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Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically
Quantized Solitons of the One-Dimensional Easy-Axis Neel State
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The continuum field theory describing the low-energy dynamics of the large-spin one-
dimensional Heisenberg Bntiferromagnet is found to be the O(3) nonlinear sigma model.
When weak easy-axis anisotropy is present, soliton solutions of the equations of motion
are obtained and semiclassically quantized. Integer and half-integer spin systems are
distinguished.

PACS numbers: 75.40.Fa, 03.65.Sq

Nonlinear excitations in one-dimensional mag-
netic systems have received much theoretical at-
tention in recent years, primarily ferromagnetic,
easy-plane, or S =~ systems. ' In this Letter, I
describe a nonlinear field-theory approach to
weakly uniaxially anisotropic easy axis a-ntiferro-
magnets with large spin. Classically, these have
a doubly degenerate ground state with axially
aligned Neel order; topological soliton excita-
tions corresponding to movable domain walls
separating the two possible ground-state configu-
rations are described, and semiclassically quan-
tized. The methods used also reveal the field
theory describing the semiclassical isotropic
Heisenberg antiferromagnet, providing an alter-
native derivation of the recent identification'
(based on a quantum action-angle representation
of spins) of this model with the O(3) nonlinear
sigma model with coupling g =2/hS as S- ~. The
quantization of magnetization carried by the easy-
axis-model solitions also shows up an intrinsic
difference between integer-spin and half-integer-
spin systems, leading to quite different instabili-
ties of the ordered ground state as the anisotropy
vanishes, consistent with the predictions' of quite
different low-energy physics of the isotropic
ground state in the two cases.

I will consider the easy-axis model

H =
I Jl +„1„.5„„+XS„'S„„'+lj, (S „')'],

with S„'=@'S(S+1), and & ~ p so that the classi-
cal ground state is given by S„=~S(-1)"tt, u =+ a.
In the classical limit, the equations of motion
have small-amplitude spin-wave solutions with
the frequency-wave- number relation

(u'(q) =(o,'+ [(u, sin(qa)]', ( q~ & ~~/a, (2)

where a is the lattice spacing, (d, =W~S, and ~,
= &,(& —tt)"'(2 +& —tt)"'. 1 will specialize to the
case of toeak anisotropy cu,/~, «1, when long-
wavelength properties may be studied in the con-
tinuum limit a-0, &, —~, , a =c; the dispersion
relation (2) then develops Lorentz invariance
with limiting velocity &. The elementary collec-
tive excitations (magnons carrying S'=+& ) are ob-
tained by a semiclassical quantization of the
spin waves (e.g. , by a linearized Holstein-Prima-
koff approach); for (crystal) momentum ~ P~

«&~5 /a, the magnon dispersion is

~(P) =[(he )2+ c'P']' ' 0& (x —p)"'«1 (3)

To study the soliton excitations, a fully nonline-
ar treatment of (1) is needed. Following Mikes-
ka, ' I use the classical angle-variable represen-
tation

S„=(- 1)"kS(sin&„cosp„, sin&„sin@„,ense„).

The classical equations of motion are easily ob-
tained from (1) in terms of these variables by us-
ing the Poisson-bracket algebra (@„,S„'j= 5„„,
q'„=fq'„,H], etc.:

&„=—~~,(- 1)"g, [sine„+, sin(p„„- p„)],

0, = —p~&(- 1)"2 [(1+~)cos0„„-g cos&„—cot&„sin&„„cos(g„„—p„)].

(4a)

(4b)

To make progress with these equations, I assume as in Ref. 3 that ~„and p„vary slowly with n, with a
small superimposed staggered-fluctuation component; this should be valid at low energies and weak
anisotropy ~,«/ac:

9„=6(x)+a(- 1)"a(x), y„=y(x) + a(- 1)"P(x), x =na.

8(x) and p(x) are slowly varying angle fields, while n(x) and P(x) are small staggered-fluctuation fields,
chosen to have dimensions of density. The variables on neighboring sites can be expressed through a
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gradient expansion about x =na. Full nonlinearity in the angle fields must be maintained, but (4a) and

(4b) ean be approximated by an expansion up to quadratic order in &, P, and & (or alternatively, by
taking the limit a —0 with &, 9, &0, and & fixed). There is a second (dimensionless) anisotropy param-
eter y, =~(p + &) in addition to + —p = &(&u,a/c)'; for simplicity, I first specialize to the neighborhood
of the isotropic model with y, = 0, and drop terms involving v, . Each equation (4a) and (4b) yields t~o
independent equations of motion (for the uniform and staggered parts), essentially Eqs. (2.11)-(2.14)
of Ref. 3, but with minor corrections':

8/& =2P sin8; P/& = —»/sin8; (&sin8)/& = —~&(sin'8 Vp) —nP sin28;

P sin8)/c = &V 8 —
4 sin28[(too/c)2+ ('7p) —(2n/sin8) +4P2]. (6)

The equations (6) become

8 =gcIIe; jo =gcI-/sin'8; gI./c =V(sin'8 &p); gIIe/c =V'8 —& sin28[(~, /c)'+ (VP) —(gI /sin'8)']. (8)

These equations may now be recognized as deriving from the Hamiltonian

II =~cfdxg(11, 2+ I.'/sin28) +g '((&8)2+[(&p)2+(~,/c)2] sin28j),

expressed in terms of independent canonical classical fields {pg),I-(r')j =j8(x), Ile(x')j =&(x -x'). The
corresponding Lagrangian density is easily obtained; in terms of the unit-vector field &{x,t) =(sin8

&& cosy, sin8 sing, cos8),

Z =~g [c-
I s, Ill' cl vill' (~,'/c')n, ],

(9)

(10)

These simplify considerably when I introduce new density fields I-{x)= —2g & sin8, &&q(x) =2g j9 sin8,
where g is the coupling constant 2/& S [more accurately, ' g =2/kfS(S + 1)j"'];L (x) is the azimuthal spin
density:

S'=-I2SQ„(—1)"cos8„' = JdxI-.

where &,'-=(A")'+ (&')'. This is just the Lorentz-
invariant O(3) nonlinear sigma model, with addi-
tional easy-axis anisotropy.

If the analysis is repeated keeping the addition-
al anisotropy term y„ the Hamiltonian (9) gains
an extra term,

II' =T'y, cfdx[gI-2+g '(V cos8)']. (11)

This term breaks Lorentz invariance, causing a
change in the collective-mode light velocity
from & to (1+@,)"2& if the system b'ecomes easy
plane [i.e. , if w, ' in (10) becomes negative]; sta-
bility requires y, & —1. This term will not be con-
sidered further here.

I now obtain topological soli ton solutions of the
equations of motion (8) by the device of minimiz. -
ing the Hamiltonian (9) with respect to the fields
at fixed values of the conserved quantities S' (7)
and momentum P = Jdx(lie&8 + I-v p), with the
boundary condition cos8-+ sgn(x) as Ixl —~.
Lorentz invariance allows the moving finite-P
solution to be obtained by a boost of the static
P =0. soliton. I obtain I- =g '(&u/c) sin'8, p =~T,
8 =8(s), where (s, T) =(1-v'/c') "'(x vt, t -vx/-
c2), and

For ~'~ ~,', (12) has soliton solutions cos8
=+ tanh[(s —so)/R], where c2/R2 = eo2 - e2.
total azimuthal spin carried by the soliton is
found to be given by &gS'=v/(~, ' —~')"'. This
variational procedure leads to the single-soliton
solution, but cannot produce multisoliton solu-
tions. When ~,'=0, the equations of motion {8)
derived from (9) or (10) are known to be integra-
ble. It is tempting to speculate that this may re-
main true when p ~0& allowing multisoliton gen-
eralizations of the single-soliton solution ob-
tained here to be found. Somewhat fortuitously
(as he studied a system with y, + 0, but omitted'
certain terms involving y, ), Mikeska' has previ-
ously obtained (12) with ~ =0 and its solution from
anAnsat~ for the ~ =0 soliton.

At this point, it is useful to introduce the semi-
classical quantization of the allowed values of the
internal precession frequency of the soliton:
This simply means that ~' is quantized in integer
steps S'=m&. The quantum number m can be
used to parametrize the internal state of the soli-
ton. The soliton energy-momentum relation ob-
tained from (9) is then given by

8rl & [(~ 2 ~2)/c2] sln28 ~ {12) E (P) =[(m'+ S2)(K(u )'+ c'P']"' SN(u ~(18)
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The soliton parameters are given by & =&Ej&PI .,
and

R =(c/(u )S '(m'+ S')"

~ = ~pz/(m'+S')"'.

In the semiclassical limit, the soliton energy gap
is always much larger than that of the elementary
magnon. The soliton rest energy may also be
written as E (0) =2g 'c/R +m@~; these terms can
be interpreted as a basic defect configuration
energy plus an internal kinetic energy. For Im l

«S, E (0) = S@~o+@&a,/S)m'; the kinetic energy
can be interpreted as that of a free planar rotator
with moment of inertia I =(g&u, ) '. As Iml in-
creases, the defect configurational energy is de-
creased; for 1m l»S, ~-~, and the rest energy
can be interpreted in terms of I m I magnons weak-
ly bound to the defect in a loose bound state.

The semiclassical quantization of the internal
motion was described above rather loosely; the
allowed discrete values of m were not specified,
only their integer spacing. The action of the
time-reversal operator 1' on spin wave functions
is well known: They are eigenstates of &' with
&'=-(-1)' =(-1)' =+1. The soliton extended
structure naturally involves an Odd number of
spins of the underlying magnetic chain: Its wave
function must thus also have the eigenvalue I'
= (- 1)' . I conclude that the allowed values of the
soliton. spin m are integers if the underlying spin
chain has integer spin, and half integers if S is
half integer. This conclusion can also be reached
by considering the spin of an odd-membered ring
of spins with periodic boundary conditions; such
a structure necessarily contains a soliton.

The semiclassical pictures of the soliton and
magnon described above will only be valid for
yeah but finite anisotropy, S exp(-&S) «(& —u)"'
&& 1. The origin of the lower bound is the well-
known renormalization' of the coupling g of the
isotropic O(3) nonlinear sigma model due to non-
linear zero-point fluctuations ( instantons"').
The model (9) with ~, =0 is apparently invariant
under scale transformations (conformally invari-
ant), and in a harmonic approximation, its col-
lective magnon excitation is gapless. However,
the nonlinear vacuum fluctuations dynamically
break this symmetry: g is renormalized to
strong coupling, and the collective mode develops
a finite rest energy &, =$ 'cg 'exp(-2&g '/~),
where ( -a is the ultraviolet cutoff length scale. '
This nonlinear mechanism mill only be sup-
pressed by the anisotropy if @~,» &„ leading to

the above condition on (A. —p)"'.
As the isotropic limit , —0 is approached,

these nonlinear effects mean that the renormal. —

ized soliton rest energy will eventually become
locker than the renormalized magnon rest energy.
The lowest-energy excitations are then the princi-
pal ~n =0 or ~ =+ ~ solitons, depending on whether
S is integer or half integer. In both cases, the
eventual disappearance of Neel order in the
ground state as the isotropic limit is approached
will be signaled by an instability against pairs of
the order-destroying topological soliton excita-
tions, and not of the order prese-ruing collective
magnon excitations, as might be misleadingly sug-
gested by the results in the harmonic approxima-
tion. Similarly, it is the thermal excitation of
solitons, not the thermal excitation of magnons,
that disorders the system at any finite tempera-
ture.

The integer-spin case (T' =+ 1) corresponds to
the standard quantization of the O(3) sigma
model, for example as a one-dimensional (1D)
lattice of discrete O(3) rotators. ' This quantiza-
tion is directly related to the thermodynamics of
the 2D classical Heisenberg model. The I=0
soliton gap will vanish at a finite critical anisot-
ropy (h~o), = &» signaling a doublet-singlet tran-
sition of the Onsager/p'-field-theory type to the
singlet ground state of the nearly isotropic model
exhibited by the strong-coupling rotator version
of the model. '

The half-integer-spin case (T = —1) corre-
sponds to a nonstandard quantization of the sigma
model, but the results from the S =~ model limit'
serve as a guide to its behavior. The w =+ ~
soliton gap only vanishes at the isotropic point
, =0, signaling a direct transition of the Koster-
litz- Thouless/t3' = 8& -sine-Gordon-field-theory
type to the gapless easy-plane state.

Recent numerical finite-size scaling studies of
the S =1 model' provide convincing evidence in
favor of the novel" prediction" of an isolated
singlet disordered ground state in integer-spin
1D antiferromagnets with sufficiently weak
anisotropy.

In conclusion, I note that while the discussion
of topological defects of the easy-axis model
was specifically one-dimensional in character,
the derivation of an equivalence between the low-
energy dynamics of the large-spin Heisenberg
antiferromagnet and the O(3) nonlinear sigma
model will be independent of dimension. The ex-
tension of the derivation to a d-dimensional hyper-
cubic lattice is trivial; (10) is obtained with the
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replacement I «i'-P; I
&'&I ', with summation

over i =1,.. .,d, and with the coupling given by
g 2d1I2ad - 1/g$
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