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tion of motion for (q2) and we obtain 

ih(a/at)(q2) + ! trQ l[R, p2] = N,,(p.) trQ q2[P, R], 

ih(a/at)(q2) - ih(qp + pq) = N"(p.) tr. q2[P, R], 

which becomes 

(a/at)(q2) - (qp + pq) = 2N"(p.)(q). (A4) 

In Sec. IV we need the equation of motion for 
(pq) which can be obtained from (qp + pq) since 

(qp + pq) = ih + 2(qp). 

We find the equation of motion for (pq + pq) by 
multiplying Eq. (3.10) by (pq + qp) and taking 
the trace. The result is 

(a/at)(qp + pq) - 2«P2) _ fl2(q2» 

= 2N"(p.)(P). (A5) 
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Equations (A3), (A4) , and (A5) constitute three 
first-order, linear inhomogeneous equations for the 
three second moments of the electromagnetic field, 
(p2), (q2), and (pq). In general, if we go to nth 
order in "( N "( we find a set of first-order inhomo
geneous linear equations for the nth moments. The 
inhomogeneities depend on moments of lower order 
than the nth. 

It is important to note that even if all the second 
moments are zero initially they will grow to nonzero 
values because the inhomogeneous terms depend on 
(p), (q), and (p.). 

The eigenfrequencies of the homogeneous equa
tions for (q2), (p2), and (pq) are 0, ±2ifl. Since 
these frequencies are prominent in the inhomo
geneous terms, the second moments are strongly 
coupled to the SCFA quantities (p), (q), and (p.). 
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It is shown that for a wide class of nonlinear wave equations there exist no stable time-independent 
solutions of finite energy. The possibility is considered whether elementary particles might be oscil
lating solutions of some nonlinear wave equation, in which the wavefunction is periodic in the time 
though the energy remains localized. 

1. INTRODUCTION 

IN an attempt to find a model for extended elemen
tary particles, as opposed to singular point 

particles, Enz1 has recently considered the non
linear equation 

\/20 - (1/c2)(a2 0/at2) = t sin 20, (1) 

which is derived from the variation principle 

6 J [~(~~r - (VO)2 - sin2 0] d3r dt = O. (2) 

OCr, t) is a c-number wavefunction which is required 
to be free of singularities for all rand t. In the 
one-dimensional case (\/2 replaced by a2/ax2) Enz 
showed that (1) has time-independent solutions 

1 U. Enz, Phys. Rev. 131, 1392 (1963). We have taken 
Enz's constants K and A both equal to 1, which amounts to 
a suitable choice of units of length and energy. 

where the energy is localized about a point on the 
x axis; if we further require that the solution be 
stable with respect to small deformations then only 
certain discrete energy values are permitted. In 
addition these one-dimensional solutions possess 
certain symmetry and topological properties which 
Enz suggests might correspond in the three-dimen
sional case to such discrete quantum numbers as 
charge or parity. 

These suggestive results of Enz for the one-dimen
sional case then lead us to consider the following 
problem: Can (1) or some similar nonlinear equation 
have stable, time-independent, localized solutions in 
three dimensions? If such solutions exist then it 
would be an attractive hypothesis that the allowed 
energies correspond to the rest energies of elementary 
particles. 

The answer given to the above question by this 



MODELS FOR ELEMENTARY PARTICLES 1253 

:paper is no. The equation 

\12 B - (l/c2)(a2 Bjae) = !r(B), 

derived from the variation principle 

o J [~(~~r - (VB)2 - f(B)J dar dt = 0, 

so that 11 + 312 = 0 has only the trivial solution 
11 = 12 = 0, giving B = O. (Our result here is not 

(3) applicable to the one-dimensional case where Enz 
does obtain stable solutions. In one dimension we 
obtain E~ = Xl1 + 12/X yielding 11 = 12 on dif

(4) ferentiation, which gives no contradiction.) 

will be proved to have no stable, time-independent, 
localized solutions for any f(B). In particular, Enz's 
equation (1) with f(B) = sin2 B has no such solutions. 
By "localized" solution we shall mean one where 
f (VB)2 dar and J f(B) d3r converge when the in
tegrals are taken over all space. 

2. PROOF 

If B is a function of r only, we can replace (4) 
by oE = 0 with the energy E given by 

A necessary condition for the solution to be stable 
is that the second-order variation 02E ~ O. Suppose 
B(r) is a localized solution of oE = O. Define B~(r) = 
B(Xr) where X is an arbitrary constant, and write 
11 = f (VB)2 dar, 12 = f f(B) dar. 
Then 

E~ = J [(V B~)2 + f( B~)] dar 

= IdX + la/X3 

on changing the variable of integration from r to 
Xr; whence 

(dE~/dXh_1 = -11 - 312 , 

(d2E~/dX2)~_1 = 211 + 1212, 

Since B~ is a solution of oE = 0 for X = 1, we must 
have 

(d2E>./dA2h_1 = -211 < o. 
That is, 02E < 0 for a variation corresponding to 
a uniform stretching of the "particle." Hence the 
solution B(r) is unstable, proving the theorem. 

In the above proof no restriction was placed on 
the sign of f(B). In Enz's equation (1) we have 
f(B) = sin2 B 2': 0, which means that the energy 
density has the desirable feature of being everywhere 
positive. However it is interesting to note that if 
f(B) 2': 0 then oE = 0 has no nontrivial localized 
solutions at all, either stable or unstable. For in 
this case both 11 and 12 are necessarily nonnegative 

We can easily extend the above proof to certain 
cases where we have a complex, multicomponent 
wavefunction 1/tA rather than the real scalar func
tion B; the superscript A denotes some tensor or 
spinor index. For example we can carry through 
the above proof for wave equations derived from 
the variation principle 

,. 

where CAB is an arbitrary positive definite Hermitian 
matrix, and g'" the usual metric tensor (t, K = 0, 1, 
2, 3). If CAB is not definite, or if the coefficients of 
(a1/t*A /ax') (a1/tB lax") are not of the simple product 
form CABg'·, then the condition for stability is no 
longer 02 E ~ 0 and the proof fails. 

3. DISCUSSION 

Weare thus faced with the disconcerting fact 
that no equation of type (4) has any time-indepen
dent solutions which could reasonably be interpreted 
as elementary particles. Some possible ways out of 
this difficulty are: 

(a) We could take a Lagragian in which the 
derivatives occur in higher powers than the second. 
For example, with the form [(VB)2 - (l/c2)(aB/at/]" 
the nonexistence proof of Sec. 2 fails for n > i. 
Such a Lagrangian, however, leads to a very com
plicated differential equation. 

(b) We could consider first-order spinor equations, 
such as 

where 1/t is a Dirac 4-component spinor and 1/tt its 
Hermitian conjugate, a is the usual Dirac matrix, 
and f(1/I\ 1/1) is an arbitrary Lorentz-invariant func
tion. With a first-order equation of this type, the 
condition for stability is no longer 02E 2': 0, but 
is now very complicated, and the author has been 
unable to prove or disprove the existence of stable 
time-independent solutions of (5) for general func
tions f(1/It, 1/1). 
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(c) Quantization of the field equations by replac
ing the wavefunction by an operator satisfying some 
postulated commutation relations. Quantized equa
tions of type (5) have been investigated extensively 
by Heisenberg et al.,2 who find particle-like solu
tions. 

(d) Elementary particles might correspond to 
stable, localized solutions which are periodic in time, 
rather than time-independent. 

We shall confine ourselves here to a consideration 
of Possibility (d), that elementary particles are 
oscillating localized concentrations of energy. We 
know experimentally3 that a particle of momentum 
p has an associated de Broglie4 wavevector k = pjn; 
relativistic invariance then suggests that a particle 
of mass m at rest should have a de Broglie frequency 
w = mc2/n. If elementary particles correspond to 
stable periodic solutions of some nonlinear wave 
equation, then we could possibly identify the fre-

2 H. P. Duerr, W. Heisenberg, H. Mitter, S. Schlieder, 
and K. Yamazaki, Z. Naturforsch. 14,441 (1959); W. Heisen
berg, Proceedings of the 1960 Annual International Conference 
on High-Energy Physics at Rochester (Interscience Publishers, 
Inc., New York, 1960), p. 851. 

3 C. Davisson and L. H. Genner, Phys. Rev. 30, 705 (1927). 
4 L. de Broglie, Phil. Mag. 47, 446 (1926); Ann. Phys. 

(Paris) 3, 22 (1925). 

quency of this oscillation with the de Broglie 
frequency. 

A particularly simple form of periodic solution 
is one where the structure rotates at a constant 
angular velocity w about a fixed direction, say the 
Z axis; i.e., the wavefunction is a function of x', 
y', Zl, where 

x' = x cos wt + y sin wt, 

y' = -x sin wt + y cos wt, 

z' = z. 

Then the variation principle (4) is equivalent to 

5 J [(V'Ol - :: ILOl 2 + f(O) ] d
3r' = 0, (6) 

where 
L = -i[x'(ajay') - y'(ajax')]. 

However the condition for stability of solutions 
is now very complicated, and the author has been 
unable to demonstrate either the existence or non
existence of stable solutions of Eq. (6). 
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