1.2 Many-Particle Quantum Mechanics: Second Quantization 17

$$\exp\left(\frac{\mathrm{i}}{\hbar}\hat{\theta}_n\right)(\hat{N}_n)^m \exp\left(-\frac{\mathrm{i}}{\hbar}\hat{\theta}_n\right) = \left[\exp\left(\frac{\mathrm{i}}{\hbar}\hat{\theta}_n\right)\hat{N}_n \exp\left(-\frac{\mathrm{i}}{\hbar}\hat{\theta}_n\right)\right]^m$$
$$= (\hat{N}_n + 1)^m \qquad (1.2.25)$$

holds. For a general function g(N) we obtain

$$\exp\left(\frac{\mathrm{i}}{\hbar}\hat{\theta}_n\right)g(\hat{N}_n)\,\exp\left(-\frac{\mathrm{i}}{\hbar}\hat{\theta}_n\right) = g(\hat{N}_n+1) \quad . \tag{1.2.26}$$

This means that $\hat{U} = \exp(\frac{i}{\hbar}\hat{\theta}_n)$ is a linear operator acting on \hat{N}_n , just like $\hat{U}(a)$ in (1.1.60). If $\hat{\theta}_n$ were Hermitian, then \hat{U} would be a unitary operator with $\hat{U}^{\dagger}\hat{U} = \hat{U}\hat{U}^{\dagger} = 1$. However, this identity is not true. This can be seen from (1.2.26): \hat{U}^{\dagger} increases \hat{N}_n by one, \hat{U} decreases \hat{N}_n by one. Acting with \hat{U} on the vacuum state with no particles $|N_n = 0\rangle$ we obtain $\hat{U}|N_n = 0\rangle = 0$. Acting on this equation with \hat{U}^{\dagger} we obtain of course $\hat{U}^{\dagger}\hat{U}|N_n = 0\rangle = 0$. However, because of $\hat{U}\hat{U}^{\dagger}|N_n = 0\rangle = \hat{U}|N_n = 1\rangle = |N_n = 0\rangle \neq 0$ we have just demonstrated that $\hat{U}^{\dagger}\hat{U} \neq \hat{U}\hat{U}^{\dagger}$. Therefore, we conclude that because the particle number N_n is bounded from below, $\hat{\theta}$ is not Hermitian. However, when only states with $N_n \gg 1$ are considered, the existence of a lower bound can be neglected, and $\hat{\theta}$ can be regarded to be Hermitian.

Next, we deduce the Hamiltonian occurring after second quantization. Continuing in a heuristic manner as above, we declare in (1.2.8) $\langle \hat{H} \rangle$ to be an operator again and write

$$\hat{H} = \sum_{n,m} \hat{A}_n^{\dagger} \langle \phi_n | \hat{H}_1 | \phi_m \rangle \hat{A}_m \quad . \tag{1.2.27}$$

Here, \hat{H}_1 is the single-particle Hamiltonian, being an operator in the sense that it acts on single-particle wave functions $\phi_n^*(\mathbf{r})$ and $\phi_m(\mathbf{r})$. \hat{H} is an operator because \hat{A}_n^{\dagger} and \hat{A}_m are operators; however, $\langle \phi_n | \hat{H}_1 | \phi_m \rangle$ is a simple complex number.

Equation (1.2.27) can also be expressed in terms of the field operators $\hat{\psi}^{\dagger}(\mathbf{r})$ and $\hat{\psi}(\mathbf{r})$:

$$\hat{H} = \int \mathbf{d}^3 \boldsymbol{r} \, \hat{\psi}^{\dagger}(\boldsymbol{r}) \hat{H}_1 \hat{\psi}(\boldsymbol{r}) \quad . \tag{1.2.28}$$

The Heisenberg equation of motion of $\hat{\psi}$ is given by

$$i\hbar \frac{\partial \hat{\psi}(\boldsymbol{r},t)}{\partial t} = [\hat{\psi}(\boldsymbol{r},t), \hat{H}] = \hat{H}_1 \hat{\psi}(\boldsymbol{r},t) \quad . \tag{1.2.29}$$

If $\hat{\psi}(\mathbf{r})$ were a single-particle wave function, then this equation would be the Schrödinger equation (1.1.1); however, again we mention that $\hat{\psi}(\mathbf{r})$ is an operator, and the above equation describes the time evolution of this operator in the Heisenberg picture, which leads to a totally different meaning.