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Topological objects in field theory

Un fourmi de dix-huit métres
Avec un chapeau sur la téte,
Ca n’existe pas;
Pourquoi pas?

Robert Desnos

No-one can deny the success which quantum field theory, in the perturbative
approximation, has enjoyed over the last half century. One need only mention
the interpretation of quantised fields as particles, the description of scattering
processes, the precise numerical agreements in quantum electrodynamics, the
successful prediction of the W particle, and the beginnings of an understanding
of the strong interaction through quantum chromodynamics. Yet despite these
successes, the question of how to describe the basic matter fields of nature has
remained unanswered — except, of course, through the introduction of quantum
numbers and symmetry groups. As far as field theory goes, the matter fields
are treated as point objects. Even in classical field theory these present us with
unpleasant problems, in the shape of the infinite self-energy of a point charge.
In the quantum theory, these divergences do not disappear; on the contrary,
they appear to get worse, and despite the comparative success of renormalisa-
tion theory the feeling remains that there ought to be a more satisfactory way
of doing things.

Now it turns out that non-linear classical field theories possess extended
solutions, commonly known as solitons, which represent stable configurations
with a well-defined energy which is nowhere singular. May this be of relevance
to particle physics? Since non-Abelian gauge theories are non-linear, it may
well be, and the last ten years have seen the discovery of vortices, magnetic
monopoles and ‘instantons’, which are soliton solutions to the gauge-field
equations in two space dimensions (i.e. a ‘string’ in 3-dimensional space), three
space dimensions (localised in space but not in time) and 4-dimensional
space—time (localised in space and time). If gauge theories are taken seriously
then so must these solutions be. It will be seen that they do give rise to new
physics and there is even the hope that they may solve the problem of quark
confinement.

Not the least interesting feature of this subject is the branch of mathematics
which it involves; for the stability of these solitons arises from the fact that the
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boundary conditions fall into distinct classes, of which the vacuum belongs only
to one. These boundary conditions are characterised by a particular corre-
spondence (mapping) between the group space and co-ordinate space, and
because these mappings are not continuously deformable into one another they
are topologically distinct. The relevant notions in topology will be developed as
we go along. We begin our survey with the ‘sine-Gordon’ equation which has
no relevance to particle physics but whose soliton solutions are quite well
understood, and therefore form a good introduction to the subject.

10.1 The sine-Gordon kink

The sine—Gordon equation
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describes a scalar field in one space and one time dimension. It possesses

moving, as well as stationary, solutions. To find moving solutions, we want a
field of the form

o(x, 1) = f(x — vt) = f(&).

It is easy to check that

(&) = %arctan exp[+(y/VD)E] (10.2)

is a solution, where y = (1 — v?)"2. The appearance of this wave is shown in
Fig. 10.1. It is a solitary wave, which moves without changing shape or size,
and therefore without dissipation, in strong contrast to the waves set up when,
for instance, a stone is thrown into a pond. These waves spread out and
the energy is dissipated. Solitary waves (solitons) have been observed, for

o
dx

X

Fig. 10.1. A solitary wave (soliton).
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example, moving along canals. In this case they are solutions of the Korteweg
de Vries equation.

Since solitons are solutions of non-linear wave equations the superposition
principle is not obeyed. This means that when two solitons meet the resultant
wave form is a complicated one, but the surprising thing is that, asymptotically,
the solitons separate out again — they ‘pass through’ one another. This property
is, of course, of interest to particle physicists, though we shall not develop it
any further here. Another consequence of the fact that the superposition
principle does not hold is that the quantisation of solitons becomes non-trivial.
We shall not follow this matter any further either. Instead, we turn to the
stationary solutions of the sine—Gordon equation, which possess an interest of
a different type.

It is clear that (10.1) possesses an infinite number of constant solutions
(which, as we shall see in a moment, have zero energy):

¢ , n=0,=*1,+2,...; (10.3)

= 2

b
that is, the sine—-Gordon equation possesses a degenerate vacuum.® (‘Vacuum’
here does not, of course, mean the state in Hilbert space, but simply a classical
field configuration of zero energy.) The Lagrangian for the sine—Gordon
equation is

=1a_¢2_1(a_¢)2_ 104
* 2(8:) 2\ ax v(e) (104)

with
V(9) = 1 - cos(bg)].
b

where the constant has been chosen so that the solutions (10.3) have V = 0.
They therefore have zero energy since the energy density of the field configura-
tion is

139\ 1(a¢)2
#H =" =1 + V(¢). 10.5
2( ot ) * 2\ ox (@) ( )
Note that we may write
vigy=te - Dgra (10.6)
2 4!

¥ It is this property that is crucial in what follows, and so a corresponding analysis could be made
for other field theories with degenerate vacua, for example the ¢* model with m? < 0 considered
in Chapter 8.
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or, with A = b? and unit mass m

2 A
Vig)=Lg? - Lgt + - -, 10.7
) 5 @ 4!¢> (10.7)

and m stands for the ‘particle’ mass and A for the self-interaction coupling.

The potential V in (10.4) is shown in Fig. 10.2 with the (zero energy) ground
state given by (10.3). Now construct the following configuration. Let ¢
approach one of the zeros of V (say n =0) as x —> —o, but a different zero
(say n = 1) as x — . Between these two there is clearly a region where

px 2 5P,
b Ax
and therefore, from (10.5), where there is a positive energy density. We
assume the configuration is static, so 3¢/3t = 0. Because of the boundary
conditions on ¢, we expect the total energy to be finite. Let us find what it is.
For a stationary solution to the sine-~Gordon equation we have

o _3V
ax? 3¢
which gives on integration
1 a¢)2
- =) = V(¢), 10.8
2( = (¢) (10.8)

the integration constant being zero. From (10.5) and (10.8), the energy of the
stationary soliton is

E= j%dx
i ol
= fzvop) dx

2n/b
= [ vionae

where we have put in the integration limits given by (10.3) between n = 0 and

VAVAVAV

¢ nd
Fig. 10.2. The sine—Gordon potential V(¢).
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= 1. This integral is now easily performed on substituting (10.4). We have

k= ﬁj 1~ cos (b)) dg
b Jo

2m
= lb/;zJ' (1 — cos @) da
0

E

8
b
8m?

- (10.9)
where in the last step we have used the substitution in (10.7). So this soliton
has a finite energy, with the interesting property that the energy is inversely
proportional to the coupling constant. This may indeed be a useful property for
particle physics.

There is a simple model which makes this soliton easy to visualise. Consider
an infinite horizontal string with pegs attached to it at equally spaced intervals,
and connect each peg to its neighbour with a small spring (the ‘coupling’). Each
peg is also acted on by gravity. The ground state corresponds to every peg
hanging vertically. The soliton we have found, with n = 0— 1, corresponds to
the situation in Fig. 10.3. This soliton — and others of this type (see below) — is
called a kink. It should be clear from the peg model that the kink is stable, and
cannot decay into the ground state with E = 0. This would involve a (semi-)
infinite number of pegs turning over, which would need a (semi-) infinite
amount of energy. But what is the mathematical reason for the stability of the
kink? It is to be found in the boundary conditions. ‘Space’ in this model is an
infinite line, whose boundary is two points (the end-points). At these two
points the 1-kink solution has » =0 and n =1, and this is not continuously
deformable into n =0 and n =0 (the ground state). The kink, then, is a
‘topological’ object. Its existence depends on the topological properties of the
space (in particular, its boundary, which in this case is a discrete set). This
conclusion is a general one; that is to say, the stability of soliton solutions in
non-linear field theories is a consequence of topology.

Finally, the stability of the soliton (kink) obviously signals a conservation
law: there must be a conserved charge Q, equal to an integer N (the difference
between the two integers in (10.3)), and a corresponding divergenceless current

A

Fig. 10.3. Pegs on a line representing the kink (soliton) solution to the sine—-Gordon
equation.
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J# (u=0,1). They are easy to construct. With

Jo=b gy g (10.10)

27

(e" is antisymmetric, with ¢! = 1), we have the identity 3,J* =0, and the
charge is

Q= f_w J0dx
_b["3
2w f—oo ox &
= L[(p(oo) — ¢(—»)] = N. (10.11)
2m

The interesting thing is that the current J* does not follow from the invariance
of & under any symmetry transformation. It is therefore not a Noether current.
Its divergencelessness follows independently of the equations of motion.

We consider, in the following sections, examples of solitons in gauge
theories, beginning with one in two space dimensions — the vortex.

10.2 Vortex lines

Now consider a scalar field in 2-dimensional space. The ‘boundary’ of this
space is the circle at infinity, denoted S'. We construct a field whose value on
the boundary is

¢=ae"’ (r— ) (10.12)

where r and 6 are polar co-ordinates in the plane, a is a constant, and, to make
¢ single-valued, n is an integer. We propose this form, rather than simply
¢ = a, because it is a generalisation to two dimensions of (10.3). ((10.3) is a
solution of the sine-Gordon equation, whereas it is yet to be seen what
equation describes the 2-dimensional solitons we are in the process of develop-
ing.) From (10.12), we have

Vo = L(inae). (10.13)
r
The Lagrangian and Hamiltonian functions are

2
¢ = %(%?) —1V¢ - V(9), (10.14)

% = 1(3_"’)2 + Vel + V(9). (10.15)
2\t
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Now let us consider a static configuration with, for example,

V(e) = [a® - ¢*¢] (10.16)
so that V = 0 on the boundary. Then as r —
2.2
% = vglr = L4
2r?
and the energy (mass) of the static configuration is
E = [ Hrdrdo = ﬂnzaZJ ldr.
r

This is logarithmically divergent, the kink, as it stands, cannot be generalised to
two dimensions — nor to more than two, for it turns out that in all these cases
the energy is divergent.

To proceed, we add a gauge field, so that what counts is the covariant
derivative

D,¢ =23,¢ + ieA,¢. (10.17)
By choosing A, of the form

= Ly(no) (r— ),
e

i.e.
A, -0, Ag—s—-L1 (r— ), (10.18)
er
we find that at r = «
Dy = i(a—"’) +iedgp=0, D,p=0 (10.19)
r \o¢
so D,¢— 0 on the boundary at infinity. The Lagrangian is now
L= —3F%+ D — V(o). (10.20)

Since (10.18) is a pure gauge,
Ay—= 3 (r—>®), (10.21)

then F,,— 0. For a static configuration ¥ = —%, and with V(¢) given by
(10.16) we have ¥ — 0 as r — o, making possible a field configuration of finite
energy. We shall now see that the effect of adding the gauge field is to give the
soliton magnetic flux. Consider the integral §A -dl round the circle S' at
infinity. By Stokes’ theorem, this is |B - dS = &, the flux enclosed, hence

2mn

@ = 3€A odl = 4§A9rd9 = -2 (10.22)
e
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and the flux is quantised. So we have, after all, constructed a 2-dimensional
field configuration, consisting of a charged scalar field and a gauge field (the
electromagnetic field!). It carries magnetic flux, and since D,¢— 0 and
F,,— 0 on the boundary at infinity, it appears to have finite energy. It is clear
that by adding a third dimension (the z axis) on which the fields have no
dependence, this configuration becomes a vortex line. Apart from the presence
of the scalar field, it is the same as the solenoid discussed in §3.4 under the
Bohm-Aharonov effect; and just as that effect was attributable to the topology
of the gauge group U(1), so here also we shall see that it is this same topology
which ensures stability of the vortex.

It will not have escaped the reader’s notice that the Lagrangian (10.20) with
V(¢) given by (10.16) is that of the Higgs model - see (8.36) and (8.4) — that is,
scalar electrodynamics with spontaneous symmetry breaking. Actually, we saw
in §8.4 that this Lagrangian is the relativistic version of the Landau—Ginzburg
free energy, which describes superconductivity. It is known that on the
occasions when magnetic flux does penetrate superconductors (that is, in type
IT superconductors), it does so in quantised flux lines, called Abrikosov flux
lines. It is these that the present solutions are describing, the field ¢ in
superconductivity being the BCS condensate.

To be a little more systematic, let us start from the Higgs Lagrangian (8.36):

L= —3F F™ + (3, + ieA,)p]> — m>¢*p — M¢*¢)>. (8.36)

Spontaneous symmetry breaking is signalled by m? < 0, and the vacuum is then
given by (8.4)

—m2\2
e =0 = (225) 349
The equations of motion obtained from (8.36) are
D(D,¢) = —m*¢ — 2A¢|9|%, (10.23)
ie($3,9* — ¢*3,¢) + 2¢*A P> = 3"F,,. (10.24)

We must first check that these equations allow the solutions (10.12) and (10.18)
at infinity. Since by construction (see (10.19)) D,¢ = 0 as r — , the left-hand
side of (10.23) vanishes; and so does the right-hand side if ¢ takes on its
vacuum value (8.4). Since A, is a pure gauge (see (10.21)) F,, =0 as r — ,
so the right-hand side of (10.24) vanishes. In view of (10.12) and (10.18) the
left-hand side vanishes identically when pu= r, and when u= 6 it vanishes
when ¢ assumes the vacuum value (8.4). Hence our particular choices for A4,
and ¢ are allowed by the equations of motion.

As r becomes finite, and particularly as r — 0, of course, the values of A,
and ¢ change. Let us now treat the problem as one in three dimensions, with
cylindrical symmetry about the z axis. Then, since there is magnetic flux, the
magnetic field component B, must be non-zero, which means that A cannot be
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a pure gauge everywhere. Also, continuity requires that ¢ — 0 as r — 0; since
this is not the vacuum value, the 2-dimensional soliton will have an energy, and
the vortex will have a corresponding mass per unit length. The forms of A and
¢ are found from the equations of motion. Taking B with a z component only,
and A with a 6 component only, we have

B=B,=L9040)], A()=4,=A. (10.25)
r dr
In addition, ¢ is of the form
¢ = x(r)e"’ (10.26)
with
2r)—=z0, xr)=za. (10.27)

In the static case, the equation of motion (10.23) then becomes
(3 + ieA)’p — (m* + 24 ¢ =0
which, on summing over the r and 6 components, gives
2
li(rﬂ) - [(l _ eA) +om?+ 2/1x2]x - 0. (10.28)
r dr\ dr r

On the other hand, taking the 6 component of (10.24) gives (recall equations
(2.217)-(2.221))

—X2in)y? + 2e*Ax* = —3,Fy;
,

and hence

i(ii(m)) - 2e(l + eA)xz - 0. (10.29)
dr\r dr r

One should now solve the coupled non-linear equations of motion (10.28) and
(10.29). No exact analytic solution, however, has yet been found. In the
approximation where y=a a constant (i.e. for r — «), Nielsen and Olesen
(1973) found (with ¢ a constant of integration and K; and K modified Bessel
functions)

1/2
A=-_ Ck(elar) —> - T - L(_”_) elelar 4.
er e er e\2lelar
with magnetic field
¢ ma \**
B, = cxKo(le|ar) — _(—_) el 4L, (10.30)
e \2le|r

To obtain the variation of the scalar field, we put

x(r) = a+ p(r);
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then
p(r) =eV-mr (10.31)

(recall that —m? > 0). These solutions are sketched in Fig. 10.4.

Why are these solutions stable? As with the kink, the reason is topological.
The Lagrangian is invariant under a symmetry group — in this case U(1), the
electromagnetic gauge group. The field ¢ (with boundary value given by
(10.12)) is a representation of U(1). The group space of U(1) is a circle S’,
since .n element of U(1l) may be written exp(if) = exp[i(0 + 27)], so the
space of all values of 0 is a line with 8 = 0 identified with 6 = 27, and the line
becomes a circle S'. The field ¢ in (10.12) is a representation basis of U(1),
but it is the boundary value of the field in a 2-dimensional space. This
boundary is clearly a circle S' (the circle r — %, 6 = (0— 27)). Hence ¢
defines a mapping of the boundary S! in physical space onto the group space S:

¢: S'— S, (10.32)

the mapping being specified by the integer n. Now a solution characterised by
one value of n is stable since it cannot be continuously deformed into a
solution with a different value of n (a rubber band which fits twice round a
circle cannot be continuously deformed into one which goes once round the
circle). This is to say (see §3.4) that the first homotopy group of S!, the group
space of U(1), is not trivial:

m(Zh) = Z. (10.33)

Z is the additive group of integers.

The status of a topological argument like this is that it provides a very
general condition which must be fulfilled in order that solitons exist in a
particular model. If, as in the model above, the topological argument indicates
that soliton solutions are possible in principle then one goes to the equations of
motion to find them. Topology therefore provides existence arguments. As an
example, let us enquire whether stringlike solutions to (spontaneously broken)

~ 7 = b= 0vac =ae'™®
Ay = pure B

N
/ \\ gauge

(a) ()

Fig. 10.4. The variations of the scalar and magnetic fields in the Nielsen-Olesen
solution.
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gauge theories exist when the gauge group is SU(2). This is the group of 2 X 2
matrices.

3
U = Ugp + 12 ujaj
j=1
where o; are the Pauli matrices, and the condition that U is unitary and has
unit determinant is

W+ +udi+ui=1. (10.34)

Now this is the equation for the unit sphere S° in 4-dimensional Euclidean
space E“; that is, the group space of SU(2) is S°. There will exist stable
vortices in an SU(2) gauge theory if the mappings of the group onto the S!
boundary of the two-dimensional parameter space fall into distinct classes; that
is, if m;(S%) is non-trivial. But 7;(S%) is, in fact, trivial, for $* is a simply
connected space; every closed curve S! on S* may be shrunk to a point, so the
boundary conditions may all be shrunk to the trivial constant condition
¢ = const., and no vortices exist.

The group O(3), on the other hand, is not simply connected but doubly
connected. For example, corresponding to the O(3) matrix

cose —sina O
sin o cosae 0], (10.35)
0 0 1

which corresponds to rotation about the z axis through an angle —a, is the
SU(2) matrix

eioz/2 0
( . e_iaﬂ). (10.36)

Now « = 0 clearly gives the identity matrix in both cases, but o = 27 gives the
identity again in O(3) and minus the identity in SU(2). This is the origin of the
well-known statement that vectors do not change sign on rotation through 27
but spinors do. In other words, corresponding to two elements of SU(2) (the
identity, and minus the identity) there is only one element of O(3):

SU(2) 0(3)
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There is a two-to-one mapping of SU(2) onto O(3). The group space of O(3),
accordingly, is obtained from that of SU(2) by identifying opposite points on
the 3-space S°, since they correspond to the same O(3) transformation. This
space is doubly connected, as we shall now show. We consider closed curves S*
in the group space of O(3). Each curve corresponds to a continuous set of
rotations, starting (say) from the identity 0, and returning there. One possible
type of closed curve is the path c; in Fig. 10.5. This corresponds to a series of
rotations, the angle of which nowhere exceeds 7. If the angle does exceed 7,
then the path in group space becomes like c;. On reaching the angle 7 at the
point A, the path reappears at the opposite point A’, and eventually returns to
the origin O. It is clear that ¢, is homotopic (may be shrunk) to a point, where
¢, is homotopic to a line. Readers may convince themselves that a closed path
in which the angle of rotation exceeds 27 reappears at opposite points on the
surface of S twice, and is therefore homotopic to a point. Similarly, one in
which the angle exceeds 37 is homotopic to a straight line. Consequently, there
are only two types of closed path S!' in the group space of O(3): those
homotopic to a point and those homotopic to a line. This means there is one
non-trivial vortex in an O(3) gauge theory. The vortices may have ‘charges’
(flux) 1 or 0, with the algebra0 + 0=0,1+0=1,1+ 1 =0, so two non-trivial
vortices will annihilate each other. (It may be parenthetically remarked that
whether the gauge group is SU(2) or O(3) depends on what particles exist: if
there are particles with ‘isospin’ of %, %, %, etc. then the gauge group is SU(2),
but if all the particles have integral isospin the group is O(3).)

One way of making lines of magnetic flux is to place two opposite magnetic
charges close together. So an obvious question is: if gauge theories allow flux
lines, do they also allow magnetic charges? In fact they do, and these are called
’t Hooft—Polyakov magnetic monopoles, after their discoverers. Like vortices,
these monopoles owe their stability (and therefore existence) to the non-trivial
topological properties of the gauge group. In this respect they are completely
different from the ‘ordinary’ magnetic monopoles, which are point magnetic
charges, and which may be introduced into Maxwell’s equations to make them
symmetric between electricity and magnetism. Dirac showed that the prescrip-
tions of quantum theory imply a remarkable quantisation condition for point

Fig. 10.5. Two types of closed path in the group space of O(3).
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magnetic charges, and for this reason they are sometimes referred to as Dirac
monopoles. We shall study Dirac monopoles in the next section, and ’t
Hooft—Polyakov monopoles after that. This will serve to acquaint the reader
with the idea of magnetic charge, as well as to demonstrate the difference
between the two types of monopole.

10.3 The Dirac monopole

Consider a magnetic monopole of strength g at the origin. The magnetic field is
radial and is given by a Coulomb-type law

B=Sr=— gv(l) (10.37)
r r
(we are using Gaussian units). Since V2(1/r) = —478°(r), we have
V-B = 47g8(r) (10.38)

corresponding to a point magnetic charge, as desired. Since B is radial, the
total flux through a sphere surrounding the origin is

® = 41’ B = 4ng. (10.39)

Consider a particle with electric charge e in the field of this monopole. The
wave function for a free particle is

i
v=lvesp|Lo-x = )]
In the presence of an electromagnetic field, p— p — (e/c)A, so
Y — Pexp (—iA . r);
he
or the phase a changes by

e
od—>ao— —A-r.
hc

Consider a closed path at fixed r, 8, with ¢ ranging from 0 to 27. The total
change in phase is

Aa = —e—agA-dl
hc
= —e—fcurlA -dS
hc

hc

= ¢ (Flux through cap) = —->&(r, 6); (10.40)
hc hc
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d(r, 0) is the flux through the cap defined by a particular r and 6, as shown by
the shaded area in Fig. 10.6. As 6 is varied the flux through the cap varies. As
6 — 0 the loop shrinks to a point and the flux passing through the cap
approaches zero:

@(r, 0) = 0.

As the loop is lowered over the sphere the cap encloses more and more flux
until, eventually, at 6 — 7 we should have, from (10.39),

D(r, m) = 4ng. (10.41)

However, as 0 — 7 the loop has again shrunk to a point so the requirement
that @(r, ) is finite entails, from (10.40), that A is singular at 6 = 7. This
argument holds for all spheres of all possible radii, so it follows that A is
singular along the entire negative z axis. This is known as the Dirac string. It is
clear that by a suitable choice of coordinates the string may be chosen to be
along any direction, and, in fact, need not be straight, but must be continuous.

The singularity in A gives rise to the so-called Dirac veto — that the wave
function vanish along the negative z axis. Its phase is therefore indeterminate
there and referring to (10.40) there is no necessity that as 6 > 7, Aa— 0. We
must have Aa =2rn, however, in order for 3 to be single-valued. From
(10.40) and (10.41) we then have

2nn = - 4n R
hc 8
[ eg = inhc. (10.42)

This is the Dirac quantisation condition. It implies that the product of any
electric with any magnetic charge is given by the above. Then, in principle, if
there exists a magnetic charge anywhere in the universe all electric charges will
be quantised:

hic

e=n—.

2g
This is a possible explanation for the observed ‘quantisation’ of electric
charge (see the footnote on p. 85), though nowadays this is more commonly

/

Fig. 10.6.
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ascribed to the existence of quarks and non-Abelian symmetry groups. Note,
however, that the quantisation condition has an explicit dependence on
Planck’s constant, and therefore on the quantum theory. In units A=c =1
(10.42) becomes

u eg = in. (10.43)

Let us now derive an expression for the vector potential A,. As seen above,
it is singular. This much is clear from (10.38), for if B = curl A and A is regular
divB = 0, and no magnetic charges may exist. From the argument above, A is
constructed by considering the pole as the end-point of a string of magnetic
dipoles whose other end is at infinity. This gives

X

A=g—2 A =g—F A =0 10.44)
gr(r+z) Y gr(r+z) ) (
or
A =Ap=0, Ay= im. (10.45)
r sin6
A is clearly singular along r = —z. If, on the other hand, the Dirac string were
chosen to be along r = z, we should have
A =Ag=0, Ay= _gl+cosb (10.46)
r sin@

The rationale for writing the alternative expressions (10.45) and (10.46) is
that the Dirac string singularity is clearly unphysical, and in these expressions it
is in different places. The only physical singularity in A is at the origin, where,
from (10.38), divB = div (curl A) is singular. Since it is obviously desirable to
get rid of unphysical singularities, this suggests the following construction.
Divide the space surrounding the monopole — the sphere, essentially — into two
overlapping regions R, and R;, as shown in Fig. 10.7. R, excludes the negative

Ra

Rp

Fig. 10.7. R, and R, are overlapping domains on the sphere. R, excludes the S pole, R,
the N pole.
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z axis (S pole) and R, excludes the positive z axis (N pole). In each region A is
defined differently:

A%=AG=0, A%= g1—cosb (10.47)
r sinf

Ab=Ab=0, AL= _i_l_"‘:._cﬁg. (10.48)
r sinf

Referring to (10.45) and (10.46), it is clear that A® and A’ are both finite in
their own domain. In the region of overlap, however, they are not the same,
but are related by a gauge transformation (h = ¢ = 1):

a 2 a 1 -
Ab=4a5- 28 =5 Lgv,s! (10.49)
rsin 8 e
with
S = exp (2ige¢) (10.50)

The covariant form of (10.49) is
Ab=A4-Ls3,57". (10.51)
e

The requirement that the gauge transform function S be single-valued as
¢ — ¢ + 2m is clearly the Dirac quantisation condition (10.43). To check that
(10.47) and (10.48) really do represent a monopole, we calculate the total
magnetic flux through a sphere surrounding the origin.

@:IF,deW
=§curlA-dS

=f curlA-dS + [ curlA -ds.
R, Ry

Here we take R, and R, as not actually overlapping, but having a common
boundary, which for convenience is taken to be the equator 6 = 7/2. Since R,
and R, have boundaries Stokes’ theorem is applicable, and since the equator
bounds R, in a positive orientation and R, in a negative one we have

& = A“-dl“—jﬁ Al - d1®
6=mu/2 O=n/2

ird _
= —¢p—(nSN)d
- 5 (ns e
= 4mg
from (10.50), and using (10.47) and (10.48). This agrees with (10.41).
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This construction is due to Wu and Yang, and is, in essence, a fibre bundle
formulation of the magnetic monopole. The base space (3-dimensional space
R? minus the origin = R> — (point) = § X R!) is parameterised in two inde-
pendent ways, corresponding to two overlapping but not identical regions. In
each region the vector potential is given by a different expression. Readers
familiar with the Mobius strip will recognize a similarity here. There is no
unique parameterisation of the Mobius strip; locally it is the direct product of
an interval (0, 1) and a circle, but globally the circle has to be divided into two
distinct overlapping regions, with a different parameterisation of the strip in
each region.

There is thus a fibre-bundle formulation of the Dirac monopole. The base
space is essentially S? (the sphere surrounding the monopole) and the group
space is S! (since the gauge group is U(1)). The fibre bundle is not $* x S* but
S, which is locally the same as S? x S! but is globally distinct. For further
details on the fibre-bundle formulation, the reader is referred to the literature.

10.4 The ’t Hooft—Polyakov monopole

In the context of Maxwell’s electrodynamics, with Abelian gauge group U(1),
it is clear that although magnetic charges may be ‘added’ to the theory, there is
no necessity for doing this. A theory with monopoles is more symmetric
between electricity and magnetism than one without, but this does not amount
to a requirement that monopoles exist. They may or may not; the above
considerations do not allow us to decide. When the gauge symmetry is enlarged
to a non-Abelian group, however, and spontaneous symmetry breaking is
introduced, the field equations yield a solution which corresponds to a mag-
netic charge. If such theories are correct, then, magnetic monopoles must
exist, and should therefore be looked for. It is a matter of natural curiosity to
enquire where the magnetic charge in this model comes from, since the matter
and gauge fields in the theory carry electric charge only. It will not surprise the
reader to hear that the origin of the magnetic charge is topological. The
theoretical possibility of monopoles of this type was discovered in 1974 by t’
Hooft and Polyakov.

We consider a theory with an O(3) symmetry group, containing the gauge
held F,, (a is the group index) and an isovector Higgs field ¢. The Lagrangian
is (cf. (8.42))

2
£ = —HFLFR (D )(DH9Y) = T — M@ (10.52)
where
FZV = aqu - avAZ + egabCAZAi’

. (10.53)
D,¢" =03,¢" + ee™ A ¢".
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We are interested in static solutions in which the gauge potentials have the
non-trivial form

Al = —gip—— (r— ),
er (10.54)
Ag=0
and the scalar field is
¢ =F (r— ) (10.55)
r
with F2 = —m?/4). These expressions have a remarkable form because of the

mixing they employ between space and isospace indices. For example, (10.55)
describes a field which, in the x direction in space, has only an isospin ‘1’
component, in the y direction, only a 2’ component, and in the z direction,
only a ‘3’ component. In a manner of speaking, it is ‘radial’ — Polyakov calls it a
‘hedgehog’ solution. It can be shown ('t Hooft 1974) that there exist regular
solutions to the field equations derived from (10.52), which have the asymp-
totic form (10.54), (10.55). For example, the equation of motion of ¢ is

—(m? + 449" ¢°)¢* = D, (D"¢°).

Equation (10.55) implies |¢| = F, so the left-hand side of the above equation
vanishes at infinity. It is easy to see that D,¢" also vanishes; for with i = x, y,
z we have

a c
D;¢° = Fai( ! ) + egtc oAb FL
r r

6ia ri re sbe Frre
= F( - — & Epm

r /3 /3

=0.

Hence, at infinity, ¢ takes on its vacuum value and is covariantly constant, but
has the non-trivial boundary condition (10.55), rather than the more usual
(‘Abelian’) condition ¢? =0, ¢ #0. On the other hand, F,, is not zero at
infinity. We shall see below that there is a radial magnetic field. This solution is
sketched in Fig. 10.8.

Now let us generalise the definition of the electromagnetic field F,, so that it
reduces to the usual one when the scalar field ¢ has only a third component.
We put

_I—‘PHFZV - ;gabc¢a(Du¢b)(Dv¢c)- (1056)

F, =
¢ el¢l’
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Fig. 10.8. The asymptotic forms of the gauge and scalar fields constituting a ’t Hooft-
Polyakov monopole. Polyakov calls it a ‘hedgehog’ solution.

It is quite clear that when
1,2 3
= =A,#0,
Aluz % A3” g (10.57)
¢ =0, ¢ =F+0
this gives the usual F,,, so long as Af, = A,, the Maxwell vector potential.
Now, defining

1
A, = — @Al (10.58)
T .

a straightforward calculation gives
1 a C
Fyv = auAv - avA,u - :|?¢)l—3£abc¢ (ay¢b)(av¢ ) (1059)

This is similar to, but more complicated than, the usual definition of the
electromagnetic field, but it reduces to it when ¢ becomes fixed in isospace.
Inserting the asymptotic conditions (10.54) and (10.55), it is easily seen that
A, =0, so all the electromagnetic field is contributed by the Higgs field; and
we find
1 k
FOi = 0, E] = -—sijkr . (1060)

er3

This corresponds to a radial magnetic field (see (2.221))

k
B, = r_3 (10.61)
er

The magnetic flux is, from (10.39),

o=
e
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so by comparison with (10.41) the magnetic charge g is such that
eg = 1. (10.62)

From (10.43), this is twice the Dirac unit. We conclude that the configuration
of gauge and scalar fields with asymptotic form (10.54-10.55) carries a mag-
netic charge - i.e. when viewed from infinity, there is a radial magnetic field. It
has been shown by ’t Hooft that this configuration is everywhere non-singular,
and therefore has a finite energy. He estimates the monopole mass to be of the
order 137 My, where My is a typical vector boson mass, so the monopoles are
extremely heavy. The mass is inversely proportional to e? (cf. (10.9)).

What is the origin of this magnetic charge? How does it come about that a
configuration of fields carrying electric charge only can arrange itself in such a
way as to simulate a magnetic charge? To answer this, we write the magnetic
current K, as

K" =23, F"
= 36#"P73 F o (10.63)

where F,,V is the dual of F,, - cf. equation (2.236) which holds when no
magnetic sources are present. From (10.59) we then have

Kt = —zigﬂvpogabca@aap@baa& (10.64)
e
where
1
=L
@l

We see that the magnetic current depends on the Higgs field only, as noticed
above in (10.60). Moreover, this current is identically conserved:

3,K" =0. (10.65)

This property is reminiscent of the current (10.10) for the sine—Gordon kink.
The conservation of both these currents does not follow from a symmetry of
the Lagrangian, so they are not Noether currents. It will be recalled that the
sine—Gordon charge (10.11) — the ‘kink number’ — depends simply on the
non-trivial boundary conditions. We anticipate the same phenomenon here.
The conserved magnetic charge is

M=i]1<°d3x
47

1 Son Thn 2
= . Szgijkgabc‘p 3,93, ¢(d>S);. (10.66)

Here the integral is taken over the sphere S? at infinity, which, of course, is the
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boundary of the static field configuration ¢. Since ¢ must be single-valued, as
(dS); covers the sphere once, the vector ¢ will be covered an integral number
of times, say d. It then follows (Arafune, Freund & Goebel 1975) that the
integral in (10.66) is 87d, hence

= i, d integer. (10.67)
e
Since ¢ is an isovector, the unit vector ¢ describes a sphere S? in field space
(isospace), so the boundary describes a mapping of the sphere S? in coordinate
space onto the ¢ manifold, which is 52.

#: 8% in field space — $? in coordinate space; (10.68)

d is called the Brouwer degree of this mapping. It is necessarily integral. So
equation (10.67) displays explicitly the topological nature of the 't Hooft-
Polyakov monopole.

In the model considered by ’t Hooft, the non-Abelian group is SO(3),
electromagnetism being represented by the Abelian subgroup U(1). An inter-
esting question is: how does the existence of magnetic charge in non-Abelian
gauge theories depend on the gauge group? To answer this we begin by
reflecting on equation (10.68). It is obvious that in general terms what is
important is the ¢ manifold (so the gauge theory must be spontaneously
broken). What is the space of the ¢ manifold in general? In Chapter 8 we
learned that it is the vacuum manifold. If the symmetry group of the theory is
G (in this case SO(3)), and the unbroken subgroup is H (in this case U(1)),
then transformations belonging to H leave the vacuum manifold invariant. So
the space of @ is the set of transformations in G which are not related by a
transformation belonging to H. This is the definition of a coset space. In
schematic terms the elements of the gauge G may be written

G=H+ HM, + HM; + - - - (10.69)

where H denotes the elements of the subgroup H, and M,, M,, ... belong to
G but not to H, and are all different. The vacuum manifold is essentially the
space of the elements M;, and that is the coset space of G/H. Consulting
(10.68) again, the existence of magnetic monopoles requires a non-trivial
mapping of G/H onto $2, the boundary in co-ordinate space. As we saw in
Chapter 3 (equation (3.114)) these mappings form a group, in this case the
second homotopy group of G/H, my(G/H). Magnetic monopoles will exist if
this group is non-trivial. We now invoke a mathematical theorem involving
homotopy groups (Coleman in Zichichi 1977; Tyupkin, Fateev & Shvarts 1975;
Monastyrskii & Perelomov 1975).

Theorem. m,(G/H) is isomorphic to the kernel of the
natural homomorphism of m( H) into 71(G). (10.70)
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To explain the terms in this theorem: m;(H) and 7,(G) are the first
homotopy groups of H and G. They are trivial if the groups are simply
connected, isomorphic to Z,(C,) if the groups are doubly connected, etc. Since
every closed path in H is also a closed path in G, there is a natural mapping of
m(H) into m,(G); this is called a homomorphism. The kernel of the homo-
morphism is the set of elements of 7;( H) which are mapped onto the identity
of 71(G).

Let us watch this theorem in action by applying it to the 't Hooft case, where
G =50(3), H=U(1). Since SO(3) is doubly connected (see above),
71(G) = Z,. On the other hand, U(1) is infinitely connected (the group space is
a circle, and a closed curve going n times round a circle cannot be continuously
deformed into one going m(# n) times round), so 7(H) = Z, the additive
group of integers. So the kernel of the mapping of 7{(H) into m{(G) is the
additive group of even integers, hence

m,(SO(3)/U(1)) = additive group of even integers. (10.71)

This is consistent with what we found; the monopole charge was twice the
Dirac quantum.

The trouble is that the true non-Abelian electroweak group is not SO(3), but
SU(2) x U(1), given by the Weinberg-Salam model. (The SO(3) model is the
Georgi-Glashow model (Georgi & Glashow 1972). Its salient characteristic is
that the only neutral current in it is the electromagnetic current. It was
therefore rendered obsolete by the discovery of weak neutral current events,
such as v, + p— v, + p + m°.) Moreover, the electromagnetic subgroup, al-
though given by U(1), is irregularly embedded in SU(2) X U(1), and so is
non-compact, with the consequence that magnetic monopoles do not exist in
the Weinberg—Salam model. To see this argument, note that in this model
there are two U(1) subgroups, so that a particle with a third component of
weak isospin /3 and weak hypercharge Y%, will transform under these U(1)
groups by

exp (ial3) exp (iBYV). (10.72)

The group space of U(1) is a circle, or, equivalently, a line with the points 0
and 27 identified. Hence the group space of U(1) X U(1) may be represented,
as in Fig. 10.9, by a square ABCD, with the edges AC and AB identified with
BD and CD respectively. This is a torus T?. (In general the group space of the
direct product of n groups U(1) is a toroid T".) The group element (10.72) will
correspond to a point (&, B) in the group space T2 of Fig. 10.9. Electric charge
Q in the Weinberg—Salam model is given by

Q = sin Oyl + cos Oy YV

where Oy, is the Weinberg angle (cf. equation (8.82)). Under an electromag-
netic gauge transformation through an angle y, the state vector for a particle
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Fig. 10.9. The group space of U(1) ® U(1) is a square with opposite edges identified,
hence a torus. An electromagnetic gauge transformation traces out the line
Aaa'bb'cc'dd'ee’ . . . .

with charge Q is multiplied by
exp (iyQ) = exp[i(ysin Ow I3 + ycos Oy Y™)],
and to this transformation corresponds a point in group space given by
a = ysin By, P = ycosby

hence
@/ = tan Oy, = irrational. (10.73)

The above condition corresponds to a line in group space Aaa’bb’cc’'dd’ee’ . . .
(see Fig. 10.9), which, since a/f is an irrational number, is a line of infinite
length. It winds round the torus without ever meeting itself again. Hence the
electromagnetic gauge group in the Weinberg—Salam model has infinite
volume, and is non-compact. It follows that 7;( H) does not exist (or is trivial)
so m(G/H) is also trival and no monopoles exist. If nature is ‘grand-unified’,
however, and the electroweak group SU(2) x U(1) is a subgroup of a grand-
unified semisimple group, say SU(5), then this argument no longer holds, and
monopoles may exist. These questions have recently come to life following a
claim that a monopole has been discovered (Cabrera 1982; see also Cabrera et
al. 1983).

Comparing the 't Hooft-Polyakov monopole with the Dirac monopole of
§10.3, it will seem as if they have almost nothing in common; to be more
precise, nothing at all except that they both possess magnetic charge. This is
not quite true, however, and it may be helpful to conclude this section by
showing how the two may be related. We start with a Dirac monopole with a
string singularity along the negative z axis. The vector potential is therefore
given by (10.45). Now we submerge this in an SU(2) theory, with the vector
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potential aligned in the third direction in isospin space. Using the matrix
potential A, = A,7° then gives

A=A, =Ay=0, Ay= 1:3(——g~)(

1—0056)
N — .

10.74
sin 6 ( )

In addition, we introduce a scalar field ¢, with vacuum expectation value F,
also aligned along the third direction in isospin space:

¢ =13F. (10.75)
Now we transform A, and ¢ by a space-dependent isospin gauge transforma-

tion. A general SU(2) gauge transformation may be characterised by the Euler
angles (&, B, y) and written

§ = ei/2am (/DB o271

cos 3/2 el@tn/2 dip B/2 el(-r+a)/2
h (— sin ﬁ/2 elr=®/2  cog ﬁ/z eyt 01)/2)

Now we put y = —a = ¢, f = —0, giving

[ cos6/2 —e ?sin 6/2
5= (ei¢ sin62  cos6/2 ) (10.76a)
hence
4 _ [ cos6)2 e ?sin 62
57 = (—ei‘” sin 6/2 cos8/2 | (10.76b)

The transformation law for A, is (as in (3.162), but with A, = Aj7* and
g—e)
A, =SA,S'+ aSa,,s—l. (10.77)
e
From (10.76b) it follows that

—gi —i¢
5,5 1=0, 9,5 = _1‘< sin 6/2 e '?cos B/2>,

2, \—e?cos 62 —sin 6/2
T Y e 9sin 6/2
¢ rsin @ \e'?sin 8/2 0 '

Substituting these into (10.77), using (10.74) and putting g = 1/e (from (10.62))
gives, after straighforward manipulations,

A=A, =0,
, 1 .
Afp = —(11sin ¢ — 1508 P),
er
1

(T1cos Bcos ¢ + T,cos Osin ¢ — T35sin 6).
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The Cartesian components of A may then be found; for example,

A, =Ajcos psin 6 + AycosBcosp — Aysin @

_ L[Tz(;{) N ,3(1)], (10.78)
er r r

This is the ‘hedgehog’ form (10.54). Under the same transformation (10.76) the
Higgs field (10.75) becomes

¢/ — S(PS_I
_ [ cos® e ?sin6
~ "\e'%sinf®  —cos6
= F(sin 6 cos ¢ty + sin Osin ¢1, + cos O713), (10.79)

ie.

¢*=F_ (10.80)
r

as in (10.55). As a result of this transformation, the string singularity of the
Dirac potential disappears, and the source of the monopole resides, as it were,
in the Higgs field. From equation (10.59) we may say that the gauge trans-
formation transfers responsibility for the monopole from the first (Dirac) term,
to the second (topological, Higgs) one. Thus the Dirac and 't Hooft—Polyakov
monopoles are not so unconnected as they at first appear.

10.5 Instantons

Our final example of soliton solutions is concerned with those which are
localised in time as well as in space, and which 't Hooft has therefore
christened ‘instantons’. (An alternative name, suggested by Polyakov, is
‘pseudo particles’.) It is not surprising that such solutions exist, since the
gauge-field equations are fully relativistic, so allow a topological non-triviality
in time as well as in space. Moreover, the gauge group SU(2) plays a rather
special role as may be seen from the following consideration. To begin with,
space—time is considered to be ‘Euclideanised’ so that it becomes E*. Its
boundary is then S, the 3-sphere. On the other hand, it was seen in (10.34)
above that the group space of SU(2) is also S°. Hence topologically non-trivial
solutions to the SU(2) gauge-field equations are possible if there exist non-
trivial (non-homotopic) mappings of S> onto S°, that is if 73(S°) is non-trivial
(see (3.114)). And indeed it is:

m3(8%) = Z. (10.81)

It follows that instantons are therefore possible in the pure gauge theory;
spontaneous symmetry breaking is unnecessary. This distinguishes instantons
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from monopoles. The plan in this section will be to write down the instanton
solution, exhibiting its topological nature, and then to mention briefly the
physical consequences that follow from the existence of instantons. There is a
considerable amount of literature on this topic, so our treatment will be very
introductory and readers are referred to the many excellent reviews to broaden
their knowledge. In addition, instantons have aroused the interest of a number
of pure mathematicians, and many papers explore their connections with
topology and algebraic geometry. But these matters are beyond the scope of
this book, and readers are again referred elsewhere.

We begin with some mathematical preliminaries. Euclidean space has co-
ordinates (x;, x5, X3, X4) With (see (6.16))

Xo = —ixg (10.82)

(and xq = ct). The Euclidean field tensor F, is defined (Vainshtein et al. 1982)
in the same way as the Minkowski tensor (see (3.169)):

Fi, =23,A% - 3,A4+ ge A} A (10.83)
with
A, =30°A4, Fp=30"F, (10.84)
This takes the form (see (3.166))
F,=03,A,-03,4,—igl[A, A (10.85)
Defining
Ay =38,4, — 3,4, (10.86)
this becomes
F,, =3,A, —iglA, A (10.87)
The dual of F,,, denoted F,,, is defined by
Fo = 38mpoFoo (10.88)

(remembering that in Euclidean space there is no need to distinguish upper and
lower indices). With £;534 = 1 this yields

Fu = Fu, (10.89)
whereas in Minkowski space, since when £”'2* = 1, then gg;p3 = —1, so
7,“, = —F,, (in Minkowski space). (10.90)
Under gauge transformations
, _ i -
A, =SA,S7' - g(a,tS)s L (10.91)

Fl, = SF,,S7". (10.92)
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Now we define

Ky = %EMVK}»(A?/SKA; + ggabcA?'AzAi)

= Eywdt Tr (%AVSKAA - %AVAKAA). (1093)
Then
3,K, = iTr F,F,, = ;FiF5, (10.94)

so that Tr FF is a total divergence.

Proof. Because of the cyclic property of the trace
ayKy = Euvd Tr [%(auAv)(akA}t) - ig(auAv)AkAA]
On the other hand,
Tr Fvayv = %EuvmlTr {a[yAv] - ig[A;n Av]}{a[kAl] - ig[AK9 Av]}
= 28;41/1(1 Tr (ayAv)(akAl) - Zigguwd Tr AuAv(akAl)
— 2i8€ua Tr (3,A) A A, — 2864 Tr A A AL A).
Because of the cyclic trace property, the second two terms above are equal and
the last one vanishes. Hence (10.94) is proved.
Now consider a 4-dimensional volume V* in E*, with boundary 3V* ~ §3.

Suppose it is a pure vacuum, A, =0, F,,=0. Then K,=0. The field
equations (in the absence of matter)

D,F,, =0 (10.95)
are clearly satisfied over the whole region V'*, as is the Bianchi identity
D,F,=0 (10.96)
which, of course, must be satisfied. Applying Gauss’ theorem to (10.94) gives
Tr F, F,,d*x = 4| 3,K,d*x
ve ve

=4¢ K, dx. (10.97)
ave
This is trivially satisfied if V* is a pure vacuum.
Now we perform a (space—time-dependent) gauge transformation at the
boundary §°

Ay, — ~—(3,5)8™" (on §?), (10.98)
g
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i.e.

F,

uv

=0

so the boundary becomes a ‘pure gauge’ vacuum; and take

+ix -
g=r4eTIX'0C (10.99)
V2
where
= x5+ x2 (10.100)
Then after some straightforward (but lengthy) algebra we find
Ai= ——[x — 0,(6° % + ixg], (10.101)
2
gt
A4 = —Lat x,
g7
and
2x,
K,=—%. (10.102)
er
Equation (10.97) then yields
f Tr F Fdx = 4§ K, &0
g3
-8 d(area)
grtls
2
- 16—727, (10.103)
8

using the fact that the area of the 3-sphere of radius 7 is 27°7°. (The area of the
unit sphere §” is 7/22"+1(n/2)!/(n!).) We see immediately that F,, cannot be
zero over the whole volume V*, although it does vanish on the boundary. It will
be appreciated that this is a consequence of the fact that K, is not gauge
invariant.

The above situation is sketched in Fig. 10.10. The field strength F,, is
non-zero inside the volume V*, but vanishes on the boundary S3, where Ay
becomes a pure gauge. It is clear that (10.98) is nrot a solution to the
gauge-field equations over the whole space, but is simply the asymptotic form
as 72— . How are we to understand this? We first show that the integral
(10.103) above defines a topological index. 1t is called the Pontryagin index (or
Pontryagin class), and denoted g¢:

2
q= %Tr J FuFdix. (10.104)
T
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Ay = pure gauge ~ (3,5)S"

Fuw=0

= oo

Fig. 10.10. The instanton. Inside the volume V* the field strength F,, is non-vanishing,
but F,, vanishes on the boundary $3.

Then in the case we are considering we have
= —82 dx = (10.105)
q fa K,d'x = 1. 10.1
2| TuTu

We shall show that g is the degree of the mapping of the group space, 53, of
SU(2) onto the co-ordinate space boundary $3. Putting (10.98) into (10.93)
gives

1
Ku:—_Z

p Euvr TT(S713,8)(S719,8)(S713,5),
4

hence

4= —§ e, Tr(5713,8)(S713,8)(S13,8) d*c
247% )
2472 )539(0)

1
=—| d’% (10.106)
247% G

where d*g is the invariant element of volume in group space. Hence g gives the
(Brouwer) degree of the mapping > — $°.

This solution, then, is like the soliton solution, except that E* has one time
and three space dimensions. The similarity is that as one of these co-ordinates
passes from — to + the field configuration changes, so that the boundary
conditions at —% and +« are different, rather as in Figs. 10.1 and 10.3 for the
sine—Gordon kink. In that case, of course, the relevant co-ordinate is a spatial
one. An obvious way to interpret the present solution is as an evolution in
time, rather than space. This suggests redrawing the boundary S as in Fig.
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10.11. T and II are the hypersurfaces x,— % and x4;— — and III is the

hypercylindrical surface joining them. Then
= —1—[ d3084ijk Tr (Aigj/_lk) + J' dX4 dzaisiVKATr(EvAKZA)
2472 1/1-11 — 1

(10.107)
where 4, = $71(3,5) = igA,.
Now, as remarked above, A, is not a pure gauge over the whole volume.
The required expression for A, is

2 .
A, = —’—(‘—‘)(a,,S)s—l (10.108)
2+ A2\ g

where A is a constant (Belavin et al. 1975). As x4, — * this tends to the pure
gauge form (10.98), but in the ‘interior’ of the 4-volume V* is such that
F,,# 0, as required. This expression for A, is a solution of the field equations,
and is the one which should be used in the expression for g above. However, g
is gauge invariant so it is convenient to choose a gauge in which A’ = 0 so that
the integral over the ‘cylinder’ III in (10.107) vanishes (since the condition for a
non-vanishing integral is that one of the indices v, k, A should be 4). Such a
gauge transformation is*

A, =UA U —i(d,U)U™! (10.109)
when

U =exp [;x—.‘;l/ﬁ]’
(" + 1) (10.110)

1
Fig. 10.11. The instanton boundary. L is x4 — o, IT is x4 — —oo.

* This is taken from A. Chakrabarti, talks given at Rencontre de Rabat, May 1978 (unpublished).
See also Jackiw & Rebbi (1977).
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and A, is equal to 72(72 + A%)! times the expression (10.98) (with (10.99)). It
is seen that

A,=0
so that g reduces to the difference between two integrals, on the surfaces

x4—> —» and x4— ®. A! is a complicated expression which in the cases
x4 — t o reduces to

Xy, Al-i(g) '(Rign), |

L N (10.111
xg— =, Al i(ge1) (Gigar), | )
with
— n _ . X*0
& =(8)" &= exp[ 177——(r2 N 12)1/2] (10.112)

gn is clearly an element of the group SU(2), but g, and g,, (n # m) are not
homotopic. In particular g, and go =1 are not homotopic; that is, it is not
possible to find a function g(g;, a) with a a continuous variable between 0 and
1 such that g(g;,1) = g, and g(g;,0) =1 (see §3.4). The instanton therefore
describes a solution of the gauge-field equations in which, as x, evolves from
—® to +%, a vacuum (belonging to homotopy class n — 1) evolves into another
vacuum (belonging to homotopy class n) and the Pontryagin index is

g=n—-(n—-1)=1.

In between these vacua is a region when the field tensor F),, is non-vanishing,
and therefore there is positive field energy. The Yang—Mills vacuum is there-
fore infinitely degenerate, consisting of an infinite number of homotopically
non-equivalent vacua. The instanton solution represents a transition from one
vacuum class to another. Physics enters the scene when we ask what is the
amplitude for this transition. Classically, of course, it is zero, since there is an
energy hump in between two vacua. But because of quantum mechanics there
is a barrier penetration factor. We now consider this.

Quantum tunnelling, 8-vacua and symmetry breaking

What we shall argue is that the barrier penetration amplitude is
e %5, Sg = Euclidean action. (10.113)

To see this consider the problem of the motion of a single particle through a
1-dimensional potential well, in the quasi-classical (WKB) approximation. If
V > E the process is classically (4 = 0) forbidden, but the actual tunnelling
amplitude is

exp {— %Jb[Zm(V — E)]|? dx} = exp (—%SE) (10.114)
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where Sg is defined by the integral above. We shall proceed to show that Sg is,
in fact, the action for imaginary times. For consider the case where £ > V, and
the transition is classically allowed. In this case the wave function oscillates,
and the number of oscillations is given by

1b lb
~ | pdx = = [2m(E — V)]"*dx. 10.115
| pdx = [ [2m(E - V]2 dx (10.115)

On the other hand,

fpdx =Jp)'cdt=j(H + L)dt=j(E + L)d.

If the total energy is normalised to zero, then

fpdx:det=S

which is the total action for the motion from a to b. Now the only difference
between (10.114) and (10.115) is that the sign of E — V is reversed. However,
the sign of V in the equation of motion

v
ox

mx =

is reversed if we replace ¢ by it. Hence Sg, defined in (10.114), is the action for
imaginary times. In the case of field theory, this becomes the action in
Euclidean space. The tunnelling amplitude, then, is given by (10.113).
What is the action for our instanton? It is easily calculated from the
inequality
Tr(F,, — E,)*=0. (10.116)
Noting that

Euvpouvd = 2(6p1<60)t - 6,0160:()

it follows immediately that

Fvayv = Fquyv
so that (10.116) yields
Tr F F,y = Tr F F,. (10.117)

The solution (10.108), however, possesses the property of self-duality (see
(10.89)):

F,=F,. (10.118)

(This is a crucial property of instantons, and many treatments use it as a
starting point. In view of the Bianchi identity (10.96) self-duality guarantees
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that the field equations (10.95) are satisfied.) It follows that (10.117) becomes
an equality for instantons. Noting that the action (in Euclidean space) is

1 a
s=- J Fa,F%, d*
1
- —EITr F F,d'x, (10.119)
the equality (10.117) together with (10.104) yields
2 2
S = —Slzq = —§12 (10.120)
g g

since g = 1. Hence the tunnelling amplitude between the pure vacuum and the
gauge rotated vacuum is of the order

e 878 (10.121)

Now that we have established that in a Yang-Mills quantum theory the
vacuum is infinitely degenerate, with non-zero transition amplitudes between
the gauge rotated vacua belonging to different homotopy classes, it follows that
the true ground state of Hilbert space may be written

<]

lvac)g = > e™|vac), (10.122)

n=—o

where n is an integer labelling the homotopy class. It is characterised by a
particular value of 6, and the coefficients e"? ensure the invariance (up to a
phase) of [vac)y under gauge transformations g; (see (10.112)). They have the
effect

lvac), 55 |vac) ,.i (10.123)
and hence
[vac)g 55 e vac),. (10.124)

Gauge transformations of the type g; (or g,), which change the homotopy
class, are sometimes called ‘large’ gauge transformations. ‘Small’ gauge trans-
formations are those continuously deformable to the identity (for example,
infinitesimal ones), which do not change the homotopy class.

Vacua of the type (10.117) are known as 8-vacua, and they have several
important consequences in particle physics. If 6+ 0 the vacuum state is
complex, and time reversal invariance is violated. From the CPT theorem, it
then follows that CP invariance is violated. Further, since under parity
g1— (g1)7!, unless 6 =0, P is also violated. The observed scale of T violation
in physics requires 6 < 107> (Wilczek 1978). A satisfactory explanation of why
0 is so small yet not zero is yet to be found.



10.5 Instantons 423

Finally, 't Hooft has drawn attention to a remarkable consequence of the
existence of instantons when fermions are also present. Consider a theory with
N massless quarks, where N is a ‘flavour’ index. It has a chiral symmetry
SU(N)L ® SU(N)gr ® U(1). The axial current ]i, however, has an anomaly
(cf. equation (9.265))

Ng* a4 3
3,5 = —1;’7 _FiF.

Comparing with (10.104), however, gives
f d*x3,J5 = 2Ng

so that in the field of an instanton with ¢ = 1 there is a violation of axial charge
Q° by

AQ° =2N.
This results in decays such as
p+n—oet+9, or ut+7,

which violate baryon and lepton number (which are not gauge symmetries).
The probability of these decays is, however,

e~167r2/g2 — e~167r2/ezsin‘20w

= e~dmx 137 xsin?6w

— 6026 — 10262

if sin? @y =~ 0.35. This gives a deuteron lifetime of the order of 10°¥s=~
10%8 yr. Such an enormously large number is typical of the results of instanton
calculations. It would be interesting if some of the large numbers in physics
owed their origin to considerations of this type.

The methods of the present chapter are in essence non-perturbative; firstly,
because a perturbation around a pure vacuum will never produce an excitation
above a vacuum belonging to a different homotopy class; and secondly, because
the semi-classical approximation is also non-perturbative. This has given a large
measure of impetus and excitement to topological methods in the last few
years, because of the knowledge that areas of physics are being explored which
are completely inaccessible to perturbation theory. Some hope is held out, for
example, that quark confinement may be explained by these methods. In any
case, a new spectre has opened on the world, and non-Abelian gauge theories
like electroweak theory, QCD and grand unification (and gravity?) are now
seen to have a much richer structure than had hitherto been dreamed of.



424 Topological objects in field theory

Summary

'The kink solution to the sine—-Gordon equation is exhibited. The stability of
the kink is due to the topology of the boundary conditions. *It is shown that in
two (or more) space dimensions finite energy solitons may only exist if there is
also a gauge field. The corresponding solution in 2-dimensional space (or
3-dimensional space with cylindrical symmetry) is a line carrying magnetic flux,
identified with the Abrikosov flux line in superconductivity. Such vortex lines
exist when the gauge group is U(1), but not when it is SU(2). In the case of
O(3), there is only one value for the charge per unit length of the vortex. >The
magnetic monopole is introduced, and Dirac’s quantisation condition derived.
Wu and Yang’s fibre bundle formulation of the Dirac monopole is briefly
outlined. *Certain spontaneously broken non-Abelian gauge theories possess
solutions with magnetic charge, the so-called 't Hooft—Polyakov monopoles. If
the gauge group is G, and the unbroken subgroup is H, the condition that
monopoles exist is that 7,(G/H) is non-trivial. Hence 't Hooft-Polyakov
monopoles do not exist in the Weinberg—Salam model. It is shown how a
gauge transformation relates the Dirac and ’t Hooft—Polyakov monopoles.
SThe instanton is a topologically non-trivial solution to the pure (not sponta-
neously broken) gauge-field equations. It describes a configuration with energy
localised in time as well as in space. Its topological nature is described. The
vacuum is infinitely degenerate, and some physical consequences of this,
depending on quantum tunnelling, are outlined.

Guide to further reading

For comprehensive reviews of solitons in non-linear theories (excluding gauge
theories), see Scott, Chu & McLaughlin (1973), Whitham (1974). For short
reviews, see Coleman in Zichichi (1977), Wick in Zichichi (1978). Early
examples of kinks in physics are discussed in Finkelstein & Misner (1959),
Finkelstein (1966). For an example of possible application to elementary
particles, see Faddeev (1976). Quantisation of solitons is discussed by Coleman
in Zichichi (1977) and in Neveu (1977). Vortex lines were first shown to exist in
gauge theories by Nielsen & Olesen (1973). For an application to the Wein-
berg—Salam model see Nambu (1977). For a review, see Jaffe & Taubes
(1980). Dirac’s paper on magnetic monopoles is Dirac (1931); see also Wentzel
(1966). The Wu-Yang formulation of Dirac’s theory is found in Wu & Yang
(1975). For further developments of the fibre bundle formulation of the Dirac
monopole, see Trautman (1977), Minami (1979), Ryder (1980). Reviews of the
Dirac monopole are to be found in Felsager (1981, ch. 9), Coleman in Zichichi
(1983), Goddard & Olive (1978), Craigie, Goddard & Nahm (1982). The
original papers on the ’t Hooft and Polyakov monopoles are: 't Hooft (1974),
Polyakov (1974, 1976). The topological origin of these monopoles was pointed
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out by Arafune, Freund & Goebel (1975), Tyupkin, Fateev & Shvarts (1975),
Monastyrskii & Perelomov (1975). For reviews, see refs. Nambu (1979),
Rajaraman (1982), S. Coleman in Zichichi (1977), Jaffe & Taubes (1980),
Coleman (1983), Goddard & Olive (1978), Craigie et al. (1982), Huang (1982).
Instantons were discovered by Belavin ez al. (1975). Important developments
were made by 't Hooft (1976, 1978), Jackiw & Rebbi (1976), Callan, Dashen &
Gross (1976). Mathematical aspects of instantons are explored in Jackiw &
Rebbi (1977); Atiyah, et al. (1978), Drinfeld & Manin (1978), Atiyah, Hitchin
& Singer (1978). General topological aspects of instantons and monopoles are
outlined in Nowakowski & Trautman (1978), Trautman (1979). Reviews of
instantons are to be found in Coleman in Zichichi (1979), Vainshtein et al.
(1982), Crewther & Schroer in Urban (1978). See also Felsager (1981, ch. 5),
Rajaraman (1982), and Huang (1992). A review of the mathematical aspects of
instantons is to be found in Drinfeld & Manin (1980). A very readable
introductory account of the differential geometry of gauge fields, including the
topology of monopoles and instantons, is Eguchi, Gilkey & Hanson (1980).



