11.29主要内容
上节课内容补充
- 补充Higgs mechanism“吃掉”\(\phi_2\)的过程
- Nonlinear/Interaction
群论基本知识
- 重排定理(rearrangement theorem)
\(gG=G\), for any \(g\in G\)
- 子群(subgroup)
H is a group, and \(H\subset G\)
- 陪集(coset): left&right coset
\(g_{i}, g_{j} \in G \Rightarrow \left\{ \begin{aligned} g_{i} H=g_{j} H \\ g_{i} H \cap g_{j} H=\varnothing \end{aligned} \right. \)
Coset decomposition
- 正规/不变子群(normal/invariant subgroup)
\(H\lhd G\), 当对应左右陪集相等\(g_i H=H g_i\)
- 商群(quotient group)
不变子群及其所有陪集构成群,\(G/H=\left\{g_i H\ |\ g_i \in G\right\}\)
examples: \(Z_2, C_{3v}, \mathbb{Z}_4\)
群表示论(group representation theory)
- 将本为operator的群元表示成matrix
- 群的不等价不可约表示
(1)Schur lemma
(2)Jordan decomposition
(3)表示的完备性:
有限群不等价不可约表示维数平方和等于群的阶数\(\sum_j m_{j}^{2}\)
特征标\(\chi^j(G)\)构成正交完备基(体现在特征标表中横纵形成矢量之间正交\(\left \langle v_i | v_j \right \rangle=0\) )
- Application: molecular(raman or infrared spectrum), solid state physics(Bloch bands)
(1) \(O\) point-group in Hydrogen atom
(2) Degeneracy in the particle-in-a-box problem. 原文下载
同态基本定理
- 同态基本定理
1.\(G / \operatorname{ker}(f) \simeq \operatorname{Im}(f) \neq G^{\prime}\)
2.\(\operatorname{ker}(f) \equiv H \lhd G\)是\(G\)的正规子群
3.\(\operatorname{Im}(f) \subset G^{\prime}\)是\(G^{\prime}\)的子群
If \(G^{\prime} \simeq \operatorname{Im}(f) \Rightarrow G / \operatorname{ker}(f) \simeq G^{\prime}\)
应用: rank-nullity theorem(秩零定理)
- Homotopy group & (co)Homology group 概述
同态(Homomorphism)、同构(Isomorphism)、同伦(Homotopy)、同调(Homology)、上同调(Cohomology)、同胚(Homeomorphism=Topological isomorphism)
USTC|
BBS