauge,
the unit cell is 1 × q. The total flux passing through the unit cell is

�cell = q�plaquette = p (12.50)

which is an integer. Naturally, this is not an accident.
The gauge-invariant operator for translations ei P̂j is (in units such that e = � =

c = a0 = 1)

ei P̂j =
∑
�x

|�x〉ei A j (�x)〈�x + ê j | (12.51)

These operators satisfy the algebra

ei P̂1ei P̂2 = ei2π p
q ei P̂2ei P̂1 (12.52)

and, hence, do not generally commute with each other. But ein1 P̂1 and ein2 P̂2 do
commute with each other if

p

q
n1n2 ∈ Z (12.53)

Thus, the translations ein1 P̂1 and ein2 P̂2 commute if and only if the flux passing
through the rectangle with edges n1 and n2 is an integer multiple of the flux
quantum. The smallest rectangle satisfying Eq. (12.53) is known as the magnetic
unit cell.

The hopping Hamiltonian can now be written in terms of the operators ei P̂j in
the form

H = −t
∑
j=1,2

(ei P̂j + e−i P̂j ) (12.54)

The eigenstates of H are eigenstates not of ei Pj , but of the operators eik̂ j which
generate finite (i.e. lattice) magnetic translations. The operators eik̂ j are defined by

eik̂ j ≡
∑
�x

|�x〉ei A′
j (�x)〈�x + ê j | (12.55)

where the vector potentials A′
j (�x) have to be chosen so that the magnetic trans-

lation operators eik̂ j commute with the elementary lattice translations ei P̂j and,
hence, with the Hamiltonian H . These conditions are met if we choose ( j �= k)
� j A′

k(�x) = �k A j (�x).



12.2 The Hofstadter wave functions 441

So, once again, we find

k̂ j = P̂j (−B) (12.56)

but in the specific choice of gauge:

A′
1(�x) = 0, A′

2(�x) = −2π
p

q
x1 (12.57)

The operators eik̂ j do not commute with each other. Rather, they obey

eik̂1eik̂2 = ei2π p
q ei k̂2eik̂1 (12.58)

Consider now the magnetic translations by n1 steps along x1 and n2 steps along x2

(no sum over j),

T̂
n j

j = ein j k̂ j (12.59)

These operators commute with each other if n1 and n2 satisfy Eq. (12.53).
Thus, the eigenstates of H are also eigenstates of T̂ n1

1 and T̂ n2
2 . With the choice

of Eq. (12.57), we see that T̂1 and T̂ q
2 satisfy

[T̂1, T̂ q
2 ] = [T̂1, Ĥ ] = [T̂ q

2 , H ] = 0 (12.60)

and their eigenstates can be used to label the eigenstates of H . The eigenstates of
T̂1 and T̂ q

2 are of the form |k1, k2〉:
T̂1|k1, k2〉 = eik1 |k1, k2〉
T̂ q

2 |k1, k2〉 = eiqk2 |k1, k2〉
(12.61)

and must satisfy periodic boundary conditions

T̂ L1
1 |k1, k2〉 = |k1, k2〉

(T̂ q
2 )

L2/q |k1, k2〉 = |k1, k2〉
(12.62)

These conditions can be met only if (k1, k2) belongs to the magnetic Brillouin zone
(−π ≤ k1 < π and −π/q ≤ k2 < π/q). Clearly, these boundary conditions can be
imposed only if L2 is an integer multiple of q. That is to say, the total flux � going
through the entire system has to be an integer Nφ multiple of the flux quantum φ0,
with Nφ = (p/q)L1L2.

The magnetic Brillouin zone labels a total of L1L2/q states. We will see now
that this system has q Landau (or Hofstadter) bands, each with L1L2/q states. This
is the discrete version of the degeneracy of the continuum problem.

Let us now expand the states �(�x) in terms of magnetic-translation eigenstates:

�(x1, x2) = 1

q

q∑
r=1

∫ π

−π
dk1

2π

∫ π
q

− π
q

dk2

2π/q
ei(k1x1+k2x2)�

(
k1, k2 + 2π

p

q
r

)
(12.63)
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It is now convenient to define the q-component vector, �r (k1, k2), as

�r (k1, k2) ≡ �

(
k1, k2 + 2π

p

q
r

)
, r = 1, . . . , q (12.64)

We recognize in this vector a generalization of the spinons used to study the flux
phase, where p/q = 1

2 . The (discrete) Schrödinger equation now reads

−t[eik1�r+1(k1, k2)+ e−ik1�r−1(k1, k2)] − 2t cos

(
k2 + 2π

p

q
r

)
�r (k1, k2)

= E(k1, k2)�r (k1, k2) (12.65)

This equation is also known as the Harper equation and plays an important role in
the theory of the electronic structure of incommensurate systems. The amplitudes
�r (r1, r2) are periodic functions on the magnetic Brillouin zone and thus satisfy

�r (k1 + 2πn1, k2) = �r (k1, k2)

�r

(
k1, k2 + 2π

q
n2

)
= �r+n2(k1, k2)

�r+q(k1, k2) = �r (k1, k2)

(12.66)

where n1 and n2 are integers. Equation (12.66) implies that the magnetic Brillouin
zone has the topology of a 2-torus. The amplitudes �r (k1, k2), which are solutions
of Eq. (12.65), form an r -component complex vector field that is continuous on the
torus.

For arbitrary values of the integers p and q (p and q relatively prime), the spec-
trum determined from Eq. (12.65) has a very complex structure. For instance, if
p and q are chosen to belong to some infinite sequence such that, in the limit,
p/q becomes arbitrarily close to an irrational number, the spectrum becomes a
Cantor set (Hofstadter, 1976) and the wave functions exhibit self-similar behav-
ior (Kohmoto, 1983). Even if the problem is restricted to commensurate flux only
(� = 2π(p/q)φ0), the spectrum has energy gaps that, as q is increased, exhibit a
hierarchical structure. We will not consider these issues here. Rather, we will con-
sider only the broad qualitative properties of the spectrum and wave functions. In
general, Eq. (12.65) has to be solved numerically.

For generic values of p and q, the spectrum has q bands. For any arbitrary pair
of relatively prime integers p and q , the Hamiltonian H(k1, k2) associated with
the Schrödinger equation Eq. (12.65) has a number of symmetries (Wen and Zee,
1989). Let Â and B̂ be a pair of q × q matrices defined by

Â jk = ωkδ jk, B̂ jk = δ j,k−1 (12.67)
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where j, k = 1, . . . , q and ω = e−i2πp/q , satisfying the algebra AB = ei2π p
q B A.

The Hamiltonian H(k1, k2) is given by

H(k1, k2) = e−ik2 Â + e+ik1 B̂ + h.c. (12.68)

Given p and q, we can always find a pair of (relatively prime) integers n and m
such that 1 = np + mq. It is easy to check that the matrices Ã ≡ Ân and B̃ ≡ B̂m

satisfy the following identities:

ÃH(k1, k2) Ã−1 = H
(

k1 + 2π

q
n, k2

)
(12.69)

B̃H(k1, k2)B̃
−1 = H

(
k1, k2 + 2π

q

)
(12.70)

H
(

k1 + 2π

q
− 2πm, k2

)
= H

(
k1 + 2π

q
, k2

)
(12.71)

Ã B̃ = e−i2πp n2
q B̃ Ã (12.72)

Thus, if �(k1, k2) is an eigenstate of H(k1, k2) with energy E(k1, k2), the state
� ′(k1, k2),

� ′(k1, k2) = Ã�(k1, k2) (12.73)

is an eigenstate of H′(k1, k2) = H(k1 + 2π/q, k2) with the same eigenvalue
E(k1, k2). In other words, there is a one-to-one correspondence between the spec-
trum at (k1, k2) and that at (k1 + 2π/q, k2). An analogous argument shows that the
spectra at (k1, k2 + 2π/q) and (k1, k2) are also identical to each other. In addition,
under the translation (k1, k2) → (k1 + π, k2 + π), the Hamiltonian changes sign,
i.e. H(k1 + π, k2 + π) = −H(k1, k2), and E(k1 + π, k2 + π) = −E(k1, k2). For
q even, this operation is a particular case of Eq. (12.69). Thus, if q is even, then,
for each eigenstate of H with energy E , there exists an eigenstate with energy −E .
The operator that connects states with opposite signs of the energy, let us call it �,
must anti-commute with H and be hermitian. It is easy to check that the matrix � jk ,

� jk = (−1) j i q/2δk, j+q/2 (12.74)

has the desired properties

{H, �} = 0, �2 = I (12.75)

and that � also anti-commutes with Â, B̂, Ã, and B̃.
Furthermore, it is possible to show that, for q even, there are at least q eigenstates

of H with zero energy (Wen and Zee, 1989). The argument uses the topology of
the torus in an essential way. It can be regarded as a generalization of the Nielsen–
Ninomiya theorem for the absence of Weyl fermions in lattice systems (Nielsen
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and Ninomiya, 1981; Friedan, 1984). The magnetic Brillouin zone is locally iso-
morphic to the complex plane (w = k1 + ik2) and globally equivalent to a torus.
Let us consider a point w on the magnetic Brillouin zone and assume that the
eigenstates of H at w = k1 + ik2 are all different from zero. It is possible to
choose a basis of states in which � is diagonal. In this basis we can write

� =
(

I 0
0 −I

)
, H =

(
0 h+

h 0

)
(12.76)

where h is a q/2×q/2 matrix and h+ is its adjoint. In other words, H has the same
structure as the Dirac Hamiltonian in the chiral basis. If in the neighborhood of w
there are no zero energy eigenvalues of H, the determinant

detH = −|det h| �= 0 (12.77)

is non-zero. Let us denote by D the determinant of h, D = det h. D is locally an
analytic function of w. Thus, it is possible to define the vector field Ai (i = 1, 2),

Ai = D−1 ∂

∂ki
D (12.78)

that, in fiber-bundle terminology, is a 1-form, a connection. In any neighborhood
of w free of zero-energy eigenvalues, the 1-form Ai is closed, i.e.

εi j ∂iA j = εi j ∂i∂ j ln D = 0 (12.79)

but, in general, it is not exact. The circulation ν of �A on an arbitrary contour C of
the magnetic Brillouin zone

ν = 1

2π

∮
C

d�k · �A �= 0 (12.80)

is in general different from zero.
If ν is not zero, the determinant D(�k) = det h(�k) must have a zero at some

point �k0 somewhere inside C. We now follow Wen and Zee (1989), and con-
sider a path C that is a rectangle with corners at (k1, k2), (k1 + 2π/q, k2),

(k1 + 2π/q, k2 + 2π/q), and (k1, k2 + 2π/q). From the symmetries of H, it is
possible to show that D(k1, k2) satisfies

D(k1, k2) = −D∗
(

k1 + 2π

q
, k2

)
= −D

(
k1 + 2π

q
, k2 + 2π

q

)
= D∗

(
k1, k2 + 2π

q

)
(12.81)

Equation (12.81) implies that the phase of D must wind as the path C is traversed.
In general, D(�k), being a complex number, will trace a closed path D on the com-
plex plane as �k traces the path C. If D does not have a zero inside C, the winding
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number ν will vanish and C, and hence D, can be smoothly shrunk to zero. If there
is a zero, D will have a singularity and C cannot be deformed to zero. The path
D will now wind around the origin D = 0 a number of times before closing. The
winding number ν of Eq. (12.80) is precisely this winding number. Since D(�k) is
not a constant, we conclude that it must have zeros at certain isolated locations.
However, the translation symmetries of Eq. (12.69) require that, if �k0 is a zero of
H, then �k0 + (2π/q)(n1ê1 + n2ê2) must also be zeros of H. This lattice of zeros
of H must be periodic. The only values of �k0 consistent with these demands are
�k0 = (π/2, π/2) and its translations.

There are exactly q distinct points in this lattice. Thus, for q even, the Hamil-
tonian has exactly q zeros. Note that the flux phase is a particular case of this
problem. The doubling of spinon species that we found there is a particular case of
the q-fold multiplicity discussed in this section.

12.3 The quantum Hall effect

In this section we will discuss the most qualitative features of a very fascinat-
ing problem: the quantum Hall effect. It is not within the scope of this book
to give an exhaustive review on this subject. Reviews are widely available, in
particular the excellent volume by R. Prange and S. Girvin (Prange and Girvin,
1990).

However, there are very close analogies and connections between the theories
of the fractional and integer quantum Hall effects and the theories of chiral spin
liquids. We will devote considerable attention to these analogies.

In 1980, K. von Klitzing, G. Dorda, and M. Pepper (von Klitzing et al., 1980)
announced the discovery of very unusual transport properties of a 2D electron gas
in a high magnetic field. They were studying the Hall conductance of 2D inversion
layers or MOSFETs. In these systems, the electrons of a semiconductor move on
quantum states that are localized within atomic scales of the layer. They are almost
free to move inside the layer. Von Klitzing and his collaborators noticed that, when
they measured the Hall conductance σxy of the layer at very low temperatures, the
conductance had a stepwise dependence on the external magnetic field. At the same
time, the longitudinal conductivity, σxx , appeared to be essentially zero when σxy

was nearly constant, the so-called plateaus. For values of the field at which σxy

varied, σxx was non-zero.
What was very unusual was the values that σxy attained at the plateaus. It

appeared to be quantized at integer multiples of e2/h. Furthermore, the quanti-
zation appeared to be sharper at lower temperatures and, oddly enough, for the
more disordered samples. This phenomenon is known today as the integer quantum
Hall effect.
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In 1982, D. Tsui, H. Stormer, and A. Gossard (Tsui et al., 1982), performed a
similar series of experiments but on highly pure GaAs–AlAs heterojunctions. Here
too, the electrons are bound to a surface and are essentially free to move inside
the surface. They found a fractional quantum Hall effect. In fact, their results were
very similar to what von Klitzing et al. had seen, except that σxy was not an integer
multiple of e2/h but a fraction. In particular, they were able to observe the fractions
1
3 ,

2
5 , and others. It is a simple matter to argue that, if a Landau level is completely

filled, the Hall conductance has to be quantized. In the case of a translationally
invariant system a simple argument can be made. Let us imagine that we have an
external magnetic field B perpendicular to the sample and that there is an external
electric field �E parallel to the sample. By coupling the system to a source and a
sink of electrons, a current is established. In such a situation, there is a Lorentz
force that pushes all the electrons sideways. Also, if some of the Landau levels
are completely filled, leaving all others empty, there cannot be any component
of the current parallel to �E since it would require processes that are suppressed
by an energy gap equal to �ωc. If the electric field is small, and the system is
translationally invariant, there is a reference frame moving at a velocity �v relative
to the laboratory such that �v/c× �B = − �E . In this frame the electric field is absent.
A completely filled Landau level has N = Nφ electrons. If there are n Landau
levels that are filled, the total charge Q is Q = nNφ . The current �J is then equal to
�J = +Qe�v. Putting it all together, we conclude that the current density, �j = �J/L2,

has components

ji = Qe

L2
vi =

(
Qec

BL2

)
εi j E j (12.82)

From Eq. (12.82) we conclude that the Hall conductance σxy , i.e. the coefficient of
E j , is equal to Qec/BL2. By using the fact that there are n filled Landau levels
and that the flux BL2 is equal to Nφ times the flux quantum hc/e, we get

σxy = Qec

BL2
= nNφec

(hc/e)Nφ

= n
e2

h
(12.83)

Notice that h, and hence quantum mechanics, enters only through the flux
quantum hc/e.

This is an appealing argument, but it is deceptive. First of all, it does not apply
to systems that are not translationally invariant. However, a detailed calculation
shows that Eq. (12.83) is valid even in that case. The second and most serious
problem with this argument is that it cannot predict the existence of the fractional
values of σxy . In fact, the absence of the parallel, or dissipative, component of
the current was argued by recalling the fact that, if an integer number of levels is
exactly filled, no scattering is possible. If some level is only partially filled, there
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are states available for scattering and the argument seems to fall apart. Thirdly, this
argument alone cannot explain the fact that the effect is actually observed. It cannot
explain either the incredible accuracy to which the quantization is measured (one
part per million for the integer steps). In the experimental setup, the charge density
or the external magnetic field can be varied. In either case, the chemical potential
must lie between Landau levels in order for one Landau level to be filled and the
next one to be empty. As the density increases, the chemical potential (i.e. Fermi
energy) jumps discontinuously from Landau level to Landau level. It remains fixed
at the energy of a given level until the level is completely filled. This argument
suggests that σxy should be a monotonically increasing function of the electron
density. So, why do we see steps?

The resolution of all of these paradoxes has required a significant amount of
theoretical effort. The explanation of the observability of the steps in σxy (i.e. the
plateaus) involves the presence both of impurities and of states at the edge of the
sample. The accuracy of the effect turned out to be connected to the topological
properties of the quantum states. The fractional effect required the discovery of a
new condensed state of matter, the Laughlin state.

The in-depth study of all these issues lies far from the main scope of this book.
Besides, excellent reviews are widely available. I will hence not discuss the role of
disorder beyond giving a very qualitative description. The role of topology and the
Laughlin wave function will be discussed in the next sections.

12.4 The quantum Hall effect and disorder

Let us briefly discuss the role of disorder. In part for the sake of simplicity, but
also because the problem is not fully understood, we will focus just on the non-
interacting problem. It is widely suspected that disorder is as essential to the
observability of the fractional effect as it is to the integer effect. So, we wish to
understand why the integer quantum Hall effect is observed in the more disordered
samples. We saw above that a simple model of free electrons in Landau levels does
not explain the plateaus which are characteristics of the integer Hall effect. The
reason behind the monotonic increase was the fact that the Fermi level jumps from
one Landau level to the next as the level gets filled up. If there were extra states “in
the gap” (i.e. “between Landau levels”), the Fermi energy would have to progress
through those levels until they too became filled. However, these extra states should
not contribute to the value of σxy for the plateaus to remain sharp.

Disorder offers a natural way to generate states “between Landau levels.” First
of all, any degree of randomness, usually represented by a random potential V (�x),
will lift the degeneracy of each Landau level, making them become narrow bands.
From studies of electron states in random potentials one expects that at least some
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states should become localized (Anderson, 1958). In the absence of a magnetic
field, it is widely believed that all electronic states of 2D disordered systems are
localized (Abrahams et al., 1979). The arguments involve both scaling ideas and a
mapping of the problem onto a special type of non-linear sigma model (Wegner,
1979). If the electrons move in the presence of a weak magnetic field, the same
arguments apply. It turns out that the presence of the field has only two effects:
(1) the symmetry of the non-linear sigma model is unitary (which reflects the fact
that, in the presence of the field, there is no time-reversal invariance) and (2) the
presence of a topological term in the effective action (Levine et al., 1983; Pruisken,
1984). There is an excellent review by Pruisken on this subject in the book by
Prange and Girvin (1990).

The non-linear sigma model represents the physics of the diffusive modes in the
presence of the external field. It is a correct description if the elastic mean-free
path λ is short compared with the magnetic length l0, λ � l0. This condition can
be achieved only in the weak-field limit. The diffusive modes are represented in
the replica formalism, by 2N × 2N hermitian matrices Qiα, jβ(x), where i, j =
1, . . . , N and α, β = ±. The Latin indices i and j represent the “replicas” and the
Greek indices, α and β, represent the particle and hole channels. The non-linear
sigma model has the effective Lagrangian (Levine et al., 1983)

L = −σ 0
xx

8
tr[∂μQ ∂μQ] + σ 0

xy

8
(B)tr[εμνQ ∂μQ ∂νQ] (12.84)

valid in the replica limit, N → 0.
The coefficients in this Lagrangian σ 0

xx and σ 0
xy(B) represent the values of the

longitudinal (σ 0
xx) and Hall (σ 0

xy) conductance at the length scales of the elastic
mean-free path (i.e. their Boltzmann values). This non-linear sigma model is invari-
ant under global unitary transformations in the coset U(2N )/U(N )×U(N ). Notice
that the topological term in Eq. (12.84) has the same structure as the topological
terms that we discussed for antiferromagnets in Chapter 7. At scales l that are
long compared with λ but short compared with l0, the effective values of σxx(l)
and σxy(l) are strongly renormalized. The non-linear sigma model of Eq. (12.84)
is asymptotically free, which means that σxx(l) → 0 for l � λ. In this infrared
limit σxy(l) is quantized, σxy(l) → (n/(2π))(e2/�). This quantization has the
same topological origin as the quantization of spin and of the coefficients of the
topological terms, which we discussed in Chapter 7.

Thus, this calculation shows that σxy is indeed quantized and that σxx is zero
whenever the magnetic field B is in a plateau of the Hall conductivity σxy . How-
ever, the replica limit obscures the physical mechanism by which all of this takes
place. It almost seems like magic! Moreover, the actual mechanism by which the
system manages even to support a Hall current is very obscure in this picture. But
it does point to the fact that it is the physics of localization that makes the effect
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observable in the first place and that the topological properties of the quantum
states are responsible for the exact quantization of σxy .

If topology is to be the source both of the quantization and of the accuracy of
the quantum Hall effect, it appears that the mechanism which supports the Hall
current should not be linked to disorder in an essential way. Halperin proposed that
the states which carry the Hall current reside at the edge of the system (Halperin,
1982). Roughly speaking, the electrons are kept inside the sample by a potential
that rises towards the physical edge of the system. On some set of points close
to the edge, the potential is equal to the Fermi energy. This set of points consti-
tutes a closed curve. The edge states are the waves of the electron liquid spilling
over this curve. The presence of disorder complicates the picture. The landscape of
the potential can be quite rough. Semi-classically the ground state can be viewed
as a set of equipotential curves. In the high-field limit, equipotential curves will
generally be closed, and enclose regions that are quite small and are occupied by
electrons. As the field is lowered, these regions will begin to merge and, at some
critical value Bc of the field, a percolation phenomenon occurs (Trugman, 1983).
At Bc there is at least one curve that percolates throughout the system. This curve
is a “new edge,” which is thus capable of carrying current. The electron states
associated with these “edges” have a very special property: they are “chiral” (Wen,
1991b). What this means is that the electrons have to drift in the field, and hence the
direction of their motion is determined by the sign of the magnetic field. Roughly,
the electrons move at the drift velocity cE/B. Since the electrons in the edge states
move in only one direction, the only possible effect of impurities on them is just
a phase shift of the wave propagating forwards. There are no backward-scattering
processes. Localization is due to a multiple-scattering process in which forward-
and backward-scattering events interfere so much that the electron is unable to
propagate. In the absence of backward scattering, there are no localized states. The
edge states carry the full current.

12.5 Linear-response theory and correlation functions

In this section, we derive a set of formulas that will enable us to calculate the Hall
conductance, as well as other response functions, in terms of the Green functions
of the system. In the next section it will be shown that these formulas, when used to
compute σxy for a system with an energy gap, have a hidden topological structure.

Let us consider the system of fermions coupled to an external electromagnetic
field. We will consider cases of the fermions moving in free space and on a lattice
in the tight-binding limit. In both cases, the generating functional of the fermion
Green functions is a functional integral Z[Aμ], which is a functional of the external
electromagnetic field Aμ. Let us further assume that Aμ is a small fluctuating com-
ponent of the external field. The average field 〈Aμ〉 is absorbed into the definition
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of the system. Under such circumstances, it makes sense to determine Z[A] in
perturbation theory, i.e. as a series expansion in powers of Aμ. The leading term
in this expansion is known as linear-response theory (Fetter and Walecka, 1971).
This series can be written in the exponentiated form

Z[Aμ] = Z[0] exp

{
i

2

∫
d Dx

∫
d D y Aμ(x)�μν(x, y)Aν(y)+ · · ·

}
(12.85)

where �μν(x, y) is the polarization tensor and D = d + 1, with d being the
dimension of the space. For a tight-binding model the spatial integrals are replaced
by sums.

The underlying fermion system is gauge-invariant. Thus, upon an arbitrary local
gauge transformation φ(x),

Aμ = A′
μ + ∂μφ(x)

ψ(x) = ei e
�c φ(x)ψ ′(x)

(12.86)

the functional Z[A] is invariant. Thus, the linear-response term must also be
gauge-invariant. This is possible only if the polarization tensor �μν(x, y) is
transverse, i.e.

∂ x
μ�μν(x, y) = 0 (12.87)

To be more precise, we consider either a system without boundaries or one in which
only “small” gauge transformations are allowed, i.e. those transformations which
vanish at the boundaries, lim|x |→∞ φ(x) = 0. If the actual boundaries are to be
taken into account, such as in cases in which the system is physically coupled to
external leads of batteries or measuring instruments, then the values of the gauge
transformations at the boundaries become physical degrees of freedom, i.e. the
voltage of a battery. Similarly, for a system without boundaries, the circulations
of the vector potential Aμ around closed loops � that wrap around the system are
gauge-invariant operators. These gauge-invariant operators are physical degrees of
freedom. An example are the loops � which are topologically equivalent to the
large circles of a torus. The line integrals

∮
�

dxμ Aμ are the so-called holonomies
of the gauge fields on the torus.

The transversality condition Eq. (12.87) then follows from a simple algebraic
manipulation of the exponent in Eq. (12.85):

I = i

2

∫
d Dx

∫
d D y Aμ(x)�μν(x, y)Aν(y)

= i

2

∫
d Dx

∫
d D y[A′

μ(x)+ ∂μφ(x)]�μν(x, y)[A′
ν(y)+ ∂νφ(y)]

= i

2

∫
d Dx

∫
d D y A′

μ(x)�μν(x, y)A′
ν(y)+ δ I (12.88)
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where the change δ I is given by

δ I = i

2

∫
d Dx

∫
d D y{∂μφ(x)�μν(x, y)A′

ν(y)

+ A′
μ(x)�μν(x, y)∂νφ(y)+ ∂μφ(x)�μν(x, y)∂νφ(y)} (12.89)

Then Z[A] is gauge-invariant if and only if δ I ≡ 0. Upon integration by parts
we get

δ I = − i

2

∫
d Dx

∫
d D y{φ(x)∂ x

μ�μν(x, y)A′
ν(y)

+ A′
μ(x)∂

y
ν �μν(x, y)φ(y)− φ(x)∂ x

μ∂
y
ν �μν(x, y)φ(y)}

+ surface terms (12.90)

Since φ(x) is arbitrary, δ I vanishes identically if and only if �μν(x, y) is trans-
verse. The surface terms are zero since either φ vanishes at the surface or there are
no boundaries.

It is possible to relate �μν to a fermion-current-correlation function. The gauge-
invariant fermion current Jμ(x) is

Jμ(x) = δS

δAμ(x)
(12.91)

where S is the total action of the system. The current Jμ is gauge-invariant because
the action S itself is invariant. For the problem of fermions in free space, Jμ is just
the usual fermion current with the diamagnetic term included (the spin is omitted):

J0 = eψ†ψ

Jj = e�

2imc
[ψ†(∂ jψ)− (∂ jψ

†)ψ] − e2

mc2
A jψ

†ψ
(12.92)

The spatial components of the current can be written in the more manifestly gauge-
invariant form

Jj = e�

2mic
[ψ† D jψ − (D jψ)

†ψ] (12.93)

where D j is, once again, the covariant derivative

D j = ∂ j − ie

�c
A j (12.94)

and e is the (negative) electron charge.
For a lattice system, Jj has the form

Jj (�x) = t

2i

[
ψ†(x) exp

(
i

e

�c

∫ �x+ê j

�x
�A(�z) · d�z

)
ψ(�x + ê j )− h.c.

]
(12.95)
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where t is a hopping amplitude and ê j is the vector difference of the positions of
two lattice sites along the direction j on the lattice.

Since Jμ = δS/δAμ, we can compute expectation values of products of currents
by functional differentiation of Z[A]. The average current 〈Jμ(x)〉 is given by

〈Jμ(x)〉 = −i

�

1

Z[A]
δZ[A]
δAμ(x)

(12.96)

The polarization tensor �μν(x, y) can be computed from its definition. We get

�μν(x, y) = −i�
δ2

δAμ(x)δAν(y)
lnZ[A] (12.97)

A straightforward algebraic manipulation yields the expression

�μν(x, y) = −i�
δ

δAμ(x)

(
1

Z[A]
δZ[A]
δAν(y)

)
= i�

(
1

Z[A]
δZ[A]
δAμ(x)

) (
1

Z[A]
δZ[A]
δAν(y)

)
− i�

1

Z
δ2Z[A]

δAμ(x)δAν(y)
(12.98)

Hence, we get

�μν(x, y) = i

�
〈Jμ(x)Jν(y)〉c +

〈
δ Jμ(x)

δAν(y)

〉
(12.99)

where 〈Jμ(x)Jν(y)〉c is the connected time-ordered current–current correlation
function Dμν(x, y) defined by

�

i
Dμν(x, y) ≡ 〈Jμ(x)Jν(y)〉c = 〈Jμ(x)Jν(y)〉 − 〈Jμ(x)〉〈Jν(y)〉 (12.100)

The last term in Eq. (12.99) is usually called the “tadpole” term and follows from
the diamagnetic piece of the current.

Since�μν has to be transverse in order for the system to be gauge-invariant, Dμν

must obey a similar conservation law. However, Dμν is not quite transverse because
of the presence of the tadpole term in Eq. (12.99). Indeed, from the transversality
of �μν we get the equation

0 = ∂ x
μ�μν(x, y) = ∂ x

μDμν(x, y)+ ∂ x
μ

〈
δ Jμ(x)

δAν(y)

〉
(12.101)

Thus the divergence of Dμν is

∂ x
μDμν(x, y) = −∂ x

μ

〈
δ Jμ(x)

δAν(y)

〉
(12.102)
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Since Dμν is time-ordered and Jν is conserved (∂μ Jμ = 0), we can write the l.h.s.
of Eq. (12.98) as

∂ x
μDμν(x, y) = i

�
∂ x
μ〈T Jμ(x)Jν(y)〉

= i

�
∂ x
μ

(
θ(x0 − y0)〈Jμ(x)Jν(y)〉 + θ(y0 − x0)〈Jν(y)Jμ(x)〉

)
= i

�
δ(x0 − y0)〈[J0(x), Jν(y)]〉 + i

�
〈T ∂ x

μ Jμ(x)Jν(y)〉

= i

�
δ(x0 − y0)〈[J0(x), Jν(y)]〉 (12.103)

The r.h.s. of Eq. (12.102) is equal to

∂ x
μ

〈
δ Jμ(x)

δA0(y)

〉
= 0

∂ x
μ

〈
δ Jμ(x)

δAl(y)

〉
= ∂ x

k

〈
δJk(x)

δAl(y)

〉
= − e

mc2
∂ x

k

[
δ(x − y)〈J0(x)〉

] (12.104)

On collecting terms, we get the following identities for the ground-state equal-
time expectation value of the commutators:

δ(x0 − y0)〈[J0(x), Jk(y)]〉 = ie

�mc2
∂ x

k

[
δ(x − y)〈J0(x)〉

]
δ(x0 − y0)〈[J0(x), J0(y)]〉 = 0

(12.105)

which are the Ward identities for this system. These identities are the key to the
derivation of the f -sum rule (Kadanoff and Martin, 1961). These identities show
that, even though Dμν(x, y) is a correlation function of conserved currents, Dμν

itself it is not conserved:

∂ x
μDμ0(x, y) = 0

∂ x
μDμk(x, y) = ie

�mc2
∂ x

k

[
δ(x − y)〈J0(x)〉

] (12.106)

On the other hand, �μν is strictly conserved, since ∂ x
μ�μν = 0. The non-

vanishing r.h.s. of Eq. (12.106) is an example of what in quantum field theory
is commonly called a Schwinger term. We have already encountered a Schwinger
term in Section 5.6.1. There, the Schwinger term resulted from the lack of chi-
ral symmetry in a gauge-invariant theory of 1D relativistic fermions. In a sense,
it is due to an effect produced by the “bottom” of the Fermi sea. In the problem
discussed in the present section it follows from the definition of the current.

The results of this section are valid in the most general condensed matter sys-
tems. They hold regardless of the statistics of the charge carriers. In the derivation
that is usually presented in textbooks (Pines and Nozières, 1966; Mahan, 1990), the
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proof is done within the framework of Fermi-liquid theory. The argument presented
here is more general and follows in spirit the discussion by Kadanoff and Martin
(1961). These conservation laws and sum rules are, in fact, a direct consequence of
local gauge invariance. In other words, they follow from local charge conservation.
It is important to stress that they also hold in phases with “spontaneously broken
gauge invariance,” such as superconducting states. The quotation marks are meant
to stress that local gauge invariance cannot be spontaneously broken, as dictated
by Elitzur’s theorem (see Chapter 9). In superconducting states the global phase
invariance (a subgroup of local gauge transformations) is spontaneously broken
in the absence of an electromagnetic gauge field. The sum rules are a statement
about the system as a whole, and they hold provided that both the normal and the
superfluid contributions are taken into account.

Let us now find an explicit expression for �μν(x, y) for a simple system. For
the sake of simplicity I will discuss only the non-interacting fermion case. Inter-
actions can be introduced in the standard fashion. Let us discuss the problem
of non-interacting electrons moving in free space coupled to an external electro-
magnetic field Aμ. Once again, Aμ represents a small fluctuating component with
vanishing average. All averages 〈Aμ〉 are absorbed in the definition of the otherwise
non-interacting fermions. The action for this system is (ignoring spin)

S[ψ∗, ψ, A] =
∫

dd x ψ∗(i D0 + μ− h[〈Aμ〉 + Aμ])ψ (12.107)

where h[Aμ] is a one-particle Hamiltonian that describes the dynamics of particles
coupled to a gauge field. For free fermions in the continuum (no lattice) it is simply
given by

h[Aμ] = −�
2 �D2

j

2m
(12.108)

and D0 and D j are covariant derivatives. The generating functional of the current-
correlation functions Z[A] is given by

Z[A] =
∫

Dψ∗ Dψ exp

(
i

�
S[ψ∗, ψ, A]

)
(12.109)

Since the ψ fields represent fermions, we get (after setting � = 1)

Z[A] = det(i D0 + μ− h[A]) (12.110)

Thus, the effective action for the gauge field Aμ due to the motion of the charged
particles is

Seff[A] = −i tr ln(i D0 + μ− h[A]) (12.111)
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We have encountered expressions of this sort several times in the previous sections
of this book. We will deal with it in exactly the same way here.

If Aμ is small, Seff[Aμ] can be expanded in powers of Aμ; and, if Aμ has zero
average, the first non-zero term is quadratic in Aμ. A straightforward calculation
yields the following expressions for �μν(x, y) in terms of the fermion propagator
(the one-particle fermion Green function) in a background gauge field G(x, y).
G(x, y) satisfies the equation of motion

(i D0 + μ− h[〈A〉])x G(x, y) = δ(x − y) (12.112)

that is,

G(x, y) = 〈x | 1

i D0 + μ− h[〈A〉] |y〉 (12.113)

The components of the polarization tensor �μν(x, y) can now be written as
(again with � = 1)

�00(x, y) = iG(x, y)G(y, x)

�0 j (x, y) = 1

2m
{G(x, y)Dy

j G(y, x)− G(y, x)Dy†
j G(x, y)}

� j0(x, y) = 1

2m
{−G(x, y)Dx†

j G(y, x)+ G(y, x)Dx
j G(x, y)}

� jk(x, y) = i

m
δ(x − y)δ jk G(x, y)− i

4m2
(Dx

j G(x, y))(Dy
k G(y, x))

− i

4m2
(Dx†

j G(y, x))(Dy†
k G(x, y))

+ i

4m2
G(y, x)(Dx

j Dy†
k G(x, y))

+ i

4m2
(Dx†

j Dy
k G(y, x))G(x, y)

(12.114)

These formulas, in addition to satisfying the requirements of gauge invariance, are
also translation-invariant if the external fields are uniform.

In the next section we will make use of these formulas, particularly that for �0 j ,
to compute the Hall conductance. Notice that all the expressions in this section
hold for time-ordered correlation functions. In order to compute the conductivities
it is necessary to go to retarded functions (Fetter and Walecka, 1971). Fortunately,
the static limit of the Hall conductance can also be calculated directly from the
time-ordered functions.

The tight-binding case (on a cubic or square lattice) can be treated using a similar
line of argument. In fact, the polarization tensor �μν for the lattice case can be
obtained in the following manner. First the spatial integrals are replaced by sums
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over lattice sites {�x}. The covariant derivatives are replaced by covariant differences
according to the rule

Dx
j G(x, y) → �x

j G(x, y) ≡ G(x + e j , y)exp

(
i
∫ x+e j

x

�A · �dl

)
− G(x, y)

(12.115)

and the hopping amplitude t and the mass m are related by 1/t = ma2
0 , where a0

is the lattice constant. Once these identifications have been made, the continuum
result becomes valid for the lattice case.

We will be interested primarily in the low-frequency, long-wave-length limit of
the effective action. On the basis of gauge and translation invariance we can write
the effective action Seff[A] in terms of an expansion in powers of the gradients of
Aμ. The leading-order terms are (in two space dimensions)

Seff[Aμ] =
∫

d2x dt
(ε

2
�E2 − χ

2
B2 + γ ( �∇ · �E)B + σxy

4
εμνλAμFνλ + · · ·

)
(12.116)

where �E and B are the fluctuating pieces of the external electromagnetic field. The
coefficients ε, χ, γ , and σxy can be determined from �μν . In particular, ε and χ

are the static dielectric constant and diamagnetic susceptibility of the system, and
σxy is the static Hall conductance. Notice that the Hall term is precisely the Chern–
Simons term that we encountered in Section 10.4. Indeed, the last term gives a
contribution to the average current 〈Jk〉xy ,

〈Jk〉xy = σxyεkl El (12.117)

which has precisely the correct form for the Hall current. The static Hall conduc-
tance σxy can be obtained from the Fourier transform �μν(Q) of the polarization
tensor,

σxy = lim
Q→0

i

2

εμνλQλ

Q2
�μν(Q) = lim

Q0→0

i

Q0
�xy(Q0, �Q = 0) (12.118)

where Q = (Q0, �Q). Thus, the Hall conductivity is determined from the �Q = 0
limit of the xy component of the current–current correlation function.

12.6 The Hall conductance and topological invariance

The most remarkable feature of the quantum Hall effect is the quantization of the
Hall conductance, i.e. the very existence of the effect itself! The arguments of the
previous section show that σxy is determined from �μν . However, the coefficients
of the gradient expansion of the effective action Seff[A] are usually renormalized
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away from the values predicted by a theory of weakly interacting fermions. In
effect, the �μν of the last section is just the leading-order (RPA) approximation
to the full �μν . Furthermore, the higher-order terms of the gradient expansion are
also expected to give contributions at lower orders. This is so since the higher-
order terms are important for wave vectors | �Q| larger than the inverse cyclotron
length and frequencies Q0 larger than the inverse Landau gap. The effective low-
energy (hydrodynamic) theory is determined by integrating out (or summing over)
the high-momentum and high-frequency modes. All these processes will contribute
with effective (usually finite) renormalization of the parameters ε, χ, σxy , and γ .
On these grounds, it is not obvious why σxy should be given exactly by some integer
(or fractional) multiple of e2/�.

In the general case (i.e. arbitrary density and arbitrary external field) σxy does
get renormalized. However, there is a special, but very important, case in which
σxy does not get renormalized. This happens whenever the ground state and the
lower-energy excitations of the system are separated by a non-zero energy gap.

We will show now, following the arguments due to Thouless, Kohmoto, Nightin-
gale, and den Nijs (Thouless et al., 1982), that in this case σxy is not renormalized
by fluctuations. The key to the argument is the observation that σxy is deter-
mined by a topological invariant. We will follow the arguments first presented by
M. Kohmoto (Kohmoto, 1985) and by Q. Niu, D. J. Thouless, and Y. S. Wu (Niu
et al., 1985). In this section I will discuss the topological invariance in terms of
the more general problem of boundary conditions in a many-body system with an
energy gap.

12.6.1 The Kubo formula

Let us consider a system that is in its ground state |�0〉 and for which there is a gap
to all excitations. Let us assume that, in addition to a uniform magnetic field B,
the system is allowed to interact with a small, slowly varying external electromag-
netic field. In this limit, perturbation theory reduces to the adiabatic approximation
or Born–Oppenheimer approximation. To first order in the time derivative, the
perturbed eigenstates are

|�α(t)〉 = exp

(
− i

�

∫ t

0
dt ′ εα(t ′)

) ⎡⎣|α(t)〉 + i�
∑
β �=α

|β(t)〉〈β(t)|∂t |α(t)〉
εβ(t)− εα(t)

⎤⎦
(12.119)

where |α(t)〉 is an instantaneous eigenstate of the time-dependent Schrödinger
equation

H(t)|α(t)〉 = εα(t)|α(t)〉 (12.120)
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which is a parametric function of time t . If we choose the gauge A0 = 0, time
enters into the Hamiltonian Ĥ only through the space components of the vector
potential, which have now the extra term δ �A,

δ �A = �E(t)t (12.121)

where �E is a very weak, slowly varying electric field. The expectation value of an
arbitrary operator M̂ in this state is

〈�α(t)|M̂|�α(t)〉 = i�
∑
β �=α

〈α|M̂ |β〉〈β|∂/∂t |α〉 + 〈α|∂/∂t |β〉〈β|M̂|α〉
εβ(t)− εα(t)

(12.122)

Let us compute the expectation value of the current operator Ĵk(x). We recall that
the states {|α〉} obey the time-dependent Schrödinger equation. The expectation
value 〈α|∂t |β〉 is given by

〈α|∂t |β〉 = 〈α|∂t Ĥ |β〉
εβ(t)− εα(t)

(12.123)

The Hamiltonian Ĥ is a slowly varying function of time. But time only enters into
Ĥ through its dependence on the vector potential Â. From this observation, and
from the definition of the current as the functional derivative of the Hamiltonian
Ĥ , it follows that the Hall conductance σxy can be written in the form

(σxy)α = −i�L1L2

∑
β �=α

〈α| Ĵ1|β〉〈β| Ĵ2|α〉 − 〈α| Ĵ2|β〉〈β| Ĵ1|α〉
(εβ(t)− εα(t))2

(12.124)

This expression is known as the Kubo formula for the Hall conductance σxy . Anal-
ogous formulas can be derived for other components of the conductivity tensor as
well as for other transport properties. It is important to stress that the states {|α〉} are
the exact eigenstates of the full many-body system described by Ĥ and that {εα(t)}
are the exact energy levels. They should not be confused with the one-particle states
and levels of the non-interacting system, which are quite different.

12.6.2 Generalized toroidal boundary conditions

There is an alternative approach that yields a more suggestive and useful expres-
sion for σxy . Let us use the Schrödinger equation to write an equivalent expression
for the Hall conductance. Let us imagine that the system under consideration has
N particles inside a rectangle of sides L1 and L2. Since the external (weak) elec-
tric field is taken to be uniform in space, we can write the associated electrostatic
potential U (�x) in the form

U (�x) = �E · �x (12.125)
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and �E = �∇U . Thus, the extra term in the vector potential δ �A is simply

δ �A = �Et = �∇[U (�x)t] (12.126)

Since δ �A is a pure gradient, it can be eliminated by a suitable gauge transformation
of the fermion operator of the form

�(�x) → exp

(
i

e

�c
U (�x)t

)
�(�x) (12.127)

Notice, however, that such local gauge transformations cannot change the value of
the circulation of the vector potential δ �A on closed non-contractible loops. More
specifically, the line integrals I j ,

I j =
∮
� j

δ �A · d�l = t
∮
� j

�E · d�l ≡ t E j L j (12.128)

on paths � j which wrap around the system along the x1 and x2 directions, respec-
tively, are gauge-invariant if the fermions move on the torus. Thus, although
the vector potential δ �A disappears from the problem, the holonomies do not. In
fact, they enter into the boundary conditions. Line integrals of a gauge field on
non-contractible loops in space (or space-time) are called the holonomies of the
gauge field.

The problem of assigning boundary conditions to quantum-mechanical systems
on a closed manifold is a very subtle one. For instance, if the fermions move on a
torus and no magnetic field is present, it is perfectly consistent to use periodic or
twisted boundary conditions, which, for an N -particle system, are

�(�x1, . . . , �xN ) = e−i �θ · �L�(�x1 + �L, . . . , �xN + �L) (12.129)

where �θ is an arbitrary two-component vector and �L is a displacement along x1

by a distance L1 or along x2 by a distance L2. These boundary conditions are per-
fectly consistent since, in the absence of a magnetic field, the total momentum �P
is a constant of motion. The momentum of the only eigenstate compatible with the
boundary conditions is �θ/| �L|. But, if a magnetic field is present, the situation is
somewhat different. In Section 12.1 we introduced the magnetic translation oper-
ators. These operators commute with the one-particle Hamiltonian. In fact, they
also commute with the Hamiltonian of the full interacting system. In Section 12.1,
we also found that the only consistent boundary conditions for the wave functions
(generalized now to the N -particle case) for charged particles moving on a torus in
the presence of a non-zero magnetic field B are

A1(x1, x2 + L2) = A1(x1, x2)+ ∂1β2(x1, x2)

A2(x1 + L1, x2) = A2(x1, x2)+ ∂2β1(x1, x2)
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�({x ( j)
1 + L1}; {x ( j)

2 }) = exp

⎛⎝−ie

�c

N∑
j=1

β1(x
( j)
1 ; x ( j)

2 )+ iθ1

⎞⎠
×�({x ( j)

1 }; {x ( j)
2 })

�({x ( j)
1 }; {x ( j)

2 + L2}) = exp

⎛⎝−ie

�c

N∑
j=1

β2(x
( j)
1 ; x ( j)

2 )+ iθ2

⎞⎠
×�({x ( j)

1 }; {x ( j)
2 })
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where we have included the effect of the electric fields through the angles θ1 and
θ2. The boundary phases θ1 and θ2 are related to the electric field by

θ j = et

�c
E j L j ≡ e

�c
I j (12.131)

Thus, in addition to the phase twist �θ , the requirement that the states be eigenstates
of the magnetic translation operator leads naturally to the generalized boundary
conditions. We will see below that the additional phase factors arise from the
impossibility of defining the phase of the wave function globally and smoothly
on the torus. The wave functions for particles on a torus in the presence of a mag-
netic field form a fiber bundle. The conditions, or rather the requirement that the
states be eigenstates of the magnetic translations, define the fiber bundle. We will
see below that a similar difficulty arises when one tries to define the dependence of
the phase of the wave function on the twist angles �θ .

12.6.3 The Kubo formula for σxy and the first Chern number

From now on, we will assume that the vector �θ represents two constant angles.
In any case, all of the time dependence of the states enters through �θ . All time
derivatives become derivatives relative to the phase θ j . The Kubo formulas can
now be written in the form (∂ j ≡ ∂θ j )

(σxy)α = ie2

�

[
∂1〈α|∂2|α〉 − ∂2〈α|∂1|α〉

]
(12.132)

In this form, this formula was first derived by Niu, Thouless, and Wu (Niu
et al., 1985), who also considered the average 〈(σxy)〉 over the torus of boundary
conditions

〈(σxy)α〉 =
∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
(σxy)α

= e2

i�

∫ 2π

0

∫ 2π

0

dθ1

2π

dθ2

2π

[
∂2〈α|∂1|α〉 − ∂1〈α|∂2|α〉

]
(12.133)
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What matters to our discussion is the fact that 〈(σxy)α〉 is proportional to a quantity
known as the first Chern number, C1, which is a topological invariant. A similar
expression also appears in the tight-binding case, which will be discussed below.

Before we consider what the average conductance is, we must face the fact that in
any physically relevant situation the boundary conditions are fixed. Thus it might
appear that, while 〈(σxy)α〉 may be an interesting quantity to compute, it is not
directly relevant. This is true. However, we are considering a special situation in
which there is a finite energy gap between the ground state and the first excited
state. It is easy to argue that, if the gap is finite, then the difference of the mea-
sured value of (σxy)

θ
α, with fixed boundary conditions, and 〈(σxy)α〉 vanishes in the

thermodynamic limit, at least like 1/L .
Let us consider the differential change

∂(σxy)
θ
α

∂θ1
(12.134)

The dependence of the conductance on the phase angles θ1 and θ2 enters through
the Hamiltonian Ĥ . But Ĥ is a function of θ1/L1 and θ2/L2 only. Thus, all changes
must be of the form ( j = 1, 2)

1

L j

∂(σxy)α

∂(θ j/L j )
(12.135)

Since there is a non-vanishing gap, all small changes in the parameters of the
Hamiltonian Ĥ must lead to changes of order unity in all local quantities. This
includes changes in the energies and wave functions of local excitations. Thus, the
derivatives ∂(σxy)α/∂(θ j/L j ) must have finite limits for thermodynamically large
systems. Hence, ∂(σxy)α/∂θ j ∝ constant/L1 for asymptotically large systems.
This justifies the use of the conductance averaged over all boundary conditions
(Niu et al., 1985).

12.6.4 Fiber bundles and the quantum Hall conductance

Let us now turn to the issue of the topological invariance of 〈(σxy)α〉. The argu-
ment goes as follows. The boundary-condition angles θ1 and θ2, being phases, are
defined modulo 2π . Each choice of a boundary condition amounts to a choice of
a point �θ on the torus S1 × S1 of boundary conditions. For each point �θ we have
a unique eigenstate �α({�x}; �θ) of the full many-body Hamiltonian Ĥ . In mathe-
matical jargon, we have a fiber bundle. The wave function has an amplitude and a
phase that are smooth functions of �θ . Now, the total phase of the wave function is
not a physical observable. But changes of the phase are. In particular, let us imag-
ine that, at some initial time t0, we have defined an initial boundary condition �θ(t0)
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with a phase for the state arg [�(θ(t0))]. The external electromagnetic field is now
allowed to couple to the system in such a way that the boundary conditions change
as a function �θ(t) and return to the initial value �θ(t0) after some very long time T .
During this process the vector �θ(t) traces a closed curve � on the torus S1 × S1. At
the same time, the phase of the wave function changes by an amount δ�,

δ� = �arg [�] = �Im ln [�] = arg[�(θ(t0 + T ))] − arg[�(θ(t0))] (12.136)

If � is an analytic non-vanishing function of �θ , the phase change, δ� must be zero.
This is so because, in such a case the contour can be deformed to zero. However,
the only analytic function on a torus is a constant. Thus, a non-vanishing adia-
batic phase change δ� requires that the function ln� be non-analytic on the torus
of boundary conditions. In this case, closed contours that enclose singularities of
ln [�] are non-contractible and δ� is non-zero for such contours. Non-zero adi-
abatic changes of the phases of wave functions of quantum-mechanical systems
are known as Berry phases (Simon, 1983; Berry, 1984). Since the wave function
�α(�x1, . . . , �xN ; �θ) is a smooth function of its arguments, a non-analyticity in ln�
amounts to zeros of � for some values of �θ . Smoothness requires that the zeros be
isolated points on the torus S1× S1. The Berry phase δ� counts the number of zeros
of � enclosed by the contour �.

How is the phase of the wave function �(α)({�x}; �θ) related to the Hall conduc-
tance? In order to investigate this issue, let us introduce the following suggestive
notation which was originally introduced by Kohmoto. Let A(α)

k (θ1, θ2) be on a
vector field on the torus S1 × S1 defined by

A(α)
k = i〈α| ∂

∂θk
|α〉 ≡ i

〈
�

(α)

�θ
∣∣∣ ∂

∂θk

∣∣∣�(α)

�θ
〉

(12.137)

With this notation, the (averaged) Hall conductance is

〈(σxy)α〉 = e2

�

∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
(∂1A2 − ∂2A1) (12.138)

This is the Niu–Thouless–Wu formula (Niu et al., 1985). In other words, 〈(σxy)α〉
is the flux through the torus S1 × S1 of the vector field �A(�θ).

Furthermore, the states |�(α)(�θ)〉 are defined up to an overall phase factor. Thus,
the states |�(α)(�θ)〉 and ei f (�θ)|�(α)(�θ)〉 are physically equivalent. Notice that the
phase factor does not modify the boundary conditions. Under a phase change, the
vector field �A(�θ) transforms like a gauge transformation,

Ak(�θ) = i〈α|∂k |α〉 → i〈α|∂k |α〉 − ∂k f (�θ) (12.139)

Thus phase factors in the wave functions translate into a gauge transformation for
the vector field Ak defined on the torus of boundary conditions. We can now use
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Stokes’ theorem to write the averaged Hall conductance in the form

〈(σxy)α〉 = e2

�

∮
�̄

Ak(�θ)dθk (12.140)

where �̄ is the rectangular contour with corners at (θ1, θ2), (θ1 + 2π, θ2), (θ1, θ2 +
2π), and (θ1 + 2π, θ2 + 2π). A non-zero Hall conductance means that the vector
field �A cannot be a periodic function on the torus S1 × S1 of boundary conditions.
This, in turn, implies that along non-contractible closed contours �1 and �2, which
wrap around the torus along the θ1 and θ2 directions, respectively, Ak and the wave
functions must change as follows:

Ak(θ1 + 2π, θ2) = Ak(θ1, θ2)+ ∂k f1(θ1, θ2)

Ak(θ1, θ2 + 2π) = Ak(θ1, θ2)+ ∂k f2(θ1, θ2)

�(α)({�x}; θ1 + 2π, θ2) = ei f1(θ1,θ2)�(α)({�x}; θ1, θ2)

�(α)({�x}; θ1, θ2 + 2π) = ei f2(θ1,θ2)�(α)({�x}; θ1, θ2)

(12.141)

This topological structure is strongly reminiscent of the Wu–Yang construction
for the wave functions of charged particles moving in the presence of a Dirac
magnetic monopole (Eguchi et al., 1980; Nash and Sen, 1983). We can make the
analogy even sharper. Let us suppose that we have a wave function �α({�x}, �θ),
which satisfies boundary conditions determined by the point �θ on S1 × S1. Now,
given �α({�x}, �θ), can we unambiguously and completely determine �α({�x}, �θ ′)
for some other arbitrary point �θ ′ on S1 × S1? The answer to this question is no.
The phase of �α cannot be determined uniquely and smoothly over the boundary-
condition torus unless the Hall conductance is equal to zero. This is so because at
the zeros of �α its phase is undefined.

Let us consider the simpler case of a wave function that vanishes at just one point
�θ0 on S1 × S1. We now split the torus T ≡ S1 × S1 into two disjoint subsets (or
patches) TI and TII such that �θ0 is in TI, as shown in Fig. 12.1. Since TII does not
contain point �θ0 where �α is zero, the phase of �α can be determined globally on
TII. For instance, we can choose to make �α real on TII. However, on TI there is a
point �θ0 where �α(�θ0) = 0. We can always define the phase of �α at �θ = �θ0 to be
some arbitrarily chosen value. Once a value has been chosen, the phase of �α can
be defined by continuity in an arbitrary neighborhood of �θ0 that is not equal to the
whole torus T .

Thus we have two different definitions of the phase of �α on TI and TII.
Obviously these definitions must amount to a gauge transformation, i.e.

� I
α({�x}, �θ) = ei f (�θ)� II

α ({�x}, �θ) (12.142)

where f (�θ) is a smooth function on the closed curve γ (the boundary between TI

and TII), and it is known as the transition function. Similarly, the vector field Ak
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TI

TII

θ1

θ2
γ

θ0

0
0

2π

2π

Figure 12.1 T = S1 × S2 = {0 ≤ θ1 < 2π, 0 ≤ θ2 < 2π} is the torus of
boundary conditions for wave functions on a spatial torus. The wave function
�α(�θ) with boundary condition �θ = (θ1, θ2) is well defined on the region (patch)
TI but not on the full torus, and vanishes at �θ0. TII is the complement of TI on the
torus. The oriented path γ is their common boundary. See the text.

also has two different definitions on TI and TII, which, again, differ by a gauge
transformation

AI
k(
�θ)−AII

k (
�θ) = ∂k f (�θ) (12.143)

We conclude that the Hall conductance reduces to a sum of two contributions,
one from TI and the other from TII. Since the regions TI and TII share a common
boundary, γ , we can readily use Stokes’ theorem to write

〈(σxy)α〉 ≡ e2

(2π)2�

{∫
TI

dθ1 dθ2(∂1A2 − ∂2A1)

+
∫

TII

dθ1 dθ2(∂1A2 − ∂2A1)

}
= e2

(2π)2�

{∫
γ

�AI · d �θ −
∫
γ

�AII · d �θ
}

(12.144)

where we have used the fact that the boundaries of TI and TII have opposite
orientations. Thus, we find

〈(σxy)α〉 = e2

(2π)2�

∫
γ

( �AI − �AI I ) · d �θ = e2

(2π)2�

∫
γ

�∂ f · d �θ (12.145)

Thus, 〈(σxy)α〉 counts the number of times the gauge transformation f (�θ) winds
by 2π as �θ traces the closed loop γ . The winding number

C1 = 1

2π

∫
γ

�∂ f · d �θ (12.146)
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is a topological invariant known as the first Chern number. It is a topological
invariant since it cannot change upon any smooth deformation of the contour γ .
However, if, under a deformation, one or more additional zeros of �α cross the
boundary into region TI, the winding number will jump by integer amounts. These
processes correspond to crossings of energy levels.

The fiber bundle associated with this problem can be defined in the following
way (Kohmoto, 1985). With every point �θ on T we associate a state �α(�θ). States
� ′
α(
�θ), which differ from �α(�θ) by a gauge transformation, f (�θ), are physically

equivalent. Thus, at every point �θ ∈ T we have associated the ray or bundle of
states related to �α(�θ) by a gauge transformation. The torus T is partitioned into
a union of sets TI, TII, . . . each containing at most one zero of �α. The phase of
�α is defined for each set, which results in a set of state vectors � I

α,�
II
α , . . . whose

phases are smoothly defined on TI, TII, . . .

These state vectors differ from each other just by gauge transformations that are
smooth functions f (�θ) on the overlap between two regions, say TI and TII. The
transition function f (�θ) is a smooth map from the closed curve γ ⊂ TI

⋂
TII to the

group U(1) of phases ei f (�θ). Since γ is isomorphic to U(1), the transition function
is a smooth map from U(1) onto U(1). These maps can be classified into homotopy
classes, with each class defined by the winding number C1 of Eq. (12.146). This
map is known as the principal U (1) bundle over the torus T . The vector field Ak(�θ)
defines a connection.

Let’s define now the 1-form dA = Ak dθk . A connection 1-form can be written
as � = A + dA. The transition functions act on fibers (i.e. state vectors) by mul-
tiplication. Once a connection Ak has been given, a curvature 2-form F = dA can
be defined, and it is known as the first Chern form. The integral of this 2-form is
the first Chern number.

Let us now note the following interesting analogy. In Section 12.1 we discussed
the problem of the quantization of the motion of a charged particle in a uniform
magnetic field with the particle constrained to move on the surface of a torus in
space. There, we found how the wave functions transform under magnetic transla-
tions. In this section, we showed how to construct the wave function on different
patches of the torus of boundary conditions. The relation between the wave func-
tions on different patches is analogous to the way in which the wave functions
transform under magnetic translations. However, here we are discussing phases of
many-body wave functions on the torus of boundary conditions! At the root of this
analogy is the fact that the many-body wave functions are also representations of
the group of magnetic translations. Here too, if the wave functions �(α)({�x}, �θ)
are required to be single-valued functions on the torus S1 × S1, the same consis-
tency condition as that discussed in Section 12.1 implies that the total flux through
the torus should be an integer n multiple of 2π . Otherwise different paths from
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�θ = (0, 0) to, say, �θ = (2π, 2π) would lead to inequivalent phases for the wave
function �(α). We conclude that, in this case, the averaged Hall conductance is
quantized to be an integer multiple of e2/h.

This argument is actually much too strong. In fact, it appears to require that
〈(σxy)α〉 should always be an integer multiple of e2/h. The experimental obser-
vation of the fractional quantum Hall effect, as well as the success of Laughlin’s
theory, indicates that this argument cannot be literally correct. Indeed, the obser-
vation of the FQHE, which has σxy = (e2/h)(n/m), requires that, for the case of
toroidal boundary conditions, the wave functions �(α)({�x}; �θ) must be multivalued
functions on the torus of boundary conditions. This means that the eigenstates of
Ĥ must have several components and behave like vectors under periodic changes
of boundary conditions.

Hence, rather than requiring that �α({�x}; �θ) be single-valued on the torus S1 ×
S1, we should demand that�α must have m components (where m is some integer).
The wave function returns to its initial value only after the torus has been covered m
times. In this case the averaged Hall conductance is equal to (e2/h)(n/m). We saw
in Chapter 9 that the ground state on a torus of a theory of a topological phase does
indeed have a finite degeneracy that is characteristic of this phase. In Chapter 13 we
will see that the quantum Hall fluid in a state with a fractional Hall conductivity
is indeed an example of a topological phase: the ground-state wave function has
several components or, equivalently, it has a finite ground-state degeneracy of a
torus (Wen and Niu, 1990).

The integers n and m cannot be determined by topological arguments alone.
They have to be calculated from some microscopic theory. In the next sections we
will discuss a few examples: (a) free electrons filling up one Landau level, (b) the
tight-binding Hofstadter problem, and (c) Laughlin’s theory of the FQHE. In each
case n and m turn out to be different. However, the importance of the topological
argument is that, for the specific task of computing σxy , it suffices to consider just
some simple limit in which the calculation can be done easily. The topological
invariance of 〈σxy〉 insures that it cannot change under smooth deformations of
the underlying Hamiltonian (unless, of course, during this process there is a level
crossing).

12.6.5 How many components does the wave function have?

Let us point out that subtle, but important, differences in the behavior of the sys-
tem arise depending on the choice of boundary conditions. In this section we have
considered mainly the case of generalized periodic boundary conditions (GPBCs).
These GPBCs require that the fermions move on a 2D torus in space. While this
choice is convenient from the point of view of the mathematics, it is not very natural
from an experimental standpoint.
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Experimentally, the natural choice is a rectangle coupled to a four-point probe,
which is a set of sources and sinks of charge. In practice this means taking charge
from one point on the edge of the sample (the sink) and injecting it back into the
system at another point (the source). Typically this process involves the use of
wires, batteries, etc. In a sense the measuring devices implement the GPBCs. The
voltage drop across the device is proportional to the boundary-condition angles
θ1 and θ2. Yet, another physically relevant situation is a disk without wires. If the
disk is isotropic and thermodynamically large, then the wave function vanishes
exponentially fast as the difference of the particle coordinates becomes large. This
can happen due to the presence of an isotropic potential that confines the particles
inside some region of the disk. In this case the points on the edge of the disk are
asymptotically equivalent to each other. The thermodynamic limit of this case is
thus identical to that of a set of particles moving on the surface of a sphere with
uniform radial magnetic field, i.e. a magnetic monopole (Haldane, 1983b).

Niu, Thouless, and Wu (Niu et al., 1985) observed that GPBCs require multi-
component wave functions. Spherical (or disk-like) boundary conditions have only
one-component wave functions (Laughlin, 1983; Haldane, 1983b). This issue has
caused a great deal of confusion, which was partly due to the fact that the compo-
nents of the wave functions for GPBCs were originally thought of as resulting from
the spontaneous breakdown of some unknown discrete symmetry. Indeed, in sys-
tems in which a global discrete symmetry is spontaneously broken, there is a finite
number of degenerate ground states, which are related by a symmetry operation.

This phenomenon is quite common in magnetic systems with spontaneously bro-
ken discrete global symmetries. The most common example is the Ising model,
which we discussed in Chapter 5, whose discrete global symmetry is a global spin
flip. Multiple ground states are also present in commensurate charge-density-wave
systems, such as polyacetylene, which will be discussed in Section 16.7, where
they result from the spontaneous breaking of discrete global translation symme-
tries. However, these analogies are quite misleading. In the case of quantum Hall
systems, the multi-component structure is a feature of the entire Hilbert space, not
just of the ground state. The Hilbert space is split into a number of disconnected
pieces that are not related by a symmetry operation. In other words, this structure
is not the result of the spontaneous breakdown of any symmetry. Rather, this fea-
ture of the Hilbert space merely reflects the global non-triviality of the manifold on
which the particles move.

As a matter of fact, the number of components of the wave functions is different
on different manifolds (Wen, 1990c; Wen and Niu, 1990). For example, instead of
a torus, let us consider a sphere. All closed loops on the surface of a sphere are
contractible. Thus, all the holonomies are trivial. The wave functions for charged
particles moving on the surface of the sphere in the presence of a uniform radial
magnetic field (i.e. a magnetic monopole) still form a non-trivial fiber bundle,
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known as the monopole bundle (Wu and Yang, 1975). But the arguments given
above indicate that the states are now non-degenerate.

What is the physical significance of this degeneracy? There are two schools
of thought on this issue. According to one school, the degeneracy should not be
regarded as being physical since it changes with the boundary conditions. Accord-
ing to this point of view, the degeneracy merely reflects the fact that the location of
the center of mass is quantized if the system is placed on a torus. Indeed, Haldane
(1985a) undertook a detailed study of the symmetries of the states on the torus and
showed that the degeneracy arises from the magnetic translations of the center of
mass independently of the physical properties of the system. He further showed
that, in general, there are no additional degeneracies and that the states for the rel-
ative coordinates are generally non-degenerate. But, by the same token, it is clear
that there are no states on a sphere that can carry a current.

Thus, if we wish to have a state with a non-vanishing current we must put the
system on a torus. This statement naturally applies only to systems on closed sur-
faces. All experimental systems have edges, sources, and drains, and, as we well
know, can have a steady current. Wen (1989, 1990c) gave a very general argument
showing that if the surface on which the fermions move has g handles (a genus-g
Riemann surface) the degeneracy is kg, if k is the degeneracy on the torus. (See
the discussion on topological phases in gauge theory in Chapter 9.) From this
point of view, the topological degeneracy is a fundamental qualitative feature of
the system.

12.7 Quantized Hall conductance of a non-interacting system

In this section we will discuss the fairly simple but interesting problem of the
computation of the Hall conductance for an assembly of non-interacting electrons
moving freely on a torus. We will assume that the external magnetic field and
the electron density are such that there is an integer number of completely filled
Landau levels.

Let us begin by discussing the nature of the one-particle states. Let �x denote the
coordinate of a particle of charge e and mass m. The magnetic field is B and the
torus has linear dimensions L1 and L2 along its main circles. In Section 12.1 we
constructed the single-particle states for the case of an isotropic disk. For simplicity
we will restrict our discussion to the case of particles on the lowest Landau level.
In Section 12.1 we found that the single-particle states for the lowest Landau level
�(z, z̄) have the form

�(z, z̄) = f (z, z̄)e−|z|2/(4l2
0 ) (12.147)

where f (z, z̄) is an analytic function, i.e. ∂z̄ f = 0.
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A basis of (analytic) functions is constituted by the powers zm . For a system with
Nφ flux quanta there are Nφ linearly independent states. Thus, an arbitrary state in
the lowest Landau level is a polynomial in z of degree Nφ times the exponential
factor.

Let us consider now the case of a system with exactly N = Nφ electrons in a
magnetic field B with Nφ flux quanta. The ground-state wave function �N for the
N -particle system is the Slater determinant

�N (z1, . . . , zN ) =

∣∣∣∣∣∣∣∣∣
1 . . . 1
z1 . . . zN
...

...
...

zN
1 . . . zN

N

∣∣∣∣∣∣∣∣∣ exp

⎛⎝− 1

4l2
0

N∑
j=1

|z j |2
⎞⎠ (12.148)

This determinant has the form of a Vandermonde determinant. By application of a
standard algebraic identity, the wave function �N can be written in the form

�N (z1, . . . , zN ) =
∏

1≤ j<k≤N

(z j − zk)× exp

⎛⎝− 1

4l2
0

N∑
j=1

|z j |2
⎞⎠ (12.149)

We want to compute the Hall conductance for this system. We will use the Niu–
Thouless–Wu formula. However, in order to use that formula we need to write
down a wave function that is an explicit function of the boundary-condition angles
θ1 and θ2. What we need is to generalize the state for a system on a torus (instead of
a disk) of linear dimensions L1 and L2 satisfying the GPBCs of Haldane (Haldane
and Rezayi, 1985), whose work we follow here.

Since toroidal boundary conditions break rotational invariance, it is more natural
to work in the axial (or Landau) gauge A1 = −Bx2, A2 = 0. It can be easily
checked that the wave functions for the states in the lowest Landau level have
the form

�(x1, x2) = f (z) exp

(
− x2

2

2l2
0

)
(12.150)

where z = x1 + i x2 and f (z) is an analytic function.
The GPBCs imply that f (z) must satisfy the consistency conditions

f (z + L1) = eiθ1 f (z)

f (z + i L2) = exp

[
iθ2 − iπNφ

(
2z

L1
+ τ

)]
f (z)

(12.151)

where τ = i L2/L1 is the modular parameter of the torus. The analytic function
f (z) must have zeros inside the rectangle with vertices at (L1/2)(±1 ± τ). Thus,
f (z) must have Nφ zeros. Indeed, the integral
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γ

dz
f ′(z)
f (z)

= Nφ (12.152)

where γ is the path around the edges of the rectangle of sides L1 and L2, is equal
to Nφ since the total change of the phase of f (z) around the edges of the rectangle
is 2πNφ .

A fundamental theorem of the theory of complex functions tells us that functions
f (z) which are analytic inside the rectangle and satisfy the consistency conditions
must be analytic functions with exactly Nφ zeros. The most general form that f (z)
can take is (Haldane and Rezayi, 1985)

f (z) = eikz

Nφ∏
j=1

ϑ1

(
z − z j

L1

∣∣∣τ) (12.153)

where ϑ1(u|τ) is the first odd elliptic theta function (Erdélyi, 1953),

ϑ1(u|τ) = i
+∞∑

n=−∞
(−1)n exp

[
iπτ

(
n − 1

2

)2

+ iπ(2n − 1)u

]
(12.154)

The parameter k is a real number in the range 0 ≤ |k| ≤ πNφL2/L2
1. The solutions

are thus parametrized by the set of Nφ complex numbers {z j } that determine the
locations of the zeros of the function f (z) and by k. By direct substitution we find
that k and z0 ≡ ∑Nφ

j=1 z j are the solutions to the set of equations

eiθ1 = exp
[
ikL1(−1)Nφ

]
eiθ2 = exp

(
−kL2 + iπ

z0

L1

)
(12.155)

which have the unique solution

k = θ1 + πNφ

L1
, z0 = θ2L1

π
− ik

L1L2

π
(12.156)

The locations of the zeros are determined by requiring that the wave functions
f (z) form a complete set of orthogonal wave functions that are eigenstates of the
magnetic translation operators. A simple way to construct such a set (i.e. a basis
for the Hilbert space of the lowest Landau levels) is to choose a set of zeros, {z j },
that satisfies z j+i = z j + L1/Nφ . Thus the dimension of the Hilbert space equals
Nφ , as it should be.

The N -particle states are constructed in very much the same fashion. Here we
consider the case of N = Nφ particles and, once again, we have filled up the lowest
Landau level. The only difference here is that we will separate the coordinates
z = ∑N

j=1 z j for the center of mass (CM) of the system from the set of relative
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coordinates {z j − zk}. The antisymmetric (fermionic!) N -particle wave function
�N in the lowest Landau level has the form

�N = N�CM(z)

⎡⎣ ∏
1≤ j<k≤N

f (z j − zk)

⎤⎦ × exp

⎛⎝− N∑
j=1

(x j
2 )

2

2l2
0

⎞⎠ (12.157)

where x j
2 is the x2 coordinate of the j th particle and N is a normalization constant.

The wave functions �CM and f (z) for the center-of-mass and relative coordi-
nates are determined by demanding that �N satisfy the GPBCs. The “pair wave
functions” f (z j − zk) do not change if all particles are (magnetically) translated
simultaneously. Only the center-of-mass wave function �CM is sensitive to a uni-
form translation of the system as a whole. On the other hand, if a particle (say the
j th particle) is transported around the torus exactly once, then the wave function
must change by a sign determined by its antisymmetry property. These conditions
can be met by requiring �CM(z) and f (z) to satisfy

f (z + L1) = f (z)

f (z + i L2) = f (z)exp

[
iπ

(
2z

L1
+ τ

)]
�CM(z + L1) = eiθ1(−1)N−1�CM(z)

�CM(z + i L2) = eiθ2(−1)N−1 exp

[
−iπ

(
2z

L1
+ τ

)]
�CM(z)

(12.158)

The conditions of Eqs. (12.158) imply that both f (z) and �CM(z) are entire
(doubly) periodic functions with just one zero in the principal region. The solution
is again the odd elliptic theta function

f (z j − zk) = ϑ1

(
z j − zk

L1

∣∣∣τ) (12.159)

The wave function �CM(z) can also be written in terms of a theta function

�CM(z) = eikzϑ1

(
z − z0

L1

∣∣∣τ) (12.160)

This solution has three parameters (k and z0, the coordinates of the zero of �CM),
which are determined by the set of consistency conditions

eikL1 = (−1)N eiθ1

exp

(
i2π

z0

L1

)
= (−1)N eiθ2+kL2

(12.161)
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which has the unique solution

k = πN

L1
+ θ1

L1
, z0 = L1

(
θ2

2π
+ N

2

)
− i L2

(
N

2
+ θ1

2π

)
(12.162)

Therefore the wave function for one filled Landau level on a torus is unique. Notice
that, in contrast, the single-particle states have an N -fold degeneracy.

One important feature of the wave function �N is the fact that the twist angles
θ1 and θ2 affect the wave function of the center of mass only through �CM(z). The
wave function �CM(z) can be viewed as the wave function for a single particle
located at z with charge −Ne moving on a torus in the presence of a uniform
external magnetic field with Nφ = N units of flux. Thus, the center of mass carries
the full current. The Niu–Thouless–Wu formula can now be used to yield the result

〈σxy〉 = e2

ih

∮
dθ j

2π

〈
�N

∣∣∣ ∂

∂θ j

∣∣∣�N

〉
≡ e2

ih

∮
dθ j

2π

∫ L1

0
dx1

∫ L1

0
dx2|�N |2 ∂

∂θ j
ln�CM(z, �θ)

(12.163)

Therefore, the average Hall conductance on a torus is determined by the average
change of the phase of the wave function for the center of mass on a closed loop on
the edges of the torus of boundary conditions. Since�CM(z, �θ) is an entire function
with exactly one zero in the principal region of the elliptic theta function, the theory
of functions of complex variables tells us that the integral has the value∮

dθ j
∂

∂θ j
ln�CM(z, �θ) = 2π i (12.164)

Thus we find that the Hall conductivity σxy (averaged over all boundary
conditions on the torus) is

〈σxy〉 = e2

h
· 1 (12.165)

This is the result we expected to get. As we can see, it reflects the fact that the wave
function for a full Landau level on a torus is unique.

12.8 Quantized Hall conductance of Hofstadter bands

We now turn to the far less trivial question of computing the value of σxy for
the problem of charged particles moving on a square lattice in the presence of
a uniform commensurate magnetic field, namely the Hofstadter problem. In Sec-
tion 12.2 we presented a description of its single-particle states. Let us recall that,
if the flux per plaquette is (p/q)φ0, there are q single-particle Landau bands, each
with L1L2/q states. In principle, if we solve the Schrödinger equation, we can
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construct all the wave functions, whence we can compute anything we wish. These
equations are very complicated and yield only to numerical solution. However, the
computation of σxy is considerably simplified by the fact that, here too, it is related
to a topological invariant. Thus, we can calculate σxy within some approximate
scheme and still get the exact answer.

Let us first derive an expression for σxy for a lattice system with periodic bound-
ary conditions. Unlike the continuum case of the last section, the lattice problem
is considerably simpler since the main effect of the magnetic field is to generate
a sublattice structure. Indeed, in Section 12.2 we saw that the requirement that
there should be an integer number of flux quanta piercing the lattice means that
either L1 or L2 must be an integer multiple of q. Since the magnetic unit cell
has q plaquettes, there are L1L2/q magnetic unit cells. We have q sublattices and
a Schrödinger equation satisfied by the q sublattices. Hence, unlike in the con-
tinuum case, we can apply periodic boundary conditions directly. The reason is
that for this lattice problem what matters is not the vector potential A j (�r) on the
link (�r , �r + ê j ) but rather the phase ei A j (�r), which is invariant under the shifts
A j (�r) → A j (�r)+ 2πl j (�r), where {l j (�r)} is a set of arbitrary integers.

Furthermore, in Section 12.2 we saw that, even though the discrete magnetic
translations do not commute with each other, there is a subset of discrete magnetic
translations (i.e. those generated by T̂1 and T̂ q

2 ) that commute among themselves
and with the Hamiltonian. This subset, which defines the magnetic Brillouin zone,
consists of the set of translations by integer numbers of magnetic unit cells. Thus,
in units of the magnetic unit cell, the Hamiltonian is translationally invariant. It
is then perfectly consistent to impose conventional periodic boundary conditions
since the wave functions in real space are globally defined. However, they are
not globally defined on the momentum-space torus, the magnetic Brillouin zone
(−π ≤ k1 < π,−π/q ≤ k2 < π/q).

Let us derive a version of the Niu–Thouless–Wu formula for the case of a tight-
binding system (Kohmoto, 1985; Fradkin and Kohmoto, 1987). In the case of a
tight-binding system, the current operator Ĵk(�r) flowing on the link (�r , �r + ê j ) can
be obtained by differentiation of the Hamiltonian

Ĵk(�r) = δH

δAk(�r) (12.166)

where H is an arbitrary (generally interacting) tight-binding Hamiltonian. We will
assume here that the external vector potential Ak(�r) enters only in the kinetic-
energy term of the Hamiltonian, which in momentum space generally has the form

Hkin =
∫
�k,�k′

c†(�k)hkin(�k, �k ′)c(�k ′) (12.167)
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where c(�r) and c†(�r) are fermion-destruction and -creation operators at site �r
(the spin indices are omitted), and hkin(�k, �k ′) is the (hermitian) one-particle non-
interacting Hamiltonian. This kinetic-energy term applies equally for fermions and
bosons. Here we are interested in the fermionic case.

In the case of a system coupled to an external electric field �E , the vector potential
�A gets shifted by �Et . It is easy to show that, when �E is not zero, the kinetic part of

the one-particle Hamiltonian hkin takes the form

hkin(�k, �k ′; �E) ≡ hkin

(
�k + e

�c
�Et, �k ′ + e

�c
�Et

)
(12.168)

Thus, the external uniform electric field �E (or a twist �θ ≡ (et/(�c)) �E) is equivalent
to a shift of the momentum of each particle by (et/(�c)) �E .

The Kubo formula can be written in the following simple form ( j, l = 1, 2):

(σxy)α = −i�L1L2εkl
δ

δA j
〈α| δ

δAl
|α〉 (12.169)

For the case of a non-interacting system this expression reduces to a sum over all
the occupied one-particle states {|n〉}, i.e. with single-particle energy En < EF,
where EF is the Fermi energy,

(σxy)α = e2

�

∑
{n}

ε jl
∂

∂k j
〈n| ∂

∂kl
|n〉 (12.170)

The one-particle states {|n〉} are labeled by a band index r (1 ≤ r ≤ q − 1)
and by a momentum label �k, where �k lies in the magnetic Brillouin zone. �r (�k)
are the eigenstates of the Schrödinger equation which satisfy the boundary condi-
tion �r+q(�k) = �r (�k). Let λ be a small parameter (λ → 1) that we will use to
define (formally) a perturbation theory. This parameter enters into the Schrödinger
equation in the form of a Harper equation,

−λt[eik1�r+1(k1, k2)+ e−ik1�r−1(k1, k2)]
− 2t cos

(
k2 + 2π

p

q
r

)
�r (k1, k2) = E(k1, k2)�r (k1, k2) (12.171)

This equation has a set of q linearly independent solutions {�( j)
r }(�k) ( j =

1, . . . , q). Each solution �( j)
r (�k) has an eigenvalue E j (�k). These are the Landau–

Hofstadter bands.
Let us now consider the case in which the number of particles N is such that there

is an integer number r of exactly filled Landau–Hofstadter bands. This requirement



12.8 Quantized Hall conductance of Hofstadter bands 475

defines the state |α〉. The Hall conductance (σxy)α is then a sum of contributions,
one from each filled band, of the form

(σxy)α = e2

i�

r∑
n=1

∫ π

−π
dk1

2π

∫ π
q

− π
q

dk2

2π

q∑
p=1

ε jl ∂k j�
(n)∗
p (�k)∂kl�

(n)
p (�k) (12.172)

We can define a vector field A(n)
j (�k), for �k on the magnetic Brillouin zone, to be

A(n)
j (�k) =

q∑
p=1

�(n)∗
p (�k)(−i)∂k j�

(n)
p (�k) (12.173)

The Hall conductance is essentially the flux of A(n)
j through the magnetic Brillouin

zone,

(σxy)α = e2

�

r∑
n=1

∫ π

−π
dk1

2π

∫ π
q

− π
q

dk2

2π
ε jl ∂k jA

(n)
l (�k) (12.174)

Once again, (σxy)α is identified with a Chern number, which counts the winding
number of the phase of the wave functions as �k traces the boundary of the mag-
netic Brillouin zone. Let us denote by In the Chern number for the nth band. In is
given by

In = 1

2π

∫ π

−π
dk1

∫ π
q

− π
q

dk2 ε jl

q∑
p=1

∂k j�
(n)∗
p (�k)∂kl�

(n)
p (�k) (12.175)

Since the Chern numbers In are topological invariants, we can compute their
exact values by considering a smooth deformation of the Schrödinger equation. For
instance, we can compute the integers In in the limit λ → 0 (or rather a perturbative
expansion in powers of λ). If, as λ is varied from λ = 0 to λ = 1, there are no band
crossings, the integers In will not change.

Let us now discuss the qualitative features of a (degenerate) perturbation theory
in λ. At λ = 0 the eigenstates �(n)

p (�k) are (n = 1, . . . , q)

�(n)
p (�k) = δpn (12.176)

with eigenvalues E (0)
n (�k)

E (0)
n (�k) = −2t cos

(
k2 + 2π

p

q
n

)
(12.177)

The spectrum then has q generally non-degenerate bands with dispersion laws
E (0)

n (�k).
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On the magnetic Brillouin zone (−π ≤ k1 <π,−π/q ≤ k2 <π/q), the unper-
turbed bands of Eq. (12.177) cross at �k = (k, 0) and �k = (k1, π/q). For example,
the lowest band (n = 1) crosses the next (n = 2) band at k2 = π/q. The second
band crosses the third one (n = 3) at k2 = 0, etc. In general, the nth band (for n
even) crosses the (n − 1)th band at k2 = π/q (the bottom of the nth band) and the
(n + 1)th band at k2 = 0 (the top of the nth band).

Conversely, for n odd, the top of the nth band is at k2 = 0 (where it crosses the
(n + 1)th band), while the bottom is at k2 = π/q (where it crosses the (n − 1)th
band). The integer n labels the bands as well as the gaps. The top band (n = q)
has only one crossing of the band with n = q − 1 at k2 = 0 (q even) or k2 = π/q
(q odd).

The integers In are determined by the changes of the phases of the wave function
as �k passes through the degeneracy points. We can determine these phases by using
Brillouin–Wigner perturbation theory (see Section 2.3.1). The nth band (for p and
q fixed) crosses the mth band if m = n − ln , where the integer l (|ln| ≤ q/2) is the
solution of the Diophantine equation

n = qsn + pln (12.178)

a result first derived by Thouless, Kohmoto, Nightingale, and den Nijs (Thouless
et al., 1982).

The Schrödinger equation mixes �(n) only with �(n±1). Thus, it takes ln orders
of perturbation theory to mix �(n) and �(n−l). For �k close to the degeneracy points,
the eigenstates will have almost all of their weight in �(n) and �(n−l). Thus, we get
an effective Schrödinger equation of the form

E (0)
n �n + Vn,n−l�n−l = E�n

Vn,n−l�n + E (0)
n−l�n−l = E�n−l

(12.179)

The matrix element Vn,n−l is (approximately) equal to

Vn,n−l = V ∗
n−l,n � (−λte−ik1)

n−1∏
r=n−l+1

[
−λte−ik1

1
2(E

(0)
n + E (0)

n−l)− E (0)
r

]
(12.180)

where E (0)
n (�k) = −2t cos(k2 + 2π(p/q)n) are the unperturbed energy bands.

The eigenvalues of Eq. (12.179) are

E±(�k) = 1

2
(E (0)

n + E (0)
n−l)±

√
(E (0)

n − E (0)
n−l)

2

2
+ |Vn,n−l |2 (12.181)
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The eigenstates have amplitudes (�(±)
n , �±

n−ln
) of the form

�(±)
n = |�(±)

n |eiθ(±)n (12.182)

with a similar expression for �(±)
n−ln

. The amplitudes |�(±)
n | are

|�(±)
n | = |Vn,nl |√

|E (±) − E (0)
n |2 + |Vn,n−ln |2

|�(±)
n−ln

| = |E (±) − E (0)
n |√

|E (±) − E (0)
n |2 + |Vn,n−ln |2

(12.183)

The phases θ(±)n are given by

θ(+)n − θ
(+)
n−ln

= arg(Vn,n−ln )+ π = −k1ln − (ln − 1)π

θ(−)n − θ
(−)
n−ln

= arg(Vn,n−ln ) = −k1ln − lnπ
(12.184)

Let us consider the nth band with n even. The result is the same for n odd. At
k2 = π/q it crosses the (n + 1)th band. At this degeneracy we have to choose
the solution E (−) for the top of the nth band. Conversely, at k2 = 0, the nth band
crosses the (n−1)th band. Thus, we have to choose the solution E (+) for the bottom
of the nth band.

Let us compute the circulation of the vector field A(n)
j (�k) for the nth band for

�k = (k1, k2) along the closed contour γ (which encloses half of the magnetic
Brillouin zone):

γ : (0, 0) → (π, 0) → (π, π/q) → (0, π/q) → (0, 0) (12.185)

On the first and third segments of the contour γ , k2 is constant, while k1 changes
from zero to π and from π to zero, respectively. The component A(n)

1 is then
equal to

A(n)
1 |k2=π/q = ∂

∂k1
arg

[
Vn,n−ln

] ∣∣∣∣
k2=π/q

= −ln

A(n)
1 |k2=0 = ∂

∂k1
arg

[
Vn−1,n−1−ln−1

] ∣∣∣∣
k2=0

= −ln−1

(12.186)

For the second and fourth segments we need to compute A(n)
2 . Since the phases

have no essential dependence on k2, we get

A(n)
2 |k1=0,π = 0 (12.187)
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The results summarized by Eq. (12.184) and Eq. (12.186) show that the
circulation of A(n)

j on the contour γ of Eq. (12.185) is

In = 1

2π

∮
γ

A(n)
j dk j =

∫ π

0

dk1

2π

[
A(n)

1 (k1, 0)−A(n)
1

(
k1,

π

q

)]
(12.188)

Thus, In of the nth band is

In = ln − ln−1 (12.189)

Therefore, the contribution from the nth band to the Hall conductance is

(σxy)
(n) = e2

h
(ln − ln−1) (12.190)

For a problem with r filled bands we have

(σxy) = e2

h

r∑
n=1

(ln − ln−1) = e2

h
(lr − l0) ≡ e2

h
lr (12.191)

where we have used the definition l0 = 0.
This result, which was originally derived by Thouless, Kohmoto, Nightin-

gale, and den Nijs (Thouless et al., 1982), shows that σxy is determined by
the topological invariant In which characterizes the Landau–Hofstadter bands.
This integer is the solution of the Diophantine equation. The integers ln may
be positive or negative and are restricted to be in the range |l| ≤ q/2. Thus,
in contrast to the continuum result, the quantized Hall conductance of a filled
Landau–Hofstadter band may be positive or negative. This surprising result is a
Bragg-scattering effect due to the magnetic unit cells. Let us consider an exam-
ple with p = 11 and q = 7. There are seven bands. Let us use the notation
(sn, ln) for the two integers which solve the Diophantine equation. The solutions are
(−3, 2), (−6, 4), (2,−1), (−1, 1), (7,−4), (4,−2), and (1, 0) for n ranging from
n = 1 up to n = 7. Notice that the bands with n = 3, 5, and 6 have l = −1,−4,
and −2, respectively, and carry negative Hall conductance.

The Diophantine equation has a unique solution for q odd. For q even, the
band with index n = q/2 has two possible solutions, namely ((1 − p)/2, q/2)
and ((1 + p)/2,−q/2). What happens here is that, for q even and n = q/2, the
Landau–Hofstadter bands have a degeneracy, which we have already discussed
in Section 12.2. Depending on how this degeneracy is removed, the conductance
is +q/2, −q/2, or even zero. This observation is important to the physics of
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flux phases. Let us finally remark that the solutions of the Diophantine equation,
Eq. (12.178),

∑q
n=1 sn and

∑q
n=1 ln obey the sum rules

q∑
n=1

sn = q + 1

2
,

q∑
n=1

ln = 0 (12.192)

for q odd, and
q∑

n=1

sn = q + 1 ∓ p

2
,

q∑
n=1

ln = ±q

2
(12.193)

for q even. The ambiguity in the sum rule is due precisely to the double solution at
n = q/2 (q even).



13

The fractional quantum Hall effect

In this chapter we discuss the theory of the fractional quantum Hall effect (FQHE).
The explanation of this phenomenon has required the development of completely
new ideas and methods. The concept of fractional statistics has become a crucial
element of the theory.

The physical system involves fermions in strong correlation in the absence of
time-reversal symmetry. The treatment of systems with these features cannot be
achieved successfully within the conventional Hartree–Fock approach to correla-
tions in condensed matter physics. A new condensed state of matter, the Laughlin
state, had to be discovered.

The Chern–Simons gauge theory, which has already been discussed in
Chapter 10, has come to play an essential role in the theory of the FQHE, both
as a way to describe the low-energy phenomena and as a theoretical tool to explain
the most important features of the problem.

We begin with a detailed description of the theory of the Laughlin wave function,
which is followed by the field-theory approaches to the FQHE.

13.1 The Laughlin wave function

In the last two sections of the previous chapter we considered the problem of elec-
trons moving on a 2D surface in the presence of a perpendicular magnetic field. We
assumed that the electron density was such that an integer number of Landau lev-
els (or bands) would be completely filled. Because the system has an energy gap,
the interactions do not play a very important role. In fact, a perturbative expansion
(in powers of the coupling constant) around a state with one filled Landau level
(or more) is likely to be well behaved. Since all processes involve exciting one
or several electrons across the gap, the energy denominators are always different
from zero. The ground-state wave function for the interacting system is smoothly
connected to the ground-state wave function of the non-interacting system. The

480
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arguments of the last three sections of Chapter 12 indicate that the topological
properties of the wave function for the interacting and the non-interacting sys-
tems will then be the same. In other words, naive perturbation theory is a good
approximation in this case.

However, if one Landau level (or band) is partially filled, perturbation theory
breaks down. Consider for simplicity the case of N particles in a magnetic field
B with Nφ quanta of flux piercing the surface. The filling fraction ν = N/Nφ is
not an integer. We will consider the simpler (and popular) case of ν = 1/m, where
m is an odd integer and for each electron there are m quanta of flux. We further
assume that the magnetic field is sufficiently large that all the Zeeman energies are
so large that the system is completely spin-polarized. This is the case for most, but
not all, of the experimentally accessible systems. In this limit, the electrons behave
as charged spinless fermions, each carrying an electric charge of −e.

In Section 12.7 we saw that, if just one Landau level is filled (m = 1), the ground
state is non-degenerate and its wave function is a Slater determinant. For m > 1
only a fraction 1/m of the states in the first Landau level will be occupied. The
remaining (m − 1)/m states are empty. However, occupied and unoccupied states
have exactly the same energy. The actual ground state has then to be determined
through some sort of degenerate-perturbation-theory scheme. This procedure is
bound to be very complex due to the macroscopic degeneracy of the Landau level.
The resulting state is likely to have properties that are completely different from
those of the unperturbed state.

The observed phenomenology of the FQHE also suggests the need for a com-
pletely different state. A non-interacting fractionally filled state would still exhibit
a fractional Hall conductance σxy since, at least for a Galilean-invariant system,
the conductance is determined by the amount of charge present. But such a state
would not support the very precise plateaus which are seen in experiments, since
additional particles can be added at almost no energy cost. The fact that the FQHE
is seen only in the purest samples indicates that the effect is the result of electron
correlations due to the Coulomb interactions. Moreover, the “quenching” of the
single-particle kinetic energies by the magnetic field is telling us that the interac-
tions play a dominant role. The FQHE is the result of the competition between
degeneracy and interactions. In this sense, the FQHE is an example of strongly
correlated electron systems.

The model which naturally describes the essential features of the physical system
consists of an assembly of N electrons that occupy a fraction ν of the Nφ states of
the lowest Landau level and interact with each other via Coulomb interactions. The
ground state of this system must be such that it should not support any gapless
excitations (otherwise the plateaux of σxy could not be so sharp) and it should be
essentially insensitive to the presence of impurities. The wave function should be
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a complex function of the electron coordinates. This requirement follows from the
fact that, if a magnetic field is present, time-reversal invariance is broken explicitly.
Finally, Fermi statistics demands that the wave function �N (�r1, . . . , �rN ) should be
antisymmetric under the permutation of the positions of any pair of particles. Thus,
�N vanishes as the positions of two particles approach each other.

We will now construct a wave function that satisfies all these requirements. Here
we follow closely Laughlin’s construction (Laughlin, 1983, 1987). Let us consider
first the low-density limit ν � 1 (m � 1). In this limit, the average separa-
tion between two electrons is much larger than the single-particle magnetic length
l0 (a0 � l0). The electrons do not venture very far away and interactions further
restrict their motion. The natural ground state in this limit is an electron crystal,
known as a Wigner crystal. The electrons are able to minimize the total energy by
arranging themselves on a triangular lattice. Actually the “guiding center coordi-
nates” form a triangular lattice. A Hartree approximation yields a Wigner crystal
state �W(z1, . . . , zN ) of the form (Laughlin, 1987)

�W(z1, . . . , zN ) =
∑

P

(−1)Pφ j1l1(zP1) . . . φ jN lN (zPN ) (13.1)

where the single-particle states φ jl(z) are

φ jl(z) ≈ exp

(
− 1

4l2
0

|z(0)jl |2 +
1

2l2
0

z̄z(0)jl − 1

4l2
0

|z|2
)

(13.2)

and z(0)jl are the (complex) coordinates of the ( j, l) site of a triangular lattice,

z(0)jl = l0

√
4πm√

3

(
j +

(
1

2
+ i

√
3

2

)
l

)
(13.3)

The Wigner crystal state �W does satisfy a number of the requirements listed
above but not all of them. First, it does support elementary excitations with arbi-
trarily low excitation energy, namely the sound waves of the Wigner crystal. Since
the state is a periodic array of charges, the charge density is not uniform and it is
strongly affected by the presence of impurities, which can, and do, pin the crystal
at the impurity sites. Thus, this pinned state does not support any charge current
unless the electric field is larger than some critical threshold value E0 determined
by the local pinning forces. This behavior is commonly seen in other charge crys-
tals, such as incommensurate charge-density waves. The best-known examples are
the quasi-1D system NbSe3 and the quasi-2D system NbSe2.

As the electron density increases (i.e. m grows smaller) the inter-particle sepa-
ration a0 decreases. For a triangular lattice, we have that a0 is related to the filling
fraction ν and the cyclotron length l0 through the relation ν = (4π/

√
3)(l0/a0)

2.
As ν approaches unity, the ratio l0/a0 becomes also a number of order unity. Thus,



13.1 The Laughlin wave function 483

as ν grows larger, there should be a phase transition from a Wigner crystal to a state
that supports a Hall current. Indeed, as ν grows larger and the cyclotron length
approaches the inter-particle spacing, the quantum fluctuations should increase.
The leading fluctuations should involve exchanges of a small number of nearby
particles. In particular, there are processes that involve three-particle exchanges
around an elementary triangle (or “ring”).

Such processes spoil the long-range positional order of the Wigner crystal. If
these ring exchanges are able to proliferate, the Wigner crystal melts and there is
a transition to a liquid state (Kivelson et al., 1986). This phase transition is most
likely to be of first order but, depending on microscopic properties, it can also be
of second order. The resulting liquid state is expected to have uniform density.
What is more important, and far less trivial to see from this point of view, is that
it should have a gap to all excitations. The phonon of the Wigner crystal should
disappear from the physical spectrum. This phenomenon is strongly reminiscent
of the Higgs mechanism in a superconductor coupled to a dynamical gauge field:
the phase mode of the superconductor gets “eaten” by the gauge field, which, in
the process, becomes massive. We will see below that the FQHE has a hidden,
dynamically generated, gauge field that is responsible for the most striking features
of this phenomenon.

The liquid state should be regarded as a new condensed state of matter. Laughlin
was the first to realize that this state is fundamentally different from other known
condensed states, such as magnetism or superconductivity. Drawing on intuition
he gained by studying systems with small numbers of particles, Laughlin proposed
the following class of wave functions (Laughlin, 1983):

�N (�r1, . . . , �rN ) =
∏

1≤ j<k≤N

f (z j − zk) exp

⎛⎝− N∑
j=1

|z j |2
4l2

0

⎞⎠ (13.4)

where f (z) is a suitably chosen analytic function of the complex coordinates
{z1, . . . , zN }, i.e. single-particle states from just the lowest Landau level. Fermi
statistics demands that f (z j − zk) be an odd function of z j − zk that vanishes as
z j → zk . These requirements, together with the demand that �N should be an
eigenstate of the total Lz orbital angular momentum, can be met by the simple
choice of f (z) ∼ zm , where m is an odd integer. We thus arrive at the celebrated
Laughlin wave function �m ,

�m(�r1, . . . , �rN ) =
∏

1≤ j<k≤N

(z j − zk)
m exp

⎛⎝− N∑
j=1

|z j |2
4l2

0

⎞⎠ (13.5)

This wave function is remarkable in several ways. Laughlin has computed the
overlap between �m and the exact wave function of a small cluster of electrons
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(with N ≤ 3) and interaction pair potentials u(r) = 1/r , − ln r , exp(−r2/2). He
found that in all cases the overlap was better than 99%. For a special potential,
namely u(r) = u0 ∇2δ(�r), Trugman and Kivelson (1985) showed that �(N )

m is the
exact ground-state wave function for all m. Haldane (1983b) constructed a class
of Hamiltonians for which Laughlin-like states are the exact ground states (see
below). Laughlin originally thought of �m as a variational wave function, with a
Jastrow form, which is commonly used to construct variational states for superfluid
liquid helium (Feenberg, 1969).

However, �m does not contain any variational parameters! The ground state is
determined by just finding the values of m that minimize the energy. But m is in
fact determined by the total angular momentum! It is remarkable that this guess
works so well. It is an important problem for theorists to explain why this is such
a good state. The Laughlin wave function also admits a number of generalizations
that describe other filling fractions. These are the hierarchical wave functions of
Haldane (1983b) and Halperin (1984). We will consider mostly the 1/m Laugh-
lin states. In the next chapters we will see why these wave functions, and their
generalizations, are good representations of fluids that exhibit the FQHE.

13.1.1 The plasma analogy

We now follow Laughlin and determine the optimal value of m, as well as
the nature of the correlations present in �m , by using the plasma analogy. Let
ρ(z1, . . . , zN ) be the joint probability distribution function

ρ(z1, . . . , zN ) = |�m(z1, . . . , zN )|2 (13.6)

which can be thought of as a classical probability distribution for a one-component
plasma with N particles located at {z1, . . . , zN }. Let U (z1, . . . , zN ) be the classi-
cal potential energy, and let β be an effective inverse temperature (β = m). The
potential U is defined by demanding that ρ should have the Gibbs form

|�m(z1, . . . , zN )|2 = e −βU (z1,...,zN ) (13.7)

The classical potential energy U (z1, . . . , zN ) is given by

U (z1, . . . , zN ) = −2
∑

1≤ j<k≤N

ln|z j − zk | + 1

2m

N∑
j=1

|z j |2 (13.8)

where we have used units of length such that l0 = 1. The potential U ({z j })
is equal to the total energy of a gas of classical particles each carrying charge
q = 1, which interact with each other via the 2D Coulomb pair potential,



13.1 The Laughlin wave function 485

VC(z j − zk) = −ln|z j − zk |, and with a uniform neutralizing background charge of
density ρ0 = 1/(2πm). The interaction with the background charge is represented
in U (z) by the last term. This can be checked by noting that ∇2(1/(2m))|z|2 =
2/m, which agrees with the density being uniform and equal to 1/(2πm). This is
the one-component classical plasma.

The plasma analogy is a very powerful tool for the investigation of the properties
of the Laughlin wave function. All expectation values of local operators in the
Laughlin state can be represented as an ensemble average in the plasma. There
is a well-developed body of knowledge on this subject. For instance, the average
electron density at point z, 〈ρ(z)〉, is

〈ρ(z)〉 =
∫

d2z1 . . . d2zN ρ(z)|�m(z1, . . . , zN )|2∫
d2z1 . . . d2zN |�m(z1, . . . , zN )|2 (13.9)

where the local charge density ρ(z) is equal to

ρ(z) =
N∑

j=1

δ(z − z j ) (13.10)

In the plasma analogy, we write the average charge density 〈ρ(z)〉 in the form of a
weighted average over the positions of the classical charges

〈ρ(z)〉 = 1

Zplasma

∫
d2z1 . . . d

2zN ρ(z)e
−βU (z1,...,zN ) (13.11)

where Zplasma is the partition function for a classical one-component plasma.
The potential energy U (z1, . . . , zN ) has a simple form in terms of the density
variable ρ(z):

U [ρ(z)] =
∫

d2z
∫

d2z′(ρ(z)− ρ0)V (z − z′)(ρ(z′)− ρ0) (13.12)

where V (z − z′) is the 2D Coulomb pair potential

V (z − z′) = −ln|z − z′| (13.13)

and ρ0 is the background charge.
If the density is low, the quantization of the charge of the individual electrons is

very important. The dominant configuration in this limit is a Wigner crystal. But, as
the density increases, the local density experiences larger fluctuations. As a result,
the local average charge is not equal to the electron charge. In other words, at high
densities, the local average density ρ(z) becomes a continuous variable. In this
limit, any additional local charge will be rapidly screened, and the local average
density should become equal to the background charge. Conversely, at low densi-
ties, screening is very poor and the local density can deviate significantly from the
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value of the background charge density. Thus, the electron liquid corresponds to
the (high-density) plasma phase of the one-component Coulomb gas. The approx-
imation in which the local density becomes a continuous variable is known as the
Debye–Hückel theory. It is straightforward to verify that in this limit 〈ρ(z)〉 = ρ0.
This result is also seen to hold in Monte Carlo simulations, at least for m ≤ 5.
More details on how the plasma methods are applied to the theory of the Laughlin
state can be found in Laughlin’s article in the book edited by Prange and Girvin
(Laughlin, 1987), where he uses extensively the methods described by G. Stell for
classical fluids (Stell, 1964).

13.1.2 The Haldane Hamiltonians

Let us now discuss Haldane’s construction of a class of Hamiltonians that have the
Laughlin state as their exact ground state. Haldane begins by noticing that a system
with a disk geometry with wave functions that vanish on the boundary (in the ther-
modynamic limit) is equivalent to a (large) sphere of radius R. A uniform magnetic
field flows outwards from the sphere. The Laughlin states are then isotropic on the
sphere. Since the magnetic field is normal to the sphere, it is the field of a magnetic
monopole in the center of the sphere with magnetic charge equal to the total flux.
Let 2S be the total flux, in units of the flux quantum hc/e. The single-particle states
for particles of charge e moving on the surface of the sphere have to be smooth and
single-valued. This demand forces the magnetic charge 2S of the monopole to be
an integer. This is the famous Dirac quantization condition (Dirac, 1931). We have
already encountered this problem in Chapter 7 when we described the path-integral
formalism for spin.

The single-particle Hamiltonian H now becomes

H = ωc

2�S

[
�r ∧

(
�p + e

c
�A
)]2

(13.14)

where ωc is the cyclotron frequency. Let �n be a unit vector normal to the surface
of the sphere, i.e. �n = �r/R. The magnetic field of the monopole is �∇ ∧ �A = B�n,
where B = �cS/(eR2). The vector �� = �n ∧ ( �p + (e/c) �A) satisfies the algebra

[�a,�b] = i�εabc(�c − �Snc) (13.15)

and �� · �n = �n · �� = 0. Of course, this is the same problem with the gauge-
covariant momentum as that which we discussed in Section 12.1. Here too we
should define another operator, which should generate the magnetic translations.
For the spherical geometry, this is just rotations. The generators of rotations are
�L = ��+ �S�n and satisfy the algebra
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[La, Lb] = i�εabc Lc[
La, �L2

]
= 0

[La, nb] = i�εabcnc

[La,�b] = i�εabc�c

(13.16)

The last condition implies that La commutes with ��2 and hence with H . Thus, La

and H can be diagonalized simultaneously. The first two equations are telling us
that the operators La satisfy the algebra of angular momentum. The eigenvalues
of �L2 are �

2l(l + 1), where l = S + n, n is a positive integer (or zero), and 2S
is an integer. This is just the Dirac quantization condition. Thus, ��2 is equal to
�L2 − �

2S2. We conclude that the single-particle Hamiltonian has eigenstates |m, l〉
such that

L3|m, l〉 = �m|m, l〉
�L2|m, l〉 = �

2l(l + 1)|m, l〉

H |m, l〉 = �ωc
l(l + 1)− S

2S
|m, l〉

(13.17)

where |m| ≤ l. Thus, each level is (2l + 1)-fold degenerate. In terms of n and
S the degeneracy is 2n + 1 + 2S. The lowest energy level, which corresponds to
the lowest Landau level, has n = 0 (l = S), and it is (2S + 1)-fold degenerate.
If we represent the unit vector �n in terms of a two-component spinor �u = (u, v),
since �n = u∗

α �ταβuβ (�ταβ are the Pauli matrices), then the Hilbert space of the lowest
Landau level is spanned by the coherent states �(S)

(α,β)(u, v) = (α∗u + β∗v)2S , with
|α|2 + |β|2 = 1, which are polynomials of degree 2S.

In this notation the Laughlin states �m are

�m =
∏

1≤ j<k≤N

(u jvk − ukvk)
m (13.18)

with S = 1
2 m(N − 1) for states with N particles. It can be readily checked that

this state is also an eigenstate of �L2 = (
∑N

j=1
�L j )

2 with zero eigenvalue since

the three operators L+ = �
∑N

j=1 u j ∂/∂v j , L− = �
∑N

j=1 v j ∂/∂u j , and L3 =
�

∑N
j=1(u j ∂/∂u j − v j ∂/∂v j ) annihilate �m . The state �m is thus rotationally and

translationally invariant on the sphere.
Haldane further remarked that the states �m are exact eigenstates of a class of

Hamiltonians constructed in the following manner. Let PJ (L) be a projection oper-
ator on states with �L2 eigenvalue equal to �

2 J (J + 1), and let �S be the projection
operator onto the Hilbert space of the lowest Landau level. Haldane proposed to
write a projected Hamiltonian as
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�S H�S =
∑

1≤ j<k≤N

⎧⎨⎩ ∑
j>2S−m

PJ ( �L j + �Lk)VJ

⎫⎬⎭ (13.19)

which, by construction, annihilates the state �m .

13.1.3 Elementary excitations of the Laughlin state

The Laughlin wave function is an accurate approximation for the ground state of
the system only if the electron density ρ0 and the magnetic field B are such that
the filling fraction ν is exactly equal to 1/m. For densities and fields for which ν
is close, but not equal, to 1/m, it is no longer a good approximation. As we will
see below, the states with ν ≈ 1/m are excited states of the ν = 1/m state. It is an
essential feature of the Laughlin state that these states are not degenerate with the
ground state even in the thermodynamic limit. The Laughlin state is found to have
a non-zero gap for all elementary excitations. The Laughlin state thus represents a
uniform incompressible fluid.

Several excited states are possible. We may change the magnetic field locally
without changing the total number of particles. This can be achieved by inserting
an infinitesimally thin solenoid, carrying exactly one flux quantum, at one point
of the sample (say, the origin z = 0). Or, we may add (or subtract) an electron
without changing the external field. Furthermore, we may imagine local density
fluctuations that change neither the field nor the total particle number. Among these
excitations, there are density fluctuations involving states only in the lowest Landau
levels (phonons) or states in the first (or higher) excited Landau levels (plasmons).
For the sake of simplicity, in this section I will consider only the state obtained
by the addition of a solenoid. This state is a Laughlin quasihole. We will briefly
discuss the collective modes in a later section in which we will discuss the field-
theory picture of the Laughlin state.

The Laughlin state �m for ν = 1/m is the product of a polynomial in the
particle coordinates and an exponential factor. We can expand �m in a series of
the form

�m(z1, . . . , zN ) =
∑

{k1,...,kN }
Ck1,...,kN zmk1

1 . . . zmkN
N exp

⎛⎝−
N∑

j=1

|z j |2
4l2

0

⎞⎠ (13.20)

The integers {k1, . . . , kN } run from 0 to N with the restriction

N∑
j=1

k j = 1

2
N (N − 1) (13.21)
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For the wave function to describe a system of fermions, the coefficients Ck1,...,kN

must be antisymmetric under the permutation of the indices.
Under a rigid rotation of the system as a whole by an angle θ about the origin,

the coordinate z j of each particle is multiplied by a phase factor eiθ . Thus, �m

transforms like

�m(e
iθ z1, . . . , eiθ zn) = eim N

2 (N−1)θ�m(z1, . . . , zN ) (13.22)

which means that the total Lz angular momentum of �m is equal to

Mm = 1

2
m N (N − 1) (13.23)

Let us now imagine that an infinitesimally thin solenoid carrying one unit of flux
is introduced adiabatically into the system and pierces the disk at the origin, z = 0.
For flux φ, the single-particle state changes from zne−|z|2/(4l2

0 ) to zn+αe−|z|2/(4l2
0 ),

where α = φ/φ0, with φ0 being the flux quantum hc/e. Thus, if φ = φ0, the nth
state in the first Landau level becomes the (n+1)th state in the same Landau level.

The Laughlin state reacts very much in the same way, by shifting each z
mk j

j to

z
mk j+1
j and undergoing a change in the coefficients. This process does not alter the

exponential factor. If we ignore the change in the coefficients Ck1,...,kN the shift can
be seen to be the same as a multiplication of �m by a factor of the form �N

j=1z j .
This observation, which was also made first by Laughlin (1983), motivates the
choice of the following ansatz for the wave function �(+)

m (z0; {z j }) of the quasihole
state created by the adiabatic insertion of a solenoid:

�(+)
m (z0; z1, . . . , zN ) =

N∏
j=1

(z j − z0)�m(z1, . . . , zN ) (13.24)

This state has angular momentum M (+)
m = Mm + N . Furthermore, the amplitude

�(+)
m vanishes whenever the coordinate z j of any of the N electrons approaches z0.

Thus, at z0 the effect of the solenoid is to deplete the charge density. Hence, this
state can be regarded as a quasihole. Naturally, since the total charge is the same as
in the Laughlin state and since the charge density away from z0 should be uniform,
the only place where the charge missing from z0 could have gone to is infinity – or,
rather, the physical boundary of the system. Thus, the solenoid causes the electron
liquid to swell and to spill over the region it had occupied before the solenoid was
introduced.

The quasihole excitation energy ε0 can be calculated using the plasma analogy. I
will not describe this calculation here, since it demands getting into a very technical
plasma calculation that is better described elsewhere. The computation is given in
considerable detail by Laughlin in his excellent review on the FQHE (Laughlin,
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1987). What will matter, for the purposes of our discussion, is that the excitation
energy is finite and has a finite limit as N → ∞. Thus, the spectrum of quasiholes
has an energy gap ε0.

The charge q0 of the quasihole can also be determined using the plasma analogy.
It turns out that q0 is a fraction of the electron charge, namely q0 = +e/m. The
argument goes as follows. The normalization of the quasihole wave function is

|�(+)
m (z0; z1, . . . , zN )|2 = �N

j=1|z j − z0|2|�m(z1, . . . , zN )|2 (13.25)

We can rewrite this expression in terms of a modified classical potential energy
U (z0; z1, . . . , zN ), which has the simple form

U (z0; z1, . . . , zN ) = U (z1, . . . , zN )− 2

m

N∑
j=1

ln|z j − z0| (13.26)

where U (z1, . . . , zN ) is the classical potential energy for the one-component
plasma.

The potential energy U (z0; z1, . . . , zN ) represents a classical one-component
plasma interacting with a charge −1/m, which is held fixed at z = z0. The most
important properties of a plasma are its uniform density (in the absence of exter-
nal probes) and the exact screening of all external probes. Since the external probe
has charge −1/m, it repels the charges of the plasma within a distance ξ , which is
the plasma screening length. For |z − z0| < ξ , the plasma density is suppressed
by the repulsive force due to the probe. The amount of charge expelled from the
vicinity of z0 is equal to −1/m, so there is a missing charge of +1/m, which
neutralizes the charge of the probe. This behavior is indeed seen in detailed calcu-
lations, such as the ones reported by Laughlin (1987). Thus, the quasihole behaves
like a positive charge q0 = +e/m. Away from the quasihole, the charge density
is uniform and equal to its value in the absence of the quasihole. Where has the
missing charge gone? To the boundary, of course! Indeed, if the N -particle system
occupies an area of radius R in the absence of the quasihole, its presence forces
the liquid to expand from R to R + δR. The extra area occupied by the deformed
liquid is π(R + δR)2 − πR2. Since R is large, the density is uniform and equal to
1/(2πml2

0). The radius R has to grow just enough to accommodate the extra charge
1/m. Thus, we get the relation

[π(R + δR)2 − πR2] 1

2πml2
0

= 1

m
(13.27)

where R/l0 is given by

R

l0
= √

2m N (13.28)
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The total change δR of the radius is

δR

2l0
= √

m N + 1 −√
m N (13.29)

By inspecting the expansions in single-particle wave functions both of the
Laughlin state and of the quasihole, we see that the highest single-particle angular
momentum which enters into the Laughlin state has angular momentum equal to
m N . For the quasihole the highest occupied state has angular momentum m N + 1.
Indeed, the change δR of the radius is exactly the amount necessary to include the
(m N + 1)th state inside the region occupied by the liquid. On the other hand, had
we added or extracted a whole particle from the liquid (N → ±1), the change in
the area would have been m times the amount we just calculated. This can be seen
quite easily in the expansion of the Laughlin state in single-particle Landau states.
We conclude that the quasihole has fractional charge +e/m.

The quasi-electron can be constructed (qualitatively) in a similar manner. Instead
of adiabatically introducing a solenoid that increases the local magnetic field, the
solenoid now carries a flux that decreases the field by exactly one flux quantum.
An argument along the lines of what we did above for the quasihole shows that a
solenoid carrying a negative flux decreases the angular momentum of each single-
particle state by one unit. Except for the state with angular momentum zero, which
gets shifted to a state on the first excited Landau level, the addition of a solenoid
with negative flux is equivalent to a downwards shift of the angular momentum of
all single-particle states by one unit. At the level of the Laughlin wave function,
this is accomplished by a derivative operator that acts on the polynomial factor in
the wave function (Laughlin, 1983),

�(−)
m

(
z0; {z j }

) = exp

⎛⎝−
N∑

j=1

|z j |2
4l2

0

⎞⎠ N∏
j=1

(
2

∂

∂z j
− z̄0

l2
0

) ∏
1≤ j<k≤N

(z j − zk)
m

(13.30)

The same line of argument as that used above on the quasihole shows that the
charge q0 of the quasi-electron is also fractional, but negative, q0 = −e/m.

The construction of the quasihole, as well as that of the quasi-electron, has a
strong resemblance to the construction of soliton states in 1D systems in quan-
tum field theory (Jackiw and Rebbi, 1976) and in 1D condensed matter systems
(Su and Schrieffer, 1981; Heeger et al., 1988) (see Chapter 16). However, these
two problems are qualitatively different. In fact, the Laughlin states either are
non-degenerate, as in the case of a spherical geometry, or have a degeneracy of
topological origin, as in the case of a torus. In contrast, the 1D systems which have
solitons have ground states that spontaneously break a (discrete) global symmetry.
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The degeneracy of their ground states is a consequence of this phenomenon.
Nevertheless, the operator which introduces an extra solenoid has some of the
characteristic features of a soliton operator. While the short-distance details are
unimportant, the topological property of the extra vector potential (i.e. the line
integral on a non-contractible loop) is the only essential property of the “solenoid”
or quasihole operator. In fact, the addition of the solenoid changes the value of the
circulation of the vector potential around the physical boundary of the system. In
turn, this change determines the amount of charge which is “spilled over the edge.”
This extra charge becomes an excitation of the states at the edge of the system.

The quasiholes and quasi-electrons cannot be made in isolation directly by just
adding or subtracting electrons. As a matter of fact a hole (not a quasihole) requires
the removal of a full electron, which carries integer charge. Thus, electrons and
holes are equivalent to bound states of m fractionally charged quasiparticles. For
certain definite electron densities, the excess electrons which cannot be accommo-
dated into a 1/m Laughlin state can be placed into a generalized Laughlin state. The
excess electrons can be regarded as bound states of quasiholes or quasi-electrons,
which, if their number is right, can form a Laughlin state. But this is a Laughlin
state for anyons, not electrons. This mechanism is known as the hierarchy scheme
of Haldane and Halperin.

The construction of the quasihole also suggests a different interpretation of the
Laughlin wave function as well as generalizations that are valid for other filling
fractions. Let us write the Laughlin wave function �m in the following suggestive
form due to J. Jain (Jain, 1989a, 1989b, 1990):

�m(z1, . . . , zN ) =
∏

1≤ j<k≤N

(z j − zk)
m−1�1(z1, . . . , zN ) (13.31)

The factor �1(z1, . . . , zN ) is just the wave function for N particles exactly filling
up the lowest Landau level. Following the construction of the quasihole, the factor
in front of �1 is interpreted as the result of having attached a solenoid to each
particle. The flux carried for each solenoid is equal to (m − 1) flux quanta. Unlike
in the quasihole construction, the solenoids are physically attached to the particles,
which fill up the Landau level and move around with them. This factorization,
which appears to be quite innocent, has the virtue (and the beauty) of bringing the
fractional and integer Hall states together. It is also telling us that the Laughlin state
can be viewed as the result of a dynamical generation of a local gauge field that
generates the solenoids which partially screen the external magnetic flux. In fact,
the amount of screening is sufficient to turn the fractional filling of a Landau level
of the bare field into the complete filling of a Landau level of the unscreened part
of the field. Later in this chapter we will see that this is the starting point of the
field-theoretic description of the FQHE.
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In summary, the 1/m Laughlin states are seen to have quasihole and quasi-
electron excitations that have fractional charge ±e/m and fractional statistics
±π/m. These quasiparticles are obtained by the adiabatic addition or removal of
infinitesimally thin solenoids carrying one flux quantum. The adiabatic nature of
this process is essential to this construction, since it is necessary to make the fluid
swell enough to include one additional Landau orbit without promoting electrons
to higher Landau levels or producing ripples in the fluid. All these bulk excitations
have finite energy gaps. This is required by the incompressibility of the fluid, which
guarantees the accuracy of the adiabatic process.

13.1.4 The statistics of quasiparticles in Laughlin’s theory

In this section we will discuss the statistics of the quasiholes within the first-
quantized picture of the FQHE. In the last section of this chapter we will return to
this problem and derive the main results directly from the field theory. The statistics
of the quasi-electron can also be discussed along very similar lines.

The quasihole wave function discussed in Section 13.1.3 is given up to a nor-
malization factor. For a single quasihole, the amplitude of this wave function is not
very important. However, at the moment we wish to construct a wave function for
two or more quasiholes, the normalization begins to play a rather subtle but impor-
tant role. During a process that involves dragging a single quasihole very slowly
around a closed loop, the phase of the quasihole wave function undergoes very
important changes. Indeed, since the quasihole carries an electric charge of −e/m,
we should expect an Aharonov–Bohm effect 1/m times smaller than the value for
electrons. In fact, the Aharonov–Bohm effect is perhaps the “operationally correct”
way of measuring the charge of a quasiparticle.

The quasihole wave function is physically appealing, but it has several draw-
backs. Consider, for example, a naively constructed wave function for two
quasiholes located at z = u and z = w, respectively,

�(+)(u, w, z1, . . . , zN ) = N (u, w)
N∏

j=1

(z j − u)(z j −w)�m(z1, . . . , zN ) (13.32)

The factor N (u, w) has a subtle origin. On the one hand, it can be regarded as
the normalization constant for the state with two quasiholes. However, if that were
indeed the case, N would have to be a function not only of u and w, but also
of ū and w̄, and it would not be analytic. More importantly, this amplitude has
to be determined from the requirement that it represents the physical process of
adiabatic insertion of two thin solenoids. In Section 13.1.3 we saw that the form
of the wave function for one quasihole was suggested by the observation that the
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adiabatic insertion of a solenoid carrying one flux quantum implied an increase
of the angular momentum relative to the location of the solenoid by one unit per
particle. We also argued that the quasihole carries charge e/m. Later in this section
we will give a path-integral argument to support this picture.

But let us assume that we have already manufactured one quasihole, which is
sitting at z = u. We now want to create another quasihole, but this time at z = w.
The adiabatic addition of the extra solenoid must change the angular momentum
of the particle also by one unit, but this time the angular momentum is measured
relative to w, not to u. Furthermore, since the quasihole carries electric charge
equal to e/m, as we drag one quasihole slowly around the other we should pick
up an extra Aharonov–Bohm phase factor. This phase factor should correspond
to an Aharonov–Bohm effect for a charge equal to e/m (Kivelson and Roc̆ek,
1985).

We are going to determine the amplitude (or “normalization constant”) N (u, w)
by demanding that the following conditions are met: (a) the wave function should
be an analytic function of the coordinates of the electrons {z1, . . . , zN } and of the
quasiholes u and w up to exponential factors; and (b) the normalization of this
wave function should be invariant under translations, i.e. it should be a function of
differences of the coordinates {z1, . . . , zN , u, w}. The analyticity condition is just
the requirement that the wave function should have contributions only from the
lowest Landau level. These conditions, as well as the solution, were first proposed
by Halperin (1983, 1984).

The normalization of the state (or, rather, the probability density with two
quasiholes at coordinates u and w) is

|�(+)
m (u, w, z1, . . . , zN )|2 = e−βUeff(u,w,z1,...,zN ) (13.33)

where the effective potential Ueff is given by

Ueff(u, w, z1, . . . , zN ) = U (z1, . . . , zN )− 2

m

N∑
j=1

(ln|u − z j | + ln|w − z j |)

+ 2

m
ln|N (u, w)| (13.34)

The translation invariance and analyticity requirements are met by choosing the
factor N (u, w) to be

N (u, w) = N0(u − w)1/m exp

(
−|u|2 + |w|2

4l2
0m

)
(13.35)
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With this choice, the Halperin wave function for two quasiholes is

�(+)
m (u, w; {z j }) = N0(u − w)1/m

N∏
j=1

[(u − z j )(w − z j )]

× exp

(
− 1

4ml2
0

(|u|2 + |w|2)
)
�m(z1, . . . , zN ) (13.36)

and the effective potential Ueff is

Ueff(u, w; {z j }) = −2
∑

1≤ j<k≤N

ln |z j − zk |

− 2

m

N∑
j=1

(ln |z j − u| + ln |z j − w|) − 2

m2
ln|u − w|

+ 1

2ml2
0

N∑
j=1

|z j |2 + 1

2m2l2
0

(|u|2 + |w|2) (13.37)

In plasma language, this is the potential energy of a set of N classical particles
(each carrying charge (−1)) at sites {z1, . . . , zN } interacting with two extra par-
ticles (each with charge −1/m) at u and w. All N + 2 charges are coupled to
a neutralizing background charge of density 1/(2πml2

0). The manifest translation
invariance of Ueff takes care of the translation invariance requirement.

The wave function for two quasiholes is a multivalued function of the complex
coordinates of the two quasiholes. As a result, if the quasiholes undergo a coun-
terclockwise exchange process, defined as a counterclockwise rotation by π of
one quasihole around the other followed by a translation that restores the relative
position of the quasiholes, the phase of this wave function changes by π/m,

�(+)
m (u, w; {z j }) = e+

iπ
m �(+)

m (w, u; {z j }) (13.38)

Thus, the quasiholes are anyons with statistical angle δ = π/m relative to bosons
or δ = ((m − 1)/m)π relative to fermions. This remarkable result suggests that the
FQHE can be described in terms of a theory of either bosons or fermions coupled to
a hidden (or dynamically generated) Chern–Simons gauge field. In the next section
we will describe both a “Landau–Ginzburg” approach to the FQHE and a field
theory that are based on this idea.

We conclude that the quasiholes of the Laughlin state carry fractional charge
+e/m and have fractional statistics π/m. This is a very striking result. Arovas,
Schrieffer, and Wilczek (Arovas et al., 1984) have given an alternative derivation
of both results using an argument based on the concept of Berry phases (Simon,
1983; Berry, 1984). Rather than following that path, we will now construct a path
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integral to represent the motion of the quasiholes. The key ingredient of our con-
struction is the observation that the quasihole wave functions are coherent states
(Kivelson et al., 1987). Thus, we can adapt the formalism described in Chapter 7
to construct the path integral for spin-S particles, to treat the quantum dynamics
of the quasiholes. The reader should keep in mind that the following arguments
are heuristic at best. In Sections 13.8 and 13.9 I give a different derivation of the
same result, which is based on the field-theory approach to the FQHE. Naturally,
the results agree!

Let us begin with the wave function for a single quasihole. Let us define the state
|z〉 as

|z〉 = exp

(
− 1

4ml2
0

|z|2
) N∏

j=1

(z j − z)|m〉 (13.39)

where |m〉 is the Laughlin state. The set of states {|z〉} is over-complete (Laughlin,
1987). The overlap between two states |z〉 and |w〉 is

〈z|w〉 = exp

(
− 1

4ml2
0

(|z|2 + |w|2)
)
〈m|

N∏
j=1

[(z̄ j − z̄)(w j − w)]|m〉 (13.40)

Except for the exponential factor, 〈z|w〉 is an analytic function of z̄ and w sep-
arately. Thus, 〈z|w〉 can be related to 〈z|z〉 by analytic continuation (Laughlin,
1987). The result is that the inner product is given by

〈z|w〉 = exp

(
− 1

4ml2
0

(|z|2 + |w|2)+ 1

2ml2
0

z̄w

)
〈z|z〉 (13.41)

Indeed, the translation invariance of the 2D one-component plasma guarantees
that the overlap 〈z|z〉 is just a constant that is independent of z. Also, up to a
normalization constant we can write the resolution of the identity

1 = N
∫

|z〉〈z|d2z (13.42)

We consider now a process in which we prepare the quasihole in a coherent state
|z0〉 at time t = t0. We now ask for the quantum-mechanical amplitude 〈z0, t0 +
T |z0, t0〉 for the quasihole to return to |z0〉 after a very long time T . Upon inserting
the resolution of identity at Nτ intermediate times tn = t0 + n �t in the limit
Nτ → ∞ and � → 0 with T = Nτ �t fixed, we can write

〈z0, T + t0|z0, t0〉 = N
∫ Nτ∏

n=1

d2zn

Nτ∏
n=1

〈zn|zn+1〉 (13.43)

where zn = z(t0 + n �t) and zNτ
= z0.
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In the limit �t → 0 we can approximate the overlaps by the expression

〈zn+1|zn〉 ≈ 〈zn|zn〉exp

[
1

4ml2
0

(
z̄n

dzn

dt
− zn

dz̄n

dt

)
�t

]
(13.44)

Thus, the path integral for one quasihole is

〈z0, T + t0|z0, t0〉 = N
∫

Dz exp

(
1

2ml2
0

∫ T

0
dt z̄

dz

dt

)
(13.45)

By expanding the exponent in its real and imaginary components we get the
identity

1

2ml2
0

∫ T

0
dt z̄

dz

dt
= i

e/m

�c

∮
�

�A(�x) · d �x (13.46)

where �A is the vector potential for the field B in the isotropic gauge and � is the
path. Thus, the amplitude is given by the path integral

〈z0, T + t0|z0, t0〉 = N
∫

D�x exp

(
i
e/m

�c

∮
�

d �x · �A(�x)
)

(13.47)

which is just the path integral for a particle of mass M and charge e/m moving
in the field B = �∇ × �A · ẑ in the limit M → 0. This limit is just the projection
onto the lowest Landau level. Notice that the normalization constants 〈z|z〉 have
been absorbed into the uninteresting factor N . The amplitude for the path � of
this path integral is just the Aharonov–Bohm phase factor (Arovas et al., 1984).
At the end of this chapter we give a derivation of this result that is based on the
field-theory approach, which does not require the choice of a set of wave functions
with a specific form.

Let us briefly discuss the generalization of this result for the problem of two
quasiholes. Let us assume that at some initial time t0 the quasiholes are prepared
in the state |z0, w0〉. Once again we ask for the amplitude 〈z′0, w′

0; t0 + T |z0, w0; t〉
after a very long time T . The normalized two-quasihole states |z, w〉 will be
taken to be of the Halperin form. The derivation for two quasiholes follows quite
closely the arguments given for one quasihole. However, the two results differ in
two important aspects: (a) the multivalued phase factors (z − w)1/m lead to an
“induced” gauge interaction, and (b) the diagonal overlaps are no longer constant
but functions of |z − w|. The final result is

〈�z′0, �w′
0|�z0, �w0〉 = N

∫
D�z D �w exp

(
i

�
S(2)eff (�z, �w)

)
(13.48)

where S(2)eff (�z, �w) is the effective action for two quasiholes.
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The integration measure, denoted here by D�z D �w, has absorbed the diagonal
overlaps

∏
n〈�zn, �wn|�zn, �wn〉. Laughlin (1987) has shown that these factors are con-

stant at long distances but vanish at short distances like |�z − �w|2/m . Thus, their
main effect is to remove from the path integral the paths in which the particles get
to be too close to each other. This feature of the integration measure is essential,
since fractional statistics cannot be defined if the paths of the particles are allowed
to cross.

The effective action S(2)eff for two holes is

S(2)eff (�z, �w) =
∫ t0+T

t0

dt

{
d�z
dt

·
(

e/m

c
�A(�z)+ �

m
�A(�z − �w)

)
+ d �w

dt
·
(

e/m

c
�A( �w)+ �

m
�A( �w − �z)

)}
(13.49)

where m is the index of the Laughlin state (not to be confused with a mass!) and
�A is the electromagnetic vector potential. The “induced” vector potential �A arises

from the multivalued factors. It is given by the total change of phase accumulated
during the process, i.e.

1

m

∫ t0+T

t0

dt

(
�A(�z − �w) · d�z

dt
+ �A( �w − �z) · d �w

dt

)
= 1

m
[arg(z′0 − w′

0)− arg(z0 − w0)] (13.50)

This equation requires only that the “induced” vector potential �A give the correct
winding number. It is clear that �A can be represented by an effective Chern–Simons
gauge field with an appropriately chosen coupling constant. One possible choice
for �A was given by Arovas, Schrieffer, and Wilczek (Arovas et al., 1984) (in the
isotropic gauge),

A j (�z − �w) = ε jk(z − w)k

|�z − �w|2 (13.51)

which has the quantized circulation∮
C[ �w]

A j (�z − �w)dz j = 2π (13.52)

for any closed path C[ �w] that encloses the point �w.
Hence, each quasihole carries a solenoid with just one flux quantum. In agree-

ment with our discussion of Section 10.5, these “induced” or statistical gauge
fields change the statistics of the quasiparticles. In the problem of spinons in the
chiral spin state (see Section 10.4) the quasiparticles are semions or half-fermions.
The quasiholes of the FQHE have statistical angle equal to π/m. This property can
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be seen very directly from the coherent-state path integral. Let us consider a pro-
cess in which two quasiholes undergo a counterclockwise exchange, during which
�

[
arg(z0 − w0)

] = π . The amplitude of the path integral picks up a phase of
eiπ/m . Below, when we derive the Laughlin theory from a field theory, we will see
that these phase factors arise directly from a Chern–Simons gauge field.

13.2 Composite particles

In the past sections we discussed the first quantization approach to the FQHE.
Here we will discuss an alternative approach that is based on a special form of field
theory, the Chern–Simons theory, which we discussed extensively in Chapter 10 in
the context of theories of anyons. Here we will show that the Chern–Simons theory
is quite useful from two different points of view: (a) as a Landau–Ginzburg theory
for the long-distance phenomenology and (b) as a way to derive the Laughlin state
from a microscopic theory. For reasons of space and conciseness, in this chapter
I will discuss only the simplest case of fully polarized (i.e. “spinless”) electrons.
Also I will restrict myself for now to the theory of the Laughlin sequence and
to the first level of the hierarchy. Generalizations of this theory are discussed in
Chapter 14.

In Section 13.1.3 we saw that the construction of the state for the quasihole
suggested a different interpretation of the Laughlin wave function that was first
proposed by Jain. This structure of the state for the quasihole gave rise to the picture
of the FQHE as a ground state of “electrons bound to fluxes.” From this point of
view, all that the long-range correlations do is make it possible for the electrons
to “nucleate” flux. Jain (1989a) realized that, in the Laughlin state, the electrons
nucleate enough flux that the bound states exactly fill up an integer number of the
Landau levels of the unscreened part of the field. In this formulation, the FQHE
is an integer quantum Hall effect of the bound states. Jain proposed writing the
Laughlin wave function in the suggestive factorized form

�(z1, . . . , zN ) =
∏
i< j

(zi − z j )
m−1χ1(z1, . . . , zN ) (13.53)

where χ1 is the wave function for a completely filled lowest Landau level

χ1(z1, . . . , zN ) =
∏
i< j

(zi − z j ) exp

(
−

N∑
i=1

|zi |2
4�2

)
(13.54)

The phases associated with the factor multiplying χ1 can be regarded as rep-
resenting an even number (m − 1) of fluxes that are attached to each coordinate
zi where an electron is present. It is a crucial feature of this picture that the elec-
trons bind to an even number of flux quanta and, in this way, they retain their
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fermion character. We will also see below that this approach has allowed a simple
description of the so-called hierarchy states in terms of wave functions that have a
factorized structure.

In Chapter 10 we saw that there is a natural and local way to attach particles and
fluxes together: the Chern–Simons gauge theory. Girvin and MacDonald (1987)
were the first to propose that the Laughlin state had a hidden form of off-diagonal
long-range order (ODLRO). They suggested an order parameter for the Laughlin
state, but it turned out to be non-local. As a matter of fact, the Girvin–MacDonald
order parameter is closely related to the anyon operators constructed in Chapter 10.
We also saw that it is always possible to map any 2D fermion system into an equiv-
alent problem with arbitrarily chosen statistics. We are going to use this mapping
in two different ways: as a mapping (a) to a theory of bosons and (b) to a theory
of fermions (each coupled to a Chern–Simons gauge field with a suitably chosen
coupling constant).

The Girvin–MacDonald argument that the Laughlin state has a hidden form of
ODLRO goes as follows. The ground-state correlation function ρ(z, z′) for the
electron operator (also called the one-particle density matrix) in the mth Laughlin
state for a system with N particles |0m; N 〉 is given by the expansion

ρ(z, z′) ≡ 〈0m; N |ψ̂†(z)ψ̂(z′)|0m; N 〉
=

∑
n,k

ϕ∗
n(z)ϕk(z

′)〈0m; N |ψ̂†
n ψ̂k |0m; N 〉 (13.55)

where {ϕn(z)} is the set of one-particle wave functions of the lowest Landau level
(see Section 12.1), and n and k run over all the occupied states.

Since the states {ϕn(z)} all have different values of angular momentum, the
expectation value 〈0m |ψ̂†

n ψ̂n|0m; N 〉 in an isotropic uniform state, such as the
Laughlin state, takes the very simple form

〈0m; N |ψ̂†
n ψ̂k |0m; N 〉 = νδnk (13.56)

where ν is the filling fraction. The correlation function ρ(z, z′) can be shown to be
given by (Girvin and Jach, 1984)

ρ(z, z′) = ν

2π
exp

(
−|z − z′|2

4�2
+ 1

4�2
(z∗z′ − z′∗z)

)
(13.57)

This identity shows that the one-particle electron-correlation function decays
exponentially fast in a Laughlin ground state.

Consider now the composite operator K̂ (z), which was introduced by Read
(1989) (see also Rezayi and Haldane (1988)), who refined the arguments of Girvin
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and MacDonald. The operator K̂ (z), which creates one electron, together with a
solenoid carrying m flux quanta, at point z is

K̂ (z) = ψ̂†(z)Û m(z) (13.58)

where Û (z) is the second-quantized operator that creates a quasihole at z.
Each quasihole has charge 1/m and fractional statistics π/m, and m quasiholes

have charge 1 and statistics π . Thus, m holes have the same quantum numbers as
a missing electron. Furthermore, the operator K̂ (z) obeys bosonic commutation
relations. This implies that the operator K̂ (z) must have a non-vanishing expecta-
tion value in a ground state with an indefinite number of particles. This property is
indeed strongly reminiscent of Bose condensation. More precisely, Read showed
that the following identity holds (Read, 1989):

〈0m; N |K̂ †(z)K̂ (z′)|0m; N 〉 = 1

ρ0
〈0m; N+1|ρ̂(z)ρ̂(z′)|0m; N+1〉 → ρ0 (13.59)

where ρ̂(z) is the density operator and its expectation value is ρ0 = 1/(2πm).
Thus, there is ODLRO in the Laughlin state.

Since ODLRO is the hallmark of superfluidity, its existence suggested the idea
that there should be a Landau–Ginzburg theory for the FQHE. However, unlike
superfluids, the Laughlin state is an incompressible state and it does not have
excitations with arbitrarily low energy (in the bulk!). So, whatever the Landau–
Ginzburg theory happens to be, it cannot describe a system with any Goldstone
modes. Now, a system with an order parameter that is complex, as the Girvin–
MacDonald order parameter is, in principle should have Goldstone modes, unless
the order parameter is coupled to a fluctuating gauge field. In this case, the gauge
field would “eat” the Goldstone mode and, at the same time, become massive.
Hence, there would not be any gapless modes left. This phenomenon, which is
usually called the Higgs mechanism, does take place in charged superfluids, i.e.
superconductors. This is the Meissner state of a superconductor.

The problem with this picture is that the fractional quantum Hall fluid is not
a superconducting state! As we will see, although the Landau–Ginzburg theory
of the fractional quantum Hall state is strongly reminiscent of (and suggested by)
the physics of a superconductor, it is a theory with a dynamical gauge field that
“eats” the would-be Goldstone boson, leaving behind nothing to be eaten by the
electromagnetic gauge field. As a consequence, there is no flux expulsion in the
Laughlin state and no Meissner effect. Furthermore, the absence of a Goldstone
mode from the spectrum of the fractional quantum Hall state also implies that
it does not support a Josephson effect, the physical signature of superconducting
coherence. Moreover, the non-locality of the Girvin–MacDonald order parameter
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is clearly indicating that a naive application of the Higgs mechanism is not pos-
sible. So the gauge fields have to arise from the fluctuations about the Laughlin
ground state rather than coming from “honest-to-god” electromagnetism. In other
words, the gauge field in question has to be self-generated by the correlations that
describe this phase of matter. Furthermore, since the Laughlin state is not a super-
conductor, the mechanism for generation of mass (or gaps) to all excitations should
be manifestly gauge-invariant. This fact suggested to Girvin and MacDonald that
the gauge field should have a Chern–Simons form.

13.3 Landau–Ginzburg theory of the fractional quantum Hall effect

The methods that we have discussed for the field-theoretic treatment of anyons
can also be used to study the FQHE. Zhang, Hansson, and Kivelson (Zhang et al.,
1989) used a mapping to bosons in terms of a Chern–Simons gauge field. This
procedure allowed them to derive the qualitative features of a Landau–Ginzburg
theory for the FQHE. Their Landau–Ginzburg approach, which is valid at low
energies and long distances, qualitatively confirmed the idea that the FQHE had
a hidden form of ODLRO without Goldstone bosons. Read (1989) gave a care-
ful derivation of the Landau–Ginzburg theory directly from the Laughlin wave
function.

Let us use now the methods of Chapter 10 to derive the Landau–Ginzburg theory.
Consider once again a system of N electrons moving on a plane in the presence
of an external uniform magnetic field B perpendicular to the plane. The electrons
will be assumed to have an inter-particle interaction governed by a pair potential
V (|�r |), for two electrons separated a distance |�r | on the plane. The magnetic field
will be assumed to be so large that the system is completely polarized and that
we can ignore the spin degrees of freedom. The eigenstates �(�x1, . . . , �xN ) are
eigenfunctions of the (first-quantized) Hamiltonian Ĥ

Ĥ =
N∑

i=1

{
1

2M

(
�p j − e

c
�A j (�x j )

)2 + eA0(�x j )

}
+

∑
i< j

V (|�xi − �x j |) (13.60)

where we have included the coupling both to the electromagnetic vector potential
�A and to the scalar potential A0. Hence, we are dealing with N spinless fermions

of charge −e and mass M . In second-quantized notation, the electron operator is
ψ(x) and the dynamics of the system is governed by the action S

S =
∫

d3z

{
ψ∗(z)[i D0 + μ]ψ(z)+ �

2

2M
| �Dψ(z)|2

}
− 1

2

∫
d3z

∫
d3z′(|ψ(z)|2 − ρ0)V (|�z − �z ′|)(|ψ(z′)|2 − ρ0) (13.61)
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where ρ0 is the average density. The quantum partition function Z for this system
is (at zero temperature and in real time)

Z =
∫

Dψ∗ Dψ e
i
�
S (13.62)

13.3.1 Composite bosons

In Chapter 10 we showed that a system of fermions in two dimensions is equivalent
to a system of (“composite”) bosons coupled to a Chern–Simons gauge field Aμ.
The action SB for the Bose system is

SB =
∫

d3z

{
φ∗(z)[i D0 + μ]φ(z)+ 1

2M
| �Dφ(z)|2 + θ

4
εμνλAμF νλ

}
− 1

2

∫
d3z

∫
d3z′(|φ(z)|2 − ρ0)V (|�z − �z ′|)(|φ(z′)|2 − ρ0) (13.63)

The covariant derivatives Dμ in this action contain both electromagnetic and
Chern–Simons gauge fields, i.e.

Dμ = ∂μ + i
e

�c
Aμ + iAμ (13.64)

In Eq. (13.63) φ(z) is the Bose field, θ = 1/(2πn), and n, for the moment, is
an arbitrary odd integer. The reader should note that the Chern–Simons coupling
constant θ = 1/(2πn) that we have to use for the flux-attachment transformation
formally violates the requirement that it be quantized in order for the theory to be
gauge-invariant on closed surfaces. The formulation that we are using here (and in
the fermionic version as well) is correct only for a theory defined on a surface with
the topology of a large disk. In Section 14.1.1 we will give a consistent formulation
of flux attachment on a torus.

It is an implicit assumption of this theory that the bosons must have a hard core
since, otherwise, the fractional-statistics transformation does not make sense. It is
very difficult to keep track of this constraint in the continuum. On a lattice the hard-
core constraint does not pose any serious problem. However, if we are interested
only in the long-distance and low-energy behavior, we can replace the hard core by
an effective short-distance repulsive force. This change amounts to adding an extra
term Shc to the action of the form

Shc =
∫

d3z(−λ|φ(z)|4) (13.65)

The total action is Seff = SB+Shc and we have now a bosonic functional integral

Z =
∫

Dφ∗ DφDAμ exp

(
i

�
Seff[φ, φ∗,Aμ; Aμ]

)
(13.66)
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This functional integral can be regarded as a Landau–Ginzburg theory and was
first proposed by Zhang, Hansson, and Kivelson (Zhang et al., 1989). As in the
Bogoliubov theory of the dilute Bose gas, the parameter λ cannot be calculated
directly from this theory. Zhang, Hansson, and Kivelson dropped the repulsive-
pair-potential term altogether and replaced it by the |φ|4 term. We now follow their
treatment and extract the low-energy behavior.

13.3.2 Landau–Ginzburg theory

The effective theory looks like a theory of bosons coupled to a gauge field. In the
absence of the gauge field, the bosons condense and spontaneously break the global
U(1) phase symmetry

φ(z) → eiαφ(z) (13.67)

The system is then a superfluid and its spectrum has a massless excitation, namely
the phase ω of φ, which is the Goldstone boson associated with the broken U(1)
symmetry. We will see now that this Goldstone boson disappears from the spectrum
once the system is coupled to the statistical gauge field.

Let us consider the behavior of the system in the semi-classical (mean-field)
limit. In that limit, the fluctuations of the amplitude of the Bose field φ are small.
Let us write φ in the form

φ(z) = √
ρ(z)eiω(z) (13.68)

The classical equations of motion of the Bose theory (i.e. the mean-field equa-
tions) are (in units such that � = c = e = 1)

(i D0 + μ)φ(x)− 1

2M
�D2φ(x)− 2λ|φ(x)|2φ(x)

−φ(x)
∫

d3x ′ V (x − x ′)(|φ(x ′)|2 − ρ0)
2 = 0

θB(x)+ |φ(x)|2 = 0

θεiαβ ∂
αAβ + i

2M

[
φ∗(x)Diφ(x)− (Diφ(x))

∗φ(x)
] = 0∫

d3x |φ(x)|2 = ρ0L2T

(13.69)

where D0 = ∂0 − i(A0 + A0), �D = �∇ − i( �A + �A), L2 is the area of the system,
and T is the time span.

For a configuration φ with constant amplitude (the ground state) for a system
with (areal) density ρ0 these equations become
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|φ|2 = ρ0

ρ0 + θ〈B〉 = 0

μ− 2λρ0 = 0

〈Aμ〉 + Aμ = 0

ρ0 − ν

2π�2
0

= 0

(13.70)

where �0 = 1/
√

B is the cyclotron length and ν = 1/m is the filling fraction.
Thus, the average statistical gauge field 〈Aμ〉 exactly cancels out, or screens,

the electromagnetic field Aμ. Consequently, we get 〈B〉 = −B. However, the first
of the equations of Eq. (13.70) requires the average statistical magnetic field to
be proportional to the average particle density. Hence, the density and the field
are not independent of each other but satisfy ρ0 = θB. Recall the definition of
the filling fraction ν = (ρ0/B)φ0, where φ0 is the flux quantum φ0 = hc/e (in
standard units). Thus, the classical equations of motion have uniform solutions
only if the filling fraction is ν = θ/(2π) = 1/m, with m an odd integer. We
can then identify the odd integer m with the index of the Laughlin wave function,
which is also odd. Thus, the Landau theory suggests the picture of the FQHE as a
problem of bosons in an average magnetic field that is determined by the number
of bosons! Notice that, with the identification of m as the index of the Laughlin
wave function, the constraint implies that each boson is made of a fermion and m
flux quanta. This is precisely what the arguments of Girvin and MacDonald, and
Read told us.

13.3.3 Low-energy fluctuations

However, this story does not end at the level of mean-field theory. The fluctua-
tions play a very important role in this problem. Mean-field theory told us that
the average particle density and average statistical magnetic field are fixed. But
the fluctuations of the phase ω appear to be completely unconstrained. In order
to investigate this problem we need an effective action for the slow modes of the
phase field. This effective action can be obtained by integrating out the amplitude
fluctuations. Indeed, we can write the field φ in the form

φ(z) = √
ρ0 + δρ(z)eiω(z) (13.71)

The fluctuations of the gauge field are

Aμ +Aμ = δAμ (13.72)

where we used that Aμ + 〈Aμ〉 = 0. We now substitute this expression back into
the Landau–Ginzburg action to obtain
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Seff[δρ, δAμ, μ] =
∫

d3x
{√

ρ0 + δρe−iω [i ∂0 + δA0 + μ]
√
ρ0 + δρeiω

− 1

2M

∣∣∣i �∇
(√

ρ0 + δρeiω
)
+ δ �A √

ρ0 + δρeiω
∣∣∣2

− λ(ρ0 + δρ)2
}

− 1

2

∫
dt

∫
d2x

∫
d2x ′ δρ(x)V (�x − �x ′)δρ(x ′)

+
∫

d3x
θ

4
εμνλ δAμ δFνλ (13.73)

We now expand the effective action in powers of the density fluctuation δρ(z) up
to second order to get (using Eq. (13.70))

Seff[δρ, δAμ, μ] �
∫

d3x

[
− 1

8Mρ0

( �∇δρ
)2 − λ (δρ)2

]
− 1

2

∫
dt

∫
d2x

∫
d2x ′ δρ(x)V (�x − �x ′)δρ(x ′)

+
∫

d3x (δρ)

[
(δA0 − ∂0ω)− 1

2M

( �∇ω − δ �A
)2

]
+

∫
d3x

θ

4
εμνλ δAμ δF νλ (13.74)

We can now integrate out the massive density fluctuations to get the effective
Lagrangian for the fluctuations of the phase and statistical gauge fields,

Leff = κ

2
(∂0ω − δA0)

2 − ρs

2

( �∇ω − δ �A
)2 + θ

4
εμνλAμFνλ (13.75)

where κ is the compressibility of this Bose gas, which, with the approximations we
made, is

κ = 1

2λ+ V̄ /(4Mρ0)
(13.76)

(where we defined an effective short-range interaction V̄ ), and ρs is the effective
superfluid density (of the bosons),

ρs = ρ0

M
(13.77)

However, since the density ρ0 = θB, we can also write the superfluid density ρs in
terms of the filling fraction ν = 1/m and the cyclotron frequency ωc = eB/(Mc):

ρs = θ
B

M
= ν

2π
�ωc (13.78)
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This effective Lagrangian has the same form as the one we derived for the anyon
superconductor in Chapter 10 except for the very important difference that the
gauge field here is the statistical one, whereas there it was the electromagnetic field.
Nevertheless, the phase field still disappears from the spectrum. Indeed, the phase
field ω can be eliminated by a gauge transformation Aμ = A′

μ−∂μω. The resulting
theory is that of a gauge field that has just two massive modes. The masses were
also calculated in Chapter 10. Thus, this is an incompressible ground state. The
two massive modes represent the magneto-phonon and magneto-plasmon which
were derived directly from Laughlin’s theory by Girvin, MacDonald, and Platzman
(Girvin et al., 1986).

13.3.4 Hall conductance

Let us now turn to the problem of the electromagnetic response of the Hall fluid
and to the computation of the Hall conductivity. The Hall conductivity is a response
perpendicular to an applied electric field and hence it does not involve dissipa-
tion. Thus, unlike the longitudinal resistivity, the Hall response can be determined
in a system in the absence of impurities or phonons. We will compute the Hall
conductivity by looking at the response to a weak classical (i.e. unquantized) elec-
tromagnetic perturbation in the form of a vector potential δAμ = (δA0, δ �A) (not to
be confused with the uniform static magnetic field).

The effective Lagrangian in the presence of the electromagnetic field Aμ is
dictated by electromagnetic gauge invariance, and it is given by

Leff[ω,Aμ, δAμ] = κ

2

(
∂0ω +A0 + e δA0

)2 − ρs

2

( �∇ω + �A+ e δ �A
)2

+ θ

4
εμνλAμFνλ (13.79)

The electromagnetic response is obtained from the effective action of the electro-
magnetic field Seff[Aμ],

e i Seff[δAμ] =
∫

Dω DAμ exp

(
i
∫

d3x Leff[ω,Aμ, δAμ]
)

(13.80)

Since this theory is gauge-invariant and has a dynamical gauge field, namely the
statistical field Aμ, we can do this computation in the London gauge, ω = 0, in
which the Goldstone boson of the Bose field, the phase field ω, is eaten by the
dynamical gauge field. This is just the Higgs mechanism. In the London gauge the
effective Lagrangian is

Leff[Aμ, δAμ] = κ

2
(A0 + e δA0)

2 − ρs

2

( �A+ e δ �A
)2 + θ

4
εμνλAμFνλ (13.81)
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This Lagrangian tells us that the phase mode of the Bose field (the phonon of
the Bose fluid) is now absent from the spectrum and that the fluctuations of the
statistical gauge field Aμ are now massive (even in the absence of the Chern–
Simons term) with a mass (squared) given by the superfluid density ρs = ρ0/M
of the bosons. In other terms there is a Meissner effect of the statistical gauge
field. The first term of the effective Lagrangian of Eq. (13.81) implies that there is
complete screening of the electric field. For a system with Coulomb interactions,
V (r) ∝ 1/r , the screening of a 2D electron gas (2DEG) is incomplete.

Upon integrating out the statistical gauge field Aμ we can now compute the
effective action for the external electromagnetic perturbation, Seff[δAμ]. By keep-
ing only the terms with the fewest derivatives (one!) we find that the effective action
of the electromagnetic field is just the Chern–Simons term:

Seff[δAμ] = e2 θ

2

∫
d3x εμνλ δAμ ∂νδAλ + · · · (13.82)

The induced current Jμ(x) = (J0(x), �J (x)) is obtained by differentiation with
respect to the electromagnetic field:

Jμ(x) = θe2εμνλ ∂
νδAλ(x)+ · · · (13.83)

In particular, the spatial components Ji (x) of the induced current are

Ji (x) = θe2εi j δE j (x) (13.84)

where δ �E(x) is the applied electric field. Thus, we see that the induced current is
nothing but the Hall current. From this result we can read off the Hall conductivity
σxy as being (after restoring physical units)

σxy = θ

(
e2

�c

)
= 1

m

(
e2

h

)
(13.85)

where we used the fact that θ = 1/(2πm). In other terms, we find that the fluid
exhibits the FQHE for a 2DEG with filling fraction ν = 1/m.

13.3.5 Vortices

The classical equations of motion of Eq. (13.70) admit static vortex solutions with
the asymptotic behavior

lim
|�x |→∞

φ(�x) = √
ρ0e iϕ(�x) (13.86)

δA0 = 0 (13.87)

lim
|�x |→∞

δAi (�x) = ±�∇ϕ(�x) = ±εi j
x j

|�x |2 (13.88)
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where ϕ(�x) is the azimuthal angle on the plane,

ϕ(�x) = tan−1
( y

x

)
(13.89)

This solution is called a vortex.
In a neutral superfluid (without any gauge fields) the energy of the vortex is (as

we saw in Chapter 4)

Evortex = ρs

2

∫
d2x

( �∇ω(�x)
)2 ≈ ρs

2

∫
d2x

|�x |2 � ρs

2
ln

(
R

a0

)
(13.90)

where a0 is a short-distance cutoff (of the order of the inter-particle spacing) and
R is the linear size of the system. Hence, as we discussed in the context of the
problem of the Kosterlitz–Thouless transition, isolated vortices are very expensive
(energetically speaking) for a neutral superfluid and occur only (as excitations) as
vortex–anti-vortex pairs.

However, in the problem at hand we have a dynamical gauge field, the statistical
field Aμ, which affects the computation of the energy (much in the same way
as in the theory of superconductivity). In this case we find finite-energy vortex
solutions provided that the Bose field φ(x) and the statistical gauge field Aμ obey
the asymptotic behavior

lim
|�x |→∞

∣∣∣(i �∇ − �A
)
φ(�x)

∣∣∣2 = 0 (13.91)

which is satisfied by Eq. (13.88). Thus, at very long distances we find the condition
of Eq. (13.88), �A = ±�∇ω. This solution is regular (except at the core of the vortex)
and has finite energy, provided that the circulation of the statistical gauge field
on any large closed contour � enclosing the vortex satisfies the flux quantization
condition ∮

�

�A · �dx = ±2π (13.92)

However, the Chern–Simons term tells us that a vortex has an associated electric
charge, and that it is a dyonic object with an induced charge density J0(�x),

J0(�x) = −e
δSeff

δA0(�x) = −e
δSeff

δA0(�x)
= +e

δSCS

δA0(�x) = θεi j ∂iA j (�x) (13.93)
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Therefore the total induced (or excess) charge Qv due to a positive vortex is

Qv = e
∫

d2x J0(�x) = θ

∫
d2x εi j ∂iA j (�x)

= eθ
∮
�

�dx · �A(�x)

= e

m
(13.94)

So we conclude that a positive vortex has a fractional charge e/m and represents
a Laughlin quasihole, whereas a negative vortex is a Laughlin quasiparticle with
negative fractional charge −e/m.

In Section 13.9 we will revisit this problem within the fermion Chern–
Simons formulation, where we will show that these excitations have fractional
statistics.

13.3.6 The order parameter

In hindsight, we can construct the order parameter directly in the theory of bosons,
without having to rely on the Landau–Ginzburg theory. The first guess is that the
order parameter is the Bose field φ itself. However, φ is not invariant under gauge
transformations of the statistical gauge field. Thus, its expectation value, as well
as the expectation values of any product of φ fields, is zero when averaged over
all configurations of the gauge field. It may be argued that this is not much of a
problem since one always has to fix the gauge. Since this gauge theory is abelian
and non-compact, all small gauge transformations (i.e. those which do not wind
around the system) are connected to the identity, and it is possible to fix the gauge
completely. Now, the expectation value of products of φ fields will depend on the
gauge in which it is evaluated. Thus, it does not represent a physical observable.
However, all we need is an operator that in some convenient gauge reduces to a
product of φ fields. Fortunately, it is quite easy to construct such operators. We
discussed a similar question in Chapter 9.

Let us consider the case of the boson-correlation function, which is the
expectation value of the product φ†(x)φ(y), where x and y are two arbitrary
points in (2+ 1)-dimensional space-time. Under a gauge transformation φ(x) →
exp(i�(x))φ(x), the product transforms like

φ†(x)φ(y) → ei(−�(x)+�(y))φ†(x)φ(y) (13.95)

Thus, we need to find an operator that transforms in the opposite way and can-
cels out the unwanted phase factor. One possibility is the exponential of the line
integral

∫
�
Aμ dxμ, where � is a path that goes from x to y. But this is just an
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Aharonov–Bohm phase factor, which fluctuates very rapidly and does not vanish
in any gauge. It can be shown that the expectation value of the product

φ†(x) exp

(
i
∫
�

Aμdxμ

)
φ(y) (13.96)

decays rapidly as |x − y| → ∞.
Let us consider the operator O†(x)O(y),

O†(x)O(y) ≡ ei
∫

d3z Ac
μ(z)B

c
μ(z)φ†(x)φ(y) (13.97)

where Ac
μ is some suitably chosen fixed classical configuration with field strength

Bc
μ(z) = εμνλ ∂ν Ac

λ. We will choose Bc
μ in such a way that the product O†(x)O(y)

is gauge-invariant and that in the Landau–Lorentz gauge (∂μAμ = 0) it reduces
to the product of local operators φ†(x)φ(y). Under a gauge transformation that
vanishes at infinity lim|x |→∞�(x) = 0,

φ(x) = ei�(x)φ′(x)
Aμ(x) = A′

μ(x)− ∂μ�(x)
(13.98)

the operator O†(x)O(y) transforms as

O†(x)O(y) = ei�O†(x)O(y) (13.99)

where � is given by

� = �(y)−�(x)+
∫

d3z �(z)∂μBc
μ(z) (13.100)

Gauge invariance demands that � ≡ 0 for all gauge transformations �(z) and
for all points x and y. The only way to meet these requirements is for Bc

μ(z) to
satisfy the equation

∂μBc
μ(z) = δ(z − x)− δ(z − y) (13.101)

We can think of Bc
μ(z) as being the classical magnetic field of two magnetic

monopoles of (opposite) unit magnetic charge located at x and y. If we denote
the “potential” by U (z), we get

Bc
μ(z) = ∂μU (z)

∇2U (z) = δ(z − x)− δ(z − y)
(13.102)

the solution of which is just the electrostatic potential for two unit and opposite
charges.
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Having checked that it is gauge-invariant, we now want to see what this operator
is in the Landau–Lorentz gauge (∂μAμ = 0). In this gauge, the argument of the
exponential part of the operator vanishes identically,∫

d3z Aμ(z)B
c
μ(z) =

∫
d3z Aμ(z)∂μU (z) = −

∫
d3z ∂μAμ(z)U (z) = 0

(13.103)
Thus, in the Landau–Lorentz gauge, we get

O†(x)O(y) ≡ φ†(x)φ(y) (13.104)

Therefore, the operator O(x), defined by

O(x) ≡ φ(x)exp

(
i
∫

d3z Aμ(z)B
c
μ(z)

)
(13.105)

where Bc
μ(z) = ∂μU (z) is the field created by a single charge at x , is the gauge-

invariant order-parameter operator for this problem in the boson description since,
in this gauge, it becomes identical to the field operator of the bosons. Thus, the
correlation functions of this operator exhibit long-range order.

In an arbitrary gauge, this operator is highly non-local. But, in the Landau–
Lorentz gauge, it becomes local and just simple. This is not a surprise since, for
instance, the order parameter of an ordinary BCS-like superconductor is local only
in this gauge. Indeed, it is possible to define an order parameter for a superconduc-
tor in the same way. For practical purposes, in the case of a superconductor, this is
not very useful since the electromagnetic field is not usually treated as a dynamical
field. In the problem of the FQHE, the gauge field is dynamically generated, and it
plays an essential role.

13.4 Fermion field theory of the fractional quantum Hall effect

In this section we derive a field theory for the FQHE that is based on the fermion
picture. These methods, which have been so successful in the treatment of anyon
superfluidity (see Chapter 10), are also very useful for the study of the FQHE.
They have a great advantage over the boson theories in that there is no difficulty in
handling the short-distance behavior, unlike in the case of bosons. It is quite easy to
derive an effective action for the fluctuations that explicitly involves Chern–Simons
gauge fields. The Landau–Ginzburg theory can be seen to be the dual of the fermion
theory in very much the same way as in the case of the anyon superconductor.
The fermion field theory was developed by López and myself (López and Fradkin,
1991).

Let us go back to the second-quantized form of the problem of electrons in a
magnetic field. In its standard form, the dynamics is governed by the action
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S =
∫

d3z

{
ψ∗(z)[i D0 + μ]ψ(z)+ 1

2M
| �Dψ(z)|2

}
− 1

2

∫
d3z

∫
d3z′(|ψ(z)|2 − ρ0)V (|�z − �z ′|)(|ψ(z′)|2 − ρ0) (13.106)

Since we are dealing with a problem in which one Landau level is fractionally
filled, we do not expect that the semi-classical approximation for this problem will,
in general, be very reliable, unless, of course, the ground state of the system is such
that there is a gap in the energy spectrum. For example, in the low-density limit,
the system can lower its energy by modulating the electron density and forming
a Wigner crystal. Wigner crystals can also be studied with a path integral of this
section, but we will not do it here.

Let us recall Jain’s interpretation of the Laughlin state as a state in which the
electrons “nucleate” flux to screen enough of the external magnetic field, so that
the bound states of electrons plus fluxes exactly filled an integer number of Landau
levels. In this section we are going to use the periodicity property of theories of
fermions coupled to Chern–Simons gauge fields, which was Derived in chapter 10,
to make this nucleation picture more explicit.

In Chapter 10 we saw that a system of fermion could be mapped into a system
of fermions coupled to Chern–Simons gauge fields if the Chern–Simons coupling
constant were chosen to be equal to θ = 1/(2πn), where n is an even integer. Thus,
the problem becomes equivalent to a theory with fermions and gauge fields with an
action given by

Sθ =
∫

d3z

{
ψ∗(z)[i D0 + μ]ψ(z)+ 1

2M
| �Dψ(z)|2 + θ

4
εμνλAμF νλ

}
− 1

2

∫
d3z

∫
d3z′(|ψ(z)|2 − ρ0)V (|�z − �z ′|)(|ψ(z′)|2 − ρ0) (13.107)

where ψ(z) is a second-quantized Fermi field, μ is the chemical potential, and
Dμ is the covariant derivative which couples the fermions both to the external
electromagnetic field Aμ and to the statistical gauge field Aμ,

Dμ = ∂μ + i
e

c
Aμ + iAμ (13.108)

We are going to see below that the even integer n has to be identified with m − 1,
where m is the index of the Laughlin state.

13.4.1 The semi-classical limit and the Laughlin state

We will show that the semi-classical limit of the theory described by the action
Sθ , with 1/θ = 2π(m − 1), yields the same physics as the Laughlin state. In
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order to prove this statement we will develop a semi-classical approach to this
problem. In principle, this formalism provides a procedure by which to compute
the corrections to the Laughlin approximation. This is, to the best of my knowledge,
the first formalism for which the Laughlin ansatz arises as the first of a series of
approximations.

The action Sθ governs the dynamics of a system of spinless fermions interacting
through a pair-interaction potential V (|�x − �x ′|) coupled both to electromagnetic
and to statistical gauge fields. The starting point of the semi-classical approxima-
tion maps this FQHE problem into an equivalent IQHE system. This mapping is
made possible by the statistical or Chern–Simons gauge fields, which screen out
enough of the external magnetic field, to the point that the number of flux quanta
of the effective magnetic field which is left is an exact factor of the total number
of particles. Naturally, this perfect screening is not possible for arbitrary values of
the external magnetic field for a fixed number of electrons. The values of the fill-
ing fraction for which this perfect screening can be accomplished happen to be the
same as the Laughlin sequence with filling factors ν = 1/m and the first level of
the hierarchy. For all other cases, there will be some partially filled level left over.
As we discussed in Section 10.5, these quasiparticles are anyons.

Consider the quantum partition function for this problem (at T = 0),

Z =
∫

Dψ∗Dψ DAμ ei Sθ (13.109)

We will treat this path integral in the semi-classical approximation. In order to do
that, we will first integrate out the fermions and treat the resulting theory within
the saddle-point expansion. For this procedure to be accurate, there should be a
small parameter in the theory to control this expansion. For instance, in Chapter 3
we used a similar procedure to study the magnetic instabilities of a dense Fermi
system. In that case the small parameter was 1/N , where N was the number of
fermion species (orbitals). For spin-S antiferromagnets we used a similar approach,
with 1/S being the small parameter.

However, in the case at hand there is no such small parameter. Nevertheless, we
will find that we will be able to construct sequences of gapped states correspond-
ing to fractional quantum Hall states. In the presence of an energy gap what we
call here a semi-classical approximation, i.e. the average-field approximation with
one-loop quantum corrections (conventionally called the random-phase approxi-
mation), will yield exact results for universal long-distance quantities protected by
symmetries (and sum rules) and topology such as the Hall conductance, and the
charge and statistics of the quasiparticles. On the other hand, with the sole excep-
tion of the cyclotron resonance which, as we will see, is protected by Galilean
invariance, other quantities that are not dimensionless, such as energy gaps, have
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large systematic errors that are very difficult to correct. These difficulties become
extreme in regimes in which the energy gap vanishes, where the theory has infrared
divergences in various quantities of interest.

The root of these problems lies not so much in the lack of a formal small parame-
ter to justify the expansion, but more in the approximations done on the theory with
flux attachment. Before flux attachment, one has a theory of fermions partially fill-
ing a Landau level. As we saw, a Landau level has an extensive degeneracy, and
simple perturbative approaches to dense Fermi systems (such as the Hartree–Fock
approach) fail, since in a Landau level all interactions are strong no matter how
small the nominal coupling constant is. Flux attachment, i.e. mapping to an equiv-
alent theory of fermions coupled to a Chern–Simons gauge field, sidesteps this
problem, but at the price of introducing a large amount of mixing between Landau
levels, whose Hilbert spaces are now rearranged in a non-trivial way. We will find
that, if the system manages to have a finite energy gap, the effects of Landau-level
mixing become negligible in the long-distance and low-energy regime. This is what
happens in the fractional quantum Hall states. However, if the system does not have
a gap, and hence becomes compressible, the effects of Landau-level mixing cannot
be disentangled.

The procedure is almost identical to the theory of anyon superconductivity dis-
cussed in Chapter 10. In the absence of electron–electron interactions the fermions
can be integrated out immediately, since the action becomes quadratic in Fermi
fields. In the presence of interactions, this is no longer possible, since the inter-
action term makes the action quartic in the Fermi fields. This problem can be
sidestepped by means of a Hubbard–Stratonovich transformation by which we
trade a quartic form in fermions for a quadratic action coupled to a new Bose
field, the density fluctuation. This procedure will allow us to give a full descrip-
tion of the spectrum of collective modes of the FQHE states. Note that, since
we are dealing with a gauge theory, a gauge has to be specified in order to make
the functional integral well defined. We will assume that a gauge-fixing condition
has been imposed, but, for the moment, we will not make any specific choice of
gauge.

Before we proceed to integrate out the Fermi degrees of freedom, we need to
deal with the interaction term of the action. Here we could perform the Hubbard–
Stratonovich transformation in terms of a scalar Bose field λ(x). Let F be the
weight in the path-integral amplitude which contains in its exponent the terms in
the action which are quartic in the Fermi field ψ ,

F = exp

(
−i

∫
d3z

∫
d3z′

1

2
(|ψ(z)|2 − ρ0)V (z − z′)(|ψ(z′)|2 − ρ0)

)
(13.110)
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The Hubbard–Stratonovich transformation allows us to write F as a Gaussian
functional integral over a Bose field λ(x). However, the Hubbard–Stratonovich
λ represents density fluctuations and couples linearly to the fermion-density oper-
ator. Thus, λ(x) enters into the time-covariant derivative in the same way as the
time component of the statistical gauge field, A0(x), and can be integrated out
exactly. The net result is that the Hubbard–Stratonovich transformation is equiva-
lent to the replacement of the fermion density |ψ(x)|2 in the interaction term by
θB(x) (where we used the Chern–Simons constraint). Therefore we can replace
the interaction term by the equivalent expression

Sint[Aμ] = −1

2

∫
d3z d3z′ [θB(z)− ρ0]V (z − z′)

[
θB(z′)− ρ0

]
(13.111)

where V (z − z′) represents the instantaneous pair interaction, i.e.

V (z − z′) = V (|�z − �z ′|)δ(t − t ′) (13.112)

I will assume that the physics of the FQHE can be studied in a model system in
which the pair potential is reasonably local.

The partition function Z can be written in the form of a functional integral
involving the Fermi fields ψ and the statistical gauge fields Aμ. The action for
the system is now given by

S =
∫

d3z

{
ψ∗(z)(i D0 + μ)ψ(z)+ 1

2M
| �Dψ(z)|2

}
+

∫
d3z

θ

4
εμνλAμF νλ + Sint[Aμ] (13.113)

The Fermi fields can be integrated out without any difficulty, yielding a fermion
determinant. The resulting partition function can thus be written in terms of an
effective action Seff given by

Seff =−i tr ln

[
i D0 + μ+ λ+ 1

2M
�D2

]
+ θ SCS(Aμ − Aμ)+ Sint[Aμ − Aμ]

(13.114)

where D0 and �D are the covariant derivatives and SCS is the Chern–Simons action
for θ = 1. The field Aμ represents a small fluctuating electromagnetic field, with
vanishing average everywhere, which will be used to probe the system. The elec-
tromagnetic currents will be calculated as first derivatives of Z with respect to Aμ.
The full electromagnetic response can be obtained in this way.

We are now ready to proceed with the semi-classical approximation. The path
integral Z will be approximated by expanding its degrees of freedom around sta-
tionary configurations of the effective action Seff in powers of the fluctuations. This
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is the conventional WKB approximation. The classical configurations Āμ(z) can
be obtained by demanding that Seff be stationary under small fluctuations. This
requirement yields the classical equations of motion

δSeff

δAμ(z)

∣∣∣∣
Ā
= 0 (13.115)

By varying Seff with respect to Aμ(z) we get

〈 jF
μ(z)〉 +

θ

2
εμνλ

[〈F νλ(z)〉 − eFνλ
] = 0 (13.116)

In addition, we must fix the particle density to be uniform and equal to ρ̄,

〈 j0(z)〉 = ρ0 (13.117)

If the external electromagnetic fluctuation is assumed to have zero average, the only
time-independent uniform solutions have uniform average statistical flux 〈B〉 and
vanishing average statistical electric field 〈 �E〉 (unless there is a non-zero current in
the ground state), and satisfy

〈B〉 = −ρ0

θ
, 〈 �E〉 = 0 (13.118)

The non-uniform solutions have 〈A0(z)〉 a periodic function that induces a peri-
odic modulation of the electron density. These solutions are Wigner crystals and
stripe phases. Notice that, in principle, the crystalline solutions have a modulation
both in the charge density and in the local statistical flux. We will not discuss these
states here.

The equations of motion show that, for a translationally invariant ground state,
the effect of the statistical gauge fields, at the level of the saddle-point approxima-
tion, is to reduce the effective flux experienced by the fermions. The total effective
field is thus reduced from the value of the external field B down to Beff, given by

Beff = B + 〈B〉 = B − ρ0

θ
(13.119)

Notice that, since ρ0/θ can be either smaller or larger than B, the effective field
Beff can be parallel or anti-parallel to B.

Let us assume that we are trying to find the ground state of N (interacting) elec-
trons in the presence of an external magnetic field of strength B. We will further
assume that the linear size L of the sample is such that a total of Nφ quanta of the
magnetic flux will be piercing the surface. In general, the filling fraction ν = N/Nφ

is not an integer. Thus, a perturbative approach based on a Slater-determinant wave
function of the occupied single-particle states does not yield a stable answer. This is
so because there is a macroscopic number of essentially degenerate states that will
mix with this trial state. On the other hand, a Laughlin state is known to represent a
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Figure 13.1 The composite-fermion mean-field picture of the Laughlin state at
filling fraction ν = 1/3. Left panel: electrons in a 1/3-filled lowest Landau level.
Right panel: composite fermions in a fully filled, p = 1, lowest effective Landau
level. Full circles, filled states; open circles, empty states; ωc and ωeff

c are the
cyclotron frequency of the electrons and that of the composite fermions. See
the text.

state with an energy gap. Thus, the correlations have removed the massive degen-
eracy of the free electrons. Since this gap is not equal to the Landau gap of the
non-interacting electrons, we can expect our saddle-point expansion to succeed
only if the effective theory ends up with a non-zero gap.

It is easy to check that the uniform-saddle-point state has a gap only if the effec-
tive field Beff experienced by the N fermions is such that the fermions fill exactly
an integer number p of the effective Landau levels, see Fig. 13.1. This is precisely
the point of view advocated by Jain: the mean-field state of the 2D electron gas in a
fractional quantum Hall state is an integer quantum Hall state of a system of com-
posite fermions, electrons dressed by an even number of flux quanta. However, this
condition cannot be met for arbitrary values of the filling fraction ν at fixed field
(or at fixed density). Let N eff

φ denote the effective number of flux quanta piercing
the surface after screening. It is given by

2πN eff
φ = 2πNφ − ρ0

θ
L2 = 2π(Nφ − 2s N ) (13.120)

where 2s is an even integer (that before we had denoted by n). The spectrum sup-
ported by this state has an energy gap if the N fermions fill exactly p of the Landau
levels created by the effective field Beff. In other words, the effective filling fraction
is νeff ≡ N/N eff

φ = p. Using these results, we find that the filling fraction ν and the
external magnetic field B must satisfy
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N

p
= N

ν
− 2s N (13.121)

or, equivalently,
1

ν
= 1

p
+ 2s (13.122)

Since the filling fraction ν is in general equal to the ratio of two integers, a solution
exists for filling fractions on the Jain sequences:

ν = p

2sp + 1
(13.123)

On the other hand, since the effective field Beff can be positive or negative, the
number p of filled effective Landau levels should also take either sign. Hence, we
will denote the number of effective filled Landau levels by ±p (with p > 0) to
indicate the case in which Beff > 0 or Beff < 0. We can regard the case Beff < 0 as
an integer quantum Hall effect of holes.

In order to allow for both cases we will write Eq. (13.122) in the form

1

ν
= ± 1

p
+ 2s (13.124)

or, which amounts to the same thing,

ν±(p, s) = p

2sp ± 1
(13.125)

In this approximation the ground state is then interpreted as a system of N
composite fermions filling up exactly p Landau levels of the effective field Beff,

|Beff| = B

2sp + 1
(13.126)

Similarly, the effective cyclotron frequency, i.e. the gap between effective Landau
levels, is also reduced by the same amount,

ωeff
c = ωc

2sp + 1
(13.127)

Hence, for a fixed number 2s of attached flux quanta, the splitting of the effective
energy levels becomes smaller as the level p in the Jain hierarchy increases.

The states are thus parametrized by two integers, p (the number of filled Lan-
dau levels of the effective field) and 2s (the number of flux quanta carried by each
fermion). The Laughlin sequence is an obvious solution since, for p = 1 and m
an odd integer, we get the unique solution p = 1 and 2s = m − 1. The effec-
tive fermions thus fill up exactly one Landau level and θ has to be chosen to be
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1/θ = 2π(m − 1). This result agrees with Jain’s theory. At this mean-field level
the wave function is the Slater determinant for one filled Landau level χ1. The addi-
tional factor,

∏
i< j (zi − z j )

m−1, is due to the fluctuations of the statistical gauge
fields.

Many states of the Jain hierarchy, Eq. (13.125), have been seen in experiments
on 2D electron gases in large magnetic fields in quantum wells and heterostruc-
tures (see Pan et al. (2003, 2008) and Xia et al. (2004)). Of the principal Jain
sequence, with 2s = 2 (i.e. two fluxes attached to each electron) the following
states have been seen experimentally (Pan et al., 2008): 1/3, 2/5, 3/7, . . . , 10/21
(p = 1, . . . , 10); and of the “reverse” (or “hole”) sequence: 1, 2/3, 3/5, 4/7, . . . ,
10/19 (p = 1, . . . , 10). In the experiments the most prominent states have wider
plateaus (when sweeping in magnetic field) in their quantum Hall conductances. It
is also found that the widths of the plateaus of the fractional quantum Hall states
on a given Jain sequence decrease as the order in a given sequence increases. In
the experiments, it is also found that the states with the wider plateaus have larger
energy gaps (measured from the temperature dependence of the longitudinal resis-
tivity). These observations have given credence to the composite-fermion picture
(Heinonen, 1998; Jain, 2007).

All the states mentioned above can also be described by the “bosonic” Haldane–
Halperin hierarchy. However, empirically the stronger fractional quantum Hall
states, defined by the width of the observed plateau in the Hall conductance,
are naturally described by the Jain sequences. On the other hand, there are sev-
eral observed fractional quantum Hall states that do not fit in the Jain sequences,
such as the state at filling fraction 4/11. Such a state can be described as a frac-
tional quantum Hall state in the bosonic hierarchy or as a “next-generation” Jain
state, a fractional quantum Hall state of the quasiparticles (vortices) of the primary
Jain sequence. More interesting are the states with even denominators, such as at
ν = 5/2 (Willett et al., 1987; Pan et al., 1999), which cannot be described by either
hierarchy. We will see in Chapters 14 and 15 that this is a paired or non-abelian
fractional quantum Hall state.

Thus, at the level of the average-field approximation we find that this problem is
equivalent to the integer Hall state of a system of composite fermions. But is this
the correct answer? We will see shortly that the answer is no. The reason is that
fluctuations, even at the (one-loop) Gaussian level, change the physics completely.
In particular, we will see that, unlike other mean-field theories, the average-field
approximation yields the incorrect quantum numbers of the excitations. The reason
is the Chern–Simons constraint that relates flux to charge, which tells us that a
charge fluctuation is always accompanied by a flux fluctuation. This fact, and the
commutation relations between the gauge fields, lead to profound changes in the
spectrum of states and the response of the system.
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13.4.2 Compressible states

An interesting feature of the Jain sequences is the filling fractions of their limiting
values:

ν∞ = lim
p→∞

p

2sp ± 1
= 1

2s
(13.128)

As these limiting values are approached the composite fermion gaps vanish,

lim
p→∞ �ωeff

c (p, s) = 0 (13.129)

Thus, in this limit, and at the mean-field level, the composite fermions see a vanish-
ing effective field, Beff → 0. If we momentarily ignore the (extremely important!)
fact that the fermions are coupled to a Chern–Simons (statistical) gauge field, Aμ,
we are led to the conclusion that for ν∞ = 1/(2s) the composite fermions behave
as a system of fermions at finite density ρ0 in a vanishing magnetic field.

Thus, if this picture is correct, we expect the composite fermions to fill up a
Fermi sea, with a finite Fermi momentum pF determined by the density ρ0 of com-
posite fermions (the same as the electron density!), which is related to the filling
fraction ν∞ = 1/(2s) and to the magnetic length �0 = √

eB/(�c) by

ρ0 = ν∞
2π�2

0

(13.130)

We can determine the Fermi momentum pF by the standard relation∫
| �p|≤pF

d2 p

(2π�)2
= ρ0 (13.131)

which tells us that we have filled all single composite-fermion states with momen-
tum less than pF. We then find that pF is given by

pF = √
2ν∞

�

�0
(13.132)

and we have a Fermi energy

EF = p2
F

2M
= ν∞

�

M�2
0

(13.133)

Provided that the approximations we just made can be trusted (which is a big “if”
since this theory does not have a small parameter), we conclude that at the limiting
fractions ν∞ behaves as a system of composite fermions filling up a Fermi disk. As
we saw in Chapter 2, a state of this type does not have an energy gap. Its low-lying
excitations are composite-fermion quasiparticles as well as quasiparticle–quasihole
pairs (with arbitrarily low energy).
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Naturally this picture is much too naive since the composite fermions (a) inter-
act with each other via the pair interaction and (b) are coupled to a now dynamical
gauge field, the statistical gauge field. In the next subsections we will discuss in
detail the role of quantum fluctuations for the incompressible states. In that case,
although they play a key role, and change the physics in a qualitative way, in the
long-distance and low-energy regime these corrections are free of infrared diver-
gences and hence are controlled. Indeed, in the low-energy regime we will find
results that are actually exact.

However, the situation is drastically different for the compressible states since
they do not have a gap at the level of the average-field approximation. This natu-
rally would lead us to suspect that the corrections may have infrared divergences,
which would signal an instability of the mean-field state. If the only important
correlations were due to the pair interactions between composite fermions, the
result would be a renormalized Fermi-liquid state, a quantum liquid adiabatically
connected to the free-fermion state. In this case it is known that the effect of interac-
tions primarily results in a set of renormalized Fermi-liquid parameters that control
the forward-scattering interactions of the quasiparticles (Baym and Pethick, 1991;
Shankar, 1994). In a weakly coupled Fermi-liquid state, the only possible instabil-
ity is with respect to a superconducting state (in this case of composite fermions)
in the px + i py channel (Kohn and Luttinger, 1965; Chubukov, 1993; Raghu and
Kivelson, 2011). At any rate, the lack of a small parameter leads one to question
the applicability of these results to this case.

A much more serious problem in this system is that the gauge-field fluctuations
lead to strong infrared divergences in the forward-scattering channel. The problem
of a system of fermions at finite density coupled to dynamical gauge fields is a
problem that has been researched in high-energy and condensed matter physics
for many years, and it is still an essentially unsolved problem. In spite of the lack
of a solution, what is clear is that the main effect of the gauge-field fluctuations
is to invalidate the quasiparticle picture and hence put into question the basis of
the Fermi-liquid scenario (Halperin et al., 1993; Kwon et al., 1994; Nayak and
Wilczek, 1994; Polchinski, 1994).

In spite of these questions, a theory of the compressible state which is based
on a Fermi-liquid theory of composite fermions that yields a good phenomeno-
logical description of most of the experiments in this regime has been constructed
by Halperin, Lee, and Read (Halperin et al., 1993). In this theory it is shown that
the gauge-invariant current correlators are free of infrared divergences and can be
used to compute response functions that agree qualitatively with the results from
experiments. Infrared divergences do appear in the (gauge-dependent) fermion
propagators, leading to a divergence of the composite-fermion effective mass and
the vanishing of the quasiparticle residue (as discussed in Chapter 2). On the other



13.5 The semi-classical excitation spectrum 523

hand, numerical simulations with a variational wave function with the form of a
Slater determinant of free composite fermions at fixed density, projected onto the
lowest Landau level,

�FL[zi ] = PLLL

[
det{ei �k·�ri }

] ∏
i< j

(zi − z j )
2 (13.134)

yield results in good agreement with exact diagonalizations of the problem of elec-
trons in a half-filled Landau level. Here PLLL denotes the projection onto the lowest
Landau level and {�ri } are the electron coordinates. A conceptually serious question
is that one expects the quasiparticles to have vanishing charge, but not a vanish-
ing dipole moment. A theory defined directly in the lowest Landau level (without
flux attachment) that is based on physical observables, namely the non-commuting
guiding center coordinates, has been proposed (Pasquier and Haldane, 1998; Read,
1998). But it has proven to be very difficult to make progress with this approach.

13.5 The semi-classical excitation spectrum

We will now consider the role of the Gaussian fluctuations around the classical
solutions. This is equivalent to a WKB approximation of the functional integral.
We begin by considering the effective action. We showed that the saddle-point
approximation has a uniform liquid-like solution. Let Aμ(x) denote the fluctua-
tions of the statistical vector potential Aμ (from its average value) and Aμ(x) be
an external weak electromagnetic field acting as a probe (not the uniform field).
The effective action can be expanded in a series in powers of the fluctuations. We
will be interested only in keeping the terms up to quadratic order in the fluctua-
tions. As usual, the linear terms are cancelled out if the saddle-point equations are
satisfied. This means that the Chern–Simons piece of the action now has the form
SCS(Aμ − Aμ).

At the quadratic (Gaussian) level the effective action has the form

S(2) = 1

2

∫
d3x d3 y Aμ(x)�

μν
F (x, y)Aν(y)+ θ SCS(Aμ − Aμ)

+ Sint(Aμ − Aμ) (13.135)

where Sint is the part of the effective action for the interactions. After cancelling
the external uniform magnetic field with the average statistical magnetic field, Sint

becomes a function of the fluctuations Aμ − Aμ (where Aμ denotes the external
probe electromagnetic field):

Sint(Aμ − Aμ) = −θ2

2

∫
d3z

∫
d3z′[Bμ(z)− Bμ(z)]V (z − z′)[Bμ(z

′)− Bμ(z
′)]

(13.136)
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The general form of the polarization tensor �μν
F for free fermions in an external

field was derived in Section 12.5. For a system with an integer number of Landau
levels, the most important properties of�μν are that it is transverse, i.e. ∂μ�μν = 0,
Eq. (12.87), and that it can be expanded in powers of gradients. The latter prop-
erty is a consequence of the fact that the system has an energy gap. Thus, gauge
invariance and locality will be sufficient to fix the form of the effective action for
the low-energy fluctuations.

In momentum (and frequency) space the (transverse) polarization tensor of the
composite fermions, �μν

F (Q) (with Q = (Q0, �Q), where Q0 = ω is the fre-
quency), has the form of a linear combination of explicitly transverse tensors,
of which two are even under parity and time reversal separately, and a third
breaks both parity and time reversal (but not their product). When expanded in
components, �μν(Q) has the structure (López and Fradkin, 1991, 1993)

�F
00 = �Q2�F

0(ω,
�Q)

�F
0 j = ω �Q j�

F
0(ω,

�Q)+ iε jk Qk�
F
1(ω,

�Q)
�F

j0 = ω �Q j�
F
0(ω,

�Q)− iε jk Qk�
F
1(ω,

�Q)
�F

i j = ω2δi j�
F
0(ω,

�Q)− iεi jω�
F
1(ω,

�Q)+ ( �Q2δi j − Qi Q j )�
F
2(ω,

�Q)

(13.137)

The kernels �F
0(Q), �

F
1(Q), and �F

2(Q) represent charge-conserving fluctuations
in the system of composite fermions in the effective magnetic field Beff. �F

0 and
�F

2 are associated with the parity and time-reversal even processes, while �F
1 is

associated with the parity and time-reversal odd processes (and has the tensorial
structure of the Chern–Simons term of the action).

For a Jain state at level p ≥ 1, which has a mean-field ground state with p
filled effective Landau levels, the tensors have the form of a series of terms, each
representing a process with a particle–hole excitation, and have simple poles at the
particle–hole excitation energies ωmn = (m − n)ωeff

c , with m > p (particle) and
n ≤ p (hole). Each term has a residue given in terms of powers of Q2 (or �Q2) and
Laguerre polynomials of Q (given in detail in López and Fradkin (1991, 1993)).

In the limit of zero frequency and zero momentum, ω = 0 and �Q = 0, for a Jain
state at level p, they take the limiting values

�F
0(0, 0) = 1

2π

pM

Beff
≡ ε

�F
1(0, 0) = ± p

2π
≡ σ 0

xy

�F
1(0, 0) = − 1

2π

p2

M
≡ −χ

(13.138)
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To leading order in fluctuations and in gradients, we get the following effective
action:

Seff =
∫

d3z

(
ε

2
�E2 − χ

2
B2

)
+ (σ 0

xy + θ)SCS(Aμ)+ θSCS(Aμ)−
∫

d3z
θ

2
εμνλAμFνλ

−
∫

d3z
∫

d3z′
θ2

2
(B(z)− B(z))V (z − z′)

(
B(z′)− B(z′)

)
(13.139)

where we have expanded the Chern–Simons term of the action. Once again, we find
that the effective action is parametrized in terms of the three quantities ε, χ , and
σ 0

xy , which we have already discussed in Chapter 10. Following exactly the same
arguments, we expect that ε and χ will have significant finite renormalizations,
but the Hall conductance σ 0

xy will remain unrenormalized at the value predicted
by mean-field theory. Thus, we know that, for a state with an integer number p of
filled Landau levels, σ 0

xy = ±p/(2π) (in units of e2/�).

13.6 The electromagnetic response and collective modes

To determine the full electromagnetic response and the collective modes, we
need to calculate the polarization tensor �μν of the external electromagnetic
perturbation Aμ, defined from its effective action

Seff[Aμ] = 1

2

∫
d3z d3z′ Aμ(z)�

μν(z, z′)Aν(z
′)+ · · · (13.140)

To compute this effective action, we return to the action for the quadratic fluc-
tuations of the statistical field Aμ given in Eq. (13.139). Upon integrating out
the Gaussian fluctuations of the statistical gauge field Aμ, we find an effective
action for the electromagnetic perturbation Aμ of the form of Eq. (13.140). In
momentum and frequency space the polarization tensor �μν has the same tensorial
structure as �F

μν of Eq. (13.137) (as is required by gauge invariance and charge

conservation), but with a new set of kernels, �0(ω, �Q), �1(ω, �Q), and �2(ω, �Q),
given by

�0(ω, �Q) = −θ2�
F
0(ω,

�Q)
D(ω, �Q) (13.141)

�1(ω, �Q) = θ + θ2 θ +�F
1(ω,

�Q)
D(ω, �Q) + θ3V ( �Q) �Q2�

F
0(ω,

�Q)
D(ω, �Q) (13.142)
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�2(ω, �Q) = −θ2�
F
2(ω,

�Q)
D(ω, �Q)

+ V ( �Q)
D(ω, �Q)

[
ω2�F

0(ω,
�Q)2 −�1 F(ω, �Q)2

+ �Q2�F
0(ω,

�Q)�F
2(ω,

�Q)
]

(13.143)

D(ω, �Q) = ω2(�F
0(ω,

�Q))2 −
(
θ +�F

1(ω,
�Q)

)2

+ �Q 2�F
0(ω,

�Q)
(
�F

2(ω,
�Q)− θ2V ( �Q)

)
(13.144)

In spite of the complexity of these formulas, some important consequences are
easily extracted from them. The physical excitations (the collective modes) are the
poles of the kernels �0(ω, �Q), �1(ω, �Q), and �2(ω, �Q), which are the zeros of
the function D(ω, �Q) = 0 (defined in Eq. (13.144)).

The f -sum rule and Kohn’s theorem

In Chapter 12 we showed that the current–current retarded correlation function of a
physical system, DR(x, x ′) = −iθ(x0 − x ′

0)
〈[

Jμ(x), Jν(x ′)
]〉

, obeys a set of Ward
identities that follow from gauge invariance and the conservation of the current.
One of these identities is the f -sum rule:∫ ∞

−∞
dω

2π
iωDR

00(ω,
�Q) = ρ0

M
�Q2 (13.145)

with DR
00(ω,

�Q) = −�R
00(ω,

�Q), where the label R means the retarded function.
Equation (13.145) follows from Eq. (12.106) after taking Fourier transforms and
integrating over frequencies.

What is the leading behavior of �00(ω, �Q) at small momentum, �Q → 0? This
we can determine from Eq. (13.141) for (the time-ordered) �00(ω, �Q) at small �Q
with ω fixed:

�00(ω, �Q) � �Q2�0(ω, 0) = −θ2 �Q2�
F
0(ω, 0)

D(ω, 0)
= −ρ0

M

�Q2

ω2 − ω2
c + iε

(13.146)

where ωc is the “bare” cyclotron frequency (of electrons!)

ωc = eB

Mc
≡ B

M
(13.147)

As we can see, this result is consistent with the f -sum rule, Eq. (13.145). It also
implies that, in the �Q → 0 limit, it has no corrections since the sum rule is sat-
urated. This is, of course, equivalent to Kohn’s theorem, which states that for a
2DEG in a Galilean-invariant system, the cyclotron resonance (the denominator of
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Eq. (13.146)) lies exactly at the cyclotron frequency ωc, without any renormaliza-
tions due to particle–particle interactions (Kohn, 1961). Physically this means that
in a Galilean-invariant system this resonance is due to the motion of the fluid as
a whole, namely of its center of mass, which is not affected by the interactions
between the particles.

This result also corrects a serious difficulty of the average-field approximation.
Indeed, as Kohn’s theorem tells us, in a Galilean-invariant system we can replace
the entire 2DEG by its center of mass, which behaves as a particle with the total
charge of the fluid, Q = Ne, moving in the perpendicular magnetic field. There-
fore the total linear momentum of the fluid �P (where �P is the total canonical and
gauge-invariant momentum operator) should obey exactly the magnetic algebra of
a particle of mass N M and charge Ne,[

Pi , Pj
] = i

e�

c
Bεi j (13.148)

and see the full external magnetic field. Instead, the composite fermions (in the
average-field approximation) see the partially screened magnetic field, Beff < B.
Thus, as we see, the quantum fluctuations, already at the Gaussian level, change this
result by restoring the correct magnetic algebra, and yield the exact long-distance
limit.

13.6.1 The anyon superfluid

We have used a similar approach to describe a theory of anyons at finite density, see
Chapter 11. In that case, the value of θ was such that we found an exact cancellation
of the effective coupling constant of the Chern–Simons coupling, θeff = σ 0

xy +
θ = 0. As we can see from the expression of D(ω, �Q), in the limit �Q = 0, the
analog of the Kohn mode is now a linearly dispersing mode with

ω = v| �Q|, v =
√

2πρ0

M2
(13.149)

which we identify with the phase mode of the anyon superfluid, with a velocity
consistent with the requirements of Galilean invariance.

13.6.2 Collective modes

In addition to Kohn’s mode, which has an energy at the cyclotron frequency and
a residue of the order of | �Q|2, this theory predicts that the lowest-energy collec-
tive mode, a magneto-phonon, has an energy at �Q = 0 that is a fraction of the
cyclotron frequency ωc. This mode has a residue proportional to | �Q|4. In the case
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of the Laughlin state (p = 1) Girvin, MacDonald, and Platzman (Girvin et al.,
1986) also found a magneto-phonon mode with the same residue. However, in
their theory (which works directly in the lowest Landau level using the single-
mode approximation) the gap of the mode is given by the Coulomb energy and
does not depend on the bare mass M of the particles. In contrast, the calculation
we have just described predicts (incorrectly) that the energy depends explicitly
on M and not on the Coulomb interaction. This is one of the difficulties of this
approach. Indeed, this mode is expected to be corrected by terms higher in the
expansion about the average-field approximation that occur at order | �Q|4. Thus,
although this theory predicts the correct behavior at long distances, the predictions
for dimension-full quantities (such as energy gaps) not protected by symmetries
cannot be trusted, even if the qualitative “level scheme” is actually correct. A
program to eliminate these systematic problems was developed by Murthy and
Shankar (2003).

13.7 The Hall conductance and Chern–Simons theory

The effective action of Eq. (13.139) is sufficient to find the Hall conductance, as
well as the charge and statistics of the quasiparticles. Notice that, if the electro-
magnetic fluctuation Aν is turned off, the action for the statistical gauge field has
a Chern–Simons term with a coupling constant equal to the sum of the bare (θ )
and induced (σxy) couplings. In the anyon superconductor of Chapter 11, these two
contributions cancelled each other out, leading to a compressible state. In a frac-
tional quantum Hall state, they add up, and the state is incompressible. It is also
worthy of note that, except for the “Maxwell-like” first two terms, this expression
is exact and independent of the gradient fluctuation. In particular, it contains the
exact dependence on the interaction pair potential V .

I will show now how this formalism can be used to compute the Hall conduc-
tance σxy and the statistics of the quasiparticles. Let us first note that the quantity
σ 0

xy is the Hall conductance of the effective fermions in mean-field theory and that
it is not equal to σxy . In particular, it is equal to σ 0

xy = p/(2π), and predicts an inte-
ger instead of a fractional Hall conductance. The full Hall conductance is obtained
by calculating the electromagnetic response function.

If we are interested only in the behavior at very low frequency and momentum,
we can further approximate Seff by keeping only the terms with the smallest number
of derivatives. The Chern–Simons terms have just one derivative, whereas the other
terms have at least two. Thus, at long wavelengths and low frequencies, we can use
the approximation

Seff[A, Ã] ≈ (σ 0
xy + θ)SCS(Aμ)+ θSCS( Ãμ)−

∫
d3z

θ

2
εμνλAμ F̃νλ (13.150)
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where only the statistical gauge field Aμ is dynamical. This approximation is suffi-
cient for our purposes. We will see below that this approximate form of the effective
action is sufficient to determine the charge and statistics of the quasiparticles as
well as the Hall conductance.

The electromagnetic response is calculated from the partition function

Z[ Ã] =
∫

DAμ e i Seff[A, Ã]

= exp

(
i

2

∫
d3z

∫
d3z′ Ãμ(z)�

μν

eff (z, z′) Ãν(z
′)
)

(13.151)

where �μν

eff (z, z′) is the effective polarization tensor (i.e. the current–current cor-
relation function for the full system) in the Gaussian (RPA) approximation. The
calculation is particularly simple in the infrared limit.

In Chapter 10 we showed that a theory with two gauge fields, Ãμ and Aμ, with
just Chern–Simons terms in the action, with couplings θ1 = θ and θ2 = σ 0

xy ,
respectively, is equivalent, upon integration over Aμ, to a theory with a Lagrangian
Leff[ Ã] ≡ −i lnZ[ Ã] that has the Chern–Simons form

Leff[ Ã] ≈ θeffLCS[ Ã] (13.152)

The effective Chern–Simons coupling θeff is given by

1

θeff
= 1

θ1
+ 1

θ2
(13.153)

For the values 1/θ = 2π(2s) and σ 0
xy = p/(2π), which we found above, we get

1

θeff
= 2π(2s)+ 2π

p
(13.154)

Since in the effective Lagrangian Leff[ Ã] we are keeping only the terms with
the smallest number of gradients, we are neglecting the (even) Maxwell terms
coming both from electrodynamics and from their renormalization by the charge
fluctuations.

The (induced) current Jμ(x) is computed by using its usual definition:

Jμ(x) = −i
δlnZ[ Ã]
δ Ãμ(x)

≡ δLeff[ Ã]
δ Ãμ(x)

(13.155)

The current Jμ(x) is determined by the Chern–Simons term alone:

Jμ(x) = θeff

2
εμνλ F̃νλ(x) (13.156)
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For a weak external static electric field Ẽ j (�x), we find that the induced charge
vanishes and that there is a non-zero Hall current, i.e.

ρind(�x) ≡ J0(�x) = 0

J ind
k (�x) ≡ θeffεk j Ẽ j (�x)

(13.157)

The form of the Hall current enables us to identify the Hall conductance σxy with
θeff. Thus, the Hall conductance for this ground state is

σxy = θeff = 1

2π

(
p

2sp + 1

)
(13.158)

For the odd integers m, in the sequence m = 2sp + 1, we can write the Hall
conductance as the fraction

σxy = 1

2π

p

m

(
e2

�

)
(13.159)

where we have restored the factor e2/�. Hence, we get a fractional quantum Hall
effect. The particular choice p = 1 yields the family of Laughlin states �m , with
m = 2s + 1.

13.8 Quantum numbers of the quasiparticles: fractional charge

Let us now evaluate the quantum numbers of the quasiparticles within the Chern–
Simons theory. In particular, we want to compute their charge and statistics. Much
of what follows is a rederivation, directly from the path integral, of results that were
obtained before using Berry-phase arguments. The path-integral methods have the
great advantage that they are very general and widely applicable.

We first need to identify the operators which create the quasiparticles in the
Chern–Simons theory. Or, at least, we need to find a set of operators whose
correlation functions yield information about the spectrum of the quasiparticles.

We have already identified the collective modes. Let us now identify the quasi-
hole. From Laughlin’s theory we know that the quasihole is an anyon that carries
fractional charge.

We will now define a gauge-invariant operator that creates an excitation at �x at
time x0 and destroys it at �x ′ at time x ′

0, and behaves like a quasihole. Let us consider
the gauge-invariant “bilinear” operator

ψ†(x)exp

(
i
∫
�(x,x ′)

(Aμ +Aμ)dxμ

)
ψ(x ′) (13.160)

where �(x, x ′) is a path in space-time going from x to x ′. By construction, this
operator is invariant under gauge transformations of the statistical gauge field Aμ.
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We will assume for the moment that the fluctuating component Ãμ of the elec-
tromagnetic field is switched off and, therefore, this object feels only the uniform
magnetic field Aμ (insofar as electromagnetism is concerned). In any event, the
line integral in the exponent of the bilinear depends only on the sum of all the vec-
tor potentials. According to the procedure we used above, the fields Ãμ and λ have
already been shifted away, and do not appear explicitly in this operator. Their effect
is felt through their coupling to the vector potential Aμ.

Let us evaluate the path-dependent correlation function G�(x, x ′) defined by

G�(x, x ′) =
〈

T

[
ψ†(x) exp

(
i
∫
�(x,x ′)

(Aμ +Aμ)dxμ

)
ψ(x ′)

]〉
(13.161)

in a fractional quantum Hall state, where T is the time-ordering operator. This
correlation function is gauge-invariant but depends on the choice of path �.

In path-integral language, this Green function is given by an average over the his-
tories of Fermi and statistical fields, weighted with the amplitude exp(iSθ ) defined
earlier in this section. We now proceed to integrate out the Fermi fields, and find
that the Green function is given by the average

G�(x, x ′) =
〈

G(x, x ′|{Aμ +Aμ})exp

(
i
∫
�(x,x ′)

(Aμ +Aμ)dxμ

)〉
A

(13.162)

The function G(x, x ′|{Aμ +Aμ}) is the one-particle Green function for a problem
of fermions in fixed statistical and electromagnetic gauge fields at finite particle
density, determined by the chemical potential μ. It is straightforward to see that
G(x, x ′|{Aμ +Aμ}) is the inverse of the Schrödinger operator, i.e.

G(x, x ′|{Aμ +Aμ}) = 〈x | 1

i D0 + μ+ λ+ (1/(2M)) �D2
|x ′〉 (13.163)

From now on we will not write down explicitly in our formulas the constant part
of the electromagnetic field, Aμ. Its presence will be assumed throughout the rest
of the discussion.

The average of any operator O[{A}] over all configurations of the fields Aμ is
given by the path integral

〈O[{A}]〉 = 1

Z

∫
DAμO[{A}]eiSeff[A] (13.164)

where Z is the partition function and Seff[A] is the effective action, which turns
out to be given by

Seff = −i tr ln

[
i D0 + μ+ λ+ 1

2M
�D2

]
+ θ SCS(Aμ)+ Sint[Aμ] (13.165)
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Let us now represent the one-particle Green function G(x, x ′|{Aμ}) in terms of
a Feynman path integral (Feynman and Hibbs, 1965; Polyakov, 1987). We first
use the representation of the propagator (or Green function) as an integral of a
transition-matrix element, namely

G(x, x ′|{Aμ}) = −i
∫ +∞

0
dT 〈�x, 0|�x ′, T 〉eiμT (13.166)

where the weight exp(iμT ) serves to fix the number of particles. Since the saddle-
point has p filled Landau levels, the chemical potential has to be set to lie between
the levels p and p + 1. The matrix element 〈�x, 0|�x ′, T 〉 can be written as a sum
over histories by means of the Feynman formula

〈�x, 0|�x ′, τ 〉 =
∫

D�z[t]ei S[�z(t)] (13.167)

with the boundary conditions

lim
t→0

�z(t) = �x, lim
t→T

�z(t) = �x ′ (13.168)

Thus, as usual, the matrix element 〈�x, 0|�x ′, T 〉 is a sum over all paths �̃ that go
from �x to �x ′ in time T . The action S in the path integral is the standard action for
non-relativistic quantum mechanics for particles coupled to a gauge field,

S =
∫ τ

0
dt

{
M

2

(
d�z
dt

)2

+ e

c

dzμ

dt
(t)Aμ(�z(t))

}
(13.169)

where we have used the notation z0 ≡ t . The second term in the integrand is a
shorthand notation for the coupling to the electromagnetic and statistical gauge
fields,

d�z
dt
(t)Aμ(�z(t)) ≡ e

c

d�z
dt
(t) · �A(�z(t))+ eA0(�z(t))

+ d�z
dt
(t) · �A(�z(t))+A0(�z(t))+ λ(�z(t)) (13.170)

Similar-looking formulas can be derived for the two-particle and other many-
particle propagators.

For a problem with an energy gap, the long-distance, long-time limit, |x − x ′| →
∞, of the path integral is dominated by paths close to the solution of the classical
equations of motion. Thus, in this case, the dominant trajectories are smooth. Thus,
it should be a good approximation for our problem to pull the integral over the
trajectories {�z(t)} outside of the functional integral over the statistical gauge fields
and over all the configurations of these fields for a fixed path γ . The averaging
over the trajectories of the particle is done at a later stage. We should keep in mind
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that these averages are performed around the saddle-point configuration, which has
an effective constant uniform magnetic field Beff and a total number p of Landau
levels that are completely filled. Formally, we can write the average in the form

G�(x, x ′) =
∫ +∞

0
dT

∫
D�z(t)eiμT exp

[
i
∫ T

0
dt

M

2

(
d�z
dt

)2
]

×
〈
exp

(
i
∮
γ

Aμ dzμ

)〉
A

(13.171)

where the set of closed curves {γ } represents paths that are the oriented sum of the
path � and the histories of the particle �̃. It is important to keep in mind that this
formula is a sum over all trajectories that go from �x to �x ′ with a fixed return path
�. Notice that the particle does not return to �x ; only the gauge fields see the closed
paths γ .

It is straightforward to find a generalization of this formalism for the calculation
of the two-particle Green function. The main difference is that, for the two-particle
case, there are two sets of trajectories to be summed over. The Grassmann integral
automatically antisymmetrizes the two-particle Green function, which comes in the
form of a sum over direct and exchange processes with the gauge fields as a fixed
background.

In the semi-classical approximation, the exact average is replaced by an expan-
sion around the solutions of the classical equations of motion. Thus, in this
approximation, the particle feels only the average of the sum of the electromag-
netic and statistical gauge fields. The effective field felt by the particle is equal to
Beff = B − ρ0/θ . Thus, for each closed trajectory γ , there is a constant factor
that can be factored out from the functional integral. This factor corresponds to
an Aharonov–Bohm phase factor for a particle moving in the field Beff, not in the
external field B. It is easy to show that, as a result of the screening of the external
magnetic field, the Aharonov–Bohm phase factor is that of a particle of charge 1/m
of the electron charge moving in the unscreened field B.

Indeed, we have that the exponent of the Aharonov–Bohm phase factor is
(2π/φ0)Beff A⊥(γ ), where A⊥(γ ) is the (spatial) cross-sectional area bounded by
the path γ . Since Beff = B − ρ0/θ , we can define the effective charge (in units of
e) qeff ≡ 1 − ρ0/(θB) and write Beff = qeff B. The effective charge qeff can also be
written in the more useful form

qeff = 1 − ρ0

θB
= 1 − ρ0L2

θBL2
= 1 − N

2πθNφ

(13.172)

where L is the linear size of the system. Thus, we get

qeff = 1 − ν

2πθ
(13.173)
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For a filling fraction ν = p/m ≡ p/(2sp + 1) and θ = 1/(4πs), we find that the
effective charge is

qeff = 1 − 2sp

2sp + 1
= 1

2sp + 1
≡ 1

m
(13.174)

Hence, the effective charge is ±e/m.

13.9 Quantum numbers of the quasiparticles: fractional statistics

The fractional statistics can be studied by considering the two-particle Green func-
tion. Recall that now we have to consider two sets of trajectories, one for each
particle, which constitute a half-braid such as the one shown in Fig. 13.2. We now
consider two paths γ1 and γ2, such as the ones discussed in Section 10.5. Here too,
the configurations of paths can be classified according to their linking number νL.
The weights of configurations with different linking numbers have different phase
factors. Likewise, configurations of paths from direct and exchange processes also
have different linking numbers. While the phase factors themselves depend on the
trajectories, and thus on the arbitrarily chosen paths for the two particles, the rel-
ative phase depends only on the topological properties of the configurations of
paths, and is determined entirely by the relative linking number �νL. In particular,
we want to compare two paths that form a linked knot with two paths that do not.
In this case, the linking number changes by �νL = 1.

If the paths are very long and wide, such as the dominant paths for the low-
energy excitations, the average over the statistical gauge fields can be calculated
using the effective action in the infrared approximation. This effective action

time

Figure 13.2 A half-braid of the worldlines of two quasiparticles is equivalent to
a counterclockwise exchange.
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contains only one Chern–Simons term (if Ã = 0), with coupling constant θ̄
equal to

θ̄ = σ 0
xy + θ = p

2π
+ 1

4πs
(13.175)

The arguments of Section 10.5 show that these two amplitudes differ by a factor
Wex, given by

Wex = −exp

(
i
�νL

2θ̄

)
(13.176)

Thus, the statistical angle δ (including the fermion sign) for all fractional quantum
Hall states in the Jain sequences, with filling fraction ν = p/(2sp + 1), is given by

δ = ±
(

2s(p − 1)+ 1

2sp + 1

)
π (mod 2π) (13.177)

For the special case of the Laughlin states, with ν = 1/m (and thus p = 1), the
statistical angle reduces to

δ = ±π

m
(13.178)

We conclude that the operator we found creates quasiholes (or, conversely, quasi-
particles) of charge ±(e/m) and statistics π/m. This result agrees with the Berry-
phase arguments of Arovas, Schrieffer, and Wilczek and with the calculations based
on the Laughlin wave function, which we summarized in Section 13.1.4. The power
of the derivation that we just gave lies in the fact that it follows directly from the
general principles of quantum mechanics (just as the Berry-phase arguments do),
but without the need to make any specific ansatz for the wave functions for the
ground state and for the quasihole. The adiabatic approximation, which is essential
to the Berry-phase argument, is just as important here, since it results from the
existence of an energy gap. But the general formula for the path integral is valid
even in the absence of a gap.
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Topological fluids

In this chapter we will develop the effective-field theory of topological fluids,
focusing on the fractional quantum Hall states as the prototype.

14.1 Quantum Hall fluids on a torus

Quantum Hall states are topological electron fluids whose properties depend on
the topology of the surface on which the electrons are bound. In this section we
will discuss the case of a fluid confined to a 2D torus. Although considering a 2D
electron gas on a torus is of little experimental value, it is a great conceptual (and
numerical) tool.

For the Laughlin states we have discussed there is the implicit assumption that
the electrons are confined in a simply connected region of the plane by an external
confining potential. Thus, the surface on which the electrons live has the topology
of a disk or, which is equivalent, a sphere. In this geometry the ground state is
unique.

In Section 12.7 we discussed the state of a free-fermion system on a torus with
filling factor ν = 1 (a full Landau level), and we showed that the ground state on
a torus is also unique. The reason for this is that the filling factor is 1. Thus, in
a translationally invariant system the motion of the center of mass of the electron
fluid decouples from the relative motion of the electrons in the fluid. The motion of
the center of mass is that of a single particle moving in a magnetic field with one
flux quantum. Thus the state is unique.

The situation is different in the case of Laughlin states, since they have a filling
fraction ν = 1/m. Thus the center of mass behaves as a charged particle moving
in the field of m flux quanta. Hence we expect that the ground-state wave function
should be m-fold degenerate. Haldane and Rezayi (1985) gave an explicit con-
struction of the Laughlin state on a torus (essentially the generalization of what we
discussed in Section 12.7). These wave functions (in the Landau gauge) have the

536
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same factorized form as that of Eq. (12.157) expressed in terms of theta functions.
The difference is that in the case of Laughlin states there are m linearly independent
states. Later in this chapter we will see that in the case of the non-abelian quantum
Hall states the degeneracy on a torus is not determined solely by the motion of the
center of mass of the fluid.

In this section we will see how the topology of the torus affects the concept of
flux attachment and the construction of the effective-field theory of the quantum
Hall states.

14.1.1 Flux attachment on a torus

We will now show how to define flux attachment in a manner compatible with
the requirement of quantization of the abelian Chern–Simons coupling constant
or, which amounts to the same thing, of invariance under large gauge transforma-
tions. Here we follow in detail the work of Fradkin, Nayak, Tsvelik, and Wilczek
(Fradkin et al., 1998).

Consider a theory of particles (in first quantization) that interact with each other
as they evolve in time. We will assume in what follows that the particles are
fermions (in two spatial dimensions) and that their worldlines never cross. The
actual choice of statistics is not important in what follows, but the requirement that
there is no crossing is important and, for bosons, it implies the assumption that
there is a hard-core interaction, whereas for fermions the Pauli principle takes care
of this issue automatically. For simplicity, we will assume that the time evolution
is periodic, with a very long period.

The worldlines of the particles can be represented by a conserved current jμ. For
a given history of the system, the worldlines form braids with well-defined linking
numbers νL[ jμ], which, as we saw before, are given by

νL[ jμ] =
∫

d3x jμ(x)B
μ(x) (14.1)

where jμ and Bμ are related through Ampère’s law, cf. Eq. (10.109),

εμνλ ∂
νBλ(x) = jμ(x) (14.2)

Under the assumption of the absence of crossing of the worldlines of the parti-
cles, the linking νL[ jμ] is a topological invariant. Thus, if S[ jμ] is the action for a
given history, then the quantum-mechanical amplitudes of all physical observables
remain unchanged if the action is modified by

S[ jμ] → S[ jμ] + 2πsνL[ jμ] (14.3)

where s ∈ Z is an arbitrary integer.
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The quantum-mechanical amplitudes are sums over histories of the particles, and
take the form

W [{ jμ}] =
∑
[ jμ]

e i S[ jμ]+2π isνL[ jμ]e iφ[ jμ] (14.4)

where φ[ jμ] is a phase factor that accounts for the statistics of the particles (0 for
bosons and π for fermions).

However, the amplitudes remain unchanged if in the integrand of Eq. (14.4) we
insert the number 1 written as the following expression:

1 ≡
∫

Dbμ
∏

x

δ(εμνλ ∂
νbλ − jμ)

= N
∫

Dbμ Daμ exp

(
i

2π

∫
d3x aμ

[
εμνλ ∂

νbλ − jμ
])

(14.5)

where N is a normalization constant and we have used a representation of the delta
function in terms of a Lagrange-multiplier vector field aμ. Notice that, since jμ is
locally conserved, i.e. ∂μ jμ = 0, these expressions are invariant under the gauge
transformations aμ(x) → aμ(x)+ ∂μ�(x).

After using the constraint jμ = εμνλ ∂
νbλ, the amplitude can also be written in

the equivalent form

W [{ jμ}] =
∑
[ jμ]

∫
Dbμ Daμ e i S[ jμ]+2π isνL[ jμ] eiφ[ jμ]

× exp

(
i
∫

d3x aμ(x)
1

2π

[
εμνλ ∂

νbλ − jμ
])

(14.6)

We can then compute this amplitude as a path integral of a theory in which the par-
ticles whose worldlines are represented by the currents jμ interact with the gauge
fields aμ and bμ. These interactions are encoded in the effective Lagrangian

Leff[a, b, j] = 1

2π
εμνλaμ ∂νbλ − aμ jμ − 2s

4π
εμνλbμ ∂νbλ (14.7)

where we have used the constraint jμ = εμνλ ∂
νbλ to write the winding number

in the form of a Chern–Simons action for the gauge field bμ (Wilczek and Zee,
1983; Wu and Zee, 1984). Hence, the amplitudes can be written in terms of a
path integral over an abelian Chern–Simons gauge field with a correctly quantized
coupling constant equal to 2s/(4π). The first term of the effective Lagrangian of
Eq. (14.7), the cross term involving both of the gauge fields, aμ and bμ, is called
the BF Lagrangian since it couples a vector potential to the field strength of another
field.
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As we noted earlier in this chapter, the usual form of the flux-attachment trans-
formation is found by integrating out the gauge field bμ. For vanishing boundary
conditions at infinity, which is to say for a system on a surface with the topology
of a disk, this leads to an effective action for the field aμ of the conventional form
(López and Fradkin, 1991)

Seff[a] = θ

2

∫
d3x εμνλaμ ∂νaλ, θ = 1

2π × 2s
(14.8)

which is the expression we have used before for the statistical gauge field. This
form of the effective action is not valid for manifolds with non-trivial topology.
However, Eq. (14.7) is correct in all cases since it is invariant under both local and
large gauge transformations. In addition to being consistent on closed manifolds,
the action of Eq. (14.7) treats the statistical gauge field aμ and its dual bμ on an
equal footing. We will see in the next section that the dual field bμ arises naturally
in a hydrodynamic theory, and plays a central role in Wen’s construction of the
abelian fractional quantum Hall hierarchy (Wen, 1995).

We can now proceed as before, the only difference being that the (compos-
ite) fermions (or bosons, depending on our choice) couple to the gauge field bμ
rather than to the field aμ (which plays the role of the statistical gauge field). In
this fashion the mean-field theory in the composite-fermion language proceeds by
first spreading out the field and constructing an effective integer Hall effect of
the partially screened magnetic field. The composite-fermions fill up p effective
Landau levels. The effective action in the composite-fermion picture is found by
integrating out the local particle–hole fluctuations of the fermions about the uni-
form mean-field state. This leads to an effective-field theory with the following
effective Lagrangian (López and Fradkin, 1999):

L = p

4π
εμνλaμ ∂νaλ − 2s

4π
εμνλbμ ∂νbλ + 1

4π
εμνλcμ ∂νcλ

+ 1

2π
εμνλaμ ∂νbλ − e

2π
εμνλbμ ∂ν Aλ − aμ jμqp − eμ jμqp (14.9)

where we introduced an additional gauge field eμ to track the fermion sign of the
composite fermions, and Aμ is an external electromagnetic perturbation. The cur-
rents jμqp describe the worldlines of the excitations, i.e. the particles outside the
condensate. The result is a description of the states in the generalized Jain hier-
archies ν±(s, p) = p/(2sp ± 1), where p, s ∈ Z and the ± signs apply for an
electron-like and a hole-like FQH fractional quantum Hall state, respectively.

The low-energy effective Lagrangian for the gauge fields can be written in terms
of a 3×3 matrix of coupling constants (the K -matrix of Wen and Zee’s generalized
fractional quantum Hall fluids (Wen and Zee, 1992), see the next section)
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Leff = 1

4π
K I Jε

μνλaI
μ ∂νa

J
λ − e

1

2π
tI εμνλaμI ∂

ν Aλ − �I jμqpaI
μ (14.10)

with (I, J = 1, 2, 3)

K I J =
⎛⎝−2s 1 0

1 p 0
0 0 1

⎞⎠ (14.11)

where aμ = a1
μ, bμ = a2

μ, and cμ = a3
μ. The charge vector tI = (1, 0, 0) indicates

which gauge field represents the charge current, and the excitation vector �� =
(0, 1,−1) assigns the quantum numbers to the excitations.

We now notice that this effective theory is globally well defined since the Chern–
Simons coupling constants are correctly quantized. Indeed, if we integrate out
the gauge field bμ = a2

μ, we find the same effective action for aμ as that of
Eq. (13.150). For the Laughlin sequence, with p = 1, we can integrate out the
gauge field bμ (for a system on a disk!) and recover the effective action for the
statistical field aμ of Eq. (14.8).

14.1.2 Chern–Simons on a torus

Chern–Simons gauge theories (both one- and multi-component abelian as well
as non-abelian) are topological field theories. We have already seen that this
means that they do not have local degrees of freedom and that their energy–
momentum tensors (and hence their Hamiltonians) are equal to zero. Nevertheless,
on topologically non-trivial closed manifolds, such as the torus, they support
finite-dimensional Hilbert spaces. The dimension of these Hilbert spaces is their
ground-state degeneracy. We will not give here a detailed proof of this statement
(Wen, 1989; Witten, 1989; Wen, 1990c; Wen and Niu, 1990; Wesolowski et al.,
1994) but present the basic ideas.

Let us consider for concreteness the case of a rectangular torus with coordinates
0 ≤ xi ≤ Li (i = 1, 2 being the two orthogonal directions on the torus). We will
consider an M-component Chern–Simons theory with a Lagrangian of the form of
Eq. (14.10). In this case we have M gauge fields aI

μ with I = 1, . . . , M , and K I J

is an M × M symmetric matrix of integer coefficients. The gauge group in this
case is U(1)M . The Gauss-law constraint for this theory, in the absence of sources
(temporal Wilson loops), simply states that the vacuum states |vac〉 satisfy

K I Jεi j ∂i a
J
j |vac〉 = 0 (14.12)
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which is obeyed by pure gauge configurations of the form (with no summation over
the spatial label i) (for each I = 1, . . . , M)

aI
i (x) = ∂i�

I (x)+ ā I
i

Li
(14.13)

where �I (x) are local (“small”) smooth gauge transformations and ā I
i are the two

holonomies of the torus (for each field),∫ Li

0
dxi a I

i (x) = ā I
i (14.14)

By plugging this solution into a Lagrangian of the form of Eq. (14.10) we find that
the holonomies ā I

i obey the effective Lagrangian (not density!) (repeated indices
are summed over)

L = 1

4π
K I Jεi j ā

I
i ∂0ā J

j = 1

4π
K I J

(
ā I

1 ∂0ā J
2 − ā I

2 ∂0ā J
1

)
(14.15)

This Lagrangian tells us that the x- and y-components of the holonomies form
canonical pairs. Upon quantization they become operators acting on the Hilbert
space and satisfy the equal-time commutation relations[

ā I
1 , ā J

2

] = i2πK−1
I J (14.16)

Thus, in the ā I
1 representation, the operator ā I

2 is a differential operator (and vice
versa)

ā I
2 = −2π i K−1

I J

∂

∂ ā J
1

(14.17)

Let us now define the Wilson lines for the holonomies, W I
i (with no summation

over i):

W I
i = exp

(
i
∫ Li

0
dxi a I

i

)
= eiā I

i (14.18)

The requirement that the path integral be invariant under both local and large
gauge transformations (which is the reason for the quantization of the Chern–
Simons coupling constants, as we saw in Chapter 10) now implies the invariance of
the Wilson lines, W I

i , under large gauge transformations that shift ā I
i → ā I

i + 2π .
This has the effect of compactifying the target space to an M-torus. The unitary
operators that induce these large gauge transformations are

U I
i = eiεi j K I J ā J

j (14.19)
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and obey the following algebra:

U I
1 U J

2 = e−2π i K I J U J
2 U I

1 (14.20)

W I
1 W J

2 = e−2π i K−1
I J W J

2 W I
1 (14.21)

U I
i W J

j = W J
j U I

i (14.22)

We recognize the close similarity of this structure to that in our discussion of
Wilson and ’t Hooft loops in Chapter 9 and also to the magnetic algebra discussed
in Chapter 12.

A straightforward (but lengthy) line of argument (Wesolowski et al., 1994), sim-
ilar to what we did for Landau levels in Chapter 12, shows that the dimension of
this (topological) Hilbert space is |det K |. For a general surface of genus g (with g
handles) the degeneracy is (Wen and Zee, 1992; Wen, 1999)

|det K |g (14.23)

Chern–Simons gauge theories with non-abelian gauge groups have a similar
ground-state degeneracy on topologically non-trivial manifolds (Witten, 1989).

We conclude that the ground-state degeneracy of Jain states on a torus is the
absolute value of the determinant

|det K | = |2sp ± 1| (14.24)

Thus, we find that the Jain states are |2np ± 1|-fold degenerate on the torus, which
is the correct result.

14.2 Hydrodynamic theory

The microscopic description of the FQHE of the preceding sections led us to an
effective action for the long-distance and low-energy physics involving a Chern–
Simons action for a gauge field. The validity of this description is based on several
key observations.

We begin with the fact of the existence of a set of filling fractions at which
the fractional quantum Hall fluid is formed. At those precisely defined densities
the 2DEG behaves as an incompressible fluid, and responds as such to an exter-
nal electromagnetic perturbation. In particular, it exhibits a non-dissipative Hall
current. If the number of electrons at fixed magnetic field does not precisely corre-
spond to one of these “magic fractions,” the excess (or defect) electrons produce a
number of excitations. In the bosonic picture we saw that the excess electrons can
be viewed as defects or vortices in the fluid, excitations that carry fractional charge
and fractional statistics, anyons. Since the vortex charge is a fraction of the charge
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of one electron, adding or removing a full electron is equivalent to adding or remov-
ing several quasiparticles (or vortices). Therefore, in a fluid state that exhibits the
FQHE, a fractional quantum Hall state, the electron behaves as if it were a compos-
ite object, with the quasiparticles being the “fundamental” entities. In other terms,
in fractional quantum Hall states the electron fractionalizes. This picture is natu-
rally correct for describing excitations very close to the ground state. At very high
energies (or at very short distances) the quasiparticle picture is no longer accurate,
and the electron behaves as what it is, an electron.

We will now take a different approach and treat the electron gas in a large mag-
netic field as an incompressible fluid. The physics of these fluids can be deduced
from general basic considerations of symmetries and conservation laws, rather than
from a detailed microscopic theory. Since this description is applicable only for the
low-energy physics, which describes slowly moving excitations, it is natural to
try to reformulate the problem in terms of hydrodynamics. In this section we will
develop a theory with this structure. This approach was originally suggested by
Fröhlich and Kerler (1991) and Fröhlich and Zee (1991), was developed in full by
Wen and Zee (1992), and was further generalized by Wen (1995). Here we will
follow in some detail the analysis and notation of Wen (1995).

We begin by considering a system of (for the moment) fully polarized electrons,
which we will treat as if they were spinless. The particle-coordinate Heisen-
berg operators are {�xi } and the velocity Heisenberg operators are {�vi = d �xi/dt}
(i = 1, . . . , N ). We can define the local density J0(�x) and current �J (�x) operators
by the obvious expressions

J0(�x) =
N∑

i=1

δ(�x − �xi ), �J (�x) =
N∑

i=1

�viδ(�x − �xi ) (14.25)

The condition of local charge conservation means that the 3-vector Jμ(x) = (J0, �J )
(with x = (t, �x)) obeys the continuity equation

∂μ Jμ = 0 ⇔ ∂t J0 + �∇ · �J = 0 (14.26)

What we want to do is formulate a theory of the FQHE that is based on hydro-
dynamics, i.e. a theory of locally conserved currents and densities in a large
magnetic field. We will postulate an action that depends only on the distribu-
tion of currents and densities, S[Jμ]. Incompressibility of the quantum fluid then
implies that the effective action must be a local function of the currents and their
derivatives, i.e.

S[Jμ] =
∫

d3x L[Jμ] (14.27)

where L[Jμ] is a local Lagrangian density.
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On the other hand, since the current Jμ is locally conserved, and hence obeys
Eq. (14.26), it can be expressed as the curl of a vector field bμ(x),

Jμ(x) = 1

2π
εμνλ ∂

νbλ (14.28)

which guarantees that the current is conserved. Here, as before, εμνλ is the totally
antisymmetric Levi-Civita third-rank tensor. The vector field bμ is actually a
gauge field. Indeed, under a local gauge transformation �(x) (where �(x) is a
smooth function of the space-time coordinates), the current distribution remains
unchanged,

bμ(x) → bμ(x)+ ∂μ�(x), Jμ(x) → Jμ(x) (14.29)

Hence, the effective action of the currents, S[Jμ], must also be invariant under
the gauge transformation, Eq. (14.29). In other words, the hydrodynamic theory of
an incompressible fluid with a conserved current is a gauge theory. Locality and
gauge invariance now require that the action be a local gauge-invariant function of
the hydrodynamic gauge field, S[bμ].

What is the form of S[bμ]? A natural guess is to write a Maxwell-type action,
which has two derivatives of the gauge field. Since the current and charge densities
are dimension-2 operators (since their integrals over finite regions of space must
have units of charge), the hydrodynamic gauge field bμ must be a dimension-1
operator (to be consistent with it being a 1-form). This means that a Maxwell-type
Lagrangian density, which has two fields and two derivatives, is a dimension-4
operator. For the action to be dimensionless in (2 + 1) space-time dimensions,
a Maxwell-type term must have a coefficient with the units of length, or, which
amounts to the same thing, the inverse of the energy gap of the incompressible
fluid. We have already found the same scaling in the theory of the chiral spin liquid,
Eq. (10.78).

However, a time-reversal-invariant Maxwell action cannot describe a fluid of
charged particles in an external magnetic field, since the latter breaks time-reversal
invariance. Only an action with an odd number of time derivatives can do that.
There is a unique gauge-invariant action that is odd under both time-reversal invari-
ance and parity (but it is invariant under their product): the Chern–Simons action.
The Chern–Simons action not only has the correct transformation properties under
time reversal and parity but also has just one derivative. Hence it is more relevant
than a Maxwell action. The conclusion of this analysis is that the leading term of
the effective action at low energies of the hydrodynamic gauge field must have the
Chern–Simons form. However, gauge invariance must also apply to fluids on closed
surfaces. We saw in Section 10.4 that the coupling constant of the Chern–Simons
action, the level, must obey a quantization condition in order for the path integral
to be gauge-invariant on closed surfaces.
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Therefore, we are led to postulate that the natural low-energy effective
Lagrangian density for an incompressible charged fluid in an external uniform
magnetic field is a Chern–Simons Lagrangian for the statistical gauge field bμ,

L[bμ] = − m

4π
εμνλbμ ∂νbλ − e

2π
Aμεμνλ ∂

νbλ (14.30)

where m ∈ Z must be an integer in order to satisfy the quantization condition. The
last term is the JμAμ coupling of the external electromagnetic field (the total field,
not just a probe).

To check whether this hydrodynamic theory is correct, we will now find its pre-
dictions. We will first compute the effective action for the electromagnetic field Aμ

in order to determine the Hall conductance. Upon integrating out the hydrodynamic
gauge field bμ we find, as expected, that it also has a Chern–Simons form:

Leff[Aμ] = e2

4πm
εμνλAμ ∂ν Aλ (14.31)

The induced current J ind
μ is

−eJ ind
μ = δLeff

δAμ
= e2

2πm
εμνλ ∂

ν Aλ (14.32)

Therefore the fluid has a Hall conductivity (in units with � = c = 1) of

σxy = 1

m

e2

2π
(14.33)

In other words, for m �= 1 the fluid has an FQHE, corresponding to a filling fraction
ν = 1/m.

Notice that these arguments do not require m to be an odd integer, and they work
just as well for m even. Thus, they also apply for a system of charged bosons in a
magnetic field. Indeed, for a system of charged bosons we can also write the same
Laughlin wave function as that of Eq. (13.5). For bosons the wave function must
be symmetric under exchange, which requires m to be even. The simplest bosonic
Laughlin state has filling factor ν = 1/2.

To check this theory further, we will now compute the statistics of the quasi-
particles/quasiholes. We will assume that the quasiparticle/quasihole is the lowest-
energy excitation of this incompressible fluid. In the low-energy regime the smooth
worldlines of these excitations can be represented by a set of currents, jμ, that cou-
ple in a gauge-invariant way to the hydrodynamic gauge field bμ. Including the
excitations, the total Lagrangian density is (Wen, 1995)

L[bμ] = − m

4π
εμνλbμ ∂νbλ − e

2π
Aμεμνλ ∂

νbλ + q jμbμ (14.34)

where q = ±1 correspond to the histories of the quasiparticles (+) and quasiholes
(−), respectively.
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We can now integrate out the hydrodynamic gauge field bμ to obtain an effective
action for the excitations (represented by the quasiparticle current jμ) and the total
external electromagnetic field Aμ:

Leff[Aμ, jμ] = e2

4πm
εμνλAμ ∂ν Aλ − e

em
jμAμ + q2 π

m
jμBμ (14.35)

where Bμ is a “magnetostatic” field generated by the quasiparticle current using
Ampère’s law, jμ = εμνλ ∂

νBλ.
As in our discussion on fractional statistics in Section 10.5, here too the integral

of the last term in Eq. (14.35) is identified with the Hopf invariant, Eq. (10.105):∫
d3x jμBμ =

∫
d3x

∫
d3 y jμ(x)ε

μνλ
〈
x | 1

∂2
|x ′

〉
∂

y
λ jν(y) (14.36)

In fact, the analysis we did in Section 10.5 tells us that the quasiparticles (and quasi-
holes), represented by their currents jμ, have fractional statistics with a statistical
angle given by the prefactor of the Hopf/Chern–Simons term of Eq. (14.35):

δ = q2 π

m
= π

m
(14.37)

which agrees with our results earlier in this chapter. Here we used the fact that
q2 = 1 both for quasiparticles and for quasiholes.

We can now compute the electromagnetic current, −Jμ, by differentiating the
effective action with respect to the external electromagnetic field:

−eJμ = e2

2πm
εμνλ ∂

ν Aλ − e

m
jμ (14.38)

where we identify the first term with the current of the ground state (in the presence
of external fields) and the second term with a quasiparticle contribution. Let us
consider the case in which we have just one static quasiparticle at rest at the origin,
which we represent by the quasiparticle density j0 = δ(�x) and current �j = 0.
Equation (14.38) now becomes (with B being the uniform external magnetic field)

−eJ0 = e2

2πm
B − q

e

m
δ(�x) (14.39)

Upon integrating this expression over the region occupied by the fluid, we find the
total charge Q = Qgnd + Qexcitation, where

Qgnd = e2

2πm
BL2 = e2

2πm
Nφ

2π

e
= e

1

m
Nφ = eN (14.40)

is the ground-state charge (and tells us that the filling fraction is ν = 1/m), and

Qexcitation = q
e

m
(14.41)
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is the charge of the excitation. For a quasiparticle the charge is Qqp = e/m,
whereas for a quasihole it is Qqh = −e/m. Hence, as we found before, the
excitations have fractional charge ±e/m and fractional statistics π/m.

Using the arguments of Wilczek and Zee (1983), we can assign an effective
fractional spin S to the quasiparticles by demanding consistency with the spin-
statistics theorem:

2π S = δ = π

m
⇒ S = 1

2m
(14.42)

This result agrees with the detailed analysis of Einarsson et al. (1995). In this con-
text, fractional spin means that the quasiparticles have an internal structure with
an associated fractional intrinsic angular momentum. Unlike the relativistic con-
cept of spin, fractional spin is not associated with a spinor structure and does not
require the existence of more degrees of freedom. In this sense, unlike the spin
of the electron, the fractional spin is not an independent quantum number of the
quasiparticles. Nevertheless, it is possible to couple to the fractional spin of the
quasiparticles in some circumstances. One situation in which this matters is a quan-
tum Hall fluid on a sphere, where the fractional spin couples to the curvature of the
surface (Wen, 1995). This is important in numerical simulations, which are often
done on the sphere. The concept of fractional spin plays a crucial role in the expla-
nation of the physical properties of fractional quantum Hall fluids, such as the
(non-dissipative) Hall viscosity (Avron et al., 1995; Read, 2009; Haldane, 2011;
Hoyos and Son, 2012).

Notice that if we pick q = m (i.e. m quasiparticles) the corresponding charge
of this object is Q = e and the statistical angle is δ = mπ . Thus, for m odd, the
composite object of m quasiparticles has charge e and is a fermion, i.e. it is the
electron. Hence, in this theory the electron is fractionalized.

14.3 Hierarchical states

We will now briefly describe a generalized hydrodynamic theory that describes the
fractional quantum Hall hierarchical states as well as multi-component fluids. Once
again we follow the work of Wen (1995).

In this approach the hierarchical states are constructed from a set of nested Bose
condensates of quasiparticles, and this method hence follows closely the Haldane–
Halperin construction. An equivalent construction can be used for the equivalent
Jain generalized hierarchical states.

We begin by allowing the quasiparticles to be dynamical excitations. To this
end, we will add a quasiparticle kinetic-energy term Lqp-KE[ jμ] to the effective
Lagrangian of Eq. (14.34). We will write the total effective Lagrangian as the sum
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of a condensate contribution (the first two terms) and a quasiparticle contribution
(the last two terms):

L[bμ, Aμ, jμ] = − m

4π
εμνλbμ ∂νbλ− e

2π
Aμεμνλ ∂

νbλ+ qbμ jμ+Lqp-KE (14.43)

where q = ±1 (for quasiparticles and quasiholes).
The quasiparticles will be assumed to be in a fractional quantum Hall fluid of

their own. Since the quasiparticle current jμ is conserved, it can also be described
by its own hydrodynamic gauge field, which we will denote by cμ, defined by

jμ = 1

2π
εμνλ ∂

νcλ (14.44)

The same assumptions as those we made for electrons in a magnetic field now
apply to the quasiparticle current. Thus, the field cμ will be governed by a Chern–
Simons Lagrangian L′, also with a quantized coupling constant, representing the
ideal fractional quantum Hall state of the excitations:

L′ = − n

4π
εμνλcμ ∂νcλ + 1

2π
bμεμνλ ∂

νcλ (14.45)

where n is an even integer. Thus we will postulate that, in the absence of additional
excitations, the effective Lagrangian at the second level of this hierarchy is

L[bμ, Aμ, cμ] = − m

4π
εμνλbμ ∂νbλ − e

2π
Aμε

μνλ ∂νbλ

− n

4π
εμνλcμ ∂νcλ + 1

2π
bμε

μνλ ∂νcλ (14.46)

What filling fraction does this effective theory describe? To find out, we will
derive the Chern–Simons constraint (Gauss’s law). Since we now have two gauge
fields, bμ and cμ, we have two constraints:

δL
δb0

= 0 ⇒ −eB = m〈εi j ∂i b j 〉 − 〈εi j ∂i c j 〉
δL
δc0

= 0 ⇒ n〈εi j ∂i c j 〉 = 〈εi j ∂i b j 〉
(14.47)

The filling factor is the ratio of the number of electrons, Ne = (1/(2π)) ×
〈εi j ∂i b j 〉L2, to the total number of flux quanta, Nφ = −(e/2π))BL2. Hence, from
Eq. (14.47) we find that the filling fraction at the second level of the hierarchy is

ν = 〈εi j ∂i b j 〉
−eB

= 1

m − 1/n
= n

nm − 1
(14.48)

with the Hall conductance σxy = νe2/h. For example, if the “parent” state is the
Laughlin state at ν = 1/3 (m = 3), the first “daughter” state will have n = 2,
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and the total filling fraction is ν = 2/5 (which we saw is also describable as a Jain
state).

Once again, if the system is not precisely at this filling fraction, the fluid will
have a number of excitations. They are also represented by a set of quasiparticle
currents, jqp

μ , which are minimally coupled to the two hydrodynamic fields and two
integer charges.

It will be convenient to change to a more compact notation introduced by Wen
and Zee (1992). We will relabel the gauge fields as bμ = b1

μ and cμ = b2
μ, and

the quasiparticle charges as q = �1 and q ′ = �2. We will also introduce a 2 × 2
K -matrix, K I J (with I, J = 1, 2), in this case

K =
(

p1 −1
−1 p2

)
(14.49)

where m = p1 and n = p2. We will also introduce a charge vector �t = (1, 0) and
a vector �� = (�1, �2) for the quasiparticle couplings (which we will use to label
the quasiparticles). In this notation the effective Lagrangian is (as usual repeated
indices are summed over)

L[bI
μ, Aμ] = − m

4π
K I Jε

μνλbI
μ ∂νb

J
λ − e

2π
AμtI ε

μνλ ∂νb
I
λ + jμqp�I bI

μ (14.50)

In this notation, the filling fraction (cf. Eq. (14.48)) becomes

ν =
∑

I,J=1,2

K−1
I J tI tJ (14.51)

where K−1 is the inverse of the K -matrix of Eq. (14.49).
The results of Section 14.1.2 tell us that the ground-state degeneracy on a torus is

|det K | = |p1 p2 − 1| (14.52)

The electric charges and statistics of the quasiparticles can be computed with the
same methods as above. Thus by integrating out the hydrodynamic gauge fields we
find that the quasiparticle (electric) charges are

Q = −e
∑

I,J=1,2

K−1
I J tI�J = −e

p2�1 + �2

p1 p2 − 1
(14.53)

and their statistical angles δ are

δ = π
∑

I,J=1,2

K−1
I J �I�J = π

p2�
2
1 + p1�

2
2 + 2�1�2

p1 p2 − 1
(14.54)
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For example, for the ν = 2/5 fractional quantum Hall state, which is regarded
as the daughter state of the ν = 1/3 Laughlin state, the K -matrix is

K =
(

3 −1
−1 2

)
(14.55)

This state thus has a det K = 5-fold-degenerate ground state on a torus. This
analysis then predicts that this fractional quantum Hall state has two types of
quasiparticles (and quasiholes): (1) a quasihole �� = (0, 1) with fractional charge
Q = e/5 and statistics δ = 3π/5, and (2) a quasihole �� = (1, 0) with frac-
tional charge Q = 2e/5 and statistics δ = 2π/5. Notice that in this case the
quasihole �� = (1, 0) can also be regarded as a composite object made of two quasi-
holes �� = (0, 1), which will have the same electric charge and the same statistical
angle (modulo 2π), hence (1, 0) ≡ (0, 2). Similarly, an electron is regarded as a
composite excitation made of five elementary quasiparticles. Indeed, the excitation
�� = (0,−5) has charge −e and statistics π (modulo 2π).

Another interesting example is the fractional quantum Hall state with ν = 2/3,
which can be regarded as the particle–hole conjugate of the Laughlin state at ν =
1/3. However, unlike the ν = 1/3 Laughlin state, the ν = 2/3 state appears at
level 2 in this hierarchical construction, and it is represented by the 2×2 K -matrix

K =
(

1 1
1 −2

)
(14.56)

This construction is generalized to arbitrary levels of the hierarchy. For instance,
we could now proceed further and consider a state that results from the condensa-
tion of a set of quasiparticles of level 2 into a new quantum Hall state to find a new
state at level 3, and so on and so forth. Hence the effective Lagrangian Ln at level
n of the hierarchy is constructed from the effective Lagrangian Ln−1 at level n − 1.
Let I, J = 1, . . . , n − 1 and let K (n−1)

I J be the K -matrix at level n − 1. We will
consider a state resulting from condensing the level-(n − 1) quasiparticles labeled
by ��(n−1) = (�

(n−1)
1 , . . . , �

(n−1)
n−1 ) and charge vector �t (n−1). The effective Lagrangian

at level n has the same form as before,

L = −
n∑

I,J=1

1

4π
K (n)

I J ε
μνλbI

μ ∂νbJ
λ − e

2π

n∑
I=1

Aμt (n)I εμνλ ∂νbI
λ +

n∑
I=1

�
(n)
I jμbI

μ

(14.57)
where the level-n K -matrix has the block form

K (n) =
(

K (n−1) −[�� (n−1)]t
−�� (n−1) pn

)
(14.58)

with a ground-state degeneracy on a torus, cf. Eq. (14.23).
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In all cases the filling fraction ν of the resulting fractional quantum Hall state
and the electric charges and statistical angles of the excitations are given by the
obvious generalization of the level-2 expressions of Eq. (14.51), Eq. (14.53), and
Eq. (14.54). For example, if we always condense the quasiparticle with smallest
charge at level n − 1 (with vector �� (n−1) = (0, . . . , 1)), the K -matrix at level n is
the tridiagonal matrix

K I J = pI δI J − δI,J−1 − δI,J+1, p1 odd and pI even (I ≥ 2) (14.59)

with charge vector tI = δI,1. In this case the filling fraction has the partial-fraction
decomposition (Haldane, 1983b)

ν = 1

p1 −
1

p2 −
1

p3 − · · ·

(14.60)

However, do all the choices of a K -matrix and charge vector �t represent physi-
cally distinct quantum Hall fluids? In general the answer to this question is no, since
under a suitable change of basis for the gauge fields, i.e. a linear transformation of
the form

bI
μ → WI J bJ

μ = b′I
μ (14.61)

we can seemingly always bring the K -matrix to a diagonal form. However, not
all such linear transformations are allowed. The reason is that the set of allowed
“independent” quasiparticle vectors, {�(I )}, with �(I )J = δI J , constitutes a basis that
spans the charge lattice, � = ∑n

I=1 lI�
(I ), with integer coefficients lI (required

by charge quantization). However, the quasiparticle vectors �� will also transform
under a general transformation of Eq. (14.61), namely � ′

I = WI J�J , and, for a
general transformation, the transformed vector is not an element of the (integer)
charge lattice. Therefore only those transformations W that map the charge lattice
into the same charge lattice are allowed. In other terms, the allowed linear trans-
formations are not general linear transformations of R

n but elements of the group
SL(n,Z), the group of integer-valued matrices with unit determinant. Therefore
two quantum Hall fluids characterized by two K -matrices, K1 and K2, and two
charge vectors, �t1 and �t2, are equivalent (that is, the same state) if there exists a
linear transformation W ∈ SL(n,Z) such that K2 = W K1W T and �t2 = W t1. Here
we have neglected the role of the spin vector, which must be considered for a full
analysis of the equivalence classes (Wen, 1995).
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14.4 Multi-component abelian fluids

A very similar effective theory can be developed for multi-component quantum
Hall fluids. For simplicity we will consider a two-component system, which we
can think of either as a fully polarized electron gas in a bilayer system or as a
single-layer system in which the spin is not fully polarized by the magnetic field.
The latter case occurs in many heterostructures at high electron density, in which
the g-factor can be made very small. More complicated systems can be (and have
been) considered. Here we will follow the hydrodynamic approach of the previous
subsection. One can alternatively use a flux-attachment approach, see e.g. López
and Fradkin (1995, 2001).

Wave functions with a Laughlin structure for these systems were proposed long
ago by Halperin (1983, 1984). Let us label by {zi } and {wi } (with i = 1, . . . , N/2)
the complex coordinates of particles of type 1 (say, with spin up) and the complex
coordinates of particles of type 2 (say, spin down), respectively. The total number
of particles (which I will take to be fermions) is N , and the number of flux quanta
is Nφ . The total filling fraction is ν = N/Nφ (as before), which can be written as
the sum of the filling fractions of each layer, ν = ν1 + ν2. For simplicity we are
considering the case in which we have the same number of particles for each type.
In the spin interpretation (when possible) this state would be spin-unpolarized.

A simple generalization of the Laughlin state is provided by the Halperin wave
functions, which have the following form:

�m1,m2,n(z1, . . . , zN/2, w1, . . . wN/2)

=
∏
i< j

(zi − z j )
m1

∏
i< j

(wi − w j )
m2

∏
i≤ j

(zi − w j )
n

× exp

(
− 1

4�2
0

N/2∑
i=1

(|zi |2 + |wi |2
))

(14.62)

As in the case of a one-component fluid, we will require the wave function to be
completely antisymmetric under exchange. This will require m1 and m2 to be odd
integers and n to be an integer (or zero). We will refer to these as the (m1,m2, n)
Halperin states.

In the hydrodynamic approach we will define two separate currents, one for each
type of electron, J I

μ (with I = 1, 2). In a bilayer system without inter-layer tunnel-
ing each current is separately conserved. Thus we will define two hydrodynamic
gauge fields, bI

μ (I = 1, 2), whose curls are the two currents:

jμI = 1

2π
εμνλ ∂νbI

λ (14.63)
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Thus, in the bilayer systems the two hydrodynamic currents represent distinct
degrees of freedom of the electron gas with the label I = 1, 2 indicating the layer
(or spin projection) of the electrons. In contrast, in the hierarchical construction the
label indicates the order in the hierarchy of a single-layer system of fully polarized
electrons. The formal similarities of the effective theories should not obscure the
physical differences between the two systems.

The Halperin wave functions also tell us that in addition to intra-Landau-level
interactions in each layer (represented in the Halperin wave function by the odd
integers m1 and m2), there are also inter-layer interactions, represented by the inte-
ger n. In our discussion of the fractional Hall effect in terms of flux attachments
we saw that the exponents m1 and m2 mean that we have attached an even number
m1 − 1 of fluxes to the electrons in layer 1 and an even number m2 − 1 of fluxes
to the electrons in layer 2. The exponent n is telling us that the electrons of the two
layers repel each other (since n > 0). It can also be interpreted as saying that the
repulsion can be represented by the attachment of n fluxes to an electron in layer 2
due to an electron in layer 1 and vice versa.

There is a natural candidate for the effective Lagrangian of this fractional
quantum Hall state that also has the form of a K -matrix, namely

L[bI
μ, Aμ] = − 1

4π
K I JεμνλbμI ∂

νbλJ −
e

2π
AμtI εμνλ ∂

νbλI (14.64)

where K is a 2 × 2 symmetric matrix. We will show that the correct matrix is

K =
(

m1 n
n m2

)
(14.65)

The ground-state degeneracy on a torus for this state is |m1m2 − n2|.
The electrons in each layer (or spin projection) must couple in the same way to

the external field Aμ. Therefore the charge vector �t must assign the same electric
charge to the electrons in each layer. Hence, we must choose

�t = (1, 1) (14.66)

If the K -matrix is non-singular, i.e. m1m2 − n2 �= 0, we can use, once
again, Eq. (14.51) to read off the filling fraction and the quantum numbers of the
excitations of this theory. We find that the two layers have the filling fractions

ν1 = m2 − n

m1m2 − n2
, ν2 = m1 − n

m1m2 − n2
(14.67)

and hence that the total filling fraction ν is

ν = m1 + m2 − 2n

m1m2 − n2
(14.68)
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As we see, a state with m1 �= m2 represents a system with unequal filling fractions
in the two layers, with ν1 − ν2 = (m − 1 − m2)/(m1m2 − n2) being the charge
imbalance. In the spin language, the electron gas has a net spin polarization.

In this system we have quasiparticles for each layer with currents jqp
μ

I
coupled to

the hydrodynamic gauge fields bI
μ by the quasiparticle charge vectors �� = (�1, �2).

We can determine the fractional electric charges and the statistical angles of the
quasiparticles using Eqs. (14.53) and (14.54) for the charge vector �t of Eq. (14.66).
The charges and statistical angles of the excitations are

Q(�1, �2) = −e
(m2 − n)�1 + (m1 − n)�2

m1m2 − n2
(14.69)

δ(�1, �2) = π
m2�

2
1 + m1�

2
2 − 2n�1�2

m1m2 − n2
(14.70)

We will now discuss the special case of the (m,m, n) symmetric Halperin states.
These states have very simple quantum numbers. The filling fractions are (ν1 =
ν2 = ν/2)

ν = 2

m + n
(14.71)

The fundamental quasiparticles (with smallest charge) are (1, 0) and (0, 1). Their
charges and statistics are

Q = ± e

m + n
, δ = π

m

m2 − n2
(14.72)

In the case of the symmetric states (m,m, n) it is convenient to rotate to a
new basis in which the fields decouple. This can be done by the orthogonal
transformation to the fields, bμ±, given by

bμ± = 1√
2
(bμ1 ± bμ2 ) (14.73)

in terms of which the action becomes

L = m + n

4π
εμνλbμ+ ∂νbλ+ −√

2
e

2π
εμνλAμ ∂νbλ+

+ m − n

4π
εμνλbμ− ∂νbλ−

+ jqp
μ

[
1√
2
(�1 + �2)b

μ
+ + 1√

2
(�1 − �2)b

μ
−

]
(14.74)

In this basis, the effective Lagrangian decouples into a charge mode, bμ+, and a
neutral mode, bμ−. Notice, however, that the quasiparticles carry both quantum
numbers.
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The most prominent states seen in balanced bilayer systems are the (3, 3, 1) state
with filling fraction ν = 1/2, the (3, 3, 2) state with ν = 2/5, and the (1, 1, 2) state
with ν = 2/3. The K -matrices, charge vectors �t , and ground-state degeneracies (on
a torus) for these Halperin states are

(331) : ν = 1

2
, K =

(
3 1
1 3

)
, �t = (1, 1), 8

(332) : ν = 2

5
, K =

(
3 2
2 3

)
, �t = (1, 1), 5

(112) : ν = 2

3
, K =

(
1 2
2 1

)
, �t = (1, 1), 3

(14.75)

The (3, 3, 1) state is a bilayer state with filling fraction ν = 1/2 that occurs
when the inter-layer interaction is large enough. It is seen in experiments in wide
quantum wells. The elementary quasihole has charge e/4 and statistics δ = 3π/5.
As a function of external electric fields (normal to the 2DEG) the system has a
phase transition from two essentially decoupled 2DEGs in a compressible “Fermi-
liquid” state (at low bias), in which each 2DEG is in a Halperin–Lee–Read ν =
1/2 compressible state weakly coupled to the other, to a ν = 1/2 incompressible
fractional quantum Hall state, namely the (3, 3, 1) bilayer state (Eisenstein et al.,
1992).

Similar spin transitions have been seen in experiments in single-layer high-
density 2DEGs at filling fraction ν = 2/3, namely from an incompressible fully
polarized state to a spin-singlet state at the same filling fraction (Eisenstein et al.,
1990), presumably a Halperin (1, 1, 2) state. Similar phase transitions have been
seen at ν = 2/5, between a fully polarized 2DEG Jain state and a (3, 3, 2)
spin-singlet Halperin state (Cho et al., 1998).

What happens if the K -matrix is singular? Many of our general expressions are
invalid in this case. We will discuss here the simple case of the balanced singular
(m,m, n) states. They become singular for m2 − n2 = 0 or, which amounts to
the same thing, for the (m,m,m) states, with filling fractions ν = 1/m. In the
decoupled basis, the effective theory of the (m,m,m) states has a charge mode with
a Chern–Simons coupling 2m and a seemingly absent neutral mode. Of course,
in this case the terms which we neglected before (since they were subleading)
yield the leading behavior and cannot be dropped. At any rate, the absence of a
Chern–Simons term in the neutral mode is telling us that it describes a condensed
superfluid state.

The behavior of states of this type has been studied in quite some detail, both
theoretically and experimentally, in the simplest example, the (1, 1, 1) state with
filling fraction ν = 1. Hence, this is an integer quantum Hall state. However, in
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spite of this, this state cannot be described in terms of free electrons in a magnetic
field. It can be realized either as a bilayer system or as a single-layer ferromagnetic
quantum Hall state with a weak Zeeman coupling. A unique feature of this ν = 1
“integer” quantum Hall state is that the addition (or subtraction) of an electron
results not in an excitation in an excited Landau level (as in the case of a non-
interacting system) but, instead, in the formation of a bound state of an electron
with enough flux to generate a soliton state known as a skyrmion, as introduced in
Chapter 7, a topologically non-trivial spatial texture of the spin of the electrons sta-
bilized by the combined effects of the Zeeman energy and the Coulomb interaction
(Sondhi et al., 1993). Skyrmions were detected in this ν = 1 fluid in NMR exper-
iments (Barrett et al., 1995). On the other hand, the absence of a Chern–Simons
term in the neutral mode was predicted to give rise to a Goldstone mode (Sondhi
et al., 1993; Yang et al., 1994), which was observed as a sharp resonance in tun-
neling into the ν = 1 state (Spielman et al., 2000). Similar effects have been seen
in fully polarized bilayer systems, also at ν = 1, where they are interpreted as evi-
dence of a superfluid state and an exciton condensate (Eisenstein and MacDonald,
2004).

14.5 Superconductors as topological fluids

We will make a brief intermission in our analysis of quantum Hall states and
examine the properties of a superconductor from a different perspective. We will
consider for simplicity an s-wave superconductor. According to the Bardeen–
Cooper–Schrieffer (BCS) theory, a superconductor is a ground state of a system of
charged spin-1/2 fermions in which the spin-singlet pair-field operator �(�x, �y) =
εσσ ′ψ†

σ (�x)ψ†
σ ′(�y) has a non-vanishing expectation value in the superconducting

ground state (Schrieffer, 1964). In the case of a spin-singlet superconductor, in
momentum space the pair-field operator for spin-singlet Cooper pairs is �(�k) =
εσσ ′ψ†

σ (
�k)ψ†

σ ′(−�k), where �k lies on the Fermi surface of the metal whose quasi-
particles have paired and condensed. Since the Hamiltonians of all interacting
fermionic systems are gauge-invariant, they are also invariant under the global
part of the gauge transformation, ψσ (�x) → eiθψσ (�x). The pair-field operators
transform under a global gauge transformation as � → ei2θ� and hence are not
gauge-invariant.

The superconducting ground state is thus a state in which the global U(1) gauge
symmetry is spontaneously broken. For this reason the expectation value of the pair
field plays the role of the order parameter for the superconducting state, and it is the
basic building block of the Landau–Ginzburg theory (de Gennes, 1966). We will
see below that, strictly speaking, the concept of an order parameter is problematic
in a superconductor.
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The spectrum of the superconducting state has charge-neutral fermionic excita-
tions (Kivelson and Rokhsar, 1990). In an s-wave superconductor, the expectation
value of the Cooper-pair condensate is isotropic and hence it is the same for all
directions �k. Its fermionic (Bogoliubov) quasiparticles have a finite and isotropic
energy gap whose magnitude is the amplitude of the condensate |�|. In the case of
a fluid of neutral fermions, the phase of the pair-field condensate ϕ is the Goldstone
boson of the broken global U(1) symmetry. On the other hand, if the fermions are
charged, e.g. are electrons of charge e, which couple to the electromagnetic field,
then in this case the transverse components (the photon) of the electromagnetic
gauge field become massive, and static magnetic fields are expelled. This is the
Meissner effect. For the same reasons, the phase field ϕ effectively becomes the
longitudinal component of the electromagnetic vector potential and also acquires a
finite energy gap, which in a superconductor is the plasma frequency. Hence, in a
superconducting state, which is a condensate of electric charges, electric fields are
screened and magnetic fields are expelled.

In this (very brief!) description of the superconducting state the electromag-
netic gauge field is used as a probe of the condensed state. However the quantum
dynamics of the gauge field is ignored. In particular, the order-parameter field is
constructed without taking the gauge fields into consideration. In Section 9.12 we
discussed the definition of a Higgs phase in a theory that has dynamical matter and
gauge fields. In that theory the superconductor pair field plays the role of the Higgs
field. It was noted there, following the arguments of Fradkin and Shenker (1979),
that it is not possible to construct a gauge-invariant operator that plays the role of
the order-parameter field if the gauge group is compact. In that case its deconfined
phase (when it exists) is characterized by the behavior of the Wilson and ’t Hooft
loop operators.

One may object that in the case of a superconductor the electromagnetic gauge
field, even if it is considered as a quantum field, is non-compact and, hence, this
objection should be moot. If we regard the pair field as a local field �(�r , t) that
transforms under gauge transformations as a charge-2e field, we can construct a
gauge-invariant order-parameter field by creating together with the Cooper pair
its static Coulomb field (Dirac, 1955). Thus, the operator (here we are discussing
the 2D case) which creates a coherent state of static photons (the Coulomb field)
together with the Cooper pair

O(�x, �y) = �(�x, �y)exp

(
ie

∫
d2z �A(�z) · �Ec(�z)

)
(14.76)

is gauge-invariant if the classical field �Ec(�z) satisfies the condition

�∇ · �Ec(�z) = e
(
δ(�z − �x)+ δ(�z − �y)

)
(14.77)
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The classical static field �Ec is the Coulomb field of the Cooper pair. On the
other hand, we can also write �Ec(�z) = −�∇Uc(�z), where U (z) is the electrostatic
potential.

Upon integration by parts, we find that, in the Coulomb gauge, �∇ · �A = 0, the
exponential operator becomes

exp

(
−ie

∫
d2z �A(�z) · �∇Uc(�z)

)
= exp

(
ie

∫
d2z �∇· �A(�z)Uc(�z)

)
= 1

(14.78)

Therefore, in the Coulomb gauge the exponential operator is equivalent to the
identity operator. However, it was shown by Kennedy and King (1985) that this
non-local operator has a power-law dependence in time, which is inconsistent
with the gauge field being massive. So, even in the case of the non-compact
gauge theory, this operator cannot represent an order-parameter field. The reader
may recognize here the construction that we used in Section 13.3.6 for the
Girvin–MacDonald non-local order parameter for the FQHE.

Moreover, the argument that led to Eq. (14.78) holds only if the Coulomb-gauge
condition can be consistently imposed. However, the Coulomb-gauge condition
cannot be imposed if the gauge group is compact since, even in the case of an
abelian theory, the Coulomb-gauge condition can only be imposed modulo 2π due
to the existence of monopole configurations. This fact was discussed in some detail
in Section 9.12, where we showed, following a standard result from gauge theories
(Fradkin and Shenker, 1979), that the concept of a spontaneously broken symmetry
does not truly exist if the (compact) gauge fields are dynamical.

In an insightful and deep paper, Hansson, Oganesyan, and Sondhi (Hansson
et al., 2004) found an additional and more important loophole in the construction.
We will follow their analysis closely. In a fermionic superconductor the pair field,
which plays the role of the scalar Higgs field, is a composite operator of fermions.
Although the fermionic excitations of the superconductor are charge-neutral and
as such do not couple directly to the gauge field, they have a non-local behavior
with respect to the vortices of the superconductor. Indeed, the vortex of the super-
conductor carries magnetic flux hc/(2e). This flux quantization follows from the
requirement that the pair field be local (i.e. single-valued). Hence the phase field
of the pair field winds by 2π on large contours about the core of the vortex. On
the other hand, the fermionic quasiparticle is essentially half of the pair field and
changes sign on a large contour that encircles the vortex core.

The origin of this phenomenon is the nature of the superconducting state as a
pair condensate. Since it is a pair condensate, the Bogoliubov quasiparticles are not
conserved since they can emerge from (or be absorbed by) the condensate. How-
ever, the parity of the fermion number is an exact quantum number even in the
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superconducting state since the excitations can be created and destroyed in pairs.
The fermionic Bogoliubov excitations carry zero electric charge (at low energies)
and effectively they are Majorana fermions. Therefore the quasiparticle states are
sensitive only to a local change in sign. From the point of view of the Bogoliubov
quasiparticles, the vortices carry a Z2 charge or, equivalently, they carry a flux of
π . This sign is all that is left of the Aharonov–Bohm phase factor for the fermionic
quasiparticles of a superconductor. On the other hand, the Z2 nature of the excita-
tion spectrum suggests that there should be a connection between a superconductor
and the deconfined phase of a Z2 gauge theory.

Hansson and coworkers established that the superconductor–Z2 gauge-theory
relation exists using the following line of argument. They first showed that a theory
in which quasiparticles and vortices have a topological interaction is a topological
BF field theory. We have already encountered the BF Lagrangian at the beginning
of this chapter in our discussion of flux attachment on a torus in Section 14.1.1. In
particular, see the discussion surrounding Eq. (14.7), which is relevant to the prob-
lem we are considering. Let us describe the histories of the quasiparticle excitation
by a current jqp

μ . Here we are making the simplifying assumption of ignoring the
spin of the quasiparticles, which would require us to add extra currents if we took it
into account. For the time being we will ignore the fact that this current is not truly
conserved, since the quasiparticles can go in and out of the condensate in pairs, and
assume that the quasiparticle current is locally conserved and obeys ∂μ jμqp = 0. We
will come back and fix this problem later. We will further assume that the Bogoli-
ubov quasiparticles have only short-range interactions, which is generally the case.
We will see that, in spite of their being charge-neutral, there still is an interac-
tion of topological origin between quasiparticles and vortices. A very transparent
and detailed discussion of this problem can be found in the work of Nayak and
coworkers (Nayak et al., 2001).

Likewise we will assume that the vortex excitations are light enough that they
can be created (in pairs) by quantum-mechanical processes. Let the locally con-
served current jvμ denote the vortex histories and also obey a continuity equation,
∂μ jvμ = 0. We will also make the assumption that the vortices have only short-range
interactions. This assumption is correct in a 3D superconductor since it has a com-
plete Meissner state. In 2D this assumption is somewhat problematic since the field
lines can escape from the plane wherein the 2D superconductor lies. In practice this
problem introduces some degree of non-locality into the interaction, which, as it
turns out, is not a serious problem for the argument that we will use here. Thus
we will assume that the magnetic interactions are also screened even in 2D (which
rigorously should happen only in (2 + 1)-dimensional electrodynamics).

The non-local topological interaction between vortices and quasiparticles can
be encoded in an effective Lagrangian in which the quasiparticle current jqp

μ and
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the vortex current jv
μ couple to two separate gauge fields, aμ and bμ, whose only

coupling has the BF form,

Ltopo[aμ, bμ] = 1

π
εμνλaμ ∂νbλ − aμ jqp

μ − jv
μbμ (14.79)

The quantization of electric charge and of the magnetic charge (the vorticity) now
implies that the gauge groups for the fields aμ and bμ must be compact. Hence,
gauge transformations are defined modulo an integer multiple of 2π , i.e. aμ →
aμ + ∂μ� with � ≡ � + 2π at every point in space-time (and the same for bμ)
(this argument can be made simpler by working on a Euclidean space-time lattice).
However, the fact that the gauge fields aμ and bμ are compact implies that one
cannot ignore the effects of monopoles in these fields, as in the case of Polyakov’s
compact electrodynamics (Polyakov, 1977) (see Section 9.11).

This effective Lagrangian has the same form as the theories for multi-component
(and hierarchical) fractional quantum Hall fluids but with a K -matrix of the form

K =
(

0 2
2 0

)
(14.80)

which is traceless and has determinant −4. Using the results of Section 14.3, and
the general arguments of Wen (1995), one readily finds that the quasiparticles and
vortices have a mutual statistical angle δ = π . This theory has an explicit self-
duality that exchanges quasiparticles with vortices and for the same reason it is
also time-reversal-invariant. On the other hand, this effective action describes a
topological fluid that has degeneracy 4 on the torus. Thus, if the description of the
superconductor could be reduced to Eq. (14.79), we would have shown that it is a
topological fluid with these two types of topological excitations, quasiparticles and
vortices, and a four-fold degeneracy on the torus.

A two-component Chern–Simons theory with a K -matrix with the structure
shown in Eq. (14.80) is invariant under time-reversal transformations. This is so
since a time reversal is equivalent to the exchange of the two species of gauge
fields. This is most apparent on rotating the basis of fields in which the K -matrix is
diagonal and traceless. Thus a “doubled” Chern–Simons gauge theory can describe
time-reversal-invariant topological phases (Freedman et al., 2004).

The alert reader most likely would now notice that this is the same ground state
degeneracy and the same mutual statistics as those we found in the deconfined
(topological) phase of the Z2 gauge theory discussed in Section 9.9 (where the
excitations were holons and visons). We will show below that the topological phase
of the Z2 gauge theory is actually the correct effective theory since its excitations
are also conserved modulo 2.
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However, there is a more important question we need to address. How do we
know that this effective action, or the Z2 gauge theory for this matter, actually
has anything to do with a superconductor? It certainly looks very different from
the Landau–Ginzburg theory. Hansson et al. offered an impressionistic (but phys-
ically correct) derivation of the BF theory. They start with the abelian Higgs
model, which is a relativistic field theory of a charged scalar field φ coupled to the
electromagnetic gauge field Aμ whose Lagrangian (in Euclidean (2+1)-continuum
space-time dimensions) is

L = (Dμφ)
∗Dμφ + 1

4
F2
μν + V (φ∗φ)− eAμ jμqp (14.81)

where

Dμ = ∂μ + i
2e

�c
Aμ (14.82)

is the covariant derivative for a charge-2e complex scalar field. In Eq. (14.81) we
have added a set of (fermionic) quasiparticle currents jμqp to describe the slow
(adiabatic) dynamics of the gapped Bogoliubov quasiparticles. These are absent
from the standard abelian Higgs model. Notice that in this Lagrangian they carry
charge −e, half of the charge of the charged scalar field φ. We will see shortly
that, although the charge of the quasiparticle will be completely screened (giving
a neutral quasiparticle), there will be a remnant of its magnetic (Aharonov–Bohm)
interaction with the vortices of the superconductor.

The potential V (φ∗φ) is taken to represent the classical broken-symmetry state:
a “Mexican-hat” potential with a deep minimum at φ = √

ρseiϕ , where ρs is the
superfluid density of the superconductor and, hence, proportional to the magnitude
of the superconducting gap, ρs ∝ |�|. We will assume that we are sufficiently
deep in the superconducting state that the amplitude of the order parameter or,
equivalently, the superfluid density ρs, can be taken to be essentially uniform in
space and time. This theory is, qualitatively, a quantum version of the Landau–
Ginzburg theory of a superconductor.

In this picture the vortices (in (2 + 1) dimensions) are point-like singularities
of the order-parameter field that evolve in time along a set of worldlines. Thus,
we will split the phase of the order parameter ϕ into a smooth part, which we will
denote by η, and a singular piece χ that satisfies∮

�

dxμ ∂
μχ = (�χ)� = 2πNv[!] (14.83)

where � is a closed contour and Nv[!] is the number of vortex lines (with their
signs) piercing a surface ! whose boundary is � = ∂!. It will be convenient to
define a gauge field aμ ≡ 1

2 ∂μχ such that its circulation on the same contour �
is πNv. Since the phase field has singularities on the worldlines of the vortices,
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the amplitude of the charged scalar field must vanish along these lines. To make
the arguments simpler, we will assume that we are dealing with a superconductor
with a short enough coherence length ξ that the vanishing of the amplitude of the
charged scalar field occurs on very short length scales, as in the case of a strong type
II superconductor. It will also be convenient to define a set of vortex currents jv

μ,

jv
μ = 1

π
εμνλ ∂

νaλ (14.84)

such that the flux of the vortex currents through the surface ! is the vorticity Nv[σ ]
going through that surface, ∫

!

d Sμ jμv = Nv[!] (14.85)

On the other hand, the smooth part of the phase field η (the “Goldstone boson”) can
be “eaten” by the electromagnetic gauge field Aμ or, which amounts to the same
thing, we can fix the London (or unitary) gauge η = 0. Within these assumptions
the Lagrangian now becomes

Leff = 1

4
F2
μν +

m2
s

2

(
Aμ − 1

e
aμ

)2

− eAμ jμ + · · · (14.86)

where ms = λ−1
L = ρs(2e/(�c))2 and λL is the London penetration depth.

We can now resort to the same trick as that we used in Section 14.1.1 and rewrite
the partition function in the background of the quasiparticle and vortex currents as

Z [ jqp
μ , jv

μ] =
∫

DAμDaμ δ

(
jv
μ − 1

π
aμ

)
exp

(
−

∫
d3x Leff[Aμ, aμ, bμ]

)
=

∫
DaμDbμ exp

(
−

∫
d3x Leff[aμ, bμ]

)
(14.87)

where in the last line we introduced a representation of the delta function through a
Lagrange-multiplier vector field bμ and subsequently integrated out the fluctuations
of the electromagnetic gauge field Aμ. The effective action prior to integrating out
the electromagnetic field in Minkowski space-time is

Leff[Aμ, aμ, bμ] = −1

4
F2
μν −

m2
s

2

(
Aμ − 1

e
aμ

)2

+ eAμ jμqp + bμ jμv

+ 1

π
εμνλaμ ∂νbλ (14.88)

Upon integrating out the massive electromagnetic gauge field Aμ and keeping only
terms with the lowest order in derivatives we find that the effective action

L[aμ, bμ] = Ltopo[aμ, bμ] + · · · (14.89)

is precisely the topological BF effective action of Eq. (14.79).
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To show that it is a superconductor, we will need to show that all local excitations
are massive and in particular that in this theory the photon is massive. Within this
local theory this is indeed the case, as one readily finds by setting the quasiparticle
and vortex currents to zero and then integrating out the auxiliary field bμ, resulting
in the effective action (to second order in derivatives)

Leff[aμ] = − 1

4e2

(
∂μaν − ∂νaμ

)2 − m2
s

2e2
aμaμ (14.90)

(again in the London unitary gauge). It is straightforward to derive the London
equation of a superconductor from this effective action.

Therefore we have shown that the low-energy effective action of a superconduc-
tor with a quantum-mechanical electromagnetic gauge field is indeed a topological
field theory! As we noted above, this theory has a four-fold degeneracy on the
torus. Here “fractionalization” is realized into terms of the fundamental particles
that entered into the pairing instability. This seems to complete our argument.

However, we are not quite yet done, since we still have a debt to pay. It remains
to remove the unnecessary assumption that the quasiparticle currents are locally
conserved. To remove this assumption, we have to recall that quasiparticles can
go in and out of the condensate in pairs. Thus, our partition function must contain
instanton processes (in Euclidean space-time) that describe pairs of quasiparticles
being removed at some locations in space-time and, likewise, pairs of quasiparticles
that are created at some locations in space-time. These processes are monopole
configurations in the gauge field bμ. However, these instanton processes do not
affect the topological sector of the theory.

Finally, there remains one question to answer: is there an order parameter? The
answer to this question depends on whether the electromagnetic gauge field itself is
compact and, hence, whether Dirac (or Polyakov) magnetic monopoles play a role.
If they do, this problem is mapped exactly into the theory discussed in Sections
9.6 and 9.12, following the results of Fradkin and Shenker (1979). If this were
literally the case, the deconfined phase would be strictly topological and no trace
of superconductivity would be found. This is so, since vorticity in that Z2 case is
also defined modulo 2. On the other hand, as far as we know, the electrodynamics
sector of the Standard Model does not appear to have monopoles (or they are so
heavy that they do not play a role in experiments). Thus, in this more realistic
scenario, although a superconductor is actually a topological state, it still exhibits
all the features that define superconductivity.

14.6 Non-abelian quantum Hall states

The quantum Hall states we have discussed in this section have excitations with
fractional statistics. Thus, the amplitude for a clockwise adiabatic exchange of two
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quasiparticles 1 and 2 (a braiding operation of the quasiparticle worldlines; see
Fig. 13.2) acquires a phase factor W (1, 2) → exp(iδ)W (2, 1). We assigned the
statistical phase δ as a quantum number that characterizes the excitations of the
state. A state with several excitations will undergo many such processes under time
evolution, and each process will yield an additional phase factor.

In Section 10.8 we discussed briefly the fact that we can regard the sequence of
exchange processes as a sequence of concatenated braiding processes during which
the linking number of the worldlines of the quasiparticles changes. The successive
action of two braiding processes defines a product operation that is closed in the
space of braids, i.e. the two successive adiabatic clockwise exchanges yield another
braid. Obviously, we can also regard a clockwise exchange as the inverse operation.
Thus adiabatic exchanges define a group of transformations known as the braid
group. The excitations with anyon or fractional statistics characterized by a single
phase δ are one-dimensional representations of the braid group.

However, as we also noted in Section 10.8, the braid group also has multi-
dimensional representations in which a braid is characterized by a matrix of phase
factors instead of a single number. In this section we will discuss a set of quantum
Hall states whose excitations transform under a braiding process precisely in this
fashion. For this reason these quantum Hall states are said to be non-abelian.

Chern–Simons gauge theories with non-abelian gauge groups have non-abelian
representations of the braid group (if the level k of the Chern–Simons theory is
greater than k = 1). Thus it is natural to suspect that there is a relation between
non-abelian Chern–Simons gauge theory and non-abelian quantum Hall states. We
will see that this is the case. On the other hand, Chern–Simons gauge theory
(in (2+ 1) dimensions) has a close connection with chiral conformal field the-
ory in two dimensions (Witten, 1989, 1992). We will see in this section (and in
Chapter 15) that there is also a close connection between fractional quantum Hall
states and chiral conformal field theory (CFT). This connection will come in two
forms, (a) through the universal structure of the ground-state wave functions and
(b) through the excitation spectrum of their edge states.

14.6.1 Conformal field theory and quantum
Hall wave functions

We will begin by rewriting the Laughlin (and Halperin) wave functions in a manner
that makes the connection with chiral CFT self-evident. The Jastrow prefactor of
the Laughlin wave function

�m(z1, . . . , zN ) =
∏
i< j

(zi − z j )
m exp

(
−

N∑
i=1

|zi |2
4�2

0

)
(14.91)
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has a structure reminiscent of the Coulomb-gas expressions discussed in
Section 4.6 except for the important fact that the exponent is positive. Thus, the
Jastrow factor vanishes at short distances and diverges at long distances, whereas
the Coulomb-gas expressions behave in the opposite fashion. In addition the Jas-
trow factor is a holomorphic function of the complex coordinates z1, . . . , zN , while
the Coulomb-gas expressions are a product of holomorphic and anti-holomorphic
factors.

The Laughlin wave functions have the peculiar property (for wave functions) of
being universal, i.e. independent of the details of the Hamiltonian of the interact-
ing electron gas. The only dimension-full parameter they contain is the magnetic
length, which enters only in the Gaussian integrating factor. While these “ideal”
wave functions are the exact ground states of a class of local interacting Hamilto-
nians, they are an outstanding ansatz for a large class of Hamiltonians (including
the physically relevant case of the Coulomb interaction). The exact ground-state
wave functions for specific Hamiltonians exhibit the same asymptotic behaviors as
those of the Laughlin states: they (a) have the same behavior as two electron coor-
dinates approach each other (they have zeros of the same order) and (b) also have
the same asymptotic power-law behavior at long distances. Thus, each Laughlin
wave function is the universal representative of a phase of the 2DEG, a stable fixed
point that has a large basin of attraction. The exact wave functions for generic
Hamiltonians in the same phase differ from the Laughlin states by complicated
functional dependences that do not affect these universal behaviors. In the language
of the renormalization group they differ from the Laughlin states by the action of
irrelevant operators.

The universal structure of the Laughlin wave functions naturally motivates the
use of a description of these states in the language of a 2D CFT. This approach,
which was pioneered by Moore and Read (1991), constitutes an extremely pow-
erful tool to generalize and classify these topological states. Moore and Read
showed that it is possible to rewrite the full Laughlin wave function (including
the integrating exponential factor) in the following Coulomb-gas expression:

�m(z1, . . . , zN ) =
〈(

N∏
i=1

e i
√

mϕ(zi )

)
exp

(
−

∫
d2z′

√
mρ0ϕ(z

′)
)〉

(14.92)

where ϕ(z) is a chiral boson in two Euclidean dimensions whose correlation
function is (cf. Eq. (4.70))

〈ϕ(z)ϕ(z′)〉 = −ln(z − z′) (14.93)

A straightforward inspection of the results discussed in Section 4.6 in the con-
text of the Kosterlitz–Thouless theory tells us that this is the propagator of the
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holomorphic half of a boson CFT with stiffness K = 1/(4π). In Coulomb-gas
language the Jastrow factor of Eq. (14.92) represents a set of positive charges, each
of strength

√
m, and the exponential factor represents a uniform background neu-

tralizing charge with areal density ρ0 = 1/(2πm) (measured in units in which the
magnetic length is �0 = 1).

Similarly, in this representation the wave function of a state with a quasihole
with complex coordinate w is

�+
m (w, z1, . . . , zN ;m)

=
〈

exp

(
i√
m
ϕ(w)

) (
N∏

i=1

e i
√

mϕ(zi )

)
exp

(
−

∫
d2z′

√
mρ0ϕ(z

′)
)〉

=
N∏

i=1

(zi − w)
∏
i< j

(zi − z j )
m exp

(
−1

4

N∑
i=1

|zi |2 − 1

4m
|w|2

)
(14.94)

Thus we conclude that the construction of wave functions of Laughlin states �m

is equivalent to the computation of expectation values of a conformal field theory
for a free chiral boson ϕ(z). In this construction the action of removing an electron
(a hole of positive charge e) at a complex coordinate z is represented by a chiral
vertex operator Ve(z),

Ve(z) = e i
√

mϕ(z) (14.95)

which we will call the electron operator. Similarly, we can identify the opera-
tor which, when acting on a Laughlin state �m , creates a quasihole at complex
coordinate w with the vertex V1(w) operator of the CFT of a chiral free boson,

V1(w) = exp

(
i√
m
ϕ(w)

)
(14.96)

The Halperin wave function for two quasiholes of a Laughlin state, which was
presented in Eq. (13.36), can also be represented as a correlator in this chiral CFT
involving now the insertion of an additional vertex operator V1(u). This wave func-
tion has the same structure in its dependence on the electron coordinates as the
Laughlin wave function �m ; it has a non-local branch cut dependence on the rela-
tive coordinates of the quasiholes, (u − w)1/m . Thus, the transport of a quasihole
around any of the electron coordinates is trivial. Instead, transporting a quasihole
around the other quasihole senses the branch cut. Mathematically this is called a
non-trivial monodromy. As we saw, this is a manifestation of fractional statistics.

In other terms, the quasihole operators are not local with respect to each other,
but are local with respect to the electron operators. Furthermore, two quasihole
operators at coordinates u and w closer to each other than to the other coordinates
behave in the same way as the two quasiholes fused together into a quasihole of
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twice the charge with vertex operator V2. This process has exactly the same struc-
ture as the operator-product expansion (OPE) in a CFT (see Sections 4.3 and 7.11).
We can continue this fusion process to produce quasiholes of charge p/m (obtained
from fusing p fundamental quasiholes).

However, this process cannot be continued indefinitely, since if we fuse m funda-
mental quasiholes we obtain an electron, or rather a hole, since we are removing an
electron from the fluid. Hence, m quasiparticles fuse into the condensate and have
essentially the same effect as acting with the identity operator. Only the fusion
of quasiholes modulo an electron leads to physically distinct excitations. In the
language of an OPE we write

lim
w→u

Vp(u)Vq(w) � V[p+q]m (u) (14.97)

where [p]m is the integer p modulo a multiple of m, i.e. if p = mr + s then
[p]m = s (with r ≥ 0 and 0 ≤ s < m). This means that the vertex operators which
create physically distinct excitations must be truncated to this set.

In other words, there is a correspondence between the spectrum of allowed exci-
tations of quasiholes in a Laughlin state and the spectrum of primary fields of the
chiral boson CFT. This correspondence includes the wave function itself, which
is written as a correlator in a chiral rational conformal field theory (RCFT). More
precisely, the wave function is the holomorphic half of a correlator of the RCFT.
These quantities are known as conformal blocks of the RCFT since the correlators
are built from them (see Moore and Seiberg (1989)). The truncation of the spectrum
of primary fields (the allowed vertex operators) is equivalent to the statement that
the chiral boson is compactified with a compactification radius R = 1/

√
m deter-

mined by the invariance of the electron operator under shifts ϕ → ϕ + 2π/
√

m.
This makes this CFT an RCFT (Ginsparg, 1989; Di Francesco et al., 1997). On
the other hand, this construction has the additional feature that all the allowed pri-
mary fields are local with respect to the electron operator. In the language of Moore
and Read (1991), the electron operator plays the role of a “current” that generates
an extended symmetry algebra (of the primary fields). We encountered a similar
construction in our discussion of Luttinger liquids in Chapter 6 and of the quan-
tum critical points of 2D quantum dimer models in Chapter 9 (although we were
not as explicit as we are here). In Chapter 15 we will see that there is a closely
related structure of the edge states of the quantum Hall states. We will use the
same principles in the rest of this section to construct generalized quantum Hall
states.

This structure is also present in a Chern–Simons gauge theory. Consider a
Chern–Simons gauge theory with a U(1) gauge group

L[aμ] = m

4π
εμνλaμ ∂νaλ (14.98)
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which we will refer to as a U(1) level-m Chern–Simons theory and denote by
U(1)m . The observables of this theory are Wilson loop operators that carry p units
of charge,

W p
� = exp

(
i p

∮
�

dxμ aμ
)

(14.99)

We have already shown that the Wilson loops represent heavy particles carrying
fractional statistics with a statistical angle δp = π p2/m. Thus, in this simple
abelian system, fusing p = m particles together is equivalent to an electron (since
δm = π). Here too we can define an extended symmetry algebra by defining as
being physically distinct the Wilson loop operators modulo the level m of the
Chern–Simons theory. Hence, there are only m physically distinct states (includ-
ing the identity) allowed in this theory. As we saw, this structure is natural when
defining the theory on a torus with each physically distinct Wilson loop on a non-
contractible path of the torus, labeling each of the m distinct topological sectors of
the Hilbert space.

14.6.2 Conformal blocks

Armed with the principles we presented above, we can construct many potentially
interesting quantum Hall states. The strategy is to find an RCFT that may be of
physical relevance and construct the wave functions by application of these prin-
ciples. In fact, what we did in the preceding subsection can easily be applied to
the wave functions of the Halperin states of multi-component systems, for instance
to the spin-singlet Halperin states (Balatsky and Fradkin, 1991). It has also been
used to suggest wave functions for the hierarchical states (Blok and Wen, 1990;
Moore and Read, 1991). The RCFT approach has been a particularly powerful
tool to uncover the existence of a class of non-abelian quantum Hall phases with
unexpected and extremely interesting properties.

Before we introduce the non-abelian fractional quantum Hall states, let us
discuss what is meant by non-abelian fractional (or braiding) statistics. Let us con-
sider an abstract system in two dimensions. An N -particle state will be denoted
by ψp;i1,...,iN (z1, . . . , zN ) with complex coordinates z1, . . . , zN , where i1, . . . , iN

denote the possible quantum numbers of the particles. The integer p labels the
basis in a multi-dimensional vector space of states and it is not related to the quan-
tum numbers of the individual particles (which, as usual, are associated with the
states of local observables). Let us consider an exchange process of two of the
particles, with labels k and l, understood as a quasi-static braiding process under
which the particles exchange places. Since these states are assumed to be a basis,
the general result of any unitary operation, including braiding processes, must in
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general be equivalent to a linear combination of the basis states. Therefore (Moore
and Read, 1991)

ψp;i1,...,is ,...,ir ,...,iN (z1, . . . , zs, . . . , zr , . . . , zN )

=
∑

q

Bpq[i1, . . . , iN ]ψq;i1,...,ir ,...,is ,...,iN (z1, . . . , zr , . . . , zs, . . . , zN )

(14.100)

where q labels the states in the basis. The two-particle exchange process is then
represented by the matrix Bpq . In other terms, the Hilbert spaces spanned by these
basis states are multi-dimensional representations of the braid group. Since these
matrices in general do not commute, it is said that the particles (“non-abelions”)
have non-abelian fractional statistics.

It turns out that the conformal blocks that appear in the correlators in CFTs
are analytic functions of the coordinates of the operators and satisfy monodromy
properties that are consistent with the transformation law of Eq. (14.100). If the
coordinates of the operators are regarded as the coordinates of quantum-mechanical
particles on the complex plane, the conformal blocks can be interpreted as the wave
functions for anyon-type objects that are multi-dimensional representations of the
braid group (Moore and Read, 1991). The rules that we will import from conformal
field theory can be used to define in a precise way the laws that govern the behav-
ior of non-abelian anyons as quantum objects in two dimensions (Kitaev, 2003;
Preskill, 2004). The mathematical term is a modular tensor category (or modular
functor) (Moore and Seiberg, 1989; Freedman, 2003).

Although a full discussion of conformal blocks is beyond the scope of this book
(see e.g. Di Francesco et al. (1997)) we will summarize some of their important
properties that will be useful for us. Let {φ j } be the set of primary fields of some
CFT. We will assume that this set is finite and that it is an RCFT. As we have
seen, in an RCFT the primary fields satisfy a closed operator algebra known as the
operator-product expansion (OPE). In an OPE two primary fields, say φi and φ j ,
can be fused together into several possible other operators. The result is a sum over
all the possible primaries φk with singular coefficients. The label k in this sum runs
over all possible primary fields, including the identity, with coefficients Ci jk . Now,
in the fusion of the primary fields φi and φ j , the operator φk will appear a number
of times, which we will denote by the integers N k

i j . This fact is expressed with the
notation

φi � φ j =
∑

k

N k
i jφk (14.101)

For instance, in the case of the compactified boson which we discussed above
N k

i j = δk,i+ j since only operators with the correct charges will mix. We will see
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below that non-abelian fractional statistics arises if the integers N k
i j do not vanish

for two or more fields.
Since the order of fusion is immaterial, the fusion algebra is commutative,

N k
i j = N k

ji (14.102)

This algebra is also associative,

(φi � φ j ) � φk = φi � (φ j � φk) (14.103)

since the order of successive fusions does not matter. This means that the integers
N k

i j satisfy ∑
l

N m
il N l

jk =
∑

n

N n
i j N m

nk (14.104)

The integers N k
i j can be regarded as matrix elements in an associative and

commutative algebra of matrices known as the Verlinde algebra (Verlinde, 1988).
The requirement of conformal invariance imposes stringent conditions on the

analytic structure of the correlation functions. For example the two-point function
of the primary field φi factorizes into a product of a holomorphic factor and an
anti-holomorphic factor (see Section 7.11, Eq. (7.173)),

〈φi (z, z̄)φi (0, 0)〉 = 1

z2hi z̄2h̄i
(14.105)

where hi and h̄i are the conformal dimensions (where �i = hi + h̄i is the scaling
dimension and si = hi − h̄i is the conformal spin). A factorized analytic structure
that can be expressed as a sum of the form〈

N∏
s=1

φi (zis , z̄is )

〉
=

∑
p

∣∣∣Fp;{i j }(z1, . . . , zN )

∣∣∣2
(14.106)

also applies for more general correlators of primary fields. This expression states
that the general correlator of primaries is a sum of terms, each of which can be writ-
ten as a product of holomorphic and anti-holomorphic functions Fp;{i j }(z1, . . . , zN )

known as conformal blocks. The structure of the conformal blocks depends on
the number and type of primary fields present in the correlator. For a given set of
coordinates z1, . . . , zN (and labels i1, . . . , iN ) the conformal blocks are linearly
independent holomorphic functions that span a basis of the vector space whose
dimension depends on the number of fusion channels of the primary fields φi (and
hence on the integers N k

i j ) (Belavin et al., 1984; Friedan and Shenker, 1987).
If the primary fields φi and φ j have more than one fusion channel (i.e. N k

i j �= 0
for more than one k for i and j fixed), the number of conformal blocks in
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Eq. (14.106) is p > 1. The conformal blocks are analytic functions of the coor-
dinates that have isolated singularities. These singularities are such that, as one
displaces a coordinate zi along a closed smooth curve on the complex plane which
encloses another coordinate z j , the conformal blocks transform into linear combi-
nations of each other. This transformation, called a monodromy, is equivalent to
two successive braids. In this way non-abelian statistics enters into the structure of
the correlators.

In CFT each primary field φi labels a space of states generated by a tower of
irrelevant operators (its descendants). Let us consider a 2D space with the topology
of a torus, defined as a parallelogram of vertices 0, 1, τ , and 1 + τ , where the
complex number τ = i L2/L1 is the modular parameter of the torus. Let �a and �b
be the two cycles of the torus and we will pick �b to denote the direction of time
evolution. The partition function restricted to this space of states is the character χi

of the representation labeled by φi ,

χi ≡ tr[φi ]q
H−c/24, q = e2π iτ (14.107)

where H is the Hamiltonian for the right-moving states and c is the central charge.
The character χi is related to the short-distance behavior of the conformal block
F i i∗

j (z − w) (φi and φi∗ are conjugate fields) by (Di Francesco et al., 1997)

χi = lim
z→w

(z − w)2h jF j j∗
i (z − w) (14.108)

where hi is the conformal dimension of the primary field φi .
We can define the modular transformations T and S of the torus:

T : τ → τ + 1, S : τ → −1

τ
(14.109)

Verlinde showed that under these transformations the characters χi obey the
transformation laws

T : χi → exp
[

2π i
(

hi − c

24

)]
χi , S : χi →

∑
j

S j
i χ j (14.110)

where the unitary matrix S j
i is called the modular S-matrix. Thus, the confor-

mal blocks also transform under an S modular transformation by the action of the
modular S-matrix.

Following Verlinde, we now define the action of inserting a primary field φi into
the partition function Z = χ0 of the system and moving it along the full closed
cycle �b. He showed that the result was

φi (�b)χ0 = χi (14.111)
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If the same operation is carried on the character χi , one obtains

φ j (�b)χi =
∑

k

N k
i jχk (14.112)

with N k
i j being the same matrix as that which defines the fusion rules for φi and

φ j . Using these relations, Verlinde further proved that the coefficients N k
i j of the

fusion algebra are related to the elements of the modular S-matrix by the Verlinde
formula (Verlinde, 1988)

N k
i j =

∑
n

Sn
j Sn

i (S−1)k
n

Sn
0

(14.113)

The same modular S-matrix also appears in Chern–Simons gauge theory. Witten
showed that the states of a Chern–Simons theory are accounted for by the confor-
mal blocks of a CFT. As a result, the Chern–Simons states are representations of
the braid group, and may be identified with the characters of a CFT. The modular
S-matrix of the CFT will then enter into calculations of Wilson loop observables
in the Chern–Simons theory, as was illustrated by Witten (1989). He showed that
in Chern–Simons gauge theory the expectation value of the Wilson loop opera-
tor which carries the representation R j in a space-time with the topology of the
3-sphere S3 is given by a matrix element of the modular S-matrix,

Z(S3, R j ) = S j
0 (14.114)

and that the partition function for the vacuum Z(S3) is given by

Z(S3) = S0
0 (14.115)

For reasons that will become clear shortly, it is convenient to define the quantum
dimension d j of the representation R j ,

d j = S j
0

S0
0

(14.116)

The unitarity of the modular S-matrix implies that(
S0

0

)−1 =
√∑

j

|d j |2 ≡ D (14.117)

where the quantity D defines the effective quantum dimension.
The important insight that we will retain is that the conformal blocks are holo-

morphic functions that span a basis of a finite-dimensional vector space and
transform under braiding operations following the law of Eq. (14.100) (Moore
and Seiberg, 1989). This observation led Moore and Read to propose the use of
conformal blocks of RCFTs to construct holomorphic wave functions (hence those
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in the lowest Landau level) whose excitations may realize non-abelian statistics
(Moore and Read, 1991). In Section 14.6.1 we saw that the Laughlin states can be
recast as expectation values of the chiral CFT of a compactified boson. We will
now generalize this construction.

14.7 The spin-singlet Halperin states

The spin-singlet Halperin (n+1, n+1, n) states with filling fraction ν= 2/(2n + 1)
can also be recast as a CFT correlator. To this end, we factorize these wave func-
tions for N electrons (with N even) (Balatsky and Fradkin, 1991; Moore and Read,
1991),

�(n+1,n+1,n)({z↑i }, {z↓i }) =
∏
i< j

(z↑i − z↑j )
n+1(z↓i − z↓j )

n+1
∏
i, j

(z↑i − z↓j )
n

× exp

(
− 1

4�2
0

∑
i

(
|z↑i |2 + |z↓i |2

))
(14.118)

into a product of a wave function for the charge degrees of freedom, which takes
the form of a Laughlin state for semions (with statistical angle δ = π/2),

�(π/2)
m ({z↑i }, {z↓i }) =

∏
i< j

(z↑i − z↑j )
n+1/2(z↓i − z↓j )

n+1/2(z↑i − z↓j )
n+1/2

× exp

(
− 1

4�2
0

∑
i

(
|z↑i |2 + |z↓i |2

))
(14.119)

and the spin-singlet wave function for the spin degrees of freedom,

�singlet({z↑i }, {z↓i }) =
∏
i< j

(z↑i − z↑j )
1/2(z↓i − z↓j )

1/2

(z↑i − z↓j )1/2
(14.120)

The Laughlin state for semions can be written as the CFT correlator, a conformal
block of a compactified boson RCFT at level k = 2n + 1,

�(π/2)
m ({z↑i }, {z↓i }) =

〈(
N∏

i=1

exp

(
i

√
n + 1

2
ϕ(zi )

))

× exp

(
−

∫
d2z′

√
n + 1

2
ρ0ϕ(z

′)

)〉
U(1)k

(14.121)

where the label i runs over all N particles, irrespective of their spin polarization.
The wave function for the spin sector, �singlet, is equal to the correlation function

of the spin-doublet primary field (with j = 1/2) in a chiral SU(2)1 Wess–Zumino–
Witten (WZW) model discussed in Section 7.12 (see Eq. (7.199) for SU(2)1). If
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we denote the spin j = 1/2 doublet primary fields of the SU(2)1 WZW chiral CFT
by V±1/2(z), the spin-singlet wave function is

�singlet({z↑i }, {z↓i }) =
〈
V+1/2(z

↑
1 ) . . . V+1/2(z

↑
N/2)V−1/2(z

↓
1 ) . . . V−1/2(z

↓
N/2)

〉
SU(2)1

(14.122)

Interestingly (but not accidentally!), this wave function for the spin sector is the
same as the conjectured Kalmeyer–Laughlin wave function for a spin-liquid state
of a frustrated quantum antiferromagnet (Kalmeyer and Laughlin, 1987).

Thus, both the charge sector and the spin sector are given by a conformal block
of a chiral RCFT, the U(1) chiral boson at level k = 2n+1 for the charge sector and
the SU(2)1 chiral WZW CFT for the spin sector. In both cases only one conformal
block is involved. This is expected for the U(1) chiral boson, since we showed
above that the fusion rules have only one channel.

However, the spin sector requires some discussion. In a sense this result is not
surprising since we can picture the spin-singlet states as a special case of a bilayer
system that has a U(1)×U(1) symmetry. However, as shown in Balatsky and Frad-
kin (1991), the spin-singlet fractional quantum Hall states can be constructed as a
U(1) × SU(2) Chern–Simons theory whose spin sector has level k = 1 that has a
very simple structure. In a theory with SU(2) symmetry we expect the states (and
also the fields) to be organized into multiplets, namely the irreducible representa-
tions of the group SU(2). Thus, if we have states with angular momenta j1 and
j2, the tensor product decomposes into a sum of states with total angular momen-
tum j ranging from | j1 − j2| to j1 + j2. However, for the primary fields φ j of the
Kac–Moody current algebra su(2)k (associated with the SU(2)k WZW model) the
corresponding fusion rules are truncated at jmax = k/2,

φ j1 � φ j2 = φ| j1− j2| + · · · + φ jmax (14.123)

In particular, in the case of SU(2)1, the level is k = 1 and the fusion is truncated at
jmax = 1/2. This means that for SU(2)1 two spin-1/2 primary fields can only fuse
into the j = 0 identity field since j = 1 is projected out. Hence, for SU(2)1 we
simply write

[1/2] � [1/2] = [0], for SU(2)1 (14.124)

This means that, for SU(2)1 (this is also true for SU(N )1 (Knizhnik and Zamolod-
chikov, 1984)), there is only one fusion channel and hence only one conformal
block in the correlator. This also implies that, from the point of view of the
braid group, SU(2)1 has only one-dimensional representations and the fractional
statistics is abelian (even though the group SU(2) is non-abelian!).

The conclusion is that SU(2)1 theory (both as a WZW CFT and as a Chern–
Simons theory) is secretly an abelian theory. But we already know this. In fact,
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in our discussion of the Luttinger model in Chapter 6 we found using abelian
bosonization that a theory with an SU(2)1 current algebra can be represented in
terms of an abelian bosonic theory with a special choice of compactification radius.
Thus, the right-moving currents J±

R and J 3
R can be represented in terms of a single

compactified chiral boson φ(z) (with a suitable choice of normalization)

J 3
R(z) ∼ i ∂zφ(z), J±

R (z) ∼ e±i
√

2φ(z) (14.125)

In this representation the spin-1/2 doublet chiral primary fields are

V±1/2(z) ∼ exp

(
± i√

2
φ(z)

)
(14.126)

14.8 Moore–Read states and their generalizations

Moore and Read (1991) generalized this approach to propose several fractional
quantum Hall states with strikingly interesting properties. Specifically they pro-
posed the Pfaffian wave functions for a system of fully polarized electrons that has
the form of a product of a Pfaffian and a Laughlin wave function,

�MR(z1, . . . , zN ) = Pf

(
1

zi − z j

) ∏
i< j

(zi − z j )
n exp

(
− 1

4�2
0

∑
i

|zi |2
)

(14.127)

This wave function represents a system of electrons in the lowest Landau level at
filling factor ν = 1/n.

The Pfaffian of the antisymmetric matrix Mi j = 1/(zi − z j ) is the fully antisym-
metrized product of all possible pairs of matrix elements,

Pf(Mi j ) = 1

2N/2(N/2)!
∑

P

sgn(P)
N/2∏
r=1

MP(2r−1)P(2r) = A
(
M12 . . . MN−1,N

)
(14.128)

where P labels all possible permutations of N elements, and A denotes the opera-
tion of antisymmetrization. Up to an overall sign, the Pfaffian of an antisymmetric
matrix is equal to the square root of the determinant of the same matrix,

Pf(M) = ±√
det M (14.129)

For n even this state is antisymmetric and hence is a candidate wave function for
a fractional quantum Hall state for electrons. More interestingly, unlike Laughlin
states and its generalizations, for a fermionic state the filling fraction ν = 1/n of
the Moore–Read states has an even denominator. Conversely, for n odd these wave
functions are symmetric under exchange and describe a system of bosons. Since the
Pfaffian prefactor is a set of poles it allows the particles to be packed more densely
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than a Laughlin-type state. For n ≥ 1 the Laughlin factor insures the integrability
of this wave function. It can also be shown that for a fixed number of particles this
state is still a polynomial of the complex coordinates of the particles.

We already know that on a torus the Laughlin state at ν = 1/n has n degenerate
ground states due to the motion of the center of mass of the system on the torus.
The Pfaffian state on a torus is obtained by the replacement (as in the Laughlin
state)

Pf

(
1

zi − z j

)
)−→ Pf

(
θa(zi − z j )

θ1(zi − z j )

)
(14.130)

where θa(z) (with a = 1, . . . , 4) are the four theta functions. This gives us a total
degeneracy of 3n for a Pfaffian state with ν = 1/n.

The structure of the Pfaffian factor indicates that this state has strong pairing
correlations, and for this reason it is often called a paired Hall state (Greiter et al.,
1991). Since the Pfaffian factor is a product of single poles, the pairing correlations
are similar to those of a BCS-type superconductor with an order parameter with
px + i py symmetry, similar to the A phase of superfluid 3He: a fully spin-polarized
paired state of fermions with orbital angular momentum l = 1 and m =±1 (Leggett,
1975).

Of particular interest is the Moore–Read state at ν = 1/2 (n = 2). It has been
known for many years that in the first Landau level there is a fractional quan-
tum Hall state with filling fraction ν = 5/2. We can regard the lowest Landau
level (which is completely filled) as having a filling factor of ν = 2. Thus, a
ν = 5/2 state can then be pictured as a half-filled first Landau level. Currently
available numerical results indicate that the Moore–Read state is the most likely
candidate to explain the fractional quantum Hall state at 5/2 (Morf, 1998; Rezayi
and Haldane, 2000). Although it is possible to have a paired state even in the lowest
Landau level (through some version of the Kohn–Luttinger mechanism (Kohn and
Luttinger 1965; Chubukov 1993; Raghu and Kivelson, 2011)), so far there is no evi-
dence (experimental or numerical) of paired states in the lowest Landau level. The
bosonic Moore–Read state with n = 1 has been conjectured to occur in a system
of ultra-cold bosons rotating at very high angular velocity (Cooper et al., 2001).

An insight into the physical origin of the paired states is gained by noticing that
the Moore–Read state has an interesting and physically illuminating connection
with the Halperin (3, 3, 1) state which has the same filling fraction, ν = 1/2:

�(3,3,1)(z1, . . . , zN/2, w1, . . . wN/2) =
∏
i< j

(zi − z j )
3
∏
i< j

(wi − w j )
3
∏
i≤ j

(zi − w j )
1

× exp

(
− 1

4�2
0

N/2∑
i=1

(|zi |2 + |wi |2
))

(14.131)
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We can regard this state as a wave function for a fully spin-polarized system in a
bilayer (with two half-filled layers), or as a spin-unpolarized single-layer system
with an explicitly broken SU(2) spin rotational invariance. The Halperin (3, 3, 1)
wave function is a good state for a bilayer system with weak inter-layer tunneling.
This state is not antisymmetric under the exchange of electrons between the two
layers (or spin polarizations). As we increase the inter-layer tunneling from weak to
strong (or, equivalently, the spin flip rate), the wave function must be antisymmetric
in the coordinates of all the electrons.

It is a remarkable fact that the fully antisymmetrized (3, 3, 1) wave function is
equal to the Moore–Read state (Ho, 1995). This can be seen as follows. Let us
consider a system of N electrons with both spin orientations. Let ui and vi be the
up- and down-spin spinors. In this form the (3, 3, 1) state can be written as

�(3,3,1) = Pf

(
uiv j + u jvi

zi − z j

) ∏
i< j

(zi − z j )
2 exp

(
− 1

4�2
0

∑
i

|zi |2
)

= A

⎧⎨⎩∏
i> j

(z2i−1 − z2 j−1)
3(z2i − z2 j )

3
∏
i, j

(z2i−1 − z2 j )
1

×
∏

i

u2i−1v2i

}
exp

(
− 1

4�2
0

∑
i

|zi |2
)

(14.132)

If we now rotate the spin quantization axis to the x axis this wave function
becomes

�(3,3,1) = Pf

(
ux

i ux
j − vx

i v
x
j

zi − z j

) ∏
i< j

(zi − z j )
2 exp

(
− 1

4�2
0

∑
i

|zi |2
)

(14.133)

Thus, the Moore–Read (or Pfaffian) state is a (3, 3, 1) state with its down spins
(with respect to the x axis) projected out. This suggests that the Moore–Read state
arises in the strong-tunneling limit in a bilayer system.

The other insight into the origin of this non-abelian state comes from think-
ing of the Moore–Read state as a paired state and making the connection with a
2D px + i py superconductor explicit. Greiter, Wen, and Wilczek suggested the
existence of a paired state at ν = 1/2 and showed that the likely pairing chan-
nel has angular momentum l = −1 (p wave) which must be a spin-triplet state
(Greiter et al., 1991, 1992). Numerical calculations showed that a system of com-
posite fermions, namely the quasiparticles of the compressible state at ν = 1/2,
has attractive interactions in the l = 1 channel (Park et al., 1998). Hence, a state
with p-wave pairing of composite fermions is favored. Read and Green (2000)
showed that the superconducting analog of the Moore–Read state describes the
weak-pairing regime as a BCS superfluid. As the strength of the pairing interactions
increases, there is a phase transition to an abelian quantum Hall state of bosonic
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pairs (“molecules”). The connection of the Moore–Read state with a px + i py

superconductor comes from the Pfaffian factor in the wave function (see Read and
Green (2000)).

The Moore–Read state also has the structure of a conformal block of a CFT.
As we saw, the Laughlin factor has that structure. But so does the Pfaffian fac-
tor. In fact, the Pfaffian can be written as a correlator of a free chiral Majorana
fermion χ(z),

〈χ(z1) . . . χ(zN )〉 = Pf

(
1

zi − z j

)
(14.134)

This result follows from using Wick’s theorem, with the propagator for the
(Euclidean) chiral Majorana field being

〈χ(z)χ(w)〉 = 1

z − w
(14.135)

Recall that a Majorana fermion is a real field and satisfies χ† = χ . In contrast, for
charged (or complex) (Dirac) fermions the correlators are determinants, which is
consistent since the square of a Pfaffian is a determinant. Thus the Moore–Read
states can be written as

�MR[{zi }] = 〈χ(z1) . . . χ(zN )〉

×
〈(

N∏
i=1

e i
√

n φ(zi )

)
exp

(
−

∫
d2z′

√
nρ0φ(z

′)
)〉

U(1)n

(14.136)

This wave function is the exact ground state of a three-body Hamiltonian of the
form (Greiter et al., 1991)

H =
∑

i; j �=i;k �=i, j

PLLLδ
′(zi − z j )δ

′(zi − zk)PLLL (14.137)

where PLLL denotes the projection onto the lowest Landau level, and it is an excel-
lent wave function for a system of electrons projected onto the first Landau level
with Coulomb interactions (Morf, 1998; Rezayi and Haldane, 2000).

The structure of this wave function suggests that the states are constructed by
gluing together (with some rules that we will specify shortly) a charge sector repre-
sented by a U(1)n compactified chiral boson φ(z) and a neutral sector represented
in the wave function by the Pfaffian factor. In Chapter 15 we will discuss the edge
states and we will find precisely the same construction. The charge of the exci-
tations will be determined by the charge sector, which for this state with filling
fraction ν = 1/n has a chiral current operator
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J (z) ∼ i√
n
∂zφ(z) (14.138)

Our next task is to find an RCFT that has a Majorana fermion as a primary
field. But we already know the answer: it is the CFT of the 2D Ising model (or
d = 1 quantum)! In fact, in Section 5.3 we discussed the 1D quantum Ising model
and saw that it is equivalent to a theory of free Majorana fermions. It has been
known since Onsager’s solution of the classical Ising model in two dimensions
that the partition function is equal to the Pfaffian of a matrix (McCoy and Wu,
1973).

The CFT of the critical point of the 2D Ising model has the following primary
fields (Belavin et al., 1984; Friedan et al., 1984; Ginsparg, 1989): (a) the iden-
tity I , (b) the energy density ε (the mass term of the Majorana fermion), (c) the
Majorana fermion χ , and (d) the Ising field (order parameter) σ , which have the
following values of the scaling dimension � and conformal spin s: (0, 0), (1, 0),
(1/2, 1/2), and (1/8, 0), respectively. Here we are interested not in the operators
of the full critical Ising model but only in its chiral (right-moving) piece repre-
sented by the chiral primary fields I , χ , and σ . Here we have used the fact that the
right-moving piece of the energy density ε is the chiral Majorana fermion χ . These
chiral primary fields obey the following chiral fusion algebra (Di Francesco et al.,
1997):

χ � χ = I, σ � σ = I + χ, σ � χ = χ (14.139)

Thus, we now have a case in which the fusion of two σ fields has two
fusion channels. In turn the U(1)n CFT of the boson φ that describes the
Laughlin sector has compactification radius 1/

√
n and has n allowed primary

fields.
The Moore–Read (or Pfaffian) quantum Hall state is a special case of a class

of non-abelian states. In these generalized states, which were initially proposed
by Read and Rezayi (1999), the electrons are not paired but have strong cluster
correlations involving three (or more) particles at a time. In the Read–Rezayi states
the Pfaffian factor is replaced by a correlator of parafermions (that we discussed in
Section 10.7) in CFT. In these states the Laughlin–Jastrow factor is replaced by the
wave function with an exponent of m + 2/k, i.e. a fractional quantum Hall state of
anyons.

The parafermion wave functions are exact zero-energy ground states of a class of
local Hamiltonians of the form of Eq. (14.137) but involving k + 1 delta functions
for a system of N electrons, with N being divisible by k. Read and Rezayi showed
that these states have filling fraction ν = k/(mk + 2) (with m ≥ 0) with a ground-
state degeneracy on a torus of (k + 1)(mk + 2)/2. For m even the wave functions
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are symmetric (and describe bosons), whereas for m odd they are antisymmetric
and describe fermions.

The (particle–hole-conjugate) k = 3 parafermion state is a candidate to represent
the quantum Hall plateau that is observed at filling fraction ν = 12/5 (i.e. 2 +
2/5). However, at that filling fraction there is a competing (abelian) Jain state. In
contrast, at ν = 5/2 there is essentially no competing abelian state (since this filling
fraction has an even denominator) except for a possible trivial paired abelian state,
the bosonic Laughlin state of tightly bound pairs. This trivial state is unlikely to
be relevant because it requires strong attractive interactions, instead of the weak
suppression of repulsion naturally present in the first Landau level.

Parafermions arise in CFT in the context of the critical phenomena of the Zn

clock models (of which the three-state Potts model is a special case). In CFT these
operators appear in a subclass of minimal models (Belavin et al., 1984; Friedan
et al., 1984). The simplest example is the CFT of the Z3 Potts model (Dotsenko,
1984). Although, unlike Majorana fermions, parafermions cannot be realized as
free fields, correlators of parafermions are known from CFT and, in particular,
their conformal blocks are also known explicitly.

Returning to the Moore–Read states, we need to determine the states for the
quasiparticles/quasiholes. The allowed states must be such that their operators are
local with respect to the electron operator (since the fluid is made of electrons!).
By inspection of the Moore–Read wave function we see that the operator

ψe(z) ∼ χ(z)e i
√

nφ(z) (14.140)

plays the role of the electron. The condition that the allowed operators be local (or
single-valued) with respect to the electron operator leads to the following set of
allowed states.

1. The identity I , which represents the quiescent fluid.
2. The “σ particle” (the “non-abelion” or “half-vortex”)

σ(z) exp

(
i

2
√

n
φ(z)

)
(14.141)

where σ(z) is the “chiral piece” of the order-parameter field of the Ising model.
This state has charge Q = e/(2n) and (as we will see below) non-abelian braid-
ing statistics. Notice that σ(z) is non-local with respect to the Majorana fermion
χ(z) since it changes the fermion boundary conditions from periodic to anti-
periodic, and hence it is double-valued. Similarly, the vertex operator from the
charge sector is also double-valued. Nevertheless, their product is single-valued
(and hence local) with respect to the electron operator ψe.
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3. The Majorana fermion, a fermionic Q = 0 neutral excitation,

χ(z) (14.142)

4. The Laughlin quasihole (a vortex)

exp

(
i√
n
φ(z)

)
(14.143)

with charge Q = e/n and abelian fractional statistics δ = π/n.

The wave function for two quasiholes located with complex coordinates η1 and
η2 is obtained from the Moore–Read wave function, Eq. (14.127), by the following
replacement inside the Pfaffian factor (Greiter et al., 1992; Nayak and Wilczek,
1996):

Pf

(
1

zi − z j

)
)−→ Pf

(
(zi − η1)(z j − η2)+ (i ↔ j)

zi − z j

)
(14.144)

The wave function for two quasiholes in the Moore–Read state can be expressed
as the following CFT expectation value:

�
2qh
MR[{zi }] = 〈σ(η1)σ (η2)χ(z1) . . . χ(zN )〉Ising CFT

×
〈(

exp

(
i

2
√

n
φ(η1)

)
exp

(
i

2
√

n
φ(η2)

) N∏
i=1

e i
√

nφ(zi )

)
× exp

(
−

∫
d2z′

√
nρ0φ(z

′)
)〉

U(1)n

(14.145)

which is then also a conformal block.
Similarly, for four quasiholes with coordinates ηi (i = 1, . . . , 4) we can write

Pf

(
1

zi − z j

)
)→ Pf

(
(zi − η1)(zi − η2)(z j − η3)(z j − η4)+ (i ↔ j)

zi − z j

)
≡ Pf(12)(34) (14.146)

However, this is not the only possible wave function of this type, since the two
following pairings, Pf(13)(24) and Pf(14)(23), are equally good. In fact these three
wave functions are not linearly independent, since the following algebraic identity
holds:

Pf(12)(34) − Pf(14)(23) = η14η23

η13η24

(
Pf(12)(34) − Pf(13)(24)

)
(14.147)

where ηi j = ηi − η j . Therefore if we specify the coordinates of four quasiholes
there are two linearly independent wave functions that span a two-dimensional
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Hilbert space. Nayak and Wilczek further showed that there are 2p−1 linearly
independent states with 2p quasiholes.

These Hilbert spaces of states of quasiholes have a topological origin. To see this
we will write the states of four quasiholes as the following CFT conformal block:

�
4qh
MR[{zi }] =

〈(
4∏

r=1

σ(ηr )

)
χ(z1) . . . χ(zN )

〉
Ising CFT

×
〈(

4∏
r=1

exp

(
i

2
√

n
φ(ηr )

) N∏
i=1

e i
√

nφ(zi )

)

× exp

(
−

∫
d2z′

√
nρ0φ(z

′)
)〉

U(1)n

(14.148)

The origin of the two linearly independent states is the existence of two fusion
channels, [0] and [1/2], for the σ fields in the Ising model CFT. For the expec-
tation value to be non-vanishing all the operators in the Ising CFT must fuse
(together) into the identity, operator I . This in turn implies that the four σ fields
themselves must fuse into the identity, and there are two ways for them to do this.
These two possible expectation values are (essentially) the two chiral conformal
blocks of the Ising CFT. By means of an explicit (but lengthy) calculation, Nayak
and Wilczek obtained the following wave functions for four quasiholes, �4qh

[0] and

�
4qh
[1/2] (including the contributions from the charge sector):

�
4qh
[0] = (η13η24)

1/4

(1 +√
1 − x)1/2

(
�(13)(24) +

√
1 − x �(14)(23)

)
�

4qh
[1/2] =

(η13η24)
1/4

(1 −√
1 − x)1/2

(
�(13)(24) −

√
1 − x �(14)(23)

)
(14.149)

where x is the cross ratio

x = η12η34

η13η24
(14.150)

The wave functions for four quasiholes �
4qh
[0] and �

4qh
[1/2], Eq. (14.149), have a

branch-cut structure that is intimately related to non-abelian statistics. Given the
coordinates of the four quasiholes, η1, . . . , η4, we can associate with each one of
the two linearly independent wave functions a prescription regarding how to pair
the quasiholes by running branch cuts between them (as shown in Fig. 14.1).

Owing to the branch cuts present in the wave functions, under a braiding
operation B (a unitary transformation representing a half monodromy) the con-
formal block wave functions transform into linear combinations of each other. For
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η1η1

η2η2 η3η3

η4 η4

Figure 14.1 The two linearly independent wave functions for four quasiholes in
the Moore–Read state have associated with them two inequivalent sets of branch
cuts.

instance, an exchange of η1 and η3 induces in the degenerate Hilbert space the
unitary transformation

U = 1√
2

exp

[
iπ

(
1

8
+ 1

4n

)] (
1 1
−1 1

)
(14.151)

Thus, the degenerate Hilbert space of quasiholes provides a two-dimensional rep-
resentation of the braid group: the exchange (a half-braid) of two quasiholes in a
four-quasihole state is represented by the 2×2 unitary matrix (of statistical angles)
of Eq. (14.151). This feature of these states is called non-abelian (fractional) braid
statistics.

It is important to stress that what we have done does not mean that each quasi-
hole has an internal Hilbert space. This degeneracy has a topological origin, and it
is a non-local shared property of the four quasiholes. In fact, since the dimension of
this Hilbert space of 2p quasiholes is 2p−1 (instead of 22p as would be the case for
an internal degree of freedom with two states), we see that the degeneracy is

√
2 per

quasihole! In other words, these degenerate states are not localized (or localizable)
on any of the quasiholes which are collectively in a state of this Hilbert space.

The same results arise in SU(2)k Chern–Simons theory, a non-abelian general-
ization of the theory we discussed earlier in this book (see Section 10.4). Here we
will follow in detail the work of Fradkin et al. (1998) on the connection between
braiding in Chern–Simons theory and non-abelian quantum Hall states. The action
of a non-abelian Chern–Simons gauge theory is

SCS[Aμ] = k

4π

∫
!×R

d3x εμνλ

[
Aμ

a ∂
ν Aλ

a +
2

3
fabc Aμ

a Aν
b Aλ

c

]
(14.152)

where the gauge field Aμ takes values in the algebra of SU(N ), and the integer k
is known as the level. In Chern–Simons theory (or in any field theory) the wave
function �[a] of the ground state has the path-integral representation
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�[a] =
∫

Aμ|!=aμ

DAμ exp

[
i

k

4π

∫
!×R

d3x εμνλ
(

Aa
μ ∂ν Aa

λ +
2

3
fabc Aa

μAb
ν Ac

λ

)]
(14.153)

where ! is a space-like surface (a sphere S2, a disk D, a torus T 2, etc).
The wave functions of Chern–Simons theory on a torus T 2 correspond to the

insertion of Wilson loops that carry the representations j on a non-contractible
loop of the torus T 2. For SU(2)2 there are only three allowed representations:
(a) the identity ( j = 0), (b) the j = 1/2 (doublet) representation, and (c) the
j = 1 (triplet) representation. Thus, the SU(2)2 Chern–Simons theory has three
inequivalent states on a torus. The Read–Rezayi state for bosons with k = 3
is related to the Chern–Simons gauge theory with SU(2)3 (Fradkin et al., 1999)
and has four ground states on the torus (since the allowed representations are
now j = 0, 1/2, 1, 3/2). The simplest fermionic Read–Rezayi state has ten
sectors.

We can picture the four quasiholes by considering their worldlines γ1, . . . , γ4.
Initially the quasiholes are located at the “punctures” with coordinates η1, . . . , η4

on the surface !, see Fig. 14.2. Each quasihole carries a representation j1, . . . , j4.
In the case of SU(2)2, since the level is k = 2, there are only three allowed
representations, j = 0, 1/2, 1. Chern–Simons theory provides a beautiful way
to understand the braiding properties of the quasiparticles, which are regarded as
Wilson lines along a set of worldlines that we will collectively denote by γ .

j1

j2

j3

j4

η1

η2

η3

η4

γ1

γ2 γ3

γ4

Σ

time

Figure 14.2 Four Wilson worldlines in Chern–Simons theory with representa-
tions j1, . . . , j4 along the worldlines γ1, . . . , γ4 puncturing the surface ! at
η1, . . . , η4.
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Witten showed that the expectation value of the Wilson lines carrying the fun-
damental, j = 1/2, representation is given by a topological invariant known as the
Jones polynomial Vγ (q) (with q = exp(iπ/4)) of the loops γ :∫

DAμ tr1/2

{
P exp

(
i
∮

dxi Aa
i ta

)}
× exp

[
i

k

4π

∫
d3x εμνλ

(
Aa
μ ∂ν Aa

λ +
2

3
fabc Aa

μAb
ν Ac

λ

)]
= Vγ (e

iπ/4)

(14.154)

The Jones polynomial is a Laurent series in a variable q , which is a topological
invariant of a knot, γ . In Chern–Simons theory the Jones polynomial defines a hier-
archy of topological invariants whose first member is the linking number which, as
we saw in Chapter 10, determines the phase factor for abelian fractional statistics.
The Jones polynomial is defined to be Vγ (q) = 1 if γ is the unknot and by the
skein relation

q−1Vγ (q)− qVγ
′′ (q) = (

q1/2 − q−1/2
)
Vγ ′(q) (14.155)

where γ ′ and γ ′′ are obtained by performing successive counterclockwise half-
braids of any two worldlines in γ , as shown in Fig. 14.3.

Equation (14.155) tells us how the quantum-mechanical amplitudes of the quasi-
holes (represented by the expectation values of the Wilson lines) are modified by
braiding operations that take place during the time evolution. Let us consider a state
|�〉 in the two-dimensional Hilbert space of the four quasiholes, and let us denote
by B the braiding operator of two quasiholes. In this context the skein relation
means

q−1|�〉 − q B2|�〉 = (
q1/2 − q−1/2

)
B|�〉 (14.156)

(a) (b) (c)

Figure 14.3 The loops (a) γ , (b) γ ′, and (c) γ ′′ that enter into the skein rela-
tion. The three loops differ only by the braiding shown here. The shaded area is
arbitrary.
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This equation implies a quadratic equation for the eigenvalues of the braiding oper-
ator B. Its eigenvalues are exp(−3π i/8) and exp(iπ/8), which is consistent with
the unitary transformation defined by Eq. (14.151).

These results imply that non-abelian quantum Hall states have excitations (in
the case at hand, a σ quasihole or half-vortex) whose braiding properties depend
on how many such quasiholes are present. Thus, in a state with 2p quasiholes,
successive braiding operations involving different pairs of σ particles induce a
sequence of different unitary transformations in their degenerate Hilbert space. As
we saw, this Hilbert space has a topological origin. This means that local processes
that would normally lead to decoherence cannot couple to these finite-dimensional
Hilbert spaces of non-abelian quasiholes, which are thereby protected. Similarly,
while local disorder may lead to the localization of the quasiholes, it cannot affect
their topological Hilbert spaces. These observations led Kitaev to propose in 1997
(Kitaev, 2003) that the states of these topological Hilbert spaces may be used to
make a topological quantum computer. This work was subsequently expanded by
Freedman et al. (2002b). In this framework the unitary transformations induced
by successive braiding operations can be regarded as unitary transformations in
a space of topological qubits. In this scheme, a computation is equivalent to a
sequence of braiding operations.

We will not discuss here the details of this proposal, since it is beyond the
scope of this book and there are excellent reviews on this subject (e.g. Das Sarma
et al., 2008). Nevertheless, it is worthwhile to note that it raises several important
questions, including in particular that of the conditions under which topological
protection works. It should be clear from our discussion that non-abelian statistics
(just as much as its abelian cousin) is a long-distance property of the excitations of
these systems. Thus, the quasiholes must be far apart from each other (i.e. further
apart than all microscopic scales such as the pairing length and the magnetic length)
and move slowly enough that the processes of interest are in the adiabatic limit and
do not involve the creation of further excitations, and the temperature must be low
enough (lower than the quasihole gap) that there are no thermally excited quasi-
holes. In particular, the number of quasiholes must also be small enough that the
quasiholes are sufficiently far apart that the topological degeneracy is not lifted.
In addition, one should be able to “address” the topological qubits, that is to find
out the result of the computation. However, this is not a trivial matter precisely
due to the topological protection which these states enjoy. The simplest (but by no
means trivial!) way to interact with these non-abelian excitations is through devices
known as quantum interferometers (that are discussed in Chapter 15). This is a sub-
ject of intense current research both theoretically and experimentally. We will see
that quasihole interferometers in non-abelian quantum Hall states measure directly
the Jones polynomial of their worldlines.
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14.9 Topological superconductors

As part of our discussion of non-abelian states we will now summarize the con-
struction of a topological superconductor, in this case a px + i py state, in the BCS
theory of superconductivity (Schrieffer, 1964), which is a problem of wider inter-
est. Our main interest here is to understand how non-abelian fractional statistics
arises in this system. The beauty of the px + i py superconductor is that, as we will
see, the concept of non-abelian statistics can be presented explicitly using only
standard methods of fermionic systems. The downside is that this approach is very
specific to this system and cannot be generalized. In contrast, the more formal but
more powerful approach of CFT provides for a more general setting.

The defining property of a superconductor (and for that matter of any superfluid)
is that it is a state with a spontaneously broken symmetry, the U(1) phase symme-
try associated with local gauge invariance. In the case of all superconductors, and
also for fermionic superfluids such as superfluid 3He and in superfluid phases of
fermionic cold atoms, the spontaneously broken symmetry is characterized by the
existence of an order-parameter field, the pair field (see also Section 2.5)

�σ1,σ2(�r1, �r2) = 〈cσ1(�r1)cσ2(�r2)〉 (14.157)

which acquires a non-vanishing expectation value in the superfluid (or supercon-
ducting) state. Here we have allowed for both spin-singlet and spin-triplet super-
fluid states. Alternatively, the superconducting state is defined by the existence of
the limit (known as off-diagonal long-range order)

lim
�R→∞

〈cσ1(�r1)cσ2(�r2)c
†
σ1
(�r1 + �R)c†

σ2
(�r2 + �R)〉 = |�σ1,σ2(�r1, �r2)|2 �= 0 (14.158)

This definition is independent of the choice of basis or representation, and holds
equally in a system with a fixed number of fermions (the canonical ensemble)
and in a system in which the number of particles is not fixed (the grand canon-
ical ensemble). The direct consequence of a ground state with a spontaneously
broken global symmetry is the existence of a finite stiffness for the phase field in
the superfluid state, i.e. the Nambu–Goldstone boson of the spontaneously broken
symmetry. The quantum Hamiltonian (and action) of a physical system is invari-
ant under a global phase transformation of the Fermi fields, cσ (�r) → eiφcσ (�r)
(where φ is constant and spin-independent). However, the pair-field operator is
not invariant under a global phase transformation and changes as �σ1,σ2(�r1, �r2) →
ei2φ�σ1,σ2(�r1, �r2). This transformation law implies that the pair field couples to an
electromagnetic gauge field as a charge-2e scalar field.

We should keep in mind, as we discussed extensively in Section 13.2, that
a superconducting state (topological or not) is not and cannot be equivalent to
any quantum Hall state, abelian or non-abelian. In the case of the fermionic
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Moore–Read quantum Hall states, the pairing instability involves the composite
fermions, which, as we have seen, are strongly coupled to a dynamically generated
Chern–Simons gauge field. Thus, the would-be Goldstone boson of the putative
superconducting state is already eaten by the Chern–Simons gauge field. This
means that, although the Moore–Read states have pairing correlations, it is not
a superfluid state.

The construction we are following here relies crucially on the concept of pairing
and on regarding the non-abelian state as a paired state. However, it is not obvious
that this is a necessary mechanism. In fact, other non-abelian states that are known,
such as the Read–Rezayi state, use instead a clustering property that generalizes
the concept of pairing.

14.9.1 BCS mean-field theory of the px + i py state

In the px + i py state the fermions are in a spin triplet fully spin-polarized state.
It is a 2D analog of the A phase of superfluid 3He (see e.g. Vollhardt and Wölfle
(1990)). This will allow us to ignore the spin degree of freedom. Let c†

�k be the

fermion operator that creates a fermion with momentum �k and let c�k be the adjoint
operator (which in the quantum Hall context are interpreted as composite-fermion
operators). These operators obey the standard fermionic algebra,

{c†
�k , c�q} = δ�k,�q, {c†

�k , c†
�q} = 0 (14.159)

The kinetic energy of the effective fermionic (mean-field) BCS Hamiltonian for the
quasiparticles of the superconducting state is

HF =
∫

d2x c†(�x)ĥ0 c(�x)

+
∫

d2x d2x ′
[
�∗(�x, �x ′)c(�x)c(�x ′)+�(�x, �x ′)c†(�x)c†(�x ′)

]
(14.160)

where ĥ0 is the one-particle kinetic-energy operator. For a complex p-wave
condensate the complex pair field �(�x, �x ′) is given by

�(�x, �x ′) ≡ �

( �x + �x ′

2

) (
i ∂x ′ − ∂y′

)
δ(�x − �x ′) (14.161)

In momentum space the fermionic Hamiltonian becomes

HF =
∫

d2k

[(
ε�k − μ

)
c†
�kc�k +

1

2

(
�∗

�kc−�kc�k +��kc†
�kc†

−�k
)]

(14.162)

where ε�k is the quasiparticle kinetic energy and μ is an effective chemical poten-
tial. At small momenta ε�k � �k2/(2m∗), where m∗ is an effective mass. ��k is the
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gap function, which is proportional to the order parameter of the superconducting
state. Since we will not discuss the superconducting instability itself, we will focus
only on the kinetic-energy part of the Hamiltonian, Eq. (14.162), and we will not
include the terms that involve the fluctuations of the superconducting state (see e.g.
Schrieffer (1964)).

For a spatially isotropic system the Fourier transform of the pair field ��k (the
“pair wave function”) is an eigenstate of angular momentum. For a px + i py state
the complex gap function ��k transforms as the l = −1 representation of the group
of rotations in two dimensions. In the limit of small momenta, �k → 0, ��k has the
asymptotic behavior

��k = (kx − iky)� as �k → 0 (14.163)

(where � is a constant pairing amplitude) and vanishes at large momenta.
The mean-field ground state |G〉 has the standard BCS form

|G〉 =
∏′

�k

(
u�k + v�kc†

�kc†
−�k

)
|0〉 (14.164)

where |0〉 is the state without fermions. The prime on the product symbol in
Eq. (14.164) indicates that each pair (�k,−�k) enters only once. The complex ampli-
tudes u�k and v�k are determined by a self-consistency condition, which is equivalent
to a variational argument, and obey the condition

|u�k |2 + |v�k |2 = 1 (14.165)

which follows from the condition that the ground state |G〉 is normalized to unity.
In order to diagonalize the kinetic energy of the mean-field Hamiltonian of

Eq. (14.162), we will proceed in the same way as we did in the case of the quantum
Ising chain in Chapter 5. Let η�k and η†

�k be a set of new fermion operators that obey

standard fermionic anticommutation relations, and are related to c�k and c†
�k by the

Bogoliubov transformation

η�k = u�kc�k − v�kc†
−�k, η

†
�k = u∗

�kc†
�k − v∗�k c−�k (14.166)

and annihilate the BCS ground state, η�k |G〉 = 0. The requirement that the new
fermions create the actual eigenstates of the (full) mean-field Hamiltonian,

H =
∑
�k

E�kη
†
�kη�k + Egnd (14.167)

(where E�k ≥ 0 are the quasiparticle excitation energies and Egnd is the ground-
state energy) is met by the condition that the new fermions be eigenoperators of
the mean-field Hamiltonian, [

η�k, H
] = E�k η�k (14.168)
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As a result the amplitudes (u�k, v�k) (written in a spinor form) obey the
Bogoliubov–de Gennes (BdG) equation(

ξ�k −�∗
�k−��k −ξ�k

) (
u�k
v�k

)
≡ E�k �n�k · �σ

(
u�k
v�k

)
= E�k

(
u�k
v�k

)
(14.169)

where ξ�k = ε�k −μ, �σ = (σx , σy, σz) is a three-component vector made of the three
Pauli matrices, and �nk is the unit vector

�nk =
(

u∗
�k , v∗�k

)
�σ

(
u�k
v�k

)
= 1

E�k

(−Re ��k, Im ��k, ξ�k
)

(14.170)

The eigenvalues E�k and eigenvectors (u�k, v�k) are

E�k =
√
ξ 2
�k + |��k |2 (14.171)

v�k
u�k

= −E�k − ξ�k
�∗

�k
(14.172)

Up to a momentum-dependent phase, the spinor amplitudes are given by

|u�k |2 = 1

2

(
1 + ξ�k

E�k

)
, |v�k |2 = 1

2

(
1 − ξ�k

E�k

)
(14.173)

In the low-momentum regime, �k → 0, ξ�k → −μ and ��k has the form of
Eq. (14.163). Thus at low momenta the BdG equation takes the form( −μ −(kx + iky)�

∗

−(kx − iky)� μ

) (
u�k
v�k

)
= E�k

(
u�k
v�k

)
(14.174)

which in real space becomes

i ∂t u = −μu +�∗i(∂x + i ∂y)v

i ∂tv = μv +�i(∂x − i ∂y)u
(14.175)

We recognize this result as the Dirac equation in (2 + 1) dimensions, with the
constraint that the spinor (u, v) obeys the Majorana condition

(u, v)

(
0 1
1 0

)
=

(
u
v

)†

(14.176)

In other terms, the quasiparticles of the superconductor are Majorana fermions,
a result that we also encountered in the solution of the quantum Ising chain in
Chapter 5. Notice that in this language the chemical potential μ became the mass
of the Majorana fermion. Furthermore, the BdG equation, Eq. (14.169) (and hence
also the Dirac approximation) has the symmetry (with σ1 being the Pauli matrix)

σ1

(
ξ�k −�∗

�k−��k −ξ�k

)
σ1 = −

(
ξ�k −��k

−�∗
�k −ξ�k

)
(14.177)
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This implies that, if the spinor (u�k, v�k) is a solution with energy E�k , then the spinor
(u∗

�k , v
∗
�k )σ1 has energy −E�k and the spectrum is symmetric. However, the Majorana

condition tells us that these two states are the same state. Hence the quasiparticle
is its own anti-particle.

Following this line of argument, Read and Green showed that the BCS wave
function |G〉 can be written in the suggestive form of a coherent state of Cooper
pairs:

|G〉 =
⎛⎝∏

�k
|u�k |1/2

⎞⎠ exp

⎛⎝ 1

2

∑
�k

g(�k)c†
�kc†

−�k

⎞⎠ |0〉 (14.178)

where

g(�k) = v�k
u�k

(14.179)

Furthermore, when projected onto a state with N fermions with real-space coor-
dinates �xi (i = 1, . . . , N , with N even) this state has the form of a Pfaffian wave
function (Read and Green, 2000):

�(�x1, . . . , �xN ) = 〈�x1, . . . , �xN |G〉 = Pf
(
g(�xi − �x j )

)
(14.180)

where g(�x) is the Fourier transform of the function g(�k) defined by Eq. (14.179).
The function g(�k) has different possible behaviors at small momenta. The behav-

ior of the amplitudes u�k and v�k in this regime depends on how E�k ± ξ�k behaves in
this regime. Since, as �k → 0, ξ�k → −μ and ��k � (kx − iky)�, we find

lim
�k→0

(
E�k ± ξ�k

) = lim
�k→0

(
E�k ± sgn(ξ�k)

) = |μ|(1 ∓ sgn(μ)) (14.181)

Hence, we have three different behaviors depending on whether μ > 0 (the weak-
pairing regime), μ < 0 (the strong-pairing regime), or μ = 0.

For μ > 0, the small-momentum behavior of g(�k) is

g(k) � − 2|μ|
(kx + iky)�∗ , as �k → 0 (14.182)

The Fourier transform to real space of g(�k) has the long-distance behavior

g(z) =
(

iμ

π�∗

)
1

z
(14.183)

where z = x + iy. Thus, in the weak-pairing regime, in which μ > 0, the function
g(�x) has a power-law behavior and is an analytic function of the complex coordi-
nates. In particular, in this regime the wave function of this superconducting state
is a Pfaffian with the same analytic dependence in the fermion coordinates as in the
Moore–Read fractional quantum Hall state, Eq. (14.127).
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On the other hand, for μ < 0, the small-momentum behavior of g(�k) is instead

g(k) � −(kx − iky)A

a−2
0 + �k 2

(14.184)

where

A = 2|μ|m∗�
2|μ| + m∗|�|2 , a0 = 1

2|μ|
√

2|μ|
m∗ + |�|2 (14.185)

The form of g(�k) in this regime tells us that its Fourier transform in real space
exhibits an exponential decay at separations long compared with the length scale
a0. In the BCS theory of a superconductor the regime with μ < 0 means that the
chemical potential lies below the band of single-particle states. In this regime the
Cooper pairs behave effectively as bosonic “molecules,” and the superconducting
state can be legitimately regarded as a Bose–Einstein condensate of these bosons.

14.9.2 Topology and the superconducting state

Finally, if μ = 0, the amplitudes reach constant values at small momenta, |u�k | →
1/2 and |v�k | → 1/2. In this regime the quasiparticle excitation energy vanishes
linearly with the momentum, E�k � |�k||�|, and hence there is no energy gap!
Furthermore, it is easy to see that at μ = 0 the function g(�k) becomes

g(�k) � − |�k|
kx + iky

|�|
�∗ , μ = 0 (14.186)

which, in real space, has the non-analytic behavior

g(z) �
(

i |�|
2π�∗

)
1

z|z| (14.187)

The scenario we have presented does not occur for a weak-coupling system and,
indeed, a large attractive interaction is needed in order for this phase transition
to be reached, which is clearly outside the regime of validity of the BCS theory
of superconductivity. The BCS theory describes the superconducting state as an
instability of the Fermi surface of the quasiparticles of a Fermi liquid that happens
for arbitrarily weak attractive interactions in the Fermi sea (Schrieffer, 1964), and
it is accurate only in this weak-coupling regime. In this regime the minimum of the
quasiparticle excitation energy occurs at the Fermi surface whose wave vector is
|�k| = kF (i.e. at the chemical potential or Fermi energy), where the px + i py state
has a full and isotropic energy gap ∼|�|. On the other hand, as the interactions
grow stronger the value of the chemical potential μ (the Fermi energy) begins to
decrease (from positive values) and the minimum excitation energy progressively
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moves to �k = 0. Since the spectrum is gapped both for μ > 0 and for μ < 0,
we must conclude that μ = 0 represents a (quantum) phase transition inside the
superconducting state.

The weak- and strong-pairing phases, with μ > 0 and μ < 0, respectively,
have different topological properties (Volovik, 1988). The solutions of the BdG
equation, Eq. (14.169), are the complex spinors (u�k, v�k) and obey the normalization
|u�k |2 + |v�k |2 = 1. In addition, a smooth change in the phase of both components
of the spinor does not change the state. Thus, the solutions to the BdG equation
are effectively labeled by two real parameters and can thus be regarded as points
on a 2-sphere S2. Therefore, the solutions to the BdG equation are mappings of the
momentum space (labeled by �k) to the unit sphere S2. The three-component real
unit vector �n�k defined in Eq. (14.170) can be used to parametrize the 2-sphere S2.
Since v�k → 0 for |�k| → ∞ (and, hence, u�k → 1 as |�k| → ∞), we can add the point
of infinity to the momentum space, by which means it also becomes topologically
equivalent to a 2-sphere, S2.

Therefore, we find that the solutions of the BdG equation are smooth mappings
of S2 )→ S2. In Section 7.9 we showed that the mappings of the S2 base space
(momentum space) to the S2 target space are classified by homotopy classes asso-
ciated with the homotopy group π2(S2) ∼= Z. Each topological (homotopy) class is
labeled by a topological invariant, the Chern number Q ∈ Z:

Q = 1

8π

∫
d2k εi jεabcna ∂ i nb ∂

j nc = 1

4π

∫
d2k �n · (∂kx �n × ∂ky �n) (14.188)

Therefore, the solutions to the BdG equation admit the same classification. For this
connection with the Chern number, the px + i py superconductor is (at the level
of the BdG equation) closely related to the theory of topological insulators (even
though it is a superconductor!) discussed in Chapter 16.

In the strong-pairing phase, μ < 0 and ξ�k = �k2/(2m∗) − μ > 0 for all �k.
Hence, in this phase the vector �n�k takes values only on the northern hemisphere
of the sphere S2. Therefore, the solutions of the BdG equation with μ < 0 can be
smoothly deformed to their value at the North Pole, �n�k = (0, 0, 1) (corresponding
to the spinor (u�k, v�k) = (1, 0)), and belong to the topologically trivial homotopy
class (with Q = 0).

On the other hand, in the weak-pairing phase μ > 0 and ξ�k can take all possible
real values, both positive and negative. Hence, for μ > 0 the solutions of the
BdG equation are non-trivial maps of S2 )→ S2 and have a non-vanishing winding
number Q = 1 (or −1). Since the integer-valued topological invariant Q cannot
be smoothly deformed from 0 to ±1, the strong- and weak-pairing regimes must
correspond to separate phases. For this reason, the weak-pairing phase of the px +
i py state is identified as a topological superconductor.
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14.9.3 The half-vortex

The vortex excitations of the px + i py state have very interesting properties. The
vortices of the strong-pairing phase have similar properties to those of conventional
superconductors and will not be discussed here. We will focus instead on the vor-
tices of the weak-pairing phase, which, as we will see, have non-abelian statistics.
A half-vortex has been observed experimentally in the superconducting phase of
Sr2RuO4, a quasi-2D system (Jang et al., 2011). For an extensive review of the
superconducting properties of Sr2RuO4 see the work of Mackenzie and Maeno
(2003).

In the condensed state the amplitude of the superconducting order parameter �
is essentially constant in space. However, the pair field couples to a gauge field as
a charge-2e scalar field. For fields stronger than a critical field, usually called Hc1,
the uniform Meissner state is destroyed and the system enters the vortex (or mixed)
phase, see e.g. de Gennes (1966). Here we will be interested in the long-distance
properties of a superconducting vortex. The p-wave superconducting state has to
be in a spin-triplet state. In addition to the orbital dependence of Eq. (14.163), the
pair field has also a spin dependence. For a p-wave state the spin state must be
symmetric (and hence a triplet). If we retain both the orbital components and the
spin components, the pair field has the form

� = eiϕ
[
dx(|↑↑〉 + |↓↓〉)− idy(|↑↑〉 − |↓↓〉)

+ dz(|↑↓〉 + |↓↑〉)](kx − iky) (14.189)

where we introduced the three-component vector �d = (dx , dy, dz) (as in the A
phase of superfluid 3He, see Leggett (1975)). This order parameter is invariant
under a shift of the phase by π , ϕ )→ ϕ + π , and a simultaneous inversion of the
�d vector, �d )→ −�d . In other terms, the order parameter involves not a vector but
a director (as in the description of nematic liquid crystals (Chaikin and Lubensky,
1995)). Thus, the half-vortex is a topological soliton of this condensed state.

We are interested in a 2D system and we will assume a superconducting state in
which the �d vector lies on the plane and is hence normal to the angular momen-
tum of the pair (this is the A phase). Provided that the �d vector can rotate in the
plane, this symmetry allows this superconducting state to support half-vortex exci-
tations. In a half-vortex, depicted in Fig. 14.4, the superconducting phase ϕ(�x)
varies slowly on large circle by π , provided that the �d vector also rotates by 180◦.
This state is equivalent to a fully polarized state in which only the phase of the up
component of the spin winds by 2π . Hence, the half-vortex of this state is equiv-
alent to a full (2π) vortex of a px + i py condensate of spinless fermions (Ivanov,
2001; Chung et al., 2007; Vakaryuk and Leggett, 2009).

Let us now discuss the spectrum of quasiparticles in the half-vortex state. Here
we will use the equivalent description in terms of spinless fermions in the px + i py
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Figure 14.4 A half-vortex in a px + i py superconductor. The arrows represent
the local direction of the �d vector. The shaded area represents the core of the
half-vortex with a Majorana zero mode χ .

state with a full 2π vortex. Since we are interested only in the properties far from
the core of the vortex, where the order parameter must vanish, we will assume that
the absolute value of the pair field is essentially constant in space. The core of the
vortex will be represented by a small region in which there are no quasiparticles,
and hence we take the chemical potential μ to be large and negative in this region,
while everywhere else μ is positive (since we are in the weak-pairing phase). In
the presence of a vortex, at long distances the phase of the order parameter winds
by 2π . In addition to propagating quasiparticle states, whose spectrum obeys the
symmetry of Eq. (14.177), in the background of a vortex the BdG equation now
has a state with exactly zero energy (a “zero mode”), which in polar coordinates
(r, φ) is the solution of (Read and Green, 2000)

�ieiφ

(
∂r + i

r
∂φ

)
v = μu

�ie−iφ

(
∂r − i

r
∂φ

)
u = −μv

(14.190)

The explicit form of the (normalizable) zero-mode spinor is

(
u(r, φ)
v(r, φ)

)
=

⎛⎜⎜⎝
1√
i
eiφ/2

1√−i
e−iφ/2

⎞⎟⎟⎠ f (r)√
r

(14.191)
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where f (r) is given by

f (r) ∝ exp

(
−

∫ r

dr ′
μ(r ′)
|�|

)
∼ exp

(
− μ

|�|r
)

(14.192)

In particular, we see that the spinor solution is double-valued, (u(r, φ +
2π), v(r, φ+ 2π)) = −(u(r, φ), v(r, φ)). This property follows from global phase
invariance. Indeed, under a global transformation of the pair field by a uniform
phase φ, the fermions must transform with half of that phase,

�(�r) → eiφ�(�r), c(x) → eiφ/2c(�x), c†(x) → e−iφ/2c†(�x) (14.193)

Hence, under a change by φ = 2π , the fermions must change sign. Consequently,
in a 2π vortex the spinor solution must be double-valued.

Thus, in the background of a vortex the quasiparticle has a bound state with
exactly zero energy that decays exponentially fast away from the vortex location.
While states of fermionic quasiparticles bound to vortices are a common occur-
rence, such states typically have finite energy. What is special about the topological
superconductors is that these fermionic bound states have exactly zero energy and
that this is a robust topologically protected feature of this superconducting state
(Roy, 2010).

In conclusion, the half-vortex is a topological soliton, a non-trivial collective
excitation of the px + i py condensate that, as we saw, has a zero-energy fermionic
bound state. Topological solitons with fermionic zero modes have been discussed
in high-energy physics (Jackiw and Rebbi, 1976; Jackiw and Rossi, 1981; Rajara-
man, 1985) and in condensed matter physics in the context of 1D conductors
(Heeger et al., 1988). In both cases the topological solitons acquire fractional quan-
tum numbers through the occurrence of fermionic zero modes. We will discuss this
problem in Chapter 16.

However, in the case of topological superconductors, these topological solitons,
the half-vortices, exhibit more unusual properties, one of them being non-abelian
statistics, which we will discuss now. At the root of these differences is the nature
of the broken-symmetry state. For example, in the case of the 1D conductors such
as polyacetylene (Su and Schrieffer, 1981), the excitation that carries a zero-energy
mode is a soliton of the spontaneously broken Z2 symmetry. The existence of a zero
mode then implies that the soliton carries fractional charge ±e/2. In polyacetylene,
a system in which charge is locally and globally conserved, the zero mode is associ-
ated with a charged fermion state, which can be either unoccupied (corresponding
to a positively charged soliton of charge +e/2) or occupied (corresponding to a
negatively charged soliton of charge −e/2) (Heeger et al., 1988).

In contrast, in the case of superconductors, the quasiparticles are charge-neutral
(Majorana) fermions (Kivelson and Rokhsar, 1990). Thus, in a system such as a
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px + i py superconductor, the zero mode of a vortex cannot be occupied or empty
since the excitations have no charge. To see how this works, we will follow the
construction of Ivanov (2001). We first observe that, since the quasiparticles of
a superconductor are Majorana fermions, the vortex with its fermion bound state
must also have a Majorana fermion character. In the low-energy limit, the opera-
tor that creates a Majorana quasiparticle in the vortex background is reduced to a
self-adjoint (Majorana) fermion operator γi = γ

†
i , which is the zero mode of each

vortex of a px + i py superconductor. Let us consider a more general case in which
we have 2n vortices with fixed coordinates, sufficiently far apart from each other,
compared with the zero-temperature coherence length ξ0 ∼ vF/|�| of the super-
conducting state, that their fermionic zero modes do not mix with each other and
hence with exactly degenerate states. In this limit we have a set of 2n Majorana
fermions, γi (with i = 1, . . . , 2n), with {γi , γ j } = 2δi j and zero energy.

We can group the 2n Majorana fermions into n pairs. For each pair of Majorana
operators we can define a complex (Dirac) fermion operator satisfying the standard
anti-commuting algebra,

ψ j = 1

2
(γ2 j +iγ2 j+1), ψ

†
j =

1

2
(γ2 j −iγ2 j+1), {ψ j , ψ

†
k } = δ jk (14.194)

Each complex fermion has two states, |0i 〉 (empty) and |1i 〉 (occupied), which span
a two-dimensional Hilbert space for each pair of vortices. Notice that the state
that is either empty or occupied is shared by two vortices, which can be very
far apart from each other; it is not associated with each independent vortex, as
is the case in the soliton in polyacetylene. This also means that, associated with
each configuration of 2n vortex coordinates, there is a Hilbert space of states of
dimension 2n−1 (the degeneracy) associated with the Majorana fermions. As we
saw, the existence of this “topological” Hilbert space is the key ingredient of non-
abelian statistics. These are the reasons why topological superconductors as well as
non-abelian quantum Hall states are primary candidates to realize schemes of topo-
logical quantum computing. In this context, the states |0〉i and |1〉i can be regarded
as topological quantum qubits that are immune to the effects of local perturbations
such as disorder, phonons, etc.

14.10 Braiding and fusion

We will now discuss the braiding properties of non-abelian quasiparticles. For con-
creteness we will focus on the half-vortices of the px + i py 2D superconductor
and of the Moore–Read state. These ideas can be extended to the more general
cases. We will see that the braiding properties of the non-abelian quasiparticles are
intimately related to the fusion rules they obey.
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14.10.1 Braiding of half-vortices

The way in which we grouped the 2n Majorana fermions into pairs is clearly
arbitrary. Different groupings must correspond to physically identical states. To
rearrange one grouping into another grouping of pairs, we must swap vortices
around slowly enough that no additional quasiparticle states are created. This
process amounts to an adiabatic braiding of the vortex worldlines. Since all group-
ings must describe the same Hilbert space, the process of swapping Majorana
fermions (braids) must be equivalent to a set of unitary operators acting on the
2n-dimensional Hilbert space. In other words, we can construct a representation of
the braid group B2n (of 2n “particles”) in this space of states.

To this end, let i = 1, . . . , 2n label the set of vortices (and hence of Majorana
fermions) on various locations on the plane. For 2n particles we can define a set
of 2n − 1 elementary particle exchanges σi (i = 1, . . . , 2n − 1). Each operation
represents the braiding of a pair of particles. Successive braidings define a natu-
ral product of these operations. The braid group is generated by the elementary
exchange operators σi (not to be confused with a Pauli matrix!) that satisfy the
following algebra (shown in Fig. 14.5):

σiσ j = σ jσi , |i − j | > 1 (14.195)

σiσ jσi = σ jσiσ j , |i − j | = 1 (14.196)

Since the Majorana fermions anti-commute with each other, we will attach a
branch cut to each vortex that will indicate how the different vortices are ordered
on the plane (see Fig. 14.6). The phase of the superconducting order parameter
is single-valued and jumps by 2π as the cut is crossed. This construction is very
similar to the Jordan–Wigner transformation discussed in Chapter 8. In this picture,
an elementary braiding operation amounts to a rearrangement of the branch cuts,

σi

σi

σi

σi+1

σi+1

σi+1 =
time

Figure 14.5 A schematic depiction of the braid-group relation Eq. (14.196) on
the worldlines of three vortices. See the text.
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Figure 14.6 An elementary braid exchange of two vortices. See the text.

as shown in Fig. 14.6, which leads to a change in the phase of the order parameter
of one vortex by 2π and of the fermion zero mode by π . This property tells us that
the braid operators σi act on the Majorana zero modes as follows:

σi : γi )→ γi+1

σi : γi+1 )→ −γi

σi : γ j )→ γ j , j �= i, i + 1

(14.197)

We will now find a representation of the braid operations, σi , in the 2n-dimensional
Hilbert space M2n of the 2n Majorana zero modes. Using an obvious notation,
we will denote by τ(σi ) ≡ τi the operators that act on the Hilbert space M2n .
The operators τi will be constructed as a unitary representation of the braid group.
Hence the braid operator τ is required to obey

τ(σi )γ jτ(σi )
−1 = τ(σ j ) (14.198)

for τ(γ ) defined by Eq. (14.197). It is easy to check that the following operators
satisfy the requirements of the Braid group, Eq. (14.196) (Ivanov, 2001):

τ(σi ) = e
π
4 γi+1γi = 1√

2
(1 + γi+1γi ) (14.199)

This result holds also in the case of the Moore–Read state (Nayak and Wilczek,
1996).

On the other hand, since the braid operators of Eq. (14.199) are bilinear functions
of the 2n Majorana fermions, they commute with the fermion parity operator,

P = (−1)NF, NF =
∑

j

ψ
†
jψ j =

∑
j

1

2
(1 + γ2 jγ2 j+1) (14.200)

Hence, we can consistently restrict the representation to either the sector with NF

even or the sector with NF odd. We conclude that the total degeneracy of the states
supported by 2n vortices is actually 2n−1 (instead of 2n). This is also the degeneracy
found in the case of the Moore–Read state (Nayak and Wilczek, 1996).

As we have seen, a set of 2n half-vortices of a px + i py superconductor sup-
ports a finite-dimensional Hilbert space of dimension 2n−1. This Hilbert space has
a topological origin. Indeed, provided that the vortices are far from each other,
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this degeneracy is not lifted. Furthermore, all other states are separated from this
Hilbert space by a finite energy gap. Thus, physical processes in which the vor-
tices are being braided adiabatically do not mix this Hilbert space with the rest
of the states of the system. In addition, this degeneracy is also robust against the
effects of disorder, which primarily will lead to the localization of the vortices
themselves.

14.10.2 Fusion of half-vortices

There is another way to think about this degeneracy, which makes contact with the
CFT construction of the states. In the CFT approach we identified the Pfaffian fac-
tor with a correlator of Majorana chiral fields in a critical classical 2D Ising model.
We also noted that the wave functions for the quasiparticles amount to an insertion
of the chiral component of the Ising primary field into the fermion correlators. For
historical reasons, and at the risk of confusing the reader with notation, we will
denote by χ the Majorana fermion of the Ising model and by σ the Ising primary
field. In Eq. (14.139) we gave their fusion rules,

χ � χ = I, σ � σ = I + χ, σ � χ = χ

We can see immediately that there is a correspondence between the Ising fusion
rules and the properties of the Majorana zero modes of the half-vortices. Indeed,
if we identify the Ising primary field σ with the insertion of a half-vortex, we see
that fusing two half-vortices leads either to a state with an occupied fermion state
or to a state with an empty fermion state. Thus we can identify the state |0〉 with
the identity field in the Ising CFT and the state |1〉 with the Majorana fermion χ

in the Ising CFT. The degeneracy then arises from counting how many ways we
can fuse a given set of half-vortices into the identity (so it can have an expectation
value). For example, if we have 2n = 8 vortices our analysis predicts a degeneracy
of 24−1 = 8. This is also the number of ways in which eight Ising σ primary fields
can fuse into the identity field I .

This result is part of a general rule. We will see in Chapter 15 that the chiral
CFT associated with the chiral sector of the Ising CFT is not precisely the level
k = 2 chiral SU(2) Wess–Zumino–Witten model, but what is known as the (chiral)
coset SU(2)2/U(1)2. We will also see there that the chiral SU(2)2 WZW CFT has
a one-to-one correspondence with the level k = 2 SU(2) Chern–Simons gauge
theory. On the other hand, we also know that the observables of the SU(2)k Chern–
Simons theory are Wilson loops with quantum number j = 0, 1/2, . . . , k/2 (where
k/2 stands for the integer part of k/2). Thus, for k = 2 only three representations
are allowed: (a) the singlet j = 0 representation denoted by [0], (b) the doublet
representation j = 1/2, denoted by [1/2]; and (c) the triplet representation j = 1,
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denoted by [1]. The Wilson loop operators with representations [ j1] and [ j2] in the
SU(2)k theory obey the fusion rule

[ j1] � [ j2] = [| j1 − j2|] + · · · + [min( j1 + j2, k − j1 − j2)] (14.201)

Thus, in contrast to the case of the SU(2) group, for which the upper end of the
range would have been j1 + j2, in SU(2)k the representations are truncated by the
level k. Mathematical structures that obey these modified rules are called quantum
groups (for a detailed treatment of quantum groups see Fuchs (1992)).

For the case of interest, SU(2)2, the non-trivial fusion rules reduce to

[1/2] � [1/2] = [0] + [1], [1/2] � [1] = [1/2], [1] � [1] = [0] (14.202)

As we can see, the fusion rules are the same as those of the Ising CFT if we identify
the identity primary field I with the singlet representation [0], the Ising primary
field σ with the doublet representation [1/2], and the Majorana primary field with
the representation [1]. However, these two CFTs are not identical since, in addition
to the scaling dimensions being generally different, in the Ising CFT each primary
field appears once, whereas in SU(2)2 they appear in multiplets (Di Francesco
et al., 1997). Below we will discuss a quantum Hall state with SU(2)2 symmetry.

Of course, we want not just the dimensions of the Hilbert spaces but also the
wave functions themselves. This requires the computation of the conformal blocks,
which do depend on other information such as the scaling dimensions, etc. Nev-
ertheless, the conformal blocks of SU(2)2 are part of this construction. We saw
a similar example in our discussion of non-abelian bosonization in Section 7.10,
where we considered the case of SU(2)1.

The fusion rules provide a simple pictorial way to compute the dimensions of
the topological Hilbert spaces M2n . For instance, let us suppose that we have a
state with 2n insertions of the σ field. We can begin to fuse pairs of σ fields, then
fuse the result of their fusion, and so on until we get to the point at which all
fields have fused into the identity field I . Only the contribution of such a fusion
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Figure 14.7 The Bratteli diagram for SU(2)2. The numbers at the vertices are the
numbers of ways to fuse into this channel (see the text).
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process can yield a non-vanishing expectation value resulting in a non-vanishing
wave function. The degeneracy of the Hilbert space is the number of ways in which
this fusion can be done. This is depicted in the Bratteli diagram shown in Fig. 14.7
for the case of SU(2)2. The vertical axis of the Bratteli diagram has the list of
allowed representations, which for SU(2)2 are [0], [ 1

2 ], and [1] (for the Ising CFT
they are I , σ , and χ ). If we want to know the dimension of the Hilbert space for,
say, ten σ fields, we must count the number of paths on the Bratteli diagram (16)
that will reach (10, 0) starting from (0, 0). For SU(2)2 this is just the 2n−1 result
(with N = 2n).



15

Physics at the edge

In an incompressible quantum fluid, such as the Laughlin state, the fluctuations in
the bulk induce fluctuations at the boundary. While the local fluctuations in the bulk
are associated with local changes in the density, the fluctuations of the states at the
boundary are associated with changes in the shape of the “droplet” of the electron
fluid, shown in Fig. 15.1. These “edge waves” are the only gapless excitations of
the system. It may seem surprising that an incompressible fluid may have gapless
modes at the surface, although this is quite common in conventional fluids such as
water! In the FQHE the gaplessness arises from the fact that the geometric edge of
the fluid coincides with the locus of points in which the Fermi energy crosses the
external potential which confines the fluid. Thus, the boundary of the fluid behaves
like a “Fermi surface” and, as we move from the edge and into the bulk, we get
deeper and deeper in the Fermi sea of occupied states. Because of the presence
of the magnetic field, the edge waves are chiral excitations that move at the drift
velocity of the particles at that point. Thus, edge states move only in one direction,
which is specified by the magnetic field. The importance of the edge states to the
observability of the quantum Hall effect was first emphasized by Halperin (1982).
The description of the chiral quantum dynamics of the edge states is due to X. G.
Wen (Wen, 1990a, 1990b, 1991b) and M. Stone (Stone, 1991).

15.1 Edge states of integer quantum Hall fluids

Let us consider the physics of the edge waves in the context of the simplest sys-
tem: non-interacting electrons filling up the lowest Landau level (ν = 1). Strictly
speaking, we are discussing the behavior of the edge states in a system with an inte-
ger quantum Hall effect (IQHE). However, at least within a mean (or average)-field
approximation, the fractional quantum Hall effect can also be regarded as an IQHE
of an equivalent system of fermions. We will discuss this point of view (originally
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2DEGB

AlAs–GaAs
heterostructure

Figure 15.1 The two-dimensional electron-gas (2DEG) droplet in an AlAs–GaAs
heterostructure in a perpendicular magnetic field B.

due to Jain) in this chapter, where we present the Chern–Simons approach to the
FQHE. In this section we follow the methods of Stone (1991).

Let us, once again, consider a set of N electrons that are filling up the lowest
Landau level of a system with Nφ = N flux quanta piercing the surface. In the
absence of any other forces, the system has uniform density 〈ρ〉 = B/(2π), if the
units are such that � = c = e = 1. But, if no external forces are present, a system
with N electrons in an infinite plane cannot have a fixed density. Furthermore, since
we are interested in the physics at the edge, we must assume that the N electrons
are constrained to remain within some region of the sample by the action of some
external force. In the experimental setting, even in the purest samples there are
forces as we examine the system close to the edge. So, we should assume that, in
addition to experiencing the uniform magnetic field B, the electrons also feel an
electrostatic potential V (�x) that keeps them inside the sample. We will consider the
simple geometry of an infinite strip. The system has finite width L1 along the axis
x1 and length L2 along the axis x2, with L2 � L1. We can also assume periodic
boundary conditions along x2. I will also assume that the potential V varies only
along x1 and that its variation is so slow that locally it can always be approximated
by a linear function of x1, V (x1) ≈ Ex1. In this geometry, it is natural to use the
axial-Landau gauge A1 = 0, A2 = Bx1.

Let us now expand the second-quantized electron field operators ψ(�x) as a sum
over states of the lowest Landau level, namely

ψ(x1, x2) =
√

B

πL2

+∞∑
n=−∞

aneikn x2e−
B
2 (x1−kn/B)2 (15.1)

which satisfies the boundary conditions. The allowed momenta kn are kn =
2πn/L2. The creation and destruction operators, a†

n and an , obey the anticommu-
tation relations {

an, a†
m

} = δnm (15.2)
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In the presence of an external potential, the degeneracy of the Landau level is
lifted. Thus, in perturbation theory the energy of the lowest, N = 0, Landau level
has a first-order shift

E0(k) = 1

2
�ωc + 〈0, k|V (x)|0, k〉 + · · · (15.3)

This shift effectively “lifts” the Landau level in the vicinity of the edge where the
potential is acting (see Fig. 15.2). For the particular case of the linear potential, the
wave functions are the same as the wave functions in the absence of the potential,
but the single-particle energies E0(k) become

E0(k) = E

B
k (15.4)

with a sign determined by the sign of B (for V (x1) fixed). Thus, the states near the
Fermi energy EF have momentum k along the edge. The Fermi velocity vF of these
states is

vF = ∂E0(k)

∂k
= e

c

| �E |
|B| (15.5)

which is the drift velocity of a charged particle moving in an external magnetic
field that is perpendicular to the plane and in an electric field �E = −(∂V /∂x)ex

pointing inwards towards the droplet of electron fluid. Here I have assumed that
B > 0. These states are chiral and move with the drift velocity. Semi-classically
we can picture the edge states as electrons that move along skipping orbits along
the edge (Halperin, 1982).

This expression is accurate for those states whose energies are close to the
Fermi energy, which I have set to zero. Away from the boundaries, the potential is

Energy

bulk edge

Momentum

1
2 ωc

3
2 ωc

5
2 ωc

EF

Figure 15.2 Lifting of the Landau levels by a confining potential V (x1) (see the
text). For a cylindrical geometry, in the Landau gauge the levels are labeled by
their momentum. EF is the Fermi energy and �ωc is the cyclotron energy. Bulk
and edge regions of the system are shown.
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essentially constant and the Landau level effectively has a degeneracy. The origin
of my coordinate system is at the point where the potential crosses the Fermi
energy. Thus, far to the left of the crossing point, the density is constant, and to
the right of the crossing point there are no particles. It is clear from this picture
that it takes a negligible amount of energy to add a particle to the system, but the
particle is added to the surface, not to the bulk. The low-energy excitations of the
system are local changes of density at the surface, the edge waves, as shown in
Fig. 15.3. Notice that, since the number of particles is fixed and since the next Lan-
dau level is separated from the ground state by a very large energy gap, a lower
density at a point on the surface means that there should be an excess density at
some other point of the same surface.

As usual, we are interested only in the excitations with low energy. Here, close
to the Fermi energy means close to the surface. Let j (x2) be the operator which
measures the amount of charge localized within some region of size � of the edge,

j (x2) =
∫ +∞

−∞
dx1 f�(x1)ψ

†(x1, x2)ψ(x1, x2) (15.6)

The cutoff function f�(x1) must be chosen in such a way that it is vanishingly
small in the region |x1| � �, and the cutoff � must be larger than the typical
amplitude fluctuation of the low-energy states. We will choose the cutoff function
to be a Gaussian, f�(x1) = (1/(

√
2π�))exp(−x2

1/(2�
2)).

Since we are using periodic boundary conditions in x2, it is convenient to
consider the Fourier transform of the operator j (x2), i.e.

j (x2) =
∑

n

e−ikn x2 jn (15.7)

excited state

ground state

Figure 15.3 An excitation of the edge states is a deformation of the incompres-
sible charge fluid resulting in a chiral wave propagating along the edge with fixed
direction.
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Conversely, we can write

jn =
+∞∑

m=−∞
a†

m+name−
B
4 k2

n (15.8)

It is apparent that the Gaussian factor exp(−Bk2
n/4) is negligibly small away from

the Fermi surface.
If we ignore the Gaussian factor, the density operator jn coincides with the den-

sity operator for a system of fermions in one space dimension that are allowed to
move only in one direction. In this case the direction is specified by the sign of
the magnetic field B. Indeed, the dispersion law ε(k) = vFk, with a Fermi velocity
vF = E/B, follows from the Hamiltonian

H =
∫

dx2 ψ
†
R(x2)(−ivF ∂2)ψR(x2) (15.9)

which governs the dynamics of right-moving chiral fermions in one dimension.
Notice that this is precisely the same Hamiltonian as that we found in Chapter 5
when we discussed bosonization.

The results of Chapter 5 enable us to write down the commutation relations
obeyed by the operators jn . There we found that the commutator of the Fourier-
transformed density operators is different from zero due to the presence of a
Schwinger term, [

jn, jm
] = −nδn+m,0 (15.10)

Alternatively, in position space we can write[
j (x2), j (x ′

2)
] = − i

2π
∂2δ(x2 − x ′

2) (15.11)

This algebra is known as the level-1 U(1) chiral Kac–Moody algebra. Wen has
shown that the spectrum of the edge states is always determined by an appropriate
Kac–Moody algebra. For instance, if the fermions were not fully polarized, spin
would have to be included in the dynamics. In that case the relevant algebra is the
(level-1) SU(2) Kac–Moody algebra. These results are similar to what we already
found in Luttinger liquids (except that the states here are chiral), see Chapter 6.

Stone has also given the following explicit construction of the edge density
waves. Let |0〉 denote the ground state, which corresponds to an undisturbed
droplet. Let us define the family of coherent states {|θ(x2)〉},

|θ(x2)〉 = ei
∫

dx2 θ(x2) j (x2)|0〉 (15.12)

which represent coherent excitations of the edge states. Throughout it is assumed
that the density operator has been normal-ordered relative to the undisturbed state,
namely j (x2)|0〉 ≡ 0.
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We now show that the states |θ(x2)〉 are eigenstates of the (normal-ordered)
density operator j (x2):

j (x2)|θ(x2)〉 = 1

2π
∂2θ(x2)|θ(x2)〉 (15.13)

This property can be derived by using the identity

e−i
∫

dx ′2 θ(x ′2) j (x ′2) j (x2)e
+i

∫
dx ′2 θ(x ′2) j (x ′2) = j (x2)+ 1

2π
∂2θ(x2) (15.14)

These states represent local changes in the density. This can be seen from the
following argument: the state |θ(x2)〉 has a local excess of charge equal to
(1/(2π))∂2θ(x2). From the linearity of the energy–momentum relation we know
that an extra number of particles means that the local position of the Fermi level
has gone from zero to ∂2θ , which is still much less than the Landau gap. Likewise,
the momentum k has changed by the same amount. Since we also saw that, for
these states, there is a precise relation between the energy of the state and its loca-
tion on the axis x1, we conclude that this state is in fact a local change of the shape
of the droplet. Moreover, at least within the accuracy of the linear approximation
for the dispersion relation, these states propagate without deformation, since all the
excitations propagate at the same speed vF.

Throughout this discussion we have focused on the states close to the edge. But,
as we have already warned the reader, the bulk cannot be decoupled from the edge.
In fact, theories of chiral fermions, such as the one we are discussing here, are
intrinsically sick. The reason is that, if the linear spectrum is taken literally, this
system would not be able to keep track of the conservation of charge once it is
coupled to a fluctuating vector potential. Indeed, in one dimension, all the com-
ponents of the vector potential are longitudinal, since there is no way to “enclose
flux inside a line.” But it is possible to do it if the line closes on itself, forming
a closed curve. This is precisely the case of interest to us. For example, in the
gauge A0 = 0, the only component we are left with is the component A‖ tangent
to the curve (the edge). By general arguments of gauge invariance we know that
the Hamiltonian for the chiral fermions coupled to the gauge field is obtained by
the minimal-coupling procedure, which replaces the derivative ∂2 by the covariant
derivative D2 = ∂2 − ieA‖(x2).

Thus, the Hamiltonian picks up an extra term Hgauge of the form

Hgauge =
∫

dx2 eA‖(x2)ψ
†
R(x2)ψ(x2) (15.15)

This term shows that the local fluctuations of A‖(x2) will cause the Fermi level to
move up and down. Thus, charge has to “leak in” or “leak out” through the bottom
of the Fermi sea. For a theory “without a bottom,” such as a relativistic field theory,
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this is a disaster. The chiral theories are then said to be sick and to break gauge
invariance and to have a gauge anomaly. But, in the problem we are considering,
the Fermi sea does have a bottom. It is determined by the Landau level, which acts
like a reservoir of particles and redistributes the particles from one point of the
edge to another.

The configurations with a non-zero circulation of A‖ have a very interesting
meaning: the circulation of A‖ on a closed curve such as the edge is just the amount
of flux enclosed inside the curve. Thus, the uniform field causes the electrons on
edge states to move around the system. A change in the circulation means that
flux has been added to or removed from the system. Thus, the addition of one
quasihole should cause a jump in the circulation by exactly one flux quantum.
The edge states see this extra flux as a change of the position of the Fermi level.
This is then interpreted as the generation of a net charge at the edge. For a non-
interacting problem, the net charge is equal to e. But, for a Laughlin state, it is
equal to e/m. The extra charge accumulated at the edge is interpreted as a lack of
charge conservation; that is, as a gauge anomaly of the theory of the edge states.
The precise cancellation of the gauge anomaly of the bulk with the gauge anomaly
of the edge, which was first discussed by Wen, is a consequence of the gauge
invariance of the system as a whole (Wen, 1991b).

15.2 Hydrodynamic theory of the edge states

We will now turn to the more interesting case of the edge states of the fractional
quantum Hall states on an open geometry, which we will take to be a disk. The
fractional quantum Hall ground states on a disk are unique and have a gap to all
excited states. As we saw in the non-interacting case, in general we expect that
these states will have a gapless spectrum of excitations localized near the edges of
the system. We will call all of these states the edge states.

The necessity for the existence of edge states can be seen by invoking an elegant
argument due to Wen that is based on gauge invariance (Wen, 1990b; Wen and Zee,
1992). It goes as follows. Let us consider a 2DEG confined to a finite (but large)
region of a sample by a confining potential. Such a system in a quantum Hall state
(integer or fractional) is an incompressible fluid since all states in the bulk have
a gap that can be made arbitrarily large by turning up the external magnetic field
(while keeping the filling fraction of the Landau level fixed). In this situation the
action of a weak external electromagnetic perturbation on this charge fluid can only
have a net effect on its boundary, leading to slow and long-wavelength changes in
its shape such as those shown in Fig. 15.3.

Owing to the incompressibility of the fluid, adiabatically adding or remov-
ing some amount of charge from the bulk of the fluid is equivalent to adding
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or removing the same amount of charge from the edge. In other words, the
whole fluid (bulk plus edge) must conserve charge. We will see below that the
local conservation of charge leads to a simple and elegant hydrodynamic theory.
More importantly, a fluid with local conservation of charge obeys locally a con-
tinuity equation, which in turn means that its electromagnetic response must be
gauge-invariant (see Chapter 12).

Let us now imagine that we want to define some region of the fluid as the bulk
and the rest as the edge region, as in Fig. 15.2. However, the arguments we gave
above tell us that charge cannot be conserved in the bulk or the edge separately,
but only in the system as a whole. In other terms, the electromagnetic response of
the bulk must violate gauge invariance at the boundary of this region. Similarly,
the edge region also violates electromagnetic gauge invariance. However, since the
system as a whole must be gauge-invariant, the violations of gauge invariance in
the bulk and at the edge must exactly cancel each other out. In the language of
quantum field theory, the effective theory of the edge states will turn out to be a
chiral system that has a gauge anomaly. We will see that the bulk system will be
generally described by an effective gauge theory, namely the Chern–Simons gauge
theory, which is not gauge-invariant on systems with an open manifold. However,
the anomaly of the edge degrees of freedom is (and must be) equal and opposite
to the anomaly of the Chern–Simons theory in the bulk. This requirement is the
physical basis of the bulk–edge correspondence in quantum Hall fluids and will be
discussed in detail in Section 15.4.

In Section 14.2 we showed that it is possible to give a purely hydrodynamic
description of the bulk physics of the fractional quantum Hall states. There is a
similar and quite powerful hydrodynamic picture of the edge states. This theory,
which is largely due to the work of Wen (1995), whose work we will follow here,
gives an essentially universal description of the edge states. A key ingredient of
this theory is that the incompressibility of the electron fluid in the bulk forces the
existence of a one-to-one correspondence with the physics of the edge states, and
that the bulk physics is encoded at the edge. A system with these properties is often
referred to as being “holographic” (’t Hooft, 1993; Susskind, 1995).

We will assume that the 2DEG is in a fractional quantum Hall fluid state. This
state has a gap to all local excitations and hence it is incompressible. We will further
assume that the fluid is uniform and hence that the electron density is constant in
the bulk, and that it falls to zero smoothly across the edge over a length scale of the
order of the magnetic length, �0. The latter assumption is not trivial since Coulomb
interactions can give rise to a modulation of the density of the 2DEG near the edge.
This phenomenon is known as edge reconstruction, and when it happens it can alter
the properties of the electron gas near the edge substantially from the properties in
the bulk of the system. In what follows we will consider a simplified situation
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Figure 15.4 The straight edge. Here �E is the electric field which keeps the
electrons in the droplet and x is the coordinate along the edge.

and, for the sake of clarity, ignore the possible effects of edge reconstruction. An
excellent and extensive review of the physics of edge states, particularly on the
experiments, is given in Chang (2003).

Since the bulk fluid is incompressible, the low-energy fluctuations at the edge
which do not change the total number of particles of the system are equivalent to
changes in the shape of the edge. In the thermodynamic limit, namely the regime in
which the radius R of the electron droplet is much larger than the magnetic length
�0, there are many closely spaced electronic states close to the edge. As in the non-
interacting case, these states are closely spaced and their single-particle energies
rise smoothly, with an average slope largely determined by the potential that con-
fines the electrons within the interior of the system. Let �E be the local electrostatic
field created by the confining potential (see Fig. 15.4). Since the electrons are mov-
ing in an external magnetic field of magnitude B perpendicular to the sample, there
is a drift current �j = σxy ẑ × �E flowing (with velocity v = | �E |c/B) along the edge,
where σxy = (ν/(2π))e2/� is the Hall conductance and ν is the filling fraction.

Regardless of the nature of the excitations, fermionic for filling factor ν = 1
or generally anyonic for ν �= 1, the fluctuations of the edge are made up of large
numbers of particle–hole excitations. These coherent states are bosonic and behave
similarly to the density fluctuations in a 1D electron fluid, except for the important
difference that they are chiral: the direction of propagation is determined by the
sign of the perpendicular magnetic field. Thus, the edge excitations are chiral waves
that propagate only in one direction at the drift velocity. Let n0 be the 2D uniform
particle density

n0 = ν

2π�2
0

, �0 =
√

�c

eB
(15.16)



612 Physics at the edge

The 1D density along the straight edge is ρ(x) = n0h(x), where h(x) is the local
displacement of the edge (as shown in Fig. 15.4). The density wave is chiral if it
obeys the classical equation of motion

∂tρ(x, t)− v ∂xρ(x, t) = 0 (15.17)

where v is the drift velocity. For small deformations h(x) (compared with the
radius R of the system), the external electrostatic field E is uniform, and the total
electrostatic energy H (the classical Hamiltonian) stored in this edge distortion is

H =
∫

dx
1

2
ehρ(x)E =

∫
dx

π�v

ν
ρ(x)2 (15.18)

Let L = 2πR be the total length of the edge of the electron droplet. For an isolated
system the edge is a simply connected closed curve that acts as a boundary. Hence,
the density fluctuation must obey periodic boundary conditions

ρ(x) = ρ(x + L) (15.19)

We can now consider the Fourier modes of the edge fluctuation and write

ρ(x) = 1√
L

∞∑
n=−∞

exp

(
i
2πn

L
x

)
ρn

ρn = 1√
L

∫ L

0
dx exp

(
−i

2πn

L
x

) (15.20)

In terms of the Fourier modes the classical Hamiltonian is simply given by

H = π

ν
�v

∞∑
n=−∞

ρnρ−n ≡ 2π

ν
�v

∑
k>0

ρkρ−k (15.21)

where we introduced the edge momentum labels kn = 2πn/L . The classical
equation of motion of the Fourier density modes is

∂tρk = ivkρk (15.22)

If we compare this equation with Hamilton’s equations of a system with coordinate
q and momentum p,

q̇ = ∂p H, ṗ = −∂q H (15.23)

we see that we can identify generalized coordinates Qk and generalized canonical
momenta Pk by writing

Qk ≡ ρk, Pk ≡ −i
2π

νk
ρ−k (15.24)
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such that

Q̇k = ∂H

∂Pk

Ṗk = − ∂H

∂Qk

⇒ ρ̇k = ivkρk

ρ̇−k = −ivkρ−k
(15.25)

which implies that the classical Hamiltonian is

H = iv
∑
k>0

Qk Pk (15.26)

To quantize this system we promote the coordinates and momenta to operators in
a Hilbert space, and satisfy the canonical equal-time commutation relations

[Qk, Pk′] = i�δk,k′ (15.27)

with k = 2πn/L . Hence, the Fourier modes of the density operators satisfy the
commutation relation

[ρk, ρk′] = ν

2π
kδk+k′,0 (15.28)

Hence, even in this more general hydrodynamic theory, the edge-mode operators ρk

still satisfy a chiral U(1) Kac–Moody algebra. We will see shortly that the “level”
in general is not equal to 1 except for ν = 1. Similarly, the classical Hamiltonian
of Eq. (15.21) is promoted to an operator acting on the Hilbert space of states of
the edge modes. The (normal-ordered) quantum Hamiltonian generates the time
evolution of the density mode operators ρk which satisfy the Heisenberg equation

[H, ρk] = �vkρk (15.29)

How do we describe in this picture the excitations that change the total charge of
the system? For instance, let’s say we want an operator that describes the action of
adding an electron at a location x of the edge. We will denote the electron-creation
operator by ψ†

e (x) and demand that it satisfies the following commutation relation
with the (normal-ordered) local number-density operator ρ(x):[

ρ(x), ψ†
e (x

′)
] = δ(x − x ′)ψ†

e (x
′) (15.30)

But we already know how to do this using (abelian) bosonization! (See Chapters 5
and 6.) We represent the Kac–Moody current (and density) field ρ(x) in terms of a
Bose (scalar) field φ(x),

ρ(x) = 1

2π
∂xφ(x) (15.31)

where we have assumed a normalization for future convenience. The density oper-
ator ρ(x) has been assumed to be normal-ordered with respect to an edge state
without excitations (the ground state) of an isolated 2DEG. Thus, if the bulk state
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of a 2D electron gas has the precise number of electrons to satisfy exactly the con-
dition that the filling factor is ν = 1/m, then the normal-ordered total charge of its
edge states, measured in units of the electron charge e, is exactly zero:

Q =
∫ L

0
dx ρ(x) = 0 (15.32)

This also implies that, since the normal-ordered density of the edge states of an
isolated 2DEG obeys periodic boundary conditions, Eq. (15.19), then the chiral
boson φ(x) of an isolated 2DEG also obeys periodic boundary conditions,

φ(x + L) = φ(x) (15.33)

With these assumptions, the electron operatorψe(x) has the boson representation

ψe(x) ∼ e
i
ν
φ(x) (15.34)

Using the methods we discussed in Chapters 5 and 6, we find that the operators of
Eq. (15.34) satisfy the algebra

ψe(x)ψe(x
′) = ei π

ν ψe(x
′)ψe(x) (15.35)

Thus, the operator ψe(x) obeys fermionic anticommutation relations only for the
filling factor ν = 1/m where m is an odd integer:

ν = 1

m
⇒ {

ψe(x), ψe(x
′)
} = 0 (15.36)

In contrast, for m even the operator ψe(x) represents a boson. We will see that this
corresponds to the theory of the edge states of bosonic Laughlin states at filling
factor ν = 1/m.

We can now relate the scalar field φ(x) to the edge modes and to the generalized
coordinates Qk and canonical momenta Pk . After a Fourier transform we find

Qk = i
k

2π
φk, Pk = −1

ν
φk (15.37)

Thus, we find that the Fourier modes of the scalar field satisfy the equal-time
commutators [

φk, φ−k′
] = iνδk,k′ (15.38)

and that the Fourier modes φk obey chiral equations of motion (as expected) of the
form

φ̇k = ivkφk (15.39)
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Therefore φ(x) is a free chiral scalar field whose Hamiltonian (in position space)
is (after we set � = 1, as we will do from now on)

H =
∫

dx
v

4πν
(∂xφ)

2 (15.40)

and the associated Lagrangian density L of the chiral boson is

L = m

4π

[
∂tφ ∂xφ − v(∂xφ)

2
]

(15.41)

where we used the fact that ν = 1/m.
So far we have ignored the effects of interactions on the edge states. Since these

states are chiral, and as such can propagate only in a direction fixed by the magnetic
field, backscattering processes arising from either electron–electron interactions
or localized impurities are forbidden. Thus, the incompressible fluid simply skirts
about the location of the impurity without changing the direction of propagation of
the edge excitations. This leaves forward-scattering processes as the only allowed
interactions. However, as we saw in our discussion of the conventional Luttinger
liquid in Chapter 6, forward-scattering processes merely change the velocity of
propagation and do not change the scaling dimensions of the operators. In the
present context, an interaction term for the edge states becomes

Hint = 1

2

∫
dx

∫
dx ′ ρ(x)V (x − x ′)ρ(x ′)

= 1

8π2

∫
dx

∫
dx ′ ∂xφ(x)V (x − x ′)∂x ′φ(x

′) (15.42)

For short-range interactions, with forward-scattering coupling constant g, the only
effect is a finite renormalization of the velocity,

veff = v + g

2π
(15.43)

Thus, for short-range interactions the excitations of the edge modes have an energy
ω(k) = veffk.

On the other hand, in the case of Coulomb interactions, the electrons are coupled
by the singular potential V (x − x ′) = e2/|x − x ′|. The Fourier transform at small
k of this interaction potential is V (k) = −e2 ln(|k|�0) + · · · . As in the case of
short-range interactions, the only effect of Coulomb interactions for chiral fermions
is also a renormalization of the excitation energy, albeit with the singular form
ω(k) = −(e2/(2π))k ln(|k|�0). At any rate, even these interactions cannot open a
gap in a chiral system, since backscattering processes are not allowed. This feature
is the key to the robustness of the edge states. We will see below that, while edge
reconstructions may complicate the picture, they do not alter this basic central fact.
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Hence, the edge states of a fractional quantum Hall fluid constitute a chiral Lut-
tinger liquid. The scalar field φ(x) is the chiral (right-moving) half, φR, of the
conventional scalar field (see Chapter 6). In what follows we will denote by φ(x)
the right-moving (chiral) field. We showed in Eq. (6.121) that the propagator of the
chiral boson is (with a different normalization of the scalar field)

〈Tφ(x, t)φ(0, 0)〉 = −ν ln

(
x − vt + iε

a0

)
(15.44)

where T denotes time ordering, a0 is a short-distance cutoff, and ε→ 0+. Similarly,
the electron propagator is

GF(x, t) = 〈Tψ†
e (x, t)ψe(0, 0)〉

=
〈
T e−

i
ν
φ(x,t)e

i
ν
φ(0,0)

〉
= e

1
ν2 〈Tφ(x,t)φ(0,0)〉

∝ constant

(x − vt)1/ν
(15.45)

(where the iε has been omitted) up to a prefactor that oscillates with the “Fermi
wave vector” of the edge, namely the characteristic average momentum of the states
near the edge determined by the location of the edge and the electrostatic confining
potential.

Thus, for the edge states of the Laughlin states we find that the electron
propagator is

GF(x, t) = constant

(x − vt)m
(15.46)

This propagator is only a function of x − vt and hence it is explicitly chiral. It
clearly obeys the condition of being odd (antisymmetric) under the exchange of
the coordinates of the electron operators, x ↔ −x and t ↔ −t ,

GF(x, t) = −GF(−x,−t) (15.47)

as required by the Pauli principle, only if m is an odd integer. On the other hand,
the analytic structure is not that of a free-fermion system. Indeed, this propagator
reduces to a simple pole of the argument only for the case of the integer Hall
effect, for which it reduces to the free-field chiral fermion propagator. This analytic
structure with a multiple pole (of order m) is a direct manifestation of the strongly
correlated nature of the 2D electron fluid in a large magnetic field.

In this hydrodynamic theory we have assumed all along that the incompressible
fluid has a unique edge with natural properties. The results of this quantized theory
are telling us that, without assuming any additional structure, a fractional quantum
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Hall state with a single edge can exist only for the Laughlin states at ν = 1/m. We
conclude that for the Laughlin states the electron operator at the edge is given by
(up to a normalization)

ψe(x) = eimφ(x), for ν = 1

m
(15.48)

Let us consider now a process by which we either add an electron to the 2DEG
or remove an electron from the 2DEG. Clearly, in this process the total number
of electrons has been changed. Since the bulk is incompressible and uniform,
the removal (or addition) of an electron from the bulk must become the same as
removal (or addition) of an electron from the edge of the fluid. Since the local
edge density operator ρ(x) was assumed to be normal-ordered with respect to the
ground state of the 2DEG with a number of electrons fixed precisely at ν = 1/m,
this implies that, if ne electrons are added to the bulk (or removed), the total charge
at the edge must now be changed by ne units,

ne =
∫ L

0
dx ρ(x) = 1

2π
(φ(L)− φ(0)) (15.49)

This result tells us that a change in the number of electrons in the bulk (in the same
fractional quantum Hall state) leads to a change in the boundary conditions of the
chiral boson, which now become “twisted,”

φ(x + L)− φ(x) = 2πne (15.50)

This means that the theory of the edge states is a chiral compactified boson with
compactification radius R = 1 (not to be confused with the radius of the fluid
droplet!).

As we saw in Chapter 13, the elementary excitations of a fractional quantum
Hall fluid in a Laughlin state are not electrons but vortices of the charged fluid
with fractional charge ±e/m and fractional braiding statistics δ = π/m. Since
we can interact with the 2DEG only in a manner that either does not change the
total number of electrons or changes it by an integer number, we can produce or
destroy these vortices only in groups of m of them. Nonetheless, since the vortices
have very-short-range interactions with each other, the m vortices in each of these
groups are not bound to each other but are (qualitatively speaking) essentially free.
Since the bulk is gapped, these vortex excitations can only become “light” (gapless)
at the edge where the energy gap collapses. Therefore, there should be gapless edge
excitations. However, these edge excitations are not arbitrary but the projection at
the edge of the bulk state.
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This line of argument tells us that m vortex excitations must at the edge coalesce
(or fuse) into an electron operator. The unique choice for the quasiparticle (vortex)-
creation operator at the edge of a Laughlin state that satisfies this condition is

ψqp(x) ∝ eiφ(x) (15.51)

Indeed, m such quasiparticles fuse into an electron operator! Moreover, the com-
mutator of the quasiparticle operator with the local density ρ(x) is (for ν =
1/m) [

ρ(x), ψ†
qp(x

′)
]
= 1

m
δ(x − x ′)ψ†

qp(x
′) (15.52)

Thus, the quasiparticle charge operator creates an excitation of charge 1/m (in
units of the electron charge e).

To determine the statistics of this excitation, we compute the propagator of the
quasiparticle operator:〈

Tψ†
qp(x, t)ψqp(0, 0)

〉
= e〈Tφ(x,t)φ(0,0)〉 = constant

(x − vt)1/m
(15.53)

In contrast with the case of the electron propagator, which has a pole of order m
(see Eq. (15.46)), the quasiparticle propagator of Eq. (15.53) has a branch-cut sin-
gularity with exponent 1/m. Consequently, under an exchange of the quasiparticle
coordinates, which amounts to setting x → −x and t → −t , the quasiparticle
propagator changes by a phase factor,〈

Tψ†
qp(−x,−t)ψqp(0, 0)

〉
→ e±i πm

〈
Tψ†

qp(x, t)ψqp(0, 0)
〉

(15.54)

Thus, the quasiparticles (and quasiholes) are anyons with statistical angle δ =
π/m, as expected.

These results imply that we should regard the edge states as a rational chiral
conformal field theory (RCFT). In Sections 7.12 and 14.6 we defined an RCFT as
a CFT with a finite number of primary fields. The compactified chiral boson is an
example of a rational CFT. Why do we have a finite number of primary fields in
this case? The reason is that the compactification condition implies that the only
admissible operators in this theory must be invariant under the global shift φ )→
φ+2π (since R = 1). The operators that satisfy this condition are the chiral vertex
operators Vn(x),

Vn(x) = einφ(x) (15.55)

where φ(x) is the chiral boson, since they are all invariant under a phase shift
by 2π ,

Vn(x) )→ Vn(x), as φ(x) )→ φ(x)+ 2π (15.56)
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The electron operator, which, as we saw, satisfies this condition, is just the operator
Vm(x).

The chiral vertex operators Vn(x) with 1 ≤ n < m have the special property
that, in addition to satisfying the compactification condition, they are local with
respect to the electron operator, i.e. they commute with the electron operator. How-
ever, they are non-local with respect to each other. Indeed, a correlator in which
the operators Vn and Vn′ are present has a branch cut attached to each of their
coordinates. Under a monodromy, namely a smooth displacement of the coordi-
nate of one vertex operator around that of the other one along the closed contour
shown in Fig. 15.5, which as we saw is equivalent to a double braid, the correla-
tor changes by the phase factor exp(i2πnn′/m). Hence Vn is single-valued with
respect to Vm = ψe but not with respect to the other operators.

On the other hand, all operators with n = lm can be regarded as being equivalent
to the creation (or removal) of l electrons (with their associated fluxes), which does
not change the state, i.e. the filling fraction. Therefore we must consider only chiral
vertex operators with “charge” n modulo an integer (or zero) number of electrons.
Thus, these conditions amount to restricting the set of distinct primaries to being
the set {Vn} with 0 ≤ n < m, which has m primary fields, m being the number of
linearly independent ground states of the bulk 2DEG on a torus. In the language of
CFT what we have done is define an extended or chiral algebra with respect to the
electron operator (Moore and Read, 1991).

x

t

Vn

Vn

Figure 15.5 The chiral vertex operators, which create the excitations at the edge,
transform non-trivially under a monodromy. The broken lines are branch cuts.
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Therefore, the integer m can be identified with the “level” of the Kac–Moody
algebra which restricts the tower of allowed primaries (representations). We will
say that the edge state of the ν = 1/m Laughlin state is a U(1)m compactified chiral
boson CFT. The m primary fields of this chiral CFT, the chiral vertex operators Vn ,
have scaling dimensions

�n = n2

2m
(15.57)

with a conformal spin equal to the scaling dimension. Thus, the electron operator
has scaling dimension �e = �m = m/2, while the “fundamental” quasiparticle,
V1, has scaling dimension �qp = �1 = 1/(2m). We will see below that there is
duality transformation relating the electron and the quasiparticle.

15.3 Edges of general abelian quantum Hall states

The hydrodynamic theory of the preceding section describes only the edge states
of the Laughlin fractional quantum Hall states. A theory of wider applicability has
to take into account the different character of these more general states. We have
already discussed the construction of these bulk states in Chapter 14. We will see
below that more general fractional quantum Hall states require that more degrees
of freedom be included in the description of the edge. Thus, in addition to the edge
degree of freedom we used to describe the Laughlin states, which we will call the
charge mode, we will need to include in the description one or more neutral modes.
While the physical origin of the neutral modes is transparent in the simple edges
of multi-component fluids, its appearance in the case of one-component fluids is
connected with the hierarchical descriptions of the bulk states. With variants, this
is true in all the theories of the edge states.

Two simple and interesting examples of states for which the simple edge descrip-
tion fails are the Jain states at filling fractions ν = 2/5 and ν = 2/3. As in
the preceding section, here we will follow Wen’s approach (Wen, 1995), which is
based on the Haldane–Halperin hierarchy. An alternative picture has been proposed
by López and Fradkin (1999, 2001).

We will begin with the ν = 2/5 case. In the Haldane–Halperin hierarchy con-
struction, the ν = 2/5 state is described as a fractional quantum Hall condensate of
quasiparticles of the ν = 1/3 Laughlin state. The ν = 2/5 state has a larger elec-
tronic density than that of the “parent” ν = 1/3 Laughlin state. Suppose we have
a 2DEG with an overall density close to what is needed for the ν = 2/5 state to
be the ground state. Although deep in the bulk the density is constant, as the edge
is approached the effects of the rising electrostatic potential that keeps the 2DEG
inside the sample become more pronounced. In particular, the potential gives rise
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Figure 15.6 (a) Edge and bulk structure of the ν = 2/5 state with its co-
propagating chiral edge states. (b) The density profile of the ν = 2/5 state.

to a lowering (as gradual as possible) of the electron density, so much so that in
some outlying areas of the sample the density is that of the parent ν = 1/3 state.
Thus, the system tends to “phase separate” into an interior region with a filling
fraction of ν = 2/5 and an exterior region with filling fraction ν = 1/3.

For a rotationally invariant system we thus get a situation such as the one
depicted in Fig. 15.6. The 2DEG acquires a layered structure, with an inner droplet
(of radius r2) containing the ν = 2/5 state, an annular region (between r2 and r1)
with a ν = 1/3 state, and the exterior of the sample (r > r1) labeled by ν = 0.
We will picture the ν = 2/5 state as a ν = 1/15 condensate on top of a ν = 1/3
state. For |r1 − r2| � �0 the regions of the sample occupied by the bulk ν = 1/3
and ν = 2/5 states are macroscopic in size and can be regarded as being in the
thermodynamic limit. The “interfaces” between the ν = 2/5 and μ = 1/3 regions
and between the ν = 1/3 region and the exterior of the sample (“ν = 0”) are the
edge states. We will assume that the radial width of each interface (edge) is of the
order of the magnetic length, �0, and hence infinitesimally small compared with
the radii r1 and r2 as well as with |r1 − r2|. Since the 2DEG in each region is in
an incompressible state, only the fluctuations of the charge densities in the edges
(interfaces) have low-energy excitations (as in the Laughlin states).

The ν = 2/3 fractional quantum Hall state also has a “layered” structure. In the
Haldane–Halperin hierarchy the ν = 2/3 state is a ν = 1/3 Laughlin condensate
of holes of the integer quantum Hall state at ν = 1, i.e. it is the particle–hole
version of the ν = 1/3 Laughlin state. For a fixed orientation of the perpendicular
magnetic field B, this picture is possible if the outer region is the “parent” ν = 1
state and the inner region is viewed as a ν = −1/3 state, a Laughlin state of
holes. This leads to a density profile and edge structure for ν = 2/3 as shown



622 Physics at the edge

ν = 0
ν = 1ν = −1/3

r1

r2

(a)

ν = 0
ν = 1

ν = −1/3

density

radius

E1E2

r1r2
(b)

Figure 15.7 (a) Edge and bulk structure of the ν = 2/3 state with its counter-
propagating chiral edge states. (b) The density profile of the ν = 2/3 state. The
bulk ν = 2/3 state is being described as a ν = −1/3 Laughlin state of holes of
the full Landau level.

in Fig. 15.7, with a density that has a non-monotonic dependence on the radial
coordinate.

The main (and essentially only) difference between the ν = 2/3 case and the
ν = 2/5 state is that we now must have two counter-propagating modes. Thus,
in the ν = 2/3 case, the effective electric fields have opposite signs, sgn E∗

1 =
−sgn E∗

2 (to accommodate the non-monotonic radial dependence of the density),
and the edge modes have also velocities with opposite signs, sgn v1 = −sgn v2.
Keeping in mind this important difference, we can give a similar description for
both (and many other) states.

Let ρI,k (with I = 1, 2) describe the Fourier modes of momentum k of the
density fluctuations of the two edges,

ρI,k = νI

2π�2
0

hI (15.58)

where hI is the local displacement of each edge. For each edge these Fourier modes
obey a U(1) Kac–Moody algebra of the form (with I, J = 1, 2)[

ρI,k, ρJ,k′
] = νI

2π
kδIJ δk+k′,0 (15.59)

If the edges are far apart no inter-edge interactions are possible. In this limit, the
Hamiltonian of each edge is

H = 2π
∑
I=1,2

∑
k>0

vI

νI
ρI,kρI,−k (15.60)

where vI are the velocities of the two edge modes. For the case of ν = 2/5, the
effective electrostatic field E∗

I that develops at each interface that separates two
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incompressible bulk states has the same direction (inwards) as the external electric
field which keeps the 2DEG inside the sample. Hence, the two edge modes propa-
gate in the same direction, and the signs of the two velocities are the same, v1 > 0
and v2 > 0, with vI = E∗

I c/B. The spectrum of the Hamiltonian Eq. (15.60) is pos-
itive (bounded from below) if vI/νI > 0, which requires that vI > 0. For ν = 2/3
the edge velocities have opposite signs. The Hamiltonian is nevertheless positive,
since in this description the inner region has a negative filling factor, ν = −1/3. In
what follows we will assume that all intra-edge interactions have been taken into
account in the magnitude of the renormalized velocities.

We can now use abelian bosonization and introduce two chiral bosons (scalar
fields) φI (again with I = 1, 2) to parametrize the edge fluctuations,

ρI (x) = 1

2π
∂xφI (x) (15.61)

and to define an electron operator ψe,I (x) for each edge I ,

ψe,I (x) ∼ e
i
νI

φI (x) (15.62)

The electron propagators of these so-far decoupled edges are〈
Tψe,I (x, t)ψ†

e,I (0, 0)
〉
= eikI x

(x − vI t)1/|νI | (15.63)

The electron states on each edge have a characteristic momentum, the Fermi wave
vector kI = rI/(2�2

0).
Let us now consider the effects of possible inter-edge interactions. As the edges

approach each other, while keeping the inter-edge distance large enough for it to
make sense for the intervening region to be regarded as a bulk state, density–density
interactions (Coulomb for long-range forces) become increasingly important. Here
we will consider for simplicity the case of short-range translation-invariant interac-
tions whose strength is parametrized by the positive-definite and symmetric matrix
of coupling constants VI J ,

Hinter-edge = 2π
∑
I,J

∑
k>0

VIJρI,kρJ,−k (15.64)

which, using the language of the Luttinger model discussed in Chapter 6, describes
only forward-scattering processes. It turns out that for a translationally invariant
system no other inter-edge interactions are allowed. We may wonder whether this
system may have processes that open energy gaps. In the case of co-propagating
edges backscattering processes are simply forbidden, since the states have the same
chirality. On the other hand, in the case of counter-propagating states, although
backscattering processes can now exist, processes that can open energy gaps are
forbidden by momentum conservation. For the same reason electron-tunneling (and
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quasiparticle-tunneling) processes are not allowed either. The situation becomes
more involved (and richer) in the presence of disorder (Kane et al., 1994). So, up
to irrelevant operators, the only allowed interactions have the Luttinger form of
Eq. (15.64). An exception to this rule is the case of two 2DEGs separated by a
barrier. In this case there is a value of the electron density (the Fermi energy) for
which the two oppositely propagating edge states have zero momentum and a gap
may open up.

We have thus reduced the problem to a system of coupled chiral Luttinger liq-
uids. In Chapter 6 we discussed the theory of the 1D Luttinger fluids. The problem
of coupled edge states is a version of that problem and is solved by the same meth-
ods. We will not reproduce these calculations here because they are similar to the
Bogoliubov transformations that we used in Chapter 6 (details can be found in
Wen (1995)). What matters to us is the main result of these calculations, namely
that the only effect of inter-edge interactions is a renormalization of the velocities
of the edge modes. However, neither the number of edge states nor their chiralities
can be changed by the interactions. We will see in the next section that the chiral-
ity of the edge modes has a topological origin. Clearly, this description is generic
and can be applied to more diverse systems such as bilayers and partially polarized
states as well (among many others).

15.4 The bulk–edge correspondence

We will now discuss in detail the connection between the edge states and the
properties of the bulk quantum Hall fluid. We will see that there is a one-to-one
correspondence between the universal properties of the bulk incompressible fluid
and the physics of its edge states (Wen, 1990a, 1991a). In Chapters 13 and 14 we
presented in some detail a theory of the bulk fractional quantum Hall states. There
we saw that the robust properties (i.e. those which are independent of microscopic
details) of the incompressible fluid are describable in terms of an effective-field the-
ory that is a Chern–Simons gauge theory. Furthermore, the Chern–Simons gauge
theory is a topological field theory. Its observables are Wilson loop operators car-
rying the quantum numbers of the representations of the gauge group, whose
expectation values are topological invariants. Thus the bulk fractional quantum
Hall states are topological fluids. On the other hand, in the preceding section we
saw that the edge states of these incompressible topological fluids in open geome-
tries are chiral and scale-invariant 1D systems. In other terms, the edge states are
1D chiral quantum critical systems. As such they are not only scale-invariant but
also conformally invariant. We will now see that these universal descriptions of the
bulk and the edge are two sides of the same coin.

We will begin by considering a generic effective theory of an abelian fractional
quantum Hall state of a possibly multi-component fluid. Let AμI be a set of n
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U(1) fields of a hydrodynamic description of a fractional quantum Hall state (as
discussed in Chapter 13) with the effective Lagrangian density (Wen and Zee,
1992)

L =− 1

4π
K IJε

μνλAμI ∂νAλJ − e

2π
tI ε

μνλAμI ∂νAλJ (15.65)

where �t = (1, . . . , 1) is the charge vector, Aμ is an external electromagnetic field,
and K I J is the symmetric K -matrix. Invariance under large gauge transformations
for systems on closed manifolds (such as a 2-torus) requires that all the entries of
the K -matrix be integers. However, for a fermionic fluid the diagonal matrix ele-
ments of the K -matrix are odd integers. The number of condensates p in the fluid
is equal to the rank of the K -matrix, which is equal to the number of quasiparticle
excitations.

The quasiparticles are vortices of the condensates. A generic quasiparticle is
labeled by k integers lI (with I = 1, . . . , k) and enters into the effective field
theory through a source term

Lqp = lIAμI jμqp (15.66)

where the currents jμqp = ( j0
qp,

�jqp) represent the worldlines of the gapped quasi-
particles,

j0
qp = δ(�x − �x0(t)), �jqp = v̂δ(�x − �x0(t)) (15.67)

where v̂ is the unit vector tangent to the quasiparticle trajectory.
The density and current of the I th condensate are, by definition,

JμI = 1

2π
εμνλ ∂

νAλ
I (15.68)

As the quasiparticle ψ�l is created it induces a change in the charge and currents of
the condensates. The total induced charge is

Q[�l] = −etI

∫
d2x δJ 0

I =
∫

d2x lJ K−1
JI j0

qp(x) = −elI K−1
IJ tJ (15.69)

Similarly, the statistical angle δ�l is

δ[�l] = πlI K−1
IJ lJ (15.70)

In this effective theory there is always at least one quasiparticle ψ�le (but often
several) whose quantum numbers are

leI = K IJ L J ,
∑

I

L I = 1 (15.71)

(where L I are integers) that can be identified as an electron. Such quasiparticles
are electrons since (a) they have charge −e, (b) they are fermions, (c) they are local
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with respect to all other quasiparticles (have trivial phase factors with them), and
(d) these are the only excitations which satisfy these conditions.

15.4.1 The correspondence for the U(1)m Chern–Simons theory

In order to make a connection between the bulk effective-field theory and the edge
states, we need to consider the effects of edges (or boundaries). We will discuss this
problem first for the Laughlin states. Thus we will consider a Laughlin fractional
quantum Hall fluid represented by an effective U(1) Chern–Simons gauge theory
on a region � of the plane with a boundary (see Fig. 15.8). The total 3-manifold is
then �× R, where R is the time evolution.

The action for a ν = 1/m Laughlin fractional quantum Hall state with a
boundary is

S = m

4π

∫
�×R

d3x εμνλAμ ∂νAλ (15.72)

Under a gauge transformation Aμ )→ Aμ+∂μ f the Chern–Simons action changes
by S )→ S +�S, where

�S = m

4π

∫
�

d2x εμνλ ∂
μ f ∂νAλ

= m

4π

∫
dx dt f (x, y, t)(∂tA1 − ∂xA0)

∣∣∣
y=0

(15.73)

x

y

Ω

∂Ω
vacuum

Figure 15.8 The Chern–Simons theory is defined on a 3-manifold �× R, where
� has the topology of a disk and has a boundary ∂�. The shaded area� represents
the region occupied by the fractional quantum Hall fluid.
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To maintain gauge invariance we must require the gauge transformations to vanish
at the boundary,

f (x, y = 0, t) = 0 (15.74)

We know that the states at the edge propagate at a velocity that is fixed by
the properties of the edge itself. However, the Chern–Simons theory is an effec-
tive long-distance theory and as such has no knowledge of the properties of the
edge. There are several ways to incorporate this physics. One way is to construct
an effective theory that takes into account the fact that the excitations are actu-
ally gapless along the edge (López and Fradkin, 1999). There is another, perhaps
more formal, but “more economical,” approach to this problem that is due to Wen
(1995). It consists in realizing that a topological field theory such as the Chern–
Simons theory, in addition to being locally gauge-invariant, is also invariant under
local coordinate transformations and is independent of the metric of the manifold
on which it is defined. Thus, in order for the theory to be completely defined
on a manifold � with a boundary, in addition to imposing a gauge-fixing con-
dition (as in all gauge theories) it is also necessary to specify the metric along
the boundary. In fact, many gauge-fixing conditions also break general coordi-
nate invariance and serve to specify a metric as well. The same problem arises
in defining the wave function in Chern–Simons theory. It is not a gauge-invariant
object (although the overlaps are), and depends on the choice of metric (Witten,
1992).

We will follow Wen’s approach and impose the generalized axial gauge-fixing
condition (everywhere, not just along the edge)

At + vAx = 0 (15.75)

where Ax is the component of the gauge field Aμ tangent to the edge (the boundary
of �), and v is an arbitrary parameter with the dimensions of a velocity. Under a
change of coordinates

x + vt = x̄, t = t̄, y = ȳ (15.76)

the gauge fields transform to

Āt̄ = At − vAx , Āx̄ = Ax , Āȳ = Ay (15.77)

Under this coordinate transformation the gauge-fixing condition simply becomes
the temporal gauge condition in the new coordinates,

Āt̄ = 0 (15.78)
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However, the Chern–Simons action does not change under the coordinate transfor-
mation (since it satisfies general coordinate invariance),

S = m

4π

∫
�×R

d3x εμνλAμ ∂νAλ = m

4π

∫
�×R

d3x εμνλĀμ ∂νĀλ (15.79)

The quantization of Chern–Simons theory in the temporal gauge, Āt̄ = 0, is very
simple (see Section 10.8). In this gauge the Gauss-law condition becomes the
constraint that the allowed states have no gauge flux,

∂x̄Āȳ − ∂ȳĀx̄ = 0 (15.80)

which is solved by the flat (pure-gauge) configurations

Āx̄ = ∂x̄φ, Āȳ = ∂ȳφ (15.81)

On a manifold with a boundary the Chern–Simons action of a pure gauge config-
uration, Eq. (15.81), does not vanish but is a total derivative and integrates to the
boundary,

S = m

4π

∫
dx̄ dt̄ ∂x̄φ ∂t̄φ = m

4π

∫
dx dt

(
∂tφ ∂xφ − v(∂xφ)

2
)

(15.82)

which is precisely the action of the chiral boson theory. Thus, the degrees of
freedom of the gauge theory at the edge became the physical degrees of freedom.

We can now apply canonical quantization to this system and find that the
canonical momentum �(x) of the chiral boson is

�(x) = δS

∂tφ
= m

4π
∂xφ (15.83)

Then, after demanding that the field and the canonical momentum obey canonical
equal-time commutation relations, which for this chiral system are[

φ(x),�(y)
] = i

2
δ(x − y) (15.84)

we find that the chiral boson field does not commute with itself at equal times,[
φ(x), φ(y)

] = i
π

m
sgn(x − y) (15.85)

With L = ∫
dx L being the Lagrangian, the Hamiltonian of this system is

H =
∫
� ∂tφ − L = m

4π
v

∫
dx(∂xφ)

2 (15.86)

which is positive definite for mv > 0. Hence, the sign of the velocity, the chirality,
is determined by the sign of the Chern–Simons term in the bulk.
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To find a connection with physical observables such as the density, we need to
couple this theory to the electromagnetic field. This is done through the (gauge-
invariant) source term∫

�×R

d3x Aμ Jμ = 1

2π

∫
�×R

d3x εμνλAμ ∂νAλ = 1

2π

∫
�×R

d3x εμνλAμ ∂ν Aλ

(15.87)

Let Aμ be independent of y and also set Ay = Aȳ = 0. Since Āμ is a pure gauge,
the source term becomes

1

2π

∫
�×R

d3x εμνλAμ ∂ν Aλ = −
∫

dx̄ d ȳ dt̄
1

2π
∂ȳφ(∂x̄ At̄ − ∂t̄ Ax̄)

=
∫

dx dt
1

2π
(At − vAx)∂xφ)

∣∣∣
y=0

(15.88)

This result allows us to identify the physical edge charge density ρ(x) and current
j (x) as

ρ(x) = δS

δAt
= 1

2π
∂xφ, j (x) = δS

δAx
= − v

2π
∂xφ (15.89)

Hence, as expected, for the chiral edge the density and the current are (essentially)
the same physical observable.

The observables of the bulk Chern–Simons theory on a manifold without bound-
aries are Wilson loops on closed curves. On a manifold with a boundary, such as
� × R that we are discussing here, Wilson loops on open paths are allowed, pro-
vided that they are defined on arcs �(x, y) that begin and end on points (x and y)
of the boundary (with n ∈ Z)

Wn[�(x, y)] =
〈

P exp

(
in

∫
�(x,y)

dzμAμ

)〉
(15.90)

With the definitions on gauge fixing that we used above, the Wilson arc operators
become gauge-invariant and are physical observables. Using the condition that the
gauge fields are pure gauge configurations, Aμ = ∂μφ, we obtain the result that
the Wilson arc is the correlator for the chiral vertex operator Vn = e−inφ ,

Wn[�(x, y)] =
〈
T e−inφ(x)e inφ(y)

〉
(15.91)

Thus, the correlators of quasiparticle operators of the edge states are expectation
values of Wilson arcs. This result also makes manifest the relation between the
compactification radius of the chiral boson and the topological properties of the
bulk Chern–Simons gauge theory. See Fig. 15.9.

In summary, what we showed is that there is a one-to-one correspondence
between the abelian U(1)m Chern–Simons gauge theory in the bulk and the RCFT
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x
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Ω

∂Ω

vacuum

Γ

edge operators
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Figure 15.9 The Wilson arc in �×R with endpoints, on the boundary ∂�, where
the edge operators act (see the text).

of a compactified boson also at level m. Here too, by a rescaling of the field
φ )→ φ/

√
m, we can trade the level m of the chiral boson for a change in the

compactification radius from R = 1 to R = √
m.

15.4.2 The general abelian Chern–Simons theory

Let us now describe how the bulk–edge correspondence works for a general abelian
case. The effective Lagrangian for the general case is a multi-component Chern–
Simons gauge theory, given in Eq. (15.65). It has a U(1)p gauge invariance, where
p is the rank of the K -matrix. The only difference is that we now need to impose
p gauge-fixing conditions. Once again, on a manifold such as � × R this system
is equivalent to a theory of k chiral bosons defined at the edge with the effective
action

Sedge = 1

4π

∫
dx dt[K IJ ∂tφI ∂xφJ − VIJ ∂xφI ∂xφJ ] (15.92)

with a Hamiltonian for the edge states

H = 1

4π

∫
dx VIJ ∂xφI ∂xφJ (15.93)

where the matrix VIJ is positive definite. In this effective theory the eigenmodes of
the K -matrix with positive eigenvalue are left-moving states and the eigenmodes
with negative eigenvalue are right-moving states.
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For example, the ν = 2/5 state has a K -matrix and charge vector �t

K2/5 =
(

3 2
2 3

)
, �t =

(
1
1

)
(15.94)

This K -matrix has two positive eigenvalues, 5 for the charge mode and 1 for the
neutral mode. Thus both the charge and the neutral mode are left-moving.

On the other hand, the ν = 2/3 state has

K2/3 =
(

1 0
0 −3

)
, �t =

(
1
1

)
(15.95)

Thus, in this case there are two oppositely moving branches of edge modes.
Armed with these results we can now give a full description of the universal

properties of the observables of the edge states in the multi-component case. The
Hilbert space of the edge excitations consists of representations of the Kac–Moody
algebra for a theory with p components,[

ρI,k, ρJ,k′
] = i K−1

IJ

1

2π
kδk+k′,0 (15.96)

where k, k ′ = 2π/L × integer, I, J = 1, . . . , p (the rank of the K -matrix), and

ρI = 1

2π
∂xφI (15.97)

Here we are ignoring several interesting cases, such as the (n, n, n) bilayer states,
in which the K -matrix is singular and hence is not invertible. After a linear trans-
formation that brings the K -matrix into a block-diagonal form, these cases can be
treated similarly.

The total electronic density ρe = −e
∑

I ρI . The Hamiltonian takes the chiral
Luttinger form

H = 2π
∑
I,J

∑
k>0

VIJρI,kρJ,−k (15.98)

The quasiparticle operators for this case can also be constructed from Wilson arcs.
The only difference is that each Wilson arc will now carry a quantum number lI

telling us how this quasiparticle couples with the I th gauge field. Let us denote by
ψ�l , with

ψ�l ∼ exp

(
i
∑

I

lIφI

)
(15.99)

the quasiparticle operators that we obtained in this way. Using the Kac–Moody
algebra, we find that [

ρI (x), ψ�l(x
′)
] = lJ K−1

J I ψ�l(x
′)δ(x − x ′) (15.100)
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which says that ψ�l is a local operator that creates a quasiparticle of charge

Q�l = −e
∑

J

lJ K−1
J I (15.101)

For a theory with a K -matrix whose diagonal matrix elements are odd integers,
the electron operator is obtained in this way if lI = ∑

J K IJ L J , where L J are
integers such that

∑
I L I = 1. Clearly, more than one such electron operator can

be constructed in this way and they are all equally physical.
Let us finally compute the propagators of these quasiparticles. The K -matrix and

the V -matrix can be diagonalized simultaneously. To this end, we will perform a
unitary transformation, UIJ , to bring the Hamiltonian to a diagonal form. Under
this transformation the densities mix ρ̃I = ∑

J UIJρJ . The new density operators
satisfy the commutation relations[

ρ̃I,k, ρ̃J,k′
] = i

sI

2π
δIJ kδk+k′,0 (15.102)

where sI is the sign of the I th eigenvalue of the K -matrix. The diagonalized
Hamiltonian reads

H = 2π
∑

I

|vI |ρ̃I,k ρ̃I,−k (15.103)

where vI = sI |vI | are the (renormalized) velocities of the modes. The chiral bosons
have also rotated to the fields φ̃I , and we write the quasiparticle operators in the
new basis

ψ�l = exp

(
i
∑

I

l̃ I φ̃I

)
, l̃ I =

∑
J

lJ U−1
J I (15.104)

We find that the propagators of the quasiparticles are〈
Tψ†

�l (x, t)ψ�l(0, 0)
〉
∼ exp

(
i
∑

I

kI lI x

)∏
I

(x − vI t + isI ε)
−l̃ 2

I (15.105)

which leads to the result that the statistical angles are, as before,

δ[�l] = π
∑
I,J

lI K−1
IJ lJ (15.106)

15.4.3 The non-abelian Chern–Simons theory

In Chapter 14 we discussed the non-abelian quantum Hall states. There we
explained that there is a close connection between their wave functions and RCFTs
associated with the chiral version of the Wess–Zumino–Witten (WZW) model dis-
cussed in Chapter 7. We will see here that there is a one-to-one correspondence
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between the chiral WZW model, a (1 + 1)-dimensional RCFT, and the (2 + 1)-
dimensional non-abelian Chern–Simons gauge theory (Elitzur et al., 1989). In
another section we will use this connection to guess the form of the effective-field
theory in the bulk for the non-abelian fractional quantum Hall states.

The action of the non-abelian Chern–Simons theory with gauge group SU(N ) at
level k on a 3-manifold ! × R is (see Section 10.4)

kSCS[Aμ] = k

4π

∫
!×R

d3x εμνλ

[
Aμ

a ∂
ν Aλ

a +
2

3
fabc Aμ

a Aν
b Aλ

c

]
(15.107)

As in the case of its abelian counterpart, provided that the level k is quantized to be
an integer, this theory is gauge-invariant on a closed 3-manifold (see the discussion
at the end of Section 10.4).

Also as in the abelian case, this theory is not gauge-invariant if the manifold has
a boundary. This problem can be solved using the same procedure as that which we
just used in the abelian theory. Thus, we will fix the gauge in the bulk by imposing
Eq. (15.75) on the non-abelian gauge fields, which are matrices in the algebra of the
gauge group, and requiring the gauge transformations to approach the identity ele-
ment in the gauge group G on the boundary (Cabra et al., 2000). In the non-abelian
theory, as was the case in the abelian theory, the Gauss-law condition requires the
vacuum states to be flat, i.e. to have zero non-abelian flux, Fi j = 0. This means that
the gauge fields must be just gauge transformations and thus have the form (with
i = 1, 2 being the two spatial components)

Ai = −(∂i g)g
−1 (15.108)

where g(x) is a gauge transformation. Upon substitution into the Chern–Simons
action in the gauge of Eq. (15.75), we find that the Chern–Simons action is once
again a total derivative that integrates to the boundary of the manifold�×R, where
it becomes the action for the SU(N )k chiral WZW model in (1 + 1) dimensions,

S = k

16π

∫
∂�×R

d2x tr
[
g−1 ∂x g g−1(∂t − v ∂x)g

]
− k

24π

∫
�×R

d3x εμνλ tr
(
g−1 ∂μg g−1 ∂νg g−1 ∂λg

)
(15.109)

Here I use the same normalization of the trace as in Section 7.10, to be consistent
with the conventions of Witten (1984, 1989).

The arguments in Section 15.4.1 on the bulk–edge correspondence for the U(1)m

abelian Chern–Simons theory apply also, without any essential formal change, to
the non-abelian Chern–Simons theory. Thus, a Wilson arc operator, carrying some
representation λ of the gauge group, with endpoints on the edge manifold ∂�×R,
maps onto the correlator of two primary fields of the chiral WZW model on the
edge carrying the same quantum numbers.
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We discussed the properties of the CFT of the WZW model in Section 7.12.
Although we will not repeat that analysis here, it is useful to recall the main results
for the case of SU(2)k , which, as we will now see, is of interest in the theory of
fractional non-abelian quantum Hall states (Wen 1999; Read and Rezayi 1999;
Fradkin et al. 1998, 1999).

The primary fields of SU(2)k , �( j,m), with 0 ≤ j ≤ k/2 and with the
same restrictions as in Section 7.12, can be factorized into holomorphic (or
right-moving) and anti-holomorphic (left-moving) components. For a bulk Chern–
Simons theory with k > 0, the edge theory is the chiral SU(2)k WZW CFT which
is built from the holomorphic components of the fields. This theory has a chiral
SU(2)k Kac–Moody algebra of three chiral (holomorphic) currents J a(z) that gen-
erate the spectrum physical states. With this caveat in mind, we can then use the
result that the scaling dimensions for the representations ( j,m) (in the allowed
range) are �( j,m) = j ( j + 1)/(k + 2) (see Eq. (7.193)), and are independent of m
(due to the SU(2) symmetry) (for more details see Section 7.12).

We will now discuss two simple cases, with k = 1 and k = 2, respectively, and
see how they are related to bulk quantum Hall states.

15.4.4 The SU(2)1 correspondence

The SU(2)1 case is very simple. We have already encountered this case in our
discussion of the spin-singlet Halperin states (in Section 14.7). This theory has
three currents, all with scaling dimension 1. Since the level is k = 1, this theory
has two representations: [0] the field �(0,0) (the identity field I ) and [1/2] with
primary fields �(1/2,±1/2), each with scaling dimension 1/4. In Section 14.7 we
showed that there is a simple abelian theory that is equivalent, namely the chiral
boson φ with a special choice of compactification radius. Indeed the chiral current
of the boson (1/(2π))∂xφ and the operators exp(±i

√
2φ) have dimension 1 and

form an SU(2)1 Kac–Moody algebra. Thus the propagators of all three currents are

〈T J a(x, t)J b(0, 0)〉 ∼ 1

(x − vt)2
(15.110)

The only vertex operator which is local with respect to the currents is V±1/2 ∼
exp(±iφ/

√
2), which has scaling dimension 1/4 and carries spin j = 1/2. The

propagator of this vertex operator is

〈T V1/2(x, t)V †
1/2(0, 0)〉 ∼ 1

(x − vt)1/2
(15.111)

This is precisely the same result as we found for the quasiparticle propagator in the
edge states of the bosonic Laughlin state at ν = 1/2 with bulk wave function
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�2(z1, . . . , zN ) ∼
∏
i< j

(zi − z j )
2 exp

⎛⎝− 1

4�2
0

∑
j

|z j |2
⎞⎠ (15.112)

So we see that in this language the currents J± ∼ exp(±i
√

2φ) are the boson
(instead of fermion) operators and that the current J 3 is the charge current of the
bosonic edge state.

From this analysis we see that the effective theory of the bulk ν = 1/2 Laughlin
fractional quantum Hall state (of bosons!) can be equivalently described by the
abelian U(1)2 Chern–Simons theory at level m = 2, or by the SU(2)1 Chern–
Simons theory. At the level of the edge theory, this states the equivalence of the
theory of the compactified chiral boson with compactification radius R = 1/

√
2,

the “SU(2) radius” (Ginsparg, 1989), and the SU(2)1 chiral WZW CFT.
However, while these two theories have the same universal content, their equiv-

alence in the bulk does not necessarily hold microscopically. Indeed, as we saw
in a system with a one-component fluid, the U(1)2 abelian Chern–Simons theory
arises naturally as a description of the fractional quantum Hall state of bosons. On
the other hand, although the SU(2) symmetry of the SU(2)1 Chern–Simons theory
could appear naturally in a system of “bosons” with spin 1/2, the equivalence to
U(1)2 has to be viewed as a dynamical symmetry (like the accidental O(4) symme-
try in the quantum mechanics of the Kepler problem in the hydrogen atom). Thus,
in general, in the bulk this seemingly larger symmetry would require some fine-
tuning. In contrast, the equivalence at the level of the edge states is more robust
(although it may require the fine-tuning of the velocities of different modes).

15.4.5 The SU(2)2 correspondence and the Moore–Read edge states

We will now discuss the SU(2)2 case. The SU(2)2 chiral WZW CFT has central
charge c = 3/2 (see Eq. (7.189)). This theory has three representations, [0], [1/2],
and [1], with scaling dimensions 0, 3/16, and 1/2, respectively.

Let us discuss first the adjoint representation [1], which, as such, is a triplet of
hermitian fields. The propagators are (with m = 0,±1)

〈T�(1,m)(x, t)�(1,m)(0, 0)〉 ∼ 1

x − vt
(15.113)

These three propagators are antisymmetric under (x, t) )→ (−x,−t). Therefore
the spin-1 primary fields �(1,m) can be identified as three chiral Majorana fermions
χa(x, t) (a = 1, 2, 3). Indeed, a theory of three Majorana fermions generates the
SU(2)2 Kac–Moody current algebra with the currents

J a ∼ χbT a
bcχc (15.114)
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where T a
bc = iεabc are the SU(2) generators in the adjoint (spin-1) representa-

tion and εabc is the third-rank Levi-Civita tensor. In this language we can think of
SU(2)2 as being SO(3)1, see Di Francesco et al. (1997).

The primary field �(1/2,±1/2) is the WZW field itself. It is the primary field in the
representation [1/2]. It has scaling dimension �(1/2,±) = 3/16 and its propagator
is given by

〈T�(1/2,±1/2)(x, t)�†
(1/2,±1/2)(0, 0)〉 ∼ 1

(x − vt)3/8
(15.115)

which is not single-valued. In fact, under an exchange process this propagator
acquires a phase factor δ = 3π/8. In other terms, the primary fields are associ-
ated with particles (solitons) with statistical angle 3π/8 that propagate along the
edge. The fusion properties of these quasiparticles can be determined from the OPE
that these fields satisfy,[

1/2
]
�

[
1/2

] = [0] + [1], ⇔ �1/2 � �1/2 = �0 +�1 (15.116)

This is the edge version of the fact that there are two fusion channels in this case
and hence that there are two conformal blocks, as we discussed in Section 14.8.

Is there a fractional quantum Hall bulk state with the same properties? The
answer is yes, the n = 1 Moore–Read state whose wave function for general n is

�MR(z1, . . . , zN ) = Pf

(
1

zi − z j

) ∏
i< j

(zi − z j )
n exp

(
− 1

4�2
0

∑
i

|zi |2
)

(15.117)

This wave function describes a fractional quantum Hall state of bosons at filling
factor ν = 1/n. In Section 14.8 we discussed the fact that the Pfaffian factor can
be represented by a Majorana fermion, which here we will denote by χ3. For n = 1
the “Laughlin factor” is just a Vandermonde determinant, the wave function for
a filled Landau level of fermions (with ν = 1). We saw at the beginning of this
chapter that the edge states of a ν = 1 state are described by a theory of a free chiral
Dirac (charged) fermion, which we will denote by ψ(x). This suggests that in the
case of the bosonic n = 1 Moore–Read state the effective field theory in the bulk
in the topological limit is the SU(2)2 Chern–Simons gauge theory (Fradkin et al.,
1998). This also suggests that for n > 1 the non-abelian properties of the Moore–
Read states may also be connected in some way with the SU(2)2 Chern–Simons
in the bulk and WZW on the edge. We will now examine how (and whether) this
guess is correct.

There is a simple way to describe the edge states for all Moore–Read states,
which follows from the structure of the wave function itself (Milovanović and
Read, 1996), and for most purposes it is the most efficient representation. Let us
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first bosonize the chiral Dirac fermion and use its representation by the vertex oper-
ator V1 ∼ exp(iφ) of a compactified chiral boson φ with compactification radius
R = 1 (the “fermionic radius” (Ginsparg, 1989)). Hence in this picture, which we
saw in Eq. (14.136) is natural from the wave-function viewpoint, at the edge we
have a charge mode (the charge boson φ, in this case with compactification radius
R = 1) and a neutral mode represented by a chiral Majorana fermion χ . In fact,
this argument holds for all ν = 1/n Moore–Read states, with the only change
being that the level of the chiral boson in the general case is n (or that the com-
pactification radius of the chiral boson is rescaled to R = √

n). Therefore, in this
representation the effective Lagrangian of the chiral edge states is the sum of two
decoupled terms,

L = χ i(∂t − vn ∂x)χ + n

4π
∂xφ(∂t − vc ∂x)φ (15.118)

In Eq. (15.118) we have allowed the charge and the neutral modes to have different
velocities. In this normalization of the charge boson, the charge current is j =
(1/(2π

√
n))∂xφ. Since the chiral Majorana fermion is the chiral half of the CFT

of the critical Ising model, we say that Z2 × U(1)n is the CFT of the edge states of
the ν = 1/n Moore–Read state.

The effective Lagrangian of Eq. (15.118) is a sum of two apparently decoupled
terms. This Lagrangian suggests that the allowed primary fields of these edge states
are products of the two sectors. This structure is reminiscent of the phenomenon of
spin–charge separation which we discussed in the context of the theory of 1D Lut-
tinger liquids (see Chapter 6). However, this similarity is only superficial. Indeed,
while Eq. (15.118) is the correct Lagrangian for these edge states, we still have to
impose the condition that the allowed primary fields are local with respect to the
“electron” (i.e. the particles the quantum Hall fluid is made of). This selection rule,
which reduces the number and type of allowed operators, tells us how to glue the
charge and neutral sectors together. In this sense there is no separation between the
U(1)n charge sector and the Z2 neutral sector.

To see how this works, we first identify the operator ψe ∼ χ exp(i
√

nφ) with
the “electron” operator. This operator has scaling dimension �e = n/2 and charge
Q = e. Clearly the Majorana fermion χ , with scaling dimension �χ = 1/2
and charge Q = 0, is local with respect to the electron operator, and is an
allowed primary field. Similarly the vertex operators Vp ∼ exp(i pφ/

√
n) (with

p = 0, . . . , n − 1), with scaling dimension �p = p2/(2n), statistical angle
δp = πp/n, and charge Q = p/n, satisfy all the requirements and are also allowed
primary fields.

However, there are more allowed operators in addition to the ones we considered.
Consider the primary field σ of the chiral sector of the Ising model. This operator
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has scaling dimension 1/16 and charge Q = 0. However, this operator twists the
Majorana fermion, thereby changing its boundary conditions from periodic to anti-
periodic (and vice versa), and, for this reason, it is also called the twist field (Dixon
et al., 1987). This means that it is double-valued and is not local with respect to the
electron (since it is not local with respect to the Majorana fermion). Similarly, the
vertex operator V1/2 ∼ exp(iφ/2

√
n) is not local with respect to the electron either;

it is also a “branch-cut operator” and is double-valued. However, the composite
operator ψqp ∼ σV1/2 is local with respect to the electron operator, and it is an
allowed primary field. This operator has scaling dimension �qp = 1/16 + 1/(8n),
statistical angle δqp = π(n + 2)/(8n), and charge Q = 1/(2n). In addition, given
the Ising fusion rule σ �σ = I +χ , this primary field has two fusion channels, and
thus it has non-abelian braiding statistics. Clearly, any primary field obtained from
fusing any pair of operators of the types we considered will lead to another operator
that should be on the list. This tower, however, truncates when the operators end
up fusing into the electron operator. As relevant examples, in Tables 15.1 and 15.2
we give the list of primary fields (and their scaling dimensions) for the edge states
of the n = 1 bosonic and n = 2 fermionic Moore–Read states, respectively.

The description of the edge states in terms of a Z2 × U(1)n chiral CFT gives a
simple and economical way to describe the edge states. However, while the U(1)
charge sector has a simple representation in terms of an effective-field theory of the
bulk state, in the form of the U(1)n Chern–Simons abelian gauge theory, it is far

Table 15.1 The SU(2)2 quantum numbers, scaling dimension �, and
U(1) charge Q of the primary fields of the edge states of the bosonic
n = 1 Moore–Read fractional quantum Hall state

I σe
i
2φ e±iφ χ χe±iφ

( j,m) (0, 0) (1/2,±1/2) (1,±1) (1, 0) current
� 0 3/16 1/2 1/2 1
Q 0 1/2 0 1 ±1

Table 15.2 The scaling dimension � and charge Q (in units of
e) of the primary fields of the edge states of the fermionic n = 2
Moore–Read fractional quantum Hall state

I σe
i

2
√

2
φ

χ e
i√
2
φ

χei
√

2φ

� 0 1/8 1/2 1/4 3/2
Q 0 1/4 0 1/2 1
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from obvious what topological field theory in the bulk has a chiral edge Majorana
fermion state and how the rules for gluing different representations at the edge
manifest themselves in the bulk.

The bulk–edge correspondence between the non-abelian Chern–Simons theory
and the chiral WZW model offers a hint on how to do this. This raises the question
of how SU(2)2 is related to this description of the edge states. To make this con-
nection explicit, we return to the case of the n = 1 bosonic Moore–Read state. In
this case, the “electron” operators χ exp(±iφ), which create and destroy a boson,
have scaling dimension 1 and hence have the same dimension as a chiral current.
Indeed, the three operators

J± ∼ χ exp(±iφ), J 3 ∼ ∂xφ (15.119)

form an SU(2)2 Kac–Moody current algebra. Thus, the “diagonal” (Cartan) gener-
ator J 3 is the charge density, and its integral is the total charge operator (in units
of e)

Q =
∫

dx J 3(x) ∝
∫

dx ∂xφ (15.120)

This means that the coupling to an external electromagnetic perturbation breaks the
SU(2) symmetry down to U(1), since it couples only to the J 3 generator. In this
sense SU(2) is an “accidental symmetry,” however useful it may be.

We now recall that a Dirac fermion can be decomposed into two Majorana
fermions, ψ ∼ χ2 + iχ3, its “real” and “imaginary” parts, and we see that these
are just the currents of Eq. (15.114). Hence, the edge states of the ν = 1 bosonic
Moore–Read fractional quantum Hall state constitute a theory with three chiral
Majorana fermions χa (with a = 1, 2, 3) with Lagrangian

L =
3∑

a=1

χai(∂t − v ∂x)χa (15.121)

Since each free chiral Majorana fermion is a CFT with central charge c = 1/2 (as
in the chiral sector of the Ising model), the central charge of this theory should be
c = 3/2. We also know that the non-abelian quasiparticles of the n = 1 Moore–
Read state have statistical angle δ = 3π/8, see Eq. (14.151). This is consistent
with what we just found from the analytic properties of the propagator of the WZW
field in SU(2)2. More significantly, the four-point function of four WZW primary
fields has two conformal blocks (Knizhnik and Zamolodchikov, 1984), which is
also consistent with these fields representing particles with non-abelian braiding
statistics. Similarly, the Laughlin quasihole (and quasiparticle) operators, the vertex
operators V±1 = exp(±iφ), in the ν = 1 bosonic Moore–Read state, are Dirac
fermions (i.e. made of two Majorana fermions) and have statistical angle δ = π .
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Thus we conclude that the universal properties of the n = 1 bosonic Moore–Read
state are reproduced by an effective-field theory, the SU(2)2 Chern–Simons theory,
in the bulk and the SU(2)2 chiral WZW model at the edge.

This line of argument does not precisely work for n > 1. The problem is that for
n > 1 the compactification radius of the boson is no longer R = 1, and the elec-
tron operator is no longer an SU(2)2 current (as it is for n = 1). Thus, the general
Moore–Read state can be thought of as an SU(2)2 theory in which the compactifi-
cation radius of the diagonal (Cartan) U(1) subgroup has been changed. Naturally,
this deformation breaks the SU(2) symmetry explicitly. There is, however, a way to
make this deformation of SU(2)2 explicit. The answer is to consider a theory with
a coset CFT, which is constructed as follows (Gepner, 1987; Di Francesco et al.,
1997).

Let us consider a CFT with a Kac–Moody current algebra for a Lie group G
at some level k, and let H be a subgroup of G, H ⊂ G, which is also a Lie
group. Let J a

G be the chiral currents that generate the Kac–Moody current algebra
of Gk and let J i

H be the currents that generate the Kac–Moody current algebra for
the subgroup H . Let us now gauge the subgroup H by coupling its currents to a
dynamical gauge field Aμ that takes values in the algebra of the subgroup H . In
the strong-coupling limit of this (1+1)-dimensional gauge theory, the gauge fields
do not have an action of their own, and act as Lagrange multiplier fields that set
the currents that act on H to zero. In other words, a coset is a theory with a current
algebra in which we have made a projection onto the subset of states of the Hilbert
space which is annihilated by the currents J i

H of the subgroup H ,

J i
H |Phys〉 = 0 (15.122)

Since the theory with current algebra in the group G at level k is the Gk WZW
model, the coset is a gauged (chiral) WZW model (in which only the subgroup H
has been gauged).

In the case of SU(2)k , we can consider the U(1) diagonal subgroup, and the
resulting coset is SU(2)k/U(1). This case was solved in great detail by Gepner
(1987), who showed that this CFT is equivalent to the Zk parafermion CFT. For
k = 2 this is the Ising CFT and for k = 3 it is the CFT of the critical three-state
Potts model. The solution is quite technical for the scope of this book. We will state
the main results without giving the details of their derivation.

Since the coset is effectively a constrained version of the original system, the
central charge of the CFT (which counts the number of critical degrees of freedom)
of the coset G/H is smaller, c(G/H) = c(G) − c(H). Since H = U(1) and its
central charge is c(U(1)) = 1, we have

c(SU(2)k/U(1)) = 2(k − 1)

k + 2
(15.123)
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Furthermore, the scaling dimensions of the primary fields �( j,m) are also reduced
in SU(2)k/U(1), to

�( j,m) = j ( j + 1)

k + 2
− m2

k
(15.124)

and now depend not only on j but also on m since the symmetry SU(2) has been
broken explicitly by gauging its diagonal (Cartan) U(1) subgroup.

The simplest example of a coset theory is SU(2)2/U(1). We see that for k = 2
the central charge is c(SU(2)2/U(1)) = 1/2. Also for k = 2 the only non-trivial
primary fields of this theory are �(1/2,±1/2) and �(1,0), with scaling dimensions
�(1/2,1/2) = 1/16 and �(1,0) = 1/2. Thus we can identify the fields of the coset
SU(2)2/U(1) theory with the fields of the Ising CFT, Z2, �(1/2,1/2) ≡ σ (the
twist field of the Ising model), and �(1,0) ≡ χ (the Majorana fermion). From
these results, we conclude that the chiral edge states of the Moore–Read fractional
quantum Hall states are described by the chiral CFTs

Z2 × U(1)n � (SU(2)2/U(1))× U(1)n (15.125)

where the coset SU(2)2/U(1) is a chiral gauged SU(2)2 WZW. The coset
SU(2)3/U(1) � Z3, the CFT of the three-state Potts model, enters into the
description of the edge states of the Read–Rezayi states (Read, 1998). Instead of
a Majorana fermion, the theory of the Read–Rezayi states involves fields called
parafermions, which we defined in Eq. (10.127). The properties of parafermion
theories are understood from CFT, and they are never free fields (Dotsenko, 1984).
One interesting feature of the Read–Rezayi states is that they are leading candidates
to realize a universal quantum computer (Das Sarma et al., 2008).

15.5 Effective-field theory of non-abelian states

The use of the bulk–edge correspondence combined with CFT methods enabled
us to construct generalized fractional quantum Hall states and to investigate their
properties. In the last section we constructed the theory of the edge states using the
structure of the wave functions of the bulk states. We will see in the next sections
that the CFT description of the edge states is sufficient (and efficient) to study the
properties of these states. This is important, since many of the properties of the edge
states are directly accessible to (very challenging!) experiments. While the bulk–
edge correspondence suggests that there should be an effective topological field
theory for all of these states, there is no straightforward non-abelian version of the
hydrodynamic arguments that we used to formulate the abelian fractional quantum
Hall states in terms of abelian Chern–Simons gauge theory in Chapter 14.

What is missing is an effective-field-theory approach to this problem that
includes the non-abelian states as well. Such an approach was discussed in detail
for the case of the abelian states, for which it provides a general construction, which



642 Physics at the edge

amounts to a classification of such states (Wen, 1995). So far no general classifica-
tion of non-abelian quantum Hall states has been established and, for this reason,
there is no generic effective-field theory of non-abelian states either. Nevertheless,
there has been some significant progress on this question (Fradkin et al., 1998,
1999; Wen, 1999; Cabra et al., 2000; Barkeshli and Wen, 2010a, b).

The structure of the CFTs of their edge states naturally suggests that the
effective-field theory for the bulk must somehow involve an SU(2) k Chern–Simons
gauge theory at some non-trivial level k. However, we are now left to explain the
physical origin of the SU(2) symmetry in the bulk, how (and whether) it is related
to the concept of pairing, and what the bulk counterpart of the concept of “gauging
a subgroup” at the edge is. Since the theory of the bulk state is already a gauge
theory, one cannot gauge what has already been gauged!

Here we will outline the construction of the effective-field theory of the bulk for
the simplest case, the bosonic Moore–Read state at filling factor ν = 1. We will
see that the construction can be generalized to the bosonic Read–Rezayi states with
filling factor ν = k/2. The effective-field theory of the edge states for the ν = 1
bosonic Moore–Read state has SU(2)2 chiral Kac–Moody symmetry, namely the
SU(2)2 chiral WZW model. We saw in the preceding section that there is a one-
to-one correspondence between the bulk SU(2)2 non-abelian Chern–Simons gauge
theory and the chiral SU(2)2 WZW model on the edge.

So in the case of the ν = 1 Moore–Read state the effective-field theory of the
bulk is the SU(2)2 Chern–Simons theory. Is this related in any way to the concept
of pairing? In Chapter 14 we compared the structure of the wave function of the
fermionic Moore–Read state at ν = 1/2 with the behavior of the pair field in the
BCS theory of a px + i py superconductor. There we saw that the Pfaffian factor
embodies the physics of this superconducting state. We now want to ask a similar
question regarding the bosonic state.

To this end, following the results of Fradkin et al. (1999), we will consider a
quantum Hall system with two species of charged bosons in two dimensions. We
will assume that each species of charged bosons has sufficiently strong short-range
repulsive interactions that each Landau level state can be occupied by only one
boson and that each species of bosons is in a Laughlin state with filling fractions
ν = 1/2. Thus we have a (2, 2, 0) Halperin state with wave function

�(2,2,0) =
∏
i< j

(zi − z j )
2
∏
i< j

(wi − w j )
2e−

1
4�2

∑
i(|zi |2+|wi |2) (15.126)

where zi are the complex coordinates of type 1 bosons and wi are the complex
coordinates of type 2 bosons. Since the two species are decoupled, the effective-
field theory involves two Chern–Simons gauge fields, Al

μ (with l = 1, 2), for the
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currents of each species of bosons, and has a U(1)2 × U(1)2 gauge symmetry. The
effective action is

S bulk
(2,2,0) =

2

4π

2∑
l=1

∫
!×R

d3x εννλAl
μ ∂νAl

λ (15.127)

where the level of each Chern–Simons theory is m = 2 since the filling factor is
ν = 1/2 for each species of bosons. The effective action of the edge states of the
(2, 2, 0) state is then a theory of two chiral bosons φa (l = 1, 2) with the same
velocity v, also at level m = 2,

S edge
(2,2,0) =

m

4π

2∑
l=1

∫
dx dt ∂xφl(∂tφl − v ∂xφl) (15.128)

In Section 15.4.4 we showed that the U(1)2 Chern–Simons theory is equivalent
to the SU(2)1 Chern–Simons theory in the sense that they have the same topo-
logical invariants. Similarly, the theory of the U(1)2 chiral boson is equivalent to
the SU(2)1 chiral WZW model. So the universal (topological) properties of the
(2, 2, 0) bosonic Halperin state are equally described by a sum of two SU(2)1

Chern–Simons gauge theories, each with its own SU(2) gauge field, Aa,l
μ , where

a = 1, 2, 3 runs over the su(2) algebra. In this language the action becomes

S bulk
(2,2,0) =

1

4π

∑
l=1,2

∫
!×R

d3x εμνλ
[
Al,a
μ , ∂νAl,a

λ + 2

3
fabcAl,a

μ Al,b
ν Al,c

λ

]
(15.129)

We return momentarily to the theory of the edge and ask how an SU(2)2 WZW
model arises from two decoupled SU(2)1 WZW models. Each SU(2)1 WZW
model has an SU(2)1 Kac–Moody algebra (at level k = 1) of the currents J a,l . We
now consider perturbing this system by a marginally relevant off-diagonal current–
current interaction whose coupling constant flows to a strong-coupling fixed point
at which the relative current vanishes(

J a,1 − J a,2
) |Phys〉 = 0 (15.130)

We saw at the end of Chapter 7 that this limit is equivalent to coupling the system to
a gauge field that projects out all states that violate the constraint of Eq. (15.130),
i.e. it is a gauged WZW model. However, this condition is equivalent to impos-
ing that the WZW currents are identified, and hence the WZW fields themselves
are also identified, g1 = g2 ≡ g. Since the original action was the sum of two
decoupled SU(2)1 WZW models (with fields g1 and g2), the action of the theory at
this fixed point is simply an SU(2)2 WZW model for the field g. Thus, under the
action of this perturbation, the theory flows to the SU(2)2 fixed point, with a single
dynamical field g, and a Kac–Moody algebra with level raised to k = 2,
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SWZW
SU(2)1[g1] + SWZW

SU(2)1[g2] )→ SWZW
SU(2)2[g] (15.131)

On the other hand, the SU(2)1 currents are just the “electron” (here the boson)
operators V± = exp(±i

√
2φ) and the edge current j = ∂xφ. We also saw that, for

a Laughlin state of bosons at ν = 1/2, these three operators are the generators of
the SU(2)1 Kac–Moody algebra, and the boson (and its hole) are part of the SU(2)1

Kac–Moody algebra. Hence, if the SU(2)1 Kac–Moody currents are identified, this
means that the bosons themselves are glued together. This picture suggests that the
bulk theory must describe a paired state of the bosons!

We can describe this physics from the point of view of the bulk as follows. Let Ba
l

be two three-component real fields (a = 1, 2, 3) representing the boson excitations
in the bulk for each species of bosons (l = 1, 2), each made of the fields that create
and destroy each type of boson, B†

l = B1,l + i B2,l and its complex conjugate, and
the local boson density fluctuation, which we denote by B3,l . We will assume that
the bosons themselves do not undergo Bose condensation but that they can pair.
A paired state of “spin-1” bosons is naturally represented by the (p-wave) triplet
pair field (Fradkin et al., 1999)

�a(z1 − z2) = εabc Bb
1 (z1)B

c
2(z2) f (z1 − z2) (15.132)

where the kernel has the long-distance behavior f (z) ∼ 1/z. This pair field has
p-wave symmetry and maximally violates time-reversal invariance. This pair field
transforms in the spin-1 (adjoint) representation of each SU(2) and in the spin-1
representation of the diagonal SU(2) subgroup of SU(2)× SU(2).

A pair field of two triplet fields can be best understood as a matrix field that
transforms under the action of each group. Let O ∼ exp(iTl�l) (where Ta are the
three SU(2) generators in the spin-1 representation) be the (3 × 3) matrix field.
Since it is in the adjoint representation of SU(2), it is blind under the action of
the Z2 center of SU(2). Hence the field O effectively is an element of SO(3), and
transforms under the action of the groups G1 and G2 (here both are SO(3)) as

O )→ G1 OG−1
2 (15.133)

We will postulate that the boson pair field has a Landau–Ginzburg action of the
form (Fradkin et al., 1999)

S =
∫

d3x
{
κ tr

(
O−1 DμO O−1 DμO

) + λBT
1 O B2

}
+

∫
d3x

∑
l=1,2

∣∣(∂μBa,l + iεabcAb
μBc,l)

∣∣2

+ 1

4π

∑
l=1,2

∫
!×R

d3x εμνλ
[
Al,a
μ ∂νAl,a

λ + 2

3
fabc Al,a

μ Al,b
ν Al,c

λ

]
(15.134)
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where Dμ = ∂μ+ i
[
Aμ,1 −Aμ,2

]
is the covariant derivative in the adjoint (spin-1)

representation of the diagonal SU(2) subgroup, and κ and λ are two coupling
constants.

In the phase in which the pair field O acquires an expectation value, 〈O〉 = I ,
the symmetry is broken spontaneously as

SO(3)× SO(3) )→ SO(3) (15.135)

and the symmetry is broken down to the diagonal SO(3) subgroup. Therefore, in
this broken-symmetry phase, the order-parameter manifold is the coset (SO(3) ×
SO(3))/SO(3).

In this phase we have a Higgs mechanism and there is a Meissner effect. Indeed,
deep in this phase the first term of the action of Eq. (15.134) reduces to a mass

term for the relative gauge field ∝κ
(
Aa
μ,1 −Aa

μ,2

)2
. Therefore, in the low-energy

limit of the paired phase, the massive relative gauge field is frozen out and the
two gauge fields become identified with each other. The direct consequence of this
result is that the effective action of the average gauge field Aa

μ = (Aa
μ,1 +Aa

μ,2) is
an SU(2)2 Chern–Simons gauge theory,

SCS[Aa
μ,1] + SCS[Aa

μ,2] )→ 2SCS[Aa
μ] (15.136)

This construction is easily generalized to the case of a system with k species of
bosons. We start again with a system in which the ground state of each species is
a ν = 1/2 Laughlin state (of bosons) with symmetry SU(2)1 (as before) and the
total filling fraction is ν = k/2. We now have k spin-1 Bose fields, Ba,l , now with
l = 1, . . . , k. If the bosons pair up again in a spin-triplet p-wave state with the
pattern that B1 pairs with B2, B2 with B3, . . . , and Bk−1 pairs with Bk , we will now
have a theory with the following symmetry breaking:

SU(2)1 × · · · × SU(2)1 )→ SU(2)k (15.137)

Hence this “clustered” state has an effective-field theory that is the SU(2)k Chern–
Simons gauge theory. For k > 2 the resulting effective-field theory describes the
Read–Rezayi parafermionic states (Fradkin et al., 1999; Read and Rezayi, 1999).

The order-parameter field has a non-trivial pattern of spontaneous symmetry
breaking, given in Eq. (15.135). This effective non-linear sigma model admits
topological skyrmion-like excitations. We can now apply the ideas of homotopy
theory that were discussed in Section 7.6 to analyze the nature of the topological
defects of the ν = 1 Moore–Read state. However, unlike the conventional non-
linear sigma model discussed in Chapter 7, which had an order-parameter-field
manifold SO(3)/U(1) � S2, the order-parameter manifold for the problem we are
now discussing is the non-trivial coset SO(3) × SO(3)/SO(3). In this case, the
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skyrmions are similar to vortices and the topologically non-trivial configurations
are classified by the homotopy group (Mermin, 1979)

π1(SO(3)× SO(3)/SO(3)) � Z2 (15.138)

The origin of this result can be traced back to the fact the SO(3) is blind to the cen-
ter Z2 of SU(2), or, equivalently, this order parameter is a nematic and it is invariant
under a rotation by π . In contrast, if we had a pair condensate of the fundamen-
tal (Laughlin) quasiparticles of the ν = 1/2 fluids, the order-parameter manifold
would have been instead SU(2)×SU(2)/SU(2), which has a trivial homotopy class,
π1(SU(2)× SU(2)/SU(2)) � 0, and hence does not have stable half-vortices.

We then conclude that the pair condensate field O supports skyrmions with a
Z2 topological charge. The skyrmions of this theory are vortex solutions of the
Landau–Ginzburg theory. On points (r, θ) of a very large circumference S1 of
radius r → ∞, the field O approaches asymptotically a rotation matrix

lim
r→∞ O(r, θ) = R(n̂, θ) (15.139)

where n̂ is a unit vector and 0 ≤ θ < 2π . For the energy of this soliton to be finite
the relative gauge field Aa

1,i −Aa
2,i must have the asymptotic behavior

lim
r→∞

(
A1,i (r, θ)−A2,i (r, θ)

) = R(n̂, θ)−1 ∂θR(n̂, θ) (15.140)

There is a different vortex solution for each unit vector n̂. These solutions rotate
into each other under the action of the unbroken SO(3). Thus, at the quantum level
the vortices carry an SO(3) quantum number. However, the Z2 topological charge
makes the vortices double-valued and hence they carry the spin-1/2 representation
of SO(3). This double-valuedness is compensated for by a rotation in real space by
θ → θ +π . Thus, this vortex solution is actually the same as the half-vortex of the
px + i py superconductor which we discussed in Section 14.9.3. On the other hand,
due to the coupling to the SU(2)2 Chern–Simons gauge field, these soliton states
give rise to a representation of a quantum group symmetry and exhibit non-abelian
braiding statistics. Thus we identity these half-vortices with the Ising twist field
(denoted by σ ) of the theory of the edge states.

Similarly, the triplet of unpaired bosons will carry the spin-1 representation of
SO(3). However, due to the coupling of the triplet field to the SU(2)2 Chern–
Simons gauge theory, these states undergo a statistics transmutation and become
a triplet of Majorana fermions, again in agreement with our analysis of the edge
states. The boson operator (the “electron”) of the ν = 1 Moore–Read state, which
at the edge is a current, is obtained by fusing the neutral component of the triplet,
B3 (a “fermionic dipole”), with one of the other components, say B† (which carries
the unit of flux of the U(1) Cartan subgroup of SU(2) which we identified with the
charge sector).
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15.6 Tunneling conductance at point contacts

In spite of all the beautiful properties of the fractional quantum Hall fluids, it is
experimentally very hard to probe them in the bulk. The reason is that, due to the
incompressibility of the fluid, i.e. the large energy gap in the bulk, only two types
of experimental probes can access the physics of the bulk. One of these types is
transport experiments that measure the Hall and longitudinal conductances. These
experiments are used to establish the existence of a quantum Hall fluid by observ-
ing a plateau in the Hall conductance (quantized to integer or fractional multiples
of e2/h) and the energy gap through the temperature dependence of the longitu-
dinal conductance. The other type consists of resonance experiments, microwave
resonance, nuclear magnetic resonance, and Raman light scattering, which probe
the gapped density fluctuations in the bulk. In practice, experiments of the second
type can be done only in the fractional quantum Hall states with the largest energy
gaps. These experiments have confirmed that incompressible fractional quantum
Hall fluids have density fluctuations, known as magneto-phonons, and that their
behavior can be predicted by theories that are based on the Laughlin wave func-
tion (Girvin et al., 1986) (see Das Sarma and Pinczuk (1997)), on the existence of
skyrmion excitations in quantum Hall ferromagnets (Sondhi et al., 1993; Barrett
et al., 1995), and on an exciton Bose–Einstein condensate in bilayer quantum Hall
systems (Eisenstein and MacDonald, 2004).

On the other hand, since the edge states are gapless, they offer the opportunity to
test the more subtle predictions of the theory. The catch is that these experiments
are technically quite challenging. We will now discuss several important exper-
imentally testable (and tested) consequences of the theory of the edge states of
quantum Hall fluids (integer and fractional).

The ideal way to test the gapless edge states is to tunnel electrons either into
these systems or from one edge to the other. However, the edge states on both
integer and fractional quantum Hall fluids have a Fermi momentum, which is
determined by the Fermi energy of the quantum Hall fluid subject to the confin-
ing potential. Thus momentum conservation allows tunneling of electrons from an
external reservoir only if translation invariance is broken, for instance by a defect.
Such a tunneling center is called a quantum point contact. Similarly, the edge states
at the opposite ends of a fluid have opposite momentum and it is not possible to
tunnel (electrons or quasiparticles) unless translation invariance somehow is also
broken. In this case translation invariance is typically broken by an external gate at
some voltage. Since the fluid is incompressible, the gate creates a constriction in
the fluid, as shown schematically in Fig. 15.10(a). This point contact is a quantum
Hall junction. Here the tunneling process is internal and occurs across the fractional
quantum Hall fluid. Two types of experiments have been done with this setup,
concerning transport across the junction in Laughlin states (Milliken et al., 1996;
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Figure 15.10 (a) Internal quasiparticle tunneling between two edges of a frac-
tional quantum Hall fluid at a junction created by a constriction of the 2DEG.
(b) Tunneling of electrons from a Fermi liquid (FL) (equivalent to a 2DEG with
ν = 1 on the right) to a fractional quantum Hall (FQH) Laughlin fluid with filling
fraction ν = 1/m (on the left) at a point contact with tunneling amplitude �.

Roddaro et al., 2004; Stefano et al., 2004) and in non-abelian states (at ν = 5/2)
(Miller et al., 2007; Radu et al., 2008), and noise in the tunneling current both in
Laughlin states (de Picciotto et al., 1997; Saminadayar et al., 1997) and in the non-
abelian state at ν = 5/2 (Dolev et al., 2008). We will discuss these experiments
and the theory below.

The other typical experimental setup involves tunneling from some external
reservoir of electrons into the edge of a quantum Hall system. A highly idealized
version of this junction is shown in Fig. 15.10(b). A more realistic setup involves
a quantum Hall fluid separated by a barrier from a usually 3D electron gas. In this
case, tunneling takes place at isolated defects along the barrier, which act as tun-
neling centers. To the extent that these tunneling centers can be regarded as acting
independently of each other, this setup reduces to our idealized case. Since the
external electron reservoir is 3D, in most cases of experimental relevance in prac-
tice it can be regarded as a Fermi liquid, which is a weakly interacting system. For
this reason this tunnel junction is equivalent to a junction between the fractional
quantum Hall fluid and an integer quantum Hall state, since the quantum num-
bers of the latter state are the same as in a Fermi liquid. Transport experiments in
Laughlin states have been done in this setup (Chang et al., 1996; Chang, 2003).

15.6.1 Tunneling Hamiltonians

Let us begin with a theoretical picture of the problem of tunneling of electrons into
a fractional quantum Hall edge (Wen, 1991b). As we saw before, in the general
case we have several edge states, which can be regarded as a charged edge state
and possibly several neutral edge states. We will discuss the simpler case of the
Laughlin states, since they have a unique edge. In all of these cases the edge states
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are chiral Luttinger liquids. Thus, the quantum Hall junction is just the chiral ver-
sion of the setup of a scanning tunneling microscope discussed in Section 6.8.2.
The results we derived there for a Luttinger liquid apply to the chiral case with
only minor changes.

In the case of a quantum Hall junction with a Fermi liquid (see Fig. 15.10(b)), the
tunneling Hamiltonian describes processes of electron tunneling from the external
reservoir (the “tip,” which we regard as a Fermi liquid) and the edge state of the
fractional quantum Hall fluid. This system is formally equivalent to the problem
of a spinless (non-chiral) Luttinger liquid coupled to an impurity. In this inter-
pretation, the top and bottom edges are the two chiral components of a spinless
Luttinger liquid with Luttinger parameter K = ν = 1/m and the constriction
represents backscattering at the impurity (Kane and Fisher, 1992).

The tunneling Hamiltonian is (with the point contact at x = 0)

H = Hedge + HFL + �eiω0tψ
†
e,edge(0, t)ψe,FL(0, t)+ h.c. (15.141)

where the “Josephson frequency” is ω0 = eV/�, and � is the tunneling matrix
element.

The electron propagator of a Laughlin edge state is

Ge(x, t) = constant × 1

(i(x − vt)+ ε)m
(15.142)

in the limit ε → 0+. This exponent leads to a tunneling density of states N (ω),

N (ω) ∼ Im lim
x→0+

∫ ∞

−∞
dt Ge(x, t)eiωt ∼ constant × |ω|m−1 (15.143)

where we have used that∫ ∞

−∞
dt

eiωt

(β ± i t)α
= 2π

�(α)
(±ω)α−1e∓βωθ(±ω) (15.144)

where β = ε + i x , α is real and positive, �(x) is the Euler gamma function, and
θ(x) is the step function.

This result, combined with Fermi’s Golden Rule at a tunnel junction with bias V ,
predicts a tunneling current I for electrons tunneling into a chiral Luttinger liquid
(CLL) from a Fermi liquid (FL) (see Eq. (6.166))

Ie(V ) = 2π
e

�
|�|2

∫ 0

−eV
d E NCLL(E, T )NFL(E + eV, T ) ∝ V m (15.145)

and a differential tunneling conductance G(V ) (see Eq. (6.168))

Ge(V, T ) = d I

dV
� 2πe

�
|�|2 NFL(0)NCLL(V, T ) ∝ V m−1 (15.146)
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Hence, we conclude that tunneling conductance of electrons from an external tip
(a Fermi liquid) to the edge of a fractional quantum Hall state has a power-law
form with an exponent α = m − 1. Thus, tunneling is suppressed at low bias and
vanishes as V → 0.

The case of a constriction of a quantum Hall fluid created by an external gate,
shown in Fig. 15.10(a), can be understood using a similar approach. The difference
is that the tunneling is now internal and takes place between two identical edges
across the fractional quantum Hall fluid. More importantly, the “particles” which
tunnel are the quasiparticles of the quantum Hall state. The tunneling Hamiltonian
for Laughlin quasiparticles is

H = HR + HL + �eiω∗
0 tψ

†
qp,L(0, t)ψqp,R(0, t)+ h.c. (15.147)

where we denoted by HR and HL the Hamiltonians of the bottom (right-moving, R)
and top edges (left-moving, L), respectively, which have opposite chirality. In this
case the “Josephson frequency” isω∗

0 = q∗V /�, where q∗ = e/m is the (fractional)
charge of the Laughlin quasiparticle (or quasihole). Similarly the quasiparticle
tunneling current Jqp is

Jqp = i�
e

m

(
ψ

†
qp,L(0, t)ψqp,R(0, t)− h.c.

)
(15.148)

We can now repeat the same steps to obtain a formula for the tunneling current
for Laughlin quasiparticles Gqp with the same form as the Golden Rule expression
of Eq. (15.145), with the important difference that the densities of states are now
those for Laughlin quasiparticles at each edge. The density of states for Laughlin
quasiparticles scales as

Nqp(ω) ∼ |ω|1/m−1 (15.149)

which diverges at low frequencies. On putting it all together, we find that the
tunneling current of Laughlin quasiparticles has the voltage dependence

Iqp(V ) = 2π
e

m�
|�|2

∫ 0

−eV
d E NCLL(E, T )NCLL(E+eV, T ) ∝ V 2/m−1 (15.150)

Thus, the quasiparticle differential conductance Gqp(V ) has the scaling form

Gqp(V ) = d Iqp

dV
∝ V 2(1/m−1) (15.151)

For Laughlin states ν = 1/m < 1. Hence the exponent of the power law of the
differential conductance is negative, which seemingly implies that the conductance
becomes large (and divergent) as the bias V → 0. This indicates a breakdown of
perturbation theory in the tunneling matrix element � that we will address below.
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15.6.2 Scaling behavior

We can understand these results using a simple perturbative RG analysis. Indeed,
in all the cases we discussed in the limit of no tunneling, � = 0, the theory is scale-
invariant, and hence it is a fixed point. The question is whether this fixed point is
stable or unstable or, equivalently, whether the tunneling operator is relevant or
irrelevant. The chiral electron and quasiparticle operators have scaling dimensions
�e = m/2 and �qp = 1/(2m), respectively.

The scaling dimension of the tunneling operator depends on what is tunnel-
ing and between which type of states. In the case of electron tunneling between
a Fermi liquid and a Laughlin state with ν = 1/m, the tunneling operator involves
removing an electron from one system and adding it to the other. Since the scal-
ing dimension of the tunneling operator of electrons is the sum of the scaling
dimensions of the electron operators of each system, we find that in this case the
scaling dimension of the electron tunneling operator is �e,tunnel = (m + 1)/2. In
the case of electron tunneling between the edge states of two ν = 1/m Laugh-
lin states the scaling dimension of the electron tunneling operator is �e,tunnel[ν =
1/m] = m. Instead, the scaling dimension of the quasiparticle tunneling operator
is �qp,tunnel[ν = 1/m] = 1/m.

By following the same analysis as we did in Chapter 4, we can write down the
RG beta function for the tunneling amplitude �. The only difference here is that
the tunneling operator acts at only one point, say x = 0, which means that the
term in the action of the tunneling process has a delta function δ(x) that has scal-
ing dimension 1. Thus, if we denote by � the scaling dimension of the tunneling
operator, we can define a dimensionless tunnel amplitude g by

� = a�−1g (15.152)

where a is a short-distance cutoff. We then find that the beta function, to zeroth
(“tree-level”) order, is

β(g) = a
∂g

∂a
= (1 −�)g + O(g2) (15.153)

Notice that the coefficient of the (leading) linear term is not (2 − �) (where 2 is
the dimension of the space-time) but 1 − �, since the operator acts at only one
point. This is characteristic of all quantum impurity problems, the prototype of
which is the Kondo problem, which describes the coupling of a magnetic impu-
rity embedded in a metal. We will see below that we are actually discussing a
boundary CFT.

The form of the beta function, Eq. (15.153), indicates that a tunneling operator
is relevant if its scaling dimension is � < 1, irrelevant if � > 1, and marginal
if � = 1. Thus, both in the case of electron tunneling from a Fermi liquid to the
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edge state of a Laughlin state and in that of electron tunneling between the edge
states of Laughlin states, the tunneling operators are irrelevant since in both cases
their scaling dimensions are � = (m + 1)/2 > 1 and � = m > 1. Hence, in the
case of electron tunneling the decoupled fixed point is stable. The exception is the
case of ν = 1, for which � = 1 and the tunneling operator is marginal. In contrast,
the tunneling operator of quasiparticles between the edges of Laughlin states has
scaling dimension � = 1/m < 1, the tunneling operator is always relevant, and
hence the decoupled fixed point is unstable.

These results can be summarized in the following appealing picture, which is
due to Kane and Fisher (1992). Let us consider the case of a fractional quantum
Hall state with a constriction, with a quasiparticle tunneling amplitude �. The scal-
ing analysis shows that the decoupled fixed point, � = 0, is unstable and hence that
the effective tunneling amplitude grows at low energies or, equivalently, that there
is a growth in the backscattered current. Since the growth of the tunneling ampli-
tude can be interpreted as a narrowing of the constriction, this leads to the natural
assumption that the end result of this process is a state in which the quantum Hall
fluid is split in two, as shown in Figs. 15.11(a) and (b). In the limit implied by
Fig. 15.11(b) the only tunneling process allowed is that of electrons across vacuum
between the two edge states, which is irrelevant.

Hence, the main effect of the constriction is a crossover between an unstable
weak-coupling fixed point (dominated by quasiparticle tunneling) and a stable
strong-coupling fixed point (dominated by electron tunneling). From the point of
view of the bulk quantum Hall fluid, this crossover is a change in the topology
of the region occupied by the quantum Hall fluid, which is split in two by the
constriction.

2DEG2DEG
νν

Γqp

(a) weak quasiparticle tunneling

2DEG2DEG

νν

Γ̃

e

(b) weak electron tunneling

Figure 15.11 Two limiting regimes of a fractional quantum Hall tunneling junc-
tion: (a) in the weak-tunneling regime, � small, quasiparticles tunnel across the
fractional quantum Hall fluid at a constriction; and (b) in the strong-tunneling
regime, � large (or dual �̃ small), the fractional quantum Hall fluid is split and
we get electron tunneling between the two fractional quantum Hall fluids across
the “vacuum.”
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The unstable fixed point of a constriction can be regarded as a (quantum) criti-
cal fixed point, following the same logic as in Chapter 4. In particular, in this case
there is a characteristic crossover energy scale that characterizes the crossover. In
the case of the Kondo problem the two fixed points represent the magnetic impu-
rity decoupled from the metal (the unstable weak-coupling fixed point) and the
magnetic impurity being screened (or over-screened, depending on the number of
channels in the metal) (the stable strong-coupling fixed point). By analogy with
the Kondo problem, in the case of the quantum Hall constriction (and junction) we
will refer to the crossover energy scale as the “Kondo scale” and denote it by TK(g)
(even though the scaling is different). A simple RG analysis now tells us that the
crossover scale depends on the (dimensionless) tunneling amplitude g through a
universal scaling law of the form

TK(g) ∼ g1/(1−�) (15.154)

where � is the scaling dimension of the tunneling operator at the unstable fixed
point. The exponent of this scaling law is, as in all cases with a relevant perturba-
tion, given by the reciprocal of the slope of the beta function at the unstable fixed
point. Thus, if the junction (or constriction) is probed at an energy scale (voltage or
temperature) that is large compared with TK(g) we access the physics of the weak-
coupling fixed point. Conversely, if we probe the junction at energy scales low that
are compared with TK(g) we see the physics of the strong-coupling fixed point. In
the case of the Kondo problem of a magnetic impurity coupled by exchange to a
metal, the exchange interaction is marginally relevant, and the Kondo scale (con-
ventionally denoted by TK) depends on the coupling constant J through an essential
singularity TK ∼ √

J exp(−constant/J ) (Anderson, 1970; Wilson, 1975).

15.6.3 Effective-field theory and boundary conformal field theory

We will now use the chiral-boson description of the edge states of the Laughlin
states to develop a non-perturbative description of all three cases: (a) electron tun-
neling from a Fermi liquid (“ν = 1”) to a ν = 1/m Laughlin state, (b) electron
tunneling between the edges of two identical Laughlin states, and (c) quasiparti-
cle tunneling between the edges of a single Laughlin quantum Hall fluid. In all
cases we will denote by φ1 and φ2 the right- and left-moving chiral bosons associ-
ated with the two edges. The first two cases, (a) and (b), can be treated in a single
unified approach (Chamon and Fradkin, 1997), while case (c) will be treated in a
simply related fashion (Kane and Fisher, 1992; Fendley et al., 1995a). We will also
see that all of these problems are described by a perturbed boundary CFT (Cardy,
1986).
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Extensions of this theory have been made in order to describe constrictions in
the ν = 5/2 non-abelian quantum Hall state in which the tunneling quasiparticle
has non-abelian fractional statistics (Fendley et al., 2006). In this case, as we saw
in Section 15.4.5, each edge has a charge sector, which is described by a chiral
boson that carries the charge, and a neutral sector, which is described by a chiral
Majorana fermion. The non-abelian quasiparticle σ is a composite object made of
the Majorana fermion and a vertex operator of the chiral boson. We will not discuss
this problem here.

To develop this theory we will work with the Lagrangian density rather than the
Hamiltonian. For the cases (a) and (b) of electron tunneling between two edges
with filling fractions ν1 and ν2 (with ν1 = 1/m and ν2 = 1 in case (a), and ν1 =
ν2 = 1/m in case (b)) at a point contact (or constriction) the Lagrangian density is
given by

L = 1

4π
∂xφ1(∂tφ1 − ∂xφ1)+ 1

4π
∂xφ2(∂tφ2 − ∂xφ2)

+ �eδ(x)

(
eiω0t e

i
(

1√
ν1
φ1− 1√

ν2
φ2

)
+ h.c.

)
(15.155)

where �e is the amplitude for electron tunneling at the point contact. For quasi-
particle tunneling at a constriction with amplitude �qp (case (c)) the Lagrangian is
instead given by

L = 1

4π
∂xφ1 (∂tφ1 − ∂xφ1)+ 1

4π
∂xφ2(∂tφ2 − ∂xφ2)

+ �qpδ(x)
(

eiω∗
0 t ei

√
ν(φ1−φ2) + h.c.

)
(15.156)

where, as before, ω0 = eV /� and ω∗
0 = q∗V /� = eV /(m�) are the Josephson

frequencies.
In Eqs. (15.155) and (15.156) we have omitted the Klein factors that insure that

the electron operators of different edges anti-commute with each other and that
the quasiparticle operators of different edges obey the anyon algebra, since their
product depends on the total combined charge of both edges and it is a constant of
motion. Hence these factors can be absorbed (in this case) into a simple redefinition
of the tunneling matrix element �. In addition, in both cases we have set the edge
velocities to v = 1, which we can do without loss of generality since we have a
single point contact. For the same reason we can also use the same coordinate x
to denote the arc lengths along each edge. Also, and for the same reason, both in
Eq. (15.155) and in Eq. (15.156) we carried out a parity transformation x ↔ −x
on the left-moving edge (which amounts to flipping the direction of the top edge)
and so both chiral bosons are “right-moving.” For reasons of clarity we still denote
the chiral bosons by φ1 and φ2.
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Next, in Eq. (15.155) we perform an orthogonal transformation to new fields φ′
1

and φ′
2 to map the problem of electron tunneling between inequivalent edges into a

problem of “electron” tunneling between the (equivalent) edges of two fluids with
the same effective filling fraction ν̄. The transformation is(

φ′
1

φ′
2

)
=

(
cos θ sin θ
− sin θ cos θ

) (
φa

φb

)
(15.157)

where

cos θ = 1√
2

√
ν−1

1 +
√
ν−1

2√
ν−1

1 + ν−1
2

, sin θ = 1√
2

√
ν−1

1 −
√
ν−1

2√
ν−1

1 + ν−1
2

(15.158)

The Lagrangian of Eq. (15.155) in terms of the transformed fields becomes

L = 1

4π
∂xφ

′
1

(
∂tφ

′
1 − ∂xφ

′
1

) + 1

4π
∂xφ

′
2

(
∂tφ

′
2 − ∂xφ

′
2

)
+ �eδ(x)

(
eiω0t e

i 1√
ν̄
(φ′1−φ′2) + h.c.

)
(15.159)

where ν̄ is given by

ν̄−1 = 1

2

(
ν−1

1 + ν−1
2

)
(15.160)

Thus, the rotated fields describe a problem of a quantum point contact for electron
tunneling between two identical edges of filling fraction ν̄. In particular, the prob-
lem of electron tunneling between a Fermi liquid (which we represent as the edge
of a quantum Hall state with ν1 = 1) and a Laughlin state with ν2 = ν = 1/m is
equivalent to the tunneling of electrons between two identical quantum Hall fluids
with a filling fraction ν̄ given by

ν̄−1 = 1 + ν−1

2
= m + 1

2
(15.161)

For instance, for ν = 1/3 the equivalent system has an effective filling fraction
ν̄ = 1/2, which is equivalent to a problem of tunneling between identical bosonic
Laughlin states, and hence the tunneling “electron” becomes a boson of charge 1.
For ν = 1/5 the equivalent problem has ν̄ = 1/3, and the tunneling “electron” is a
fermion of charge 1.

The mapping to a theory of two identical edges with effective filling fraction
ν̄ suggests that there should exist a quasiparticle of charge ν̄. However, such a
quasiparticle does not exist in each decoupled edge! This is telling us that this
innocent-looking orthogonal transformation is gluing together the Hilbert spaces of
the individual edges (two macroscopic systems) in a non-trivial way, and that this
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quasiparticle has to be interpreted as a soliton of the tunneling process. Actually, it
is necessary to enlarge the Hilbert space in order to describe the decoupled edges
and the system at finite tunneling amplitude (Hsu et al., 2009a).

In this formulation the problems of electron tunneling (cases (a) and (b)) and of
quasiparticle tunneling (case (c)) have very similar forms. In what follows we will
drop the primes on the fields for the electron-tunneling cases and set φ′

1 → φ1 and
φ′

2 → φ2. Similarly, we will not distinguish the filling factor ν of case (a) from the
effective filling factor ν̄ of case (b), and specify which case it is as needed.

We will take advantage now of the form of Eq. (15.159) and Eq. (15.156) to make
another orthogonal transformation, to even and odd combinations of the fields, φe

and φo,

φ1 = 1√
2
(φe + φo) , φ2 = 1√

2
(φe − φo) (15.162)

In this new basis, the Lagrangian for electron tunneling becomes

L = 1

4π
∂xφe(∂tφe − ∂xφe)+ 1

4π
∂xφo(∂tφo − ∂xφo)

+ �eδ(x)
(

eiω0t ei
√

2
ν
φo + h.c.

)
(15.163)

while the Lagrangian for quasiparticle tunneling is

L = 1

4π
∂xφe(∂tφe − ∂xφe)+ 1

4π
∂xφo(∂tφo − ∂xφo)

+ �qpδ(x)
(

eiω∗
0 t ei

√
2νφo + h.c.

)
(15.164)

We see that in both electron and quasiparticle tunneling the even field φe is insen-
sitive to the tunneling process and decouples. This is not an accident since the
charge defined by the even field is the total charge of both edges, Qe = Q1+ Q2 =
Q, which is conserved by the tunneling process, which involves only the field φo.
Naturally, the tunneling currents both for electrons, Ie, and for quasiparticles, Iqp,
involve only the field φo,

Ie ∼ 2e�e sin

(√
2

ν
φo + eV

�
t

)
, Iqp ∼ 2

e

m
�qp sin

(√
2ν φo + eνV

�
t

)
(15.165)

In what follows we will focus on the field φo, which describes the tunneling
process, and drop the decoupled total charge field φe.

The odd field φo is a chiral boson that is coupled to a vertex operator (the tun-
neling operator) at x = 0. We can map this problem to a system described by a
non-chiral boson defined (for all times) only on the half-line x ≥ 0. Let ϕ(x, t) be
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a non-chiral boson defined on the half-line. The field φ(x, t) in turn can be decom-
posed into two chiral bosons, namely its right- and left-moving components ϕR and
ϕL (as we did in Chapter 6), which are related to the odd field φo. These fields are
now defined on the entire line as follows:

ϕR(x, t) = φo(x, t), ϕL(x, t) = φo(−x, t) (15.166)

We will refer to this transformation as the “folding” of the x axis on the posi-
tive half-line. In terms of the folded field ϕ the Euclidean action for the odd field
becomes, for the two electron tunneling cases we discussed,

S = 1

8π

∫ ∞

−∞
dt

∫ ∞

0
dx(∂μϕ)

2 + �e

∫ ∞

−∞
dt cos

(
1√
2ν
ϕ(0, t)

)
(15.167)

and, for quasiparticle tunneling,

S = 1

8π

∫ ∞

−∞
dt

∫ ∞

0
dx(∂μϕ)

2 + �qp

∫ ∞

−∞
dt cos

(√
ν

2
ϕ(0, t)

)
(15.168)

The action(s) of Eqs. (15.167) and (15.168) look very similar to the action of the
sine–Gordon theory, which was discussed in Chapters 4 and 5, except for the fact
that (a) the space is restricted to the half-line x ≥ 0 and (b) the vertex operator
acts only on the boundary of the space-time, x = 0. For this reason this system is
known as the boundary sine–Gordon theory.

The free compactified boson ϕ in two (or 1 + 1) dimensions is a CFT (see
Chapters 4 and 7). In the case at hand this CFT lives on a space that is half the line,
x > 0, and for all times. In its Euclidean version the space-time is the right half-
plane. The boundary vertex operators that enter in Eq. (15.167) and Eq. (15.168)
can affect only the boundary conditions of the field ϕ. Thus, if the vertex operators
representing tunneling are absent, the field ϕ obeys Neumann boundary conditions,
∂xϕ = 0. More physically, this means that, in the absence of tunneling, the tunnel-
ing current must vanish. On the other hand, in the limit of strong tunneling, the field
ϕ is pinned at the classical minima of the cosine operators, given by ϕ = √

2ν2πn
(with n ∈ Z) for electron tunneling and ϕ = √

2/ν2πn for quasiparticle tunneling,
and hence obeys Dirichlet boundary conditions, ϕ = constant.

Let us consider the case of quasiparticle tunneling at a constriction (case (c)).
This situation is described by a theory of a free compactified boson on the half-
plane x > 0, with Neumann boundary conditions, perturbed by the boundary vertex
operator cos(

√
ν/2ϕ), which represents quasiparticle-tunneling processes. We saw

above that the scaling dimension of the quasiparticle-tunneling operator is ν =
1/m < 1. Hence it is a relevant perturbation and this fixed point is unstable. To
see how this comes about in the boundary sine–Gordon picture, we note first that
the Neumann boundary condition changes the correlators of the free boson. We will
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work in the Euclidean theory. If we denote by G0(�x, �x ′) = G0(�x−�x ′) the correlator
of the free boson on the entire plane, we obtain the correlator on the half-plane with
Neumann boundary conditions GN(�x, �x ′) using the method of image charges,

GN(�x, �x ′) = G0(x − x ′, τ − τ ′)+ G0(x + x ′, τ − τ ′) (15.169)

which satisfies the Neumann boundary condition. Notice that this propagator is
not invariant under translations along the x axis but is invariant under translations
along the τ axis, as it should be. As a result of the boundary (and of the boundary
condition), the scaling dimension of the vertex operator on the boundary is twice
the scaling dimension in the bulk, � = 2(ν/2) = ν, which is consistent with our
earlier analysis.

Since this fixed point is unstable, we guess that it must flow to a regime in which
the tunneling amplitude �qp becomes large, �qp → ∞, and the boson ϕ now obeys
Dirichlet boundary conditions. In other terms, the effect of the boundary vertex
operator is to induce a flow in the boundary conditions from Neumann (the unstable
fixed point) to Dirichlet (the stable fixed point). On the other hand, in terms of the
dual field ϑ , which we introduced in Section 5.6.2, Eqs. (5.278), the Neumann
boundary condition maps onto a Dirichlet boundary condition since ϕ and the dual
field ϑ satisfy the dual (Cauchy–Riemann) relations Eq. (5.280) which imply that

∂xϕ = −∂τϑ, ∂τϕ = ∂xϑ (15.170)

Hence, Dirichlet boundary conditions for the field ϕ, ∂τϕ = 0, i.e. ϕ = constant,
maps onto Neumann boundary conditions for the dual field, ∂xϑ = 0. This map-
ping is known as T duality. On the other hand, in our discussion of the Luttinger
model in Chapter 6, we saw that under T duality the Luttinger parameter K =
ν )→ 1/K = 1/ν. However, in the boundary sine–Gordon system, Eq. (15.167)
and Eq. (15.168), we see that we can identify the Luttinger parameter with the
filling factor, K = ν. Thus, T duality maps the quasiparticle operator onto the elec-
tron operator and vice versa. Hence, T duality maps the problem of Eq. (15.167) at
strong coupling to Eq. (15.168) at weak coupling. The crossover between these two
fixed points takes place at the crossover scale (the “Kondo scale”) TK ∼ �

1/(1−ν)
qp ,

since the boundary scaling dimension of the vertex operator is ν = 1/m.
Affleck and Ludwig (1991) considered the effects of boundary conditions on

the entropy of CFTs. Using the methods of boundary CFT (Cardy, 1986, 1989),
they examined the behavior of the thermodynamic entropy of a CFT as a function
of temperature T and system size L . They showed that in a 1D quantum critical
system, i.e. a CFT, in the thermodynamic limit L → ∞ the entropy has a finite
non-extensive limit as T → 0 given by

S = ln g (15.171)
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where g is known as the Affleck–Ludwig degeneracy. Furthermore, Affleck and
Ludwig also showed that, if the CFT has a perturbation that acts only at the bound-
ary, it induces a flow in the degeneracy g that has universal values for conformal
boundary conditions. This is precisely the case in the boundary sine–Gordon theory
we are interested in here. In particular, the Affleck–Ludwig degeneracy vanishes
for Dirichlet boundary conditions but is non-zero for Neumann boundary condi-
tions, under which it takes the value g = ln

√
m. In general the Affleck–Ludwig

entropy is determined by the fusion rules of the primary fields associated with the
conformal boundary conditions and can be computed from the modular S-matrix
of the conformal field theory using the Verlinde formula.

It is instructive to construct the perturbation series in powers of the coupling
constant �qp of the Euclidean form of the path integral for the boundary sine–
Gordon field ϕ obeying Neumann boundary conditions at x = 0, whose action is
given in Eq. (15.168). The correlator of the field ϕ along the imaginary time axis is

〈N |ϕ(τ, 0)ϕ(0, 0)|N 〉 = −ln τ 2 (15.172)

where |N 〉 denotes the ground state of the field ϕ with Neumann boundary con-
ditions. Let T ± denote the vertex operator for quasiparticle tunneling, T ± =
exp(±i

√
ν/2ϕ). The tunneling term of the action now has the form

Stun =
∫

dτ
[
�T +(τ )+ �∗T −(τ )

]
(15.173)

The nth-order term of the expansion in powers of the tunneling amplitude �qp

(where we absorb the oscillatory factor) involves the computation of an expectation
value of the n vertex operators T ± at n (imaginary) times τ j ( j = 1, . . . , n) for a
field ϕ with Neumann boundary conditions that has the form of a logarithmic gas
along the imaginary-time axis (see Kane and Fisher (1992) and Chamon et al.
(2007)),

〈N |T qn . . . T q
1 |N 〉 = δ

⎛⎝∑
j

q j

⎞⎠ exp

⎛⎝ ν
∑
j>k

q j qk ln|τ j − τk |2
⎞⎠ (15.174)

where we defined the charges q j = ±1 to represent the insertions of the vertex
operators. The delta-function factor enforces charge neutrality.

We can also construct a similar expansion about the strong-coupling fixed point
at which the field ϕ is pinned (at the boundary) and obeys Dirichlet boundary condi-
tions, which we will represent as the state |D〉. This expansion now involves a series
of instanton and anti-instanton processes that represent the tunneling between suc-
cessive vacua of the field ϕ at the boundary. However, we can use T duality to
map the limit of strong quasiparticle tunneling to the weak-coupling regime for
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tunneling of electrons in terms of the dual field ϑ obeying Neumann boundary
conditions. The propagator of the field now is

〈D|ϕ(τ)ϕ(0)|D〉 = 〈N |ϑ(τ)ϑ(0)|N 〉 = −ln τ 2 (15.175)

Hence the new perturbation series now involves the computation of the expec-
tation value of the insertion of n vertex operators of the dual field, T̃ ± =
exp(±iϕ/

√
2ν), which takes the form

〈D|T̃ q1(τ1) . . . T̃ qn (τn)|D〉 = δ

⎛⎝∑
j

q j

⎞⎠ exp

⎛⎝1

ν

∑
j>k

q j qk ln|τ j − τk |2
⎞⎠

(15.176)

which is the same expression as that which we would have obtained for electron
tunneling. Thus, up to a redefinition of the coupling constant, we see that T duality
maps quasiparticle tunneling to electron tunneling and vice versa.

It turns out that the boundary sine–Gordon theory is actually an integrable sys-
tem solvable by the (thermodynamic) Bethe ansatz (Fendley et al., 1994). The
exact solution of the boundary sine–Gordon theory is explicitly self-dual. Using
this approach, whose details we will not go into here, Fendley, Ludwig, and Saleur
(Fendley et al., 1995a, b) showed that at zero temperature, T = 0, the quasiparticle
tunneling current It obeys explicitly the duality relation

It(TK, V, ν) = e2

h
νV − ν2 It(TK, V, ν−1) (15.177)

Furthermore, the differential tunneling conductance G t(V ) at voltage V can be
expressed in terms of two series (related to each other by T duality):

G t(V ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e2

h

∞∑
n=1

cn(ν
−1)

(
eV

TK

)2n(ν−1−1)

,
eV

TK
< eδ

e2

h
ν

[
1 −

∞∑
n=1

cn(ν)

(
eV

TK

)2n(ν−1)
]
,

eV

TK
> eδ

(15.178)

where, as before, the crossover scale is TK = constant × �
1/(1−ν)
qp . The coefficients

cn are

cn(ν) = (−1)n+1 �(nν)
√
π

�(n)�(n(ν − 1)+ 1/2)
(15.179)

where �(z) is the Euler gamma function, and in this case δ = 1
2 ln(ν−1 − 1) −

(1/(2(1 − ν)))ln ν.
The results of Eq. (15.178) show that in the low-voltage regime the differential

conductance is suppressed, and vanishes as V 2(m−1). This is consistent with the
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low-energy limit being governed by the stable fixed point at which the fluid is split
into two parts that are weakly coupled by electron tunneling, which is irrelevant.
Conversely, in the large-voltage regime the differential conductance approaches
νe2/h, the Hall conductance of the bulk fluid. This is consistent with this limit
being controlled by the unstable fixed point at which the constriction is open and
for which quasiparticle tunneling is relevant. This non-trivial behavior, including
the crossover, which was originally proposed by Kane and Fisher (1992), has been
verified experimentally by Roddaro and coworkers (Roddaro et al., 2004; Stefano
et al., 2004).

The problem of tunneling into a quantum Hall edge state from a Fermi liquid at a
point contact has been solved by a similar approach (Chamon and Fradkin, 1997).
The crossover behavior for this case was in general terms verified by experiment
(Chang et al., 1996; Chang, 2003), although the observed tunneling exponent does
not quite agree with the theoretical prediction. Presumably this discrepancy may
be due to the fact that in this experiment the setup is closer to a line junction (or,
rather, an array of point contacts) instead of a single point contact, which is what
the theory actually describes.

15.7 Noise and fractional charge

We will now apply the formalism of the preceding section to the problem of shot
noise in the tunneling current. The interest of this question is that it gives a direct
way to measure the fractional charge of the quasiparticles. Here we will discuss
the simplest case, namely the tunneling current in a quantum Hall constriction of a
Laughlin state.

The noise spectrum S(ω) of the quasiparticle-tunneling current Iqp is obtained
from the tunneling-current correlation function by the expression (Kane and Fisher,
1994; Chamon et al., 1996)

S(ω) =
∫ ∞

−∞
dt

〈{
Iqp(t), Iqp(0)

}〉
eiωt (15.180)

where Iqp = 2eν�qp sin
(√

ν/2ϕ + ω∗
0t

)
is the quasiparticle-tunneling current

defined in Eq. (15.165) and ω∗
0 = eνV/�.

The quasiparticle-tunneling-current correlator is

〈Iqp(t)Iqp(0)〉 =
(

e

m

)2

|�qp|2eiω∗
0 t

×
〈
exp

(
i

√
ν

2
ϕ(t)

)
exp

(
−i

√
ν

2
ϕ(0)

)〉
+ c.c. (15.181)
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To lowest order in the matrix element �qp it is given by

〈Iqp(t)Iqp(0)〉 = (eν)2|�qp|2 2 cos(ω∗
0t)

(ε + i t)2ν (15.182)

Thus, the spectral function S(ω) is found to be (Chamon et al., 1996)

S(ω) = (eν)2�2
qp

[
f+(ω∗

0 + ω)+ f−(ω∗
0 + ω)+ f+(ω∗

0 − ω)+ f+(ω∗
0 − ω)

]
(15.183)

where

f±(ω) =
∫ ∞

−∞
dp

eiωp

(ε ∓ i p)2ν
= 2π

�(2ν)
|ω|2ν−1e−|ω|εθ(±ω) (15.184)

where �(x) is the Euler gamma function and θ(x) is the step function. Using the
result that the expectation value of the tunneling current at voltage V , to lowest
order in �qp, is given by

〈Iqp〉 = 2π

�(2ν)
eν|�qp|2ω∗

0
2ν−1 (15.185)

we find that the noise spectrum is

S(ω) = eν〈Iqp〉
[(

1 − ω

ω∗
0

)2ν−1

+
(

1 + ω

ω∗
0

)2ν−1
]

(15.186)

In the limit of zero frequency, the noise spectrum approaches the shot-noise form

lim
ω→0

S(ω) = 2e∗〈Iqp〉 (15.187)

with e∗ = eν = e/m. Therefore a measurement of the shot noise of the tunnel-
ing current measures directly the fractional charge of the quasiparticles (Kane and
Fisher, 1994).

The result of Eq. (15.187) has been used to measure the fractional charge of
the quasiparticles in tunneling-current-noise experiments (de Picciotto et al., 1997;
Saminadayar et al., 1997) in Laughlin states, and in the non-abelian state with
filling fraction 5/2 (Dolev et al., 2008). The experimental results are generally
consistent with the quasiparticles having a fractional charge, although there are
unresolved questions regarding the experiments.

15.8 Quantum interferometers

Constrictions and point-contact tunneling offer a way to measure the fractional
charge of the quasiparticles. However, to measure the fractional statistics it is
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necessary for the quasiparticles to have more than one interference pathway. In
principle the simplest way to measure the fractional statistics is a quantum inter-
ferometer of the type shown in Fig. 15.12, which is an idealized description of such
a device, a “Fabry–Pérot” interferometer.

The theory of the quantum Hall interferometer for Laughlin states was developed
by Chamon et al. (1997). This theory was extended to the case of non-abelian states
(Fradkin et al., 1998; Bonderson et al., 2006; Stern and Halperin, 2006; Bishara
et al., 2009). Several experimental groups have tested these theoretical results. The
predictions of Chamon et al. (1997) for the Laughlin state at ν = 1/3 have been
tested by Camino et al. (2005), who, up to some interpretation issues, have qual-
itatively confirmed the theoretical results. The interferometer for the non-abelian
quantum Hall state at ν = 5/2 has been the focus of challenging experiments that
at least qualitatively have produced results agreeing with the theoretical predictions
(Willett et al., 2010).

We will consider a Laughlin quantum Hall state with two constrictions, as shown
in Fig. 15.12, located at coordinates x j ( j = 1, 2), with the x axis running parallel
to the edges. The tunneling-matrix elements are, respectively, �1 and �2. The flux
� enclosed in the region x1 ≤ x ≤ x2, which enters into the theory through the
phase of the tunneling amplitudes, creates a number Nq of Laughlin quasiparti-
cles/quasiholes, and thus controls the deviation of the flux–charge relation for the
ideal fractional quantum Hall state. The tunneling currents in the two constrictions
are labeled by I1 and I2.

In the absence of constrictions, the transmitted current along (say) the bottom
edge is simply the Hall current IH, with a Hall conductance νe2/h. In the presence
of the constrictions, the transmitted current is reduced to Itrans = IH − (I1 + I2).
This transmitted current will exhibit oscillations as a function of the flux � due to
(a) the Aharonov–Bohm processes affecting the tunneling quasiparticles and (b) an

FQHFQHedges

Γ1

I1

Γ2

I2

A

B

Nq

Φ

Figure 15.12 A fractional quantum Hall (FQH) interferometer.
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additional interference due to the fractional statistics of the tunneling quasiparticles
with localized quasiparticles in the region between the two constrictions. Which
interference process is seen depends on how the interferometer is operated. If we
keep the filling fraction fixed as the external magnetic field is varied, the oscillation
will be due entirely to the Aharonov–Bohm effect, since no quasiparticles are added
to (or subtracted from) the bulk. If, on the other hand, the number of particles in
the interference region is held fixed, the oscillations are due to both the Aharonov–
Bohm effect and the fractional statistics of the quasiparticles. Since the Aharonov–
Bohm oscillation depends on the charge of the tunneling quasiparticle, in this mode
the interferometer can also be used to measure the fractional charge. It is in practice
hard to control the total charge enclosed in the interference region, and this makes
the operation of the interferometer difficult, leading to subtle but revealing effects
(Halperin et al., 2011). For simplicity, we will ignore these problems and assume
that the ideal conditions can be reproduced in the experiment.

15.8.1 Interferometers for abelian quantum Hall states

The theory of the quantum Hall interferometer for abelian (Laughlin) states devel-
oped by Chamon et al. (1997), whose work we will follow in this section, is
constructed as an extension of the theory of tunneling at quantum Hall constrictions
which we presented in the preceding section. Let φL and φR be, respectively, the
chiral bosons for the top and bottom edges of the quantum Hall fluid as depicted in
Fig. 15.12. We will assume that the tunneling-matrix elements �1 and �2 are weak
enough that we can use perturbation theory to describe the interference. However,
unlike the case of a single point contact, we will not be able to simplify the dis-
cussion by “flipping” the direction of flow along one of the edges. Instead we will
regard φR and φL as the two chiral components of a single non-chiral boson φ =
φR + φL as in the bosonized theory of the Luttinger liquid discussed in Chapter 6.
In this language, the quasiparticle operators �qp,R and �qp,L of each edge are

�qp,R ∝ ei
√
νφReikFx , �qp,L ∝ e−i

√
νφLe−ikFx (15.188)

where kF is the momentum of the quasiparticles (which can be neglected for a sin-
gle point contact). If A is the area of the quantum Hall fluid enclosed between
the two point contacts, then the momentum difference of electrons in the top and
bottom edges is 2kF,e = 2πB A/φ0 (where B A = � and φ0 = hc/e is the flux
quantum), whereas for quasiparticles it is instead 2kF = ν2kF,e. These phase factors
can be absorbed into the definition of the tunneling amplitudes,

�1,2 = �̄1,2e±iπν�/φ0 (15.189)
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With these definitions the Lagrangian (density) of the edge states of a Laughlin
quantum Hall fluid with two constrictions is

L = 1

8π

[
(∂tφ)

2 − v2(∂xφ)
2
]− ∑

j=1,2

� j e
−iω∗

0 tδ(x − x j )e
i
√
νφ(t,x j )+h.c. (15.190)

which is also the Lagrangian of a (spinless) Luttinger liquid with two back-
scattering impurities. Here, as before, the Josephson frequencies are ω∗ = e∗V/�,
where V is the voltage across both constrictions and v is the velocity of the edge
states.

A straightforward calculation to second order in the tunneling-matrix elements
yields the result that the tunneling current It = I1 + I2 at zero temperature is
(Chamon et al., 2007)

It = e∗|�eff|2 2π

�(2ν)
|ω∗

0|2ν−1 sgn(ω∗
0) (15.191)

where the “effective” matrix element �eff is given by

|�eff|2 = |�1|2 + |�2|2 +
(
�1�

∗
2 + �∗

1�2
)

Fν

(
ω∗

0a

v

)
(15.192)

where a is the distance between the two constrictions and

Fν(x) = √
π
�(2ν)

�(ν)

Jν−1/2(x)

(2x)ν−1/2
(15.193)

Here �(x) is the Euler gamma function and Jν−1/2(x) is the Bessel function of the
first kind.

In the presence of Nq quasiholes in the area between the two constrictions, the
contribution of the phases of the tunneling-matrix elements gets shifted to

�∗
1�2 = �̄∗

1 �̄2 exp

[
−i2π

(
ν
�

φ0
− Nqν

)]
(15.194)

where the phase shift 2πνNq is the contribution of the fractional statistics of
the tunneling quasiparticle as its worldline braids with the Nq localized quasi-
particles. Thus, there is an interference contribution to the tunneling current (and
hence also to the transmitted current), which is sensitive both to the charge of the
quasiparticles and to their fractional statistics.

15.8.2 Interferometers for non-abelian quantum Hall states

This analysis has been extended to the case of non-abelian quantum Hall states.
Let us consider for concreteness the case of the Moore–Read state at filling factor
ν = 5/2, which was discussed in Sections 14.8 and 15.4.5. The Moore–Read state
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has a composite edge with a charge sector described by a chiral boson φ and a chiral
Majorana fermion χ , each with its own propagation velocity. The fundamental
quasiparticle is a composite object of the charge and neutral sectors,

σ ∼ χ exp

(
i

2
√

2
φ

)
(15.195)

Thus, the main difference is that the quasiparticle which takes part in the tunneling
processes, the σ quasiparticle, obeys non-abelian braiding statistics.

The tunneling current has an interference component that is directly related
to the measurement of expectation values of Wilson loop operators in the effec-
tive Chern–Simons gauge theory. To see this we follow the work of Fradkin and
coworkers (Fradkin et al., 1998) and consider a quasihole that is injected at point
A in the lower edge and then tunnels at the first contact, and arrives at point B at
the left end of the top edge in state |ψ〉 (see Fig. 15.12). Let us now consider a
second quasihole also injected at point A, but which now tunnels to the top edge
at the second constriction, arriving at point B in state eiαBNq |ψ〉, where α is the
Aharonov–Bohm phase determined by the flux � piercing the interferometer and
BNq is the braiding operator for the second quasihole to encircle the Nq quasiholes
in the region between the constrictions.

Then, the longitudinal tunneling conductance measured at point B of Fig. 15.12
is proportional to (Fradkin et al., 1998)

σxx ∝ |�1|2 + |�2|2 + Re
[
�∗

1�2eiα〈ψ |BNq |ψ〉] (15.196)

The matrix element 〈ψ |BNq |ψ〉 is the expectation value of the Wilson loop opera-
tors of the tunneling quasiholes braided with the Wilson loops of the static quasi-
holes in the enclosed region, which is equal to the Jones polynomial VNq(e

iπ/4)

(see Section 14.8). Therefore, the oscillatory component of the tunneling current
(and conductance) measures a topological invariant!

In the simplest non-abelian quantum Hall state, the Moore–Read state, we saw
that the effective-field theory is closely related to the SU(2)2 Chern–Simons gauge
theory. In this case the general result of Eq. (15.196) takes the much simpler
form. Using the skein relation, Eq. (14.156), the matrix element 〈ψ |BNq |ψ〉 can be
computed explicitly, with the result (Bonderson et al., 2006; Stern and Halperin,
2006)

σxx ∝ |�1|2 + |�2|2 (15.197)

for Nq odd, and

σxx ∝ |�1|2 + |�2|2 + 2|�1||�2|(−1)Nψ cos

(
α + arg

(
�2

�1

)
+ Nq

π

4

)
(15.198)
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for Nq even. Here Nψ = 1 when the Nq quasiholes are (or fuse into) the state ψ
and Nψ = 0 otherwise. The interference term for Nq odd vanishes since an odd
number of σ particles cannot fuse into the identity I . Hence the expectation value
vanishes for Nq odd, and the interference disappears if there is an odd number of σ
quasiholes in the enclosed region.

Thus, in addition to the oscillations due to the Aharonov–Bohm effect and to
fractional statistics, in the non-abelian case there is an extra oscillation, which for
the Moore–Read state takes different values depending on whether there is an odd
or even number of quasiparticles trapped inside the interferometer. The origin of
this even–odd effect lies in the fusion rules of the non-abelian excitations. In the
case of the Moore–Read states the fundamental quasiparticle, which we denoted by
σ , obeys the Ising fusion algebra: σ �σ = 1+ψ , σ �ψ = ψ , and ψ �ψ = 1 (here
ψ is a chiral Majorana fermion and 1 is the identity operator). Since σ particles
can fuse into two different channels, 1 and ψ , the expectation value of a set of σ
operators will vanish if the resulting state is not the identity, 1. Hence, the even–odd
oscillation is a signature of the collective state of these non-abelian quasiparticles.
Therefore, the interferometer can also detect non-abelian statistics.

15.9 Topological quantum computation

Classical computers (i.e. all the computers we know so far) operate by making
sequential binary operations of bits. Bits are physical systems with two possible
states, usually denoted by 0 and 1. There are many quantum-mechanical physical
systems that also have two states. We call them two-level systems. One example of
such systems is the electron spin, which can assume two possible states, | ↑〉 and
|↓〉. In contrast to the classical bits, these quantum bits or qubits, can be in any
linear combination of these two states. In other words, in quantum mechanics we
operate on a Hilbert space of states spanned by the basis states of the qubit. This
linear feature of quantum mechanics makes the notion of using the quantum evo-
lution of states for a computation a very appealing prospect. There is, however, a
drawback (there always is!): decoherence. All physical systems are coupled in one
way or another to their physical environment, and in most cases this leads to a loss
of coherence, which in this context implies a loss of information. This problem is
the main obstacle to most schemes of quantum computation. A beautiful introduc-
tion to quantum computing, including topological quantum computing, can be seen
in Preskill’s lectures (Preskill, 2004).

It was realized first by Kitaev (2003), in a paper that has circulated since 1997,
and was later expanded and developed by Freedman and coworkers (Freedman,
2001; Freedman et al., 2002a, b), that topological field theories offer, in princi-
ple, a pathway for quantum computation without decoherence. The essence of this
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proposal is that topological field theories quite generally have finite-dimensional
topologically protected Hilbert spaces. We saw elsewhere in this book that the
effective low-energy theory of physical systems in a topological phase is a topo-
logical field theory. Thus one is led to the notion of regarding the topologically
protected degeneracies of topological phases as the qubits themselves.

For instance, in the case of the Moore–Read state we can consider a system with
four σ quasiparticles, which, as we saw, supports a two-dimensional topologically
protected Hilbert space. A braiding operation by which one σ particle is adiabati-
cally transported leads to a state that is a linear combination of the two basis states.
In this context, adiabatic means a sufficiently slow process that does not gener-
ate states outside this Hilbert space. Hence a braiding operation is represented as
a unitary transformation in this Hilbert space. Topological protection here means
that local excitations and/or disorder are decoupled from this Hilbert space and,
hence, that there is no available mechanism for decoherence.

Since we know that non-abelian quantum Hall states support such non-abelian
excitations with topologically protected Hilbert spaces, it is natural to regard these
degenerate states as topologically protected qubits. Then the next question is that
of how to manipulate these states and how to read off the result of a computa-
tion. One possible way is to use variants of the quantum interferometers discussed
in the preceding section as devices that manipulate qubits. There is an on-going
effort, both experimental and theoretical, to generate devices that allow the con-
trolled manipulation of these degenerate Hilbert spaces (Das Sarma et al., 2008).
An idealized qubit based on the ν = 5/2 Moore–Read state consists in adding
two islands (quantum dots) to the central region of the interferometer of Fig. 15.12
with a control gate in between them. The purpose of the two islands is to trap the
σ particles, and the control gate monitors the state (Das Sarma et al., 2005).

From the physics point of view this is a fascinating prospect. For this scheme
(and its variants) to work, several formidable problems need to be solved. One is
the issue that quantum Hall states only occur at very low temperatures and high
magnetic fields. It may be possible to circumvent these very practical issues by
using devices made of topological insulators, which is currently actively being
explored. This is an appealing possibility but with problems of its own (such as
making these insulators insulate!). At any rate, at the time of writing this field is
still in its infancy.
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Topological insulators

16.1 Topological insulators and topological band structures

The term topological insulator refers to a novel (in 2011) class of solid-state
systems that have quantized transport properties due to topological properties of
their band structures. In this chapter I will provide a description of the salient ideas
behind this new and rapidly growing field. I will certainly not attempt to be exhaus-
tive in the presentation. Several specialized reviews have recently become available
and the reader is referred to them for more details (including an extensive list of ref-
erences) (Hasan and Kane, 2010; Hasan and Moore, 2011; Maciejko et al., 2011;
Qi and Zhang, 2011).

What is a topological insulator? It is an electronic system that is an insulator but
whose band structure is characterized by a topological invariant, i.e. a number that
in general is quantized to be an integer. As such, states of this type are robust in the
sense that their physical properties are stable (unchanged) under the action of local
perturbations of finite size. From this definition it follows that the properties of
topological insulators can be characterized at the level of free-fermion systems and
are not necessarily the result of strong-correlation physics. They are a generaliza-
tion of the conceptual framework behind the integer quantum Hall states. However,
in spite of the topological properties of their band structures, the ground states of
topological insulators are essentially unique and, even when degeneracies may be
present, they do not depend on the topology of the space. Hence topological insu-
lators are not topological fluids in the sense of the fractional quantum Hall states
or of the deconfined gauge theories (and spin liquids). It is quite likely that, at least
in two dimensions, there may exist topological fluids that are generalizations of
topological insulators. At the time of writing this is an open area of research whose
future is difficult to predict.

As we will see, one important consequence of the topological character of these
insulators is the existence of edge states, which are gapless excitations with support
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at the edges of the physical system, and cannot be affected in an essential way by
the effects of disorder and interactions. Quite surprisingly, in the simplest cases
these non-trivial insulators can be characterized at the level of a one-electron
theory, that is, by a property of their band structure. In some special, but very inter-
esting, cases, these states arise as the low-lying excitations (or quasiparticles) of
condensates, such as certain superfluids and superconductors, as well as in special
condensates in the particle–hole channel.

In two dimensions, systems with topologically non-trivial band structures turn
out to exhibit a variety of unusual quantized transport properties such as the anoma-
lous Hall effect, i.e. a quantum Hall effect in the absence of an external magnetic
field, and the quantum spin Hall effect, which is a similar phenomenon involving
instead the spin current rather than the charge current. Experimental evidence for
the quantized spin Hall effect has been found in 2D electron gases in HgTe–CdTe
quantum wells (König et al., 2008). An anomalous quantum Hall effect has been
predicted to exist in graphene bilayers, but so far has not been seen experimentally.
In three dimensions topological insulators are more subtle, and are characterized by
having topologically protected surface (or edge) states whose excitations are gap-
less chiral Dirac fermions, i.e. the spin of the excitation points along the direction
of the momentum in much the same way as the spins of neutrinos were supposed
to do (if they were massless, which we now know they are not). Materials that are
predicted to be 3D topological insulators include Bix Sb1−x , Bi2Se3, and Bi2Te3.
Although so far these materials are not insulating in the bulk, the chiral Dirac sur-
face fermions have been detected in angle-resolved photo-emission experiments
(Hasan and Kane, 2010; Hasan and Moore, 2011).

In retrospect, the first example of a topological insulator was actually found by
Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) (Thouless et al., 1982)
in their theory of the integer quantum Hall effect. We discussed this theory in
Chapter 12. In addition, the mean-field theory of the chiral spin liquid, which
was discussed in Chapter 10, can also be interpreted in hindsight as describing
a system with a quantum anomalous Hall effect. The theory of topological insu-
lators is, in essence, a generalization of the TKNN theory to band structures with
non-trivial topology in time-reversal-invariant electronic systems. For this reason
we will begin with a discussion of the TKNN theory but from a more general
perspective.

16.2 The integer quantum Hall effect as a topological insulator

The role of topology in band structure is simple to formulate. Here we will revisit
the theory of Thouless and coworkers (TKNN) of the integer Hall effect on lattices,
the Hofstadter problem, since it is the prototype of the topological insulator. Let us



16.2 The integer quantum Hall effect as a topological insulator 671

consider a system of spinless fermions on a 2D lattice. Let us imagine a case in
which the system has M electronic bands with eigenvalues {Em(�k)} (with m =
1, . . . , M) and the eigenvectors are the Bloch states {|um(�k)〉} such that the wave
functions are

ψm(�x) = um(�k)ei �k·�x (16.1)

where �k is a (quasi-)momentum in the first Brillouin zone of the lattice. The Bloch
states will be assumed to be non-degenerate and hence the eigenvalues obey the
strict inequality

|Em(�k)− En(�k)| > 0 (16.2)

for all momenta in the first Brillouin zone. Here we will consider the case in which
N < M bands are fully occupied, and hence the gap between the N th and (N+1)th
bands does not close in the Brillouin zone.

Next we follow TKNN and define the Berry connection �Am(�k), the two-
component vector field

A(m)
i (�k) = i〈um(�k)|∇ki |um(�k)〉 (16.3)

where i = 1, 2 are two orthogonal directions in momentum space. A redefinition of
the basis of Bloch states {|um(�k)〉} induces a unitary transformation on the vector
{um(�k)} of occupied bands. In general this is a transformation with gauge group
U(1)N . Occasionally degeneracies in the band structure may lead to non-abelian
symmetries. A U(1)N gauge transformation is induced by a change in the local (on
the Brillouin zone) phase of the Bloch state,

|um(�k)〉 )→ ei fm (�k)|um(�k)〉 (16.4)

A(m)
i (�k) )→ A(m)

i (�k)+ ∇ki fm(�k)
where we assumed that the functions fm(�k) are continuous and differentiable. Since
the physics cannot depend on the choice of basis (or, rather, its redefinition), we are
led to the conclusion that only gauge-invariant quantities that are invariant under
these smooth redefinitions are physically meaningful. Thus, the physical content
must be encoded in the curl (or curvature) of the Berry connection, which, in two
dimensions, is the pseudo-scalar quantity

Fm(�k) = εi j ∂kiA
(m)
j (�k) (16.5)

The flux of the Berry curvature Fm over the Brillouin zone (BZ) is∫
BZ

d2k Fm(�k) =
∮
�

d�k · �A(m)(�k) (16.6)
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where � is the boundary of the Brillouin zone. However, the circulation of the
Berry connection on the boundary � of the Brillouin zone must obey the (Dirac)
quantization condition ∮

�

d�k · �A(m)(�k) = 2πNm (16.7)

where Nm are integers. This condition is required in order for the Bloch states to
be single-valued over the Brillouin zone.

The integers Nm are the topological invariants known as the first Chern num-
ber. We recognize that these integers are the same as the topological invariants of
the TKNN construction for the Hofstadter problem. They are topological in the
following sense. The Bloch states are eigenstates of the band Hamiltonian H(�k),

H =
∑
n,m

∫
BZ

d2k c†(�k)Hn,m(�k)cm(�k) (16.8)

where BZ denotes the 2D Brillouin zone.
Let us assume that for a particular band m the Chern number does not vanish,

Nm �= 0. Then, a smooth change of the parameters of the Hamiltonian Hn,m(�k)
cannot change the value of the Chern number (since it is an integer!). The only
way to change the Chern number by a smooth deformation of the Hamiltonian
is for the gap to close (under the deformation) at some point �k0 of the Brillouin
zone. In fact, we have already seen in Section 12.8 that in the TKNN theory of
the integer quantum Hall effect the Chern number yields the value of the quantized
Hall conductance.

We will now apply these ideas to insulators whose band structures are also char-
acterized by the value of the Chern number, even though these physical 2D systems
do not have an applied external magnetic field. Nevertheless, depending on whether
they are spin-polarized or not, these insulators exhibit either an anomalous Hall
effect, i.e. a quantum Hall effect at zero magnetic field, or a quantum spin Hall
effect. Some of these ideas extend to 3D systems. However, in three dimensions
the topological invariant is not an integer but instead can take only two possible
values. The Berry-phase concept is also useful to describe phases of Fermi fluids
with broken time-reversal invariance, with an unquantized anomalous Hall effect
(Sun and Fradkin, 2008).

16.3 The quantum anomalous Hall effect

Let us consider a 2D non-interacting electronic system with the Fermi energy
located at a gap between two of its energy bands. This system has all its bands
below the Fermi energy fully occupied and all the bands above the Fermi energy
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empty. This is the prototype of a band insulator. From a macroscopic point of
view, a band insulator is characterized by having a finite dielectric constant and,
at T = 0, a vanishing conductivity tensor. However, if the insulator breaks time-
reversal invariance, the Hall conductivity may be non-vanishing even in the absence
of an external magnetic field. The existence of a finite Hall conductivity in the
absence of an external magnetic field is known as the anomalous Hall effect regard-
less of whether the system is a metal or an insulator. However, as we will see below,
if the system is an insulator, the anomalous Hall conductivity is quantized and we
have a quantum anomalous Hall effect.

16.3.1 A square lattice with flux π per plaquette

There are two simple model systems that have an anomalous quantum Hall effect.
One example is a system of spinless fermions on a square lattice with flux � = π

(half the flux quantum) per plaquette with the following free-fermion Hamiltonian:

H =− t
∑

�r , j=1,2

(
c†(�r)ei A j (�r)c(�r + �e j )+ h.c.

)
− t ′

∑
�r

(
c†(�r)eiχ+c(�r + �e1 + �e2)+ c(�r + �e2)

†eiχ−c(�r + �e1)+ h.c
)
(16.9)

where �r = (x1, x2) runs over the sites of the square lattice, and the vector field Ai

is chosen to have flux � = π on each plaquette of the square lattice. In the Landau
gauge we adopted in Chapter 12, A2 = 0, A1 = π for x1 even, and A1 = 0 for x1

odd, the magnetic unit cell has two inequivalent lattice sites. The t ′ terms open a
gap in the spectrum. Here, as in the case of the chiral spin liquid, we will choose
the phases along the diagonals of the plaquette to take the values χ± = ±π/2 in
such a way that the flux on every elementary triangle of the square lattice is +π/2.

For t ′ = 0 this is a special case of the Hofstadter problem discussed in Sections
12.2 and 12.8. As we saw in Chapter 8, and in the theory of the chiral spin liquid
in Chapter 10, the first two terms of the Hamiltonian of Eq. (16.9) represent a
theory of gapless lattice Dirac (or Kogut–Susskind) fermions. Except for the site-
potential term in Eq. (16.9), the spectrum of this system was derived in Section
10.2, and it was given in Eq. (10.50). The spectrum of this Hamiltonian is particle–
hole-symmetric and, in the gauge we chose above, it is given by

E±(�k) = ±
√
(2t cos k1)

2 + (2t cos k2)
2 + (4t ′ sin k1 sin k2)

2 (16.10)

At half-filling the Fermi energy is at EF = 0 and the lower band (labeled −) is
the filled valence band, while the upper band (labeled +) is the empty conduction
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band. For small t ′ the spectrum has a small energy gap at the Fermi energy located
in momentum space near the “nodal” point (π/2, π/2) and its reflections across
the three other quadrants of the first Brillouin zone. For t ′ = 0 the valence and
conduction bands cross at these four points. For excitation energies that are small
on the scale of the Fermi energy the excitation energies have a linear, relativistic-
like, spectrum,

E±(�q) = ±2t |�q| + O(q2) (16.11)

where the momentum �q is measured from one of the crossing points.
The low-energy physics of this system is described by a system of two species

(or valleys) of two-component Dirac fermions, ua(x) and va(x) (with a = 1, 2
being the two-spinor index), which for t ′ �= 0 obey a Dirac equation(

iγ0 ∂0 − ivF �γ · �∇ + m
)

ab
ub(�x) = 0(

iγ0 ∂0 − ivF �γ · �∇ + m
)

ab
vb(�x) = 0

(16.12)

where the 2D Dirac gamma matrices are given in terms of the three 2 × 2 Pauli
matrices

γ0 = −σ2, γ1 = −iσ1, γ2 = −iσ3 (16.13)

and obey the Dirac algebra,

{γ μ, γ ν} = 2gμν (16.14)

where gμν = diag(1,−1,−1) is the metric tensor of the (2 + 1)-dimensional
(Minkowski) space-time. Here we have used the fact that the Fermi velocity is
vF = 2ta0 (with a0 being the lattice spacing). The mass terms in Eq. (16.12) have
the same sign for both species of fermions. While the magnitude of the mass is set
by the next-nearest-neighbor hopping amplitude, m ∝ t ′, the sign of the mass term
is determined by the sign of the π/2 flux threading each elementary triangle of the
lattice.

A mass term for the two species of fermions can also be generated by a site-
potential energy that alternates between the two sublattices of the square lattice,
or by a Peierls unidirectional distortion of the bonds, as shown in Section 10.2.
However, the resulting mass terms have opposite signs for the two species. We
will see below that the relative sign of the mass terms is related to the role of
time-reversal invariance.

16.3.2 Graphene

Another simple system with a similar spectrum is graphene. Graphene is a system
of carbon atoms arranged into a 2D honeycomb lattice. Although as a conceptual
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model 2D carbon had “existed” for many years, the 2D form of carbon known as
graphene was only discovered quite recently (Novoselov et al., 2004). Most of the
observed transport properties of graphene, both without a magnetic field and with a
strong magnetic field, can be explained in terms of its low-energy theory, a system
of gapless Dirac fermions (Castro Neto et al., 2009).

In charge-neutral graphene, only one orbital of the carbon atom, the π orbital,
is partially occupied, while the other orbitals are either empty or full, and hence
separated by a large energy gap. The simplest description of the electronic states of
graphene is a tight-binding model on the honeycomb lattice with only one orbital
(or state) per site. The honeycomb lattice, shown in Fig. 16.1(a), has two sites in
each unit cell and hence can be regarded as two interpenetrating triangular lattices,
which we label by A and B. Let �rA denote the A site of the unit cell. Each A site
is separated from its neighboring B sites by the vectors (in units of the spacing
between two nearest-neighboring atoms on the same sublattice if a = 1)

�d1 =
(

1

2
√

3
,

1

2

)
, �d2 =

(
− 1√

3
, 0

)
, �d3 =

(
1

2
√

3
,−1

2

)
(16.15)

For future use we will also define the six next-nearest-neighbor displacement
vectors ±�ai (with i = 1, 2, 3) by

�a1 = �d2 − �d3, �a2 = �d3 − �d1, �a3 = �d1 − �d2 (16.16)

AB

1

2

3

d1

d2

d3

(a)

b1

b2

Γ

K

K

M
k1

k2

(b)

Figure 16.1 (a) The honeycomb lattice and its two sublattices A and B. The
rhombus is the unit cell. The two triangular sublattices are connected by the
vectors �d1, �d2, and �d3, and the three next-nearest-neighbor displacement vectors
are �a1, �a2, and �a3 (see the text). (b) The first Brillouin zone; �b1 and �b2 are the two
fundamental reciprocal-lattice vectors (see the text).
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Let us denote the fermion operator on the A sites by ψ(�rA) and the fermion
operators on the neighboring B sites by χ(�rA + �di ) (with i = 1, 2, 3).

With this notation, the Hamiltonian for this tight-binding model of non-
interacting (spinless) electrons with hopping amplitude t1 between nearest-
neighbor sites is (Semenoff, 1984)

H0 = t1
∑

�rA,i=1,2,3

[
ψ†(�rA)χ(�rA + �di )+ h.c.

]
(16.17)

For the moment we will consider the case in which the fermions are spinless, or
that the spin degree of freedom does not affect the physics beyond the requirements
of the Pauli principle. We will shortly consider the effects of the electron spin.

In Fourier space we write

ψ(�rA) =
∫

BZ

d2k

(2π)2
ψ(�k)ei �k·�rA, χ(�rB) =

∫
BZ

d2k

(2π)2
ψ(�k)ei �k·�rB (16.18)

where the momentum integrals run over the first Brillouin zone of the honeycomb
lattice, shown in Fig. 16.1(b). In Fourier space this free fermion system has the
Hamiltonian

H0 =
∫

BZ

d2k

(2π)2

(
ψ†(k), χ†(�k)

)
×

(
0 t1

∑
i=1,2,3 ei �k· �di

t1
∑

i=1,2,3 e−i �k· �di 0

) (
ψ(�k)
χ(�k)

)
(16.19)

The single-particle energy eigenvalues of this Hamiltonian are

E±(�k) = ±t1

√∣∣∣ei �k· �d1 + ei �k· �d2 + ei �k· �d3

∣∣∣2
(16.20)

Hence we have two bands, a valence band of negative-energy states E−(�k), and a
conduction band of positive-energy states E+(�k). The energy gap between these
two bands vanishes at the zeros of the function

∑
i=1,2,3 ei �k· �di , which occur at the

corners of the Brillouin zone, labeled by K and K′ in Fig. 16.1(b). Their wave

vectors are �qK =
(

2π/
√

3, 2π/3
)

and �qK′ = −�qK such that �qK · �d1 = 2π/3,

�qK · �d2 = −2π/3, and �qK · �d3 = 0, and similarly for the other equivalent corners
of the Brillouin zone obtained by successive rotations of �qK (and �qK′) by 2π/3 (see
Fig. 16.1(b)).

For charge-neutral graphene the Fermi energy is at EF = 0. In this case the
valence band, with dispersion E−(�k), is full, and the conduction band, with dis-
persion E+(�k), is empty. However, the only states at the Fermi energy are the
crossing points K and K′ (and their symmetry-related points at the corners of
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the first Brillouin zone) of the two bands. Thus graphene is not a semiconductor,
since its energy gap is zero, but it is not a metal either, since the Fermi sur-
face reduces to the crossing points. Hence graphene is an example of a (direct)
semi-metal.

Near the crossing points K and K′ the energy–momentum relations can be lin-
earized and become E± = ±t1|�q|, where �q is a small deviation from �qK or �qK′ .
Thus, in the low-energy limit, only the single-particle states with wave vectors
close to K and K′ (the two “valleys”) contribute to the physics of this system. Thus,
we are led to define two species (or flavors) of two-component Dirac fermions (or,
more properly, Weyl fermions), ψ1(�k) and ψ2(�k),

ψ1(�q) =
(

e−i π6 ψK(�q)
ei π6 χ(�q)

)
, ψ2(�q) =

(
e−i π6 χK′(�q)
ei π6 ψK′(�q)

)
(16.21)

where we have used the notation for the components of the Fermi fields near the
crossing points at K and K′ to be, respectively, ψK(�q) = ψ(�qK + �q), χK(�q) =
χ(�qK + �q), ψK′(�q) = ψ(�qK′ + �q), and χK′(�q) = χ(�qK′ + �q).

With this notation the effective low-energy graphene Hamiltonian becomes

H0 =
∫

d2q

(2π)2

∑
a=1,2

ψ†
a (�q)vF

(
σ1q1 + σ2q2

)
ψa(�q)

=
∫

d2x
∑

a=1,2

ψ†
a (x)vF

(
iσ1 ∂1 + iσ2 ∂2

)
ψa(x) (16.22)

where a = 1, 2 labels the two species (or flavors) of two-component Dirac (Weyl)
fermions, and vF = (

√
3/2)t1 is the Fermi velocity. Here, as before, σ1 and σ2 are

the two off-diagonal 2 × 2 Pauli matrices.
Let us consider two simple extensions of the simple graphene electronic struc-

ture. Thus we will consider adding to the Hamiltonian a site-potential-energy term
that assumes two values, ε on the sites of the A sublattice and −ε on the sites of the
B sublattice. This does not happen in graphene but does happen in graphene grown
on boron nitride, which has the same lattice structure. The other case that we will
consider is adding a next-nearest-neighbor hopping term that connects A sites with
each other and B sites with each other. The amplitude for the next-nearest-neighbor
hopping is t2e±iφ and represents a staggered magnetic flux (as shown in Fig. 16.2).
However, differently from the case in the Hofstadter problem we discussed before,
the flux through each hexagon is zero. Nevertheless, this flux breaks time-reversal
invariance. These time-reversal-symmetry-breaking terms are absent in the case of
graphene.
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A

B

Figure 16.2 Next-nearest-neighbor hopping amplitudes on the honeycomb
lattice. The arrows represent the orientation of the next-nearest-neighbor links
with hopping processes with amplitude t2eiφ . On one hexagon, the flux on the
triangles on the A and B sublattices is −3φ, whereas on all the adjacent triangles
of the same sublattice the flux is +3φ. The total flux on each hexagon is zero.

With these additional terms the free-fermion Hamiltonian in Fourier space has
the form (known as the Haldane model (Haldane, 1988a))

H0 =
∫

BZ

d2k

(2π)2

(
ψ†(�k), χ†(�k)

)
h(�k)

(
ψ(�k)
χ(�k)

)
(16.23)

where we have defined the one-particle Hamiltonian h(�k), which is a hermitian
2 × 2 matrix for each wave vector �k of the Brillouin zone. As such it can always
be expressed as a linear combination of the three Pauli matrices and of the 2 × 2
identity matrix I of the form

h(�k) = h0(�k)I + �h(�k) · �σ (16.24)

which is generic for any two-band system. The same considerations apply for the
π flux model we discussed before. The one-particle states have energy eigenvalues

E±(�k) = h0(�k)± ||�h(�k)|| (16.25)

where

||�h(�k)|| = (�h(�k) · �h(�k))1/2 (16.26)

is the norm of the vector �h(�k). The term proportional to the identity matrix I in
Eq. (16.24) reflects the fact that the lattice model with a flux is not invariant under
particle–hole conjugation. In what follows we will neglect this term, since it turns
out to be unimportant to the physics of the quantum anomalous Hall effect.
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In the particular case of the honeycomb lattice the scalar h0(�k) and the three-
component vector �h(�k) are given by

h0(�k) = 2t2 cosφ
3∑

i=1

cos(�k · �ai ), h1(�k) = t1

3∑
i=1

cos(�k · �di )

h2(�k) = t1

3∑
i=1

sin(�k · �di ), h3(�k) = ε + 2t2 sinφ
3∑

i=1

sin(�k · �ai )

(16.27)

Since all three Pauli matrices are present, it is not possible to find a coordinate
system for the spinors in which the Hamiltonian is real and symmetric. Hence in
this system, as expected, time-reversal invariance is broken explicitly, whereas in
the absence of the flux it is possible to rotate the spinors to a basis in which the
Hamiltonian is real.

Following now the same steps as those which led to the effective low-energy
theory for graphene, Eq. (16.22), the effective low-energy Hamiltonian for the Hal-
dane model, after rescaling energies by the Fermi velocity vF = (

√
3/2)t1, takes

the standard Dirac form

H0 =
∫

d2x
∑

a=1,2

ψ†
a (x)

(
iα1 ∂1 + iα2 ∂2 + maβ

)
ψa(x) (16.28)

Here we have defined the 2 × 2 Dirac matrices α1 = σ1, α2 = σ2 and β = σ3. In
what follows we will use the set of 2 × 2 Dirac gamma matrices,

γ0 = β = σ3, γ1 = βα1 = iσ2, γ2 = βα2 = −iσ1 (16.29)

which satisfy the Dirac algebra, {γμ, γν} = 2gμν , where gμν is the standard
(Bjorken and Drell) Minkowski metric in (2 + 1)-dimensional space-time. In this
notation the low-energy action for this system is that of two Weyl–Dirac fields
(with different masses)

S =
∫

d3x
∑

a=1,2

ψ̄a
(
iγ μ ∂μ − ma

)
ψa (16.30)

where, as usual, ψ̄a = ψ†
aγ0.

In the language of the Dirac spinors, time reversal is the operation that flips the
spin of the fermion and complex-conjugates the state. Thus, under time reversal,
which we will denote by the anti-linear operator ", a Dirac fermion in real space
transforms as

"ψ(x, y, t) = −γ1ψ(−x,−y, t) = −iσ2ψ(−x,−y, t) (16.31)

whereas under parity the Dirac spinor transforms as

Pψ(x, y, t) = iγ2ψ(x,−y, t) = σ1ψ(x,−y, t) (16.32)
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The (single-particle) Dirac Hamiltonian transforms under time reversal as follows:

"h( �p,m)"−1 = −iσ2h∗(− �p,m)iσ2 = p1σ1 + p2σ2 − mσ3 = h( �p,−m)

(16.33)

which amounts to saying that the mass term breaks time-reversal invariance in
two dimensions. On the other hand, under 2D parity the Dirac Hamiltonian
transforms as

Ph( �p,m)P−1 = σ1
[

p1σ1 − p2σ2 + mσ3
] = p1σ1 + p2σ2 − mσ3 (16.34)

which is equivalent to a time-reversal transformation.
In Eq. (16.28) we denoted the Dirac masses of the two flavors by

m1 = 3

2

t2
t1

sinφ − 2√
3

ε

t1

m2 = 3

2

t2
t1

sinφ + 2√
3

ε

t1

(16.35)

If ε = 0 the two masses of the two flavors of Dirac fermions have the same sign,
whereas in the absence of a flux, φ = 0, the two flavors have masses with opposite
signs. In general m1 �= m2 will have different magnitudes and/or signs.

We should note that much of the condensed matter literature, e.g. Haldane
(1988a) and Kane and Mele (2005a), uses a convention in which either the α2

matrix or the α1 matrix, but not both, has opposite signs for the two flavors. In
that convention time-reversal symmetry is broken when the Dirac mass terms have
opposite signs, which is the opposite convention to that which we have adopted
here. In terms of the Dirac gamma matrices, the reason for this difference is that in
odd space-time dimensions there is no γ5 matrix and instead there are two inequiv-
alent frames for the Dirac spinors, which are distinguished from each other by a
handedness or helicity. At any rate, it is always possible, and consistent, to define
the frames of the Dirac spinors to have the same handedness, as we have done here,
and to follow the criterion that time reversal amounts to changing the sign of the
mass term. This criterion is also intuitive insofar as, when a mass term is present,
the one-particle Dirac Hamiltonian is hermitian (as it should be) but cannot be real
and symmetric.

16.3.3 Quantization of the anomalous Hall effect

To see that we get an anomalous quantum Hall effect, we will couple the sys-
tem to a weak electromagnetic field in order to compute the conductance. We
will first discuss this calculation at the level of the effective-field theory of Dirac
fermions. Thus, we will consider the coupling of the Dirac fermions (either for
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the π flux model or for the case of Haldane’s honeycomb model) to a weak
electromagnetic field Aμ(x). This interaction has the standard form of minimal
coupling (dictated by gauge invariance). We will consider first the case of one
species of two-component Dirac (or Weyl) fermions of mass m for which the
Lagrangian is (setting vF = 1)

L = ψ̄
(
iγ μ ∂μ − eγ μAμ − m

)
ψ (16.36)

To compute the conductivity, we first need to compute the polarization tensor �μν ,
i.e. the current–current correlation functions. However, we have already done this
calculation in Section 10.4. There we found that the effective low-energy (com-
pared with the energy gap m) Lagrangian for the gauge fields is (Redlich, 1984)

L[Aμ] = − 1

4g2
FμνFμν + σxy

4
εμνλAμFνλ (16.37)

where (in standard units) g2 = π and σxy = (e2/(4π))sgn(m). The presence in the
effective Lagrangian of a Chern–Simons term, which is odd under 2D parity and
time reversal, is known as the parity anomaly. After restoring standard units, a sin-
gle two-component Dirac fermion in two space dimensions has a Hall conductivity

σxy = 1

2

e2

h
sgn(m) (16.38)

which is half of the minimum integer Hall conductivity, e2/h.
This result seemingly violates the quantization of the Hall conductivity of free

fermions that we discussed in the context of the integer quantum Hall effect.
Indeed, in Chapter 12 we showed that for systems with a full band of one-particle
states the Hall conductivity is quantized and, moreover, that this quantization has a
topological meaning insofar as it can be expressed in terms of a topological invari-
ant, the first Chern number, C1. We expect that these general arguments should also
apply to the π flux model and the honeycomb-lattice Haldane model since both are
free-fermion lattice models with a filled band. Hence the Hall conductivity should
be an integer, not a half-integer.

The loophole in our arguments is that in both models, and, indeed, in all lattice
models with band crossings (or models that are close to having band crossings), the
number of such crossings must be an even integer (even neglecting other degrees of
freedom such as spin), in accordance with the Nielsen–Ninomiya theorem (Nielsen
and Ninomiya, 1981; Friedan, 1982). Thus, in both systems, we encountered two
flavors of Dirac fermions, and found that each flavor contributes to the total Hall
conductivity an amount equal to (e2/(2h))sgn(m), where m is the mass for that
fermion flavor. In both models we found two situations. In one case the mass terms
of the Dirac Lagrangian have the same sign, sgn(m1) = sgn(m2), and the total Hall
conductivity is an integer (in accordance with our expectations)
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σxy = ±e2

h
(16.39)

We encountered a closely related problem in the theory of the chiral spin liquid
discussed in Chapter 10.

In this case we have an anomalous quantum Hall effect since the system is an
insulator with a vanishing net magnetic field (as in Haldane’s honeycomb model)
or with half the quantum of flux (as in the π flux model). Although the total flux
is either zero or π , in both systems the Hamiltonian has terms that violate time-
reversal invariance T , as well as 2D parity P , although the product T P is an
unbroken symmetry of the Hamiltonian. A system of this type is often called a
Chern insulator. Recall that 2D parity is a mirror symmetry, such as x → −x and
y → y; it is not inversion symmetry, �r → −�r .

However, in the second case we found that the signs of the mass terms were
opposite, sgn(m1) = −sgn(m2). Hence, in this case the two contributions to the
Hall conductivity cancel each other out, and we find that the total Hall conductivity
vanishes, σxy = 0. In this case both time reversal T and 2D parity P are unbroken.
In other terms, this system is a conventional insulator.

In what follows we will adopt the physical criterion that a 2D system is time-
reversal-invariant if its physical response to an external electromagnetic field Aμ,
expressed in terms of the effective action S[Aμ], is invariant under time reversal,
t → −t . Thus a system that exhibits the anomalous quantum Hall effect has a bro-
ken time-reversal invariance since the effective action of the external electromag-
netic field has a Chern–Simons term that is odd under time reversal T and parity
P (but invariant under PT ). We will see below that this definition can be extended
to systems in three dimensions, where the time-reversal-symmetry-breaking term
is more subtle.

It is important to keep in mind that this field-theoretic, or, more properly, macro-
scopic, definition of time-reversal symmetry is different from what is meant by
time reversal microscopically at the level of the one-particle theory (expressed in
the band structure). At the level of the single-particle theory time reversal is an anti-
linear and anti-unitary operator that relates a single-particle state with momentum
�k and spin ↑ (↓) to a single-particle state with momentum −�k and spin ↓ (↑). Thus,
both in the π flux model and in graphene, the one-particle definition of time rever-
sal is equivalent to the exchange of the handedness of the two flavors (or valleys)
of fermions.

16.3.4 A two-band topological invariant

Since our discussion has been based largely on results derived from the effective
low-energy theory of Dirac fermions, one might suspect that the approximations we
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have made may in some subtle way invalidate our analysis. We will now see that
there is a way to reach the same conclusions without taking the continuum (or low-
energy) limit by means of a generalization to a two-band insulating system of the
topological arguments of Thouless, Kohmoto, Nightingale, and den Nijs (Thouless
et al., 1982).

This generalization is based on analysis of the Kubo formula for the Hall con-
ductivity in the two-band case. This result is due to Qi, Wu, and Zhang (Qi et al.,
2006b). We will see in the next section that this result plays a key role in the the-
ory of the spin quantum Hall effect. In Chapter 12, see Eq. (12.118), we saw that
the Kubo formula for the Hall conductivity implied that the latter is determined as
the zero-frequency limit, ω → 0, of the xy component of the current-correlation
function at �Q = 0,

σxy = lim
ω→0

i

ω
�xy(ω, �Q = 0) (16.40)

For a free-fermion system the current correlator �xy(ω, �Q = 0) is

�xy(ω, �Q = 0) =
∫

d2k

(2π)2

∫
d�

2π
tr
[

Jx(�k)G(�k, ω +�)Jy(�k)G(�k, �)
]

(16.41)

which can be calculated from the expressions for the current operators, which in
momentum space are given in terms of the one-particle two-band Hamiltonian h(�k)
of Eq. (16.24),

Jl(�k) = ∂h(�k)
∂ �k = ∂h0(�k)

∂ �k I + ∂ha(�k)
∂ �k σ a (16.42)

(with a = 1, 2, 3), and the free-fermion propagator of the two-band system
G(�k, ω), which is also a 2 × 2 matrix in the band indices,

G(�k, ω) =
(
ωI − h(�k)+ iε

)−1 = P+(�k)
ω − E+(�k)+ iε

+ P−(�k)
ω − E−(�k)+ iε

(16.43)

where we have used the projection operators P±(�k),

P±(�k) = 1

2

(
I ± ĥa(�k)σ a

)
(16.44)

where ĥa(�k) (with a = 1, 2, 3) is a unit vector with components

ĥa(�k) = ha(�k)
||�h(�k)|| (16.45)



684 Topological insulators

After some straightforward algebra it is found that the Hall conductivity is given
by the expression

σxy = e2

2

∫
BZ

d2k

(2π)2
εabc

∂ ĥa(�k)
∂kx

∂ ĥb(�k)
∂ky

ĥc(�k)
(

n+(�k)− n−(�k)
)

(16.46)

where n±(�k) are the Fermi functions (at T = 0 in this case) for the two bands.
Since E+(�k) − E−(�k) = 2||�h(�k)||> 0, there is a finite energy gap for the entire
Brillouin zone. In the case of an insulating state the Fermi energy is in the gap
between the minimum energy of the conduction band minBZ{E+(�k)} and the max-
imum energy of the valence band maxBZ{E−(�k)}, the valence band will be fully
occupied, n−(�k) = 1 (for all �k in the Brillouin zone), and the conduction band will
be empty, n+(�k) = 0 (again for all �k in the Brillouin zone). Hence, the Hall con-
ductivity of the insulating state is given by the much simpler expression (Qi et al.,
2006b; Yakovenko, 1990)

σxy = − e2

8π2

∫
BZ

d2k εabcĥa(�k)∂kx ĥb(�k)∂ky ĥc(�k) (16.47)

We now recall that we encountered essentially the same expression in our dis-
cussion of topological terms in 1D quantum antiferromagnets in Section 7.6, where
we showed that the topological charge Q of the mappings of a smooth closed
2-manifold (which in that case was the sphere S2) to the target space S2 of a non-
linear sigma model with global symmetry O(3) is given by a topological invariant
known as the Pontryagin index (or winding number) of Eq. (7.75). The expression
for the Pontryagin index Q

Q = 1

4π

∫
BZ

d2k εabcĥa(�k)∂kx ĥb(�k)∂ky ĥc(�k) (16.48)

is indeed essentially the same as our result for the Hall conductivity of Eq. (16.47)
(up to a prefactor of e2/(2π)). This is also the same topological invariant as that
which we encountered in the theory of the path integral for spin in Chapter 7, where
it entered into the Berry phase for a two-level system.

The main difference in the case at hand is that the topological charge Q now is
the integer that classifies the homotopy classes of maps of the first Brillouin zone,
the torus T 2

BZ (instead of the sphere S2), onto the target space S2 of the unit vector
ĥ(�k) which parametrizes the one-particle Hamiltonians, i.e. the homotopy class
π2(S2) = Z,

ĥ(�k) : T 2
BZ )→ S2 (16.49)

(Fig. 16.3). Nevertheless, these maps are still classified by a topological charge
Q that can take only integer values. We thus conclude that the Hall conductivity
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k
ĥ(k)

T 2
BZ

S2

Figure 16.3 The maps of the Brillouin zone, the torus T 2
BZ, onto the target space

S2 that parametrize the one-particle Dirac Hamiltonian, Eq. (16.49).

(in standard units) is given now in terms of the Pontryagin index Q,

σxy = − e2

2π�
Q (16.50)

Thus, if the topological charge Q �= 0 we have a topological insulator with a quan-
tized anomalous Hall effect. Moreover, and more subtly, the topological charge Q
actually computes the TKNN integers of the total curvature of the (abelian) Berry
connections of the spinors over the Brillouin zone. Thus, in this case the first Chern
number C1 is computed by the Pontryagin index Q, i.e. C1 = Q.

In the theory of the non-linear sigma model of 1D quantum antiferromagnets
the Pontryagin index Q was used to classify instanton processes, whereas in 2D
quantum antiferromagnets it classified soliton states known as skyrmions. In the
case of the topological insulators the index Q classifies one-particle Hamiltonians
labeled by the parameters ĥ(�k). Thus the vector ĥ(�k) is associated with skyrmion-
like configurations on the first Brillouin zone.

In particular, this important result implies that the Hall conductivity has to be an
integer (in units of e2/h) and cannot be a half-integer. Naturally, this is consistent
with the requirement of the Nielsen–Ninomiya theorem that the number of Dirac
flavors must be an even integer. It is interesting to see in this language the origin
of the half-integer value of the Hall conductivity for a single Dirac fermion. Let us
consider the one-particle (Dirac) Hamiltonian for a two-component Dirac spinor.
In momentum space it is (in units with vF = 1 and � = 1)

h( �p) = �α · �p + βm = �h · σ (16.51)

where we defined the three-component vector �h by

�h = (px , py,m) (16.52)
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The norm of this vector is, of course, the one-particle energy E( �p),

||�h( �p )|| = E( �p ) =
√

�p 2 + m2 (16.53)

Let ĥ( �p ) be the unit vector

ĥ( �p ) = �h( �p)
||�h( �p)|| =

1

E( �p)(px , py,m) (16.54)

This unit vector has the limiting behaviors

lim
| �p|→∞

ĥ( �p) = 1

| �p|(px , py, 0), lim
| �p|→0

ĥ( �p) = sgn(m)(0, 0, 1) (16.55)

Therefore, we see that ĥ(�k) has the form of the meron configuration shown in
Fig. 16.4, and corresponds to the case of m > 0. It is half a skyrmion and
as such it sweeps half of the area of the unit sphere, i.e. 2π . Hence the meron
has half of the topological charge, Q = − 1

2 . Similarly, the anti-meron, which
corresponds to the case of m < 0, also has half of the topological charge
but with opposite sign, Q = + 1

2 . Thus the topological-charge contribution is
Q = − 1

2 sgn(m). The general result of Eq. (16.50) then tells us that each two-
component Dirac fermion contributes to the Hall conductivity (or, which amounts
to the same thing, to the coupling constant of the effective Chern–Simons action)
with σxy = (e2/(2h))sgn(m), which is the result we found above.

px

py

ĥ(0)

Figure 16.4 A meron configuration for the unit vector ĥ(�k) in momentum space
for a two-component Dirac fermion with m > 0.
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16.4 The quantum spin Hall effect

The quantum spin Hall effect is a close relative of the quantum anomalous Hall
effect. However, unlike the quantum Hall effects (both “normal” and anomalous),
the quantum spin Hall effect involves the spin current instead of the charge cur-
rent. Although the spin Hall effect had been predicted to exist in metallic systems
(Hirsch, 1999), we will focus here on the case of insulators, where this effect
may be quantized. Indeed, a quantized spin Hall effect was discovered recently
in 2DEGs that exist, under suitable circumstances that we will discuss shortly, in
HgTe/CdTe quantum wells (König et al., 2008). We will see that this is an example
of a time-reversal-invariant topological insulator.

However, before we get started we need to clarify what is meant by a spin
conductivity and under what circumstances the spin Hall effect may occur. Spin
transport is defined by analogy with charge transport, i.e. as a spin accumulation at
one end of the sample as a consequence of electronic motion. However, a funda-
mental difference between spin and charge is that they are related to very different
symmetries. Thus, charge conservation is related to the (gauge-invariant) current
Jμ which is the generator of the U(1) electromagnetic (gauge) symmetry, which is
abelian. In contrast, a system with an unbroken SU(2) spin invariance has as many
components of the spin currents as generators in the SU(2) algebra, J a

μ , where
a = 1, 2, 3 runs in the algebra of SU(2) and μ = 0, 1, . . . , d is the space-time
index in d space dimensions. Thus, the spin symmetry is non-abelian and the spin
currents generate the (non-abelian) SU(2) algebra.

In this sense a spin conductivity can be defined only if the spin symmetry is
somehow broken down to a U(1) subgroup so that the J 3 current is conserved.
This is often the case in solid-state systems due to the effects of the (atomic scale)
spin–orbit interaction which ties the spin of the conduction electrons to the lattice.
However, we will see that it is also possible to have a quantum spin Hall effect
even if the spin symmetry is broken down to a Z2 subgroup of the spin symmetry
group SU(2). Although in this case a bulk spin Hall conductance can no longer
be defined, this state will still be characterized by having gapless edge states that
transport spin.

16.4.1 The Kane–Mele model

Kane and Mele (2005a) suggested that the quantum spin Hall effect could be
observed in graphene. Their proposal relied on an estimate of the magnitude of
the spin–orbit interaction in graphene, which, unfortunately, turns out to be much
smaller than their estimate – too small, in fact, to matter. Nevertheless, their
analysis provides a simple model to study the quantum spin Hall effect.
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The Kane–Mele tight-binding (free-fermion) Hamiltonian is a modification of
the honeycomb model for graphene, Eq. (16.17), of the form

HKM = t1
∑

�rA;i=1,2,3;σ=↑,↓

[
ψ†
σ (�rA)χσ (�rA + �di )+ h.c.

]
+

∑
〈�rA;�r ′

A〉;σ,σ ′=↑,↓

[
i t2ψ

†
σ (�rA)ν[�rA, �r ′

A]sz
σσ ′ψσ ′(�r ′

A)+ h.c.
]

+
∑

〈�rB;�r ′
B〉;σ,σ ′=↑,↓

[
i t2χ

†
σ (�rB)ν[�rB, �r ′

B]sz
σσ ′χσ ′(�r ′

B)+ h.c.
]

(16.56)

where sz is the diagonal Pauli matrix σ 3 and acts on the spin labels. Here 〈�rA; �r ′
A〉

denotes nearest-neighbor sites on the A sublattice (which are second-nearest neigh-
bors for the honeycomb lattice), and similarly for the B sublattice. The amplitude
ν[�rA, �r ′

A] takes the values ±1 depending on the orientation of the two nearest-
neighbor bonds �di and �d j which the electron traverses in going from site �rA to
�r ′

A (and analogously for sublattice B): ν[�rA, �r ′
A] = +1 (−1) if the electron makes

a left (right) turn on the second traversed bond (also with the same rule for sublat-
tice B). In other words, this spin-dependent amplitude is i �di × �d j · �s (where �s is the
electron spin), which has also been derived from a microscopic model of graphene
that includes the spin–orbit interaction.

We can easily recognize that this tight-binding free-fermion model is simply
two copies of a Haldane honeycomb model with flux φ = π/2 for electrons with
spin ↑ and flux −π/2 for electrons with spin ↓. This system is time-reversal-
invariant since the time-reversal-violating term, t2, has opposite signs for the two
spin components.

It is now straightforward to find the effective low-energy theory in terms of Dirac
fermions by mimicking our earlier analysis for the Haldane honeycomb model. It
is essentially the same as for the Haldane honeycomb model (and also the π flux
model), but doubled to account for spin. Thus the effective theory now involves
Fermi fields that have not only a Dirac (or sublattice) index a = 1, 2 and a flavor
(or valley) index I = 1, 2, but also a spin index σ = ↑,↓. The effective Dirac
Hamiltonian is simply

H = −i�vFψ
†(x)

(
α1 ∂x + α2 ∂y

)
ψ(x)+�soψ

†(x)βszψ(x) (16.57)

where �so = 3
√

3t2 measures the strength of the spin–orbit coupling (Kane and
Mele, 2005a). Here we have, once again, used the notation for the two-component
Dirac spinors

ψ1,σ =
(
ψK,σ

χK,σ

)
, ψ2,σ =

(−iχK′,σ
iψK′,σ

)
(16.58)
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which amounts to a change of basis for the spinor at valley K′ relative to the spinor
at valley K without changing the spin.

At the level of the effective Dirac theory the energy gap generated by the spin–
orbit coupling is a mass term, which we denoted by �so in Eq. (16.57), which has
opposite signs for the two spin components of the Dirac fermions. Since the mass
term for each spin component signals a violation of time-reversal invariance, we
conclude that in this system time reversal is not broken. In particular, if no other
terms are included in the Hamiltonian, our earlier analysis implies that the Hall
conductivity of this system is zero. This happens since the two spin orientations
make equal and opposite contributions to σ ↑,↓

xy = ±e2/h, and cancel each other out,

σxy = σ ↑
xy + σ ↓

xy = e2

h
− e2

h
= 0 (16.59)

which is required by time-reversal invariance.
Although the Kane–Mele Hamiltonian is time-reversal-invariant, it has an

explicitly broken SU(2) spin-rotational invariance by virtue of spin–orbit effects.
However, unless further terms are included, this Hamiltonian has a conserved z
component of the total spin, Sz , which generates an unbroken U(1) subgroup of
SU(2). Consequently, in addition to the charge current, the Kane–Mele model also
has a conserved Sz spin current,

�Jspin = �

2e

( �J↑ − �J↓
) = �

2e

∑
I=1,2

ψ
†
I sz �αψI = �

2e

∑
I=1,2

ψ̄I sz �γψI (16.60)

This means that an external electric field will induce a vanishing Hall current (since
σxy = 0), and, at the same time, equal (and opposite) currents of electrons carry-
ing opposite spins are also induced. Hence, at this level it is possible to define
a bulk spin Hall conductivity that is the difference of the Hall conductivities for
electrons with ↑ and ↓ spins. However, since the two spin components have Hall
conductivities that are equal but have opposite signs, the spin Hall conductivity is
non-vanishing and quantized,

σ spin
xy = �

2e

(
σ ↑

xy − σ ↓
xy

) = e

2π
(16.61)

This is the quantum spin Hall effect.
This analysis of the bulk currents induced by electric fields relies on the conser-

vation of the z-component of the spin. As noted by Kane and Mele, in the presence
of a coupling to an external perpendicular electric field (or to a substrate) graphene
admits an additional (Rashba) coupling, which at the level of the graphene model is

HR = iλR

∑
�rA,i

ψ†(�rA)
(
�σ × �di

)
z
χ(�rA + �di )+ h.c. (16.62)



690 Topological insulators

where λR is the Rashba coupling. This term breaks the mirror symmetry of the
plane, z → −z, and it is also due to spin–orbit interactions. Furthermore, while this
term is still consistent with time-reversal invariance, it breaks the spin-conservation
law. Although this term is very small in graphene, it means that, strictly speaking, a
conserved bulk spin current no longer exists and that the spin Hall effect cannot be
defined as we have done above. In terms of the Dirac fermions the Rashba coupling
contributes to the effective Hamiltonian a term of the form

HR = λR

∑
I=1,2

ψ
†
I (�σ × �s)z ψI (16.63)

which is a linear combination of the spatial components of the x and y spin cur-
rents. However, provided that λR < �so, the Rashba term cannot close the gap and
hence the system remains a topological insulator. We will see below that the more
precise way to characterize the quantum spin Hall effect is in terms of its edge
states.

16.4.2 The quantum spin Hall effect in HgTe quantum wells

The analysis of the Kane–Mele model shows that the natural place to look for the
spin quantum Hall effect is in systems that naturally have large spin–orbit effects.
Bernevig, Hughes, and Zhang (Bernevig et al., 2006) showed that the quantum spin
Hall effect should be observable in a CdTe/HgTe/CdTe quantum well, involving
two narrow-gap semiconductors with large spin–orbit coupling. The main predic-
tions of their theory, which we will now discuss, were confirmed in the experiments
of Molenkamp and coworkers (König et al., 2007, 2008).

HgTe and CdTe are semiconductors with a narrow gap at the � point (the center)
of their Brillouin zone. In both materials the bands that nearly cross at the � point
are the s-type band �6 and the p-type band which is split by spin–orbit coupling
into a J = 3/2 band, �8, and a higher-energy J = 1/2 band, �7. While the details
will not be important to us, it will matter that in HgTe the �8 band lies above the
�6 band in energy, while in CdTe the order of the bands is reversed.

For the geometry of a quantum well along the z axis, centered at z = 0 and
with width d (the thickness of the HgTe region), Bernevig, Hughes, and Zhang
derived an effective Hamiltonian for a CdTe/HgTe/CdTe quantum well that is accu-
rate near the � point, �k = 0, of the Brillouin zone, for the 2D bands |E1,m J = 1/2〉,
|H1,m J = 3/2〉, |E1,m J = − 1/2〉, and |H1,m J = −3/2〉 (which are linear com-
binations of the �6 and the �8 states). In this basis, the effective one-particle
Hamiltonian near the � point, �k = 0, is a 4 × 4 block-diagonal matrix of the
form (Bernevig et al., 2006)
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Heff(kx , ky) =
(

h(�k) 0
0 h∗(−�k)

)
(16.64)

Here h(�k) is a 2 × 2 hermitian matrix

h(�k) = ε(�k)I + �d(�k) · �σ (16.65)

where I = diag(1, 1) is the 2 × 2 identity matrix. The components of the vector
�d(�k) near the � point, �k = 0, are

d1 ± id2 = A
(
kx ± iky)+ · · ·

d3 = M − B�k2 + · · · (16.66)

ε(�k) = C − D�k2 + · · ·
where A, B, C , and D are real and positive coefficients. The parameter M , which
opens a gap in the one-particle spectrum, is real (as it should be), and changes
sign as the thickness d of the HgTe in the quantum well increases. The effective
one-particle Hamiltonian of Eq. (16.64) is manifestly time-reversal-invariant, with
the states in the two 2 × 2 blocks related by time reversal. By inspection we see
that, as expected, these two pairs of states have opposite parity. Thus the system is
time-reversal- and parity-invariant.

This effective Hamiltonian has the same structure as that we encountered in
the Kane–Mele model. However, there are important differences between the two
models. One important difference is that we now have four bands that have near
crossings at the � point, whereas the Kane–Mele model has two bands with two
valleys at the vertices K and K′ of the Brillouin zone of the honeycomb lattice
where they have near crossings. In addition, due to the effects of spin–orbit cou-
pling, spin and orbital angular momentum are not good quantum numbers to label
the states. In this context, by “spin” we mean the direction of the projection of
the total (atomic) angular momentum J z since the states in the upper block have
m J = 1/2, 3/2 while the states in the lower block have m J = −1/2,−3/2.

In the Kane–Mele model the two flavors of Dirac fermions (at K and K′) have
opposite parity. This led us to the condition (after a redefinition of the spinor at K′)
that the quantized Hall conductivity is (e2/(2h))

[
sgn(m1)+ sgn(m2)

] = 0, e2/h,
depending on whether the mass terms have opposite signs, and we have an unbro-
ken time-reversal symmetry and a normal insulator, or they have the same sign, and
we have a broken time-reversal symmetry and an anomalous quantum Hall effect.

Here we can proceed in the same fashion. The effective Hamiltonian for the
upper block, for states with spin ↑, is parametrized by a vector �d↑(�k),

�d↑(�k) = 1√�k 2 + M2

(
kx , ky, M

)
(16.67)
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where we have rescaled all the momenta by 1/A > 0. Its unit vector �m↑(�k) has the
asymptotic behaviors

lim
�k→0

�m↑(�k) = sgn(M)
(
0, 0, 1), lim

|�k|→∞
�m↑(�k) = 1

|�k|
(
kx , ky, 0

)
(16.68)

which is a meron with topological charge Q↑ = − 1
2 sgn(M).

For the states with spin ↓, the Hamiltonian is parametrized by �d↓(�k),
�d↓(�k) = 1√�k 2 + M2

(−kx , ky, M
)

(16.69)

which is the transform of �d↑ by parity, kx → −kx and ky → ky . A rotation of the
↓ spinor by exp(i(π/2)σ2) rotates the �d↓ vector about the ky axis to

�d↓ )→ A√
A2�k2 + M2

(
kx , ky,−M

)
(16.70)

Its unit vector �m↓(�k) has the asymptotic behaviors

lim
�k→0

�m↓(�k) = −sgn(M)
(
0, 0, 1), lim

|�k|→∞
�m↓(�k) = 1

|�k|
(
kx , ky, 0

)
(16.71)

which is a meron with topological charge Q↓ = + 1
2 sgn(M).

Although it would be tempting to proceed as we did in the Kane–Mele model and
use the topological charges to compute the conductivities, in this case we would be
led to an incorrect conclusion. The reason is that we actually started with a four-
band model, instead of a two-band model as in the Kane–Mele model, and we
need to determine the contribution (if any) of the rest of the bands away from the
� point to the topological charges. They clearly must contribute, since each band
cannot have a fractional Chern number.

Bernevig, Hughes, and Zhang (BHZ) solved this problem by writing down
a tight-binding model that, near the � point, reduces to the Hamiltonian of
Eq. (16.64). They proposed to replace each 2 × 2 block of the effective band
model by the following lattice model with two flavors, ↑ and ↓, of two-component
fermion spinors on the square lattice. In real space the Hamiltonian for each block
of the BHZ model becomes (where we have dropped the spinor indices)

H =
∑
�r

{[
∓ic†(�r + êx)σ

x c(�r)− ic†(�r + êy)σ
yc(�r)+ h.c.

]
+

[
c†(�r + êx)σ

zc(�r)+ c†(�r + êy)σ
zc(�r)+ h.c.

]
+ (M − 2)c†(�r)σ zc(�r)

}
(16.72)

where the + (−) denotes the ↑ (↓) spinors.
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The (second-quantized) Hamiltonian (in momentum space) is

H =
∫

BZ

d2k

(2π)2

∑
α,β=1,2

[
c†
α,↑(�k) �d↑(�k) · �σαβ cβ,↑(�k)

+ c†
α,↓(�k) �d↓(�k) · �σαβ cβ,↓(�k)

]
(16.73)

where the integral runs over the first Brillouin zone of the square lattice, |kx | ≤ π

and |ky| ≤ π , and �σ is a three-component vector of the three Pauli matrices. Here
we used the notation �d±(�k) = (± sin kx , sin ky, M + cos kx + cos ky − 2), where
+ stands for ↑ and − for ↓. This form, which makes manifest the fact that the two
bands have opposite 2D parities, follows from the requirement that �d↓(�k) · �σ =
�d↑(−�k) · �σ ∗ so that the one-particle Hamiltonian has the form of Eq. (16.64), as is
demanded by time-reversal invariance.

This theory looks like a lattice version of the theory of Dirac fermions. There are
two ways to discretize the Dirac theory in such a way that it reproduces the standard
field theory of relativistic Dirac fermions at low energies. One way is to use Kogut–
Susskind (also known as “staggered”) fermions, in which half of the components of
the Dirac fermion are assigned to one sublattice (of a bipartite lattice) and the other
half to the other sublattice (Kogut and Susskind, 1975; Susskind, 1977; Kogut,
1983). The Hamiltonians of flux phases, and hence of fermions in a lattice with
flux � = π per plaquette, are examples of Kogut–Susskind fermions.

The other approach is to use Wilson fermions, in which all components of the
Dirac fermion are defined at each lattice site (Wilson, 1974; Creutz, 2001). The
Hamiltonian of Eq. (16.72) is identical to that of Wilson fermions. However, in
both approaches some symmetries of the continuum field theory of massless Dirac
fermions are broken in the lattice versions. In (1 + 1) and (3 + 1) dimensions, the
continuous chiral symmetry, ψ → exp(iθγ5)ψ , is in general broken to a discrete
subgroup by lattice effects. We have discussed the 1D version of this in Chapters 5
and 6, where we saw that the continuous chiral symmetry is equivalent to a uniform
shift of the charge-density profile. In both cases the spontaneous breaking of the
discrete chiral symmetry led to the fermions acquiring a gap, a dynamical mass
generation as in the example of the Gross–Neveu model.

In (2+1) dimensions these questions have a certain subtlety, since there is no γ5

Dirac matrix. In fact, as we saw, for two-component fermions the mass term, ψ̄ψ ,
breaks parity and time-reversal invariance. Since the lattice models have “doublers”
in the Kogut–Susskind version, the different flavors may also acquire a mass. For
instance, this happens in the case of the graphene model with sufficiently strong
(but much too large for real graphene) repulsive interactions. In this case the mass
term which is generated breaks the sublattice symmetry of graphene and hence
breaks its point-group symmetry. If a mass term has Haldane’s form, the broken
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symmetry is time-reversal-invariance. Likewise, in the case of the Wilson-fermion
model, the fermion “doublers,” i.e. the massive fermions at the corners of the
Brillouin zone, break time-reversal invariance separately. In more formal terms,
lattice regularizations generally break symmetries of the continuum field theory
of Dirac fermions, while keeping gauge invariance intact. In (2 + 1) dimensions
these considerations lead to the parity anomaly, i.e. the breaking of parity (and
time reversal) in a gauge-invariant regularization. In (1 + 1) and (3 + 1) dimen-
sions, these gauge-invariant regularizations lead to the breaking of the continuum
chiral symmetries.

In order to compute the Hall (and spin Hall) conductivities we need to com-
pute the topological charge for the ↑ bands and for the ↓ bands. We can do
this by expanding the vectors �d±(�k) in patches of the Brillouin zone centered
at the special time-reversal-invariant points of the Brillouin zone �Q = (0, 0),
(π, 0), (0, π), (π, π), and then evaluate the contribution of each patch to the topo-
logical charge. After setting �k = �Q + �q, with |�q| small, we find both for ↑ bands
and for ↓ bands

�d↑,(0,0)(�q) �
(
qx , qy, M

)
, �d↓,(0,0)(�q) �

(−qx , qy, M
)
,

�d↑,(π,0)(�q) �
(−qx , qy, M − 2

)
, �d↓,(π,0)(�q) �

(
qx , qy, M − 2

)
, (16.74)

�d↑,(0,π)(�q) �
(
qx ,−qy, M − 2

)
, �d↓,(0,π)(�q) �

(−qx ,−qy, M − 2
)
,

�d↑,(π,π)(�q) �
(−qx ,−qy, M − 4

)
, �d↓,(π,π)(�q) �

(
qx ,−qy, M − 4

)
Notice, for instance, that the vectors �d↑,(0,0) and �d↓,(0,0) indicate that near the �

point the two blocks have opposite 2D parities and hence are also time-reversed.
The same feature applies to the three other points.

We can now read off their contributions to the topological charges of the ↑ and
↓ bands to be

Q±
(0,0) = ∓1

2
sgn(M), Q±

(π,0) = ±1

2
sgn(M − 2),

Q±
(0,π) = ±1

2
sgn(M − 2), Q±

(π,π) = ∓1

2
sgn(M − 4)

(16.75)

The total topological charge of the ± bands is Q±
T = Q±

(0,0) + Q±
(π,0) + Q±

(0,π) +
Q±
(π,π), which can now be computed for each regime. The result is

Q±
T =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, for M < 0

∓1, for 0 < M < 2

±1, for 2 < M < 4

0, for 4 < M

(16.76)
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Therefore, in the regimes M < 0 and M > 4 both ↑ bands and ↓ bands have zero
(first) Chern number Q±. This is the trivial (or normal) insulator regime for each
band. On the other hand, in the two remaining regimes, 0 < M < 2 and 2 < M <

4, their Chern numbers Q± are ±1. Hence, both regimes correspond to a quantum
anomalous Hall insulator for each band.

Thus, as M increases continuously from M < 0 to M > 0, and the gap closes
and opens up again at (0, 0), the Chern number of each band jumps discontinuously
from 0 to ±1. The two subsequent jumps predicted by Eq. (16.76) correspond to
the gap of the tight-binding model closing at (π, 0) (and (0, π)) at M = 2 and
at (π, π) at M = 4. Only the first gap closing is relevant to the physics of the
quantum well we are discussing here.

By inspection of Eq. (16.76) we see that the total topological charge of the full
four-band model is zero,

Q = Q↑
T +Q↓

T = 0 (16.77)

Therefore, this system has vanishing Hall conductivity, σxy = 0, as it should, since
it is time-reversal-invariant.

On the other hand, the spin Hall conductivity, the difference of the Hall
conductivities of the ↑ and ↓ bands,

σQSH
xy = σ ↑

xy − σ ↓
xy = −e2

h

(
Q↑

T −Q↓
T

)
(16.78)

takes the quantized values

σQSH
xy =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, for M < 0

+2e2

h
, for 0 < M < 2

−2e2

h
, for 2 < M < 4

0, for 4 < M

(16.79)

Thus, this simple lattice model exhibits the quantum spin Hall effect.
As we mentioned above, band-structure calculations (Bernevig et al., 2006)

show that the sign of the gap M changes as a function of the quantum-well thick-
ness d from negative, M < 0, where the E1 and H1 bands of the quantum well are
ordered (in energy) as in bulk CdTe, to positive, M > 0, where the order of the
bands is inverted. Thus, this theory predicts that in the inverted-band regime there
is a range of values of the gap within which the quantum well should display a
quantum spin Hall effect.
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16.5 Z2 topological invariants

The Chern number is the topological invariant that classifies the integer quantum
Hall states and the quantum anomalous Hall states. In the case of the quantum spin
Hall states the Chern number of the spin current cannot be defined since the current
in general is not conserved. However, as we saw, a form of parity can be associated
with the quantum spin Hall states. We will now consider a more general quantum
spin Hall system with N > 1 right-moving edges with spin ↑ and N left-moving
edges with spin ↓. The above considerations require that N be an odd integer for a
quantum spin Hall insulator, whereas N is even for a normal insulator. In particular,
in both cases the only way in which the edge states can become insulating (either
by acquiring a gap or by localization due to disorder) requires that the states that
become gapped have opposite chiralities. Thus edge states become gapped (and
thus “disappear”) in pairs.

From this perspective a normal insulator is equivalent, modulo 2, to a state with-
out edge states, whereas the edge states of a generic quantum Hall insulator are
equivalent to those of a quantum Hall insulator with only one chiral edge state for
a given spin orientation. Hence, only the parity of the number of edge states is well
defined. This observation leads to the concept that the quantum spin Hall insulators
have Z2 topological invariants. In contrast, the quantum anomalous Hall insulators
are classified by an integer, the Chern invariant, which coincides with the number
of chiral edge states (as in the integer quantum Hall state).

What we are interested in is the topological classification of time-reversal-
invariant insulators. We will follow here the work and notation of Kane, Fu,
and Mele (Kane and Mele, 2005b; Fu and Kane, 2006; Fu et al., 2007; Fu and
Kane, 2007) as well as the work of Roy (2009), and Moore and Balents (2007).
It turns out that these concepts, with some caveats, apply both to 2D and to 3D
systems, and hence we will discuss them together. To this end, let us consider a
time-reversal-invariant periodic (one-particle) Hamiltonian H with 2N occupied
bands. H has Bloch wave functions |ψn(�k)〉 = exp(i �k · �r)|un(�k)〉, where the states
|un(�k)〉 are periodic in the unit cell and are eigenstates of the (reduced) Bloch
Hamiltonian H(�k),

H(�k) = e−i �k·�rHei �k·r (16.80)

If we denote by �G the reciprocal-lattice vectors, then the eigenstates are periodic,
|ψn(�k + �G)〉 = |ψn(�k)〉, and the Brillouin zone is a torus. Hence |un(�k + �G)〉 =
exp(−i �G · �r)|un(�k)〉.

Time reversal is the operation that complex-conjugates the state and reverses
the spin of the particle. Thus, when acting on one-particle states with spin S, it is
represented by the operator " = exp(iπ Sy)K, where Sy is the y-component of the
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spin and K is the complex conjugation. For spin S = 1/2 particles time reversal
satisfies "2 = −1. If the one-particle Hamiltonian H is time-reversal-invariant,
[H,"] = 0, then the Bloch Hamiltonian H(�k) satisfies

"H(�k)"−1 = H(−�k) (16.81)

The time-reversal operation induces a transformation in the Hilbert space of
Bloch states. Let us assume that the system has two occupied Bloch bands,
|ui=1,2(�k)〉, for each �k in the Brillouin zone. Hence the states of the occupied bands
form a rank-2 vector bundle over the Brillouin-zone torus. The time-reversal trans-
formation T induces an involution in the Brillouin zone that identifies the points
�k and −�k. The states at these two points are related by an anti-unitary operator ",
|ui (−�k)〉 = "|ui (�k)〉, which implies that the bundle is real. From the condition
"2 = −1, the bundle is found to be twisted. In algebraic topology these bundles
are classified by an integer (here the number of occupied bands) and a Z2 index that
will allow us to classify the quantum spin Hall insulators, which for this reason are
called Z2 topological insulators.

In a periodic lattice there is a set of points of the Brillouin zone that we will
denote by �Qi with the property that they differ from their images under the action
of time reversal by a vector �G of the reciprocal lattice, − �Qi = �Qi + �G. There are
four such points in 2D and eight in 3D. These time-reversal-invariant points of the
Brillouin zone can be labeled by two (three) integers (mod 2) ni = 0, 1 in 2D (3D),
such that �Qi = 1

2

∑
j n j �b j , where {�b j } are the primitive reciprocal-lattice vectors.

Kane and Mele defined the unitary 2N × 2N antisymmetric matrix wm,n(�k),
wm,n(�k) = 〈um(−�k)∣∣"∣∣un(�k)〉 (16.82)

and showed that the quantities δi are given by

δi =
√

det[w( �Qi )]
Pf[w( �Qi )]

= ±1 (16.83)

where det[w] and Pf[w] are the determinant and the Pfaffian of the matrixw. Recall
that det[w] = Pf[w]2.

Because of the square root, the sign of the quantities δi is ambiguous. However,

by requiring the states |un(�k)〉 to be continuous,
√

det[w(�k)] is defined globally

in the Brillouin zone since det[w(�k)] is single-valued on closed loops C and the
square root has no branch cuts. For contractible loops this follows from the con-
tinuity of the states |un(�k)〉. For non-contractible loops, which can be deformed
from C to −C , this follows from det[w(�k)] = det[w(−�k)]. The quantities δi are
also gauge-dependent, i.e. changes of the phases of the Bloch states at the invari-
ant points. However, suitable products of them are gauge and are also topological
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invariants. In 2D the product of these quantities for the four time-reversal-invariant
points is gauge-invariant. This defines the Z2 topological invariant ν in 2D,

(−1)ν =
4∏

i=1

δi (16.84)

In 3D one can use the quantities δi computed from the eight time-reversal-invariant
points Qi to construct four Z2 topological invariants, namely ν0 and νk , k = 1, 2, 3.
They are given by (Fu and Kane, 2007)

(−1)ν0 =
8∏

i=1

δi (16.85)

and

(−1)νk =
∏

nk=1,n j �=k=0,1

δi=(n1,n2,n3) (16.86)

Clearly, the three invariants νk treat the three orthogonal planes which include four
time-reversal-invariant points at a time as 2D projections, and the system as if it
were layered. It turns out that these three invariants are weak in the sense that they
are not robust in the presence of disorder. In contrast, ν0 is robust and hence “more
fundamental.” Insulators characterized by ν0 = 1 are said to be strong topological
insulators.

Fu and Kane showed that the computation of the Z2 invariant is simpler in the
case of systems with inversion symmetry. If the one-particle Hamiltonian H is
invariant under inversion P , [H, P] = 0, where the parity operator P is defined as
P|�r , sz〉 = |−�r , sz〉, then the Bloch Hamiltonian satisfies P H(�k)P−1 = H(−�k).
Let A(�k) be the Berry connection

A(�k) = −i
2N∑
i=1

〈un(�k)|∇�k |un(�k)〉 (16.87)

and let F(�k) be the Berry curvature,

F(�k) = ∇�k ×A(�k) (16.88)

However, the Berry curvature F(�k) is simultaneously odd under time reversal,
F(−�k) = −F(�k), and even under inversion, F(−�k) = +F(�k). Hence the Berry
curvature must vanish, F(�k) = 0, in systems that are both time-reversal- and
inversion-invariant. In this case, it is possible to choose the phases of the Bloch
states, i.e. to make a choice of gauge, so that the Berry connection vanishes as
well, A(�k) = 0. Fu and Kane found that in this gauge the quantities δi are given by
(Fu and Kane, 2007)
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δi =
N∏

m=1

ξ2m( �Qi ) (16.89)

where ξn( �Qi ) = ±1 are the parity eigenvalues of the occupied parity eigenstates
|ψn( �Qi )〉. They further showed that the strong Z2 invariant ν0, which is the prod-
uct of the eight (four) δi in 3D (2D), does not rely on the existence of inversion
symmetry.

We will now focus on the case of a system with two bands (plus spin), for which
the Hilbert space at each �k is four-dimensional. The one-particle Hamiltonian h(�k)
can always be expanded in a basis of the space of hermitian 4 × 4 matrices. This
basis can be chosen to be the 4×4 identity matrix I , the five Dirac hermitian gamma
matrices, �a (with a = 1, . . . , 5), which satisfy the Clifford algebra

{
�a, �b

} =
δab I , and their ten commutators �ab = (1/(2i))

[
�a, �b

]
. For example, we can take

the �a matrices to be the standard Dirac matrices

�i ≡ αi = σi ⊗ τ1, �4 ≡ β = γ0 = I ⊗ τ3, �5 ≡ iγ0γ5 = −I ⊗ τ2 (16.90)

of the Dirac equation in (3 + 1) dimensions. As usual, in this notation the first
factor acts on the two spin components, while the second factor acts on the two
bands (the positive- and negative-energy states of the Dirac equation). In the Dirac
basis, the time-reversal operation is represented by " = (iσ2 ⊗ I )K, where K
is the operation of complex conjugation, and parity by P = I ⊗ τ3 = β. It is
straightforward to see that the five gamma matrices commute with P", while the
commutators anti-commute with it.

For general time-reversal- and parity-invariant systems, the two-band Bloch
Hamiltonian has the form (both in 2D and in 3D)

H(�k) = d0(�k)I +
5∑

a=1

da(�k)�a (16.91)

By symmetry, at the time-reversal- and parity-invariant momenta Qi the Bloch
Hamiltonian H( �Qi ) can depend only on the identity matrix I and on the gamma
matrix �4 = β,

H( �Qi ) = d0(Qi )I + d4( �Qi )β (16.92)

From this result, and recalling that the parities of the spinors are the eigenstates
of the gamma matrix β, we can read off the parities of the occupied states at each
time-reversal-invariant point �Qi , leading to the result that, in this simpler case, the
quantities δi are simply given by (Fu and Kane, 2007)

δi = −sgn[d4( �Qi )] (16.93)
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The fact that the Z2 topological invariants are given by the parities of the eigen-
states at the time-reversal-invariant points of the Brillouin zone suggests that in
the regime in which the two-band model has a small gap, and hence can be
approximated by the continuum Dirac equation, there may be a relation with the
ground-state expectation value of the Dirac fermion bilinear 〈ψ̄ψ〉, which is non-
zero if there is a mass gap. Indeed, if the two-band model has local gap minima
at the invariant points, �Qi , as in the case of the Wilson-fermion model, the com-
putation of 〈ψ̄ψ〉 for each fermionic species involves the matrix element of the
Dirac gamma matrix β for the occupied eigenvectors (spinors) whose values are
precisely the parities.

It may seem surprising that a global topological property of the band structure,
such as the Z2 invariants, can be expressed in terms of the parities at certain invari-
ant points of the Brillouin zone, or equivalently in terms of the expectation values
of local operators such as ψ̄ψ . This is consistent since the band structure is contin-
uous over the Brillouin zone. This also tells us that it is not possible to determine
whether a system is a topological insulator solely by a local analysis near a sin-
gle band crossing. However, suppose we know that for some range of parameters
the system is topologically trivial, and then we find that for some other range
of parameters there is a band crossing (and inversion) near some invariant point
of the Brillouin zone. Then we can assert that in the second range the system is
topologically non-trivial and became a Z2 topological insulator.

On the other hand, if the gaps are essentially of O(1) everywhere in the Brillouin
zone, a natural approximation to compute the Z2 invariant is to take a “flat-band”
limit of the Hamiltonian, in which its momentum dependence essentially disap-
pears. The computation of the invariants in the flat-band limit is considerably
simpler, and it is often used to classify the Hamiltonians (Qi et al., 2008; Kitaev,
2009).

As an example, let us compute the Z2 invariant ν0 for the BHZ model for the
quantum spin Hall effect in 2D. By inspection of Eq. (16.74) and Eq. (16.75) we
see that δ(0, 0) = −sgn(M), δ(π, 0) = −sgn(M − 2) = δ(0, π), and δ(π, π) =
−sgn(M − 4). Hence the Z2 topological invariant ν0 is

(−1)ν0 = δ(0, 0)δ(π, 0)δ(0, π)δ(π, π) = +sgn(M)sgn(M − 4) (16.94)

In other terms, this system has ν0 = 0 (mod 2) for M < 0 and for M > 4 (since
the two signs are equal in these regimes), where it is a trivial insulator. Conversely,
it has ν0 = 1 (mod 2) for 0 < M < 4 (where the signs are opposite), which
we identify as a Z2 topological insulator. This is the quantum spin Hall regime.
Clearly, in this regime the parity of the occupied bands at the � point is opposite to
the parity of the occupied bands at (π, π). Hence, as expected, we have a case of a
band inversion.
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While the analysis of the previous section predicted a quantized spin Hall con-
ductance, and in fact two different regimes in which the spin Hall conductance was
found to have the quantized value ±2e2/h, the Z2 topological invariant has the
same value, ν0 = 1, regardless of the sign of the spin Hall conductance. The rea-
son is that the characterization of the quantum spin Hall state in terms of a Chern
number requires the conservation of the component Sz of the spin (and of the asso-
ciated spin current). In contrast, the Z2 topological insulator is well characterized
by the topological invariant ν0 even in the absence of a conservation law for the
Sz component of the spin. We will see below that a system with a non-trivial value
of the Z2 topological invariant, ν0 = 1 (mod 2), has protected edge states, and a
quantum but not quantized spin Hall effect, whereas such edge states are generally
absent if ν0 = 0 (mod 2).

16.6 Three-dimensional topological insulators

The construction that we have used in 2D can be extended to 3D topological insula-
tors. Three-dimensional semiconductors with near band crossings, and hence small
gaps, at certain symmetry points of their Brillouin zones have been known for a
long time. In all cases the systems have strong spin–orbit couplings and hence
the continuous SU(2) spin invariance is broken to a discrete subgroup. One of the
first examples investigated with this approach was PbTe, which is not a topolog-
ical insulator (although it is close to being one). Its bands have near crossings at
the L points of the cubic lattice, (±π/2,±π/2,±π/2), which suggests that it can
be described by a Kogut–Susskind version of 3D lattice Dirac fermions (Fradkin
et al., 1986; Boyanovsky et al., 1987). It was suggested (by the same authors) that
the 2D parity anomaly may occur in these systems. It turns out that this does not
happen in PbTe, since it is a standard insulator, not a topological insulator. This can
be checked by a direct computation of the Z2 topological invariant (Fu and Kane,
2007).

Several 3D narrow-gap semiconductors have been proposed to be topological
insulators, notably Bi1−x Sbx and HgTe (under uniaxial stress) (Fu and Kane, 2007;
Fu et al., 2007), Bi2Se3 and Bi2Te3 (Zhang et al., 2009). We will see that all
these systems exhibit an odd number of surface states that behave as 2D chi-
ral fermions (different odd numbers depending on the material). These surface
states have been detected by angle-resolved photoemission spectroscopy (Hasan
and Kane, 2010; Hasan and Moore, 2011; Qi and Zhang, 2011). Unfortunately, at
the time of writing, the available materials are conducting, not insulating.

The simplest examples of 3D topological insulators are Bi2Se3 and Bi2Te3. In
both cases spin–orbit coupling is strong and there is a near band crossing at the
� point, the center (0, 0, 0) of the Brillouin zone. We will not go through the
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complications of the band structure. It will be sufficient for us to use the effec-
tive two-band model derived by Zhang and coworkers (Zhang et al., 2009), who
showed that the minimal model involves two orbitals, |P1+

z , σ 〉 and |P2−
z , σ 〉, where

± denotes the parity of the state, and σ = ↑,↓ are the two spin (actually Jz) com-
ponents. Thus the states can be represented by a four-component spinor, where the
two upper components have + parity and the two lower components have − parity.
In this basis the one-particle Hamiltonian near the � point has the standard Dirac
form

H = ε0( �p)I + �A( �p) · �α +M( �p)β (16.95)

where �α and β are the standard Dirac matrices (in the Dirac basis used earlier), I

is the 4 × 4 identity matrix, and M( �p) = M − Bp2
z − B ′(p2

x + p2
y) and �A(p) =

(Apx , Apy, A′ pz). The parameters B, B ′, A, and A′ are positive.
It will be important to our analysis that, reflecting the inversion symmetry

and time-reversal invariance of these materials, the effective Hamiltonian does
not include the fifth Dirac matrix �5 = iβγ5. One consequence of this is that
the spectrum is particle–hole (or charge-conjugation)-invariant. This fact plays an
important role in the physics of the “edge states” of these systems and is a necessary
condition in order for these states to be gapless Weyl fermions.

The (“Dirac mass”) M , the gap at the � point, is positive for Bi2Se3 (and Bi2Te3),
but it is negative for Sb2Se3. Hence there is a band inversion at the � point. By anal-
ogy with the 2D quantum spin-Hall-system cousin that we just discussed, these
systems are candidates to be Z2 topological insulators, and the order of the bands
with opposite band parity is switched in one material relative to the others. This
result suggests that Bi2Se3 and Bi2Te3 are topological insulators, while Sb2Se3 is
not. That this guess was correct was verified by Zhang et al. (2009) by compu-
tating the topological invariant parities introduced by Fu et al. (2007) (which we
discussed in the preceding section) at the four inequivalent time-reversal-invariant
points of the Brillouin zone, �(0, 0, 0), L(π, 0, 0), F(π, π, 0), and Z(π, π, π)
and verifying that their product is negative for Bi2Se3 and Bi2Te3, but positive
for Sb2Se3.

We can give a simpler description by using a Wilson-fermion lattice Hamiltonian
(which we have already used in the discussion of the 2D quantum spin Hall effect)
on a 3D cubic lattice of the form (with cubic symmetry for simplicity)

H = sin �p · �α + M( �p)β (16.96)

where M( �p) = M + cos px + cos py + cos pz − 3. This simpler Hamiltonian
has the same qualitative behavior and has the same time-reversal-invariant points
as the one derived from band-structure calculations. Thus, e.g. at the � point, �p =
(0, 0, 0), if the Dirac mass M > 0 the positive-energy states have + parity and the
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negative-energy states have − parity. For M < 0 the order of the states is reversed.
This construction shows that the 3D Z2 topological insulators are a generalization
of the 2D quantum spin Hall effect.

It is straightforward to compute the Z2 topological invariants for the Wilson-
fermion model. The parities at the eight invariant points are (k = 1, 2, 3)

δ(0, 0, 0) =−sgn(M)

δ(π, 0, 0) = δ(0, π, 0) = δ(0, 0, π) =−sgn(M − 2) (16.97)

δ(π, π, 0) = δ(0, π, π) = δ(π, 0, π) =−sgn(M − 4)

δ(π, π, π) =−sgn(M − 6)

and the invariants are

(−1)ν0 = sgn(M)sgn(M − 2)sgn(M − 4)sgn(M − 6) (16.98)

(−1)νk = sgn(M − 2)sgn(M − 6) (16.99)

from which we find that this model describes a strong topological insulator for
0 < M < 2 (with Z2 invariants ν0 = 1 (mod 2) and (ν1, ν2, ν3) = (0, 0, 0)
(mod 2)) and 2 < M < 4 (with Z2 invariants ν0 = 1 (mod 2) and (ν1, ν2, ν3) =
(1, 1, 1) (mod 2)), a weak topological insulator for 2 < M < 4 (with Z2 invariants
ν0 = 0 (mod 2) and (ν1, ν2, ν3) = (1, 1, 1) (mod 2)), and a trivial insulator (with
Z2 invariants ν0 = 0 (mod 2) and (ν1, ν2, ν3) = (0, 0, 0) (mod 2)) for the other
regimes.

It is interesting and useful to write the free Dirac field theory of this model.
Thus, following the standard Wilson construction at each lattice site �r of the cubic
lattice, and hence at every momentum �p of the cubic Brillouin zone, we introduce
a set of four component fermions, ψα(�r), with α = 1, . . . , 4. Here too, the two
upper (lower) components represent the spin ↑ and ↓ components of the fermion.
However the parities of the valence-band (negative-energy) and conduction-band
(positive-energy) states may be different near the � point and near the corners of
the Brillouin zone.

The Hamiltonian of (free) Wilson fermions on a cubic lattice is

H =
∫

BZ

d3 p

(2π)3

∑
α,β

ψ†
α( �p)

(
sin �p · �α + M( �p)β

)
αβ
ψβ( �p) (16.100)

We recall that the covariant definition of the Dirac gamma matrices is

γ0 = β, γ i = βαi , γ5 = iγ0γ1γ2γ3 (16.101)

and that they obey the covariant Dirac algebra{
γμ, γν

} = 2gμνI,
{
γ5, γμ

} = 0 (16.102)
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where gμν = diag(1,−1,−1,−1) is the (Bjorken and Drell) Minkowski metric in
(3 + 1) dimensions.

We now observe that the one-particle Dirac Hamiltonian H of Eq. (16.96)
(and Eq. (16.95)) (not to be confused with the Hamiltonian of the field theory,
Eq. (16.100)) does not involve the Dirac matrix γ5. Hence γ5 anti-commutes with
the one-particle Dirac Hamiltonian,

{
γ5, H

} = 0. If u±
α ( �p, σ ) (with σ = ↑,↓) are

the four linearly independent spinors with energies E± = ±
√

sin2 �p + M( �p)2, it is
easy to see that the spinors γ5u±( �p, σ ) have energies ∓E( �p, σ ). In other terms, we
conclude that γ5u±( �p, σ ) = u∓( �p, σ ), since they have the same spin projection.
Thus, γ5 maps spinors with positive energy to spinors with negative energy (and
vice versa), and hence it also maps spinors with opposite parities into each other.

Wilson introduced the discrete version of Dirac fermions as a regularization of
the continuum field theory. From that perspective, only the region of momentum
space near �p = 0 is physically relevant. In this regime one simply approximates
the dispersion by setting sin �p · �α � �p · �α. The Hamiltonian of the continuum free
Dirac theory is

H =
∫

d3x ψ†
α( �p)

( �p · �α + Mβ
)

(16.103)

and its Lagrangian density has the Lorentz-invariant form

L = ψ̄(x)
(
iγ μ ∂μ − M

)
ψ(x) (16.104)

where we dropped the Dirac indices and, as usual, ψ̄ = ψ†γ0. In the massless
limit, M = 0, the Dirac Lagrangian is invariant under global continuous chiral
transformations,

ψ(x) → eiθγ5ψ(x), ψ̄(x) → ψ̄(x)eiθγ5 (16.105)

where 0 ≤ θ < 2π .
The Dirac theory admits two types of mass terms. One is the ψ̄ψ operator we

already have. The other possible mass term is iψ̄γ5ψ . At the level of the one-
particle Dirac Hamiltonian, the γ5 mass term enters with the matrix �5 = iγ0γ5

(see Eq. (16.90)). If both mass terms are present, charge-conjugation symmetry C
is broken and so is parity P . Hence C P is broken, which is equivalent to break-
ing time-reversal invariance, T . The global continuous chiral symmetry is broken
explicitly by both mass terms, which transform as(

ψ̄(x)ψ(x)
iψ̄(x)γ5ψ(x)

)
→

(
cos(2θ) sin(2θ)
−sin(2θ) cos(2θ)

) (
ψ̄(x)ψ(x)

iψ̄(x)γ5ψ(x)

)
(16.106)

This transformation has the same form as the one we used in Section 6.3 to
represent a translation of a charge-density wave in (1 + 1) dimensions.
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The lattice Hamiltonian, Eq. (16.100), has a broken chiral symmetry even if
we fine-tune lim �p→0 M( �p) = 0. With this choice there are terms that break the
continuous chiral symmetry, but which vanish as �p → 0. These operators are
irrelevant. However the “doublers,” i.e. the states near (π, 0, 0) and so on, have
O(1) mass terms that break the global continuous chiral symmetry. In fact the
signs of the operator 〈ψ̄ψ〉 for the fermion “doublers” are needed, as we saw, in
order to determine the Z2 topological class.

16.7 Solitons in polyacetylene

In Section 15.1 we discussed the theory of the edge states of the 2DEG in a uniform
perpendicular magnetic field in the regime in which the integer quantum Hall effect
is observed. There we saw that, due to the incompressibility of the bulk 2DEG in
an integer (and fractional) quantum Hall state, its only gapless excitations are edge
states (residing, naturally, at the boundary of the 2DEG!). Moreover, due to the
explicitly broken time-reversal invariance caused by the external magnetic field,
these edge states are chiral and hence propagate in just one direction. We will now
see that a similar set of states generically exists in free-fermion systems that display
the quantum anomalous Hall effect and the quantum spin Hall effect.

We will also see how this theory explains the chiral surface states of 3D Z2

topological insulators. The basic conceptual explanation of all these phenomena
is based on the concept of anomalies in the Dirac field theory, which has different
manifestations in different dimensions. The oldest application of these ideas was in
(1+ 1) dimensions, where it led to a theory of fractional quantum numbers of soli-
tons (Jackiw and Rebbi, 1976; Goldstone and Wilczek, 1981), and was famously
applied in a condensed matter context to the theory of solitons in polyacetylene
(Su et al., 1979; Jackiw and Schrieffer, 1981; Heeger et al., 1988). The extension of
these ideas to higher dimensions is known as the Callan–Harvey effect in fermionic
domain walls (Callan and Harvey, 1985), which will also play a key role in our
discussion of edge states in topological insulators (with or without time-reversal
symmetry).

Domain walls in 1D systems have been studied extensively in the theory of soli-
ton states both in quantum field theory (Dashen et al., 1975; Jackiw and Rebbi,
1976; Rajaraman, 1985) and in condensed matter physics, mostly in the context of
1D conductors such as polyacetylene (Su et al., 1979; Jackiw and Schrieffer, 1981;
Heeger et al., 1988). Polyacetylene is a polymer chain of carbon and hydrogen
atoms with one hydrogen per carbon. This is denoted as (CH)n . In the stable trans
configuration, the chain has a zig-zag pattern with the carbon atoms at the vertices
and the hydrogen atoms being placed in a staggered fashion to the right and to the
left of the carbon atoms. As in the example of graphene, only the electrons in the



706 Topological insulators

π orbitals of the carbon atoms are effectively mobile, and the other σ bands are
occupied and separated by a large energy gap.

Su, Schrieffer, and Heeger (SSH) proposed the following simple 1D lattice
model for a single trans polyacetylene chain (Su et al., 1979). Let the integer n
denote the position of the carbon atoms along the chain. If we denote by ψ†

n,σ the
fermion operator that creates a π electron at site n with spin projection σ = ↑,↓
and by un the displacement of the CH unit at site n (relative to the equilibrium
position), the SSH Hamiltonian for a polyacetylene chain with N sites is

H = −
∑
n,σ

(
tn,n+1ψ

†
n,σψn+1,σ + h.c.

) + ∑
n

D

2
(un+1 − un)

2

+
∑

n

P2
n

2M
(16.107)

where Pn is the momentum of the CH group labeled by n, and M and D are the
mass of the CH unit and the elastic constant of the chain (due to the σ bonding). As
usual, the displacements un and the momenta Pn obey equal-time commutation
relations, [un, Pn′ ] = iδn,n′ , and the fermion creation and annihilation opera-
tors obey the standard anticommutator algebra, {ψn,σ , ψ

†
n′,σ ′ } = δn,n′δσ,σ ′ . The

position-dependent hopping term reflects the electron–phonon coupling between
the electron hopping and the local displacements. For small relative distortions,∣∣un+1 − un

∣∣ � a (where a is the lattice spacing), it can be written as

tn,n+1 = t − α(un+1 − un) (16.108)

where α is the electron–phonon-coupling constant.
Undoped polyacetylene has one π electron for each CH group. Hence, the chain

is at half-filling and the Fermi momenta are at pF =±π/2 (in units in which the
lattice spacing is a = 1). As is well known, polyacetylene is the prototype of the
systems that exhibit the Peierls instability, by which means it lowers its ground-
state energy through a lattice distortion that breaks the symmetry of translations
by one lattice spacing. Since polyacetylene is half-filled, it can lower the energy
by dimerizing the chain, i.e. by the development of an expectation value of the
displacement field 〈un〉 = (−1)n� with a staggered pattern. In other words, the
effective hopping amplitude has a dimerized pattern, tn,n+1 = t+(−1)n2α�. Since
there are two possible patterns (that differ by a rigid displacement of the state by
one lattice spacing) this ground state is doubly degenerate. In this ground state the
chain looks like a sequence of “single” and “double” bonds (as it is commonly
depicted in chemistry) or, in the physicist’s language, it is a period-2 commen-
surate charge-density wave on the bonds of the chain. In other terms, the Z2
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symmetry of rigid displacements of the dimerization pattern in trans polyacetylene
is spontaneously broken.

We will not present here the detailed theory of polyacetylene, which can be
found in excellent reviews (Heeger et al., 1988). We will rather write down an
effective-field theory that bears out the physics we just described, which is accurate
in the weak-coupling regime but also gives a correct qualitative description of the
physics at substantial values of the coupling constant. We will follow the same
approach as we used in Chapters 5 and 6 and expand the Fermi fields in fast and
slow components (here x = na)

ψn,σ = eiπn/2ψR,σ (x)+ e−iπn/2ψL,σ (x) (16.109)

where we set pF = π/2. We will use the standard Dirac notation and represent
the right- and left-moving fermions by a Dirac doublet, ψa,σ (x) (with a = R,L).
For later convenience we will work in the Dirac basis (rather than with chiral
components) of the fermions,

ψ1,σ = 1√
2

(−ψR,σ + ψL,σ
)

ψ2,σ = 1√
2

(
ψR,σ + ψL,σ

) (16.110)

and denote the doublet Fermi field by ψa,σ (x), with a = 1, 2.
The displacement fields admit an expansion of the form

un = u0(x)+ (−1)n�(x) (16.111)

and similarly for the canonical momenta. Here u0(x) represents the smooth
long-wavelength fluctuations of “acoustic” phonons, while �(x) represents the
fluctuations of “optical” phonons with wave vector Q = 2pF = π . Much as in the
weak-coupling theory of antiferromagnetism of Chapter 3, the 1D chain at half-
filling obeys a nesting condition and is unstable with respect to a Peierls distortion,
a backscattering process that is here due to the exchange of phonons with wave
vector Q = 2pF = π and hence represented by the fluctuations �(x). In what fol-
lows we will focus on the coupling of the fermions to the dimerization field �(x)
and neglect the “acoustic” component u0 since it essentially decouples.

The Hamiltonian density of the effective continuum theory is (summation over
repeated indices is understood) (Fradkin and Hirsch, 1983)

H = ψ†
a,σ (x)(−ivFσ1 ∂x)ψa,σ (x)+ g�(x)ψ̄σ (x)ψσ (x)+ 1

8Ma2
0

�2(x)

+ 1

2
�2(x) (16.112)
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where �(x) is the canonical momentum for �(x), and obeys [�(x),�(y)] =
iδ(x − y). This effective Hamiltonian is invariant under the discrete chiral sym-
metry ψ → γ5ψ and � → −�, which on the lattice is a shift by one lattice
constant.

In Eq. (16.112) we introduced the effective coupling constant g ∼ α/
√

Dt . M is
the mass of the CH group and a0 is the lattice spacing, t is the hopping amplitude,
and the Fermi velocity is vF = 2t . We have used the 2 × 2 Dirac matrices in the
Dirac basis, α = γ5 = σ1, γ0 = σ3, γ1 = iσ2. In this notation the dimerization field
�(x) couples to the fermion bilinear ψ̄(x)ψ(x). In the chiral basis, the fermion
bilinear is ψ̄(x)ψ(x) = iψ†

R,σψL,σ + h.c. On changing to the Dirac basis (after
a subsequent chiral rotation by θ = π/4) the fermion bilinear becomes ψ̄ψ =
ψ

†
1,σψ2,σ + h.c.
Two limits of the Hamiltonian of Eq. (16.112) are worth considering. One is

the regime in which the mass M of the CH group is taken to be so large that the
quantum fluctuations of the dimerization field �(x), i.e. its kinetic-energy term,
can be neglected. In this adiabatic limit the dimerization field becomes classical.
The ground state of the system is found by finding the value �(x) = �0 which
minimizes the total energy density E ,

E = �2
0

2
−

∫ �

−�
dp

2π

√
p2v2

F + g2�2
0 (16.113)

where � � π/a0 is the momentum cutoff. By requiring that �0 be a local
extremum of the energy density E we find the gap equation

∂E
∂�0

= 0 ⇒ �0 =
∫ �

−�
dp

2π

g2�0√
p2v2

F + g2�2
0

(16.114)

which has the non-trivial solution

�0 = 2�vF

g
exp

(
−πvF

g2

)
(16.115)

which implies that there is a dynamically generated exponentially small gap in the
fermionic spectrum

√
2g�0 = 2

√
2�vF exp(−πvF/g2).

The opposite limit of interest is the regime in which the mass of the CH group
is taken to be very small, M → 0. In this regime the quantum fluctuations of
the dimerization field are as large as they can be. In fact, in this limit the dimer-
ization field is not only not classical but also can be integrated out (in the path
integral). The effective Lagrangian density of the fermions is found to be (Fradkin
and Hirsch, 1983) (on setting vF = 1)

L = ψ̄σ (x)iγ
μ ∂μψσ (x)+ g2

(
ψ̄σ (x)ψσ (x)

)2
(16.116)
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which is the Gross–Neveu model which we encountered in Chapter 5. It turns
out that the corrections for taking the M → 0 limit are irrelevant operators.
Nevertheless, the RG beta function of the Gross–Neveu model is

β(g) = a0
∂g

∂a0
= n − 1

π
g3 + · · · (16.117)

where n = 2 is the number of spin components. This means that this system is
asymptotically free, and that the effective coupling constant grows at low energies,
flowing to a strong-coupling fixed point with a spontaneously broken discrete chi-
ral symmetry (i.e. dimerization) and a dynamically generated energy gap (Gross
and Neveu, 1974). From semi-classical analyses it is known that, in addition to
massive fermions, the Gross–Neveu model has massive solitons. Notice, however,
that the spinless case, n = 1, is different. It turns out that in this case the fermions
remain massless until some critical value of the coupling constant at which there is
a (Kosterlitz–Thouless) quantum phase transition to massive phase.

We will now discuss the solitons that appear in polyacetylene. The domain walls
in polyacetylene are topological solitons since they interpolate between two non-
trivial boundary conditions of the manifold of broken-symmetry ground states. In
this sense they are close relatives of the skyrmions we discussed elsewhere in this
book and of the solitons in sine–Gordon theory. Since the adiabatic limit and the
ultra-quantum limit lead to essentially the same physics, we will consider this prob-
lem in the simpler adiabatic regime (Su et al., 1979; Jackiw and Schrieffer, 1981).
The soliton can be easily constructed in a lattice model. Here we will use a contin-
uum description that is simpler to apply and is accurate if the energy gap is small
compared with the Fermi energy.

The soliton can be regarded as a domain wall between two different conden-
sates of the dimerization field �(x) = ±�0. For instance, the soliton may take a
profile of the form �(x) = �0 tanh[(x − x0)/ξ ], where ξ is the correlation length
(typically the inverse of the mass gap) and plays the role here of the size of the soli-
ton, while x0 is the soliton coordinate. In our discussion we will take x0 as being
fixed, x0 = 0. However, a soliton is an actual quantum eigenstate of the quantum
field theory. Thus the soliton is a topological excitation that has a momentum and
an energy. A full computation of these properties in the semi-classical regime is
beyond the scope of this book. A thorough discussion can be found in the classic
papers of Dashen, Hasslacher, and Neveu (Dashen et al., 1975) or in Rajaraman’s
book (Rajaraman, 1985).

In what follows we will focus only on the behavior of the single-particle states of
the fermionic flavor (or valley) whose mass term is changing sign at x = 0. Let H
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x

m

−m

m(x)

Figure 16.5 A soliton in a 1D system is a domain wall that interpolates between
two ground states with opposite expectation values of the fermion bilinear
〈ψ̄ψ〉 = ±m, where m is the dynamically generated mass of the Dirac fermion.
In polyacetylene the soliton interpolates between the two ground states of the
commensurate (period-2) charge-density wave (see the text).

be the one-particle (Dirac) Hamiltonian for this two-component Dirac fermion with
a position-dependent mass term in one space dimension and m(x) = √

2g�(x),

H = −iσ1 ∂x + m(x)σ3 =
(

m(x) −i ∂x

−i∂x −m(x)

)
(16.118)

which is hermitian and real. We will take m(x) to have qualitatively the behavior
shown in Fig. 16.5.

It is straightforward to show that the spectrum of the one-particle Hamiltonian H
of Eq. (16.118) is particle–hole-symmetric. What is more interesting (and relevant
to us) is that H has a normalizable zero mode, a one-particle state with exactly zero
energy and wave function ψ0(x),

ψ0(x) = 1√
2

(−i
1

)
exp

(
−sgn(m)

∫ x

0
dx ′ m(x ′)

)
(16.119)

In addition, there is a non-normalizable solution, also with E = 0, which is not
part of the spectrum. Another way to think about this problem is to imagine that a
soliton–anti-soliton pair is created in some region of space away from the bound-
aries. The two normalizable zero modes of the isolated solitons now mix, their
degeneracy is lifted, and they no longer have zero energy. It is easy to see that, as the
two solitons are slowly separated, the zero modes are recovered. It is also easy to
see that the un-normalizable solution at the soliton can be regarded as the normal-
izable solution of the anti-soliton. In what follows we will assume that the domain
walls are always sufficiently far apart for their zero modes to remain unmixed.
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Likewise, if we add an electron to a polyacetylene chain, it becomes fractionalized
into two solitons, each carrying half of the charge of the electron.

In addition to this zero mode the Dirac Hamiltonian has a continuous spectrum of
positive-energy states with eigenspinors u p(x) and of negative-energy states with
eigenspinors vp(x). (We are neglecting the spin label of the electrons of polyacety-
lene.) Charge-conjugation invariance (or, rather, CP invariance) implies that for
each positive-energy state with momentum p and energy E(p) there is a negative-
energy state with momentum p and energy −E . However, the existence of the zero
mode changes the completeness relation of the eigenstates to∫

dp

2π
[u∗

p(x)u p(y)+ v∗p(x)vp(y)] + ψ∗
0 (x)ψ0(y) = δ(x − y) (16.120)

The existence of the zero mode also changes the mode expansion of the Dirac
field. In the standard notation of the Dirac theory the mode expansion is (Jackiw
and Rebbi, 1976)

ψ = aψ0 +
∑

p

(bpu p + d†
pv

∗
p) (16.121)

where bp and dp are fermion-annihilation operators, and a is a fermion-annihilation
operator for the zero mode. Since the zero mode is a discrete state, the operator a
and its adjoint satisfy the standard algebra, {a, a} = {a†, a†} = 0 and {a, a†} = 1.

We will now compute the charge of the soliton using the method of Jackiw and
Rebbi (1976). The charge in the presence of the soliton has to be computed rela-
tive to the charge of the uniform ground state which has been normal-ordered to
be zero. The normal-ordered charge-density operator is j0(x) = 1

2

(
ψ†(x)ψ(x) −

ψ(x)ψ†(x)
)

(where we have not written down the Dirac indices). The charge of the
soliton is the (integral of the) expectation value of the local charge density j0(x) in
the state with one soliton, which we will take to be at rest. Let us denote by ± the
soliton and anti-soliton states, where the sign is the sign of the mass at +∞, i.e. the
sign of the asymptotic value of �0(x) at x → +∞. The total (integrated) soliton
charge (in units of the electron charge −e) is

Q± = −e

2

{
±

∫
dx ψ0(x)

∗ψ0(x)+
∫

dx
∫

dp

2π

[
v∗p(x)vp(x)− u∗

p(x)u p(x)
]}

= ∓e

2
(16.122)

where we have used the completeness relation and the fact that due to charge con-
jugation symmetry the contributions of the continuum states cancel out exactly, i.e.
they have equal and opposite charges. Hence, a soliton has charge Q+ = −e/2
and an anti-soliton has charge Q− = +e/2. Notice that charge is not a label but
a quantum number of a state. We have encountered this concept in other places
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in this book, e.g. in the theory of the fractional quantum Hall states, but charge
fractionalization was first discussed in the problem we are now looking at.

The fractional charge result of Eq. (16.122) can be expressed in terms of the
spectral asymmetry of the Dirac operator (Jackiw and Schrieffer, 1981). If we
denote by ρ0(E) and ρS(E) the density of single-particle states in the absence and
in the presence of the soliton, the change in the charge of the ground state can be
written as

Q =
∫ 0−

−∞
d E

(
ρS(E)− ρ0(E)

)
(16.123)

which, using completeness, becomes

Q = −1

2

∫ ∞

0

(
ρS(E)− ρS(−E)

)
d E (16.124)

Then, as before, the symmetry of the spectrum implies that only the zero mode
contributes to the spectral asymmetry, Eq. (16.124), and hence to the charge,
Eq. (16.122).

An alternative way to think about fractional quantum numbers is due to
Goldstone and Wilczek (1981) and is based on the use of (in this case) the chiral
anomaly. Goldstone and Wilczek considered a theory of massless Dirac fermions
in (1 + 1) dimensions coupled to two scalar fields, φ1 and φ2, with Lagrangian
(with the speed vF = 1)

L = ψ̄ iγ μ ∂μψ + gψ̄
(
φ1 + iγ5φ2

)
ψ (16.125)

Notice that the one-particle (Dirac) Hamiltonian now becomes

H = iσ1 ∂x + gφ1σ3 + gφ2σ2 (16.126)

which is no longer a real symmetric matrix but is complex and hermitian. Thus, in
the presence of both mass terms C P (or, equivalently, time-reversal) invariance is
broken. We will take φ1 and φ2 to be slowly varying and in general everywhere non-
zero. For polyacetylene, in the notation we have been using, φ1 is our dimerization
field (a charge-density wave on the bonds) and φ2 is a charge-density wave on the
sites. By setting φ1 = |φ|cos θ and φ2 = |φ|sin θ we can write the Lagrangian in
the suggestive form

L = ψ̄ iγ μ ∂μψ + g|φ|ψ̄eiγ5θψ (16.127)

Let us now imagine that we start with some constant value of φ1 and φ2, which

opens a mass gap in the fermion spectrum of g
√
φ2

1 + φ2
2 , and that we make an

infinitesimal space- and time-dependent smooth local change in the values of both
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fields. Goldstone and Wilczek (1981) computed the current jμ which such a smooth
adiabatic change induces, and found the result (a, b = 1, 2)

〈 jμ〉 = 1

2π
εμνεab

φa ∂
νφb

|φ|2 = 1

2π
εμν ∂

νθ (16.128)

where |φ|2 = φ2
1 + φ2

2 and θ(x) = tan−1(φ2/φ1). Notice that the induced current
is locally conserved, ∂μ〈 jμ〉 = 0, as required by charge conservation and gauge
invariance.

Let us suppose now that we begin with the system in the sector without a soliton,
say with φ1 = constant and φ2 = 0, and that, through a sequence of slow changes,
after a long time we arrive at a system with one soliton. To compute the charge of
the soliton we can now just integrate the induced charge density 〈 j0〉,

Q =
∫ +∞

−∞
dx1〈 j0(x1)〉 = 1

2π
(θ(+∞)− θ(−∞)) ≡ �θ

2π
(16.129)

Let us now fix the fermion mass to be m = φ1/g and represent the soliton by a
twist in which φ2 slowly changes from φ2(−∞) = −φ0 to φ2(+∞) = +φ0. The
charge now is

Q = 1

π
tan−1

(
gφ0

m

)
(16.130)

If we now let m → 0 (which restores time-reversal invariance) we find the Jackiw–
Rebbi result that the charge is Q = 1/2 (in units of the electron charge −e). Notice,
however, that if time-reversal (or C P) invariance is broken, the Goldstone–Wilczek
formula, Eq. (16.129), allows any fractional value of the charge, depending on the
value of the twist of the chiral angle θ . We will see shortly below that this result
can be extended to higher dimensions.

Finally, let us note that in the special case of (1 + 1) dimensions we can reach
the same conclusion using abelian bosonization (which was discussed in Chapters 5
and 6). In terms of the real scalar field ϕ the Lagrangian of Eq. (16.127) takes the
bosonized form

L = 1

2
(∂μϕ)

2 + g|φ|
2πa0

cos(
√

4π ϕ − θ) (16.131)

Thus, in the presence of a non-trivial chiral twist θ(x1), the Bose field takes the
value ϕ(x1) = θ(x1)/

√
4π . Using the bosonization identity for the current, cf.

Eq. (5.253), we find

jμ = 1√
π
εμν ∂

νϕ = 1

2π
εμν ∂

νθ (16.132)

which agrees with the Goldstone–Wilczek result, Eq. (16.128), which was derived
using an adiabatic argument in the massive theory. This result leads again to the
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Goldstone–Wilczek formula for the fractional charge in terms of the chiral twist.
In some sense this result is not surprising since bosonization is a consequence of
the chiral anomaly in the massless theory.

16.8 Edge states in the quantum anomalous Hall effect

Let us now consider a 2D system that on the x > 0 right-hand half-plane is a
topological insulator with a broken time-reversal symmetry (TRS) and displays the
quantized anomalous Hall effect, while for the x < 0 left-hand half-plane it is
either a conventional insulator with an unbroken TRS or, more simply, vacuum.
This domain wall will be taken to run parallel to the y axis. While this calcula-
tion can be done numerically quite efficiently, it is simpler, and conceptually more
instructive, to use the effective-field theory of Dirac fermions in two space dimen-
sions to analyze this problem. Indeed, in Section 16.3.3 we saw that the quantum
anomalous-Hall-state insulator can be represented by a system of two flavors of
massive (two-component) Dirac fermions with the same sign of the mass, while the
trivial insulator can also be represented as two flavors of massive Dirac fermions,
but with mass terms with opposite signs. In this language, if we want to represent
“vacuum” we will simply send the mass gap of the trivial insulator to infinity. For
simplicity, we have represented the edge as a domain wall created by changing the
sign of the mass m1 of one of the Dirac flavors, which is a smooth monotonically
increasing function m(x) that varies only along the x coordinate. The mass term of
the other flavor, m2, is kept fixed and positive.

We will see below that this procedure yields a set of chiral edge states residing at
the interface between the two systems. Microscopically, we can picture a domain
wall in Haldane’s honeycomb model (for example) as being obtained by changing
smoothly across the wall the strength of the site potential ε relative to the next-
nearest-neighbor hopping amplitude t2 (see Eq. (16.35)). In this case, in general,
both mass terms will vary with position but only one will change sign. Provided
that the position dependence is sufficiently smooth, this will not lead to additional
bound states (that is, aside from the edge states themselves). It should be stressed
that this description of the trivial insulator does not affect the low-energy behavior
of these edge states. At any rate the same results are found in numerical simulations
that use a conventional description of the trivial insulator.

In two space dimensions the coupling of the two-component spinors to the
domain wall is described by the one-particle Dirac Hamiltonian

H = −iσ1 ∂x − iσ2 ∂y − m(x)σ3 =
(

m(x) −i ∂x + ∂y

−i ∂x + ∂y −m(x)

)
(16.133)
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which is hermitian and complex. Since the domain wall is parallel to the y axis
and, hence, the mass term is a function of x alone, the component py of the
momentum parallel to the wall is conserved. The one-particle states are thus plane
waves along the y direction. We can then take the two-component spinors to be of
the form

ψ(x, y) = eipy y

(
u py (x)
vpy (x)

)
(16.134)

which we will require to be an eigenstate of the one-particle Dirac Hamiltonian,
Eq. (16.133), with energy E .

We will now consider two cases. In the first case, shown in Fig. 16.6(a), the
mass of the Dirac fermion m(x) changes from being negative to the left of the
wall, m(x) < 0 for x < 0, to being positive to the right of the wall, m(x) > 0 for
x > 0. In this case the quantum anomalous Hall system is on the right half-plane.
In the second case, shown in Fig. 16.6(b), the situation is reversed.

In addition to massive bulk states, it is straightforward to see that the states

ψ(x, y) = 1√
2

eipy y

(−i
1

)
exp

(
−sgn(m)

∫ x

0
m(x ′)dx ′

)
(16.135)

are eigenstates of the Hamiltonian of the Dirac equation with a domain wall,
Eq. (16.133). Here we have set m = limx→∞ m(x) to be the bulk value of the

m > 0m < 0

broken TRSunbroken TRS

(a)

m > 0 m < 0

broken TRS unbroken TRS

(b)

Figure 16.6 Chiral edge states propagating along the domain wall upwards (case
(a)) and downwards (case (b)). In case (a) x < 0 is an insulator with unbroken
TRS and x > 0 is a topological (quantum anomalous-Hall) insulator with broken
TRS (see the text).
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mass, far away from the domain wall. These states are normalizable eigenstates
(along the x direction) of the Dirac Hamiltonian with energy

E(py) = sgn(m)vF py (16.136)

where we have restored the Fermi velocity. Just as in the case of polyacetylene,
there are also non-normalizable states of this form, but with the sign of the exponent
of the exponential reversed.

These results tell us that there are states inside the energy gap and that they have
support only near the location of the domain wall (or physical edge of the system).
The result that the energy–momentum relationship is strictly linear, Eq. (16.136),
is exact for the continuum Dirac theory. For the lattice models there are (expected)
corrections to the linear dispersion. In addition, at high energies, the edge modes
merge with the bulk spectrum.

Using the same line of reasoning as that we used in the theory of the edge
states of the integer quantum Hall fluids, we can now deduce that the effective
Lagrangian for the chiral Dirac fermions of the 1D edge states bound to the wall
for the quantum anomalous Hall state is

Ledge = ψ(y, t)i(∂t − vF sgn(m)∂y)ψ(y, t) (16.137)

where ψ(y, t) is a chiral right (left)-moving Dirac fermion in one space dimension
for m > 0 (m < 0). As we can see, this is identical to the theory of the chiral edge
states for the ν = 1 integer quantum Hall state. Here we have neglected the spin
degree of freedom which, if it were included, would lead to two branches of chiral
Dirac fermions, one for each spin orientation.

The same line of reasoning can be applied to domain walls of the chiral spin
liquid discussed in Chapter 10 and to a domain wall between two states with broken
TRS (but with opposite signs). The domain wall will now have two chiral edge
Dirac fermions in the case of the quantum anomalous Hall domain wall (obtained
by flipping the sign of the flux φ in half of the system in a Haldane honeycomb
model with ε = 0), and four chiral Dirac edge modes for the case of the chiral spin
liquid.

The chiral edge states of topological insulators, such as the quantum anomalous
Hall systems we are discussing here, are robust for the same reason as that which
explains why they are robust in the case of the integer quantum Hall states: being
chiral, no backscattering processes can be induced by impurities, and hence they
are immune to localization. Of course, this is not the case for the edge states of
systems that do not break time-reversal invariance. In that case the edge states come
with both chiralities, and backscattering processes are allowed and localization
effects render these states insulating. This difference is completely natural since
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there is no topological invariant associated with the insulators with an unbroken
time-reversal invariance.

We see that there is a close analogy between the edge states of the quantum
Hall effect, discussed in Section 15.1, and the quantum anomalous Hall effect.
We can make the connection more apparent by computing the currents induced by
an external electromagnetic field Aμ on both sides of the domain wall and on the
domain wall itself. Let us begin by looking at the effective action of the gauge field.
For the sake of definiteness we will consider the case shown in Fig. 16.6(a), which
is a conventional insulator for x < 0 and a quantum anomalous Hall insulator for
x > 0. Away from the wall the effective action is just the Chern–Simons action

Seff[A] = N+ − N−
4π

∫
d3x εμνλAμ ∂ν Aλ (16.138)

where N± is the number of fermionic species with topological charge ±1/2. The
only difference between the two regions is that the sign of the mass term of one
species changes from positive for x > 0 to negative for x < 0 and hence N+ = N−
for x < 0, but N+ = N− + 2 for x > 0. Hence, the effective action can be
written as

Seff = 2

4π

∫
�

d3x sgn(x1)

∫
d3x εμνλAμ ∂ν Aλ (16.139)

where � is the 3D space-time excluding the edge-state, namely the 2D manifold
spanned by the x2 spatial axis and time x0, in order to avoid the singularity of
the sign function. However, it is easy to see that this action is not gauge-invariant.
Indeed, under a gauge transformation Aμ → Aμ+ ∂μ� it changes by (here μ, ν =
0, 2 only)

Seff[A + ∂�] − Seff[A] = − 1

π

∫ ∞

−∞
dx2

∫
dx0 �(x1 = 0, x2, x0)εμν ∂

μAν

(16.140)
and we get, as in the quantum Hall effect, a gauge anomaly. However, here too,
we must also include the contribution of the edge states to the effective action.
Since the edge states are chiral, they also have a gauge anomaly, which is equal
and opposite to the gauge anomaly of the bulk. Hence, they cancel each other out.
It is now easy to compute the currents. In the bulk the currents are just those of the
anomalous Hall state for x > 0 and 0 for x < 0,

jμ = δSeff[A]
δaμ(x)

= 1

π
εμνλ ∂

ν Aλ (16.141)

For a configuration of gauge fields with zero magnetic field, B = 0, and elec-
tric field parallel to the length of the wall, E2 = E , the bulk current is the Hall
current of the anomalous Hall state and flows towards the wall along the x1 axis.
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Instead, along the wall we get the edge current, which flows upwards along the x2

axis. In this context this argument, which is formally analogous to Wen’s anomaly-
cancellation argument for the integer and fractional quantum Hall states, was first
formulated by Callan and Harvey (1985), and it is also known as the Callan–Harvey
effect.

16.9 Edge states and the quantum spin Hall effect

We now turn to a discussion of the edge states in the quantum spin Hall effect. It
was stressed by Kane and Mele (2005b) that, since spin is not generally conserved
in systems with spin–orbit couplings, the bulk quantum spin Hall effect cannot
possibly be a robust feature of these systems. In particular, they argued that, while
spin accumulation may take place as a result of applying an electric field, the asso-
ciated spin Hall conductivity will generally be lower than the idealized calculation
predicts. Nevertheless, Kane and Mele found that the edge states still have robust
properties.

To see how this works, let us consider a system that is a time-reversal-invariant
topological insulator in 2D (and hence one that ideally would display the quantum
spin Hall effect) with a boundary. The arguments apply both to the Kane–Mele
model and to the CdTe/HgTe/CdTE quantum-well model. As before, the outside
vacuum will be described as a normal insulator with a very large and negative
energy gap, while the quantum spin Hall insulator will have a positive energy gap.
Thus, this system can then be pictured as a domain wall created by a sign change
of the mass term. This picture is analogous to the edge of the quantum anomalous
Hall insulator shown in Fig. 16.6. The main, and important, difference is that we
now have twice as many degrees of freedom (due to the spin), and it is time-reversal
invariant.

Thus, there will be one chiral edge state for the ↑ fermions and one chiral edge
state for the ↓ fermions. However, since these fermions are related by time reversal
(and hence parity), the ↑ fermions have positive chirality, since they have Q↑ =
+1/2 and obey a dispersion E↑(p) = +vF p, while the ↓ fermions have negative
chirality, since they have Q↓ = +1/2 and obey a dispersion E↓(p) = −vF p.

We conclude that a topological insulator that exhibits the quantum spin Hall
effect has a pair of edge states that are chiral Dirac (or Weyl) fermions and have
opposite chiralities for ↑ and ↓ spins. In other terms, the ↑ spins are right movers
R↑ while the ↓ spins are left movers L↓, as shown in Fig. 16.7. A system with this
feature is called a “spin-split” metal (Hirsch, 1990) or, more generally, a “heli-
cal metal.” In contrast, a normal time-reversal-invariant insulator either has no
edge states (and hence also the edge is insulating) or it has edges states with both
chiralities for each spin orientation. We will see shortly that these “normal” edge
states either become localized by disorder or become gapped by interaction effects.
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L R
QSH

Figure 16.7 A two-terminal (L and R) setup used to detect the quantum spin
Hall (QSH) effect (König et al., 2007). Counter-propagating chiral edge states
propagate along the boundary of a quantum spin Hall topological insulator (see
the text). The ↑ spins move to the right and the ↓ spins move to the left.

gap

GL/R d < dc

V

(a) normal insulator

gap

GL/R
d > dc

V

2e2

h

(b) quantum spin Hall insulator

Figure 16.8 A schematic plot of the two-terminal conductance GL/R as a function
of the bias V between the terminals L and R of the device sketched in Fig. 16.7,
(a) in the normal regime of the quantum well, where it shows insulating behavior
in the energy gap, d < dc, and (b) in the quantum spin Hall regime, d > dc, where
it shows quantized edge spin Hall conduction. In the spin Hall regime Molenkamp
et al. (König et al., 2007, 2008) measured in CdTe/HgTe/CdTe quantum wells a
quantum spin Hall conductance of 2e2/h in agreement with the spin Hall current
being carried by the edge states (see the text).

The effective Hamiltonian for the edge states of a quantum spin Hall insulator is

HQSH edge = R†
↑(x)ivF� ∂x R↑(x)− L†

↓(x)ivF� ∂x L↓(x) (16.142)

Therefore the edge states of a time-reversal-invariant topological insulator consti-
tute a non-chiral 1D system.

Given that the edge states of a quantum spin Hall insulator have both chirali-
ties, one may suspect that they might not have topological protection. This turns
out to be a subtle problem in which time-reversal invariance plays a key role. In
a time-reversal-invariant free-fermion system the exact degeneracy between two
time-reversed states, |↑, p〉 and |↓,−p〉, is guaranteed by Kramers’ theorem. It
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insures that this degeneracy cannot be lifted unless time-reversal symmetry is bro-
ken explicitly since, in this case, there is no symmetry distinction between a normal
insulator and a quantum spin Hall insulator. For example, a magnetic field parallel
to the edge (say, along the x direction) will induce a spin-flip process. However,
in this case a spin-flip process requires one to flip the momentum and hence to
exchange a right with a left mover. Thus, this term induces a term at the edge of
the form

Hflip = gB
(
R†
↑L↓ + L†

↓R↑
)

(16.143)

With this term, by virtue of mixing right and left movers, the energy spectrum now

is E(p) =
√

p2v2
F + (gB)2. Therefore now there is a gap g|B| in the spectrum of

edge states and the edge is insulating.
Can interactions open a gap in the spectrum of edge states? We suspect that

this may be possible since the edge states in this case are not chiral. This ques-
tion is equivalent to asking whether time reversal may be broken spontaneously.
It is easy to see that in this system a backscattering interaction, which is a four-
fermion process, is a marginal operator. In fact, the edge states of this system are
identical to those of a spinless Luttinger liquid, which we discussed in depth in
Chapters 5 and 6. This connection tells us that the edge states in general have
anomalous dimensions and hence are not the simple free-fermion states we dis-
cussed. From this line of argument we can also deduce that the only possible
operators that could open an energy gap are Umklapp processes. However, Umk-
lapp processes are allowed only for a half-filled edge and become relevant only for
a sufficiently large value of their coupling constant.

What are the effects of disorder on the edge states of the quantum spin Hall insu-
lator? The chiral edge states of the quantum Hall fluid, and of the anomalous Hall
insulator, are protected from localization effects since backscattering processes are
forbidden. The quantum spin Hall edge states are also stable against localization
except in the case of backscattering processes with a spin flip, i.e. magnetic impuri-
ties. Thus, magnetic impurities make the quantum spin Hall edge states insulating.
In the case of the edge states of a normal insulator, if it has edge states at all, they
are not protected, and impurities will generally induce backscattering, turning it
into an Anderson insulator due to localization effects.

16.10 Z2 topological insulators and the parity anomaly

The last example we will discuss concerns the edge states of 3D Z2 topological
insulators. We will use a continuum-field-theory notation while keeping in mind
the central importance of lattice effects associated with fermion doubling. We have
already discussed these subjects for the bulk states. An alternative and very elegant
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approach that unifies all these effects and phenomena can be found in the beautiful
work of Qi, Hughes, and Zhang (Qi et al., 2008), which will be discussed below.

We will imagine now that we have a simply connected region � of 3D space
occupied by a Z2 topological insulator, e.g. Bi2Se3. The boundary of the region,
that we will denote by !, is a simply connected closed 2D manifold with the topol-
ogy of the sphere S2. Outside this region we have vacuum or, which amounts to the
samething, a trivial insulator with a very large energy gap. To simplify the ana-
lysis further, we will take the region � to occupy the entire half-space x3 < 0 of
3D space, and its boundary ! becomes R

2, the x1x2 plane. We will begin by con-
structing the zero modes of this system, the 2D edge states of the 3D Z2 topological
insulator. We will see that the edge states are chiral (Weyl) fermions that move in
2D space, the boundary !. We will follow the work of Callan and Harvey. This
problem was considered before (Fradkin et al., 1986; Boyanovsky et al., 1987),
except that in that work it was applied to PbTe, which, as it happens, is not a topo-
logical insulator. Consequently, it has edge states with both chiralities, and as such
does not enjoy any form of topological protection. Nevertheless, their analysis does
apply to the case of Z2 topological insulators, which had not yet been discovered
at that time.

Once again, we will assume that inside region � we have an even number of
species of massive Dirac fermions, as required by the Nielsen–Ninomiya theorem.
For the sake of concreteness we will keep in mind the 3D Wilson-fermion model
as a simple example of a Z2 topological insulator. Thus we will work with four
component spinors that represent states in the conduction and valence bands with
both spin projections. We will assume that inside region � the mass parameter of
the Wilson-fermion model lies in the regime in which the mass is negative at the
� point and positive at all other time-reversal-invariant points (see Section 16.6),
but that it is negative outside region �. This can be described in terms of a single
four-component Dirac spinor in (3 + 1) dimensions with a mass term that changes
sign across the x1x2 plane. Although we will use a continuum description, which
is accurate for the states near the � point, the results are consistent with lattice
calculations of Dirac fermions with domain walls.

There is an extensive literature in lattice gauge theory on the subject of “domain-
wall fermions,” which were proposed in connection with the realization of chiral
symmetry in lattice systems (see e.g. Kaplan (1992), Jansen (1996), and Creutz
(2001)), which has explicitly reproduced the results with Wilson fermions we
discuss here. However, while in lattice gauge theory the bulk is a system in (4+1)-
dimensional space-time and the boundary is (3 + 1)-dimensional space-time, here
we will work with one spatial dimension fewer. In the next section we will see that
it is also convenient to consider the problem beginning in (4 + 1) dimensions (Qi
et al., 2008).
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Let H be the Dirac Hamiltonian in three space dimensions with a domain wall
normal to the x3 axis. Thus we will assume that the Dirac mass term is a smooth and
monotonically decreasing function m(x3) that changes sign at x3 = 0 and takes the
asymptotic values limx3→±∞ m(x3) = ∓m, with m > 0. The (one-particle) Dirac
Hamiltonian is

H = −i �α · �∇ + m(x3)β (16.144)

which can be written as

H = H⊥ + H3 (16.145)

where

H⊥ = −iα1 ∂1 − iα2 ∂2 (16.146)

and

H3 = −iα3 ∂3 + m(x3)β (16.147)

Let ψ±
0 be an eigenstate of the (anti-hermitian) Dirac matrix γ3 = βα3 with

eigenvalue ±i ,

γ3ψ
±
0 = ±iψ±

0 (16.148)

We will demand that ψ±
0 be a zero mode of H3,

H3ψ
±
0 = 0 ⇒ ±∂3ψ

±
0 + m(x3)ψ

±
0 = 0 (16.149)

and a solution of the Dirac equation in (2 + 1) dimensions,

iγ0 ∂0ψ
±
0 − i

( �γ · �∇)
⊥ψ

±
0 = 0 (16.150)

where the label ⊥ indicates that the space derivatives act only on the domain-wall
coordinates x1 and x2.

We can satisfy these conditions by writing

ψ±
0 = η±(x0, x1, x2) f (x3) (16.151)

where f (x3) is the solution of

±∂3 f±(x3) = −m(x3) f±(x3) (16.152)

which has the form

f±(x3) = f (0)exp

(
∓

∫ x3

0
dx ′

3 m(x ′
3)

)
(16.153)

Since m(x3) < 0 for x3 > 0, it is monotonically decreasing and limx3→∞ m(x3) =
m < 0, the requirement that the solution be normalizable implies that we must
choose the solution f+(x3), which decays exponentially fast at long distances
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from the wall, |x3| � m−1. This also implies that the spinor η+(x0, x1, x2) must
be chosen to be an eigenspinor of γ3 with eigenvalue −i . Since in the Dirac
basis γ3 = iσ3 ⊗ τ1, it follows that the spinor η+(x0, x1, x2) is a superposition
of positive-energy states (the conduction band of the insulator) with spin ↑ and
negative-energy states (the valence band of the insulator) with spin ↓, which should
also satisfy the massless Dirac equation in (2 + 1) dimensions, Eq. (16.150).

The nature of the edge states is more easily seen by using a basis of the Dirac
gamma matrices in which γ3 is diagonal. In this basis we have the 4 × 4 Dirac
gamma matrices are γ0 = −I ⊗ τ2, γ5 = I ⊗ τ1, and �γ = i �σ ⊗ τ3. The subspace
of spinors with γ3 eigenvalue +i is spanned by (1, 0, 0, 0)T and (0, 0, 0, 1)T (here
the label T means transposed), while the subspace in which γ3 has eigenvalue −i
is spanned by the spinors (0, 1, 0, 0)T and (0, 0, 1, 0)T. We can find the effective
Dirac Hamiltonian in each of these two-dimensional subspaces. In the γ3 = i
subspace the matrices α1 = γ0γ1 and α2 = γ0γ2 become α1 = σ1 and α2 = −σ2.
On the other hand, in γ3 = −i subspace they are instead α1 = σ1 and α2 = +σ2.
Thus, in both subspaces the effective Hamiltonian has the form of a Weyl fermion
in (2 + 1) dimensions,

H2D = −iα1 ∂1 − iα2 ∂2 (16.154)

and the states have energy E( �p) = ±| �p|. However, since in the two subspaces the
term that contains the matrix α2 has opposite signs, the subspaces have states that
are related by a parity transformation. Hence the edge states with γ3 = +i have
positive chirality and those with γ3 = −i have negative chirality.

We conclude that there are states bound to the wall whose wave functions have
the form

ψ+
0 (x0, x1, x2, x3) = η+(x0, x1, x2)exp

(
−

∫ x3

0
dx ′

3|m(x ′
3)|

)
(16.155)

where the spinor η+ satisfies γ3η+ = iη+ and obeys a Dirac equation for bispinors
in (2 + 1) dimensions,

(
i /∂

)
⊥η+ = 0. Therefore, a 3D Z2 topological insulator has

chiral edge states, bound states localized at its open surface, which are massless
two-component Weyl fermions.

However, since the surface of the insulator is simply connected, this result
also means that the opposite surface also has massless two-component Weyl
fermions but with the opposite chirality. Hence, in this system the fermion-
doubling theorem is satisfied by spatially separating the chiral partners, with the
top surface having positive-chirality Weyl fermions and the bottom surface having
the negative-chirality Weyl fermions.

In the simple Wilson model, which is qualitatively adequate to describe topolog-
ical insulators such as Bi2Se3, there is just one species of Weyl fermion on each
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surface. Other topological insulators, such as Bi1−x Sbx , have a diamond lattice
structure and more complex band structure, leading to five Weyl modes on each sur-
face. Nevertheless, what matters is that the number of surface Weyl fermions is odd.
Indeed, if there were an even number of edge Weyl modes (as in the case of PbTe)
a mass term would be allowed on the surface even in a system with time-reversal
invariance. Hence pairs of Weyl fermions can acquire a gap. Thus insulators with
an even number of surface Weyl fermions are Z2-trivial. On the other hand, if
the number of surface Weyl modes is odd there will be at least one gapless mode
left gapless. This is what happens in the Z2 topologically non-trivial class. The
Wilson-fermion model is in this class and can be used as its representative.

Let us explore the consequences of these results by considering the effects
of external electromagnetic fields. The coupling to the external electromagnetic
field is given by the usual minimal coupling which is dictated by gauge invari-
ance. However, we will have to be careful to include also the Zeeman coupling of
the “microscopic” electrons, which in this language is a “non-minimal” coupling,
although it is consistent with gauge invariance. Such a term breaks time-reversal
invariance since it couples directly to the spin. For simplicity we will take the
magnetic field to be normal to the surface, �B = B�e3. We will work in the
gauge A3 = 0.

The one-particle Dirac Hamiltonian in the presence of a domain wall and
coupled to the external magnetic field can also be written in the split form of
Eq. (16.145), with H⊥ and H3 now being given by

H⊥ =
[
−i �α ·

(
�∇ − i

e

�c
�A
)]

⊥
− gB!3

H3 =− iα3 ∂3 + m(x3)β

(16.156)

where g is the Zeeman coupling and �! = diag(�σ , �σ) is the Dirac spin matrix.
Notice that the Zeeman term is equivalent to a mass term for the Weyl fermion
with mass m = −gB. So the sign of the mass, which sets the sign of the time-
reversal symmetry breaking, is the opposite of the sign of B, the component of the
magnetic field perpendicular to the wall.

Since !3 = diag(σ3, σ3), it commutes with γ3. Thus in the subspace spanned by
the normalizable zero modes of H3, which above was denoted by ψ+

0 , the effective
Hamiltonian in (2 + 1) dimensions now is

H2D = �α ·
(
�p + e

�c
�A

)
− gBσ3 (16.157)

where α1 = σ1, α2 = σ2 (given that our spinors satisfy γ3 = +i), and �A denotes
the components of the electromagnetic vector potential tangent to the wall, the x1x2

plane.
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We see that the Zeeman coupling for a field normal to the wall opens a gap in
the energy spectrum. Moreover, the Hamiltonian now has all three Pauli matrices
and breaks time-reversal invariance. On the other hand, for the same reason an in-
plane magnetic field does not open a gap in the spectrum and amounts to a shift of
the momentum. Thus, an in-plane magnetic field can be thought of as a large gauge
transformation or, equivalently, as a twist in the boundary conditions of the spinors.
The other way to open a gap in the spectrum of Weyl surface states is to have a term
in the bulk Hamiltonian that breaks parity and charge-conjugation symmetry. As
we will see below, this term involves the matrix βγ5.

The relativistic energy levels εn,σ in (2 + 1) dimensions are (setting m = −gB)

εn,σ = ±(
(2n + 1)B − σ B + m2

)1/2
, n = 0, 1, 2, . . . , σ3 = ±1

ε0 = m, n = 0, σ = +1 (16.158)

It is easy to see that the n = 0, σ = 1 states are Nφ-fold degenerate, while all other
states are 2Nφ-fold degenerate. Therefore, in the ground state, which is found by
filling up all negative-energy states, the Landau level with n = 0 and spin ↑ will be
empty if m > 0 or full if m < 0. Thus, we expect a charge (and spin) accumulation
at the surface by an amount Q.

How much charge accumulates? Since the Hamiltonian H3 is nothing but the
Hamiltonian of a soliton in 1D, we easily find that the induced charge is

Q = e

2
sgn(m)Nφ = e

2

BL2

φ0
sgn(m) = e2

�c

1

4π
sgn(m)BL2 (16.159)

Where does this charge come from? It necessarily has to come from the bulk of
the system. However, since the system is isolated and charge is conserved, an equal
and opposite amount of charge, −Q, has to be somewhere else. Indeed, the “miss-
ing charge” is at the opposite surface! As we saw above, at the opposite surface we
also get 2D Weyl fermions, but with the opposite “chirality” γ3 = −i . It is straight-
forward to see that the charge that accumulates at the “anti-domain wall” is indeed
−Q and has opposite spin projection. Hence the magnetic field induces a charge
polarization in the system. In Z2 topological insulators this effect is known as the
topological magneto-electric effect (TME) (Qi et al., 2008; Essin et al., 2009).

If we now impose an additional in-plane electric field �E , we expect that the
charge Q (or rather its center of mass) will move at the drift velocity v = c| �E |/|B|,
and that the system will have a Hall current �J , perpendicular to both �B and �E ,

Ji = σxyεi j E j (16.160)

with a Hall conductance

σxy = 1

4π

e2

�
sgn(m) (16.161)
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Hence the Weyl fermions have a Hall conductance σxy = ±1/2 (in units of e2/h)!
Since the electric field acts throughout the system (the bulk is an insulator and
cannot screen the electric field!), the Hall current has the opposite sign at the oppo-
site surface. Thus, there is no total Hall current, since the currents cancel out in
the system as a whole (but not locally!), but there is instead a spin Hall current.
We see that this effect is the 3D analog of the quantum spin Hall effect. How-
ever, the significant difference is that the chiral partners are spatially separated.
This is another manifestation of the Callan–Harvey effect. We see that the system
exhibits a parity anomaly at each surface, but that this cancels out in the system
as a whole. Equivalently, we have shown that the surface Weyl fermions of a 3D
Z2 topological insulator exhibit an anomalous Hall effect with a Hall conductance
that is equal to e2/(2h) (up to a sign), for this case in which there is a single Weyl
fermion. For a more general topological insulator the surface Hall conductance is
(N+ − N−)e2/(2h), where N± is the number of Weyl fermions of each chirality.
The opposite surface has the opposite Hall conductance.

We can recast these conclusions in terms of an effective action for the external
electromagnetic field (Qi et al., 2008). From the point of view of the surface states
their response to the external electromagnetic field is given by a Chern–Simons
action

Seff[A] =
∫
∂�+×R

d3x

[
1

4π
sgn(m)εμνλAμ ∂ν Aλ

]
−

∫
∂�−×R

d3x

[
1

4π
sgn(m)εμνλAμ ∂ν Aλ

]
(16.162)

where ∂�± are the top (+) and bottom (−) surfaces of a 3D region � occupied by
the Z2 topological insulator. Here R represents the time coordinate and μ, ν, λ =
0, 1, 2. We can express this result in the form of a volume integral (and time)

Seff[A] =
∫
�×R

d4x
θ

8π2
εμνλρ ∂

μAν ∂ρ Aλ (16.163)

with θ = sgn(m)π .
It is straightforward to see that the integrand of Eq. (16.163) is a total derivative,

which therefore integrates to the boundary (which is what we wanted) and that
the effective action at the boundary has the Chern–Simons form. Furthermore, on
a 4-manifold without boundaries (topologically equivalent to the 4-sphere S4) the
Pontryagin index

Q =
∫

S4

d4x
1

32π2
Fμν F̃μν =

∫
S4

d4x
1

32π2
εμνλρFμνFλρ (16.164)

is a topological invariant and is quantized to be an integer. Here Fμν = ∂μAν −
∂ν Aμ is the field tensor and F̃μν = 1

2εμνλρFλρ is the dual tensor; μ, ν, λ, ρ =
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0, 1, 2, 3. It can be shown that in the case of a 4D gauge theory, the Pontrya-
gin index classifies the smooth maps S4 )→ S4, and thus with homotopy group
π4(S4) = Z, which counts the instanton number, as discussed beautifully in Cole-
man’s book (Coleman, 1985) (see also Eguchi et al. (1980)). We see that this
topological invariant is the analog of the Pontryagin index of the 2D non-linear
sigma model, see Eq. (7.75).

The parameter θ is called the θ angle or axion field, and in the case at hand
θ = ±π , which (aside from 0) is the only value (mod 2π) compatible with time-
reversal invariance. Thus a trivial insulator, which does not have protected surface
Weyl fermions, has θ = 0 (mod 2π), whereas a Z2 3D topological insulator has
θ = π (mod 2π). We will see shortly that in the context of topological insulators
it is closely related to the induced charge polarization. These observations led Qi,
Hughes, and Zhang to the conclusion that the effective action of 3D insulators is
(Qi et al., 2008)

Seff[A] =
∫

d4x

[
− 1

4g2
FμνFμν + θ

32π2
Fμν F̃μν

]
=

∫
d4x

[
1

2g2

(
1

v2
�E 2 − �B 2

)
+ θ

8π2
�E · �B

]
(16.165)

with θ = 0, π . The first term in Eq. (16.165) is a Maxwell term, which, for an
isotropic system, is parametrized by the dielectric constant and the magnetic sus-
ceptibility of the insulator, which we represented in terms of the coupling constant
g ∝ e2 and the speed of light v in the insulator.

Callan and Harvey gave a general descriptions of problems of this type (Callan
and Harvey, 1985) by adapting the ideas of Goldstone and Wilczek we discussed
in the polyacetylene case. In the present context the Callan–Harvey approach
requires one to add a γ5 mass term to the action or, equivalently, a βγ5 term to
the Dirac Hamiltonian. In terms of the topological insulator a bulk term of this
type breaks time-reversal invariance (or C P) explicitly. Thus, we imagine that our
Dirac fermion has both a Dirac mass term and a γ5 mass term, each coupled to two
scalar fields, φ1 and φ2, which we will take to be slowly varying. In the 3D case at
hand, the Lagrangian is

L = ψ̄ i /∂ψ + gφ1ψ̄ψ + igφ2ψ̄γ5ψ = ψ̄ i /∂ψ + g|φ|ψ̄eiγ5θψ (16.166)

where /∂ = γ μ ∂μ, γ5 = iγ0γ1γ2γ3, and γμ are the four 4×4 Dirac gamma matrices
that satisfy the Dirac algebra, {γμ, γν} = 2gμνI, with gμν = diag(1,−1,−1,−1),
and {γμ, γ5} = 0. Here we have used the fact that γ 2

5 = I and expressed the
complex field φ = φ1 + iφ2 = |φ|exp(iθ) in terms of an amplitude field |φ| and a
phase field, the axion field θ .
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Using the same line of argument as that which led Goldstone and Wilczek to
the induced current of Eq. (16.128), Callan and Harvey showed that in (3 + 1)
dimensions an electromagnetic field Aμ, whose field tensor is Fμν = ∂μAν−∂ν Aμ,
in the background of a complex scalar field φ = φ1+iφ2 induces the charge current
〈 jμ〉 given by

〈 jμ〉 = −i
e

16π2
εμνλρ

φ∗ ∂νφ − φ ∂νφ∗∣∣φ∣∣2 Fλρ

= e

8π2
εμνλρ ∂

νθ Fλρ (16.167)

which is a consequence of the axial anomaly in (3 + 1) dimensions. Callan and
Harvey considered a rather different problem in which the complex scalar field φ
has a vortex in the 3D space, called an axion string. The vortex has a 1D core and
the Callan–Harvey analysis predicts that it has chiral Dirac–Weyl fermions that
move along the vortex with the direction determined by the sign of the vorticity.

Here we are interested in the case of a domain wall that is closely related to the
soliton that we discussed in Section 16.7. We will proceed similarly. Thus, we will
assume that gφ1 = m is the Dirac mass and that φ2 varies slowly (and smoothly)
from the value φ0 as x3 → −∞ to −φ0 as x3 → +∞. We can compute the total
charge accumulated on the wall using the Callan–Harvey result, Eq. (16.167), to
find (after restoring units)

Q = e
∫

d3x〈 j0〉 = e2

�c

�θ

2π

B3L2

2π
(16.168)

where we assumed that there is a non-vanishing magnetic field B3 perpendicular to
the wall. Since the chiral angle θ = tan−1(φ2/φ1) its total variation is

�θ = θ(x3 → +∞)− θ(x3 → −∞) = −2 tan−1

(
gφ0

m

)
(16.169)

Then in the time-reversal invariant limit, in which �" → −1/2, the charge Q
becomes

lim
m→0

Q = − e2

�c

B3L2

4π
(16.170)

which agrees with Eq. (16.159). Similarly, we can easily see that the Callan–
Harvey current predicts that, if an electric field is applied parallel to the wall, there
is an electric current on the wall perpendicular to it. This Hall current is pecu-
liar, since no magnetic field is applied. However, we must be careful to see that it
appears in the limit of vanishingly small breaking of time-reversal symmetry. The
result is discontinuous, and its sign depends on how the limit is taken.
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By now the reader may have wondered whether we have not lost something
important using the continuum approximations. In particular, the topological nature
of the effects has been to some extent hidden by going to the continuum limit. In
fact, the only place where we used the topological nature of the insulator was at
the beginning of the section, where we assumed that we would be working close to
the point in which a band inversion first appears at the � point, and relied on the
fact that the invariants at the other time-reversal-invariant points of the Brillouin
zone were unaffected. Therefore, if we are just “inside” the Z2 topological insulator
phase, our assumption that only the 3D Dirac fermion near the� point has a domain
wall (and that the other “species” do not) yields a consistent description of the
changes in the electronic structure. On the other hand, it would be desirable to
have a more general framework that does not rely on special arguments and, for
that matter, on a special form of the Hamiltonian. This was accomplished in the
general and elegant work of Qi, Hughes, and Zhang (QHZ) (Qi et al., 2008), whose
main ideas we will now describe.

They began their analysis by reexamining the 1D problem of fractionally
charged solitons, see Section 16.7, but with a somewhat different perspective. They
took the point of view that fractional charge in one dimension is an expression
of the problem of quantized charge transport and polarization in 1D insulators
(Thouless, 1983; King-Smith and Vanderbilt, 1993; Ortiz and Martin, 1994).

Following the QHZ construction, we will first consider a simple Wilson-fermion
model for the anomalous quantum Hall state in d = 2 space dimensions whose
Hamiltonian in real space is

H =
∑

�r , j=1,2

ψ†(�r)i� j

(
ψ(�r + e j )− ψ(�r − e j )

) + m
∑
�r
ψ†(�r)�3ψ(�r)

+
∑

�r , j=1,2

ψ†(�r)�3
(
ψ(�r + e j )+ ψ(�r − e j )− 2ψ(�r)) (16.171)

where � j (with j = 1, 2, 3) are the three 2 × 2 hermitian matrices, �1 = α1 = σ1,
�2 = α2 = σ2, and �3 = β = σ3, and satisfy the Clifford algebra {� j , �k} = δ jkI,
where I is the 2 × 2 identity matrix. The last term in Eq. (16.171) is known as the
Wilson mass term, and its role is to give a mass gap to all time-reversal-invariant
points in the Brillouin zone except the origin (the � point).

In momentum space this Hamiltonian is

H =
∫

BZ

d2k

(2π)2
ψ†(�k)�h(�k) · �� ψ(�k) (16.172)

It is characterized by the vector �h(�k) = (sin k1, sin k2,m + cos k1 + cos k2 − 2)
which defines a mapping of the Brillouin zone onto the 2-sphere S2. In Section
16.3.4 we showed that these mappings are classified by the Pontryagin index (or
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topological charge) Q of Eq. (16.48), which in this case computes the (first) Chern
number C1 of the Berry connection of the spinors on the Brillouin-zone torus. This
result is a general property of this class of systems rather than of the specific form
of the Wilson Hamiltonian. In this example, the Chern number C1 takes the values
1 and −1 for m < 0 and 0 < m < 2, respectively, and 0 otherwise (this result
can be derived from Eq. (16.75)). We will focus on the regime 0 < m < 2, for
which this system displays the anomalous quantum Hall effect with a quantized
Hall conductance σxy = +e2/h (Qi et al., 2008).

We also know that the physical response to an external electromagnetic field
Aμ of a system with a quantized anomalous quantum Hall effect is given by
the Maxwell–Chern–Simons effective action of the form of Eq. (16.37). In this
case, however, the coefficient of the Chern–Simons term is quantized and equal to
the first Chern number C1 of the system. This effective action is gauge-invariant
for a system without boundaries, e.g. with periodic boundary conditions. If the
system has boundaries the full gauge-invariant effective action also includes the
electromagnetic response of the (topologically protected) edge states.

Let us consider the idealized problem of a 2D system with a quantum anoma-
lous Hall state on a cylinder of length L1 and circumference L2. We will picture
this situation, as in Fig. 16.9, as a compactification of the plane, which has been
wrapped into a cylinder. The effective action of the (2 + 1)-dimensional quantum
anomalous Hall insulator in the asymptotic low-energy limit is the Chern–Simons
action on the cylinder,

S2+1[A] = C1

4π

∫
S1×S1×R

d3x εμνλAμ ∂ν Aλ (16.173)

L2

L1
(a)

L1

L2

Φ

(b)

Figure 16.9 (a) The rectangle of area L1L2. (b) The compactified rectangle is
a cylinder of length L1 and circumference (or period) L2. The magnetic flux �
going through the cylinder in (b) is a twist in the boundary conditions for the
states on the plane in (a).



16.10 Z2 topological insulators and the parity anomaly 731

where we denoted the cylinder as S1 × S1 × R, where the first S1 represents
time x0 (with periodic boundary conditions), the second S1 represents the compact
(periodic) direction x2 (with 0 ≤ x2 < L2), and R is the x1 direction along the
cylinder of length L1. Here we have not included the edge-state contribution.

In the “thin-cylinder” limit, in which formally L2 → 0, the Chern–Simons
term reduces to the (1 + 1)-dimensional action for the projected gauge field
Aμ = (A0, A1)

S1+1[A] = C1

2π

∫
S1×R

dx dt �(x, t)εμν ∂
μAν (16.174)

where the local field �(x, t) = ∮
dx2 A2 is the flux through the cylinder at location

x at time t . We will now see that there is a (1 + 1)-dimensional interpretation of
the flux �. Indeed, the action S1+1[A] predicts that the (1+1)-dimensional current
charge density j0 and charge current j1 are given by

j0 = δS1+1[A]
δA0

= C1

2π
∂1�, j1 = δS1+1[A]

δA1
= −C1

2π
∂0� (16.175)

In a more compact form, the current jμ = ( j0, j1) is given by

jμ = δS1+1[A]
δAμ

= C1

2π
εμν ∂ν� (16.176)

We now see that this result is essentially the same as the Goldstone–Wilczek for-
mula, Eq. (16.128), provided that we identify the flux through the cylinder � with
the (local) value of the chiral angle θ . Qi, Hughes, and Zhang, who derived this
result by means of a dimensional-reduction argument of the fermion Hamiltonian,
argued (quite convincingly) that this result implies that we should identify the θ
angle with the polarization of the 1D insulator. In this language the quantization
of the charge in 1D is the same as (or descends from) the quantization of flux in
2D. Since the only values of the flux compatible with time-reversal invariance are
� = 0, π (mod 2π) (in units of the flux quantum φ0 = hc/e), the only allowed
values of charge in 1D are 0 and 1/2 (mod 1), which is consistent with our previous
conclusions.

Qi, Hughes, and Zhang generalized these results to higher-dimensional insula-
tors. They began by considering a topological insulator in d = 4 space dimensions.
For the sake of argument, we can imagine a Wilson-fermion Hamiltonian for four-
component spinors on a 4D hypercubic lattice. The simplest model of this type
has a one-particle Dirac Hamiltonian h(�k) = ∑5

i=a ha(�k) · �a , which involves all
five Dirac � matrices, reflecting the broken time-reversal invariance of this insu-
lator. Qi, Hughes, and Zhang noted that in systems of this type one can define a
non-abelian Berry connection Aαβ

i (�k) on the 4-torus T 4 of the 4D Brillouin zone,
where α and β run over the labels of the occupied bands (there are two occupied
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bands in the present example), and i = 1, . . . , 4 are the four orthogonal coordinates
of the 4D Brillouin zone. This non-abelian Berry connection is

Aαβ

i (�k) = −i〈α, �k|∂ki |β, �k〉 (16.177)

which for two occupied bands takes values in the algebra of the gauge group
SU(2)× U(1). We can define the (non-abelian) field strength Fαβ

i j ,

Fαβ

i j = −i
[
Di , D j

]αβ = ∂iAαβ

j − ∂ jAαβ

i + i
[
Ai ,A j

]αβ
(16.178)

where ∂i = ∂ki and Di is the covariant derivative in the adjoint representation of
the gauge group (SU(2) × U(1) in the case at hand). In this system we can define
a topological invariant called the second Chern number, C2, which is given by

C2 = 1

32π2

∫
BZ

d4k εi jkl tr[Fi jFkl] (16.179)

On the other hand, given the five-component vector �h(�k) which defines the Hamil-
tonian, we can construct the five-component unit vector ĥ(�k) = �h(�k)/||�h(�k)||.
This unit vector defines a mapping of the 4-torus T 4 (the Brillouin zone) into the
4-sphere S4. These mappings can be classified by the homotopy group π4(S4) = Z

whose topological invariant is the Pontryagin index Q,

Q = 3

8π2

∫
BZ

d4k εi jlmnĥi (�k)∂k1 ĥ j (�k)∂k2 ĥl(�k)∂k3 ĥm(�k)∂k4 ĥm(�k) (16.180)

Exactly as in the 2D example we discussed before, the second Chern number C2 is
computed by the Pontryagin index Q of Eq. (16.180), i.e. C2 = Q.

These results determine the form of the effective action for an external electro-
magnetic field Aμ (in (4+1) dimensions) for this 4D insulator. The effective action
is a Chern–Simons term in (4 + 1) dimensions,

S4+1[A] = C2

24π2

∫
d5x εμνλρσ Aμ ∂ν Aλ ∂ρ Aσ (16.181)

This result was derived by QHZ (Qi et al., 2008) by computing the non-linear
response to the external electromagnetic field, and is a generalization to 4D of the
TKNN result that in 2D the Hall conductance is given by the first Chern number.
This result was derived earlier on in the high-energy literature by Golterman and
coworkers (Golterman et al., 1993), and in the reviews by Jansen (1996) and by
Creutz (2001).

We can now proceed to reduce the dimensionality by one by compactifying one
of the four directions of 4D space, say x4 (the fifth dimension of the space-time),
into a circle S1 of circumference L4. The manifold now is S1×S1×R

3. The effective
action in the reduced dimension can be deduced by analogy with the arguments that
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led to Eq. (16.174). By taking the compact direction to be very small, L4 → 0, we
find that the effective action in (3 + 1) dimensions is

S3+1[A] = C2

8π2

∫
d4x �(x)εμνλρ ∂μAν ∂λAρ (16.182)

where � = ∮
dx4 A4 is the flux through the compactified fifth dimension. Natu-

rally, this result can also be derived by direct calculation in (3+ 1) dimensions.
We have thus reproduced the result of QHZ, Eq. (16.165), who further identified

the θ angle, given here by the flux �, with the local polarization (using the notation
of QHZ)

P3(�x, t) = 1

2π
�(�x, t) (16.183)

It is now straightforward to show that the 4-current jμ is given by

jμ = δS3+1[A]
δAμ

= C2

2π
εμνλρ ∂

ν P3 ∂
λAρ (16.184)

which is the same as the Callan–Harvey current, Eq. (16.167). Thus, this analysis
also predicts the existence of the topological magneto-electric effect.

16.11 Topological insulators and interactions

In this chapter we have focused on the properties of insulating systems whose band
structures have non-trivial topology. Since our discussion has been done entirely
at the level of free-fermion systems, it is worthwhile to raise some important
questions.

(a) The first question is whether, and to what extent, these topological properties,
and their consequences, are stable if interactions between the electrons are
included.

(b) A second important question is whether these topological properties can be
the result of a phase transition in a trivial system into a state with non-trivial
topology. In other words, can we have a topological Mott insulator?

(c) Finally, a third (but related) question is what is the relation, if any, between
topological insulators and the topological phases that we discussed in depth in
other chapters of this book?

We will now address the first of these questions: stability. The stability of topo-
logical insulators, and for that matter of all insulators, is guaranteed by the energy
gap in the spectrum. We have already encountered this issue in other chapters
of this book, e.g. the stability of the integer and fractional quantum Hall states
in Chapters 12 and 13. Thus, the effects of interaction terms in the Hamiltonian
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are suppressed at low energies since perturbation theory is convergent when the
system has a gap, provided that the interactions are sufficiently local and the cou-
pling constants are smaller than a non-universal critical value. This fact has been
checked by exact diagonalization studies (Varney et al., 2010) in the quantum
anomalous Hall state of the Haldane model on the honeycomb lattice for spinless
fermions with a repulsive interaction V between fermions on nearest-neighboring
sites. Varney et al. found that the repulsive interaction tends to close the gap of
the topological insulators and to favor a non-topological insulating Mott state in
which the charge density is different on the two sublattices of the honeycomb lat-
tice. This uniform state, which breaks the point-group symmetry of the honeycomb
lattice spontaneously, is also the strong-coupling ground state if the time-reversal-
symmetry-breaking terms are absent. In other words, in the strong-coupling regime
the physics is local and insensitive with regard to the subtleties of the band structure
which are relevant at weak coupling.

A similar effect was found in the quantum spin Hall regime of the Kane–Mele–
Hubbard model. Quantum Monte Carlo simulations (Hohenadler et al., 2011, 2012;
Zheng et al., 2011) found that the on-site Hubbard interaction with coupling con-
stant U does not affect the quantum spin Hall state, provided that it is smaller than
a critical value set by the insulating gap. If the insulating gap of the quantum spin
Hall state is increased, the system becomes more stable with respect to Hubbard-
type perturbations. When the interactions begin to dominate, these simulations
find quantum phase transitions to one of two Mott states, either a Z2 topologi-
cal spin-liquid phase at intermediate couplings, similar to the ones we discussed
in Chapter 9, or a quantum antiferromagnet in a Néel phase (typically at stronger
coupling). However, the existence of these Mott states is unrelated to the physics
of the topological insulator, since they are also found even if the non-interacting
limit is not a topological insulator, see e.g. Meng et al. (2010). Nevertheless, the
Z2 topological state seems to compete with the topological insulator since the size
of the phase diagram it occupies shrinks (and disappears rapidly) as the strength
of the Kane–Mele coupling increases. In contrast, although the threshold to the
Néel antiferromagnetic phase is monotonically pushed to stronger couplings with
increasing Kane–Mele coupling, it never disappears from the phase diagram.

In other words, the topological insulators that arise from free-fermion systems
are stable. In fact, they are as stable as any other band insulator regardless of
whether their bands are topological or trivial. This does not mean that topol-
ogy does not matter. Indeed, unlike trivial insulators, topological insulators have
gapless fermionic edge states that are protected.

Since the edge states are gapless, one may wonder whether they are stable with
respect to interactions. In the case of 2D topological insulators in the quantum
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anomalous Hall state, the stability of their edge states is guaranteed by the fact that
these states are chiral and interactions can lead only to finite renormalizations of
the Fermi velocity, exactly as in the case of the integer and fractional quantum Hall
states. In the case of the quantum spin Hall states, their stability is guaranteed by
time-reversal invariance, which does not allow for mixing between spin-reversed
states. Thus, in the quantum spin Hall state the edge states may become Lut-
tinger liquids but will remain gapless, and are always present, provided that the
bulk remains in a topological insulator phase. This is consistent with the general
arguments on the topological protection and stability of the edge states (Qi et al.,
2006a).

Let us now consider the stability of the edge states of 3D Z2 topological insu-
lators. As we saw earlier in this chapter, their edge states are 2D Weyl fermions
that are confined to the surface of the insulator and are also protected, provided
that the bulk has a gap of topological origin. Protection of the 2D Weyl fermions
works in two ways. On the one hand, they live in D = 2 + 1 dimensions. As
we saw in Section 4.2.5, the action of relativistic free Dirac (or Weyl) fermions in
D > 2 space-time dimensions is a stable fixed point of the RG in a theory with
only local four-fermion interactions (Wilson, 1973). This in fact would also be true
if the bulk were not topological but had gapless edge states by virtue of an acci-
dental fine-tuning of the Hamiltonian. Recall that the scaling dimension of a Dirac
(and Weyl) fermion is �ψ = (D − 1)/2, where D is the dimension of space-time.
The scaling dimension of a local four-fermion interaction at the free Dirac fixed
point is �4 = 2(D−1). Hence, for all D > 2 (space-time) dimensions, the scaling
dimension �4 > D. Hence the four-fermion operator is irrelevant for D > 2 and
the free (Dirac)-fermion fixed point is stable. This scaling argument also protects
the Dirac semi-metal phase of single-layer graphene. Coulomb interactions, which
are marginally irrelevant here too (as in graphene), cannot open a gap for similar
reasons (unless the coupling is too strong).

However, the 2D Weyl-fermion surface states of 3D Z2 insulators are pro-
tected also by the topological nature of the bulk. As we saw in Section 16.10,
3D Z2 topological insulators have a bulk–edge correspondence in the form of the
Callan–Harvey effect, which guarantees that the anomaly of the bulk is exactly
compensated by the anomaly of the edge. Since the edge states have an anomaly,
many possible interactions are not allowed, since they would violate the bulk–
edge correspondence. Thus, exactly as in the case of the quantum spin Hall
state, time-reversal-invariant interactions can only renormalize the Fermi veloc-
ity of the Weyl fermions. Even if time-reversal invariance were broken explicitly,
the irrelevance of local interactions would kick in and protect the Weyl surface
states.



736 Topological insulators

16.12 Topological Mott insulators and nematic phases

Our second question was whether a topological insulator could arise from a non-
topological system as a result of a phase transition to a topological Mott insulator.
This question was first addressed by Raghu et al. (2008), who considered two
related problems. They (mainly) used mean-field theory (Hartree–Fock) in a sys-
tem of spinless fermions on the honeycomb lattice with repulsive interactions V1

and V2 between nearest-neighbor and next-nearest-neighbor sites. In the weak-
coupling limit this reduces to two species of Dirac fermions with local four-fermion
interactions. Since, as we just saw, this interaction is irrelevant at weak coupling,
all phase transitions are pushed to finite values of V1 and V2, presumably of the
order of the bandwidth of the free fermions.

The main result of this work was that Raghu et al. found a competition between
two phases. For V1 larger than a critical value they found a state that they called
a “charge-density-wave” (CDW) phase. It is actually a uniform state with intra-
unit-cell charge order that breaks spontaneously the point-group symmetry of the
honeycomb lattice by an unequal occupation of the two sublattices. This is a non-
topological Mott insulator and can be pictured as two Dirac (Weyl) fermions with
mass gaps of opposite sign or, equivalently, with opposite 2D parities.

On the other hand, for V2 larger than a critical value they found a phase with
a dynamically generated quantum anomalous Hall phase. This phase is character-
ized by the development of a complex expectation value of a next-nearest-neighbor
fermion bilinear 〈cA(�r)†cA(�r + �ai )〉. In other words, the phase with a spontaneous
quantum anomalous Hall phase appears when a Haldane term is generated dynam-
ically. This state can be pictured as two Dirac fermions with masses with the same
sign and hence with a spontaneously broken time-reversal invariance. In other
words, this state has spontaneous circulating currents.

Raghu et al. also found a direct (first-order) transition between the non-
topological charge-ordered Mott insulator and the spontaneous quantum anoma-
lous Hall state merging at a bicritical point where V1 ∼ V2. They checked this
result using an RG analysis, which is reliable only in the weak-coupling regime.
They also considered a graphene system with spin-1/2 fermions. In this case, in
addition to the nearest- and next-nearest-neighbor interactions, V1 and V2, they
also included the on-site repulsive Hubbard U term. In addition to the CDW, spon-
taneous quantum anomalous Hall, and semi-metal phases of the spinless case,
they now also found a Néel phase, or spin-density wave (SDW), and a phase
with a spontaneous quantum spin Hall state. The latter state is a time-reversal-
invariant phase characterized by an expectation value of the Kane–Mele term. This
is a time-reversal-invariant insulating uniform phase that breaks spontaneously
the SU(2) spin symmetry. It should be noted that their mean-field theory (not
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surprisingly!) did not find a Z2 spin liquid that is seen in Monte Carlo simulations
for V1 = V2 = 0 (Meng et al., 2010).

The interesting results of Raghu and coworkers (Raghu et al., 2008) have the
drawback of relying on approximations that can be trusted only in the weak-
coupling regime. In fact, while the conventional Mott states, namely the CDW
phase and three Néel phases, are easily obtained in the strong-coupling limits of
large V1 or large U , the existence of topological phases is far from clear in the
regime of very large V2. One may wonder whether there are perhaps other systems
in which the topological phases appear in the weak-coupling regime and the phases
with obvious types of broken symmetry appear in the strong-coupling regime.

The way around the problem we just discussed is to change the band structure so
that the four-fermion operators become marginal. This approach was taken by Sun
and coworkers (Sun et al., 2009), whose work we will follow here. Let us suppose
that we have a system in which the single-particle kinetic energy scales as L−2,
instead of as L−1 in the Dirac theory. This would happen if instead of a linear band
crossing we had a system with a quadratic band crossing. In such a system time
will have to scale as Lz , where z is the dynamic critical exponent. Since the fermion
operators must still satisfy canonical anticommutation relations, the fermion action
must be linear in time derivatives. Since it is also quadratic in the space derivatives,
this fixes the dynamic exponent z = 2. On the other hand, the free-fermion action is
a bilinear in the fermionic fields. Hence, if the system is in d = 2 space dimensions,
the scaling dimension of the fermionic field is � = z/2 = 1. From here it follows
that the scaling dimension of all four-fermion operators is �4 = 4� = 4, which
happens to be equal to d + z = 4. Hence this naive scaling, which is correct for
a free field, implies that in a system with these scaling properties the four-fermion
interactions are marginal, and one has a chance to obtain non-trivial condensates
that are accessible by means of a perturbative RG. Or, equivalently, it implies that
the new phases result from infinitesimal instabilities.

The catch in this argument is that, unlike linear band crossings, which are generic
and are described by a theory of relativistic Dirac fermions, in general quadratic
band crossings are accidental degeneracies that require two parameters to be simul-
taneously tuned to zero. Such accidental degeneracies can be lifted by the addition
of an arbitrarily small parameter without violating any symmetries. The way out
of this problem is to find a symmetry-protected quadratic band crossing. The key
to this question is for the crossing to have a non-trivial Berry phase. Let |ψ(�k)〉 be
a two-component spinor state defined on each point �k of the Brillouin zone. The
Berry connection is Ai [�k] = −i〈ψ(�k)|∂ki |ψ(�k)〉. Let � be a closed path on the
Brillouin zone. The Berry flux is (see Chapter 12 and Section 16.2)

�� = −i
∮
�

d�k · 〈ψ(�k)|∂�k |ψ(�k)〉 (16.185)
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The Berry flux can be non-zero only if the spinors have a singularity at some point
�k0 of the Brillouin zone. If the closed path � does not enclose a singularity, the
Berry flux must vanish. If the spinors have a singularity at �k0 then the Berry flux
will not vanish for all paths � that enclose �k0. If the system is further assumed to be
time-reversal-invariant then the Berry flux can only be �� = nπ . We saw before
that lattice systems have a special set of momenta for which the Hamiltonian is
invariant under time reversal. We called them the time-reversal-invariant momenta.
Let us consider a case in which the band crossing occurs at a time-reversal-invariant
momentum �k0.

In a system of massless two-component Dirac (Weyl) fermions, the Berry flux
is ±π . In such a system we cannot open a gap unless time-reversal invariance is
broken, since with the extra operator all three Pauli matrices enter into the Hamil-
tonian. This is the path we followed to discuss the quantum anomalous Hall state.
A time-reversal-invariant system with a quadratic band crossing at a time-reversal-
invariant point �k0 has a Berry flux that is twice as large, �� = 2nπ . If the integer is
n = 0 there is no singularity and the quadratic band crossing can be removed with-
out breaking any symmetry. However, if the Berry flux is ±2π the quadratic band
crossing is protected by time-reversal invariance and cannot be removed without
breaking time-reversal invariance.

On the other hand, one can imagine adding operators that “split” (in momentum
space) the quadratic band crossing with Berry phase +2π into two Dirac “cones,”
each with Berry phase +π . However, such a splitting of the quadratic crossing
breaks rotational invariance and makes the system anisotropic. We will see below
an example on a square lattice, whose point-group symmetry is C4, the symmetry
group of the square. In that case, the splitting would amount to the spontaneous
breaking of the four-fold C4 rotational symmetry down to a two-fold symmetry
C2 (of rotations by π). We will say that a system with a spontaneous breaking of
rotational invariance is in an electronic nematic state (or quantum nematic state),
as in the case of nematic liquid crystals (de Gennes and Prost, 1993; Chaikin and
Lubensky, 1995). This state would be an example of an electronic liquid-crystal
phase (Kivelson et al., 1998). Since the broken symmetry is Z2, this state should
be called an “Ising nematic.” Below we will give a specific example in which the
topological Mott insulator competes with an electronic nematic phase (which here
is a semi-metal).

There are many examples of electronic systems that have nematic phases
of purely quantum-mechanical origin, such as several high-Tc superconductors,
including YBa2Cu3O6+x in much of its “pseudogap” regime, 2D electron gases in
the second Landau level (Lilly et al., 1999) (near the center of the Landau level,
where the quantum Hall effect is not seen), the bilayer material Sr3Ru2O7 in mag-
netic fields (Borzi et al., 2007), and the “hidden-order” phase of the heavy-fermion
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superconductor URu2Si2. For reasons of space the theory of quantum electronic
liquid crystals will not be discussed in this book. A review of the experimental evi-
dence for electronic nematic states and of the theory can be found in Fradkin et al.
(2010).

The main difference between these quantum nematic states and their classical
cousins is that, while in the latter the constituent degrees of freedom are rod-
like molecules (“nematogens”), in the electronic system the constituent degrees
of freedom are point particles, electrons! In the electronic case the formation of an
anisotropic phase is a result of several possible quantum-mechanical mechanisms,
such as the lifting of a high-order degeneracy (as in the quadratic band crossing),
the spontaneous distortion of the Fermi surface of a Fermi liquid (the Pomeranchuk
instability) (Oganesyan et al., 2001), the spontaneous ordering of “orbital” degrees
of freedom, or the quantum-mechanical melting of a stripe phase (a unidirectional
CDW) (Kivelson et al., 1998).

Another example with a quadratic band crossing is bilayer graphene. Bilayer
graphene is a system of two layers of carbon atoms, with each layer arranged on a
honeycomb lattice and stacked in such a way that one sublattice is right on top of
the other (Castro Neto et al., 2009). This arrangement is called a Bernal stacking.
There is a small tunneling-matrix element for the electrons in one layer to tunnel
to the electronic states in the other layer (and vice versa).

The particular features of the Bernal stacking cause the Dirac spectrum of single-
layer graphene to be replaced by a quadratic band crossing at the same points of
the Brillouin zone, K and K∗. In this case this is an accidental degeneracy, since
in principle it is possible to have a term in the Hamiltonian that lifts the quadratic
crossing. In bilayer graphene with Bernal stacking this term is caused by a trigonal
warping of the crystal structure, which is compatible with the symmetries of bilayer
graphene. The trigonal warping term does indeed split each of the quadratic cross-
ings (with Berry flux 2π ) into three Dirac cones (each with Berry flux +π) away
from the K and K∗ points and another Dirac cone with Berry flux −π . However,
although the quadratic crossing in bilayer graphene is not protected by symme-
try, it is protected by accident (or by carbon!) since the trigonal warping term is
three orders of magnitude smaller than all other terms in the Hamiltonian. So, for
all practical purposes it can be ignored. Consequently, many aspects of the theory
that we will now discuss also apply in practice for the case of bilayer graphene
and, not surprisingly, many of these ideas have also been discussed in that context
(Nandkishore and Levitov, 2010; Vafek, 2010; Vafek and Yang, 2010).

Sun and coworkers (Sun et al., 2009) showed that topological insulators (as well
as nematic phases) can arise dynamically within a weak-coupling theory by con-
sidering a system of fermions (with and without spin) with a symmetry-protected
quadratic band crossing. An example of such a system is a half-filled checkerboard
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t1

t2

t

Figure 16.10 The checkerboard lattice is a 2D lattice with corner-sharing
tetrahedra, a 2D version of the pyrochlore lattice. The hopping-matrix elements
are t along the diagonals, t ′1 along the horizontal and vertical full lines, and t ′2
along the horizontal and vertical broken lines.

lattice, as shown in Fig. 16.10. This lattice can be regarded as a 2D version of
the 3D pyrochlore lattice, a lattice of corner-sharing tetrahedra. This is also the
lattice of the oxygen sites in the strong-coupling limit of the Emery model for the
copper-oxide plane of the high-temperature superconductors (Kivelson et al., 2004;
Sun and Fradkin, 2008). (The half-filled case which we will discuss below is not
physically meaningful for the copper oxides.)

Before discussing the specific aspects of the lattice model, it is useful to write
down a theory of interacting fermions with symmetry-protected quadratic band
crossing. Let �(�r) = (ψ1(�r), ψ2(�r))T be a two-component Fermi field, with or
without spin (below the two components will correspond to the sublattice labels),
whose low-energy Hamiltonian is

H =
∫

d�r
[
�†(�r)H0�(�r)+ uψ†

1 (r)ψ1(r)ψ
†
2 (r)ψ2(r)

]
(16.186)

where H0 is the one-particle Hamiltonian for a quadratic band crossing and u is a
coupling constant. In momentum space H0(�k) is

H0(k) = dII + dxσ1 + dzσ3 (16.187)

where, as before, I is the 2× 2 identity matrix and σx and σz are the corresponding
Pauli matrices. The coefficients are

dI = tI(k
2
x + k2

y), dx = 2tx kx ky, dz = tz(k
2
x − k2

y) (16.188)

With this “d-wave” (quadrupolar) structure the Berry flux associated with the
quadratic band crossing is 2π (or −2π depending on the relative signs). If |tx | =
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|tz| the system is rotationally invariant in this continuum approximation and has C6

point-group symmetry in the case of a lattice system. This effective Hamiltonian
manifestly exhibits the z = 2 scaling we discussed above. The term proportional
to the identity matrix breaks the particle–hole symmetry of this theory. This term
is not very important, provided that the parameters of the theory are such that the
upper band lies entirely above the lower band, and never crosses the Fermi energy,
which we will set to be at zero. Below we will see that in specific lattice models
this condition can easily be satisfied. Unless we state the contrary, in what follows
we will work with a particle–hole-symmetric theory.

Let us discuss briefly some aspects of the free-fermion system. For simplicity
we will take the system to have maximal symmetry and set |tx | = |ty| = t . The
free-fermion theory has the same matrix structure as the relativistic Dirac fermion
except that it has dynamic critical exponent z = 2, and is not relativistically invari-
ant. In Chapter 9 we discussed the quantum Lifshitz model, which is a free scalar
field with z = 2. We will now see that the quadratic band-crossing system is closely
related to the quantum Lifshitz model. Let us write the (2 + 1)-dimensional mass-
less Dirac operator in its covariant form i /∂ = iγ μ ∂μ, where we will take the Dirac
gamma matrices to be γ0 = σ2, γ1 = −iσ3, and γ2 = iσ1. From the algebra of
the gamma matrices it follows that the square of the Dirac operator is simply the
d’Alembertian,

(i /∂)2 = −∂2 (16.189)

Likewise, from the form of the Hamiltonian of the quadratic band crossing,
Eq. (16.187), we see that we can write a z = 2 version of the Dirac operator in
the “covariant” form iγ μDμ (here Dμ is not the covariant derivative!) with the
same gamma matrices but with D0 = ∂0, D1 = t (∂2

x − ∂2
y ), and D2 = 2t ∂x∂y . The

square of the z = 2 “Dirac” operator is

(iγ μDμ)
2 = −∂2

0 + t2(∇2)2 (16.190)

which we recognize as the z = 2 version of the d’Alembertian, the differential
operator that enters in the action of the quantum Lifshitz model, Eq. (9.161), after
setting t = κ .

Let us now return to the interacting Hamiltonian, Eq. (16.186), and use the RG
to see what the effects of the interactions are. The parameter g = u/|tx | plays
the role of the dimensionless coupling constant of this problem, and at the tree-
level (i.e. without computing quantum corrections) the four-fermion operator is
marginal. Hence, at this level, this theory seems entirely analogous to the theory
of the Luttinger liquid of Chapter 6, and the four-fermion interaction looks like
the backscattering term in the 1DEG. So one is tempted to guess that here too
this superficially marginal operator may remain exactly marginal to all orders in
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perturbation theory. However, this guess is incorrect. In (1 + 1) dimensions the
exact marginality of the backscattering interaction is due to the exact cancellation
of the bubble diagram against the Cooper channel. This is true at one-loop level
and to all orders in perturbation theory. However, this cancellation does not happen
in the case of the Hamiltonian of Eq. (16.186). As a result, not only is the beta
function for the coupling constant g not zero but already at one-loop level it is
given by (Sun et al., 2009)

β(g) = ∂g

∂l
= Ag2 + O(g3) (16.191)

where l = ln a and a is the short-distance cutoff. The coefficient A is a finite
positive function of the ratio λ = tz/tx and is given by

A(λ) = 1

2π2
K (

√
1 − λ2) (16.192)

where K (x) is the complete elliptic integral

K (x) =
∫ π/2

0

dθ(
1 − x2 sin2θ

)1/2 (16.193)

where x = √
1 − λ2. For the special case of a system with C6 symmetry, |tx | = |tz|

(and hence λ = 1), the coefficient is A(1) = 1/(4π). This result for the beta
function means that the four-fermion interaction is a marginally relevant operator
and the effective coupling constant g > 0 flows to strong coupling at low energies.
This means that the free-fermion ground state of a theory of gapless fermions with
a quadratic band crossing is unstable in two space dimensions. To find out what
results from this instability one has to know the nature of the stable fixed point to
which the RG flow is converging. This cannot be determined in perturbation theory.

To explore the consequences of this instability, we need to investigate using
mean-field theory the possible condensates of order parameters expressed in terms
of fermion bilinears. In this system they are

� = 〈�†(�r)σy�(�r)〉, Q1 = 〈�†(�r)σz�(�r)〉, Q2 = 〈�†(�r)σx�(�r)〉
(16.194)

Here � is the order parameter of a time-reversal-symmetry-breaking gapped phase
with a spontaneous quantum anomalous-Hall-state phase. This phase has a zero-
field quantized Hall conductivity σxy = e2/h. Notice that this is an integer quantum
Hall state. This phase is a time-reversal-symmetry-breaking topological Mott insu-
lator similar to the one proposed by Raghu and collaborators (Raghu et al., 2008).
The order parameters Q1 and Q2 describe the nematic phases in which the C4 or C6

rotational symmetry is broken down to C2 by splitting the quadratic band crossing
into two types of Dirac points located along the direction of one of the main axes
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(Q1), or along a diagonal (Q2). The nematic phase is an anisotropic semi-metal.
However, unlike in graphene, where the two Dirac points have Berry fluxes π and
−π , in this nematic phase the two types of Dirac points have the same Berry flux.
In addition, there is also a phase in which the nematic (Q1 �= 0 or Q2 �= 0) and the
quantum anomalous Hall orders (� �= 0) coexist. This phase is a nematic integer
quantum Hall state.

Since there is only one coupling constant, denoted by u in Eq. (16.186), the
weak-coupling ordering tendencies are determined by the logarithmically divergent
normal-state susceptibilities χ�, for broken time-reversal invariance, and χQ1 and
χQ2 , for the two nematic order parameters. For general tx and tz , they can be shown
to satisfy the identity χ� = χQ1 + χQ2 . Therefore, χ� > χQi (i = 1, 2), so the
leading weak-coupling instability is with respect to the gapped quantum anoma-
lous Hall state (here we are assuming that all processes have the same coupling
constant).

The mean-field Hamiltonian is

HMF =
∫

d�r �†(�r)
[
H0 − u

2

(
Q1σz + Q2σx +�σy

)]
�(�r)

+ V

4

∫
d�r (

Q2
1 + Q2

2 +�2
)

(16.195)

By minimizing the ground-state energy of HMF we find that at weak coupling the
ground state is indeed the spontaneous quantum anomalous Hall phase, with a gap
� ∼ � exp(−2/(αg)) (where � is a cutoff) and a mean-field critical temperature
Tc ∼ �, which is consistent with the scaling predicted by the RG. This mean-field
theory also predicts nematic phases, provided that (marginally) irrelevant opera-
tors, such as

∫
d�r d�r ′ ∑

i=1,2 U (r− r′)ψ†
i (�r)ψi (�r)ψ†

i (�r ′)ψi (�r ′), are also included.
The nematic phase Q1 is energetically favored at small V > 0 and U < 0 if |U/V |
is large enough. As |U/V | is reduced, the nematic phase gives way to the quantum
anomalous Hall phase (and to a mixed phase).

Sun and coworkers (Sun et al., 2009) found a relatively simple lattice model
that exhibits these behaviors. They considered a system of fermions at half-filling
(both spinless and spin-1/2) on the checkerboard lattice shown in Fig. 16.10, with
Hamiltonian

H = −
∑
�r ,�r ′

t�r ,�r ′ c†(�r)c(�r ′)+
∑
�r ,�r ′

V�r ,�r ′ c†(�r)c(�r)c†(�r ′)c(�r ′) (16.196)

It is a square lattice (rotated by 45◦) with hopping-matrix element t for hop-
ping between nearest neighbors, t ′1 for hopping between next-nearest neighbors
on half of the plaquettes that share only vertices, and t ′2 for hopping between the
next-nearest neighbors on the remaining plaquettes. We will always assume that
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t ′1 � t ′2. The half-filled system has special properties. Many of the same properties
are found on the kagome lattice at one-third filling. The interactions will be taken
to be repulsive for nearest neighbors, V > 0. A next-nearest-neighbor attraction
Vnnn < 0 generates the marginally irrelevant operator discussed above.

Let A and B be the two sublattices of the square lattice and let ψA(�r) and ψB(�r)
be the Fermi fields on sites of the two sublattices. We will consider the spinless
case first. The free-fermion term of the Hamiltonian in momentum space has the
usual two-band form

H0 =
∫

BZ

d2 p

(2π)2
�†( �p)

[
hI( �p)I + �h( �p) · �σ

]
�( �p) (16.197)

where �( �p) = (ψA( �p), ψB( �p))T is a two-component spinor to account for the
two sublattices, �σ = (σ1, σ2, σ3) is a three-component vector of the three Pauli
matrices, and I is the identity matrix. The momentum �p takes values on the first
Brillouin zone of the square lattice. For the problem at hand the components of the
vector �h( �p) are

h1( �p) = −4t cos

(
px

2

)
cos

(
py

2

)
h2( �p) = 0 (16.198)

h3( �p) = −(t ′1 − t ′2)(cos px − cos py)

and hI( �p) = −(t ′1 + t ′2)(cos px + cos py). The condition h2( �p) = 0 follows from
time-reversal invariance. The energy eigenvalues E±( �p) are

E±( �p) = −(t ′1 + t ′2)(cos px + cos py)

±
√(

4t cos

(
px

2

)
cos

(
py

2

))2

+ (
(t ′1 − t ′2)(cos px − cos py)

)2

(16.199)

Provided that, on the first Brillouin zone, the minimum of E+( �p) is greater than
the maximum of E−( �p), the ground state at half-filling of this free-fermion system
has the states of the − band occupied and the states of the + band empty. We can
choose the parameters for this to be the case.

This system has a band crossing at the zeros of the square-root term in
Eq. (16.199), �p0 = (π, π) (up to reciprocal-lattice vectors). It will be important to
what follows that (π, π) is the only crossing point, which is also a time-reversal-
invariant momentum, and that the bands are analytic functions of the momenta
everywhere else on the first Brillouin zone. However, unlike the cases we discussed
before in this chapter, the dispersion near (π, π) has a quadratic dependence on the
momentum (measured from (π, π)), instead of a linear dependence. Thus these
spinors are not Dirac fermions. If we put �q = �p− (π, π), the effective one-particle
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Hamiltonian near the crossing point is a 2 × 2 matrix of the form of Eq. (16.187).
The parameters of the continuum Hamiltonian (near the quadratic band crossing)
are tI = (t ′ + t ′′)/2, tx = t/2, and tz = (t ′ − t ′′)/2.

The order parameters for the lattice model are

Q1 = 1

4

∑
�δ
〈c†

A(�r)cA(�r)− c†
B(�r + �δ)cB(�r + �δ)〉

Q2 = 1

2

∑
�δ

D�δ Re〈c†
A(�r)cB(�r + �δ)〉 (16.200)

� = 1

2

∑
�δ

D�δ Im〈c†
A(�r)cB(�r + �δ)〉

where Q1 is the “site-nematic” order parameter, Q2 is the “bond-nematic”
order parameter, and � is the quantum anomalous Hall order parameter. Here
�δ = ±x̂/2 ± ŷ/2 connects nearest neighbors, D�δ = ±1, D±(x̂/2+ŷ/2) = 1, and
D±(x̂/2−ŷ/2) = −1.

The details of the phase diagram found in mean-field theory depend on the
parameters of this model (which has many!). A quantum anomalous Hall phase
is found for V small and below a critical temperature. This phase has a zero-field
quantized Hall conductivity e2/h, and the quasiparticle spectrum has topologically
protected chiral edge states, as predicted from general considerations (Qi et al.,
2006a). A site nematic is found for V ∼ |t ′1 − t ′2|, while the bond nematic is
not favored. For |t ′1| ≥ |t ′2| and |t ′′|/|t ′| � 1, there is a direct nematic–quantum-
anomalous-Hall first-order phase transition. If |t ′′|/|t ′| ∼ 1, there is also a phase
with coexisting quantum anomalous Hall and nematic orders. For other values, one
has a direct first-order transition and a coexisting phase.

In summary, if a system has a quadratic band crossing, interaction effects lead to
a phase diagram in which the topological insulator appears as a result of repulsive
interactions and is a topological Mott insulator. In the spinless case we discussed
above, the topological insulator is a state with a spontaneous quantum Hall effect
and the other phases are two types of nematic states. If spin is included, in addition
to the spin-polarized version of the phases we just discussed, one has also a phase
with a spontaneous quantum spin Hall state and phases with spin-triplet versions
of the nematic order parameters (Sun et al., 2009). Analogs of these phases can
also exist in metallic states (i.e. systems with a Fermi surface) (Wu et al., 2007;
Sun and Fradkin, 2008).

16.13 Topological insulators and topological phases

We will now come to the third, and most subtle, of our three questions: what is
the relation, if any, between topological insulators and topological phases? As we
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noted at the beginning of this chapter, topological insulators are states with topo-
logically protected properties but are not topological phases. However, they may
be a “springboard” from which to access a topological phase. This can happen in
several possible ways.

One possibility is that the topological insulator may become a topological phase,
for instance by moving the Fermi energy away from the gap, and that this sys-
tem may become unstable. For example, the doped topological insulator (which is
now a metal with an “interesting” band structure) can become a superconductor. In
Section 14.9 we showed that, at least in two dimensions, a superconductor with an
order parameter with symmetry px + i py is topological, which is a state in which
time-reversal invariance is spontaneously broken. In this sense this is a supercon-
ducting cousin of a quantum anomalous Hall state. This state is believed to occur
in Sr2RuO4. We have already discussed this state in Chapter 14, where we also dis-
cussed its connection with the non-abelian Moore–Read fractional quantum Hall
state. There we saw that both condensed states have half-vortices with non-abelian
braiding statistics whose origin was traced to the existence of Majorana zero modes
in the vortex cores.

This observation motivated Fu and Kane (2008) to ask whether something
similar could happen in a superconducting state of a topological insulator. They
considered a strong 3D time-reversal-invariant topological insulator in contact with
a 3D conventional s-wave superconductor. Since the topological insulator has a
gap, the effects of the s-wave superconductor will matter only near their interface.
On the other hand, the surface of the strong topological insulator supports gapless
Weyl fermions. These surface excitations are charged and hence will couple to the
nearby superconductor by a proximity effect.

Here we will follow the work of Fu and Kane (2008). Their argument goes
as follows. We will consider only the Weyl fermions at the top surface of a
time-reversal-invariant Z2 (strong) topological insulator. The Weyl fermions are
described by a two-component spinor field ψ = (ψ↑, ψ↓)T with a free gapless
fermion 2D Hamiltonian density

H0 = ψ†(−ivF�σ · �∇ − μ)ψ (16.201)

where �σ = (σx , σy) andμ is the chemical potential. Let us imagine now that a stan-
dard s-wave superconductor is deposited on the top surface. The superconductor is
a ground state of an electronic system with a spontaneously broken U(1) global
symmetry. The superconducting state exists if the pair-field operator c†

↑(�k)c†
↓(−�k)

has a non-vanishing expectation value or, equivalently, if its real-space counter-
part exhibits long-range order. The expectation value of the pair field is the local
order parameter of the superconducting state and, if the superconducting state is
uniform, it is a condensate of spin-singlet Cooper pairs with total momentum
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zero. As in Chapter 14, we will denote the superconducting order parameter by
� = �0eiφ . In the case of an s-wave superconductor, the fermionic excitations,
which are charge-neutral, have an isotropic energy gap of magnitude �0.

Since the superconductor has a finite gap �0, electrons from another system
cannot tunnel into the superconductor unless their energy is larger than �0. On the
other hand, pairs of electrons can tunnel into the superconductor since they have
a finite amplitude to become part of the superconducting pair condensate. Thus,
when a superconductor is placed next to a nearby electronic system, spin-singlet
pairs of electrons with total momentum zero can tunnel into the superconductor
and, similarly, spin-singlet pairs of electrons of the superconductor can tunnel into
the Weyl-fermion surface states. By this mechanism, known as the superconducting
proximity effect, the electrons of the nearby system themselves become supercon-
ducting. This process cannot affect the bulk states of the nearby system, but affects
only those states which are sufficiently close to the superconductor, a distance that
typically is of the order of the superconducting coherence length ξ0. If the nearby
system is a topological insulator, its bulk states cannot become superconducting.
However, its surface states can become superconducting since they are gapless and
confined to the surface.

The proximity-effect coupling we have just discussed is described by an extra
term of the Hamiltonian that describes the spin-singlet Cooper-pair tunneling
process (Schrieffer, 1964; de Gennes, 1966), which has the form

Htunnel = �ψ
†
↑(x)ψ

†
↓(x)+ h.c. (16.202)

where ψ↑(x) and ψ↓(x) are the two components of the Weyl spinor. Here we
assume that the s-wave superconducting condensate � is fixed by the bulk super-
conductor and is unaffected by the surface states, although in reality there may be
a suppression of � near the surface of the superconductor. Nevertheless, what mat-
ters in what follows is that there is a finite value of � at the surface even if it is
smaller than in the bulk.

We will use the Nambu four-component spinor notation,

� =
(
(ψ↑, ψ↓), (ψ†

↓,−ψ†
↑)

)T
(16.203)

and write the full Hamiltonian density of the surface states in the form (Fu and
Kane, 2008)

H = �†
[
−ivFτ3�σ · �∇ − μτ3 +�0(τ1 cosφ + τ2 sinφ)

]
� (16.204)

where τ1, τ2, and τ3 are (as before) the three Pauli matrices that act on the upper,
ψ , and lower, ψ†, Weyl components of the Nambu 4-spinor. It is easy to see that
this is the chiral basis for 4× 4 gamma matrices with γ0 = I⊗ τ1, γ1 = −iσ1 ⊗ τ2,
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γ2 = −iσ2 ⊗ τ2, γ3 = −iσ3 ⊗ τ2, and γ5 = I⊗ τ3. Time-reversal is represented by
the operator " = iσ2K, where K is complex conjugation, and commutes with the
Hamiltonian, [",H] = 0.

When � is constant in space, the excitation spectrum in

E(�k) = ±
√
(±vF|�k| − μ)2 +�2

0 (16.205)

For μ��0 the low-energy spectrum is the same as that of a px + i py supercon-
ductor, see Section 14.9. This can also be seen by defining the field operators

c(�k) = 1√
2

(
ψ↑(�k)+ ei arg(�k)ψ↓(�k)

)
(16.206)

where arg(�k) = tan−1(ky/kx). If we project the Hamiltonian of Eq. (16.204) to
act only on the subspace defined by the operators c(�k), we readily find that the
projected Hamiltonian becomes

H =
∫

d2k

(2π)2

[
(vF|�k| − μ)c†(�k)c(�k) + 1

2
(�ei arg(�k)c†(�k)c†(−�k) + h.c.)

]
(16.207)

which is the Hamiltonian of a px + i py superconductor for spinless fermions. Fu
and Kane further noted that the full Hamiltonian of Eq. (16.204) is invariant under
time reversal, whereas the projected Hamiltonian is not.

In Section 14.9.3 we saw that an hc/(2e) vortex in a px + i py superconductor
has an exact Majorana zero mode in its core. We will now see that the junction of
an s-wave superconductor with the Weyl surface states of a 3D Z2 topological insu-
lator also has vortices that have an exact Majorana zero mode in their cores. This
problem turns out to be essentially equivalent to the problem of a vortex of a rela-
tivistic charged scalar field coupled to Weyl fermions studied long ago by Jackiw
and Rossi (1981). The precise mapping between the two problems can be found in
the work of Chamon and collaborators (Chamon et al., 2010; Nishida et al., 2010).
Let us consider a configuration of the order parameter �(�r) that corresponds to a
vortex. In polar coordinates �r = (r, ϕ) (with 0 ≤ ϕ < 2π), the vortex configuration
has the form

�±(r, ϕ) = �(r)e±iϕ (16.208)

where limr→∞�(r) = �0 in the far field, and limr→0 �(r) = 0 deep in the core.
Here �±(r, θ) corresponds to the vortex (+) and to the anti-vortex (−). It is easy
to see that the vortex has the exact zero mode (on setting vF = 1)
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η+0 (r, θ) ∼ exp

(
−

∫ r

0
dr ′ �0(r

′)
) ⎛⎜⎜⎝

0
i
1
0

⎞⎟⎟⎠ (16.209)

whereas for the anti-vortex the zero mode has the same radial dependence but the
spinor now is (1, 0, 0,−i)T.

These results led Fu and Kane to state, following the arguments of Read and
Green (2000) and of Ivanov (2001), that the vortices in this system are non-abelian
anyons that exhibit “Ising” fusion rules. Hence, these vortices have the same behav-
ior as that of the half-vortices that we discussed extensively in Section 14.9. This
result showed that “hybrid” structures of superconductors and topological insu-
lators offer an alternative approach by means of which to construct topological
qubits!

Fu and Kane also considered other geometries. A particularly interesting case
was a hybrid Josephson line junction of two superconductors deposited on top of
a 3D topological insulator, which also supplied the material for the barrier in the
line junction. They showed that, if the phases of the order parameters of the two
superconductors differ by π , a gapless Majorana field propagates along the line
junction. In a recent experiment on a device of this type, made with a Bi2Se3 topo-
logical insulator as a “substrate,” it was found that the current–phase relation of the
Josephson line junction has a sharp resonance when the phase difference between
the superconducting leads is exactly equal to π (Williams et al., 2012). This fea-
ture is suppressed by a low magnetic field, in contradiction with the behavior of
conventional Josephson junctions, but in agreement with the predictions of Fu and
Kane (2008).

The Fu–Kane result led to an explosion of work whose goal is to find simple
condensed matter systems that may support Majorana zero modes. Some time
earlier Kitaev (2001) had considered a simple model of a mean-field theory of
spinless fermions in one dimension with p-wave superconductivity. In one dimen-
sion p-wave simply means that the order parameter is odd under parity. The model
considered by Kitaev is a chain of N sites with a spinless fermion operator c j and
its adjoint c†

j defined at every site. The chain has open boundary conditions. The
Hamiltonian of this problem is

H = −
N∑

j=1

μc( j)†c( j)−
N−1∑
j=1

(
c( j)†c( j + 1)+ |�|eiφc( j)c( j + 1)+ h.c.

)
(16.210)

Here μ is the chemical potential, t is the hopping term, |�| is the amplitude of
the superconducting order parameter, and φ is its phase. Since the superconducting
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order parameter is defined on the bonds of the 1D chain, it is odd under parity,
defined as inversion with respect to a site of the chain.

The alert reader should at once recognize that this problem is essentially the
same as the fermion representation of the quantum Ising chain discussed in Section
5.5. Much as in the case of the 1D quantum Ising model, in this system (as in
all pairing Hamiltonians) fermion number is not conserved, but it is conserved
modulo 2, i.e. the parity of the fermion number is conserved. Here too this system
is equivalent to a system of Majorana fermions. In the simpler case of μ = 0 and
t = |�| the (Dirac) fermion operator can be decomposed into its two Majorana
components. Using the same notation as in Section 5.5, we define two Majorana
fermions χ1( j) and χ2( j), which are self-adjoint fermions, χa( j)† = χa( j) (a =
1, 2), and satisfy the Majorana anticommutation relations {χa( j), χb(l)} = 2δabδ jl .
The Dirac fermion is expressed in terms of the Majorana fermions as

c( j) = 1

2
e−iφ/2

(
χ1( j)+ iχ2( j)

)
, c†( j) = 1

2
e+iφ/2

(
χ1( j)− iχ2( j)

)
(16.211)

In terms of the Majorana fermions the Hamiltonian of Eq. (16.210) (for μ = 0 and
t = |�|) becomes

H = −i t
N−1∑
j=1

χ2( j)χ1( j + 1) = 2t
N−1∑
j=1

d†( j)d( j) (16.212)

where we have defined a new Dirac fermion d( j) = 1
2(χ1( j + 1) + iχ2( j)) by

combining one Majorana component on one site with the other Majorana compo-
nent on the next site. Clearly, this system has local excitations of energy 2t . Hence
the bulk states are gapped. However, in this construction the Majorana fermions
χ1(1) and χ2(N ) are absent. We can now combine these two Majorana fermions
into a single boundary Dirac fermion d0 = 1

2(χ1(1) + iχ2(N )). The states |0〉 and
|1〉 = d†|0〉 are zero-energy states, zero modes, of the Hamiltonian. Hence this
system has two degenerate ground states with exactly zero energy, i.e. a qubit. The
reader can check that what we have described is the Ising chain with open (instead
of periodic) boundary conditions deep in the broken-symmetry states, λ � 1.
These zero modes are analogous to the zero modes in polyacetylene except that
here they are Majorana fermions and do not carry charge. Alicea and his collabora-
tors showed that this simple model proposed by Kitaev can be realized physically
in a 1D semiconductor with strong spin–orbit interactions coupled to an s-wave
superconductor. This system has Majorana zero modes at the endpoints of the wire
(Alicea et al., 2011).

We close this chapter with a brief discussion of topological fluids emerging from
topological insulators. These are open problems and we will merely touch on some
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important questions without attempting to give a thorough description. This tran-
sition can happen in several possible ways. One possibility is to consider changing
the chemical potential in a topological insulator so that it becomes a metal. The
question is whether the topological properties of the electronic bands of the sin-
gle particle states imply that the resulting superconductor should be topological.
By topological here we mean that the single-particle states of the Bogoliubov–
de Gennes equations of the superconductor have topological properties similar to
those of the “parent” insulator. Consideration of this problem lead to the realiza-
tion that the quasiparticle states of the superconductors can also have non-trivial
topology (Schnyder et al., 2008; Kitaev, 2009; Roy, 2010; Ryu et al., 2010). How-
ever, it turns out that, while this scenario is certainly possible, it is by no means
necessary. Thus, the metal obtained by doping a topological insulator can become
either a standard superconductor or a topological one.

A very exciting pathway from a topological insulator to a topological phase is
via a fractional topological insulator, the fractionalized version of the quantum
anomalous Hall state (and of the quantum spin Hall state). If such a state were
to exist, it would be a topological fluid in the same sense as the fractional quan-
tum Hall states. Although we do not know (yet) of any experimental examples of
this fractionalized phase, there are models with local interactions that have been
shown to do the job. Several authors (Neupert et al., 2011; Sheng et al., 2011;
Tang et al., 2011a) have looked at models of topological insulators in a regime in
which one of the bands with non-trivial topology becomes essentially “flat.” They
showed that if this flat band with non-trivial Chern number is partially filled the
system can develop a spontaneous anomalous quantum Hall state with a fractional
Hall conductance. In other words, this system has a fractional quantum Hall state
in the absence of a magnetic field. In this case time-reversal invariance is broken
spontaneously. In these states, and for the same reasons as in the fractional quan-
tum Hall effect, the electron becomes fractionalized. The new feature here is that
the emerging fractional quantum Hall state is the result of spontaneous breaking
of time-reversal invariance in the absence of an external magnetic field. Clearly,
something very similar can happen in the case of the quantum spin Hall state.

In two dimensions these fractionalized phases are close relatives of the fractional
quantum Hall states. Thus, it is possible to write down an effective hydrodynamic
field theory of the form of a multi-component Chern–Simons gauge theory as dis-
cussed in detail in Section 14.2 (Levin and Stern, 2009; Cho and Moore, 2011;
Santos et al., 2011). Time-reversal invariance requires that there should not be a
Hall current, a condition that is met by any real symmetric and traceless K -matrix.
For instance, in the case of the time-reversal-invariant fractional quantum spin Hall
states the effective theory must have at least two components and its K -matrix must
be traceless. In its simpler form the K -matrix has the form
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K =
(

0 k
k 0

)
(16.213)

which is both traceless and real. With a matrix of this form the Chern–Simons
action implies that the (hydrodynamic) flux of one component couples to the hydro-
dynamic gauge field of the other component and hence has the form of a BF theory
of the type we discussed in Sections 14.1.1 and 14.5. This theory is equivalent to
a state of a system of two types of fermions with opposite “charges” (actually spin
projections) each at filling fraction 1/k. Since the absolute value of the determinant
of the K -matrix is k2, this topological fluid has degeneracy k2 on a torus.

What is still missing is a general microscopic theory of these fractionalized
phases. Nonetheless, some simple microscopic lattice models that exhibit some of
these key features have been constructed (Levin et al., 2011), and many properties
of the wave functions for the fractionalized states in 2D have been investigated (Qi,
2011). The extension of these ideas to 3D topological insulators is far less obvi-
ous, since the notion of fractional statistics for particles itself cannot be extended
to three spatial dimensions because in three dimensions the braid group is triv-
ial (although it may be applicable for extended objects such as strings and domain
walls). Nevertheless, the notion of statistical transmutation of bosons into fermions,
and vice versa, is still meaningful. A famous example is the case of a spinless parti-
cle of charge e that, bound to a Wu–Yang magnetic monopole, becomes a spin-1/2
particle, a problem we have already discussed in Section 13.1.2. From general prin-
ciples of local quantum field theory, we expect that if the bound state is described
by a local field theory then this particle should be a fermion and should be described
by a Dirac field (Wu and Yang, 1975, 1976; Witten, 1979).
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Quantum entanglement

17.1 Classical and quantum criticality

In most cases the phases of quantum field theories, in particular those of interest
in condensed matter physics, can be described in terms of the behavior of local
observables, such as order parameters or currents that transform properly under
the symmetries of the theory. Quantum and thermal phase transitions are char-
acterized by the behavior of these observables as a function of temperature and
of the coupling constants of the theory. The phase transitions themselves, quan-
tum or thermal, are classified into universality classes, which are represented by
the critical exponents which specify the scaling laws of the expectation values of
the observables. Historically, the development of this approach to critical behavior
goes back to the Landau theory of critical behavior. It acquired its most complete
form with the development of the renormalization group (RG) in the late 1960s
and early 1970s. It is the centerpiece of Wilson’s approach to quantum field the-
ory, in which all local quantum field theories are defined by the scaling regime
of a physical system near a continuous phase transition. From this point of view
there is no fundamental difference between classical (or thermal) phase transitions,
which are described by the theory of classical critical behavior, and quantum phase
transitions.

For example, the expectation value of a local order parameter M as the thermal
phase transition is approached from below behaves as M ∼ (Tc − T )β . Here Tc is
the critical temperature and β is a critical exponent that depends on the universal-
ity class of the thermal phase transition and on the dimensionality of space. While
quantum mechanics can play a key role in the existence of the ordered phase, e.g.
superfluidity and superconductivity are macroscopic manifestations of essentially
quantum-mechanical phenomena, the thermal transition itself is governed entirely
by classical statistical mechanics, and quantum mechanics plays a role in setting
the value of non-universal quantities such as the critical temperature, etc. On the
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other hand, in the case of a quantum phase transition, the order parameter M has
a similar scaling behavior as a function of the coupling constant, M ∼ (gc − g)β̃ ,
where g is the coupling constant, gc is the critical coupling constant, and β̃ is a criti-
cal exponent that depends on the universality class of the quantum phase transition.
Here we assume that M has a non-vanishing expectation value only for g < gc.

However, as is apparent in the description of a quantum phase transition in terms
of a path integral in imaginary time, quantum phase transitions look like classical
phase transitions in a space with an extra dimension, imaginary time. The main
difference between the two types of transitions is the existence of a dynamical
critical exponent z that specifies how space and time scale in the quantum case.
This scaling law is absent in the theory of equilibrium classical critical phenom-
ena. In the case of quantum systems that obey relativistic invariance the dynamical
exponent z = 1, and, in these cases, the quantum transition is literally a classical
transition in a space with one additional dimension. Thus, near a continuous quan-
tum phase transition the correlation length diverges with a universal exponent ν
as ξ ∼ |g − gc|−ν , while the energy gap G vanishes at the same quantum phase
transition as G ∼ |g − gc|νz .

Gauge theories, which we discussed in other chapters in connection with the
physics of the topological fluids and spin liquids, have a similar description. The
crucial difference is that in the case of gauge theory the local nature of the gauge
symmetry requires the consideration of non-local gauge-invariant observables,
such as the Wilson loop and the ’t Hooft loop. As we saw in Chapter 9, the Wilson
loop operators have distinct behaviors in different phases of the theory, and obey
an area law in a confining phase and a perimeter law in a deconfined phase. Hence,
near a continuous phase transition the energy gap of the gauge theory, which is set
by the string tension in the confining phase and enters into the definition of the
area law, vanishes as a function of the coupling constant with a universal critical
exponent.

In Chapter 9 we saw that gauge theories with a compact gauge group have
non-trivial topological properties in their deconfined phases. Likewise, Chern–
Simons gauge theory is a topological field theory, see Chapter 10, and we used
it extensively in the field-theoretic description of the fractional quantum Hall flu-
ids. In topological field theories the expectation values of the observables depend
only on the topological properties of the observables, such as the linking num-
ber of the Wilson loops, and on the global topology of the space. In condensed
matter physics topological field theories describe the effective low-energy and
long-distance behavior in a topological phase. The best-understood example of a
system in a topological phase is a fractional quantum Hall fluid, see Chapters 13
and 14. The consideration of topological phases, and of topological field theories,
led us to describe the excitations by their transformation properties under the braid
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group, and led to the concept of abelian and non-abelian fractional statistics. More
generally, we also had to consider the quantum dimensions of the excitations and
their fusion rules.

Although in all cases of interest the quantum phase transition itself can be
described in terms of the behavior of local operators, the existence of topologi-
cal phases tells us that some important features of the theory cannot be reduced
to local physics. This raises the question of whether perhaps even at the quan-
tum phase transition some global non-local properties of the quantum field theory
may be important. The topological properties of the topological phases have a
quantum origin and do not have a counterpart in classical systems. This raises
the need to consider other tools to describe topological phases and their phase
transitions.

The information on all the static properties of a physical system is stored in its
ground-state wave function. This naturally includes the behavior of the equal-time
correlators of local operators. Since we can compute their properties directly, we
did not need to investigate the properties of the ground-state wave functions. In
general, the wave functions do not by themselves play a great role since the wave
functions of thermodynamically large systems contain all kinds of information,
much of which is highly non-universal and depends on all the microscopic details.
In almost all cases very little of the nature of the physical system would change if
these microscopic details were to be modified. In addition, it is often more diffi-
cult to understand the physical properties of a system by staring at an expression
of the wave function than to look at the correlators of the local observables. Of
course, if we know the behavior of the observables, we know the information that
is encoded in the wave functions. One may nevertheless ask whether there is impor-
tant physical information encoded in the wave functions that might not be readily
accessible via properties gleaned from the behavior of local operators. For instance,
the wave function for the ground state of the spin-1/2 quantum antiferromagnetic
Heisenberg chain obtained using the Bethe ansatz (see Chapter 5) has been known
since Hans Bethe derived it in 1931. However, the physics that was encoded in this
wave function could not be understood until the properties of correlators of local
observables were found many years later, beginning in the 1970s.

On the other hand, the wave functions that describe systems in topological
phases, e.g. the Laughlin wave function of the fractional quantum Hall effect, have
manifestly universal properties that are closely related to the properties and char-
acterization of these phases. We saw in Chapters 13 and 14 that the wave functions
of topological phases encode universal non-local properties of these systems such
as the braiding fractional statistics of their excitations. Therefore, at least in these
cases, we need an understanding of non-local properties of the ground-state wave
functions.
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17.2 Quantum entanglement

The natural tool to investigate the non-local properties stored in the ground-
state wave functions is the concept of quantum entanglement and the associated
entanglement entropy. In this chapter we will define what is meant by quantum
entanglement and its measures, focusing on the entanglement entropy. The concept
of quantum entanglement was born with quantum mechanics itself, and predates
our motivations by many decades (Einstein et al., 1935).

Historically the concept of quantum entanglement was formulated to describe
how a finite quantum system is coupled to its essentially infinite environment. The
prime example is the non-local information stored in the wave functions of systems
of identical particles. Consider, for instance, a system of two identical spin-1/2
particles, A and B. The wave function of a spin-singlet state, with total spin S = 0
and Sz = 0, is |0, 0〉 = (1/

√
2)(|↑,↓〉 − |↓,↑〉). Since this wave function does not

contain any length scale, the physical size of the spin singlet can be as large as we
want. If we measure the spin of particle A, say on Earth, and find that it is ↑ then,
provided that we know a priori that the state is indeed a spin singlet, we know that
the spin of particle B is ↓ even if particle B is, let us say, on the Moon. On the other
hand, if the two spins are in a product state, such as |1,±1〉, the measurement of
the spin of particle A to be ↑ implies that the spin of particle B is ↑ only if we
know both that S = 1 and that Sz = 1. For this reason we say that the spins are
entangled in the singlet state, while in the product state they are not.

A measure of the degree of entanglement of a quantum state is the von Neumann
entanglement entropy, which is defined as follows. Let us consider a partition of
a physical system ! into two disjoint subsystems that we will label by A and
B. Hence, ! = A

⋃
B and the two subsystems have a vanishing intersection,

A
⋂

B = ∅. Let HA and HB be the Hilbert spaces of the states with separate
support in system A and in system B such that the Hilbert space of the states on !
is H! = HA ⊕HB . Let |�〉 be a pure quantum state of the system on A

⋃
B. As

such it can be decomposed as

|�〉 =
∑
m,n

Mm,n|ψ A
n 〉|ψ B

m 〉 (17.1)

where {|ψ A
n 〉} and {|ψ B

m 〉} are orthonormal basis states of HA and HB , respectively,
and Mn,m are the matrix elements of an (in general) rectangular matrix M. How-
ever, using the singular-value-decomposition theorem, a rectangular matrix can
always be written as a product of a unitary matrix U, a diagonal matrix D =
diag(λ1, . . . , λn, . . .), and a rectangular matrix V (whose rows are orthonormal
vectors). Then, after going to the new bases, |ψ A

n 〉 → U|ψ A
n 〉 and |ψ B

m 〉 → V|ψ B
m 〉,

we find the Schmidt decomposition of the state vector |�〉,
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|�〉 =
D∑
n

λn|ψ A
n 〉|ψ B

n 〉 (17.2)

where D = min{dA, dB}, with dA and dB being the dimensions of the Hilbert
spaces HA abd HB . Also, if the state vector |�〉 is normalized to unity, ||�|| = 1,
then the set of (generally complex) numbers {λn} must satisfy the sum rule

D∑
n

|λn|2 = 1 (17.3)

Given the pure state |�〉 of the total system A
⋃

B, its (trivial) density matrix is

ρA
⋃

B = |�〉〈�| (17.4)

We can now define the reduced density matrix for subsystem A to be the partial
trace of ρA

⋃
B over the degrees of freedom in B,

ρA = trBρA
⋃

B (17.5)

and similarly for the reduced density matrix ρB . Therefore, if we observe only the
subsystem A, it is in a mixed state defined by the reduced density matrix ρA, and
similarly for B.

The von Neumann entanglement entropy SA for subsystem A, when the total
system is in state |�〉, is defined to be the entropy of the reduced density matrix,

SA ≡ −trA(ρA ln ρA) (17.6)

(For historical reasons in the quantum-information literature the von Neumann
entropy uses log2 instead of the standard natural logarithm used in statistical
mechanics.)

Using the Schmidt decomposition, Eq. (17.2), we can write the reduced density
matrix ρA as

ρA =
D∑
n

|λn|2|ψ A
n 〉〈ψ A

n | (17.7)

and similarly for B. Hence, the quantities pn ≡ |λn|2 represent the probability of
observing the subsystem A in the state |ψ A

n 〉. From these expressions it follows that
the reduced density matrices ρA and ρB have the same non-zero eigenvalues, that
they are given by pn = |λn|2, and that both reduced density matrices have unit
trace, trAρA = trBρB = 1.

It also follows that the von Neumann entanglement entropy can be written as

SA = −trA(ρA ln ρA) = −
D∑
n

|λn|2 ln|λn|2 = −trB(ρB ln ρB) = SB (17.8)
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In other words, the entanglement entropy is symmetric in the two (entangled) sub-
systems. This symmetry property is a consequence of our assumption that the total
system A

⋃
B is in a pure state |�〉. Conversely, the symmetry property of the

entanglement entropy does not hold if the total system is in a mixed state, e.g. in
a thermal state defined by a Gibbs density matrix. The expression of the von Neu-
mann entanglement entropy in terms of the probabilities {|λn|2} also tells us that
the entanglement entropy can vanish only if the reduced density matrix ρA (and
hence also ρB) itself represents a pure state. This can hold only if the state � of
the system on A

⋃
B is a product state. In this case the reduced density matrix

is diagonal and equal to ρA = diag(1, 0, . . . , 0), which has a vanishing entropy.
Therefore the von Neumann entropy is a measure of the entanglement of the two
subsystems A and B in state |�〉. The spectrum of (Schmidt) eigenvalues {|λn|2}
of the reduced density matrix is known as the entanglement spectrum.

Finally, the von Neumann entanglement entropy satisfies the following prop-
erties. For two regions, A and B, the entanglement entropy is subadditive, i.e.
SA∪ B ≤ SA + SB . In addition, for three regions, A, B, and C , the von Neumann
entanglement entropy satisfies the condition of strong subadditivity (of Lieb and
Ruskai (1973)), i.e. SA∪ B ∪C ≤ SA∪ B + SB ∪C − SB .

17.3 Entanglement in quantum field theory

For the rest of this chapter we will focus on entanglement entropy, how it is
computed, and how it behaves in different systems of interest. We will see that
the entanglement entropy is a very efficient and powerful tool to characterize the
physics of topological phases in condensed matter and in quantum field theory. We
will also discuss in detail the scaling laws obeyed by the entanglement entropy.

How do we compute the entanglement entropy in an extended, macroscopic,
system such as a quantum field theory? In systems with few degrees of freedom
it is relatively straightforward to construct the reduced density matrices directly
from their wave functions. However, except for a few exceptional cases, the wave
functions of systems with an infinite number of degrees of freedom are in almost all
circumstances forbiddingly complex. There are a few exceptional systems in which
the wave functions are known explicitly and have universal properties. However,
even for these cases the computation of the entanglement entropy is non-trivial.

For definiteness let us consider a field theory with a Euclidean action S[φ] =∫
�

d Dx L[φ], where φ is some field and L is the Lagrangian density. Here � is
some D-dimensional space-time manifold. In the Euclidean theory the imaginary-
time coordinate τ is periodic (compactified) with period β = 1/T , while the space
directions are for now arbitrary. Thus, we will generally refer to the space-time �
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as a cylinder of circumference β = 1/T . What follows does not depend on whether
the theory is relativistic or not.

The Gibbs density matrix of the system is ρ = exp(−βH), where H is the
quantum Hamiltonian and β = 1/T . The partition function is

Z = tr ρ = tr e−βH =
∫

Dφ e−
∫
� d D x L[φ] (17.9)

In the Euclidean metric the imaginary-time τ evolution operator is U (τ ) =
exp(−τH). For large τ the Euclidean evolution operator U (τ ) projects any ini-
tial state onto the ground-state |0〉. Therefore, the ground-state wave function
�0[φ] is expressed in terms of a path integral by a similar-looking expression (see
Fig. 17.1),

�0[φ] = 〈φ|0〉 = 1

Z

∫
Dφ e−

∫
! d D x L[φ] (17.10)

where the manifold ! has a boundary at some (imaginary) time τ = 0 where we
specify that the state is given by the field configuration, |φ〉, and where we have
taken the zero-temperature limit T → 0 or, which amounts to the same thing,
made the time dimension infinite in size, β → ∞. This last step projects onto the
ground state |0〉, assuming that it is unique. If the ground state is not unique, the
evolution will project onto a state that is the linear superposition of the degenerate

τ

space

Σ

|

|

[φ(x)]

0

Figure 17.1 The path-integral picture of the wave function as the amplitude for
an evolution from some initial state |[φ(x)]〉 to the vacuum state |0〉 of the system.
The initial state is a field configuration defined on the boundary of the open
space-time manifold!. The boundary is a spatial manifold at the initial imaginary
time slice τ = 0 of the (Euclidean) evolution.



760 Quantum entanglement

vacua (ground states), unless of course the degeneracy is explicitly lifted. Similarly,
the matrix element of the density matrix ρ between states |φ(x)〉 and |φ′(x)〉 is

〈φ(x)|ρ|φ′(x)〉
= 1

Z

∫
Dφ

∏
x

δ(φ(x, τ = 0)− φ(x))
∏

x

δ(φ(x, τ = β)− φ′(x))e−SE[φ]

(17.11)

where SE[φ] is the Euclidean action of the field theory on a manifold that is a strip
of width β with the specified boundary conditions.

We can use the same approach to, at least formally, find a path-integral expres-
sion for the reduced density matrix. So, once again we will consider a partition of
the spatial manifold into two disjoint sets A and B. The reduced thermal density
matrix ρA is then obtained by tracing over the degrees of freedom in its comple-
ment, region B. Hence we will require that in region B the initial and final states
are the same and summed over, and the imaginary-time coordinate is periodic with
period β. Thus, in region B the strip is wrapped into a cylinder of circumference
β. Let |[φA(x)]〉 and |[φ′

A(x)]〉 be two field configurations with support in region
A. The matrix elements of the reduced density matrix for region A are obtained
by computing a trace of the full density matrix restricted to the states in region
B. However, in region A the states evolve from the state |[φA(x)]〉 to |[φ′

A(x)]〉.
In other words, the new manifold is smooth and periodic on region B but has a
cut in region A with a discontinuity expressed in terms of the two configurations
specified by the states |[φA(x)]〉 and |[φ′

A(x)]〉 (see Fig. 17.2),

〈[φA(x)]|ρA|[φ′
A(x)]〉 = 〈[φA(x)]|trBρ|[φ′

A(x)]〉 (17.12)

τ

x

0

β

A BB

φA(x)

φA(x)

Figure 17.2 The path integral for the reduced density matrix ρA is defined on
a manifold with the topology of a cylinder with a cut, the dark line shown in the
figure. Here φA(x) and φ′

A(x) are two field configurations on region A. The origin
and end of imaginary time τ are at τ = 0 and τ = β.
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To compute the entanglement entropy we will use the “replica trick.” To this end,
we compute first

Zn[A] = trAρ
n
A (17.13)

which is defined for all positive integers n. In terms of the spectrum of eigenvalues
of the reduced density matrix, {λk} (the entanglement spectrum), it becomes

Zn[A] =
D∑
k

λn
k (17.14)

Since the spectrum of eigenvalues lies within the interval [0, 1] and obeys the
normalization condition

∑D
k λk = 1, the trace (defined by Zn[A]) is absolutely con-

vergent and analytic for Re n > 1. Therefore, Zn[A] can be extended by analytic
continuation to the complex-n plane as Z [n, A].

The von Neumann entanglement entropy SA is computed by taking the limit
(Callan and Wilczek, 1994; Calabrese and Cardy, 2004)

SA = −tr(ρA ln ρA) = − lim
n→1+

∂

∂n
trAρ

n
A (17.15)

We will also define the Rényi entropies Sn
A,

Sn
A = 1

1 − n
ln tr ρn

A (17.16)

Since we are taking traces of matrix products, it is clear that the final state in region
A of one factor is the initial state of the next factor (also in region A). The over-
all trace means that the final state of the last factor is identified with the initial
state of the first factor. This means that the manifold on which the path integral
is computed can be regarded as an n-sheeted Riemann surface in region A with
overall imaginary-time span nβ glued to cylinders defined for region B, each with
imaginary-time span β.

Alternatively, we can think of this calculation as involving n identical copies
of the field theory, and hence having n copies or replicas of the fields φi (i =
1, . . . , n), each with the same action such that in region B the replicas obey peri-
odic boundary conditions in imaginary time separately, whereas in region A they
are identified with each other sequentially and cyclically. More specifically, the
replicated fields obey the boundary conditions

φ j (0
+, x) = φ j+1(0

−, x), for x ∈ A

φ j (0
+, x) = φ j (0

−, x), for x ∈ B
(17.17)

A consequence of the boundary conditions that specify how the n replicas are glued
to each other is that there exists a set of twist operators that act on the replicated the-
ory and identify the different copies at the cuts. At the common boundary between
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regions A and B, the fields have a conical singularity. This formulation is originally
due to Holzhey, Larsen, and Wilczek (Holzhey et al., 1994), and was developed and
extended by Calabrese and Cardy (2004, 2009), whose work we follow here.

Following Calabrese and Cardy, we define a partition function with n copies
of the field, obeying the boundary conditions of Eq. (17.17). The action of the
replicated fields is simply the sum of the actions for each copy,

S[φ1, . . . , φn] =
n∑

i=1

S[φi ] (17.18)

The path integral, the partition function, is then restricted by the condition that the
local fields {φi } are glued according to the boundary conditions of Eq. (17.17). The
replicated theory thus defined now has a global symmetry since it is invariant under
the exchange of the replicas. Local fields that obey these conditions are called twist
fields. With the particular structure of the boundary conditions we are using, they
are called branch-point twist fields, and are associated with two cyclic permutation
symmetries, σ : j → j + 1 (mod n) and σ−1 : j + 1 → j (mod n) (with
j = 1, . . . , n). The branch-cut twist fields that map the different copies across the
branch cuts are denoted by Tn ≡ Tσ , associated with the permutation σ : j → j+1
(mod n), and T̃n ≡ Tσ−1 , associated with the (inverse) permutation σ−1 : j + 1 →
j (mod n). Thus, the reduced density matrix, which we defined as the partition
function with a branch cut on every point along the boundary between regions A
and B, amounts to a partition function in the replicated theory with insertions of
the branch-cut twist fields along the boundary between the two regions. A detailed
treatment of this approach can be found in the work of Cardy and coworkers (Cardy
et al., 2007). This formulation is particularly powerful in (1 + 1) dimensions.

17.4 The area law

So far, much of the discussion in this chapter has been on the formal aspects of
how entanglement and entanglement entropy are defined. As the reader can easily
see, the expressions we have presented are rather formal. They are also very non-
local. Although there are many reasons for being interested in entanglement, the
complexity and non-locality of these measures have prevented the development
of a comprehensive theory. However, in recent years there has been a sustained
effort devoted to understanding the properties of entanglement measures (and of
entanglement entropy in particular) in quantum field theory, in gravity, in string
theory, and more recently in condensed matter physics. Different motivations have
converged on this problem.

One of the main motivations for work on entanglement originates from the
physics of black holes. In spite of their origin in a classical theory, the general
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theory of relativity, black holes behave as if they were thermodynamic objects that
have entropy and temperature. A fundamental result in black-hole physics is the
expression for the black-hole entropy (Bekenstein, 1973; Hawking, 1975)

SBH = 1

4�2
P

A (17.19)

where A is the area of the event horizon of the black hole, �P = √
�GN/c3 is

the Planck length, and GN is the Newton constant. This formula, known as the
Bekenstein–Hawking entropy of the black hole, is most intriguing. Since black
holes are some of the most classical objects in the Universe (or universe?), it is
unclear what this entropy actually means.

The way the Bekenstein–Hawking formula was originally derived involved the
idea that near the strong gravitational fields of a black hole pair production would
exist. The existence of these processes then implies that some form of radiation,
Hawking radiation, should be produced in the vicinity of the black hole, and hence
these objects would acquire thermal properties such as a temperature. In addition,
there are many examples in general relativity of so-called extremal black holes,
which have entropy but no temperature. In particular, if a particle–anti-particle pair
is created by the gravitational field of the black hole, the pair will be in an entangled
state. One is then led to assume that the black-hole entropy must have a relation
with entanglement entropy.

So the following question arises: if they have entropy, what degrees of freedom
are being counted by this entropy? One of the triumphs of modern string theory
is that it offers an explanation for the black-hole entropy that is consistent with
statistical mechanics (Maldacena and Strominger, 1996). On the other hand, since
some fraction of the particles produced by pair production would fall into the black
hole and hence disappear for ever, this led to the idea that, once a black hole has
formed, the system somehow on its own evolves into a mixed quantum state, since
some information seems to be eaten by the black hole. This notion is in conflict with
quantum mechanics since it violates unitary time evolution. This problem has led
to a profound examination of the relation among gravitation, quantum mechanics,
and information (Susskind, 2008).

If one assumes that the black-hole entropy is entanglement entropy, the
Bekenstein–Hawking area law motivates the question of whether quantum field
theory itself is consistent with this law. This problem was first studied by Bombelli,
Koul, and Sorkin (Bombelli et al., 1986) and by Srednicki (1993), who found that
in the case of a free massive relativistic scalar field of mass m the von Neumann
entanglement entropy of a region A of linear size � in the limit � � m−1 behaves as

S[�] = α�d−1 (17.20)
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where d is the dimensionality of space and α is a dimension-full, and hence non-
universal, constant. Here, by non-universality we mean that it depends explicitly
on the short-distance cutoff, e.g. the lattice spacing a or the momentum cutoff
� ∼ a−1. The non-universal character of the coefficient of the area law in Eq.
(17.20) indicates that it is governed by the short-distance correlations encoded in
the wave function. However, in contrast with the Bekenstein–Hawking formula, the
area law of the entanglement entropy of local field theories cannot be expressed in
terms of a fundamental length and depends on the explicit way in which the theory
is cut off at short distances.

For example, in the case of a free scalar field in (d + 1) space-time dimen-
sions, the entanglement entropy for a spherical region in d space dimensions can
be expressed in terms of the two-point function of the free massive scalar field in
the n-sheeted geometry, see e.g. Calabrese and Cardy (2004), Casini et al. (2005),
and Casini and Huerta (2005, 2009), resulting in the expression

ln tr ρn
A = A 1

24

(
n − 1

n

) ∫
dd−1k⊥
(2π)d−1

ln
(
k2
⊥ + m2

)
(17.21)

where k⊥ acts on the d − 1 non-radial coordinates. From here it follows that the
von Neumann entanglement entropy for the spherical region has an area law

S = −A
12

∫
dd−1k⊥
(2π)d−1

ln

(
k2
⊥ + m2

k2
⊥ + a−2

)
(17.22)

where A is the area of the d-dimensional hypersphere and a is the short-distance
cutoff. This integral diverges as a−(d−1).

In conclusion, the entanglement entropy of free massive scalar fields is sub-
extensive and scales as the area of the observed region, instead of the volume of
a region as in the case of the thermodynamic entropy. This result holds essentially
for all local theories. Since the area law follows from short-distance physics, it
should apply equally to systems in the non-critical regime and to quantum critical
systems. The only known exception to the strict area-law scaling is the case of
systems of fermions at finite density, i.e. with a Fermi surface, where it has been
shown that the entanglement entropy scales instead as SA ∼ Ld−1 ln L (Gioev and
Klich, 2006; Wolf, 2006), which is still sub-extensive. The sub-extensive scaling
of the entanglement entropy is a necessary condition for the success of quantum-
information-based approaches to the simulation of quantum critical systems such
as the projected entangled-pair-state representation of quantum states on 2D lattices
(Verstraete et al., 2006).
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17.5 Entanglement entropy in conformal field theory

The generic existence of the area-law result naturally poses the following question:
what scaling law does the entanglement entropy obey in a quantum critical system?
In particular, what is the manifestation of the expected universal behavior of a
quantum critical system in the entanglement entropy? One expects to find universal
contributions to the entanglement entropy. But then the next logical question is to
ask what determines these universal contributions and how they are related to the
scaling of local observables at a quantum critical point.

To this date there isn’t a generally known answer to these questions. However,
these issues have been investigated in several important cases: (a) CFTs in (1 + 1)
dimensions, (b) the (2 + 1)-dimensional quantum Lifshitz universality class (see
Section 9.15), and (c) φ4 field theory in the 4 − ε expansion. In this section we
will describe the (1 + 1)-dimensional case.

The scaling behavior of the entanglement von Neumann entropy can be deter-
mined by general arguments of CFT. We will follow here in detail the arguments
and results of Calabrese and Cardy (Calabrese and Cardy, 2004; Calabrese et al.,
2009), which in turn are an extension of the early work of Holzhey, Larsen, and
Wilczek (Holzhey et al., 1994). We will use the representation of Zn[A] = tr ρn

A in
terms of a path integral with a replicated target space.

For simplicity region A will be a segment of length �, and region B is the com-
plement. The entire system has length L � �. We will work in the long distance
limit and hence assume that � � a, where a is a microscopic spatial cutoff, e.g.
the lattice spacing. We will compute Zn and from there we will determine the von
Neumann entanglement entropy. This problem was also considered in the context
of specific lattice systems, such as quantum spin chains. The main result that we
will prove is that in this limit, that provided the system is quantum critical, the
entanglement entropy has the behavior

S = c

3
ln

(
�

a

)
+ finite terms + O(�−1) (17.23)

where c is the central charge of the Virasoro algebra associated with the specific
CFT that describes the 1D quantum critical point. From the point of view of the
area law this result is expected, since in one dimension the boundaries are sets of
points. Hence, as d → 1, the area law can become a logarithm in one dimension.
In this case, a redefinition of the microscopic cutoff will change the O(1) terms
in the expansion of Eq. (17.23) but cannot change the prefactor of the logarithm.
Hence the prefactor must be a universal quantity, which, we will see, is related to
the central charge c discussed in Section 7.11. However, the finite terms have non-
universal contributions. On the other hand, if the logarithmic contributions were
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absent, the finite terms should be universal. We will see below an example of this
case in two space dimensions.

The existence of universal terms in the finite-size scaling of the entanglement
entropy is important since they signal the existence of large-scale entanglement.
Indeed, although the area-law term is the most singular term as a function of the
size of the observed region, the (generally subleading) universal term indicates that
it measures the contributions to the entanglement entropy from all length scales. We
will see that the entanglement entropy generally has a universal term in systems at
quantum criticality, i.e. whose effective field theory displays scale and conformal
invariance, and in topological phases.

In the replica formulation the replicated fields become twisted by the non-trivial
boundary conditions. The fields are twisted by the exchange symmetries, which are
represented by the local twist fields Tn and T −1

n , respectively. The local twist fields
Tn and T −1

n act at the boundary between the two regions A and B, and effectively
serve to link the different copies of the CFT with each other. In the case of a single
interval with endpoints at the spatial coordinates x = u and x = v, with � = |u−v|,
the partition function is to be calculated on fields on a Riemann surface with n
sheets. In two dimensions we can expect to be able to compute this object as a path
integral for replicated fields on the complex plane C where the Riemann surface is
specified by a set of boundary conditions, Eq. (17.17). For the n-sheeted Riemann
surface along interval A the partition function Zn[A] becomes

Zn[A] ∼ 〈Tn(u, 0)T −1
n (v, 0)〉 (17.24)

where the expectation value is computed from the replica theory on the complex
plane. The role of the operators Tn(u, 0) and T −1

n (v, 0) is to enforce the boundary
conditions of Eq. (17.17). Similarly, the expectation value of an operator in sheet
i = 1, . . . , n, O(x, τ ; i), on the n-sheeted Riemann surface is

〈O(x, τ ; i)〉 = 〈O(x, τ ; i)Tn(u, 0)T −1
n (v, 0)〉

〈Tn(u, 0)T −1
n (v, 0)〉 (17.25)

In the thermodynamic limit in which the length of the system L → ∞, the
conformal mapping

ζ = w − u

w − v
(17.26)

(where w = x + iτ ) maps the branch points to (0,∞). The conformal mapping

z = ζ 1/n =
(
w − u

w − v

)1/n

(17.27)

maps the n-sheeted Riemann surface onto the complex plane C. In the case of
a CFT the energy–momentum tensor (or stress–energy tensor) decomposes into
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holomorphic and anti-holomorphic components (see Section 7.11). The holomor-
phic component of the stress–energy tensor T (w) under a conformal mapping
transforms as (Belavin et al., 1984; Di Francesco et al., 1997)

T (w) =
(

dz

dw

)2

T (z)+ c

12
{z, w} (17.28)

where {z, w} = (z′′′z′ − 3
2 z′′2)/z′2 is the Schwartzian derivative. However, in

the plane 〈T (z)〉C = 0, since the system is rotational and translation-invariant,
it follows that the expectation value of the stress–energy tensor on the n-sheeted
Riemann surface is

〈T (w)〉 = c

12
{z, w} = c

24

(
1 − 1

n2

)
(v − u)2

(w − u)2(w − v)2
(17.29)

But this should be the same as the computation of the expectation value of the
stress–energy tensor in the n-sheeted Riemann surface. In particular, if the stress–
energy tensor for the replicated Lagrangian is n times this answer, this leads to the
result

〈T (w)(n)Tn(u, 0)T −1
n (v, 0)〉

〈Tn(u, 0)T −1
n (v, 0)〉 = c

24n

(
n2 − 1

) (v − u)2

(w − u)2(w − v)2
(17.30)

In CFT the fields obey a set of conformal Ward identities (Belavin et al., 1984),
which in this case take the form (Calabrese and Cardy, 2004; Calabrese et al.,
2009)

〈T (w)(n)Tn(u, 0)T −1
n (v, 0)〉

=
(

1

w − u
∂u + dTn

(w − u)2
+ 1

w − v
∂v +

dT −1
n

(w − v)2

)
〈Tn(u, 0)T −1

n (v, 0)〉
(17.31)

where dTn = dT −1
n

is the scaling dimension of the primary field Tn (and of T −1
n ).

Using that, by definition of the scaling dimension

〈Tn(u, 0)T −1
n (v, 0)〉 = 1

|u − v|2dn
(17.32)

we can now identify the scaling dimension of the twist fields dn to be

dn = c

12

(
n − 1

n

)
(17.33)

Since the partition function

tr ρn
A = Zn[A]

Zn
(17.34)
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is equivalent to the two-point function of the twist fields, Eq. (17.24), it should
behave in the same way under conformal transformations. Hence, up to a non-
universal constant Cn , we can make the identification

tr ρn
A = Cn

(
v − u

a

)−(c/6)(n−1/n)

(17.35)

where a is a short-distance cutoff. It then follows that the Rényi and von Neumann
entanglement entropies obey the scaling (Holzhey et al., 1994; Calabrese and
Cardy, 2004)

S(n)A = c

6

(
1 + 1

n

)
ln

(
�

a

)
+ constant

SA = c

3
ln

(
�

a

)
+ constant

(17.36)

This is the main result.
Calabrese and Cardy also derived expressions for the entanglement entropy for

a system with finite size L . In the case of periodic boundary conditions they found
the result for a system of length L and an interval A of length �:

SA[L , �] = c

3
ln

(
L

πa
sin

(
π�

L

))
+ constant (17.37)

Using a conformal mapping w → z = (β/(2π)) lnw that maps each sheet on the
w plane onto an infinitely long cylinder of circumference β, which plays the role
of the inverse temperature, Calabrese and Cardy derived a formula for tr ρn

A in a
thermally mixed state at temperature β−1 resulting in an entropy

SA(T, �) = c

3
ln

(
β

πa
sinh

(
π�

β

))
+ constant (17.38)

At T = 0 this result reproduces the result for the entanglement entropy in a 1D
conformal field theory, Eq. (17.36). It also recovers the (expected) extensive local
thermodynamic entropy in the high-temperature limit T � �−1,

S = πc

3
T �+ · · · (17.39)

The most powerful numerical method to simulate 1D systems is, at present, the
density-matrix renormalization group (DMRG) (White, 1992; Schollwöck, 2005;
Hallberg, 2006). The geometry used in DMRG calculations is a half-line with some
specified boundary condition at the endpoint. This method involves the computa-
tion of the reduced density matrix of some region A, which we will take to be
the interval [0, �). The rest of the system is region B, and has length L − �. In
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the case of this geometry Calabrese and Cardy found the following result for the
entanglement entropy of region A (Calabrese et al., 2009):

SA[�, L] = c

6
ln

(
2L

πa
sin

(
π�

L

))
+ ln g + constant (17.40)

This result provides the most direct and efficient way to compute the central charge
c using numerical DMRG calculations. It shows that the entanglement entropy is a
scaling function of �/L with a form that allows the determination of the finite-size
corrections. The constant term, ln g, is the so-called boundary entropy of Affleck
and Ludwig, as discussed in Section 15.6.3, which is a universal quantity that
depends only on the boundary conditions. One may object to keeping the constant
term, since it is in principle non-universal. However, if two different entanglement
entropies are computed using the same regularization, their difference is finite and
universal. Thus, the finite universal terms are actually meaningful and universal
(in this sense) up to a choice of which conformally invariant boundary condition
is considered. We will see in the next sections that in space dimensions D > 1
the entanglement entropy is characterized by universal constant corrections to the
non-universal area-law term.

17.6 Entanglement entropy in the quantum Lifshitz universality class

Very few results are known for quantum critical systems in space dimensions
D > 1. A special case in which the scaling behavior of the entanglement entropy
in quantum critical systems has been studied in some detail is the quantum Lifshitz
universality class, discussed in Section 9.15, which includes the quantum dimer
model (QDM) and its generalizations, see Chapter 9. The scaling of the entan-
glement entropy in the quantum Lifshitz universality class was discussed first by
Fradkin and Moore (2006), whose work we follow here in some detail, and was
further refined in Fradkin (2009), Hsu and Fradkin (2010), Hsu et al. (2009b), and
Oshikawa (2010). The scaling of the entanglement entropy in the quantum critical
dimer-model wave function was determined (mostly numerically) by Stéphan and
collaborators (Stéphan et al., 2009, 2011).

We will discuss this problem in terms of the ground-state wave function for the
quantum Lifshitz model, which is given by (see Eq. (9.179))

�0[ϕ(x)] = 1√
Z0

exp

(
−

∫
d2x

κ

2

( �∇ϕ(x)
)2

)
(17.41)

where κ is a parameter of the quantum Lifshitz model, which is specified in
Eq. (9.161), and Z0 is the norm of this wave function (see Eq. (9.180)),
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Z0 = ||�0||2 =
∫

Dϕ exp

(
−

∫
d2x κ

( �∇ϕ(�x)
)2

)
(17.42)

Recall that the field ϕ is compactified with compactification radius R = 1. The
quantum critical point of the Rokhsar–Kivelson QDM is represented by the choice
of the parameter κ = 1/(8π).

The wave functions of the quantum Lifshitz universality class (and its general-
ization) have the special property that the weight of a field configuration [ϕ] in
the wave function is local and has the form of the Gibbs weights in a conformally
invariant classical system in two space dimensions. Consequently, the norm Z0

of these wave functions is equivalent to a conformally invariant classical partition
function in two dimensions (Ardonne et al., 2004).

Let us first consider the case in which the system is defined on a large disk of
diameter L with some boundary conditions at infinity. We will consider the plane
geometry shown in Fig. 17.3. In this case the “entangling region” will be a simply
connected region A with the topology of a disk of diameter � with boundary �. The
complement of region A is region B. The wave function has the form �0[ϕA, ϕB],
where [ϕA] and [ϕB] label the degrees of freedom on regions A and B, respectively.

For conformal quantum critical points, the Hilbert space has an orthonormal
basis of states |{ϕ}〉 indexed by classical configurations {ϕ}, and the ground state
|�0〉 of the bipartite system is determined by a local CFT action S[ϕ]:

A

B

ϕA

ϕB

L

Γ

Figure 17.3 The disk geometry: the observed region A has diameter � and the
entire system is also a disk of diameter L . B is the annular region and is the
complement of the disk A.
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|�0〉 = 1√
Z0

∫
Dϕ e−S({ϕ})/2|{ϕ}〉 (17.43)

Here

Z0 =
∫

Dϕ e−S({ϕ}) (17.44)

and expectation values in this state reproduce CFT correlators.
Fradkin and Moore (2006) used the “replica trick” to compute the entanglement

entropy (Holzhey et al., 1994; Calabrese and Cardy, 2004) for conformally invari-
ant wave functions, and showed that the trace of the nth power of the reduced
density matrix, tr ρn

A, where ρA is the reduced density matrix of a region A (where
A and B form a partition of the entire system A ∪ B, and are separated by their
common boundary �) for the ground state �0 on A ∪ B, is given by

tr ρn
A = Zn

Zn
(17.45)

Here Zn is the partition function of n copies of the equivalent 2D classical
statistical-mechanical system satisfying the constraint that their degrees of freedom
are identified on the boundary �, and Zn is the partition function for n decoupled
systems.

In order to construct tr ρn
A, we need an expression for the matrix elements of

the reduced density matrix 〈ϕA|ρA|ϕ′A〉. Since the ground-state wave function is
a local function of the field ϕ(x), a general matrix element of the reduced density
matrix is a trace of the density matrix of the pure state �GS[ϕ] over the degrees
of freedom of the “unobserved” region B, denoted by ϕB(x). Hence the matrix
elements of ρA take the form

〈ϕA|ρ̂A|ϕ′A〉 = 1

Z

∫
[DϕB]exp

[
−

(
1

2
S A(ϕA)+ 1

2
S A(ϕ′A)+ SB(ϕB)

)]
(17.46)

where the degrees of freedom satisfy the boundary condition at the common
boundary �:

BC� : ϕB |� = ϕA|� = ϕ′A|� (17.47)

Proceeding with the computation of tr ρn
A, one immediately sees that the matrix

product requires the condition ϕA
i = ϕ′A

i−1 for i = 1, . . . , n, and ϕ′A
n = ϕA

1 from
the trace condition. Hence, tr ρn

A takes the form
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tr ρn
A ≡ Zn

Zn

= 1

Zn

∫
BC�

∏
i

DϕA
i DϕB

i e−
∑n

i=1(S(ϕA
i )+S(ϕB

i )) (17.48)

subject to the boundary condition BC� of Eq. (17.47).
This result shows that the numerator of Eq. (17.48), Zn , is the partition func-

tion of n 2D classical systems, each with the same energy functional S[ϕ], whose
degrees of freedom are identified with each other on the boundary � that separates
regions A and B, but which are otherwise independent. Hence, Zn is the parti-
tion function of a classical 2D critical system on the “book” geometry shown in
Fig. 17.4. In contrast, the denominator, Zn , is the partition functor of the same n
decoupled systems. Since the systems are conformally invariant away from their
common boundary and since the boundary condition is consistent with the condi-
tion of conformal invariance, we have effectively mapped the computation of the
entanglement entropies to a problem in 2D boundary CFT.

The expression for tr ρn
A given in Eq. (17.48) implies that the replicated partition

function Zn is invariant under the permutations of the n replicas. Actually, it is
invariant under the action of the permutation group Sn independently on regions A
and B. Also, since the fields have to agree on the boundary �, Zn is also invariant
under a simultaneous global shift of all the replicated fields in both regions. This
condition implies that nothing physical happens at the common boundary �, which,
after all, is an arbitrary device.

A

B

ϕA
1

ϕA
n

ϕB
1

ϕB
n

Γ
n

Figure 17.4 The book geometry of the replicated system. The fields are identified
with each other at the common boundary � between regions A and B.
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The specific problem we want to address here is the scaling behavior of the
von Neumann entanglement entropy (and of the associated Rényi entropies). To
this end, it will be useful to introduce the following notation. Let F1 = −ln Z be
the classical partition function of one of the n decoupled copies (or replicas) and
Fn = −ln Zn the classical partition function of the system of n replicas identified
along �. Then we can formally relate the von Neumann entanglement entropy SA

to the expression

SA = lim
n→1

Fn − nF1

n − 1
(17.49)

where the dependence on n has to be understood as an analytic continuation to the
complex-n plane. The free energy of a physical system in two dimensions with a
well-defined thermodynamic limit has a leading extensive term, F = L2 f + . . . ,
where L is the linear size of the system and f is the free-energy density. Here the
ellipsis indicates the finite-size corrections. These are generally expected to include
a perimeter term, O(L), constant terms O(L0), and possibly a term that depends
logarithmically on L (Privman and Fisher, 1984; Privman, 1988),

F = L2 f + σ L + a ln L + b + O(L−1) (17.50)

Since the copies in the replicated system are identical away from the contour �,
which can be viewed as a “defect” in the replicated system, it is clear that the
extensive terms (proportional to the free-energy density) must be the same for Fn

and for nF1 and hence must cancel out exactly. Therefore, in the limit L � � � a,
we expect the von Neumann entanglement entropy to have the following form:

SA = α�+ C ln

(
�

a

)
+�

(
�

L

)
+ O(�−1) (17.51)

where the first term is the non-universal “area law” (in 2D it is a perimeter), C is
a constant, and �(x) is a dimensionless function of the aspect ratio �/L . We will
see below that this general argument is correct.

As a first step let us consider the case in which the field ϕ is free, which is
the case in the quantum Lifshitz model. In this case it is obvious that the field
ϕ = ∑n

j=1 ϕn decouples and does not see the boundary �. It further obeys the same
boundary conditions at spatial infinity as the individual copies. So one expects
that it should be possible to write the partition function Zn as a product of two
terms, one of which is the partition function of just one copy (the field ϕ) and the
other is a partition function for the remaining n − 1 copies, Z̃n−1. However, in the
partition function Z̃n−1 the replica fields can enter only as the n − 1 differences,
say ϕ̃ j = ϕ j+1 − ϕ j (for j = 1, . . . , n − 1), and these fields must now vanish
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at the common boundary �, which is to say they must obey Dirichlet boundary
conditions on �. This assumption implies that the trace of the nth power of the
reduced density matrix is a simple power, tr ρn

A ∝ constantn . We will see below
that this is not quite correct.

If this argument were literally correct, we would be able to write a simpler
expression for the entanglement entropy. The partition functions on the r.h.s. of
Eq. (17.45) are Z A = ||� A

0 ||2 with support in region A and ||�B
0 ||2 with support

in region B, both satisfying generalized Dirichlet (i.e. fixed) boundary conditions
on � of A and B, and Z A∪B = ||�0||2 is the norm squared for the full system. The
entanglement entropy S is then obtained by an analytic continuation in n (Fradkin
and Moore, 2006; Hsu et al., 2009b),

SA = −tr(ρA ln ρA) = − lim
n→1

∂

∂n
tr ρn

A = −log

(
Z A Z B

Z A∪B

)
= FA + FB − FA∪B (17.52)

where FA and FB are the free energies of a free field in regions A and B with
Dirichlet boundary conditions on �, and FA∪B is the free energy for the whole
system. Hence, the computation of the entanglement entropy is reduced to the
computation of a ratio of partition functions in a 2D classical statistical-mechanical
problem, a Euclidean CFT in the case of a critical wave function, each satisfying
specific boundary conditions. Notice that if these arguments are correct then the
ratio Zn/Zn can be written as a simple power of n with no other dependence on n
left. We will see below that, while this argument is almost right, there are small but
conceptually significant corrections. We will first proceed with the assumption that
Eq. (17.52) is an identity.

The dependence of the free energy on the size of the system for different bound-
ary conditions is a problem in boundary CFT. This problem was first discussed
by the mathematician Mark Kac (Kac, 1966), who was interested in the problem
of spectral geometry. In physics terms Kac was interested in the spectrum of the
Laplacian operator in two dimensions in regions of various shapes. He posed this
problem as the following question: can you hear the shape of a drum? In the present
context we can rephrase the question as “can you hear the shape of a quantum
drum?” (or of Schrödinger’s cat?). This problem has since been reanalyzed by
people working in CFT (and in string theory). The most complete expression of
the asymptotic form of the free energy, and the one that will be useful to us, is due
to Cardy and Peschel (1988), who showed that the free energy of a 2D Euclidean
CFT of central (Virasoro) charge c has the following finite-size dependence in a
region of linear size L and smooth boundary �:

F = f L2 + σ L − c

6
ln

(
L

a

)
+ O(L0) (17.53)
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where f is the (non-universal) free-energy density, σ is the (non-universal) surface
tension, c is the central charge of the conformal field theory, and χ is the Euler
characteristic of the region under consideration,

χ = 2 − 2h − b (17.54)

where h is the number of handles of the region and b is the number of boundaries.
By direct application of Eq. (17.53), the entanglement entropy SA becomes

(using Eq. (17.52))

SA = α�− c

6
�χ ln

(
�

a

)
+ O(1) (17.55)

where the Euler characteristics of the disk A, the annular region B, and the large
disk A ∪ B enter through the expression

�χ = χA + χB − χA∪B (17.56)

However, for a region A ⊂ A ∪ B with a smooth boundary �, �χ = 0 since in
this case χA + χB = χA∪B . Hence, this argument predicts that in this case there is
no term that scales as ln(�/a). This raises the possibility that the O(1) term may
actually be universal.

On the other hand, if the boundary � is not smooth, logarithmic terms do exist.
Imagine, for instance, a simply connected region A whose boundary � is piecewise
smooth but has cusp singularities (corners) at isolated points, with interior angle γ ,
0 < γ < 2π . In this case, Cardy and Peschel found a logarithmic contribution to
the free energy of the form

�F = cγ

24π

(
1 − π2

γ 2

)
(17.57)

Since all other contributions to the entanglement entropy vanish, aside from the
“area-law term,” we conclude that a corner will give a logarithmic contribution of
the form of Eq. (17.57). A similar logarithmic term is found if region A is not fully
contained inside region B, but its boundary now disconnects the system in two
disjoint and simply connected regions. The logarithmic term originates from the
conical singularities at the intersection of the boundary γ with the outer boundaries
of the system (Fradkin and Moore, 2006).

Let us now ask whether the assumptions that led to Eq. (17.52) are actually
correct. Let us consider for simplicity the case of the cylinder geometry shown
in Fig. 17.5. This problem was discussed by Hsu and collaborators (Hsu et al.,
2009b; Hsu and Fradkin, 2010) and by Oshikawa (2010). It was also investigated
numerically and analytically by Stéphan and coworkers in the QDM wave func-
tions (Stéphan et al., 2009). A direct application of the result of Eq. (17.52) leads to



776 Quantum entanglement

LA LB

A BΓ

Figure 17.5 The cylinder geometry.

the computation of the partition function of a 2D Euclidean scalar field with com-
pactification radius R = √

8πκ , where κ is the parameter of the quantum Lifshitz
model. Recall that for the QDM κ = 1/(8π), and hence R = 1. For the general-
ized QDMs (Papanikolaou et al., 2007b) and for the quantum eight-vertex model
(Ardonne et al., 2004), the parameter κ varies continuously from κ = 1/(8π) to
κ = 1/(4π) at a Kosterlitz–Thouless transition.

I will assume that the system obeys Dirichlet boundary conditions on the circles
(each with circumference �) at both ends of the cylinder. Thus in this case Z A, Z B ,
and Z A∪B obey Dirichlet boundary conditions at both ends. The partition function
ZDD for a free boson on a cylinder with compactification radius R with Dirichlet
boundary conditions at both ends of the cylinder is (Fendley et al., 1994)

ZDD = constant

R
× ϑ3(2τ/R2)

η(q2)
(17.58)

where τ = i L/� is the modular parameter and q = e2π iτ , and where we have intro-
duced the elliptic theta function ϑ3(τ ) and the Dedekind eta function η(q), which
are, respectively, given by

ϑ3(τ ) =
∞∑

n=−∞
qn2/2, η(q) = q1/24

∞∏
n=1

(1 − qn) (17.59)

In general the resulting expression for the entanglement entropy depends on the
various aspect ratios �/L . However, in the limit of long cylinders, L � �, we
obtain a simple expression for the O(1) term of the entanglement entropy (Hsu
et al., 2009b),

Scylinder
A = α�+ ln R (17.60)

which is a continuous function of the compactification radius R.
A similar computation for the case of the torus (shown in Fig. 17.6) also leads

to a finite and universal O(1) term in the entanglement entropy,

Storus
A = α�+ 2 ln

(
R2

2

)
(17.61)



17.6 Entanglement entropy in the quantum Lifshitz universality class 777
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Figure 17.6 The torus geometry.

On the other hand, for the case of the disk geometry of Fig. 17.3, in addition to a
universal constant term, one also finds a term that depends explicitly on the aspect
ratio �/L:

Sdisk
A = α�+ 1

2
ln

[
1

π
ln

(
L

�

)]
+ ln R (17.62)

The origin of the dependence on the aspect ratio L/� is the fact that on the disk the
boundary has a finite radius of curvature.

These results, which are based on Eq. (17.52), lead to the conclusion that, except
for possible functions of the aspect ratio, the entanglement entropy of 2D scale-
invariant wave functions has a universal O(1) term. These results were based on
the factorization assumption which implied that the dependence on n of tr ρn

A is
a simple power. It turns out that the correct dependence on n has a

√
n prefac-

tor. This result was derived by direct computation with the compactified theory
by constructing the boundary state for the compactified boson explicitly (Hsu and
Fradkin, 2010; Oshikawa, 2010) and leads to the result (for the cylinder geometry)

Scylinder
A = α�+ ln R − 1

2
(17.63)

which agrees with the numerical results of Stéphan et al. (2009). The origin of
this term is the structure of the compactification lattice of the difference fields, ϕ̃ j .
Notice that, since the wave function of the quantum Lifshitz model maps onto a
2D Euclidean CFT with central charge c = 1, this quantity does not appear in our
formulas. Nevertheless, they do depend on the compactification radius R which
determines the operator content of the theory.

The generalization of this universal condition for generic conformally invariant
wave functions is not known at present. Hsu and coworkers (Hsu et al., 2009b)
used the (most likely generally incorrect) formula of Eq. (17.48) which relates
the universal constant term to the modular S-matrix of the 2D CFT of the wave
function. It is curious that for the special case of the 2D Ising wave function this
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prediction is consistent with the numerical results (Stéphan et al., 2010) (except
for a subtle behavior as n → 1). At any rate, these results confirm the expectation
that in 2D quantum critical systems the entanglement entropy has a universal O(1)
correction to the area-law term. We will see next that conventional relativistic φ4

theory has an entanglement entropy with the same scaling behavior at its quantum
critical point. Thus, we expect this to be the generic universal scaling behavior for
space dimensions d > 1, regardless of the type of dynamics the system has.

17.7 Entanglement entropy in φ4 theory

The behavior of the entanglement entropy in a generic quantum critical, i.e. rela-
tivistically invariant, quantum field theory in D = d + 1 > 2 dimensions, where
d is the number of space dimensions, is much less well understood than the two
previous examples. Aside from the omnipresent area law, in general logarithmic
terms are absent unless the region being observed is not smooth (Fursaev, 2006;
Casini and Huerta, 2007, 2009). A logarithmic dependence on the linear size of the
observed region is also present in systems with a spontaneously broken continuous
symmetry, e.g. in the non-linear sigma model for d > 1 and the related quantum
Heisenberg antiferromagnet (discussed in Chapter 7) (Metlitski and Grover, 2011;
Ju et al., 2012).

However, we are interested here in the scaling at the quantum critical point of
the entanglement entropy. Metlitski, Fuertes, and Sachdev (Metlitski et al., 2009)
considered the scaling of the entanglement entropy in the relativistically invari-
ant O(N ) φ4 theory in d = 3− ε space dimensions. The Euclidean action in
D = d + 1 dimensions, with imaginary time τ , for an N -component real field
with O(N ) global symmetry is given by (μ = 1, . . . , D)

S =
∫

dd x dτ

[
1

2

(
∂μ �φ

)2 + t

2
�φ 2 + λ

4

( �φ 2
)2

]
(17.64)

Here one is interested in the quantum critical theory, which means that we will
need to set the renormalized mass (squared) tR = 0. Since it is a relativistically
invariant theory it has dynamical exponent z = 1. They considered the cylinder
geometry shown in Fig. 17.5. The calculation is technically complex and I will not
give the details here.

As in the example of the last section, we divide space (but not time!) into two
disjoint but complementary regions A and B, with the boundary being a (d − 1)-
dimensional region B. Here we will take B to be a plane located at the spatial
coordinate x = 0. The coordinates along the boundary directions are denoted by
x⊥. To compute the entanglement entropies (von Neumann and Rényi) we will use
again the replica trick. This means that we will once again compute the partition
function Zn for a theory with n copies that are stitched together at the boundary
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B. The result is again an n-sheeted Riemann surface that lies in the plane spanned
by x‖ = (τ, x) and has a conical singularity at (τ, x) = (0, 0). This surface is
invariant under translations and rotations along the perpendicular directions x⊥.
In this geometry it is natural to use polar coordinates in the x‖ plane, (r, θ). The
metric in these coordinates is simply ds2 = dr2 + r2 dθ2 + dx2

⊥. This is just
the usual Euclidean metric except that the angular variable has a modified period
θ → θ + 2πn to reflect the conical singularity.

As a function of the ultraviolet (UV) cutoff a the entanglement entropy has the
general scaling form

SA = gd−1(B)a−(d−1) + gd−2(B)a−(d−2) + · · · + g0(B)ln
(
�

a

)
(17.65)

where � is the linear size of the region A. The first term is the area law discussed
before. For d = 3 − ε Metlitski and collaborators found that the entanglement
entropy for the cylinder geometry at the Wilson–Fisher fixed point has the same
scaling behavior as what we found in the quantum Lifshitz model,

SA = C

(
�

a

)d−1

+ γ (17.66)

To leading order in the ε expansion at the Wilson–Fisher fixed point the universal
contribution γ is given by

γ = − Nε

6(N + 8)

[
ln

∣∣∣∣ϑ1

(
φ

2π
(1 + i), i

)∣∣∣∣ − φ2

4π
− ln η(i)

]
(17.67)

where i = √−1, and ϑ1 and η are the Jacobi elliptic and Dedekind eta functions.
Here φ is a twist in the boundary conditions along the directions labeled by x⊥,
which was introduced by Metlitski and coworkers in order to remove a zero mode.
They also suggested that for zero twist the result is non-analytic in ε,

γ = − Nε

12(N + 8)
ln ε (17.68)

On the other hand, at the infrared (IR)-unstable free-field fixed point in d = 3 − ε

dimensions γ is instead given by

γ = −N

6

[
ln

∣∣∣∣ϑ1

(
φ

2π
(1 + i), i

)∣∣∣∣ − φ2

4π
− ln η(i)

]
(17.69)

This result suggests that the universal term γ decreases under the RG flow. The
decrease of the universal term of the entanglement entropy under the action of
the RG flow is reminiscent of Zamolodchikov’s c theorem in 2D perturbed CFT
(Zamolodchikov, 1986). This behavior of the universal term of the entanglement
entropy was also found by Myers and Singh (2012) using the AdS/CFT program
that we will discuss in the next section.



780 Quantum entanglement

17.8 Entanglement entropy and holography

A different perspective on the scaling and universal properties of quantum entan-
glement in quantum field theories, and hence also in strongly coupled systems in
condensed matter physics, is related to the concept of holography. Holography
here means that the quantum field theories which describe our world are actu-
ally holographic images of a theory of gravity in higher dimensions (’t Hooft,
1993; Susskind, 1995). As a concept, holography originally took shape as a way
to understand the physics of black holes. It has since become central to the under-
standing of strongly coupled quantum field theories. In 1997 Maldacena realized
that the classical (weak-coupling) limit of a superstring theory in a 5D space-
time with a background anti-de Sitter (AdS) metric is equivalent, or “dual,” to the
strong-coupling limit of a super-Yang–Mills gauge theory in four (flat) Minkowski
space-time dimensions. For this reason the Maldacena conjecture is known as
the gauge/gravity duality (Gubser et al., 1998; Maldacena, 1998; Witten, 1998;
Aharony et al., 2000; Maldacena, 2012). In this section we will briefly explain the
main ideas of holography and then use them to discuss the problem of the scaling of
entanglement entropy in general CFTs (Ryu and Takayanagi, 2006a, 2006b; Nish-
ioka et al., 2009). A particularly insightful introduction to this problem is given in
McGreevy (2010).

17.8.1 The CFT/AdS correspondence

Anti-de Sitter (AdS) space is a space-time with negative curvature in (d + 1)
dimensions with the metric

ds2 = R2

u2

(
du2 − dx2

0 +
d−1∑
i=1

dx2
i

)
(17.70)

In the AdS geometry the limit u → 0 can be viewed as the boundary of the space-
time, and u → ∞ corresponds to space-time points deep in this geometry, with a
horizon at u = ∞. The parameter R is the radius of curvature of the AdS space-
time, measured in units in which the Planck length �P = 1. The AdS metric has
the special property that a scale transformation (dilatations) of the Minkowski part
of the metric of the form xμ → λxμ can be absorbed in a rescaling of the extra
dimension on the AdS space, u → λu. Hence dilatations are isometries of the
AdS geometry. This also means that the limit of u → 0 can be viewed as the
short-distance, UV, limit in Minkowski space-time. Similarly, the u → ∞ limit
corresponds to space-time points deep inside the AdS geometry and represents the
long-distance, IR, limit in Minkowski space-time.

The gauge/gravity duality or, more generally, the CFT/gravity duality, is the
statement that all the physics in an asymptotically AdS space-time can be described
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by a local conformal quantum field theory that resides at the boundary, which
looks like flat Minkowski space-time in d space-time dimensions. In particular,
the isometries of the AdS geometry act as space-time symmetries on the boundary.
These isometries are equivalent to the conformal group in d dimensions, SO(2, d),
which includes the Poincaré group of the flat Minkowski space-time M, the dilata-
tion, and the special conformal transformations. Hence, the quantum field theory
on the boundary is a CFT. In particular, the dilatation isometry of the AdS geom-
etry becomes scale invariance of the quantum field theory at the boundary. In this
holographic picture the short-distance (UV) behavior of a scale-invariant, confor-
mal, field theory on the boundary of the AdS space maps to the long-distance
(IR) behavior of a classical theory of gravity defined deep in the bulk of AdS
space-time.

Let us consider the classical field theory of a field φ in the AdS space-time, and
let φ0 be the value of the classical field on the boundary of AdS space-time. We will
denote by Z(φ0) the partition function of the gravity theory coupled to the field φ,
with boundary condition φ0, and by O a local operator of the CFT defined on the
boundary of AdS space-time whose source is φ0. Then, the CFT/gravity duality is
the identification (Gubser et al., 1998; Witten, 1998)

ZCFT = ZAdS gravity〈
exp

(∫
M

dd x φ0(x)O(x)
)〉

CFT

= Z(φ0)AdS gravity
(17.71)

The picture of the 4D Minkowski space-time as the boundary or “edge” of the
5D AdS space is somewhat (but not completely) analogous to the bulk–edge cor-
respondence in quantum Hall fluids. In this context, duality is understood, as in
other sections of this book, as a mapping relating a weakly coupled theory to
another strongly coupled but generally different theory. Here the two theories are
so different that they even live in different dimensions!

This CFT/gravity duality further suggests that the AdS coordinate should be
regarded as a scale transformation in quantum field theory (Susskind and Witten,
1998; Witten, 1998). In other words, the action of successive RG transformations
on a quantum field theory, which, as we saw, makes the coupling constants scale-
dependent quantities, can be regarded geometrically as defining an extra dimension
(the local scale) in addition to the usual space-time dimensions. Hence the family of
theories related by RG transformations can be viewed as a single theory defined on
a higher-dimensional space-time with an AdS geometry (Heemskerk and Polchin-
ski, 2011). This interpretation of the RG flow is shown in Fig. 17.7. Heemskerk
and Polchinski (2011) have shown that there is a precise connection between the
Wilsonian construction of the RG in quantum field theory and the holographic RG.
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Figure 17.7 The AdS/CFT correspondence: a sequence of RG transformations
(left) is equivalent to the AdS geometry (right) (after J. McGreevy (McGreevy,
2010)).

Also, an interesting, explicit, construction of a gravity dual as a theory of a family
of RG transformations has been proposed by Lee (2010, 2011).

The CFT/gravity duality (or CFT/AdS correspondence) has been extended from
its original formulation relating string theory (or supergravity) to the strong-
coupling limit of the large-N limit of super-Yang–Mills theories to describe more
general strongly coupled theories. For instance a CFT at finite temperature is
described by this duality as a theory of gravity on AdS space-time with a black hole
deep in the (d +1)-dimensional geometry. This description relates the Bekenstein–
Hawking temperature of the black hole to the temperature of the CFT. It also
provides an explanation for the Bekenstein–Hawking entropy that is consistent
with the requirements of unitarity and the conservation of information. This rela-
tion resolved the information paradox posed by Hawking in 1980 (Susskind, 2008).
The CFT/AdS correspondence also has important applications to poorly under-
stood problems in condensed matter physics such as the behavior of Fermi fluids
near quantum critical points and in so-called “non-Fermi-liquid” phases. We will
not discuss here this important problem (since we have not discussed Fermi-liquid
theory in the first place!), work on which is rapidly developing (Hartnoll et al.,
2010; McGreevy, 2010; Liu et al., 2011; Hartnoll, 2012).

17.8.2 Holography and entanglement entropy

We will now apply the ideas of holography to the problem of the scaling of
entanglement entropy in CFTs. This problem was first considered by Ryu and
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Takayanagi, who used this approach to find a startling result (Ryu and Takayanagi,
2006b).

Let us consider first the CFT/gravity duality for the case of a bulk AdS3. The
boundary theory is then a conformal field theory in (1+1) dimensions. In principle,
to apply the CFT/AdS gravity correspondence to this problem, using Eq. (17.71),
requires one to find the AdS3 geometry that corresponds to the n-sheeted Riemann
surface on which the CFT2 is defined (as discussed in Section 17.5). Since this is
a complex problem, Ryu and Takayanagi opted to conjecture that the following,
much simpler, relation applies. It is worth emphasizing that there is strong evi-
dence that this conjecture predicts correct results. For instance, its predictions are
consistent with the physical argument that the entanglement entropy should obey
strong subadditivity.

For concreteness we will consider the situation shown in Fig. 17.8, in which
region A is a segment of length L (on the boundary) and region B is the complement
of a CFT defined on a circle, i.e. we have periodic boundary conditions in space.
Ryu and Takayanagi conjectured that this geometry is the n-sheeted AdS3 and its
generalization to higher dimensions, which is defined by putting the deficit angle
δ = 2π(1 − n) localized on a co-dimension-2 surface γA (including time). With
this assumption they showed that the action for Einstein’s gravity on the n-sheeted
AdSd+1 geometry in general dimension d is the generalization of the Einstein–
Hilbert action (this assumption was shown to be correct by Casini et al. (2011)
for the case in which the entangling surface is Sd−1 that is bipartitioning the total
space Sd),

SAdS = − 1

16πG(d+1)
N

∫
M

dd+1x
√

g(R +�)+ · · · (17.72)

AdS3

CFT2

A

BB

γA

Figure 17.8 Entanglement entropy and the CFT/AdS correspondence.



784 Quantum entanglement

where G(d+1)
N is the Newton constant of the AdSd+1 gravity, and R is the (Ricci

scalar) curvature

R = 4π(1 − n)δ(γA)+ R0 (17.73)

where R0 is the scalar curvature of the AdSd+1 space-time.
We will now equate the partition function of the CFTd on the n-sheeted Riemann

surface with the partition function for gravity on the modified AdSd+1 geometry we
just described. This allows us to find an expression for the entanglement entropy
for region A. That is, SA is given, in the gravity dual, defined on AdSd+1 (a (d +
1)-dimensional AdS space-time), by the Bekenstein–Hawking entropy of AdSd+1,
which involves the area A(γA) of the minimal surface γA. Explicitly, they found
the result (Nishioka et al., 2009)

SA = − ∂

∂n
ln tr ρn

A

∣∣∣
n→1

= − ∂

∂n

[
(1 − n)A(γA)

4G(d+1)
N

]
n→1

= A(γA)

4G(d+1)
N

(17.74)

which is the Bekenstein–Hawking formula for the entropy! (cf. Eq. (17.19)).
In the particular case in which the boundary is a 2D space-time, Eq. (17.74)

predicts the entanglement entropy for CFT2 in terms of the Bekenstein–Hawking
entropy. To this end, we consider an interval of length � on the boundary. The
endpoints of this interval will also be the endpoints of a minimal surface in AdS3,
which is to say a geodesic between the points (x, u) = (−�/2, a) and (x, u) =
(�/2, a), where a → 0 plays the role of a UV cutoff. This geodesic is given by the
half-circle

(x, u) = �

2
(cosϕ, sinϕ) (17.75)

with ε ≤ ϕ ≤ π − ε; here ε = 2a/� → 0+ plays the role of the cutoff a. The
length A(γA) of the circle γA is

A(γA) = 2R
∫ π/2

ε

dϕ

sinϕ
= 2R ln

(
�

a

)
(17.76)

This result then implies that the entropy is given by

SA = R

2G(3)
N

ln

(
�

a

)
(17.77)

This result has the same scaling as the general expression for the entanglement
entropy of an interval in a (1+ 1)-dimensional CFT of Eq. (17.36) (Holzhey et al.,
1994; Calabrese and Cardy, 2004). This suggests that we identify the central charge
of the CFT as being related to its gravity dual by the relation

c = 3R

2G(3)
N

(17.78)
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However, this identification makes sense only if the AdS radius R is large com-
pared with the Planck length so that the classical description of gravity makes
sense. In other words, the CFT2/AdS3 correspondence makes sense only if the
central charge of the CFT is very large. In contrast, the result of Eq. (17.36) is nev-
ertheless valid for all values of the central charge, even for values small enough
that the AdS/CFT correspondence does not hold.

The CFT/gravity duality has been used by Ryu and Takayanagi to derive expres-
sions for the entanglement entropy at finite temperatures, in which case there
is a black hole deep in the AdS3 geometry, and they found a result that agrees
exactly with the expression of Eq. (17.38) obtained by Calabrese and Cardy using
CFT2. They also used this approach to obtain results for the entanglement entropy
in higher-dimensional CFTs, where they found universal corrections to the area
law. These corrections generally depend on scale-invariants of the geometry of the
observed region, such as its aspect ratio.

17.9 Quantum entanglement and topological phases

We end this chapter with a discussion of the characterization of topological phases
in terms of the behavior of the entanglement entropy. We will now see that the
defining properties of topological phases are strongly apparent in entanglement-
entropy measurements. Topological phases of matter are fully gapped states
whose low-energy physics is described by a topological quantum field theory.
A consequence of this feature is that the entanglement entropy has, in addi-
tion to the non-universal area law which is governed by short-distance physics,
universal terms that are determined entirely by topological invariants. Here we
will focus exclusively on the properties of topological phases in two space
dimensions.

Before discussing the behavior of entanglement entropy in topological phases,
let us summarize the defining properties of topological phases of matter discussed
in Chapters 9 and 14 (see in particular Section 14.6).

1. Topological phases of matter are translationally and rotationally invariant states.
Since they do not break any symmetries, neither of space-time nor internal,
these fluid states cannot be characterized by a local order parameter. Hence, the
ground states of topological phases respect all the symmetries of the system.
However, on long length scales, that is, long compared with the lattice constant,
the low-energy effective action of a topological phase is given by a topologi-
cal field theory. The prototype topological field theories are the Chern–Simons
gauge theories discussed extensively in Chapter 14 and the discrete gauge theo-
ries discussed in Chapter 9. In both cases the effective action has the key feature
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that it does not depend on the local metric of the 2D surface on which the system
is defined.

2. The ground state of a topological phase is generally not unique and, on a 2D
surface of genus g, the number of handles of the surface, the degeneracy of the
ground states grows exponentially with the genus as kg, where k is an integer.

3. Topological phases come in two types, namely even and odd under time-reversal
transformations. Time-reversal-odd topological phases occur in electron fluids
in large magnetic fields, as discussed in Chapters 13 and 14, such as the frac-
tional quantum Hall states, and in spin liquids with a spontaneously broken
time-reversal invariance, such as the chiral spin liquid discussed in Chapter
10. Examples of time-reversal-invariant topological phases are the deconfined
(“Coulomb”) phases of discrete gauge theories, topological phases of QDMs,
doubled Chern–Simons gauge theories (and BF gauge theories), and Kitaev’s
toric code (all discussed in Chapter 9) and its generalizations (Freedman et al.,
2004; Fendley and Fradkin, 2005; Fidkowski et al., 2009).

4. In a topological phase all the local excitations have a large energy gap and
have non-trivial quantum numbers. If the topological phase occurs in a charge
fluid, the excitations are charged and their charge is generally fractional. The
excitations in a topological phase carry the quantum numbers of non-trivial rep-
resentations under the braid group, which are determined by their gauge charges
in the topological field theory. If these representations are one-dimensional, the
excitations are abelian anyons, and if they are multi-dimensional the excitations
are non-abelian anyons.

5. The states of the topological field theory are conformal blocks of a 2D Euclidean
CFT. The number of non-trivial representations, i.e. the number of non-trivial
quasiparticles (including the identity), is equal to the ground-state degeneracy
on a torus. The transformation laws of conformal blocks under the action of the
modular group are given by the modular S-matrix, S, of the CFT. The quasi-
particles obey a fusion algebra with the same structure as in conformal field
theory. Each quasiparticle state (conformal block) has a quantum dimension
d j , which is determined by the matrix elements of the modular S-matrix (see
Eq. (14.116)). The quantum dimension d j governs the rate of growth of the
topologically protected Hilbert spaces of multi-quasiparticle states.

Let us consider now the problem of the scaling of the entanglement entropy in
a topological phase. Let us consider first the simpler case of a region A of linear
size � that is simply connected and surrounded by its complement, region B. For
simplicity, in Fig. 17.9 I show the case of the sphere. We will assume for now that
the boundary �, of perimeter L(�), is a smooth closed curve. Kitaev and Preskill
(2006) and Levin and Wen (2006) showed that in the case of this geometry the
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A
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Γ

Figure 17.9 The entangling region A is simply connected and has a smooth
boundary �.

entanglement entropy of region A has a universal finite correction to the “area-
law” term:

SA = αL(�)− γtopo (17.79)

where α is non-universal (and hence is not predicted by the effective topological
field theory). The quantity γtopo is independent of the size of the region. It is not
only universal but also a topological invariant. More specifically, we will see that
γtopo is given by certain matrix elements of the modular S-matrix of the topological
field theory which describes the low-energy physics of the system of interest.

The modular S-matrix was introduced in Section 14.6.2. There we recalled
the result of Witten’s work on Chern–Simons theory (Witten, 1989) that relates
the matrix elements of the modular S-matrix to the expectation value of Wil-
son loops in Chern–Simons theory. The same modular S-matrix determines the
fusion rules of the Wilson loops in Chern–Simons theory and in its associated
2D Euclidean CFT, namely the WZW model. In particular, the quantum dimen-
sions of the primary fields of the CFT, and of the excitations of the topological
field theory, are given by the matrix elements of the modular S-matrix through
Eq. (14.116).

For the case of a singly connected region A, with a smooth boundary �, γtopo is
given by

γtopo = lnD (17.80)

where D is the effective quantum dimension of the topological field theory, and
it is given in terms of the matrix element S00 of the modular S-matrix by (see
Eq. (14.117))
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D = (S00)
−1 =

√∑
j

|d j |2 (17.81)

where

d j = S0 j

S00
(17.82)

are the quantum dimensions of the states labeled by the representation j , and mea-
sure the rate of growth of the degenerate Hilbert spaces of particles with that
representation. Thus, similarly to the case of quantum criticality which we dis-
cussed earlier in this chapter, there is a finite universal term that is a topological
invariant (or expressed in terms of invariants), although in this case its contribution
to the entanglement entropy is negative.

What will matter to the present discussion is that in his work on the relation
between the theory of knots and Chern–Simons gauge theory Witten showed that
the computation of the expectation value of a Wilson loop in the gauge theory
reduces to the computation of a matrix element of the modular S-matrix in CFT
(Witten, 1989) (see the discussion following Eq. (14.113) in Section 14.6.2). The
following seminal results from Witten’s work will be important to our discussion.
For concreteness we will consider a Chern–Simons gauge theory with gauge group
Gk = SU(2)k , where k is the level. The Chern–Simons action is

S(A) = k

4π

∫
tr

(
A ∧ d A + 2

3
A ∧ A ∧ A

)
(17.83)

where, as usual, Aμ is a vector field taking values in the algebra of a (compact)
gauge group G. Here we will be primarily interested in the case of G = SU(2).

We will need a few important results on the structure of the Chern–Simons the-
ory and its solution. First, following Witten (1989), we realize the states on a closed
2D surface as a path integral over a 3D volume. Witten showed that the Chern–
Simons states on a spatial manifold ! (which we will take to be closed) are in
one-to-one correspondence with the conformal blocks of a Wess–Zumino–Witten
(WZW) CFT. Furthermore, the ground-state degeneracy depends on the level k and
on the topology of the surface !. The partition functions, i.e. the values of the path
integral, depend on the matrix elements of the modular S-matrix, e.g. the partition
function on a space-time with the topology of a sphere S3 with a Wilson loop in
the representation ρ j is

Z(S3, ρ j ) = S0 j (17.84)

We have already encountered the modular S-matrix in Section 14.6.2, where we
discussed the concept of non-abelian statistics. There we noted that the degenerate
states of the topological fluids on a torus have a one-to-one correspondence with
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the conformal blocks of an associated 2D CFT. We also discussed the fact that the
short-distance behavior of the conformal blocks is equivalent to the characters χ j

of the representations that label the conformal blocks. The modular S-matrix is the
transformation matrix of the characters under modular transformations of the torus,
Eq. (14.109).

We will also need the modular S-matrices of the conformal blocks for the theo-
ries we are interested in. For the gauge group U(1)m , n = 0, . . . ,m−1, the modular
S-matrix is

Sn,n′ = 1√
m

e2π inn′/m (17.85)

For the gauge group SU(2)k , j, j ′ = 0, 1/2, . . . , k/2, the modular S-matrix is

S(k)
j, j ′ =

√
2

k + 2
sin

(
(2 j + 1)(2 j ′ + 1)π

k + 2

)
(17.86)

The Chern–Simons path integral, the partition function on various manifolds,
can be reduced to its computation on a sphere S3 using the method of (Chern–
Simons) surgeries (Witten, 1989). Using surgeries, it can be shown that, if a
3-manifold M is the connected sum of two 3-manifolds M1 and M2 joined along
an S2, then the Chern–Simons partition functions on these manifolds are related by

Z(M)Z(S3) = Z(M1)Z(M2) (17.87)

In particular, if M is M1 and M2 joined along n S2s, the resulting partition
function is

Z(M) = Z(M1)Z(M2)

Z(S3)n
(17.88)

Witten’s result can be used to compute the entanglement entropy in various
cases of interest, and was used by Kitaev and Preskill (2006) to derive the result
of Eq. (17.80) for a simply connected region. The Kitaev–Preskill results were
extended and generalized by Dong and coworkers (Dong et al., 2008), who used
the replica approach to compute the entanglement entropies for topologically non-
trivial regions on a torus and for states with quasiparticles, represented by punctures
carrying specific quantum numbers (representation labels).

The replica calculation computes the Chern–Simons partition function on an
n-sheeted Riemann-surface space-time (as in the previously discussed cases).
Although the space-time manifold needed for the replica approach is rather
involved, explicit results for the entanglement entropies can nevertheless be
obtained using Witten’s method of surgeries (Dong et al., 2008).

Let us consider first the simplest case, in which the spatial manifold is a sphere,
! = S2, and hence the space-time manifold is just a 3-sphere, ! × S1 ∼= S3. The
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Hilbert space on S3 is one-dimensional. Using the method of surgeries, Dong and
coworkers (Dong et al., 2008) considered the case of S2 with a single boundary
between regions A and B, as shown in Fig. 17.9, i.e. the observed region is a hemi-
sphere, and the two regions A and B are two hemispheres (disks). The 3-geometry
is a ball.

To construct tr ρn
A we glue 2n such pieces together. When they are glued together

to form tr ρn
A, one finds a manifold with the topology of S3 for all n, and there-

fore has the same partition function. Thus, we find that the (normalized) trace
of ρn

A is

tr ρn
A(S2,1)(

tr ρA(S2,1)

)n = Z(S3)(
Z(S3)

)n = (
Z(S3)

)1−n = S1−n
00 (17.89)

In the replica limit, n → 1, we obtain for the entanglement entropy

S(S
2,1)

A = lnS00 = −lnD (17.90)

which is the result of Kitaev and Preskill (2006) and Levin and Wen (2006) for
the universal topological entanglement entropy. Notice that the topological-field-
theory calculation computes only the universal contribution. The non-universal,
and hence cutoff-dependent, area-law term has been regularized to zero by the
methods used by Witten. This is not surprising, since the Chern–Simons gauge
theory does not depend on the metric. In other words, the area-law term is given by
the non-topological short-distance corrections to the topological field theory.

The result of Eq. (17.90) also holds for surfaces with arbitrary topology, pro-
vided that the region A being observed is topologically trivial, regardless of the
pure state labeled by the representations ρ j . For the case of a sphere S2 and a
disconnected region A with p boundaries, we trivially find that they are additive,

S(S
2,p)

A = p lnS00 = −p lnD.
Let us compute the entanglement entropy for a Chern–Simons theory on the

torus T 2. For a torus T 2 split into two regions we have two cases, shown in Fig.
17.10. If the torus is in the trivial state, that is, without any Wilson loop threading
the torus, the entropy for Fig. 17.10(a) is the same as for the sphere, cf. Eq. (17.90),
whereas for the case of Fig. 17.10(b) it is twice as large, SA(T 2, 2) = 2 lnS00.
However, if there is a Wilson loop with a non-trivial representation ρ j threading
the torus, we obtain the same result for the case depicted in Fig. 17.10(a), but, for
the case of Fig. 17.10(b), we obtain instead

SA(T
2, 2, ρ j ) = 2 ln S0ρ j (17.91)

In other words in this case, the entanglement entropy is different for the different
degenerate states on the torus, each labeled by a representation ρ j of the Wilson
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Figure 17.10 Entanglement on a torus geometry. (a) Region A is simply con-
nected and the entanglement entropy is independent of the state of the torus. (b)
Region A is topologically non-trivial, and its entanglement entropy depends on
the ground state of the system on the torus, which is labeled by the representation
ρ j of the Wilson loop (the dot–dashed loop).

loop. In addition, if the torus is in a state that is a linear superposition, |ψ〉 =∑
ρ ψρ |ρ〉, we further find

SA(T
2, 2, ψ) = 2 lnS00 −

∑
ρ

d2
ρ

(
|ψρ |2

d2
ρ

ln

(
|ψρ |2

d2
ρ

))
(17.92)

Clearly, the entanglement entropy now depends not only on the effective quan-
tum dimension D = S−1

00 but also on the quantum dimension of the excitation
labeled by the representation ρ, as well as on the particular linear combination of
the degenerate ground states on the torus in which the system is prepared.

Following the same line of argument, one can consider other situations of inter-
est. For example, in Fig. 17.11 we consider a simply connected entangling region A
on a sphere with four quasiparticles represented here by four punctures. A tempo-
ral Wilson loop pierces the sphere S2 at each puncture and carries a representation
label, γ1, γ2, γ3, and γ4. Dong and coworkers (Dong et al., 2008) showed that the
entanglement entropy now depends on the fusion rules of the quasiparticles in the
case of Fig. 17.11(b) since the quasiparticles need to fuse across the boundary �,
but does not depend on these properties for the case of Fig. 17.11(a), where they
must fuse into the identity. The reason for this difference is that the fusion of the
quasiparticles amounts to changing the topology of the surface with Wilson loops
running around the glued circles, with each fusion channel adding a handle to the
surface. In this way the entanglement entropy can detect in which state the set
of quasiparticles (“qubits”) is. This property is important to the concept of topo-
logical quantum computation and is the key to the topological robustness of the
state.
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Figure 17.11 States on the sphere with four quasiparticles (punctures) labeled by
γi (with i = 1, . . . , 4). (a) All the quasiparticles are inside the entangling region.
(b) Two of the quasiparticles are inside the entangling region and two are outside.

The upshot of this discussion is that the entanglement entropy provides a way
to determine all the universal properties of the topological phases, including their
degeneracy, their quantum numbers, and their fusion rules.

We close this section with an application of these ideas and results to several
cases of physical interest.

The deconfined phase of the Z2 gauge theory. The simplest topological phase
is the deconfined phase of the Z2 gauge theory, a.k.a. the Z2 spin liquid. In (2 +
1) dimensions this phase is essentially equivalent to Kitaev’s toric code and to
the topological phase of the quantum dimer model on the triangular lattice. This
theory has a four-fold-degenerate ground state on a torus (see Section 9.8). The four
states are obtained by acting with the ’t Hooft magnetic loops along the two non-
contractible loops of the torus. In this case each operator creates a one-dimensional
representation of the braid group (hence it is abelian). Therefore this theory has
four sectors, each with quantum dimension d = 1, and the total effective dimension
is D[Z2] = 2. The topological term in the entanglement entropy is

γtopo[Z2] = ln 2 (17.93)

This result was obtained by an explicit calculation with the Kitaev state on the lat-
tice by Hamma and coworkers (Hamma et al., 2005a, 2005b) and by Levin and Wen
(2006). The validity of this result for the case of the Z2 spin liquid of the QDM on
the triangular lattice was shown by Furukawa and Misguich (2007). Papanikolaou
and coworkers (Papanikolaou et al., 2007c) extended this result by computing the
entanglement entropy for the eight-vertex wave function discussed in Section 9.8,
Eq. (9.67). This is a topological phase that includes the Kitaev state as a particular
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case. They showed that the topological contribution to the entanglement entropy is
given by Eq. (17.93) without correction in the entire topological phase. In contrast,
the non-universal area-law term varies continuously throughout the phase.

The Laughlin states of the fractional quantum Hall effect. The Laughlin states
of the fractional quantum Hall effect at filling fraction ν = 1/m have an
m-fold degenerate ground state on the torus. As we showed in Chapters 13 and 14,
the effective low-energy action for the Laughlin states is a U(1)m abelian Chern–
Simons gauge theory. The modular S-matrix for this theory is given by Eq. (17.85).
Each one-dimensional subspace is assigned to one of the m distinct quasiparticles
of the Laughlin states: the identity I (no quasiparticle) and the m − 1 quasihole
states Vn = exp(−inφ(x)/

√
m), with n = 1, . . . ,m − 1. These excitations are

abelian anyons, with statistical angle δn = nπ/m (and charge ne/m) and with
quantum dimension dn = 1. Each ground state is created by a Wilson loop opera-
tor (in the effective U(1)m Chern–Simons gauge theory) with gauge charge n. Since
all the sectors are associated with states with quantum dimension d = 1 or, equiv-
alently, since S00 = 1/

√
m, the effective quantum dimension D for the Laughlin

states is D[U(1)m] = √
m, and the topological contribution to the entanglement

entropy is

γtopo[U(1)m] = ln
√

m (17.94)

This result was confirmed numerically by Haque and coworkers (Zozulya et al.,
2009) using both the Laughlin wave function and the wave function for the
Coulomb interaction (which has a large overlap with the Laughlin wave func-
tion). This result is trivially extended to all abelian fractional quantum Hall states,
such as the hierarchical and multi-component states discussed in Sections 14.3
and 14.4. Indeed, for a generic abelian fractional quantum Hall fluid defined by a
K -matrix, the number of sectors, and hence the ground-state degeneracy on a
torus, is |det K |. Since each sector has quantum dimension 1 (being abelian) the
topological contribution to the entanglement entropy is

γtopo[abelian] = ln
√|det K | (17.95)

The result for the Laughlin states is a particular case.
Abelian double Chern–Simons theories. Abelian double Chern–Simons theories

represent time-reversal-invariant fractionalized phases. We encountered this exam-
ple in our discussion of superconductors as topological fluids in Section 14.5 and in
our discussion of fractionalized (abelian) topological insulators in Section 16.13,
where it took the form of a “BF theory.” The Z2 spin liquid is equivalent to this
theory for level k = 2.

The non-abelian fractional quantum Hall states. We have discussed several non-
abelian fractional quantum Hall states and related systems, see Section 14.8. The
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simplest non-abelian state is the Moore–Read fractional quantum Hall state for
bosons at filling fraction ν = 1. We showed in Sections 14.8 and 15.4.5 that the
effective topological field theory for this state is the SU(2)2 non-abelian Chern–
Simons gauge theory. This system has a three-fold-degenerate ground state on the
torus, corresponding to the conformal blocks labeled by the identity I , the non-
abelion σeiφ , and the Majorana fermion ψ . The modular S-matrix, S, for this
system, in the basis of the conformal blocks listed above, is

S[SU(2)2] = 1

2

⎛⎝ 1
√

2 1√
2 0 −√

2
1 −√

2 1

⎞⎠ (17.96)

Thus, we see that the effective quantum dimension is D[SU(2)2] = S−1
00 = ln 2,

and the topological contribution to the entanglement entropy is

γtopo[SU(2)2] = ln 2 (17.97)

Another relevant case is the px + i py superconductor, which was discussed in
Section 14.9. The CFT associated with this problem is the chiral critical 2D Ising
model, which is represented by the SU(2)2/U(1)2 coset. This chiral CFT has three
primaries: the identity I , the spin field σ , and the Majorana fermion ψ . The mod-
ular S-matrix turns out to be the same as in the SU(2)2 case we just discussed (see
Dong et al. (2008)). Hence the quantum dimensions are the same, and we con-
clude that the entanglement entropy of Eq. (17.97) also applies to the px + i py

chiral superconductor.
The non-abelian fractional quantum Hall Moore–Read fermionic state (with total

filling fraction ν = 5/2) has a six-fold-degenerate ground state on the torus. These
six ground states correspond to the conformal blocks of the identity I , the non-
abelian quasiparticle and quasihole σe±iφ/2

√
2, the Majorana fermion ψ , and the

abelian (Laughlin) quasiparticle and quasihole e±i
√

2φ . Except for the non-abelian
quasiparticle and quasihole, which have quantum dimension dσ = √

2, all other
states are abelian and have quantum dimension d = 1. The fermionic Moore–Read
state is represented by the chiral coset Chern–Simons gauge theory (and chiral
CFT) (SU(2)2/U(1)2) × U(1)8 � Z2 × U(1)2. Its modular S-matrix, in the basis
of the conformal block listed above, is given by

S[MR] = 1

2
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1
√

2
√

2 1 1
1 1 −√

2 −√
2 1 1√

2 −√
2 0 0 i

√
2 −i

√
2√

2 −√
2 0 0 −i

√
2 i

√
2

1 1 i
√

2 −i
√

2 −1 −1
1 1 −i

√
2 i

√
2 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(17.98)
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Thus, the total effective dimension of the Moore–Read fermionic state is S−1
00 =

D[MR]= 2
√

2, and the topological contribution to the entanglement entropy
now is

γtopo[MR] = ln(2
√

2) (17.99)

Notice that for this non-abelian state the effective quantum dimension is
D[MR]=√

8 and it is not equal to the square root of the number of degener-
ate ground states on a torus (six in this case). This is a generic feature of all
non-abelian states. Similar, but more complex, expressions can be obtained for
the SU(2)3 Read–Rezayi states (both fermionic and bosonic) (Dong et al., 2008).
These non-abelian states are candidates for universal topological qubits (Freedman
et al., 2002a; Das Sarma et al., 2008).

17.10 Outlook

In this chapter we have discussed the role of quantum entanglement in condensed
matter physics. We have focused primarily on the scale-dependence of the entan-
glement entropy as a way to characterize phases and quantum critical points where
large-scale entanglement is realized. For this reason we have centered our atten-
tion on the behavior of the von Neumann entropy at quantum critical points and in
topological phases. It is fair to say that, while the latter case is by now fairly well
understood (although, as we will see below, not completely), the understanding of
its behavior at quantum criticality is still in its initial stages, except possibly in one
dimension.

We have left out many important problems and questions. In our discussion of
the scaling of the entanglement entropy in quantum critical systems we have not
discussed the effects of perturbations away from the conformal limit (i.e. away
from the fixed point). This problem has so far been studied only in the 1D case
(Pollmann et al., 2009; Calabrese and Essler, 2010; Cardy and Calabrese, 2010).
We have also not discussed the problem of the entanglement of quantum impurities
within critical systems. This question was studied in one dimension in detail by
Affleck and coworkers (Laflorencie et al., 2006; Sørensen et al., 2007a, 2007b;
Affleck, 2010), and independently by Kopp and Chakravarty (Kopp et al., 2007),
who showed explicitly how different boundary conditions enter into the universal
behavior of the entanglement entropy.

A problem in which the ideas of quantum entanglement will very likely play an
important role is the behavior of disordered quantum systems. By disorder here we
do not mean uniform systems without long-range order but rather systems that are
physically disordered and are best regarded as random systems. This is a notori-
ously difficult problem, which we have not discussed in this book. It has remained
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an open problem even in classical statistical mechanics, which in spite of decades
of effort still has a host of so far poorly understood problems such as spin glasses
and random field systems.

The quantum version of these problems is certainly no less difficult and the study
of the behavior (and role) of quantum entanglement in these systems is in its begin-
nings. Chakravarty has shown that the scaling of the entanglement entropy can be
used to study the Anderson localization–delocalization transition in disordered sys-
tems (Jia et al., 2008; Chakravarty, 2010). In a pioneering series of papers Refael
and Moore showed that, in the case of random spin chains at their infinite-disorder
fixed point (Fisher, 1994, 1995), the (ensemble-average) entanglement entropy of
1D random critical spin chains has a logarithmic dependence on the linear size �
of the entangling region, SA ∼ A ln � (Refael and Moore, 2004, 2009). The con-
stant A turns out to be universal and to be different only for different universality
classes of random fixed points. Although this result has the same form as that in the
case of 1D CFT, the random fixed points are not conformal and there is no natural
definition of a central charge. So the connection between the universal prefactor
A and the critical behavior of local operators at random fixed points is not so far
understood.

One question that we have not discussed is that of the so-called entanglement
spectrum. The entanglement spectrum is the spectrum of the reduced density
matrix of the entangling region. It is typically presented by writing the reduced
density matrix in the suggestive exponential form ρA = exp(−HA). Since the
eigenvalues of the reduced density matrix, {λi }, by definition are real numbers
between 0 and 1, the eigenvalues {εi } of the “pseudo-Hamiltonian” HA are real
positive numbers (or zero). The numerical study of the entanglement spectrum of
fractional quantum Hall states has revealed that it contains a wealth of informa-
tion on the nature of these states. Li and Haldane (2008), who pioneered those
studies, found that the degeneracies of the low-energy entanglement spectra of
the fractional quantum Hall states agree with the partitions of states encoded in
the characters of the associated CFT. This relation extends to much of the spec-
trum for the “ideal states,” namely wave functions constructed using conformal
blocks such as the Laughlin and Moore–Read states. However, this relation holds
also for the low-energy entanglement spectrum for the “realistic” wave functions
obtained by exact diagonalization with Coulomb interactions. For the same reason
the Rényi entropies Sn have the same behavior in the large-n limit, which selects
the low-pseudo-energy portion of the entanglement spectrum.

At the time of writing there isn’t a general theory of the entanglement spectrum,
at least not a theory developed to the same extent as what we have discussed in
this chapter. Nevertheless, what is clear is that the interesting universal features
which have been found in numerical studies, such as in Li and Haldane (2008),
can also be extracted by studying finite-size effects in the Rényi entropies in the
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n → ∞ regime. Earlier in this chapter we saw that the topological field theory of
topological phases computes only the finite, universal, terms in the entanglement
entropy. This also follows from the fact that the result we found for tr ρn

A is a sim-
ple power of n, such as Sn−1

00 . Hence, in the topological limit the spectrum of the
density matrix ought to consist only of zeros or ones.

On the other hand, this should hardly be surprising since any finite-size effect
requires the definition of a distance in the system which the topological field
theory does not have (since by definition it is independent of the metric!). To com-
pute these effects requires the computation of (non-topological) corrections to the
topological-field-theory results. The empirical evidence that a “ghost” of the topo-
logical structure survives in the finite-size corrections is very interesting. This is an
important but challenging open problem. To date there isn’t a scaling theory of the
entanglement spectra, although some very interesting results have been obtained
in 1D spin chains (Calabrese and Lefevre, 2008; Pollmann et al., 2010; Pollmann
and Moore, 2010), in quantum disordered systems (Fagotti et al., 2011), and in the
quantum Lifshitz model (Hsu and Fradkin, 2010).

Finally, we will need to address the most important omission we have made
in this chapter, namely, can the entanglement entropy be measured? This is the
“elephant in the room” question of this problem. Although we showed that the
behavior of large-scale entanglement can be used to characterize phases (and quan-
tum phase transitions), it is far from obvious whether as a matter of principle this
quantity can be measured in any reasonable experiment. In contrast to what hap-
pens in a system with a small number of degrees of freedom, in which the reduced
density matrix can be tested directly in experiment, the reduced density matrix
of a large extended system is a very non-local object. It is this non-local nature
of the reduced density matrix which makes it useful to characterize large-scale
entanglement.

However, most experiments in physics consist in the measurement of local
observables, including their time evolution. This is true even for thermodynamic
measurements, since these test the behavior of the spatial average of local observ-
ables, such as the charge density, current, magnetization, energy density, etc. The
entanglement entropy (and, for the same reason, the entanglement spectra) can-
not be reduced to measurements of this type. Nevertheless, a few proposals for
measuring the entanglement entropy have been put forth.

So far the most practical suggestion has been that made by Klich and Levi-
tov (2009). They proposed the use of an externally driven tunneling point contact
between two electronic reservoirs. In their scheme the point contact would be open
and closed suddenly and sequentially. They then showed that, at least for a free-
fermion system, the noise in the tunneling current can detect the entanglement
between the two free-fermion reservoirs. This problem was reexamined in detail by
Hsu and coworkers (Hsu et al., 2009a), who considered the problem of a quantum
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point contact between the edge states in a Laughlin quantum Hall state. This work
considered the simpler case of a single sudden opening of the point contact, i.e.
a local quantum quench. They showed that the entanglement and the quantum
noise are two essentially unrelated quantities that have the same scaling in time
for dimensional reasons. In addition, during a quantum quench it is the dynami-
cal entanglement which is being tested, which in the case of a local quench in 1D
critical systems has a universal logarithmic growth in time (Calabrese and Cardy,
2007; Hsu et al., 2009a). On the other hand, for systems that do not have a con-
served charge, such as the quantum Ising chain, the noise in the energy current has
a different time dependence as the entanglement entropy (as required by dimen-
sional analysis). The general problem of the dynamical behavior of entanglement
under a quench (both local and global) is of great interest in cold-atomic systems,
in which an external manipulation of the effective Hamiltonians is possible.
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Coulomb gas, 338

CFT/gravity duality, 780
C P1 model, 222, 262
SU(2) gauge invariance

spin one-half Heisenberg model, 279
SU(2) symmetry, 11
SU(2)1, 228
SU(2)k , 160
SU(N ) Heisenberg antiferromagnet, 267
SU(N )k , 228
Sp(N ), 268
T duality, 157, 347, 658
U(1) connection, 465
U(1) symmetry, 12
XY model, 103

2D, 83
spin one-half, 103, 105, 118

1/N expansion, 330, 377
1/S expansion, 227
1/nc expansion, 268
Z2 3D topological insulators, 701

surface anomalous Hall effect, 726

Weyl edge fermions, 722
Z2 gauge theory, 298

’t Hooft loop, 299
fractionalization, 315
topological phase and deconfinement, 313
confinement, 301
deconfined phase, 305

degeneracy on a torus, 312
topological phase, 314

duality, 300
electric charge operator, 299
gauge-invariant open string, 315
magnetic charge operator, 299
magnetic condensate, 304
string tension, 303

Z2 topological fluid, 292, 313
Z2 topological insulator, 697

chiral surface states, 705
Z2 topological invariant, 698
ZN model, 391
π1(S1), 207
π2(G), 230
π2(S2), 207, 220, 593, 684
π3(G), 381
π3(SU(N )), 230
π3(S2), 220
π4(S4), 727
θ angle, 727
d-wave superconductors, 274
dx2−y2 , 25
f -sum rule, 453, 526
px + i py superconductor, 25, 578
s-wave superconductor, 25
t–J model, 17

abelian Berry connection, 671
abelian bosonization, 89, 126, 156
abelian Higgs model, 321, 561
adiabatic approximation, 457, 535

826
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adiabatic insertion, 489, 493
Affleck–Ludwig entropy, 659, 769
Affleck–Marston mean field theory, 263
Aharonov–Bohm effect, 392, 438, 493, 497
Aharonov–Bohm phase, 497, 511, 533, 559
Ampère’s law, 385
amplitude fluctuations, 371, 377

staggered, 372
unstaggered, 372

anomalous dimension, 171, 175, 237
anomalous spin, 409
antiferromagnetism, 25
anyon, 376, 388, 392, 414

abelian, 388, 495, 535, 546
algebra, 411
fermions and Chern–Simons representation, 398
field theory, 393
gas, 414

finite density, 405
low-energy spectrum, 429
mean-field theory, 414

Hamiltonian, 401
hard-core bosons and Chern–Simons

representation, 398
non-abelian, 569, 580, 583, 598, 749
on a torus, 401
second-quantized Hamiltonian, 406
superconductivity, 376, 414
superfluidity, 512

approximation, 29
1/N expansion, 29
conserving, 30
Hartree–Fock, 29, 48
mean-field, 30, 48
random-phase (RPA), 29
saddle-point (SPA), 423
variational wave function, 29

area law, 304
asymptotic freedom, 168, 230
average-field approximation, 398
averaged Hall conductance, 462
axion field, 727

band crossings, 476
band insulator, 673
Baskaran–Zou–Anderson state, 272
BCS (Bardeen–Cooper–Schrieffer), 25, 39, 589
Bekenstein–Hawking entropy, 763, 784
Bernal stacking, 739
Berry connection, 198, 428, 671, 732
Berry phase, 198, 340, 364, 462, 495, 530, 535
beta function

Gross–Neveu model, 709
interacting quadratic band-crossing model, 742
Kosterlitz RG, 87
non-linear sigma model, 213
one-loop, 82
Ricci curvature, 230

WZW model, 231
Bethe ansatz, 89, 91

basis functions, 92
complex roots, 98
equations, 95
holes, 96
real roots, 96
wave function, 95

BF Lagrangian, 538, 752
bilayer graphene, 739
bipartite lattice, 267
Bloch’s law, 202
block spin transformation, 64
Bogoliubov transformation, 124, 169
Bogoliubov–de Gennes equation, 590
Born–Oppenheimer approximation, 457
boson commutation relations, 412
bosonization, 126, 390

abelian, 126, 156
non-abelian, 228
operator identifications, 159

boundary conditions, 459
boundary conformal field theory, 653, 772
boundary sine–Gordon, 657
braid, 387, 393, 406, 534, 564
braid group, 393, 397, 564

non-abelian representation, 569
braid matrix, 583
branch cut, 410
Bratteli diagram, 602
Brillouin zone, 18

magnetic, 441
Brillouin–Wigner perturbation theory, 16, 476

Callan–Harvey effect, 718, 726
Callan–Symanzik equation, 73
canonical Bose field, 390
canonical Dirac–Fermi field, 390
canonical quantization, 395
Cantor set, 442
Cartan subalgebra, 192
Casimir energy, 237
Cauchy–Riemann equation

lattice version, 410
causality, 389
CDW order parameter, 24
center-of-mass coordinates, 470
center-of-mass wave function, 468
central charge

energy-density scaling, 237
specific heat, 238

charge conservation, 454
charge-density wave, 24
charged spinless fermions, 481
Chern insulator, 682
Chern number, 428, 461, 475, 593, 672, 732
Chern–Simons term, 196, 223, 456, 732
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Chern–Simons theory, 376, 379, 393, 415, 480, 499,
500, 786

anyon commutation relations, 411
anyon gauge, 408
bosons, 503
braid group, 397
canonical commutators, 395
CFT correspondence, 626
Chern–Simons term, 393
compactified boson, 630
conformal field theory, 564
constraint, 394, 408
Coulomb gauge, 408
coupling constant, 376, 379, 411
doubled, 560, 786
gauge field, 412, 513
gauge invariance, 408
gauge theory, 386
Gauss law, 395
global degrees of freedom, 400
holonomies, 541
Jones polynomial, 585
lattice action, 408
level, 379, 583
mass, 376
modular S-matrix, 572
non-abelian, 583, 633
non-integrable phases, 400
periodicity, 398, 513
quantized coupling constant, 382
quantum Hall effects, 394
raising the level, 643
surgeries, 789
topological field theory, 396
topological quantum computation, 398
torus, 540
vacuum degeneracy, 540
Wilson loop expectation values, 572

chiral, 108
basis, 108
boson, 396, 618
boson propagator, 84
decomposition, 135
operator, 364
order parameter, 138
spin liquids, 445
spin state, 253, 359, 375, 439

chiral spin liquid, 379
effective action, 377
energy, 369
mean-field theory, 366

symmetry, 108, 111, 453
transformation, 136

chiral anomaly, 160, 712
chirality, 365
classical interfaces, 332
classical potential energy, 484
clock model, 391

parafermions, 391
clockwise exchange process, 393
cocycle, 435
coherent states, 296
coherent-state representation, 194

spin, 194
columnar state, 276, 329, 370

columnar order, 288
order parameter, 346
tilted states, 330

commutation relations
statistical gauge field, 406

compact electrodynamics, 319, 339
three dimensions, 319

compactification radius, 82, 157, 344, 567, 770
complex coordinates

Landau problem, 433
components, 466
composite fermions, 520
composite operator, 392
compressible state, 427
compressible system, 376, 423
confinement, 278, 380
confinement of monopoles, 381
confining theory, 325
conformal

anomaly, 234, 237
field theory, 228, 231, 564, 765
invariance, 75
spin, 234

conformal field theory (CFT), 228
conformal blocks, 570
coset, 640
modular S-matrix, 571
rational, 239
Verlinde algebra, 570

connection, 428
constraint, 407
Cooper pair, 25
coordinate transformation, 236
correlation function, 290, 417, 449

current, 377, 452
dimer-density, 290
height–height, 333

correlation length, 73
coset, 192, 640
Coulomb gas

three dimensions, 326, 338
two dimensions, 83

neutral, 83
plasma phase, 84

Coulomb interaction, 8
three-dimensional, 339

counterclockwise exchange process, 393
coupling constant

Chern–Simons, 376
covariant derivative, 383, 451
critical fixed point, 65
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critical phenomena, 63
critical point, 140, 143, 189
cross ratio, 242
current, 110

correlation function, 377, 452
fermionic, 110
topological, 132

cyclotron length, 457

deconfined quantum criticality, 219, 343
defect, 391
degenerate ground states, 467
degenerate perturbation theory, 475
dimer, 256

density correlation function, 290
density wave, 330
liquid, 292
phases, 277
solid, 291
state, 371

dimerized phase, 219
Diophantine equation, 426, 476, 479
Dirac

cone, 274
fermions

chiral symmetry, 693
flux phases, 274
free-field scaling dimensions, 72
graphene, 274, 677
quantum anomalous Hall effect, 681
time-reversal invariance, 694

magnetic monopole, 326, 463
quantization condition, 393
string, 197, 300, 391

discontinuity, 410
discrete Gaussian model, 332, 336

three Euclidean dimensions, 336
discrete magnetic translations, 473
discrete Schrödinger equation, 439
disorder operator, 101, 117
disordered spin states, 263

gauge-field picture, 263
DMRG (density-matrix renormalization group), 768
domain wall, 391
domain-wall fermions, 721
dual

field, 135
lattice, 326
transformation, 326

duality, 116, 156, 157, 188, 347, 429
gauge/gravity, 780
self-duality, 156

dynamic critical exponent
quantum antiferromagnet, 200
quantum ferromagnet, 200

dynamical critical exponent, 70
dyon, 390, 509

edge states, 381, 447, 603
K -matrix, 630
Z2 3D topological insulator, 721
bulk–edge correspondence, 624
charge-density operator, 606
chiral excitations, 603
chiral Luttinger liquid, 616
chiral WZW model, 633
compactification radius, 617
density waves, 607
edge waves, 603
electron operator, 617
gauge anomaly, 609
gauge coupling, 608
Hamiltonian, 607
hydrodynamic theory, 610
quantum anomalous Hall insulator, 714
quantum spin Hall insulator, 718
quasiparticle operator, 618
RCFT construction, 618
Schwinger term, 607
twisted boundary conditions, 617

effective action
Chern–Simons term, 376
chiral spin state, 377
gauge field, 454

electric Wilson loop, 311
electro-magnetic duality, 327
electron fractionalization, 175
electronic liquid crystal, 738
electronic nematic state, 738
electrostatic coupling, 13
Elitzur’s theorem, 277, 299, 360, 454
elliptic integral, 125
elliptic theta function, 470
energy–momentum tensor, 233

symmetries, 233
entanglement entropy, 757

Z2 gauge theory, 792
Z2 topological fluid, 792
φ4 theory, 778
after a quench, 797
area law, 758
Chern–Simons gauge theory, 790
conformal field theory, 765
holography, 783
large-scale entanglement, 766
Laughlin states, 793
measurement, 797
non-abelian fractional quantum Hall states, 794
quantum Lifshitz model, 769
topological phases, 785

entanglement spectrum, 758, 761, 796
exact marginal operator, 85
exchange process, 393
extended Hubbard model, 169
extended symmetry algebra, 567
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Fermi golden rule, 180, 649
Fermi liquid, 17

irrelevant couplings, 71
Landau theory, 71
relevant couplings, 71
scaling, 70

Fermi liquid theory, 454
Fermi surface, 21

scaling, 70
fermion current

diamagnetic term, 451
fermion current correlation function, 451
fermion doubling, 423
fermion fractionalization, 172
fermion parity conservation, 122
fermion propagator, 378, 417

Coulomb gauge, 430
fermionic current, 110
ferromagnet, 25, 375

order, 25
state, 32, 91

fiber bundle, 192, 428, 444, 460, 461, 465
hermitian line bundle, 192
Hopf principal bundle, 192
monopole principal bundle, 192

Fierz identity, 161
filled Hofstadter bands

Hall conductance, 472
finite density

anyon gas, 405
finite magnetic translations, 434, 440
first Chern number, 460, 465, 672, 685, 695
fixed point, 65
(1 + 1)-dimensional Dirac fermions, 229
free scalar field, 67
gap scaling, 235
non-linear sigma model

trivial, 69
non-linear sigma model D = 2 + 1

dimensions, 226
quantum Heisenberg chain, 227
stable, 67, 231
thermal length scaling, 235
unstable, 66
WZW, 231

fixed-point action, 65
fluctuation

phase, 505
fluctuations, 371, 376, 505

around chiral spin state, 376
chiral spin state, 377
gauge field, 371, 376

flux attachment, 394, 400, 537
flux state, 270–272, 402

effective Hamiltonian, 271
energy, 275
fluctuations, 371
local gauge invariance, 277

mean-field theory, 272
folding transformation, 657
fractional charge

fractional quantum Hall states, 530
soliton, 712

fractional Hall conductance, 446
fractional quantum Hall effect (FQHE), 402, 446,

480, 512, 514
K -matrix, 547
SL(n,Z) invariance, 551
average electron density, 485
bulk–edge correspondence, 610, 624
CFT construction, 566
charged spinless fermions, 481
Chern–Simons gauge theory, 499
compactified chiral boson, 567
composite bosons, 503
composite fermions, 518, 521
compressible states, 521
conformal field theory, 564
constriction, 647

renormalization-group analysis, 651
dynamical gauge field, 483
edge waves, 603
effective action, 516
electron fractionalization, 547
electron tunnel junction, 648
entanglement entropy, 792
excitation spectrum, 523
excited states, 488
Fermi-liquid-edge tunneling, 649
fermion effective action, 512
fermion field theory, 512
flux attachment on a torus, 537
fractional spin, 547
gauge anomaly cancellation, 609
Gaussian fluctuations, 523
ground-state degeneracy, 542
Haldane models, 484, 486, 487
Halperin states, 552
hierarchy, 492, 500, 547
hydrodynamic theory, 542
incompressible fluid, 488
inserting a solenoid, 488
Landau–Ginzburg theory, 480, 502
Laughlin wave function, 480, 483
non-abelian states, 564
one-component classical plasma, 485
order parameter, 500
paired states, 577
plasma analogy, 484, 490
point-contact tunneling, 647

renormalization-group analysis, 651
quantum interferometers, 663
quasihole, 488, 489
quasihole charge, 490, 491
quasihole propagator, 532
quasihole state, 489
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quasiparticle tunnel junction, 648
Read operator, 501
semi-classical limit, 514
short-distance behavior, 512
skyrmion, 556
spherical geometry, 486
strongly correlated system, 481
Trugman and Kivelson model, 484
universality, 565
vortex, 510

fractional statistics, 376, 388, 389, 399, 406, 534
non-abelian, 583
one space dimension, 390
parafermions, 390, 579

fractional topological insulators, 751
fractional vortex, 391
fractionalization, 172, 175
free anyons, 405
free spinon, 376
frustrated

Heisenberg antiferromagnet, 366
lattice, 404

frustration, 251, 366
functional integral, 449

gas of monopoles, 336
gauge field

fluctuations, 278
propagator, 380
fluctuations, 376
mass term, 376
torus, 450

gauge-fixing term, 380
gauge invariance, 13, 266, 454, 511

flux state, 277
Hubbard model, 13
non-abelian, 269

gauge theory, 263
Z2, 298
Chern–Simons, 393
confinement, 301
deconfinement, 305
duality, 305
Ising, 298
phases, 298
quantum dimer model, 294
quantum Heisenberg antiferromagnet, 263
resonating valence bond, 379
topology, 309

gauge transformation, 264, 411, 462, 463
C P1 model, 222
generator of local, 296
large, 266, 327, 438
local time-dependent, 264
non-singular, 265
singular, 266
small, 328, 400, 450

gauge-invariant fermion system, 450

gauge/gravity duality, 780
Gauss’s law, 296, 297, 407, 417
generalized boundary conditions, 460
generalized commutation relations, 406
generalized periodic boundary conditions, 466
generalized toroidal boundary conditions, 458
generating functional, 449, 454
genus-g Riemann surface, 468
Ginzburg, 67
global phase invariance, 454
Goldstone boson, 50, 52, 55, 424, 429, 501, 504
Goldstone’s theorem, 39
Goldstone–Wilczek formula, 713, 731
gradient expansion, 456
graphene, 71, 369, 674
Green function, 449
Gross–Neveu model, 109, 161, 709
group of magnetic translations, 465
Gutzwiller projection, 278

Haldane’s conjecture, 209, 218
half-filling, 35, 39
half-vortex, 580, 646
Hall conductance, 425, 455, 456, 469, 475, 525, 530

nth band, 478
filled Hofstadter bands, 472
fractional, 446
Kubo formula, 457, 683
level crossing, 466
negative, 478
plateaus, 445, 447
quantization, 456, 685
topological invariance, 457, 461, 683

Hall current, 456, 530
Halperin wave function, 495
happy fraction, 422, 429
hard-core anyons, 406
hard-core bosons, 100, 403

Heisenberg model, 403
hard-core condition, 411, 412
Harper’s equation, 442
hedgehogs, 219
height–height correlation function, 333
Heisenberg antiferromagnet, 263

SU(N ) representation, 267
flux state, 271
frustrated/on square lattice, 366
mean-field theory, 263
two-dimensional quantum, 412

Heisenberg model, 90, 103, 190, 279
anisotropic

one-dimensional quantum, 103
classical, 214
one-dimensional quantum, 90
quantum, 190
spin one-half

SU(2) gauge invariance, 279
heterojunctions, 446
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Higgs mechanism, 483, 507
high magnetic field

Hall conductance, 445
high-temperature superconductors, 25
high-energy cutoff, 67
high-frequency modes, 457
high-momentum modes, 457
Hofstadter problem, 422, 472, 673

sublattice structure, 473
wave functions, 438

holes, 17
holography, 610, 780
holomorphic factorization, 84
holon, 262
holonomies, 311, 312, 327, 400, 450, 459
homogeneous function, 76
homotopy, 207, 230

classes, 207, 381, 465, 684
group, 219, 230, 646

Hopf invariant, 385, 546
Hopf map, 222
Hopf term, 218, 223
Hubbard model, 8, 27, 55, 147, 190

SU(2) symmetry, 10
U(1) symmetry, 12
bipartite lattice, 13
attractive/repulsive, 14
Bethe ansatz, 249
charge motion, 17
electromagnetic coupling, 12
electrostatic coupling, 13
ferromagnetic state, 32
gauge invariance, 13
half-filled, 27, 190
holes, 17
interaction terms, 28
mean-field-theory, 27

Néel state, 35
orbital coupling, 12
particle–hole symmetry, 13
spin–charge separation, 164, 245
strong-coupling limit, 14

away from half-filling, 17
half-filling, 14

transformation symmetries, 10
weak coupling, 27
weak-coupling limit, 17

collective modes, 23
Cooper-pair correlation function, 25
current correlation function, 24
density correlation function, 23
spin correlation function, 24
wave-function renormalization, 23

Zeeman coupling, 12
Hubbard–Stratonovich transformation, 515

incompressible ground state, 507
incompressible state, 402, 501

induced vector field, 462
infinitesimal magnetic translations, 434
instanton, 206, 230, 659
integer quantum Hall effect (IQHE), 424, 445, 514

bilayers, 556
intrinsic spin, 386
irrelevant operator, 67
Ising fermions as domain walls, 122
Ising gauge theory, 298
Ising model, 239

OPE, 579
transfer matrix, 113
two-dimensional, 390

Ising model in a transverse field, 112
Ising nematic, 738
Ising universality class, 121
isotropic gauge, 433

Jones polynomial, 586
Jordan–Wigner transformation, 100, 103, 390, 405

two-dimensional, 412

Kac–Moody algebra, 160, 228, 231, 607, 613
SU(2)k , 160
U(1), 160

Kadanoff, 63, 67
Kalmeyer–Laughlin state, 253, 402
Kane–Mele model, 687
kink, 390
kink operator, 101
Knizhnik-1984, 240
knots, 376, 386, 585
Kohn’s theorem, 527
Kondo problem, 82, 651
Kosterlitz RG, 79

beta functions, 87
trajectories, 88

Kosterlitz–Thouless transition, 82, 83, 140, 293, 348
Kramers–Wannier duality, 116
Kubo formula, 458, 460, 474

Hall conductance, 457

ladder operator, 295
Lagrange multiplier field, 394
Landau, 23, 67

charged particle in a magnetic field, 432
complex coordinates, 433
isotropic gauge, 433
magnetic translation group, 433
on a disk, 433
periodic boundary conditions, 437

Fermi liquid, 23
gap, 457
gauge, 439, 469
level, 434, 468

basis functions, 469
degeneracy, 434, 481
filled, 446
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“orbits”, 197
Landau–Ginzburg theory, 67

fractional quantum Hall Laughlin states, 480, 499,
501, 502

non-abelian fractional quantum Hall states, 644
Landau–Hofstadter bands, 474, 478
Landau–Lifshitz equation, 201
Landau–Lorentz gauge, 511
Laplacian coupling, 332
large gauge transformation, 327, 381, 438

Landau problem, 438
large gauge transformations, 408
lattice Cauchy–Riemann equation, 410
lattice divergence, 296
lattice gauge theory, 264, 294
lattice Green function, 338, 409
lattice magnetic translations, 440
Laughlin sequence, 499, 519
Laughlin state, 402, 447, 480, 499, 513
Laughlin wave function, 480, 502

analyticity, 483
overlap, 484

level, 160, 231
Lifshitz point, 351
linear-response theory, 449
link variables, 263
linking number, 385, 387

magnetostatic analogy, 385
relative, 387

liquid state, 483
local constraint, 407
local quantum field theory

axioms, 389
locality, 238
low-energy excitations

fractional statistics, 376
low-energy spectrum, 429

anyon gas, 429
Luther–Emery liquid, 169
Luttinger liquid, 82
Luttinger model, 110, 239

magnetic ’t Hooft loop, 313
magnetic algebra, 435
magnetic Brillouin zone, 441, 474
magnetic monopole, 197, 463
magnetic translation

group, 433
infinitesimal generator, 434
many-body wave function, 465
operator, 459
ray representation, 435

magnetic translation operator, 434
magneto-phonon, 507
magneto-plasmon, 507
magnetostatic analogy

linking number, 385
magnons, 200

antiferromagnetic, 202
ferromagnetic, 200

Majorana fermion, 119, 124, 167, 228, 240, 559, 578,
590, 646

zero mode, 597, 748
Mandelstam formula, 390
Mandelstam operators, 138
marginal operator, 67
Marshall theorem, 99
mass renormalization

spinon, 385
massive modes, 507
mean-field theory, 263

chiral spin state, 366
flux state, 272
Heisenberg antiferromagnet, 263
Hubbard model

weak-coupling limit, 27
valence-bond state, 276

Meissner effect, 419, 508, 645
Meissner state, 501
Mermin–Wagner theorem, 140
meron, 686
model, 90, 103, 189, 262, 419

C P1, 222
SU(2)× U(1) Thirring, 161
SU(N ) Heisenberg antiferromagnet, 267
XY , 419
C P1, 262
1D transverse-field Ising model, 239
chiral Gross–Neveu, 161
classical 2D Ising, 239
classical Heisenberg, 214
discrete Gaussian, 332, 336
principal chiral field non-linear sigma model, 230
quantum dimer (QDM), 286
quantum Heisenberg, 190
quantum Heisenberg model, 403
quantum non-linear sigma, 189
solid-on-solid, 332
spin one-half XY , 103, 105
Thirring/Luttinger, 110
WZW, 231

modular parameter, 469, 571
modular transformation, 571
momentum-space torus, 473
monopole, 320, 380, 383

condensation, 321
gas, 336
plasma, 326

MOSFETs
high magnetic field, 445

multi-component wave functions, 467
multivalued function, 410
multivalued wave function, 388

Néel, 25, 50
Néel antiferromagnet, 39
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Néel state, 35, 50, 55, 202
quantum fluctuations, 51, 60

nematic spin phase, 253
nesting, 35

property, 35
vector, 35

Nielsen–Ninomiya theorem, 443, 681, 721
Niu–Thouless–Wu formula, 462, 469
no-renormalization topological invariants, 210
noise spectrum, 661
non-abelian Berry connection, 732
non-abelian bosonization, 218, 228
non-abelion, 569, 580
non-contractible closed loop, 408
non-linear sigma model, 61, 189, 251

asymptotic freedom, 215
beta function, 213
coupling constant, 213
dimensionless coupling constant, 210
effective coupling with frustration, 251
fast modes, 210
momentum-shell integration, 211
quantum, 189
quantum fluctuations, 209, 226
renormalization-group transformation, 210
scale invariance, 210
slow modes, 210

oblique confinement, 509
off-diagonal long-range order (ODLRO), 419, 500,

587
one-component wave functions, 467
one-dimensional Heisenberg model

fixed point, 227
one-dimensional relativistic fermions, 453
one-particle Hamiltonian, 432
one-particle states, 468

Hofstadter problem, 474
Onsager, 239
Onsager fermions, 409
operator, 364

chiral, 364
irrelevant, 67
Mandelstam, 138
marginal, 67
normal ordered, 127
parafermion, 390
point-split product, 129
relevant, 66, 75
soliton, 101, 133
Umklapp, 136

bosonized, 137
vertex, 85
Wilson loop, 383

operator-product expansion (OPE), 78, 110, 133, 238,
569

coefficients, 78
energy operator, 86

quasiholes, 567
vertex operator, 86

operators
free-field fixed point, 68

orbital ferromagnetism, 366
orbital spin currents, 366
order parameter, 57, 138, 202, 500, 510

chiral, 138
gauge-invariant, 512
staggered, 57, 202

orientational order parameter, 346
orthogonality catastrophe, 172

pair-wave functions, 471
paired quantum Hall states, 578
pairing Hamiltonian, 123, 588
parafermion, 390, 640
parity, 368, 371, 375

spontaneous breaking, 368
parity anomaly, 369, 423, 681, 726
particle–hole symmetry, 14
particles

flux attachment, 394
path integral, 190, 263, 415, 497

Chern–Simons theory, 415
coherent states, 496
discrete Gaussian model, 333
fermion Green function, 449
Heisenberg antiferromagnet, 263
many-spin systems, 198
quasihole propagator, 532
single-spin, 190
spin coherent-state representation, 194
spinon propagator, 382

path-ordered product, 359
Pauli operators, 412
Peierls gap, 370
Peierls instability, 39, 706
Peierls mass, 371
Peierls state, 272, 276, 329, 706
perimeter law, 308
periodic boundary conditions, 473

Landau problem, 437
periodicity, 399

statistical angle, 398
phase factor

inequivalent topological classes, 387
phase twist, 460
phases of matter

fixed points, 65
Poisson summation formula, 225, 336
polarization tensor, 377, 450, 455, 524
polyacetylene, 467, 596, 706
Pomeranchuk instability, 739
Pontryagin index, 190, 205, 684
primary fields, 234
primary scaling field, 66
principal U(1) bundle, 465
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principal chiral field, 229
projective symmetry-group states, 278
propagator

fermion, 378
gauge field, 380
spinon, 382

PSG, 278
punctured plane, 392

quantized Hall conductance, 445
quantum anomalous Hall effect, 673

topological invariant, 685
edge states, 705
quantization, 685
spontaneous, 736

quantum criticality, 63
quantum dimension, 572
quantum dimer model, 286, 336

generalizations, 292
quantum dynamics, 294
RK point, 289

dimer density correlator, 290
holon correlator, 291
RVB wave function, 289

triangular lattice, 291
quantum entanglement, 756
quantum group, 601
quantum Hall effect, 376, 424, 432, 445

fractional, 402, 446
integer, 432, 445

quantum Hall state, 431
quantum Heisenberg model, 15

hard-core boson representation, 403
quantum impurity, 651
quantum Ising model, 112, 239, 300
quantum Lifshitz model, 350, 741

action, 350
correlation functions, 355
entanglement entropy, 769
gauge-theory dual, 351
operator content, 354
quantum-dimer mapping, 352
scaling, 357
wave function, 353

quantum-loop model, 306
quantum magnets, 405
quantum paramagnet, 252, 286
quantum phase transition, 219
quantum quench, 797
quantum spin Hall effect, 687, 726

Z2 topological invariant, 696
Bernevig–Hughes–Zhang model, 690
edge states, 705, 718
Kane–Mele model, 687
spontaneous, 736

quasi-electron, 491
quasihole, 530, 535

anyons, 495

charge, 534
coherent states, 496
excitation energy, 489
linking number, 534
one-particle propagator, 532
path integral, 497
statistics, 535

quasiparticle quantum numbers, 530

Rényi entropy, 761
random-phase approximation (RPA), 419
rational CFT, 239
RCFT, 239

monodromy, 571
relative coordinates, 471
relative linking number, 387
relevant operator, 66, 75, 139
renormalization group, 63

fixed point, 65
Kosterlitz RG, 82
non-linear sigma model, 210
one-loop, 82
perturbative RG, 78
WZW, 231

renormalization-group sine–Gordon, 139
replica trick, 761
representations, 465

group of magnetic translations, 465
resonating valence bond (RVB), 189, 253, 255

gauge-field dynamics, 379
nearest neighbor, 256
short-range, 256, 289, 291

non-orthogonality, 257
spin–spin correlator, 258
staggered correlator, 259

resonon, 291, 325
RG transformation, 65
Riemann surface, 468

genus g, 468
roughening transition, 84, 333

saddle-point approximation, 48, 270, 419
saddle-point expansion, 264, 514
scale invariance

consequences, 76
scaling dimensions, 76
three-point functions, 77

scaling
anisotropic, 70
Fermi surface, 70

scaling dimension, 139, 232, 234
scattering, 28, 110

backward, 28
forward, 28
Umklapp, 28, 110, 136

Schmidt decomposition, 756
Schwinger bosons, 261, 263
Schwinger term, 131, 160, 453, 607



836 Index

screening, 518
SDW, 25, 35
SDW order parameter, 25
second Chern number, 732
self-linking number, 386
semi-classical approximation, 514
semions, 388
shear distortion, 236
short-distance cutoff, 67
shot noise, 662
sine–Gordon, 82

coupling constant, 138
Lagrangian, 138
potential, 139

singular gauge transformation, 355
sink, 467
skein relation, 585
skyrmion, 220, 230, 556, 645, 686
Slater determinant, 469
slave-boson representation, 262
small gauge transformation, 328, 400, 450
smectic liquid crystal, 351
smooth deformation, 475
solid-on-solid (SOS) model, 332
soliton, 172, 208, 220, 390, 594, 596, 709

fractional charge, 712
polyacetylene, 705
worldline, 220

soliton operator, 101
source, 467
spectral asymmetry, 712
spin coherent state, 191
spin correlation length, 56
spin current, 366
spin density wave, 25
spin gap, 169, 219, 259
spin liquid

chiral, 379
spin liquid phases, 375
spin one-half XY model, 419
spin operator, 261

boson representation, 262
fermion representation, 261

spin quantum number
confinement, 380

spin–charge separation, 164
spin-density wave, 29, 35, 46, 49, 52
spin-statistics theorem, 389
spin-wave stiffness, 56
spin-wave theory, 268
spinless fermions, 412
spinon, 262, 271, 274, 376

charge, 379
confinement, 279
doubling, 279, 373, 377
gap, 386
liberation, 380
mass renormalization, 385

propagation amplitude
quantum corrections, 385
two spinons, 386

propagator, 382
imaginary time, 383
proper-time representation, 382

statistics, 382
spiral state, 253
spontaneous symmetry breaking, 467
Sr2RuO4, 25
stable fixed point, 67
staggered amplitude fluctuations, 372
staggered charge density, 297
staggered electric fields, 296
staggered gauge field, 296
staggered magnetic field, 248
staggered magnetization, 26, 49, 202, 248
staggered vector potentials, 297
state, 32, 91, 251, 431

Baskaran–Zou–Anderson, 272
chiral spin, 253
chiral spin liquid, 379
coherent, 43
columnar, 276
disordered spin, 251, 253
eight vertex, 309
ferromagnetic, 32, 34, 91
flux, 271
Kalmeyer–Laughlin, 253, 402
Kitaev toric code, 306
paramagnetic, 34
Peierls, 272, 276, 329
quantum Hall, 431
resonating valence bond, 253, 255
spin coherent, 191
spiral, 253
valence bond, 253, 271
zero-temperature quantum paramagnet, 226, 252

statistical angle, 388, 406, 411, 419, 535
statistical gauge field, 417

commutation relations, 406
statistical vector potential, 394, 523
statistics of the quasiholes, 493
STM, 179
Stokes’ theorem, 386, 463
Stoner criterion, 34
stress tensor, 235
stripe order, 24
stripe phases, 146
strong-coupling expansion, 15, 301
strong topological insulators, 698
Sugawara form, 161, 233
superconducting proximity effect, 747
superconductivity

anyons, 376
superconductor, 414

as a topological fluid, 558
non-local order parameter, 557
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topological BF theory, 560
susceptibilities, 26

magnetic, 26
static, 26

’t Hooft, 392
tadpole term, 452
target manifold, 200
theorem, 39, 99, 140, 277, 443

Elitzur’s, 277, 360, 454
Goldstone’s, 39
Marshall, 99
Mermin–Wagner, 140
Nielsen–Ninomiya, 443
spin-statistics, 389
Stokes’, 386, 463

thermodynamic Bethe ansatz, 660
thermodynamic limit, 410
theta function, 470
thin cylinder limit, 731
Thirring model, 110, 161
tight-binding model, 9, 450
time-dependent Schrödinger equation, 458
time-reversal invariance, 359, 368, 375

antiferromagnets, 210
Dirac spinors, 679
quantum spin Hall insulator, 696
spontaneously broken, 368

TKNN integers, 475, 672
topological

charge, 205, 220, 684
classes, 219, 312
current, 132, 220
field theory, 314, 376, 395
fluid, 292
Hopf invariant, 223
inequivalent knots, 387
insulators, 669
invariance, 429, 456, 457, 461
invariant, 207, 210, 381, 385, 473, 478, 585, 683
magneto-electric effect (TME), 725, 733
mass, 376
Mott insulator, 736
obstruction, 387
phase, 314
quantum computation, 586
soliton, 390, 709
structure, 463
superconductor, 593

topological quantum computing, 597
toric code, 305, 306, 315, 786
torus of boundary conditions, 466
transfer matrix, 301
transformation, 100, 126

block spin, 64
bosonization, 126
chiral, 136, 239
Jordan–Wigner, 100, 103, 390

renormalization-group, 65
transition function, 463, 465
transversality condition, 450
trivial holonomies, 467
tunneling density of states, 179
twist field, 240, 638, 641, 646
two-spinon propagation amplitude, 386

Umklapp processes, 28, 110, 136
Hubbard model, 28

Umklapp scattering, 136
unstable fixed point, 66
unstaggered amplitude fluctuations, 372

vacuum persistence amplitude, 40
valence-bond crystal, 270, 271, 288, 291
valence-bond liquid, 292
valence-bond state, 253

energy, 276
fermion representation, 262
fluctuations, 286
mean-field Hamiltonian, 276
overlap, 257

van Hove singularity, 35, 38
Vandermonde determinant, 469
vector potential, 454

statistical, 394
Verlinde formula, 572, 659
vertex operator, 85, 238

normal ordering, 85
scaling dimension, 85

Virasoro algebra, 234
central charge, 234

vison, 300
von Neumann, 757
von Neumann entanglement entropy, 756
vortices, 84

topological invariant, 207

Wannier states, 8, 439
Ward identity, 58, 60

current correlator, 453
wave function, 469

zeros, 469
wave-function renormalization, 23
weakly interacting system, 23
Wess–Zumino term, 196, 230, 253

staggered, 202
with frustration, 253

Wess–Zumino–Witten, 228, 231
anomalous dimension, 242
CFT, 240
gauged, 249, 640, 643
level, 231
primary fields, 241

Weyl fermion, 379
Wigner crystal, 482, 483, 513, 517

melting, 483
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Wilczek, 392
Wilson, 63
Wilson fermions, 693
Wilson loop, 265, 359, 362, 383, 417

statistical gauge field, 417
Wilson–Fisher, 67
winding number, 190, 205, 329, 445, 464, 475
Witten, 393
WKB approximation, 517
worldline, 220, 383

braiding, 220

linking number, 220, 387
writhing number, 386

writhing number, 386
Wu–Yang monopole, 463

Young tableau, 254

Zeeman coupling, 12
zero-energy eigenstates, 443

multiplicity, 443
zero mode, 595
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