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CHARACTERISTIC CLASSES

Given a fibre F , a structure group G and a base space M , we may construct
many fibre bundles over M , depending on the choice of the transition functions.
Natural questions we may ask ourselves are how many bundles there are over M
with given F and G, and how much they differ from a trivial bundle M × F . For
example, we observed in section 10.5 that an SU(2) bundle over S4 is classified
by the homotopy group π3(SU(2)) ∼= �. The number n ∈ � tells us how the
transition functions twist the local pieces of the bundle when glued together.
We have also observed that this homotopy group is evaluated by integrating
tr�2 ∈ H 4(S4) over S4, see theorem 10.7.

Characteristic classes are subsets of the cohomology classes of the base
space and measure the non-triviality or twisting of a bundle. In this sense, they
are obstructions which prevent a bundle from being a trivial bundle. Most of the
characteristic classes are given by the de Rham cohomology classes. Besides their
importance in classifications of fibre bundles, characteristic classes play central
roles in index theorems.

Here we follow Alvalez-Gaumé and Ginsparg (1984), Eguchi et al (1980),
Gilkey (1995) and Wells (1980). See Bott and Tu (1982), Milnor and Stasheff
(1974) for more mathematical expositions.

11.1 Invariant polynomials and the Chern–Weil homomorphism

We give here a brief summary of the de Rham cohomology group (see chapter 6
for details). Let M be an m-dimensional manifold. An r -form ω ∈ �r (M) is
closed if dω = 0 and exact if ω = dη for some η ∈ �r−1(M). The set of closed r -
forms is denoted by Zr (M) and the set of exact r -forms by Br (M). Since d2 = 0,
it follows that Zr (M) ⊃ Br (M). We define the r th de Rham cohomology group
H r(M) by

H r(M) ≡ Zr (M)/Br (M).

In H r(M), two closed r -forms ω1 and ω2 are identified if ω1−ω2 = dη for some
η ∈ �r−1(M). Let M be an m-dimensional manifold. The formal sum

H ∗(M) ≡ H 0(M)⊕ H 1(M)⊕ · · · ⊕ H m(M)

is the cohomology ring with the product ∧ : H ∗(M) × H ∗(M) → H ∗(M)
induced by ∧ : H p(M) × H q(M) → H p+q(M). Let f : M → N be a
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420 CHARACTERISTIC CLASSES

smooth map. The pullback f ∗ : �r (N) → �r (M) naturally induces a linear
map f ∗ : H r(N) → H r(M) since f ∗ commutes with the exterior derivative:
f ∗ dω = d f ∗ω. The pullback f ∗ preserves the algebraic structure of the
cohomology ring since f ∗(ω ∧ η) = f ∗ω ∧ f ∗η.

11.1.1 Invariant polynomials

Let M(k, � ) be the set of complex k × k matrices. Let Sr (M(k, � )) denote
the vector space of symmetric r -linear � -valued functions on M(k, � ). In other
words, a map

P̃ : r⊗ M(k, � ) → �

is an element of Sr (M(k, � )) if it satisfies, in addition to linearity in each entry,
the symmetry

P̃(a1, . . . , ai , . . . , a j , . . . , ar )

= P̃(a1, . . . , a j , . . . , ai , . . . , ar ) 1 ≤ i, j ≤ r (11.1)

where ap ∈ GL(k, � ). Let

S∗(M(k, � )) ≡ ∞⊕
r=0

Sr (M(k, � ))

denote the formal sum of symmetric multilinear � -valued functions. We define a
product of P̃ ∈ S p(M(k, � )) and Q̃ ∈ Sq(M(k, � )) by

P̃ Q̃(X1, . . . , X p+q )

= 1

(p + q)!
∑

P

P̃(X P(1), . . . , X P(p))Q̃(X P(p+1), . . . , X P(p+q)) (11.2)

where P is the permutation of (1, . . . , p + q). S∗(M(k, � )) is an algebra with
this multiplication.

Let G be a matrix group and � its Lie algebra. In practice, we take
G = GL(k, � ),U(k) or SU(k). The Lie algebra � is a subspace of M(k, � )
and we may consider the restrictions Sr (�) and S∗(�) ≡⊕

r≥0 Sr (�). P̃ ∈ Sr (�)

is said to be invariant if, for any g ∈ G and Ai ∈ �, P̃ satisfies

P̃(Adg A1, . . . ,Adg Ar ) = P̃(A1, . . . , Ar ) (11.3)

where Adg Ai = g−1 Ai g. For example,

P̃(A1, A2, . . . , Ar ) = str(A1, A2, . . . , Ar )

≡ 1

r !
∑

P

tr(AP(1), AP(2), . . . , AP(r)) (11.4)
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is symmetric, r -linear and invariant, where ‘str’ stands for the symmetrized trace
and is defined by the last equality. The set of G-invariant members of Sr (�) is
denoted by I r (G). Note that �1 = �2 does not necessarily imply I r (G1) =
I r (G2). The product defined by (11.2) naturally induces a multiplication

I p(G)⊗ I q (G)→ I p+q (G). (11.5)

The sum I ∗(G) ≡⊗
r≥0 I r (G) is an algebra with this product.

Take P̃ ∈ I r (G). The shorthand notation for the diagonal combination is

P(A) ≡ P̃(A, A, . . . , A︸ ︷︷ ︸
r

) A ∈ �. (11.6)

Clearly, P is a polynomial of degree r and called an invariant polynomial. P is
also Ad G-invariant,

P(Adg A) = P(g−1 Ag) = P(A) A ∈ �, g ∈ G. (11.7)

For example, tr(Ar ) is an invariant polynomial obtained from (11.4). In general,
an invariant polynomial may be written in terms of a sum of products of Pr ≡
tr(Ar ).

Conversely, any invariant polynomial P defines an invariant and symmetric
r -linear form P̃ by expanding P(t1 A1 + · · · + tr Ar ) as a polynomial in ti . Then
1/r ! times the coefficient of t1t2 · · · tr is invariant and symmetric by construction
and is called the polarization of P . Take P(A) ≡ tr(A3), for example. Following
the previous prescription, we expand tr(t1 A1 + t2 A2 + t3 A3)

3 in powers of t1, t2
and t3. The coefficient of t1t2t3 is

tr(A1 A2 A3 + A1 A3 A2 + A2 A1 A3 + A2 A3 A1 + A3 A1 A2 + A3 A2 A1)

= 3 tr(A1 A2 A3 + A2 A1 A3)

where the cyclicity of the trace has been used. The polarization is

P̃(A1, A2, A3) = 1
2 tr(A1 A2 A3 + A2 A1 A3) = str(A1, A2, A3).

In the previous chapter, we introduced the local gauge potential� = �µ dxµ

and the field strength � = 1
2�µν dxµ ∧ dxν on a principal bundle. We have

shown that these geometrical objects describe the associated vector bundles as
well. Since the set of connections {�i } describes the twisting of a fibre bundle,
the non-triviality of a principal bundle is equally shared by its associated bundle.
In fact, if (10.57) is employed as a definition of the local connection in a vector
bundle, it can be defined even without reference to the principal bundle with which
it is originally associated. Later, we encounter situations in which use of vector
bundles is essential (the Whitney sum bundle, the splitting principle and so on).
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Let P(M, � ) be a principal bundle. We extend the domain of invariant
polynomials from � to �-valued p-forms on M . For Aiηi (Ai ∈ �, η ∈
�pi (M); 1 ≤ i ≤ r), we define

P̃(A1η1, . . . , Arηr ) ≡ η1 ∧ . . .∧ ηr P̃(A1, . . . , Ar ). (11.8)

For example, corresponding to (11.4), we have

str(A1η1, . . . , Arηr ) = η1 ∧ . . . ∧ ηr str(A1, . . . , Ar ).

The diagonal combination is

P(Aη) ≡ η ∧ . . . ∧ η︸ ︷︷ ︸
r

P(A). (11.9)

The action P̃ or P on general elements is given by the r -linearity. In particular,
we are interested in the invariant polynomial of the form P(�) in the following.
The importance of invariant polynomials resides in the following fundamental
theorem.

Theorem 11.1. (Chern–Weil theorem) Let P be an invariant polynomial. Then
P(�) satisfies

(a) dP(�) = 0.
(b) Let � and �

′ be curvature two-forms corresponding to different
connections� and �′. Then the difference P(�′)− P(�) is exact.

Proof. (a) It is sufficient to prove that dP(�) = 0 for an invariant polynomial
Pr (�) which is homogeneous of degree r , since any invariant polynomial can be
decomposed into homogeneous polynomials. First consider the identity,

P̃r (g
−1
t X1gt , . . . , g−1

t Xr gt ) = P̃r (X1, . . . , Xr )

where gt ≡ exp(t X) and X, Xi ∈ �. By putting t = 0 after differentiation with
respect to t , we obtain

r∑
i=1

P̃r (X1, . . . , [Xi , X], . . . , Xr ) = 0. (11.10)

Next, let A be a �-valued p-form and �i be a �-valued pi -form (1 ≤ i ≤ r).
Without loss of generality, we may take A = Xη and�i = Xiηi where X, Xi ∈ �

and η (ηi ) is a p-form ( pi -form). Define

[�i , A] ≡ ηi ∧ η[Xi , X]
= Xi X (ηi ∧ η)− (−1)ppi X Xi (η ∧ ηi ). (11.11)
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Let us note that

P̃r (�1, . . . , [�i , A], . . . , �r )

= η1 ∧ . . . ∧ ηi ∧ η ∧ . . .∧ ηr P̃r (X1, . . . , Xi X, . . . , Xr )

− (−1)p·piη1 ∧ . . .∧ η ∧ ηi ∧ . . .
. . . ∧ ηr P̃r (X1, . . . , X Xi , . . . , Xr )

= η ∧ η1 ∧ . . .∧ ηr (−1)p(p1+···+pi )

× P̃r (X1, . . . , [Xi , X], . . . , Xr ).

From this and (11.10), we find

r∑
i=1

(−1)p(p1+···+pi ) P̃r (�1, . . . , [�i , A], . . . , �r ) = 0. (11.12)

Next, consider the derivative,

dP̃r (�1, . . . , �r ) = d(η1 ∧ . . .∧ ηr )P̃r (X1, . . . , Xr )

=
r∑

i=1

(−1)(p1+···+pi−1)(η1 ∧ . . . ∧ dηi ∧ . . . ∧ ηr )

× P̃r (X1, . . . , Xi , . . . , Xr )

=
r∑

i=1

(−1)(p1+···+pi−1) P̃r (�1, . . . , d�i , . . . , �r ). (11.13)

Let A = � and �i = � in (11.12) and (11.13) for which p = 1 and pi = 2. By
adding 0 of the form (11.12) to (11.13) we have

dP̃r (�, . . . ,�)

=
r∑

i=1

[P̃r (�, . . . , d�, . . . ,�)+ P̃r (�, . . . , [�,�], . . . ,�)]

=
r∑

i=1

P̃r (�, . . . ,��, . . . ,�) = 0 (11.14)

since �� = d�+ [�,�] = 0 (the Bianchi identity). We have proved

dPr (�) = dP̃r (�, . . . ,�) = 0.

(b) Let � and �′ be two connections on E and let � and �′ be the respective
field strengths. Define an interpolating gauge potential�t , by

�t ≡ �+ tθ θ ≡ (�′ −�) 0 ≤ t ≤ 1 (11.15)
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so that �0 = � and �1 = �′. The corresponding field strength is

�t ≡ d�t +�t ∧�t = �+ t�θ + t2θ2 (11.16)

where �θ = dθ + [�, θ ] = dθ +� ∧ θ + θ ∧�. We first note that

Pr (�
′)− Pr (�) = Pr (�1)− Pr (�0) =

∫ 1

0
dt

d

dt
Pr (�t)

= r
∫ 1

0
dt P̃r

(
d

dt
�t,�t , . . . ,�t

)
. (11.17)

From (11.16), we find that

d

dt
Pr (�t) = r P̃r (�θ + 2tθ2,�t , . . . ,�t)

= r P̃r (�θ,�t , . . . ,�t)+ 2r t P̃r (θ
2,�t , . . . ,�t). (11.18)

Note also that

��t = d�t + [�,�t ] = −[�t ,�t] + [�,�t] = t[�t , θ ]
where use has been made of the Bianchi identity �t�t = d�t + [�t ,�t ] = 0. [�
is the covariant derivative with respect to � while �t is that with respect to �t .]
It then follows that

d[P̃r (θ,�t , . . . ,�t)]
= P̃r (dθ,�t, . . . ,�t)− (r − 1)P̃r (θ, d�t, . . . ,�t)

= P̃r (�θ,�t , . . . ,�t)− (r − 1)P̃r (θ,��t , . . . ,�t)

= P̃r (�θ,�t , . . . ,�t)− (r − 1)t P̃r (θ, [�t, θ ],�t, . . . ,�t) (11.19)

where we have added a 0 of the form (11.12) to change d to �. If we take
�1 = A = θ,�2 = · · · = �m = �t in (11.12), we have

2P̃r (θ
2,�t , . . . ,�t)+ (r − 1)P̃r (θ, [�t, θ ],�t , . . . ,�t) = 0.

From (11.18), (11.19) and the previous identity, we obtain

d

dt
Pr (�t) = rd[P̃r (θ,�t, . . . ,�t)].

We finally find that

Pr (�
′)− Pr (�) = d

[
r
∫ 1

0
P̃r (�

′ −�,�t, . . . ,�t) dt

]
. (11.20)

This shows that Pr (�
′) differs from Pr (�) by an exact form. �
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We define the transgression T Pr (�
′,�) of Pr by

T Pr (�
′,�) ≡ r

∫ 1

0
dt P̃r (�

′ −�,�t , . . . ,�t) (11.21)

where P̃r is the polarization of Pr . Transgressions will play an important role
when we discuss Chern–Simons forms in section 11.5. Let dim M = m. Since
Pm(�

′) differs from Pm(�) by an exact form, their integrals over a manifold M
without a boundary should be the same:∫

M
Pm(�

′)−
∫

M
Pm(�) =

∫
M

dT Pm (�
′,�) =

∫
∂M

Pm(�
′,�) = 0. (11.22)

As has been proved, an invariant polynomial is closed and, in general, non-
trivial. Accordingly, it defines a cohomology class of M . Theorem 11.1(b)
ensures that this cohomology class is independent of the gauge potential chosen.
The cohomology class thus defined is called the characteristic class. The
characteristic class defined by an invariant polynomial P is denoted by χE (P)
where E is a fibre bundle on which connections and curvatures are defined.
[Remark: Since a principal bundle and its associated bundles share the same
gauge potentials and field strengths, the Chern–Weil theorem applies equally to
both bundles. Accordingly, E can be either a principal bundle or a vector bundle.]

Theorem 11.2. Let P be an invariant polynomial in I ∗(G) and E be a fibre bundle
over M with structure group G.

(a) The map
χE : I ∗(G)→ H ∗(M) (11.23)

defined by P → χE (P) is a homomorphism (Weil homomorphism).
(b) Let f : N → M be a differentiable map. For the pullback bundle f ∗E of
E , we have the so-called naturality

χ f ∗E = f ∗χE . (11.24)

Proof. (a) Take Pr ∈ I r (G) and Ps ∈ I s(G). If we write � = �αTα , we have

(Pr Ps)(�) = �α1 ∧ . . . ∧ �αr ∧ �β1 ∧ . . . ∧ �βs

× 1

(r + s)! P̃r (Tα1, . . . , Tαr )P̃n(Tβ1, . . . , Tβs )

= Pr (�)∧ Ps(�).

Then (a) follows since Pr (�), Ps(�) ∈ H ∗(M).
(b) Let� be a gauge potential of E and � = d�+�∧�. It is easy to verify

that the pullback f ∗� is a connection in f ∗E . In fact, let �i and � j be local
connections in overlapping charts Ui and U j of M . If ti j is a transition function
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on Ui ∩ U j , the transition function on f ∗E is given by f ∗ti j = ti j ◦ f . The
pullback f ∗�i and f ∗� j are related as

f ∗� j = f ∗(t−1
i j �i ti j + t−1

i j dti j )

= ( f ∗t−1
i j )( f ∗�i )( f ∗ti j )+ ( f ∗t−1

i j )(d f ∗ti j ).

This shows that f ∗� is, indeed, a local connection on f ∗E . The corresponding
field strength on f ∗E is

d( f ∗�i )+ f ∗�i ∧ f ∗�i = f ∗[d�i +�i ∧�i ] = f ∗�i .

Hence, f ∗P(�i) = P( f ∗�i), that is f ∗χE (P) = χ f ∗E (P). �

Corollary 11.1. Characteristic classes of a trivial bundle are trivial.

Proof. Let E
π−→ M be a trivial bundle. Since E is trivial, there exists a map

f : M → {p} such that E = f ∗E0 where E0 −→ {p} is a bundle over a
point p. All the de Rham cohomology groups of a point are trivial and so are the
characteristic classes. Theorem 11.2(b) ensures that the characteristic classes χE

(= f ∗χE0) of E are also trivial. �

11.2 Chern classes

11.2.1 Definitions

Let E
π−→ M be a complex vector bundle whose fibre is � k . The structure group

G is a subgroup of GL(k, � ), and the gauge potential � and the field strength �
take their values in �. Define the total Chern class by

c(�) ≡ det

(
I + i�

2π

)
. (11.25)

Since � is a two-form, c(�) is a direct sum of forms of even degrees,

c(�) = 1+ c1(�)+ c2(�)+ · · · (11.26)

where c j (�) ∈ �2 j (M) is called the j th Chern class. In an m-dimensional
manifold M , the Chern class c j (�) with 2 j > m vanishes trivially. Irrespective
of dim M , the series terminates at ck(�) = det(i�/2π) and c j (�) = 0 for j > k.
Since c j (�) is closed, it defines an element [c j (�)] of H 2 j(M).

Example 11.1. Let F be a complex vector bundle with fibre � 2 over M , where
G = SU(2) and dim M = 4. If we write the field � = �

α(σα/2i), �α =
1
2�

α
µν dxµ ∧ dxν, we have

c(�) = det

(
I + i

2π
�
α(σα/2i)

)
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= det

(
1+ (i/2π)(�3/2i) (i/2π)(�1 − i�2)/2i
(i/2π)(�1 + i�2)/2i 1− (i/2π)(�3/2i)

)
= 1+ 1

4

(
i

2π

)2 (
�

3 ∧ �3 + �1 ∧ �1 + �2 ∧ �2
)
. (11.27)

Individual Chern classes are

c0(�) = 1

c1(�) = 0

c2(�) =
(

i

2π

)2 ∑ �
α ∧ �α

4
= det

(
i�

2π

)
.

(11.28)

Higher Chern classes vanish identically.

For general fibre bundles, it is rather cumbersome to compute the Chern
classes by expanding the determinant and it is desirable to find a formula which
yields them more easily. This is done by diagonalizing the curvature form.
The matrix form � is diagonalized by an appropriate matrix g ∈ GL(k, � ) as
g−1(i�/2π)g = diag(x1, . . . , xk), where xi is a two-form. This diagonal matrix
will be denoted by A. For example, if G = SU(k), the generators are chosen to be
anti-Hermitian and a Hermitian matrix i�/2π can be diagonalized by g ∈ SU(k).
We have

det(I + A) = det[diag(1+ x1, 1+ x2, . . . , 1+ xk)]

=
k∏

j=1

(1+ x j )

= 1+ (x1 + · · · + xk)+ (x1x2 + · · · + xk−1xk)

+ · · · + (x1x2 + · · · + xk)

= 1+ tr A + 1
2 {(tr A)2 − tr A2} + · · · + det A. (11.29)

Observe that each term of (11.29) is an elementary symmetric function of {x j },
S0(x j ) ≡ 1

S1(x j ) ≡
k∑

j=1

x j

S2(x j ) ≡
∑
i< j

xi x j

...

Sk(x j ) ≡ x1x2 . . . xk .

(11.30)
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Since det(I + A) is an invariant polynomial, we have P(�) = P(g�g−1) =
P(2π A/i), see (11.7). Accordingly, we have, for general �,

c0(�) = 1

c1(�) = tr A = tr

(
g

i�

2π
g−1

)
= i

2π
tr�

c2(�) = 1
2 [(tr�)2 − tr�2] = 1

2 (i/2π)
2[tr� ∧ tr�− tr(� ∧ �)]

...

ck(�) = det A = (i/2π)k det�.

(11.31)

Example 11.1 is easily verified from (11.31). [Note that the Pauli matrices (in
general, any element of the Lie algebra ��(n) of SU(n)) are traceless, tr σα = 0.]

11.2.2 Properties of Chern classes

We will deal with several vector bundles in the following. We often denote the
Chern class of a vector bundle E by c(E). If the specification of the curvature is
required, we write c(�E).

Theorem 11.3. Let E
π−→ M be a vector bundle with G = GL(k, � ) and

F = � k .

(a) (Naturality) Let f : N → M be a smooth map. Then

c( f ∗E) = f ∗c(E). (11.32)

(b) Let F
π ′−→ M be another vector bundle with F = � l and G = GL(l, � ).

The total Chern class of a Whitney sum bundle E ⊕ F is

c(E ⊕ F) = c(E) ∧ c(F). (11.33)

Proof.

(a) The naturality follows directly from theorem 11.2(a). Since the curvature
of f ∗E is � f ∗E = f ∗�E , the total Chern class of f ∗E is

c( f ∗E) = det

(
I + i

2π
� f ∗E

)
= det

(
I + i

2π
f ∗�E

)
= f ∗ det

(
I + i

2π
�E

)
= f ∗c(E).

(b) Let us consider the Chern polynomial of a matrix

A =
(

B 0
0 C

)
.
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[Note that the curvature of a Whitney sum bundle is block diagonal: �E⊕F =
diag(�E ,�F).] We find that

det

(
I + iA

2π

)
= det

(
I + iB

2π 0
0 I + iC

2π

)
= det

(
I + iB

2π

)
det

(
I + iC

2π

)
= c(B)c(C).

This relation remains true when B and C are replaced by�E and�F , namely

c(�E⊕F) = c(�E) ∧ c(�F)

which proves (11.33). �

Exercise 11.1. (a) Let E be a trivial bundle. Use corollary 11.1 to show that

c(E) = 1. (11.34)

(b) Let E be a vector bundle such that E = E1 ⊕ E2 where E1 is a vector
bundle of dimension k1 and E2 is a trivial vector bundle of dimension k2. Show
that

ci (E) = 0 k1 + 1 ≤ i ≤ k1 + k2. (11.35)

11.2.3 Splitting principle

Let E be a Whitney sum of n complex line bundles,

E = L1 ⊕ L2 ⊕ · · · ⊕ Ln. (11.36)

From (11.33), we have

c(E) = c(L1)c(L2) . . . c(Ln) (11.37)

where the product is the exterior product of differential forms. Since cr (L) = 0
for r ≥ 2, we write

c(Li ) = 1+ c1(Li ) ≡ 1+ xi . (11.38)

Then (11.37) becomes

c(E) =
n∏

i=1

(1+ xi ). (11.39)

Comparing this with (11.29), we find that the Chern class of an n-dimensional
vector bundle E is identical with that of the Whitney sum of n complex line
bundles. Although E is not a Whitney sum of complex line bundles in general,
as far as the Chern classes are concerned, we may pretend that this is the case.
This is called the splitting principle and we accept this fact without proof. The
general proof is found in Shanahan (1978) and Hirzebruch (1966), for example.
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Intuitively speaking, if the curvature � is diagonalized, the complex vector
space on which g acts splits into k independent pieces: � k → � ⊕ · · · ⊕ � . An
eigenvalue xi is a curvature in each complex line bundle. Since diagonalizable
matrices are dense in M(n, � ), any matrix may be approximated by a diagonal
one as closely as we wish. Hence, the splitting principle applies to any matrix. As
an exercise, the reader may prove (11.33) using the splitting principle.

11.2.4 Universal bundles and classifying spaces

By now the reader must have some acquaintance with characteristic classes.
Before we close this section, we examine these from a slightly different point of
view emphasizing their role in the classification of fibre bundles. Let E

π−→ M
be a vector bundle with fibre � k . It is known that we can always find a bundle

Ē
π ′−→ M such that

E ⊕ Ē ∼= M × �
n (11.40)

for some n ≥ k. The fibre Fp of E at p ∈ M is a k-plane lying in � n . Let Gk,n(� )

be the Grassmann manifold defined in example 8.4. The manifold Gk,n(� ) is
the set of k-planes in � n . Similarly to the canonical line bundle, we define the
canonical k-plane bundle Lk,n(� ) over Gk,n(� ) with the fibre � k . Consider a
map f : M → Gk,n(� ) which maps a point p to the k-plane Fp in � n .

Theorem 11.4. Let M be a manifold with dim M = m and let E
π−→ M be a

complex vector bundle with the fibre � k . Then there exists a natural number N
such that for n > N ,

(a) there exists a map f : M → Gk,n(� ) such that

E ∼= f ∗Lk,n(� ) (11.41)

(b) f ∗Lk,n(� ) ∼= g∗Lk,n(� ) if and only if f, g : M → Gk,n(� ) are
homotopic.

The proof is found in Chern (1979). For example, if E
π−→ M is a complex

line bundle, then there exists a bundle Ē
π ′−→ M such that E ⊕ Ē ∼= M × � n and

a map f : M → G1,n(� ) ∼= � Pn−1 such that E = f ∗L, L being the canonical
line bundle over � Pn−1 . Moreover, if f ∼ g, then f ∗L is equivalent to g∗L.
Theorem 11.4 shows that the classification of vector bundles reduces to that of
the homotopy classes of the maps M → Gk,n(� ).

It is convenient to define the classifying space Gk(� ). Regarding a k-plane
in � n as that in � n+1 , we have natural inclusions.

Gk,k(� ) ↪→ Gk,k+1(� ) ↪→ · · · ↪→ Gk(� ) (11.42)
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where

Gk(� ) ≡
∞⋃

n=k

Gk,n(� ). (11.43)

Correspondingly, we have the universal bundle Lk → Gk(� ) whose fibre is
� k . For any complex vector bundle E

π−→ M with fibre � k , there exists a map
f : M → Gk(� ) such that E = f ∗Lk(� ).

Let E
π−→ M be a vector bundle. A characteristic class χ is defined as a

map χ : E → χ(E) ∈ H ∗(M) such that

χ( f ∗E) = f ∗χ(E) (naturality) (11.44a)

χ(E) = χ(E ′) if E is equivalent to E ′. (11.44b)

The map f ∗ on the LHS of (11.44a) is a pullback of the bundle while f ∗ on
the RHS is that of the cohomology class. Since the homotopy class [ f ] of
f : M → Gk(� ) uniquely defines the pullback

f ∗ : H ∗(Gk)→ H ∗(M) (11.45)

an element χ(E) = f ∗χ(Gk) proves to be useful in classifying complex vector
bundles over M with dim E = k. For each choice of χ(Gk), there exists a
characteristic class in E .

The Chern class c(E) is also defined axiomatically by

(i) c( f ∗E) = f ∗c(E) (naturality) (11.46a)

(ii) c(E) = c0(E)⊕ c1(E)⊕ · · · ⊕ ck(E)

ci (E) ∈ H 2i(M); ci (E) = 0 i > k (11.46b)

(iii) c(E ⊕ F) = c(E)c(E) (Whitney sum) (11.46c)

(iv) c(L) = 1+ x (normalization) (11.46d)

L being the canonical line bundle over � Pn . It can be shown that these axioms
uniquely define the Chern class as (11.25).

11.3 Chern characters

11.3.1 Definitions

Among the characteristic classes, the Chern characters are of special importance
due to their appearance in the Atiyah–Singer index theorem. The total Chern
character is defined by

ch(�) ≡ tr exp

(
i�

2π

)
=

∑
j=1

1

j ! tr

(
i�

2π

)j

. (11.47)
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The j th Chern character ch j (�) is

ch j (�) ≡ 1

j ! tr

(
i�

2π

)j

. (11.48)

lf 2 j > m = dim M , ch j (�) vanishes, hence ch(�) is a polynomial of finite order.
Let us diagonalize � as

i�

2π
→ g−1

(
i�

2π

)
g = A ≡ diag(x1, . . . , xk) g ∈ GL(k, � ).

The total Chern character is expressed as

tr[exp(A)] =
k∑

j=1

exp(x j ). (11.49)

In terms of the elementary symmetric functions Sr (x j ), the total Chern character
becomes

k∑
j=1

exp(x j ) =
k∑

j=1

(
1+ x j + 1

2!x
2
j +

1

3! x
3
j + · · ·

)

= k + S1(x j )+ 1

2! [S1(x j )
2 − 2S2(x j )] + · · · . (11.50)

Accordingly, each Chern character is expressed in terms of the Chern classes as

ch0(�) = k (11.51a)

ch1(�) = c1(�) (11.51b)

ch2(�) = 1
2 [c1(�)

2 − 2c2(�)] (11.51c)

...

where k is the fibre dimension of the bundle.

Example 11.2. Let P be a U(1) bundle over S2. If �N and �S are the local
connections on UN and US defined in section 10.5, the field strength is given by
�i = d�i (i = N, S). We have

ch(�) = 1+ i�

2π
(11.52)

where we have noted that �n = 0 (n ≥ 2) on S2. This bundle describes the
magnetic monopole. The magnetic charge 2g given by (10.94) is an integer
expressed in terms of the Chern character as

N = i

2π

∫
S2
� =

∫
S2

ch1(�). (11.53)
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Let P be an SU(2) bundle over S4. The total Chern class of P is given by
(11.27). The total Chern character is

ch(�) = 2+ tr

(
i�

2π

)
+ 1

2
tr

(
i�

2π

)2

. (11.54)

Ch(�) terminates at ch2(�) since �n = 0 for n ≥ 3. Moreover, tr� = 0 for
G = SU(2), n ≥ 2. As we found in section 10.5, the instanton number is given
by

1

2

∫
S4

tr

(
i�

2π

)2

=
∫

S4
ch2(�). (11.55)

In both cases, ch j measures how the bundle is twisted when local pieces are
patched together.

Example 11.3. Let P be a U(1) bundle over a 2m-dimensional manifold M . The
mth Chern character is

1

m! tr

(
i�

2π

)m

= 1

m!
(

i

2π

)m [
1

2
�µν dxµ ∧ dxν

]m

= 1

m!
(

i

4π

)m

�µ1ν1 . . .�µmνm dxµ1 ∧ dxν1 ∧ . . .∧ dxµm ∧ dxνm

=
(

i

4π

)m

εµ1ν1...µmνm�µ1ν1 . . .�µmνm dx1 ∧ . . .∧ dx2m

which describes the U(1) anomaly in 2m-dimensional space, see chapter 13.

Example 11.4. Let L be a complex line bundle. It then follows that

ch(L) = tr exp

(
i�

2π

)
= ex = 1+ x x ≡ i�

2π
. (11.56)

For example, let L
π−→ � P1 be the canonical line bundle over � P1 = S2. The

Fubini–Study metric yields the curvature

� = −∂∂̄ ln(1+ |z|2) = − dz ∧ dz̄

(1+ zz̄)2
(11.57)

see example 8.8. In real coordinates z = x + iy = r exp(iθ), we have

� = 2i
dx ∧ dy

(1+ x2 + y2)2
= 2i

r dr ∧ dθ

(1+ r2)2
. (11.58)

From ch(�) = 1+ tr(i�/2π), we have

ch1(�) = − 1

π

r dr ∧ dθ

(1+ r2)2
. (11.59)

Ch1(L), the integral of ch1(�) over S2 is an integer,

Ch1(L) = − 1

π

∫
r drdθ

(1+ r2)2
= −

∫ ∞

1
t−2 dt = −1. (11.60)
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11.3.2 Properties of the Chern characters

Theorem 11.5. (a) (Naturality) Let E
π−→ M be a vector bundle with F =

� k . Let f : N → M be a smooth map. Then

ch( f ∗E) = f ∗ch(E). (11.61)

(b) Let E and F be vector bundles over a manifold M . The Chern characters
of E ⊗ F and E ⊕ F are given by

ch(E ⊗ F) = ch(E) ∧ ch(F) (11.62a)

ch(E ⊕ F) = ch(E)⊕ ch(F). (11.62b)

Proof. (a) follows from theorem 11.2(a).
(b) These results are immediate from the definition of the ch-polynomial.

Let

ch(A) =
∑ 1

j ! tr

(
iA

2π

)j

be a polynomial of a matrix A. Suppose A is a tensor product of B and C ,
A = B ⊗ C = B ⊗ I + I ⊗ C (note that �E⊗F = �E ⊗ I + I ⊗ �F ). Then we
find that

ch(B ⊗ C) =
∑

j

1

j !
(

i

2π

)j

tr(B ⊗ I + I ⊗ C) j

=
∑

j

1

j !
(

i

2π

)j j∑
m=1

(
j

m

)
tr(Bm) tr(C j−m)

=
∑

m

1

m! tr

(
iB

2π

)m ∑
n

1

n! tr

(
iC

2π

)n

= ch(B)ch(C).

Equation (11.62a) is proved if B is replaced by �E and C by �F .
If A is block diagonal,

A =
(

B 0
0 C

)
= B ⊕ C

we have

ch(B ⊕ C) =
∑ 1

j !
(

i

2π

)j

tr(B ⊕ C) j

=
∑ 1

j !
(

1

2π

)j

[tr(B j )+ tr(C j )] = ch(B)+ ch(C).

This relation remains true when A, B and C are replaced by �E⊕F ,�E and �F

respectively. �
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Let us see how the splitting principle works in this case. Let L j (1 ≤ j ≤ k)
be complex line bundles. From (11.62b) we have, for E = L1 ⊕ L2 ⊕ · · · ⊕ Lk ,

ch(E) = ch(L1)⊕ ch(L2)⊕ · · · ⊕ ch(Lk). (11.63)

Since ch(Li ) = exp(xi ), we find

ch(E) =
k∏

j=1

exp(x j ) (11.64)

which is simply (11.50). Hence, the Chern character of a general vector bundle E
is given by that of a Whitney sum of k complex line bundles. The characteristic
classes themselves cannot differentiate between two vector bundles of the same
base space and the same fibre dimension. What is important is their integral over
the base space.

11.3.3 Todd classes

Another useful characteristic class associated with a complex vector bundle is the
Todd class defined by

Td(�) =
∏

j

x j

1− e−x j
(11.65)

where the splitting principle is understood. If expanded in powers of x j , Td(�)
becomes

Td (�) =
∏

j

(
1+ 1

2
x j +

∑
k≥1

(−1)k−1 Bk

(2k)!x
2k
j

)
= 1+ 1

2

∑
j

x j + 1
12

∑
j

x2
j + 1

4

∑
j<k

x j xk + · · ·

= 1+ 1
2 c1(�)+ 1

12 [c1(�)
2 + c2(�)] + · · · (11.66)

where the Bk are the Bernoulli numbers

B1 = 1
6 B2 = 1

30 B3 = 1
42 B4 = 1

30 B5 = 5
66 . . . .

The first few terms of (11.66) are:

Td0(�) = 1 (11.67a)

Td1(�) = 1
2 c1 (11.67b)

Td2(�) = 1
12 (c

2
1 + c2) (11.67c)

Td3(�) = 1
24 c1c2 (11.67d)

Td4(�) = 1
720 (−c4

1 + 4c2
1c2 + 3c2

2 + c1c3 − c4) (11.67e)

Td5(�) = 1
1440(−c3

1c2 + 3c1c2
2 + c2

1c3 − c1c4) (11.67f)
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where ci stands for ci (�).

Exercise 11.2. Let E and F be complex vector bundles over M . Show that

Td(E ⊕ F) = Td(E) ∧ Td(F). (11.68)

11.4 Pontrjagin and Euler classes

In the present section we will be concerned with the characteristic classes
associated with a real vector bundle.

11.4.1 Pontrjagin classes

Let E be a real vector bundle over an m-dimensional manifold M with dim� E =
k. If E is endowed with the fibre metric, we may introduce orthonormal frames
at each fibre. The structure group may be reduced to O(k) from GL(k,�). Since
the generators of �(k) are skew symmetric, the field strength � of E is also skew
symmetric. A skew-symmetric matrix A is not diagonalizable by an element of a
subgroup of GL(k,�). It is, however, reducible to block diagonal form as

A →


0 λ1 0
−λ1 0

0 λ2
−λ2 0

0
. . .



→


iλ1

−iλ1 0
iλ2

−iλ2

0
. . .

 (11.69)

where the second diagonalization is achieved only by an element of GL(k, � ). If
k is odd, the last diagonal element is set to zero. For example, the generator of
�(3) = ��(3) generating rotations around the z-axis is

Tz =
 0 1 0
−1 0 0
0 0 0

 .
The total Pontrjagin class is defined by

p(�) ≡ det

(
I + �

2π

)
. (11.70)
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From the skew symmetry �t = −�, it follows that

det

(
I + �

2π

)
= det

(
I + �

t

2π

)
= det

(
I − �

2π

)
.

Therefore, p(�) is an even function in �. The expansion of p(�) is

p(�) = 1+ p1(�)+ p2(�)+ · · · (11.71)

where p j (�) is a polynomial of order 2 j and is an element of H 4 j (M;�). We
note that p j (�) = 0 for either 2 j > k = dim E or 4 j > dim M .1

Let us diagonalize �/2π as

�

2π
→ A ≡


−ix1

ix1 0
−ix2

0 ix2
. . .

 (11.72)

where xk ≡ −λk/2π , λk being the eigenvalues of �. The sign has been chosen
to simplify the Euler class defined here. The generating function of p(�) is given
by

p(�) = det(I + A) =
[k/2]∏
i=1

(1+ x2
i ) (11.73)

where

[k/2] =→
{

k/2 if k is even

(k − 1)/2 if k is odd.

In (11.73) only even powers appear, reflecting the skew symmetry. Each
Pontrjagin class is computed from (11.73) as

p j (�) =
[k/2]∑

i1<i2<...<i j

x2
i1 x2

i2 . . . x
2
i j
. (11.74)

To write p j (�) in terms of the curvature two-form �/2π , we first note that

tr

(
�

2π

)2 j

= tr A2 j = 2(−1) j
[k/2]∑
i=1

x2 j
i .

1 Although pm(�) = 0, pm(B) need not vanish for a matrix B . pm will be used to define the Euler
class later.
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It then follows that

p1(�) =
∑

i

x2
i = −

1

2

(
1

2π

)2

tr�2 (11.75a)

p2(�) =
∑
i< j

x2
i x2

j =
1

2

[(∑
i

x2
i

)2

−
∑

i

x4
i

]

= 1

8

(
1

2π

)4

[(tr�2)2 − 2 tr�4] (11.75b)

p3(�) =
∑

i< j<k

x2
i x2

j x2
k

= 1

48

(
1

2π

)6

[−(tr�2)3 + 6 tr�2 tr�4 − 8 tr�6] (11.75c)

p4(�) =
∑

i< j<k<l

x2
i x2

j x2
k x2

l

= 1

384

(
1

2π

)8

[(tr�2)4 − 12(tr�2)2 tr�4 + 32 tr�2 tr�6

+ 12(tr�4)2 − 48 tr�8] (11.75d)

...

p[k/2](�) = x2
1 x2

2 . . . x
2[k/2] =

(
1

2π

)k

det�. (11.75e)

The reader should verify that

p(E ⊕ F) = p(E) ∧ p(F). (11.76)

It is easy to guess that the Pontrjagin classes are written in terms of Chern
classes. Since Chern classes are defined only for complex vector bundles, we must
complexify the fibre of E so that complex numbers make sense. The resulting
vector bundle is denoted by E� . Let A be a skew-symmetric real matrix. We find
that

det(I + iA) = det


1+ x1 0

1− x1
1+ x2

0 1− x2
. . .


=

[k/2]∏
i=1

(1− x2
i ) = 1− p1(A)+ p2(A)− · · ·
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from which it follows that

p j (E) = (−1) j c2 j (E
� ). (11.77)

Example 11.5. Let M be a four-dimensional Riemannian manifold. When the
orthonormal frame {êα} is employed, the structure group of the tangent bundle
T M may be reduced to O(4). Let� = 1

2�αβθ
α ∧ θβ be the curvature two-form

(� should not be confused with the scalar curvature). For the tangent bundle, it is
common to write p(M) instead of p(�). We have

det

(
I + �

2π

)
= 1− 1

8π2
tr�2 + 1

128π4
[(tr�2)2 − 2 tr�4]. (11.78)

Each Pontrjagin class is given by

p0(M) = 1 (11.79a)

p1(M) = − 1

8π2
tr�2 = − 1

8π2
�αβ�βα (11.79b)

p2(M) = 1

128π4
[(tr�2)2 − 2 tr�4] =

(
1

2π

)4

det�. (11.79c)

Although p2(M) vanishes as a differential form, we need it in the next subsection
to compute the Euler class.

11.4.2 Euler classes

Let M be a 2l-dimensional orientable Riemannian manifold and let T M be the
tangent bundle of M . We denote the curvature by �. It is always possible to
reduce the structure group of T M down to SO(2l) by employing an orthonormal
frame. The Euler class e of M is defined by the square root of the 4l-form pl ,

e(A)e(A) = pl(A). (11.80)

Both sides should be understood as functions of a 2l × 2l matrix A and not of
the curvature�, since p1(�) vanishes identically. However, e(M) ≡ e(�) thus
defined is a 2l-form and, indeed, gives a volume element of M . If M is an odd-
dimensional manifold we define e(M) = 0, see later.

Example 11.6. Let M = S2 and consider the tangent bundle T S2. From example
7.14, we find the curvature two-form,

�θφ = −�φθ = sin2 θ
dθ ∧ dφ

sin θ
= sin θ dθ ∧ dφ

where we have noted that gθθ = sin2 θ . Although p1(S2) = 0 as a differential
form, we compute it to find the Euler form. We have

p1(S
2) = − 1

8π2
tr�2 = − 1

8π2
[�θφ�φθ +�φθ�θφ]

=
(

1

2π
sin θ dθ ∧ dφ

)2
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from which we read off

e(S2) = 1

2π
sin θ dθ ∧ dφ. (11.81)

It is interesting to note that∫
S2

e(S2) = 1

2π

∫ 2π

0
dφ

∫ π

0
dθ sin θ = 2 (11.82)

which is the Euler characteristic of S2, see section 2.4. This is not just a
coincidence. Let us take another convincing example, a torus T 2. Since T 2 admits
a flat connection, the curvature vanishes identically. It then follows that e(T 2) ≡ 0
and χ(T 2) = 0. These are special cases of the Gauss–Bonnet theorem,∫

M
e(M) = χ(M) (11.83)

for a compact orientable manifold M . If M is odd dimensional both e and χ
vanish, see (6.39).

In general, the determinant of a 2l×2l skew-symmetric matrix A is a square
of a polynomial called the Pfaffian Pf(A), 2

det A = Pf(A)2. (11.84)

We show that the Pfaffian is given by

Pf(A) = (−1)l

2ll!
∑

P

sgn(P)AP(1)P(2)AP(3)P(4) . . . AP(2l−1)P(2l) (11.85)

where the phase has been chosen for later convenience. We first note that a skew-
symmetric matrix A can be block diagonalized by an element of O(2l) as

St AS =  =



0 λ1
−λ1 0 0

0 λ2
−λ2 0

. . .

0 0 λl

−λl 0


. (11.86)

It is easy to see that

det A = det =
l∏

i=1

λ2
i .

2 See proposition 1.3. The definition here differs in phase from that in section 1.5. It turns out to be
convenient to choose the present phase convention in the definition of the Euler class.
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To compute Pf(), we note that the non-vanishing terms in (11.85) are of the
form A12 A34 . . . A2l−1,2l . Moreover, there are 2l ways of changing the suffices as
Aij → A ji , such as

A12 A34 . . . A2l−1,2l → A21 A34 . . . A2l−1,2l

and l! permutations of the pairs of indices, for example,

A12 A34 . . . A2l−1,2l → A34 A12 . . . A2l−1,2l .

Hence, we have

Pf() = (−1)l A12 A34 . . . A2l−1,2l = (−1)l
l∏

i=1

λi .

Thus, we conclude that a block diagonal matrix  satisfies

det = Pf()2.

To show that (11.84) is true for any skew-symmetric matrices (not necessarily
block diagonal) we use the following lemma,3

Pf(X t AX) = Pf(A) det X. (11.87)

If St AS =  for S ∈ O(2l), we have A = SSt, hence

Pf(SSt) = Pf() det S = (−1)l
l∏

i=1

λi det S.

We finally find det A = Pf(A)2 for a skew-symmetric matrix A.
Note that Pf(A) is SO(2l) invariant but changes sign under an improper

rotation S (det S = −1) of O(2l).

Exercise 11.3. Show that the determinant of an odd-dimensional skew-symmetric
matrix vanishes. This is why we put e(M) = 0 for an odd-dimensional manifold.

The Euler class is defined in terms of the curvature� as

e(M) = Pf(�/2π)

= (−1)l

(4π)ll!
∑

P

sgn(P)�P(1)P(2) . . .�P(2l−1)P(2l). (11.88)

3 Since det(X t AX) = (det X)2 det A, we have Pf(X t AX) = ±Pf(A) det X . Here the plus sign should
be chosen since Pf(I t AI ) = Pf(A).
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The generating function is obtained by taking x j = −λi/2π ,

e(x) = x1x2 . . . xl =
l∏

i=1

xi . (11.89)

The phase (−1)l has been chosen to simplify the RHS.

Example 11.7. Let M be a four-dimensional orientable manifold. The structure
group of T M is SO(4), see example 11.5. The Euler class is obtained from (11.88)
as

e(M) = 1

2(4π)2
εi j kl

�i j ∧�kl . (11.90)

This is in agreement with the result of example 11.5. The relevant Pontrjagin class
is

p2(M) = 1

128π4
[(tr�2)2 − 2 tr�4] = x2

1 x2
2 .

Since e(M) = x1x2, we have p2(M) = e(M)∧ e(M). This is written as a matrix
identity,

1

128π4
[(tr A2)2 − 2 tr A4] =

(
1

2(4π)4
εi j kl Ai j Akl

)2

.

11.4.3 Hirzebruch L-polynomial and Â-genus

The Hirzebruch L-polynomial is defined by

L(x) =
k∏

j=1

x j

tanh x j

=
k∏

j=1

(
1+

∑
n≥1

(−1)n−1 22n

(2n)! Bnx2n
j

)
(11.91)

where the Bn are Bernoulli numbers, see (11.66). The function L(x) is even in x j

and can be written in terms of the Pontrjagin classes,

L(�) = 1+ 1
3 p1+ 1

45 (−p2
1+ 7 p2)+ 1

945 (2 p3
1− 13 p1 p2+ 62 p3)+ · · · (11.92)

where p j stands for p j (�). From the splitting principle, we find that

L(E ⊕ F) = L(E) ∧ L(F). (11.93)

The Â (A-roof) genus Â(�) is defined by

Â(�) =
k∏

j=1

x j/2

sinh(x j/2)

=
k∏

j=1

(
1+

∑
n≥1

(−1)n
(22n − 2)

(2n)! Bnx2n
j

)
. (11.94)
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This is an even function of x j and can be expanded in p j . Â is also called the
Dirac genus by physicists. It satisfies

Â(E ⊕ F) = Â(E) ∧ Â(F). (11.95)

Â is written in terms of the Pontrjagin classes as

Â(�) = 1− 1
24 p1 + 1

5760(7 p2
1 − 4 p2)

+ 1
967 680(−31 p3

1 + 44 p1 p2 − 16 p3)+ · · · . (11.96)

Example 11.8. Let M be a compact connected and orientable four-dimensional
manifold. Let us consider the symmetric bilinear form σ : H 2(M;�) ×
H 2(M;�) → � defined by

σ([α], [β]) =
∫

M
α ∧ β. (11.97)

σ is a b2 × b2 symmetric matrix where b2 = dim H 2(M;�) is the Betti number.
Clearly σ is non-degenerate since σ([α], [β]) = 0 for any [α] ∈ H 2(M;�)
implies [β] = 0. Let p (q) be the number of positive (negative) eigenvalues of σ .
The Hirzebruch signature of M is

τ (M) ≡ p − q. (11.98)

According to the Hirzebruch signature theorem (see section 12.5), this number
is also given in terms of the L-polynomial as

τ (M) =
∫

M
L1(M) = 1

3

∫
M

p1(M). (11.99)

11.5 Chern–Simons forms

11.5.1 Definition

Let Pj (�) be an arbitrary 2 j -form characteristic class. Since Pj (�) is closed, it
can be written locally as an exact form by Poincaré’s lemma. Let us write

Pj (�) = dQ2 j−1(�,�) (11.100)

where Q2 j−1(�,�) ∈ �⊗�2 j−1(M). [Warning: This cannot be true globally. If
Pj = dQ2 j−1 globally on a manifold M without boundary, we would have∫

M
Pm/2 =

∫
M

dQm−1 =
∫
∂M

Qm−1 = 0

where m = dim M .] The 2 j − 1 from Q2 j−1(�,�) is called the Chern–Simons
form of Pj (�). From the proof of theorem 11.2(b), we find that Q is given by the
transgression of Pj ,

Q2 j−1(�,�) = T Pj (�, 0) = j
∫ 1

0
P̃j (�,�t , . . . ,�t) dt (11.101)
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where P̃j is the polarization of Pj , � = d�+�2 and we set �′ = �′ = 0. Since
Q2 j−1 depends on � and �, we explicitly quote the �-dependence. Of course,
�
′ can be put equal to zero only on a local chart over which the bundle is trivial.

Suppose M is an even-dimensional manifold (dim M = m = 2l) such that
∂M �= ∅. Then it follows from Stokes’ theorem that∫

M
Pl(�) =

∫
M

dQm−1(�,�) =
∫
∂M

Qm−1(�,�). (11.102)

The LHS takes its value in integers, and so does the RHS. Thus Qm−1 is a
characteristic class in its own right and it describes the topology of the boundary
∂M .

11.5.2 The Chern–Simons form of the Chern character

As an example, let us work out the Chern–Simons form of a Chern character
ch j (�). The connection�t which interpolates between 0 and� is

�t = t� (11.103)

the corresponding curvature being

�t = t d�+ t2
�

2 = t�+ (t2 − t)�2. (11.104)

We find from (11.21) that

Q2 j−1(�,�) = 1

( j − 1)!
(

i

2π

)j ∫ 1

0
dt str(�,� j−1

t ). (11.105)

For example,

Q1(�,�) = i

2π

∫ 1

0
dt tr� = i

2π
tr� (11.106a)

Q3(�,�) =
(

i

2π

)2 ∫ 1

0
dt str(�, td�+ t2

�
2)

= 1

2

(
i

2π

)2

tr

(
�d�+ 2

3
�

3
)
. (11.106b)

Q5(�,�) = 1

2

(
i

2π

)3 ∫ 1

0
dt str[�, (td�+ t2

�
2)2]

= 1

6

(
i

2π

)3

tr

[
�(d�)2 + 3

2
�

3d�+ 3

5
�

5
]
. (11.106c)

Exercise 11.4. Let � be the field strength of the SU(2) gauge theory. Write down
the component expression of the identity ch2(�) = dQ3(�,�) to verify that (cf
lemma 10.3)

tr[εκλµν�κλ�µν] = ∂κ [2εκλµν tr(�λ∂µ�ν + 2
3�λ�µ�ν)]. (11.107)
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11.5.3 Cartan’s homotopy operator and applications

For later purposes, we define Cartan’s homotopy formula following Zumino
(1985) and Alvarez-Gaumé and Ginsparg (1985). Let

�t = �0 + t (�1 −�0) �t = d�t +�2
t (11.108)

as before. Define an operator lt by

lt�t = 0 lt�t = δt (�1 −�0). (11.109)

We require that lt be an anti-derivative,

lt (ηpωq ) = (ltηp)ωq + (−1)pηp(ltωq) (11.110)

for ηp ∈ �p(M) and ωq ∈ �q(M). We verify that

(dlt + lt d)�t = lt (�t − �2
t ) = δt (�1 −�0) = δt ∂�t

∂ t

and

(dlt + lt d)�t = d[δt (�1 − �0)] + lt [�t�t −�t�t + �t�t ]
= δt[d(�1 −�0)+ �t (�1 −�0)+ (�1 −�0)�t ]
= δt�t (�1 − �0) = δt ∂�t

∂ t

where we have used the Bianchi identity �t�t = 0. This shows that for any
polynomial S(�,�) of � and �, we obtain

(dlt + lt d)S(�t ,�t) = δt ∂
∂ t

S(�t ,�t). (11.111)

On the RHS, S should be a polynomial of � and � only and not of d� or
d�: if S does contain them, d� should be replaced by � − �

2 and d� by
�� − [�,�] = −[�,�]. Integrating (11.111) over [0, 1], we obtain Cartan’s
homotopy formula

S(�1,�1)− S(�0,�0) = (dk01 + k01d)S(�t ,�t) (11.112)

where the homotopy operator k01 is defined by

k01S(�t ,�t) ≡
∫ 1

0
δt lt S(�t ,�t). (11.113)

To operate k01 on S(�,�), we first replace � and � by �t and �t , respectively,
then operate lt on S(�t ,�t) and integrate over t .
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Example 11.9. Let us compute the Chern–Simons form of the Chern character
using the homotopy formula. Let S(�,�) = ch j+1(�) and �1 = �, �0 = 0.
Since d ch j+1(�) = 0, we have

ch j+1(�) = (dk01 + k01d)ch j+1(�t) = d[k01ch j+1(�t)].
Thus, k01ch j+1(�) is identified with the Chern–Simons form Q2 j+1(�,�). We
find that

k01ch j+1(�t) = 1

( j + 1)!k01 tr

(
i�

2π

)j+1

= 1

( j + 1)!
(

i

2π

)j+1 ∫ 1

0
δt lt tr(� j+1

t )

= 1

j !
(

i

2π

)j+1 ∫ 1

0
δt str(�,� j

t ) (11.114)

in agreement with (11.105).

Although a characteristic class is gauge invariant, the Chern–Simons form
need not be so. As an application of Cartan’s homotopy formula, we compute the
change in Q2 j+1(�,�) under � → �

g = g−1(� + d)g, � → �
g = g−1

�g.
Consider the interpolating families �g

t and �g
t defined by

�
g
t ≡ tg−1

�g + g−1dg (11.115a)

�
g
t ≡ d�g

t + (�g
t )

2 = g−1
�t g (11.115b)

where �t ≡ t� + (t2 − t)�2. Note that �g
0 = g−1dg, �g

1 = �
g , �g

0 = 0 and
�

g
1 = �g. Equation (11.112) yields

Q2 j+1(�
g,�g)− Q2 j+1(g

−1dg, 0) = (dk01 + k01d)Q2 j+1(�
g
t ,�

g
t ). (11.116)

For example, let Q2 j+1 be the Chern–Simons form of the Chern character
ch j+1(�). Since dQ2 j+1(�

g
t ,�

g
t ) = ch j+1(�

g
t ) = ch j+1(�t), we have

k01 dQ2 j+1(�
g
t ,�

g
t ) = k01ch j+1(�

g
t )

= k01ch j+1(�t) = Q2 j+1(�,�) (11.117)

where the result of example 11.9 has been used to obtain the final equality.
Collecting these results, we write (11.116) as

Q2 j+1(�
g,�g)− Q2 j+1(�,�) = Q2 j+1(g

−1dg, 0)+ dα2 j (11.118)

where α2 j is a 2 j -form defined by

α2 j (�,�, v) ≡ k01 Q2 j+1(�
g
t ,�

g
t )

= k01 Q2 j+1(�t + v,�t) (11.119)
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where v ≡ dg · g−1. [Note that Q2 j+1(�,�) = Q2 j+1(g�g−1, g�g−1).] The
first term on the RHS of (11.118) is

Q2 j+1(g
−1dg, 0) = 1

j !
(

i

2π

)j+1 ∫ 1

0
δt tr[g−1dg{(t2 − t)(g−1dg)2} j ]

= 1

j !
(

i

2π

)j+1

tr[(g−1dg)2 j+1]
∫ 1

0
δt (t2 − t) j

= (−1) j j !
(2 j + 1)!

(
i

2π

)j+1

tr[(g−1dg)2 j+1] (11.120)

where we have noted that �t = (t2 − t)(g−1dg)2 and∫ 1

0
δt (t2 − t) j = (−1) j B( j + 1, j + 1) = (−1) j ( j !)2

(2 j + 1)!
B being the beta function. The 2 j + 1 form Q2 j+1(gdg, 0) is closed and, hence,
locally exact: dQ2 j+1(g−1dg, 0) = ch j+1(0) = 0.

As for α2 j we have, for example,

α2 = 1

2

(
i

2π

)2 ∫ 1

0
lt tr[(�t + v)�t − 1

3 (�t + v)3]

= 1

2

(
i

2π

)2 ∫ 1

0
δt tr(−t�2 − v�)

= − 1

2

(
i

2π

)2

tr(v�) (11.121)

where we have noted that

tr�2 = dxµ ∧ dxν tr(�µ�ν) = −dxν ∧ dxµ tr(�ν�µ) = 0.

Example 11.10. In three-dimensional spacetime, a gauge theory may have a
gauge-invariant mass term given by the Chern–Simons three-form (Jackiw and
Templeton 1981, Deser et al 1982a, b). Since the Chern–Simons form changes
by a locally exact form under a gauge transformation, the action remains invariant.
We restrict ourselves to the U(1) gauge theory for simplicity. Consider the
Lagrangian (we put � = iA, � = iF)

� = − 1
4 Fµν Fµν + 1

4 mελµνFλµAν (11.122)

where Fµν = ∂µAν−∂ν Aµ. Note that the second term is the Chern–Simons form
of the second Chern character F2 (modulo a constant factor) of the U(1) bundle.
The field equation is

∂µFµν + m ∗ Fν = 0 (11.123)
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where
∗Fµ = 1

2ε
µκλFκλ Fµν = εµνλ ∗ Fλ.

The Bianchi identity
∂µ ∗ Fµ = 0 (11.124)

follows from (11.123) as a consequence of the skew symmetry of Fµν . It is easy
to verify that the field equation is invariant under a gauge transformation,

Aµ→ Aµ + ∂µθ (11.125)

while the Lagrangian changes by a total derivative,

�→− 1
4 Fµν Fµν + 1

4 mελµνFλµ(Aν + ∂νθ) = �+ 1
2 m∂ν(∗Fνθ). (11.126)

Equation (11.106b) shows that the last term on the RHS is identified with

Q3(A
θ , Fθ )− Q3(A, F) ∼ (A + dθ) dA− A dA ∼ d(θdA).

If we assume that F falls off at large spacetime distances, this term does not
contribute to the action:∫

d3x�→
∫

d3x�+ m

2

∫
d3x∂ν(∗Fνθ) =

∫
d3x�. (11.127)

Let us show that (11.122) describes a massive field. We first write (11.123)
as

εµνα∂µ ∗ Fα = −m ∗ Fν.

Multiplying εκλν on both sides, we have

∂λ ∗ Fκ − ∂κ ∗ Fλ = −m Fκλ.

Taking the ∂λ-derivative and using (11.124), we find that

(∂λ∂λ + m2) ∗ Fκ = 0 (11.128)

which shows that ∗Fκ is a massive vector field of mass m.

11.6 Stiefel–Whitney classes

The last example of the characteristic classes is the Stiefel–Whitney class. In
contrast to the rest of the characteristic classes, the Stiefel–Whitney class cannot
be expressed in terms of the curvature of the bundle. The Stiefel–Whitney class
is important in physics since it tells us whether a manifold admits a spin or not.
Let us start with a brief review of a spin bundle.
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11.6.1 Spin bundles

Let T M
π−→ M be a tangent bundle with dim M = m. The bundle T M is

assumed to have a fibre metric and the structure group G is taken to be O(m). If,
furthermore, M is orientable, G can be reduced down to SO(m). Let L M be the
frame bundle associated with T M . Let ti j be the transition function of L M which
satisfies the consistency condition (9.6)

ti j t j ktki = I tii = I.

A spin structure on M is defined by the transition function t̃i j ∈ SPIN(m) such
that

ϕ(t̃i j ) = ti j t̃i j t̃ j k t̃ki = I t̃ii = I (11.129)

where ϕ is the double covering SPIN(m)→ SO(m). The set of t̃i j defines a spin
bundle PS(M) over M and M is said to admit a spin structure (of course, M
may admit many spin structures depending on the choice of t̃i j ).

It is interesting to note that not all manifolds admit spin structures. Non-
admittance of spin structures is measured by the second Stiefel–Whitney class
which takes values in the Čech cohomology group H 2(M;�2).

11.6.2 Čech cohomology groups

Let �2 be the multiplicative group {−1,+1}. A Čech r-cochain is a function
f (i0, i1, . . . , ir ) ∈ �2, defined on Ui0 ∩ Ui1 ∩ . . . ∩ Uir �= ∅, which is totally
symmetric under an arbitrary permutation P ,

f (i P(0), . . . , i P(r)) = f (i0, . . . , ir ).

Let Cr (M,�2) be the multiplicative group of Čech r -cochains. We define the
coboundary operator δ : Cr (M;�2)→ Cr+1(M;�2) by

(δ f )(i0, . . . , ir+1) =
r+1∏
j=0

f (i0, . . . , î j , . . . , ir+1) (11.130)

where the variable below the ˆ is omitted. For example,

(δ f0)(i0, i1) = f0(i1) f0(i0) f0 ∈ C0(M;�2)

(δ f1)(i0, i1, i2) = f1(i1, i2) f1(i0, i2) f1(i0, i1) f1 ∈ C1(M;�2).

Since we employ the multiplicative notation, the unit element of Cr (M;�2) is
denoted by 1. We verify that δ is nilpotent:

(δ2 f )(i0, . . . , ir+2) =
r+1∏

j,k=1

f (i0, . . . , î j , . . . , îk, . . . , ir+2) = 1
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since −1 always appears an even number of times in the middle
expression (for example if f (i0, . . . , î j , . . . , îk, . . . , ir+2) = −1, we have
f (i0, . . . , îk, . . . , î j , . . . , ir+2) = −1 from the symmetry of f ). Thus, we have
proved, for any Čech r -cochain f , that

δ2 f = 1. (11.131)

The cocycle group Zr (M;�2) and the coboundary group Br (M;�2) are
defined by

Zr (M;�2) = { f ∈ Cr (M;�2)|δ f = 1} (11.132)

Br (M;�2) = { f ∈ Cr (M;�2)| f = δ f ′, f ′ ∈ Cr−1(M;�2). (11.133)

Now the r th Čech cohomology group H r(M;�2) is defined by

H r(M;�2) = kerδr/imδr−1 = Zr (M;�2)/Br (M;�2). (11.134)

11.6.3 Stiefel–Whitney classes

The Stiefel–Whitney class wr is a characteristic class which takes its values in
H r(M;�2). Let T M

π−→ M be a tangent bundle with a Riemannian metric. The
structure group is O(m), m = dim M . We assume {Ui } is a simple open covering
of M , which means that the intersection of any number of charts is either empty
or contractible. Let {eiα} (1 ≤ α ≤ m) be a local orthonormal frame of T M over
Ui . We have eiα = ti j e jα where ti j : Ui ∩U j → O(m) is the transition function.
Define the Čech 1-cochain f (i, j) by

f (i, j) ≡ det(ti j ) = ±1. (11.135)

This is, indeed, an element of C1(M;�2) since f (i, j) = f ( j, i). From the
cocycle condition ti j t j ktki = I , we verify that

δ f (i, j, k) = det(ti j ) det(t j k) det(tki )

= det(ti j t j k tki ) = 1. (11.136)

Hence, f ∈ Z1(M,�2) and it defines an element [ f ] of H 1(M;�2). Now we
show that this element is independent of the local frame chosen. Let {ēiα} be
another frame over Ui such that ēiα = hi eiα , hi ∈ O(m). From ēiα = t̄i j ē jα, we
find t̄i j = hi ti j h−1

j . If we define the 0-cochain f0 by f0(i) ≡ det hi , we find that

f̃ (i, j) = det(hi ti j h−1
j ) = det(hi ) det(h j ) det(ti j )

= δ f0(i, j) f (i, j)

where use has been made of the identity det h−1
j = det h j for h j ∈ O(m). Thus,

f changes by an exact amount and still defines the same cohomology class [ f ].4
4 Note that the multiplicative notation is being used.
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This special element w1(M) ≡ [ f ] ∈ H 1(M;�2) is called the first Stiefel–
Whitney class.

Theorem 11.6. Let T M
π−→ M be a tangent bundle with fibre metric. M is

orientable if and only if w1(M) is trivial.

Proof. If M is orientable, the structure group may be reduced to SO(m) and
f (i, j) = det(ti j ) = 1, and hence w1(M) = 1, the unit element of �2.
Conversely, if w1(M) is trivial, f is a coboundary; f = δ f0. Since f0(i) = ±1,
we can always choose hi ∈ O(m) such that det(hi ) = f0(i) for each i . If
we define the new frame ēiα = hi eiα , we have transition functions t̃i j such
that det(t̃i j ) = 1 for any overlapping pair (i, j) and M is orientable. [Suppose
f (i, j) = det ti j = −1 for some pair (i, j). Then we may take f0(i) = −1 and
f0( j) = +1, hence det t̃i j = − det ti j = +1.] �

Theorem 11.6 shows that the first Stiefel–Whitney class is an obstruction to
the orientability. Next we define the second Stiefel–Whitney class. Suppose M
is an m-dimensional orientable manifold and T M is its tangent bundle. For the
transition function ti j ∈ SO(m), we consider a ‘lifting’ t̃i j ∈ SPIN(m) such that

ϕ(t̃i j ) = ti j t̃ j i = t̃−1
i j (11.137)

where ϕ : SPIN(m)→ SO(m) is the 2 : 1 homomorphism (note that we have an
option ti j ↔ t̃i j or −t̃i j ). This lifting always exists locally. Since

ϕ(t̃i j t̃ j k t̃ki ) = ti j t j k tki = I

we have t̃i j t̃ j k t̃ki ∈ kerϕ = {±I }. For t̃i j to define a spin bundle over M , they
must satisfy the cocycle condition,

t̃i j t̃ j k t̃ki = I. (11.138)

Define the Čech 2-cochain f : Ui ∩U j ∩Uk → �2 by

t̃i j t̃ j k t̃ki = f (i, j, k)I. (11.139)

It is easy to see that f is symmetric and closed. Thus, f defines an element
w2(M) ∈ H 2(M,�2) called the second Stiefel–Whitney class. It can be shown
that w2(M) is independent of the local frame chosen.

Exercise 11.5. Suppose we take another lift −t̃i j of ti j . Show that f changes by
an exact amount under this change. Accordingly, [ f ] is independent of the lift.
[Hint: Show that f (i, j, k) → f (i, j.k)δ f1(i, j, k) where f1(i, j) denotes the
sign of ±t̃i j .]

Theorem 11.7. Let T M be the tangent bundle over an orientable manifold M .
There exists a spin bundle over M if and only if w2(M) is trivial.
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Proof. Suppose there exists a spin bundle over M . Then we define a set of
transition functions t̃i j such that t̃i j t̃ j k t̃ki = I over any overlapping charts Ui ,U j

and Uk , hence w2(M) is trivial. Conversely, suppose w2(M) is trivial, namely

f (i, j, k) = δ f1(i, j, k) = f1( j, k) f1(i, k) f1(k, i)

f1 being a 1-cochain. We consider the 1-cochain f1(i, j) defined in exercise 11.5.
If we choose new transition functions t̃ ′i j ≡ t̃i j f1(i, j), we have

t̃ ′i j t̃ ′j k t̃ ′ki = [δ f1(i, j, k)]2 = I

and, hence, {t̃ ′i j } defines a spin bundle over M . �

We outline some useful results:

(a)

w1(� Pm ) = 1 w2(� Pm ) =
{

1 m odd

x m even
(11.140)

x being the generator of H 2(� Pm ;�2).
(b)

w1(S
m) = w2(S

m) = 1 (11.141)

(c)
w1(�g) = w2(�g) = 1 (11.142)

�g being the Riemann surface of genus g.




