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(c) Approximating the instanton/anti-instanton pair q(τ) = qcl(τ+ τ̄)−qcl(τ− τ̄) by a “top-

hat” function, one finds that q(ω) =
∫ τ̄/2

−τ̄/2
dτ q0e

iωτ = q0τ̄ sin(ωτ̄/2)/(ωτ̄/2). Treating

the dissipative term as a perturbation, the action then takes the form

Seff − 2Spart =
η

2

∫ ω0

0

dω

2π
|ω|(q0τ̄)2

sin2(ωτ̄/2)

(ωτ̄/2)2
� q20

π
η ln(ω0τ̄),

where ω0 serves as a high-frequency cut-off.

(d) Interpreted as a probability distribution for the instanton separation, one finds

〈τ̄〉 =
∫

dτ̄ τ̄ exp

[
−q20

π
η ln(ω0τ̄)

]
∼

∫ ∞
dτ̄ τ̄1−q20η/π.

The divergence of the integral shows that, for η > 2π/q20 , instanton–anti-instanton pairs

are confined and particle tunneling is deactivated. Later, in Chapter 8 we revisit the

dissipative phase transition from the standpoint of the renormalization group.

Winding numbers

In the main text, we considered the application of the Feynman path integral to model systems where

trajectories could be parameterized in terms of their harmonic (Fourier) expansion. However, very often,

one is interested in applications of the path integral to spaces that are not simply connected. In this

case, one must include classes of trajectories which cannot be simply continued. Rather, trajectories are

classified by their “winding number” on the space. To illustrate the point, let us consider the application

of the path integral to a particle on a ring.

(a) Starting with the Hamiltonian Ĥ = −(1/2I)(∂2/∂θ2), where θ denotes an angle variable,

show from first principles that the quantum partition function Z = tre−βĤ is given by

Z =

∞∑
n=−∞

exp

[
−β

n2

2I

]
. (3.61)

(b) Formulated as a Feynman path integral, show that the quantum partition function can

be cast in the form

Z =

∫ 2π

0

dθ

∞∑
m=−∞

∫
θ(0) = θ

θ(β) = θ(0) + 2πm

Dθ(τ) exp

[
−I

2

∫ β

0

dτ θ̇2

]
.

(c) Varying the Euclidean action with respect to θ, show that the path integral is minimized

by the classical trajectories θ̄(τ) = θ + 2πmτ/β. Parameterizing a general path as

θ(τ) = θ̄(τ) + η(τ), where η(τ) is a path with no net winding, show that

Z = Z0

∞∑
m=−∞

exp

[
−I

2

(2πm)2

β

]
, (3.62)

where Z0 represents the quantum partition function for a free particle with open bound-

ary conditions. Making use of the free particle propagator, show that Z0 =
√
I/2πβ.
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(d) Finally, making use of Poisson’s summation formula,
∑

m h(m) =
∑

n

∫∞
−∞ dφ h(φ)e2πinφ,

show that Eq. (3.62) coincides with Eq. (3.61).

Answer:

(a) Solving the Schrödinger equation, the wavefunctions obeying periodic boundary condi-

tions take the form ψn = einθ/
√
2π, n integer, and the eigenvalues are given by En =

n2/2I. Cast in the eigenbasis representation, the partition function assumes the form

Eq. (3.61).

(b) Interpreted as a Feynman path integral, the quantum partition function takes the form

of a propagator with

Z =

∫ 2π

0

dθ 〈θ|e−βĤ |θ〉 =
∫ 2π

0

dθ

∫
θ(β)= θ(0)= θ

Dθ(τ) exp

[
−

∫ β

0

dτ
I

2
θ̇2

]
.

The trace implies that paths θ(τ) must start and finish at the same point. However,

to accommodate the invariance of the field configuration θ under translation by 2π we

must impose the boundary conditions shown in the question.

(c) Varying the action with respect to θ we obtain the classical equation Iθ̈ = 0. Solving

this equation subject to the boundary conditions, we obtain the solution given in the

question. Evaluating the Euclidean action, we find that∫ β

0

(∂τθ)
2dτ =

∫ β

0

dτ

[
2πm

β
+ ∂τη

]2
= β

(
2πm

β

)2

+

∫ β

0

dτ(∂τη)
2.

Thus, we obtain the partition function (3.62), where

Z0 =

∫
Dη(τ) exp

[
−I

2

∫ β

0

dτ(∂τη)
2

]
=

√
I

2πβ
,

denotes the free particle partition function. This can be obtained from direct evaluation

of the free particle propagator.

(d) Applying the Poisson summation formula with h(x) = exp[− (2π)2I
2β x2], one finds that

∞∑
m=−∞

e−
(2π)2Im2

2β =
∞∑

n=−∞

∫ ∞

−∞
dφ e−

(2π)2I
2β φ2+2πinφ =

√
β

2πI

∞∑
n=−∞

e−
β
2I n

2

.

Multiplication by Z0 obtains the result.

Particle in a periodic potential

In Section 3.3 it was shown that the quantum probability amplitude for quantum mechanical tunneling

can be expressed as a sum over instanton field configurations of the Euclidean action. By generalizing

this approach, the aim of the present problem is to explore quantum mechanical tunneling in a periodic

potential. Such an analysis allows us to draw a connection to the problem of the Bloch spectrum.


