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Three-dimensional (3D) topological insulators in general need to be protected by certain kinds of symmetries
other than the presumed U (1) charge conservation. A peculiar exception is the Hopf insulators which are 3D
topological insulators characterized by an integer Hopf index. To demonstrate the existence and physical relevance
of the Hopf insulators, we construct a class of tight-binding model Hamiltonians which realize all kinds of Hopf
insulators with arbitrary integer Hopf index. These Hopf insulator phases have topologically protected surface
states and we numerically demonstrate the robustness of these topologically protected states under general
random perturbations without any symmetry other than the U (1) charge conservation that is implicit in all kinds
of topological insulators.
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Topological phases of matter may be divided into two
classes: the intrinsic ones and the symmetry-protected ones.1

Symmetry-protected topological (SPT) phases are gapped
quantum phases that are protected by symmetries of the
Hamiltonian and cannot be smoothly connected to the trivial
phases under perturbations that respect the same kind of
symmetries. Intrinsic topological (IT) phases, on the other
hand, do not require symmetry protection and are topologically
stable under arbitrary perturbations. Unlike SPT phases, IT
phases may have exotic excitations bearing fractional or even
non-Abelian statistics in the bulk.2 Fractional3 quantum Hall
states and spin liquids4 belong to these IT phases. Remarkable
examples of the SPT phases include the well-known 2D and
3D topological insulators and superconductors protected by
time-reversal symmetry,5–7 and the Haldane phase of the
spin-1 chain protected by the SO(3) spin rotational symmetry.8

For interacting bosonic systems with on-site symmetry G,
distinct SPT phases can be systematically classified by group
cohomology of G,1 while for free fermions, the SPT phases
can be systematically described by K theory or homotopy
group theory,9 which leads to the well-known periodic table
for topological insulators and superconductors.10,11

Most 3D topological insulators have to be protected by
some other symmetries,10,11 such as time-reversal, particle-
hole, or chrial symmetry, and the U (1) charge conservation
symmetry.12 A peculiar exception occurs when the Hamil-
tonian has just two effective bands. In this case, interesting
topological phases, the so-called Hopf insulators,13 may exist.
These Hopf insulator phases have no symmetry other than the
prerequisite U (1) charge conservation. To elucidate why this
happens, let us consider a generic band Hamiltonian in 3D
with m filled bands and n empty bands. Without symmetry
constraint, the space of such Hamiltonians is topologically
equivalent to the Grassmannian manifold Gm,m+n and can
be classified by the homotopy group of this Grassmannian.11

Since the homotopy group π3(Gm,m+n) = {0} for all (m,n) �=
(1,1), there exists no nontrivial topological phase in general.
However, when m = n = 1, G1,2 is topologically equivalent
to S2 and the well-known Hopf map in mathematics shows
that π3(G1,2) = π3(S2) = Z.9 This explains why the Hopf
insulators may exist only for Hamiltonians with two effective
bands. The classification theory shows that the peculiar Hopf

insulators may exist in 3D, but it does not tell us which
Hamiltonian can realize such phases. It is even a valid question
whether these phases can appear at all in physically relevant
Hamiltonians. Moore, Ran, and Wen made a significant
advance in this direction by constructing a Hamiltonian that
realizes a special Hopf insulator with the Hopf index χ = 1.13

In this Rapid Communication, we construct a class of tight-
binding Hamiltonians that realize arbitrary Hopf insulator
phases with any integer Hopf index χ . The Hamiltonians
depend on two parameters and contain spin-dependent and
spin-flip hopping terms. We map out the complete phase
diagram and show that all the Hopf insulators can be realized
with this type of Hamiltonian. We numerically calculate the
surface states for these Hamiltonians and show that they have
zero energy modes that are topologically protected and robust
to arbitrary random perturbations with no other than the U (1)
symmetry constraint.

To begin with, let us notice that any two-band Hamiltonian
in 3D with one filled band can be expanded in the momentum
space with three Pauli matrices σ = (σx,σ y,σ z) as

H(k) = u(k) · σ , (1)

where we have ignored the trivial energy-shifting term u0(k)I2

with I2 being the 2 × 2 identity matrix. By diagonaliz-
ing H(k), we have the energy dispersion E(k) = ±|u(k)|,
where |u(k)| =

√
u2

x(k) + u2
y(k) + u2

z(k). The Hamiltonian

is gapped if |u(k)| > 0 for all k. For the convenience
of discussion of topological properties, we denote u(k) =
|u(k)|(x(k),y(k),z(k)) with x2(k) + y2(k) + z2(k) = 1. Topo-
logically, the Hamiltonian (1) can be considered as a map
from the momentum space k =(kx,ky,kz) characterized by
the Brillouin zone T3 (T denotes a circle and T3 is the
3D torus) to the parameter space u(k) ∝ (x(k),y(k),z(k))
characterized by the Grassmannian G1,2 = S2. Topologically
distinct band insulators correspond to different classes of maps
from T3 → S2.

The classification of all the maps from T3 → S2 is related
to the torus homotopy group τ3(S2).14 To construct nontrivial
maps from T3 → S2, we take two steps, first from S3 → S2

and then from T3 → S3. We make use of the following gen-
eralized Hopf map f : S3 → S2 known in the mathematical
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literature,15

x + iy = 2λη
p

↑ η̄
q

↓, z = λ(|η↑|2p − |η↓|2q), (2)

where p, q are integers prime to each other and η↑, η↓ are
complex coordinates for R4 satisfying |η↑|2 + |η↓|2 = 1 with
the normalization λ = 1/(|η↑|2p + |η↓|2q). Equation (2) maps
the coordinates (Re[η↑],Im[η↑],Re[η↓],Im[η↓]) of S3 to the
coordinates (x,y,z) of S2 with x2 + y2 + z2 = 1. The Hopf
index for the map f is known to be ±pq with the sign
determined by the orientation of S3.15 We then construct
another map g : T3 → S3 (up to a normalization), defined
by the equation

η↑(k) = sin kx + it sin ky,

η↓(k) = sin kz + i(cos kx + cos ky + cos kz + h), (3)

where t and h are constant parameters. The composite
map f ◦ g from T3 → S2 then defines the parameters
u(k) ∝ (x(k),y(k),z(k)) in the Hamiltonian as a
function of the momentum k. From Eqs. (2)
and (3), we have u(k) = |u(k)|(x(k),y(k),z(k)) =
(Re[2η

p

↑ η̄
q

↓],Im[2η
p

↑ η̄
q

↓],[|η↑|2p − |η↓|2q]), with |u(k)| = 1
λ(k) .

The Hamiltonian H(k) = u(k) · σ is (p + q)th order
polynomials of sin (k) and cos (k), which corresponds to
a tight-binding model when expressed in the real space.
The Hamiltonian contains spin-orbital coupling with
spin-dependent hopping terms. When we choose p = q = 1
and (t,h) = (1, − 3/2), the Hamiltonian (1) reduces to the
special case studied in Ref. 13.

When the Hamiltonian is gapped with |u(k)| > 0,
one can define a direction on the unit sphere û(k) =
(ux(k),uy(k),uz(k))/|u(k)| = (x(k),y(k),z(k)). From û(k),
we define the Berry curvature Fμ = 1

8π
εμντ û · (∂ν û × ∂τ û),

where εμντ is the Levi-Civita symbol and a summation over the
same indices is implied. A 3D torus T3 has three orthogonal
cross sections perpendicular to the axis x,y,z, respectively.
For each cross section of space T2, one can introduce a
Chern number Cμ = ∫ π

−π

∫ π

−π
dkρdkλFμ, where μ = x,y,z

and ρ,λ denote directions orthogonal to μ. To classify the
maps from T3 → S2 represented by û(k), a topological index,
the so-called Hopf index, was introduced by Pontryagin,16 who
showed that the Hopf index takes values in the finite group
Z2·GCD(Cx,Cy,Cz) when the Chern numbers Cμ are nonzero,16

where GCD denotes the greatest common divisor. If the Chern
numbers Cμ = 0 in all three directions, the Hopf index takes
all integer values Z and has a simple integral expression15,17

χ (û) = −
∫

BZ
F · A dk, (4)

where A is the Berry connection (or called the gauge field)
which satisfies ∇ × A = F. The Hopf index χ (û) is gauge
invariant although its expression depends on A. As we will
analytically prove in the Appendix, the Chern numbers Cμ = 0
for the map û(k) defined above in this paper in the gapped
phase, so we can use the integral expression of Eq. (4)
to calculate the Hopf index χ (û). The index χ (û) can be
calculated numerically through discretization of the torusT3.13

Using this method, we have numerically computed the Hopf
index χ (û) for the Hamiltonian H(k) with various p and
q, and the results are shown in Fig. 1. As the grid number
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FIG. 1. (Color online) Plot of the Hopf index and the Chern
number in the z direction for different (p,q). The Hopf index and the
Chern number converge rapidly as the number of grids increases in
discretization. The parameters t and h are chosen as (t,h) = (1,1.5).

increases in discretization, we see that the Chern numbers
quickly drop to zero and the Hopf index approaches the integer
values ±pq or ±2pq depending on the parameters t,h. Based
on the numerical results of χ (û), we construct the phase
diagrams of the Hamiltonian (1) for various p, q in Fig. 2. The
phase boundaries are determined from the gapless condition.
The phase diagrams exhibit regular patterns: they are mirror
symmetric with respect to the axis h = 0 and antisymmetric
with respect to the axis t = 0. When |h| > 3, we only have a
topologically trivial phase with χ (û) = 0. From the result, we
see that χ (û) has an analytic expression with χ (û) = ±pq

when 1 < |h| < 3 and χ (û) = ±2pq when |h| < 1.
To understand this result, we note that û(k) is a composition

of two maps û(k) = f ◦ g(k). The generalized Hopf maps f

from S3 → S2 has a known Hopf index ±pq.15 The maps
g from T3 → S3 can be classified by the torus homotopy
group τ3(S3) and a topological invariant has been introduced to
describe this classification,18 which has an integral expression

�(g) = 1

12π2

∫
BZ

dkεαβγρεμντ

1

|η|4 ηα∂μηβ∂νηγ ∂τηρ,

FIG. 2. (Color online) Phase diagrams of the Hamiltonian for
different (p,q). The values of (p,q) in (a), (b), (c), and (d) are chosen
to be (1,1), (1,2), (3,1), and (2,3), respectively.
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where η = (Re[η↑],Im[η↑],Re[η↓],Im[η↓]). Direct calcula-
tion of �(g) leads to the following result:

�(g) =
⎧⎨
⎩

0, |h| > 3,

1, 1 < |h| < 3 and t > 0,

−2, |h| < 1 and t > 0.

Consequently, we have χ (û) = �(g)χ (f ) = ±pq�(g), which
is exactly the result shown in the phase diagrams in Fig. 2. A
geometric interpretation is that �(g) counts how many times
T3 wraps around S3 under the map g, and χ (f ) describes how
many times S3 wraps around S2 under the generalized Hopf
map f . Their composition gives the Hopf index χ (û). A sign
flip of t changes the orientation of the sphereS3, which induces
a sign flip in χ (û) and produces the antisymmetric phase
diagram with respect to the axis t = 0. As (p,q) are arbitrary
coprime integers, χ (û) apparently can take any integer value
depending on the values of p,q and t,h. As a consequence,
the Hamiltonian H(k) constructed in this communication can
realize arbitrary Hopf insulator phases.

The nontrivial topological invariant guarantees existence
of gapless surface states at a smooth (i.e., adiabatic) boundary
between a Hopf insulator and a trivial insulator (or vacuum).
Numerically, we find that gapless surface states are still present
even for sharp boundaries,19 although we do not have an
intuitive explanation why this is necessarily so as the number
of bands is not well defined at a sharp boundary and the
two-band condition required for existence of the Hopf insulator
could be violated at the surface. Our results are summarized in
Fig. 3. From the figure, surface states and localized zero-energy
modes are prominent. These surface states are topologically
protected and robust under arbitrary random perturbations
that only respect the prerequisite U (1) symmetry. This can
be clearly seen from Fig. 3: while the wave functions of the
bulk states change dramatically under random perturbations,
the wave functions of the surface states remain stable and are
always sharply peaked at the boundary. This verifies that the
Hopf insulators are indeed 3D topological phases. Besides the
results shown in Fig. 3, we have calculated the surface states
for a number of different choices of parameters (p,q) and (t,h),
and the results consistently demonstrate that the surface states
and zero-energy modes are always present and robust even to
substantial perturbations unless the bulk gap closes. Moreover,
we roughly have more surfaces states when the absolute value
of the Hopf index becomes larger. However, this is not always
true. A direct correspondence between the Hopf index and the
total winding number of surface states may exist and deserves
to be further investigated.18 It is also worthwhile to mention
that these surface states are extended/metallic in a clean crystal,
as discussed in Ref. 13, but how disorder will affect these states
is an important topic that deserves further studies. The surface
states might not be metallic with disorder since there is no
obvious way to protect these surface state from localization
without adding symmetries such as time reversal.

An important and intriguing question is how to realize
these Hopf insulators in experiments. Laser-assisted hopping
of ultracold atoms in an optical lattice offers a powerful tool to
engineer various kinds of spin-dependent tunneling terms20

and thus provides a good candidate for their realizations
although the details still need to be worked out. Dipole
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FIG. 3. (Color online) Surface states and zero-energy modes in
the (001) direction for a 200-site-thick slab. The parameters t and h are
chosen as (t,h) = (1,1.5) for all the figures. We have (p,q) = (1,2)
for (a) and (b), and (p,q) = (1,3) for (c) and (d). In panels (b) and (d),
we add random perturbations to the Hamiltonian, but otherwise keep
the same parameters as (a) and (c). The left diagrams in (a)–(d) plot
the energy spectrum of all 400 states at a fixed (kx,ky) = (0.72,0.72)
for easy visualization. The points inside the gap represent the energies
of the surface states. There are four [six] surface states in (a) and (b)
[(c) and (d)]. The right diagrams in (a)–(d) show the wave functions
of a surface state (upper one) and a bulk state (lower one).

interaction between polar molecules in optical lattices also of-
fers possibilities to realize effective spin-dependent hopping.21

As argued in Ref. 13, frustrated magnetic compounds such as
X2Mo2O7 with X being a rare-earth ion are other potential
candidates. In addition, Hopf insulators may be realized in
3D quantum walks,22,23 where various hopping terms are
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implemented by varying the walking distance and direction in
each spin-dependent translation and the robust surface states
can be observed with split-step schemes.23

In conclusion, we have introduced a class of tight-binding
Hamiltonians that realize arbitrary Hopf insulators. The
topologically protected surface states and zero-energy modes
in these exotic phases are robust to random perturbations that
only respect the U (1) charge conservation symmetry. They are
3D topological phases and sit outside of the periodic table10,11

for topological insulators and superconductors.
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APPENDIX

Here, we prove that the Chern numbers Cμ = 0 in
all three directions for our Hamiltonian. Let us first
consider Cx . To prove Cx = ∫ π

−π

∫ π

−π
dkydkzFx(ky,kz) = 0,

it is sufficient to show Fx(ky,kz) = −Fx(−ky, − kz); i.e.,

the function Fx has an odd parity under the exchange
(ky,kz) → (−ky, − kz). We denote the parity of a given
function F(ky,kz) as P [F] = {1, − 1} corresponding to
{even, odd} parity. Our aim is to prove P [Fx] = −1. We
let g1 = Re[η↑(k)] = sin kx , g2 = Im[η↑(k)] = t sin ky ,
g3 = Re[η↓(k)] = sin kz, and g4 = Im[η↓(k)] = (cos kx +
cos ky + cos kz + h). Apparently, P [g1] = P [g4] = 1 and
P [g2] = P [g3] = −1. We can normalize the g vector as ĝ =
g/|g| = (g1,g2,g3,g4)/

√
g2

1 + g2
2 + g2

3 + g2
4. The components

of ĝ have the same parity as the unnormalized ones. From
the definition, we have ûx =Re[2λ̂(ĝ1 + iĝ2)p(ĝ3 − iĝ4)q] =
2λ̂Re[

∑p

α=0

∑q

β=0 C
p
α C

q

β (−1)q−βip+q−α−β ĝα
1 ĝ

q−β

4 ĝ
p−α

2 ĝ
β

3 ],
where C

p
α (Cq

β ) denote the binormial coefficients and

λ̂ ≡ 1/[|(ĝ1 + iĝ2)|2p + |(ĝ3 + iĝ4)|2q]. The exponent
p + q − α − β of i in ûx has to be even to have a nonzero
real part, so P [ûx] = P [ĝp−α

2 ĝ
β

3 ] = P [ĝq−β

2 ĝ
β

3 ] = (−1)q .
Similarly, by using ûy = Im[2λ̂(ĝ1 + iĝ2)p(ĝ3 − iĝ4)q],
we find P [ûy] = −P [ûx]. Finally, from ûz =
λ̂(|(ĝ1 + iĝ2)|2p − |(ĝ3 + iĝ4)|2q) we obtain P [ûz] = 1.
As a consequence, P [û · (∂ν û × ∂τ û)] = −1. Therefore,
P [Fx] = P [û · (∂ky

û × ∂kz
û)] = −1. This proves that

Cx = 0. By the same parity arguments, we can show
Cy = Cz = 0.
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