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Abstract—The core purpose of deep metric learning is to
construct an embedding space, where objects belonging to the
same class are gathered together and the ones from different
classes are pushed apart. Most existing approaches typically
insist to inter-class characteristics, e.g., class-level information
or instance-level similarity, to obtain semantic relevance of data
points and get a large margin between different classes in the
embedding space. However, the intra-class characteristics, e.g.,
local manifold structure or relative relationship within the same
class, are usually overlooked in the learning process. Hence the
output embeddings have limitation in retrieving a good ranking
result if existing multiple positive samples. And the local data
structure of embedding space cannot be fully exploited since lack
of relative ranking information. As a result, the model is prone
to overfitting on a train set and get low generalization on the
test set (unseen classes) when losing sight of intra-class variance.
This paper presents a novel self-supervised synthesis ranking
auxiliary framework, which captures intra-class characteristics
as well as inter-class characteristics for better metric learning.
Our method designs a synthetic samples generation of polar
coordinates to generate measurable intra-class variance with
different strength and diversity in the latent space, which can
simulate the various local structure change of intra-class in
the initial data domain. And then formulates a self-supervised
learning procedure to fully exploit this property and preserve it in
the embedding space. As a result, the learned embedding space
not only keeps inter-class discrimination but also owns subtle
intra-class diversity, leading to better global and local embedding
structures. Extensive experiments on five benchmarks show that
our method significantly improves and outperforms the state-
of-the-art methods on the performances of both retrieval and
ranking by 2%-4%.

Index Terms—Deep Metric Learning, Image Retrieval, Self-
Supervised Learning, Generative Model.
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DEEP metric learning aims to learn effective distance or
similarity measures among arbitrary data points through

deep neural networks. It defines an embedding space where se-
mantically similar samples (e.g., images of the same class) are
close together, and dissimilar ones (e.g., images from different
classes) are far apart. Since its powerful representation ability
of instances, deep metric learning has been widely applied in
a variety of computer vision tasks, including image retrieval
[1], [2], person re-identification [3]–[5], visual tracking [6]–
[8], face recognition [9], [10] and crowd counting [11].

The paradigm of deep metric learning focuses on devising
proper loss functions [10], [12]–[15], which use binary su-
pervision to indicates pairwise distances between an anchor
(regarded as a query in retrieval) and its positive or negative
samples. Their common target is to minimize the distance of
positive pairs and maximize the distance of negative pairs.
These losses extremely depend on mining strategy [14], [16],
pairs weighting [15], [17], or samples generation [18], [19] to
exploit informative and hard samples from mini-batchs. Recent
works also use ensemble methods to improve performances,
such as attentions [20]–[22], features separation [23]–[25],
and reinforcement learning [26]. These boost-like approaches
are based on typical metric learning losses to distinguish
harder negative pairs. In general, the above methods center
on learning more class-discriminative embedding space by
maximizing inter-class variance as far as possible.

However, existing deep metric learning approaches en-
tirely disregard intrinsic intra-class variance during embedding
learning. Intra-class variance contains the relative distances
between anchor points and positive samples, or local manifold
structure in the embedding space. They regard all positive
samples equally since the lack of annotations and try their
best to discriminate positive and negative samples, while
the ranking of different positive samples is discarded totally.
That’s to say previous methods mainly concentrate on how
to maximize the inter-class variance and increase the margin
of different class-neighbors in the embedding space, while
the intra-class variance is minimized and local structure is
destroyed unconsciously. Figure 1(a) shows the latent intra-
class variance within a certain class, without considering
this property, previous methods would learn a less efficient
embedding space, shown in Figure 1(b), as compared with
the optimal result in Figure 1(c). Besides, if all positive
pairs are aligned too equally and closely without any proper
constraints [27], [28], it is prone to overfitting on a train set
and lack of generalization capability on the test set (unseen
classes). In short, previous methods are not able to fully exploit
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Fig. 1. Visualization of the limitation of conventional metric learning. For
positive samples retrieval, the best ranking result should be 1, 2, 3, 4, but
previous methods may get a wrong relative order (e.g., 2, 4, 1, 3), since they
overlook the relative relationships of different positive samples in embedding
space. (a) Inherent intra-class variances from the same class. (b) Previous
methods only maximize the inter-class variance but cannot preserve the intra-
class properties. (c) Our method captures intra-class variance by keeping their
ranking information to achieve better retrieval and ranking results.

the intra-class variance, which is indispensable for better
ranking results, and also very crucial to learn discriminative
embeddings and robust model on unseen classes.

In this paper, we propose a novel self-supervised synthesis
ranking (SSR) auxiliary framework, which defines a standard
criterion to generate and measure intra-class variance, then use
a self-supervised learning procedure to preserve their ranking
relationships in the embedding space. As shown in Fig. 2,
we first present a novel synthetic samples generation of polar
coordinates to get quantifiable intra-class variance from real
samples. These synthetic samples are generated based on the
polar coordinate system of latent hyperspace, where the radial
distances mostly represent different semantic strength of intra-
class variance, and the directional angles mainly reflect their
abundant semantic diversity. Since deep networks can learn
high-level representations with semantic abstractions [29],
[30], and directions in the feature space correspond to semantic
transforms [31], [32], e.g., changing the color or viewpoint of
an object. Secondly, we propose the self-supervised ranking
preserving method, which derives a unique ranking loss for
synthetic samples to exploit their intra-class variance ranking
relationships in the embedding space, and also can be easily
integrated with existing deep metric learning methods for inter-
class variance mining. In this way, the learned embeddings
not only maintain inter-class separability but also discriminate
subtle intra-class variance, leading to a better global and local
embedding structure for retrieval and ranking.

The contributions of this paper are summarized as follows:

• We design a typical paradigm to preserve the local
structure of the embedding space by generating and
quantifying inherent intra-class variance. To the best of
our knowledge, our method is the first self-supervised

auxiliary framework to capture both intra-class and inter-
class variance for deep metric learning.

• We propose a novel synthetic samples generation of polar
coordinates to obtain controllable intra-class variance
in the latent space, where their semantic strength and
diversity can be measured appropriately, and firstly apply
synthetic samples to the self-supervised learning.

• We present a powerful ranking preserving loss function,
which can support the model to not only exploit intra-
class intrinsic characteristics, but also learn inter-class
discriminative semantic embeddings.

• Extensive evaluation experiments on five common bench-
marks demonstrate that our method improves and outper-
forms the performances of state-of-the-art approaches on
both retrieval and ranking 2%-4%.

A previous conference version [33] of our work has been
accepted in AAAI 2021. Compared with [33], we propose a
new generation and measure method of intra-class variance
for self-supervised learning, which is the core of our moti-
vation and framework. The previous version just uses simple
image transform functions (e.g., Random Crop, Perspective
Transform, Color Jitter) to simulate the changes of intra-class
variance. These transforms are not only hard to control the
semantic strength of intra-class variance in quantity, but also
limited by finite image transform types for semantic diversity.
Our proposed synthetic sample generation of polar coordinates
can strictly and effectively perform intra-class variance with
quantifiable semantic strength and diversity, through the latent
hyperspace and implicit ways. Besides, our improved method
gets better performances than the previous work [33] on three
famous benchmarks. We also conduct more experiments on
larger datasets and more informative evaluation protocols [34],
then further investigate the effects of batch sizes, backbones,
and embedding dimensions in ablation studies.

II. RELATED WORK

A. Deep Metric Learning

Deep Metric learning aims to learn a representation space
where similar samples are pushed together and dissimilar
samples are repelled against, with the advent of deep neu-
ral networks. To build the embedding space, plenty of loss
functions have been proposed with desired properties and can
be categorized into two classes, pair-based and proxy-based.

Pair-based metric losses [13], [14] take pairs of samples
to constitute groups of pairwise distances. Typical examples
are contrastive loss [35] and triplet loss [36], which take
two-tuples and three-tuples samples respectively. Then N-
pair loss [12] and Lifted-structured loss [37] exploit multiple
samples to mine richer structural information. Recent pair-
based losses are proposed by mining strategies [16] and pair
weightings [15], [17] to improve the final performances. But
these methods lead to a biased model due to unbalanced
selection between easy and hard samples [38] during training.

The proxy-based losses [39], [40] propose learnable proxy
embeddings the class-related representation and a part of
network parameters. They encourage each image as the anchor
point to be close to the proxies of the same class and far
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Fig. 2. Overview of our proposed self-supervised synthesis ranking (SSR) auxiliary framework, where any deep metric learning algorithms can be applied for
inter-class variance mining (green block). And the SSR consists of two steps: synthetic samples generation (blue block) and self-supervised ranking preserving
(orange block). First, the backbone network fθ get latent features hi from images xi, the quantifiable intra-class variance is generated by synthetic samples in
the latent space. Through the vector linear operation of polar coordinates, we can get multiple synthetic positive samples hn

i with different strength (radius on
polar coordinates) and rich diversity (angle) of intra-class variance to the anchor point h0

i (hi), depending on n. Then embedding header qθ maps the latent
space to embedding space zi, the self-supervised surrogate loss Lranking aims to preserving generative intra-class variance and their ranking characteristics
on learnt embedding space. Finally, the auxiliary loss is attached to typical deep metric learning loss Lmetric to optimize the whole model.

away from these of different classes, instead of other image
points. The standard cross-entropy loss for image classification
with the final full-connected layer can be regarded as one
of metric learning proxy-based loss. These losses reduce the
computational complexity and obtain faster convergence when
the number of classes is small, otherwise the parameters are
tremendous and lead to out of memory [38].

Besides the above losses, ensemble methods [21], [22] are
effective to boost the performance. MIC [24] strengthens inter-
class discriminative features through characteristics shared
across classes. Divide [23] uses the divide-and-conquer algo-
rithm to learn many of partitional embedding spaces. XBM
[41] finds slow drift phenomena during embedding training
then uses the memory mechanism to expand large batch sizes.

B. Self-supervised learning

Self-supervised learning (SSL) aims to learn discriminative
feature representations without relying on manual annotations.
It is usually used as a pre-training process for diverse vision
downstream tasks, such as classification, detection, and seg-
mentation [42]. The training powers come from a variety of
well-designed pretext tasks which can learn inherent attributes
of unlabelled data. Early methods included image inpainting
[43], and rotation prediction [44]. Recently, contrastive based
self-supervised methods [42] have shown strong performance
and close to (even stronger than) traditional supervised learn-
ing. Contrastive learning tries to decrease the distance between
representations of augmented views from the same image
(as positive pairs), meanwhile, increase the distance between
representations of different augmented views from different

images (as negative pairs). Their paradigm is defined on pair-
wise relations and similar to pair-based deep metric learning
methods. What’s more, self-supervised learning is helpful
to solve some specific problems [45]. Metric learning also
employs its idea to obtain the more discriminative embeddings
[24], [41]. In contrast, our framework makes use of the SSL
to generate and capture intrinsic intra-class variance.

C. Sample Generation

Recently, sample generation [18], [46], [47] have been
proposed to produce potential hard samples for performance
boost of deep metric learning. It aims to exploit lots of easy
negative samples and train the model with extra sample-pair
relationships. For example, Duan et al. [46] and Zhao et al.
[48] are the first to use generative adversarial networks to
produce adversarial hard samples. Then Zheng et al. [49]
and Lin et al. [18] leverage the auto-encoders networks to
generative virtual samples and control their hard levels. But
the above methods require additional network architectures or
adversarial strategy, which can lead to harder optimization,
slower training speed, and more redundant parameters [19]. To
solve these problems, recent works [47], [50] generate virtual
samples or classes, for pair-based and proxy-based losses
by simple algebraic computation in the embedding space.
However, they just utilize the intuitive generative strategy,
which is global and ignores sample-related information.

III. PRELIMINARIES

This section introduces the mathematical formulation of
deep metric learning. Let X = {x1, ...,xK} denotes a dataset
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of training images in the RGB domain, and Y = {yi}Ki=1 ∈
[1, 2, . . . , C] are the corresponding labels. Deep metric learn-
ing aims to learn a feature mapping X → Z , which projects
original data space xi ∈ X to the embedding space zi ∈ Z by
deep neural networks: RH×W×3 → RD. The training goal is
to learn the model parameters such that embeddings of similar
images are close together while dissimilar ones are far apart.
Formally, the distance metric between two images xi,xj in
the embedding space is defined as:

d(zi, zj) = ∥zi − zj∥2 . (1)

where d(, ) is the Euclidean distance between two vectors.
We also can define the similarity metric by computing cosine
similarity: s(zi, zj) = ziz

T
j /(∥zi∥2∥zj∥2). L2-normalization

usually is applied to the embeddings (∥zi∥2 = ∥zj∥2 = 1), so
two metrics are equivalent.

After taking these metric methods, various kinds of metric
learning loss functions Lmetric [14], [15], [36] have been pro-
posed in recent years to learn the discriminative embeddings
by exploiting the semantic relationship between images.

Triplet loss [36] is the fundamental metric learning loss.
It considers three-tuples points and pulls the anchor point za
closer to the positive point zp of the same class (ya = yp)
than to the negative point zn of the different class (ya ̸= yn)
by a fixed margin m:

LTriplet =
1

|T |
∑

(a,p,n)∈T

[dap − dan + α]+, (2)

where dap = d(za, zp), dan = d(za, zn), and []+ are the hinge
function. Triplet samples sets T are constructed by various
sampling strategies [16] from a mini-batch.

Margin loss [14] extends the standard triplet loss by intro-
ducing a dynamic and learnable boundary β between positive
pairs P and negative pairs N . It transfers the common triplet
ranking problem to a relative ordering of pairs:

LMargin = γ+
1

|P|
∑

(a,p)∈P

(dap−β)+
1

|N |
∑

(a,n)∈N

(β−dan)

(3)
where γ is fixed margin. Margin loss utilize the distance-
weighted triplet sampling method to construct sample pairs.

Multi-Similarity loss (MS loss) [15] is one of the latest
work for deep metric learning. Unlike triplet based methods,
it adds self-similarity and relative similarities of pairs, which
mine and weight more informative samples in a mini-batch.
Given an anchor zi point, corresponding positive pairs Pi and
negative pairs Ni are selected with specific boundary:

Pi = {sij |sij > min
yk=yi

sik − ϵ} (4)

Ni = {sij |sij < max
yk ̸=yi

sik + ϵ} (5)

where the ϵ is a fixed threshold and sij = s(zi, zj) (cosine
similarity). Then MS loss can be formulated as:

ScaleViewpoint

Color

Intra-class variance space

Anchor

Fig. 3. Visualization of inherent intra-class variance space in original data
domain. We show the gradual semantic changes of scale, color, and viewpoint.
Examples come from three different classes in CUB-200-2011 dataset [51].

LMS =
1

|B|
∑
i∈B

[
1

α
log

{
1 +

∑
k∈Pi

e−α(sik−λ)

}

+
1

β
log

{ ∑
k∈Ni

eβ(sik−λ)

}] (6)

where α, β, and λ are hyper-parameters, and B denotes a
mini-batch of samples.

IV. APPROACH

In this section, we first give the definition of intra-class vari-
ance and learning principle, then introduce our self-supervised
synthesis ranking (SSR) framework as shown in Fig. 2, which
follows two steps: synthetic samples generation and self-
supervised ranking preserving. The first step (blue block)
aims to find an approximate intra-class variance generation
and measure, which can be simulated on a local neighbor
of the latent feature space, because the semantic relations
between samples on deep feature spaces can be captured by
the relative positions of their features [30]–[32]. Then we
get synthetic samples having quantifiable intra-class variance
with different semantic strength and diversity. The second
step (orange block) constructs a ranking preserving loss for
generative samples by self-supervised learning, to keep their
ranking relationships on the embedding space, which can be
easily integrated with existing deep metric learning methods
(green block) and exploit local embedding structures for more
discriminative and robust semantic embeddings.

A. Definition of intra-class variance

Intra-class variance is the diverse visual representations of
the semantic similar object such as scale, color, viewpoint,
and so on. It is fine-grained detail changes under the certain
class contrast to inter-class variance. Given an image xa, its
positive sample xp ∈ X p and negative sample xn ∈ Xn

(ya = yp ̸= yn) to learn representations za, zp, zn in the
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Fig. 4. Illustration of latent feature space hi with well-defined local neighbor
and measurable intra-class variance when given an anchor point.

embedding space. The intra-class and inter-class variances are
defined as d(za, zp) and d(za, zn) respectively. The funda-
mental metric learning methods focus on increasing the margin
between them, so as to ensure the following constraint hold:

max
xp∈Xp

d(za, zp) < min
xn∈Xn

d(za, zn). (7)

The metric losses on Section III are typical. thus only
inter-class variance (margin between difference classes) is
optimized, while the intrinsic intra-class variance (margin
within the same class) is ignored. In order to get more robust
and generalized metric learning model on unseen classes, we
need to keep the intra-class variance properly. For a image xa

with its positives xp1,xp2 (ya = yp1 = yp2), it is desirable
that the following constraint also hold [52]:

if dM (xa,xp1) < dM (xa,xp2), then d(za, zp1) < d(za, zp2).
(8)

where dM is the measure operator of intra-class variance
space in the original data domain (image RGB space), as
shown in Figure 3. Eq (8) is our learning principle and means
the relationships between intra-class variance, e.g., relative
rankings, in the embedding space are consistent with those
in the original image domain. Current human-labeled signal,
e.g., class label or pairwise label, treats images from the same
category equally, i.e., two images are similar, it not able to
further distinguish between similar images. It’s significant to
find a proper metric dM to quantify intra-class variance, we
start with the help of self-supervised learning.

B. Synthetic samples generation

One of the acceptable metrics dM is based on the fact
that high-level representations learned by deep convolutional
networks can potentially capture abstractions with meaningful
semantics [29], [30]. Specifically, translating deep features
along various directions has been shown to be corresponding
to performing different semantic transformations on the input
images, e.g., the color or viewpoint changes of an object with
the same class [31]. Recent work on semantic augmentation
[32] reveal that we can learn all kinds of semantic directions
and controllable strength in the deep feature space, which can
also be leveraged to perform semantic intra-class variance
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Fig. 5. Illustration of our synthetic samples generation of polar coordinates.
We get multiple synthetic samples with measurable semantic strength and
diversity of intra-class variance on the local neighbor of latent feature space.

efficiently. Therefore, translating real samples along proper
gaps and directions in the latent space can get measurable
intra-class variance with various strength and diversity.

Generally, the whole mapping models of deep metric learn-
ing are comprised of two parts: a representation network
fθ and an embedding header qθ with related parameters θ.
Therefore, we can get two-stage features for images xi,

hi = fθ(xi) ∈ RF , zi = qθ(hi) ∈ RD (9)

fθ usually is a Convolutional Neural Network with global
pooling and regarded as backbone networks. qθ generally is a
fully-connected layer to finish the mapping from latent feature
space hi to the final embedding space zi. As aforementioned,
intra-class variance of images xi can be represented on the
Euclidean ball of latent space, called local neighbor:

N(hi) = {hk | yk = yi, ∥hk − hi∥2 ≤ δ} (10)

δ is a threshold controlling the region size of N(hi) using
Euclidean distance d(hk,hi), to ensure that hk belong to the
same class of hi as rational intra-class variance. The specific
threshold δ can be estimated with existing training dataset X
and representation network fθ. Besides, on a polar coordinate
system of latent hyperspaces, the difference between hk and
hi can be decomposed into two parts: the radial distance (aka
radius) r and the directional angle (aka angle) u.

hk − hi = ∥hk − hi∥2
hk − hi

∥hk − hi∥2
= ru, hk ∈ N(hi)

(11)

According to [31], [32], the semantic relations between
samples can be captured by the relative positions in latent
feature space. And the radius r (scalar) mainly represents
the semantic strength of intra-class variance and the angle u
(unit vector) mostly reflects the semantic diversity of intra-
class variance, which is also important but ignored by previ-
ous sample generation methods [19], [47]. We represent the
relationship between hk and hi through the polar coordinate
properties of latent space (rk and uk):

hk = hi + rkuk rk ≤ δ, ∥uk∥2 = 1 (12)
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TABLE I
SUMMARY OF IMPORTANT NOTATIONS AND INTERPRETATION.

Not. Interpretation Not. Interpretation
d(, ) Euclidean distance xi original data
s(, ) cosine similarity zi embeddings

dM (, ) measure of intra-class variance yi class label
fθ() backbone network hi latent feature
qθ() a fully-connected layer δ threshold of N
N() local neighbor hn

m synthetic latent feature
gθ() distribution generator r strength of variance
σ distribution parameters u diversity of variance
m index of original samples n index of synthetic samples
M batch size of original samples N number of synthetic samples
α ranking margin zn

m synthetic samples
τ scale factor β positive boundary

Since the intra-class variance space of hi is consistent to the
local neighbor N(hi) in the latent space, the measure operator
of intra-clas variance dM is available on N(hi) and we hold:

if rk1 < rk2,

then d(hi,hk1) < d(hi,hk2),

and then dM (xi,xk1) < dM (xi,xk2).

(13)

Based on Eq. (12) and Eq. (13), our synthetic sample gener-
ation is shown in Fig. 5 and Eq. (14). In a training mini-batch,
we denote the m-th image as xm (m = 1, 2, ...,M ), and its
latent feature hm, then we generate multiple synthetic samples
with measurable intra-class variance from two perspective, the
semantic strengths nr (r is a fixed scalar, n is a positive
integer) and semantic directions un.

hn
m = hm + (nr)un, n = 0, 1, ..., N (h0

m = hm) (14)

Specially, un are sampled from the sample-conditional zero-
mean Gaussian distribution N (0,σ2), then are L2-normalized
to ensure ∥un∥ = 1. We use a distribution generator gθ to learn
the diagonal covariance matrices, σ = gθ(hm). To promote
the generator gθ to learn more meaningful semantic directions
for diverse intra-class variance, we use the KL-divergence
loss (DKL) to constrain it close to the standard Gaussian
distribution as the regularization term [18].

Ldist = DKL

[
N (0,σ2)||N (0, I)

]
=

1

2

F∑
i=1

[
σ2
(i) − log σ2

(i) − 1
] (15)

Alternatively, we can estimate the class-conditional covari-
ance matrices of the latent features for each class, and then
constrain our learned diagonal covariance matrices close to
the estimated matrices. But most metric learning datasets only
have a few samples for each class, the estimation is difficult
and can result in trivial solutions easily. So we still adopt the
regularization way to keep our learned covariance matrices
within reasonable bounds, like Eq. (15).

C. Self-supervised ranking preserving

In order to keep the ranking relationships of intra-class
variance on the embedding space as the principle Eq. (8), we
derive a powerful ranking preserving loss function and then
exploit the local embedding structure. We use the head encoder

qθ to get the embeddings zn
m = qθ(h

n
m) of synthetic samples

hn
m. According to the self-supervised strategy and Eq. (13),

the embedding of the original image xm, z0
m, should be closer

to the embeddings of synthetic samples with lower intra-class
variance strength (smaller n) than higher strength (larger n):

if i < j, then d(z0
m, zi

m) < d(z0
m, zj

m). (16)

This ranking preserving objective is formulated based on
the pairwise ranking loss, i.e., triplet loss [36]. Without loss of
generality, we use cosine similarity s(, ) rather d(, ) in our fol-
lowing introduction since all embeddings are L2-normalized.
The similarity of an embedding pair with weaker differences
of intra-class variance strength should be larger than that with
stronger ones in the embedding space by a fixed margin α.

Lbase =
[
s(z0

m, zj
m)− s(z0

m, zi
m) + α

]
+
,when i < j. (17)

Then we use listwise ranking to integrate all synthetic
samples in mini-batch. it’s made up of the sequential Eq. (17):

Llist =
1

M

M∑
m=1

N−1∑
n=1

[s(z0
m, zn+1

m )− s(z0
m, zn

m) + α]+, (18)

Besides, we apply the LogSumExp and SoftPlus functions
[15], [53] to smooth Eq. (18). After summing over all of them,
the loss function becomes:

Lsort =
1

M

M∑
m=1

1

τ
log[1 +

N−1∑
n=1

eτ(−Sm,n+Sm,n+1+α)]. (19)

where Sm,n is s(z0
m, zn

m) and τ is the scale factor.
Eq. (18) has a limitation that gradients are fixed, the value

is ±1 when a training pair violates the constraint and 0
otherwise. The loss cannot mine any informative sample pairs
[15] and leads to the trivial samples [17] during training. By
contrast, the derivative of Eq. (19) is weighted according to
the relative hardness, which is the degree of strength that a
pair violates the constraint. As shown in Eq. (20), a harder
pair can get larger gradient magnitudes.

∂Lsort

∂Sm,n
=

eτ(−Sm,n−1+Sm,n+α) − eτ(−Sm,n+Sm,n+1+α)

1 +
∑N−1

j=1 eτ(−Sm,j+Sm,j+1+α)
.

(20)
Although hn

m is generated by certain transformations, it is
still in the local neighbor N(hi) and a positive sample for
xm. So we add the constraint of positive pairs to ensure Sm,n

is larger than a boundary β. We also use the smooth version
of the pointwise loss [53] to control the relative hardness:

Lpos =
1

M

M∑
m=1

1

τ
log[1 +

N∑
n=1

e−τ(Sm,n−β)]. (21)

The derivative of Eq. (21) is the same situation, the harder
positive pairs with a lower similarity are assigned with a larger
weight, then get larger gradient to be optimized.

∂Lpos

∂Sm,n
= − e−τ(Sm,n−β)

1 +
∑N

n=1 e
−τ(Sm,n−β)

. (22)
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Algorithm 1 Model training process with our method
Input:

images X , class labels Y ,
neural networks fθ, gθ, qθ,
hyper-parameters α, β, τ, r, λ, ptask

Output:
network parameters θ (θf , θg, θq)

epoch← 0
while Not Converged do

repeat
x, y ←MiniBatch(X,Y )
h← Latent(x; fθ)
z ← Embedding(h; qθ)
Compute Lmetric(z, y)
if p < ptask, p ∼ U(0, 1) then
σ ← gθ(h)
un ← L2Norm

[
un ∼ N (0,σ2)

]
hn ← h+ (rn)(un)
zn ← Embedding(hn; qθ)
Compute Lranking(z

n)
end if
Compute Lobj = Lmetric + λLranking

θ ← Backward(Lobj)
until Epoch End
epoch← epoch+ 1

end while

With the weighted sum of Eq. (19), Eq. (21), and Eq. (15),
we reach the self-supervised list-wise ranking loss:

Lranking = Lsort + Lpos + Ldist, (23)

Our auxiliary framework is independent of the choice of
metric learning losses Lmetric, which is explained in Section
III. We just incorporate incorporate Lranking into Lmetric and
train the entire networks.

Lobj = Lmetric + λLranking. (24)

The overall objective Lobj makes up of a general met-
ric learning loss and our proposed self-supervised ranking
learning loss, where λ weights the importance of intra-class
variance. The whole training procedure is outlined in Alg. 1.

V. ANALYSIS

A. Comparison to Existing Works

Many existing metric learning methods have used the
synthetic samples generation to boost the performance [19],
[46]–[49]. However, both our generation strategy and the
motivation fundamentally differ from previous methods. We
aims to preserve ranking characteristics of intra-class variance
by generating synthetic samples, whose semantic strength are
controllable and measurable. In contrast, previous methods use
synthetic samples to discriminate inter-class variance further,
and they don not focus on the strength changes of synthetic
samples and their ranking relationship.

These are also other multi-task and self-supervised auxiliary
methods for deep metric learning, like MIC [24] and DiVA
[25]. Although these methods all focus on modeling intra-class
variation, we are distinct from MIC and DiVA in many aspects.
They mine inter-class or class-shared information, which are
separated from class-specific properties. In comparison, we
preserve the ranking characteristics of intra-class variance for
every class to explore local structure of embedding space.
What’s more, we don’t use extra network units, such as gra-
dient reversal layers, which will bring performance instability
and parameter complexity during training.

Compared with previous version [33], we propose a novel
generation and measure method of intra-class variance for
self-supervised learning, which is the core of our motivation
and framework. The previous work just uses simple image
transforms and augmentations to simulate the changes of intra-
class variance. These transforms are not only hard to control
the semantic strength of intra-class variance in quantity, but
also limited by finite image transform types for semantic
diversity. Our proposed synthetic sample generation of polar
coordinates can strictly and effectively perform intra-class
variance with quantifiable semantic strength and diversity,
through the latent hyperspace and implicit ways.

B. Loss complexity

Our proposed ranking loss, Lranking , belongs to general
pair-based metric loss, which usually has high computational
complexity with large batches. When mini-batch size is M ,
O(M2) is for Contrastive loss [35] and Triplet loss [36]
with samples mining strategies, O(M3) is for Lifted-Structure
loss [37] and N-pair loss [12]. Margin loss [14] and MS
loss [15] also have the O(M2) complexity. In contrast, the
complexity of Lranking is only O(M), when the number of
synthetic samples is limited. Low time consumption and fast
convergence speed are advantageous for training.

C. Computation cost

Although the model process the metric learning task and
self-supervised task jointly, the latter only requires tiny for-
ward computation and network parameters on the end of
framework. Even though the number of synthetic samples in-
creases, the additional runtime and memory cost are negligible
for the training stage. (see Section VI-F4 for more details) It
is also worth noting that our method does not increase any
runtime and parameter for the inference stage.

D. Model Robustness

Since the synthetic samples are sampled from a Gaussian
distribution, and virtual compared with real samples from the
datasets. They might be noisy training signals. To sovle this
problem, we learn the distribution parameters with reasonable
constraints (Ldist), control the change of semantic strength (r)
strictly, and construct proper boundary between original and
synthetic samples (Lpos). Therefore, these reliable synthetic
samples can alleviate the mismatch between the generated
distribution and the ground truth distribution. (see Section
VI-H and Section VI-G for more explanations and analysis).
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TABLE II
RETRIEVAL PERFORMANCES ON FOUR STANDARD BENCHMARK AND THREE BASELINES, WHERE ’SR’ REFERS TO THE PREVIOUS VERSION [33]. WE LIST
OTHER METRIC LEARNING METHODS USING SAMPLE GENERATION. ALL OF THEM USE THE GOOGLENET [54] AS BACKBONE AND 512 AS EMBEDDING

SIZE. ReImp INDICATES OUR RE-IMPLEMENTATION WITH OFFICIAL SETTINGS. OUR TRIPLET USES THE SEMIHARD NEGATIVE MINING [37].

CUB-200-2011 Cars-196 Stanford Online Products In-shop Clothes Retrieval
Method R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100 R@1 R@10 R@20
Triplet+DAML [48] 37.6 49.3 61.3 60.6 72.5 82.5 58.1 75.0 88.0 - - -
Triplet+HDML [49] 43.6 55.8 67.7 61.0 72.6 80.7 58.5 75.5 88.3 - - -
Triplet+DVML [18] 43.7 56.0 67.8 64.3 73.7 79.2 66.5 82.3 91.8 - - -
Triplet+Symm [19] 55.0 67.3 77.5 69.7 78.7 86.1 68.5 82.4 91.3 - - -
Triplet+EE [47] 51.7 63.5 74.5 71.6 80.7 87.5 77.2 89.6 95.5 - - -
MS+EE [19] 57.4 68.7 79.5 76.1 84.2 89.8 78.1 90.3 95.8 - - -
Triplet [36] (ReImp) 53.4 65.0 75.4 67.0 77.5 85.2 73.2 87.6 95.0 84.1 95.2 96.5
Triplet+SR [33] 55.0 67.0 77.1 70.1 79.3 86.0 75.0 88.6 95.5 85.5 96.6 97.7
Triplet+SSR 56.1 67.3 77.6 71.4 80.2 86.8 75.4 88.8 95.6 86.3 96.9 97.9
Margin [14] (ReImp) 55.4 67.5 77.7 76.4 84.7 89.8 73.7 87.5 94.1 83.8 95.5 97.0
Margin+SR [33] 57.3 69.0 78.8 79.4 86.3 91.0 74.9 88.1 95.0 85.4 96.2 97.3
Marin+SSR 58.3 70.0 79.3 80.5 87.7 91.9 75.8 88.7 95.2 86.2 96.6 97.5
MS [15] (ReImp) 56.2 68.3 79.1 77.0 84.3 89.9 75.3 89.0 95.4 84.0 95.8 97.2
MS+SR [33] 57.4 69.3 79.8 80.9 88.2 92.6 76.5 89.6 95.9 85.5 96.6 97.8
MS+SSR 58.2 70.6 81.1 82.0 88.6 93.3 76.8 89.8 96.0 86.6 97.2 98.2

VI. EXPERIMENTS
A. Datasets

We evaluate our proposed method on five widely-used
datasets by following the standard protocol [37] of train and
test set split. The first two of these are small datasets and
have plenty of positive samples in each class. The last three
are large datasets and have a few positive samples.

(1) CUB-200-2011 (CUB) [51] contains 11,788 images of
200 species of birds. We use 5,864 images of its first 100
classes for training and 5,924 images of the remaining classes
for testing. (2) Cars-196 (CARS) [55] contains 16,185 images
of 196 car models. We use 8,054 images of its first 98 classes
for training and 8,131 images of the other classes for testing.
(3) Stanford Online Products (SOP) [37] contains 120,053
online product images of 22,634 categories sold on eBay.com.
We use 59,551 images of 11,318 classes for training and
60,502 images of the rest classes for testing. (4) In-shop
Clothes Retrieval (InShop) [56] contains 72,712 clothing
images of 7,986 categories. We use 25,882 images of the
first 3,997 classes for training and 28,760 images of the other
classes for testing. And the test set is further divided into a
query set and a gallery set, with 14,218 images of 3,985 classes
and 12,612 images of 3,985 classes respectively. (5) PKU
VehicleID (Vehicle) [57] contains 221,736 images of 26,267
vehicles categories captured by surveillance cameras. we use
110,178 images of 13,134 classes for training and 111,585
images of the other classes for testing. We evaluate on the
predefined small, medium and large test sets which contain
800, 1,600 and 2,400 classes respectively.

B. Implementation Details

1) Networks: We implement our method on the GPU of
NVIDIA RTX 2080Ti or 3090. For a fair comparison, we
use GoogleNet [54], Inception with batch normalization [58],
and ResNet50 [59] as the backbone networks. We replace its
last layer with a randomly initialized fully-connected layer qθ
for metric learning. An MLP with a 512-dim hidden layer gθ
is attached to learn parameters of the Gaussian distribution.

The output embeddings are L2 normalized before computing
distances, and the dimensions are 128 or 512.

2) Optimization: The input images are first resized to 256
× 256, then cropped to 224 × 224. For training, we use ran-
dom crop and random horizontal flips for data augmentation.
For testing, we only use the single center crop. We use Adam
optimizer with 4e−4 weight decay. The initial learning rate is
10−4 and scaled up 10 times on the output layers for faster
convergence. Mini-batches are constructed with the balanced
sampler (P classes, K samples per class).

3) Hyperparameter: We set α = 0.05, β = 0.5, τ =
12, ptask = 0.6, λ = 0.15,M = 24, N = 5 for all experiments
as [33]. Especially, the new hyper-parameter r = [1.0, 5.0] .

C. Results

We evaluate our framework base on three typical deep met-
ric learning losses, which are introduced in Section III: Triplet
loss [36], Margin loss [14], MS loss [15]. The parameters are
consistent with [33]. We implement them with GoogLeNet and
512 embedding size with 120 batch sizes for fairness. We also
list other synthetic sample generation based methods with the
same backbone and embedding size for a fair comparison.

First, we evaluate the retrieval performance in terms of
the common retrieval metric, the Recall@K (R@K). Tab.
II show that our method brings considerable improvement
on all baselines and benchmarks. It proves that our method
helps models learn discriminative inter-class variance since
local structures of the embedding space are mined sufficiently,
and it is stimulative to learn class-related boundaries. Three
metric learning losses obtain surprising promotions with our
framework, 1%-4% R@1 gains on all datasets. In brief, our
model is a universal auxiliary framework for deep metric
learning regardless of object categories and loss functions.
Compared with the previous version work (SR [33]), our
method still gets obvious performance improvement.

Qualitative retrieval results are shown in Fig. 6. Our method
promotes models to learn more robust embeddings by cap-
turing intra-class variance. Now the new embeddings can
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TABLE III
COMPARISON WITH THE STATE-OF-THE-ART DEEP METRIC LEARNING METHODS. BACKBONE NETWORKS OF THE MODELS ARE DENOTED BY

ABBREVIATIONS: G–GOOGLENET [54], BN–INCEPTIONBN [58], R–RESNET50 [59]. SUPERSCRIPTS IN THE NETWORKS DENOTE EMBEDDING SIZES. †
INDICATES THAT USES THE DISTANCE-BASED SAMPLING AS MARGIN LOSS [14].

CUB-200-2011 Cars-196 Stanford Online Products
Method Setting R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100 R@1000

A-BIER [21] G512 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1 74.2 86.9 94.0 97.8
ABE [22] G512 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1 76.3 88.4 94.8 98.2
HTL [13] BN512 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7 74.8 88.3 94.8 98.4
RLL-H [17] BN512 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1 76.1 89.1 95.4 -
SoftTriple [40] BN512 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9 78.3 90.3 95.9 -
Circle [10] BN512 66.7 77.4 86.2 91.2 83.4 89.8 94.1 96.5 78.3 90.5 96.1 98.6
XBM [41] BN512 65.8 75.9 84.0 89.9 82.0 88.7 93.1 96.1 79.5 90.8 96.1 98.7
ProxyAnchor [38] BN512 68.4 79.2 86.8 91.6 86.1 91.7 95.0 97.3 79.1 90.8 96.2 98.7
MIC [24] R128 66.1 76.8 85.6 - 82.6 89.1 93.2 - 77.2 89.4 95.6 -
Divide [23] R128 65.9 76.6 84.4 90.6 84.6 90.7 94.1 96.5 75.9 88.4 94.9 98.1
PADS [26] R128 67.3 78.0 85.9 - 83.5 89.7 93.8 - 76.5 89.0 95.4 -
RaMBO [60] R512 63.5 74.8 84.1 90.4 - - - - 77.8 90.1 95.9 98.7

Margin+SR [33] R128 66.5 76.8 85.5 91.0 84.5 90.2 93.7 96.1 77.9 89.5 95.4 98.4
Margin+SR [33] R512 68.2 78.1 86.5 91.6 87.7 92.5 95.4 97.3 78.6 90.6 96.2 98.7
Triplet† +SSR BN512 65.4 76.3 84.3 90.3 80.1 87.3 92.2 95.1 78.9 91.0 96.2 98.8
Margin+SSR R128 66.3 77.2 85.5 91.3 83.7 89.5 93.3 95.9 78.2 90.5 96.0 98.6
Margin+SSR R512 69.1 78.8 86.6 91.4 88.0 92.7 95.7 97.4 79.1 90.7 96.2 98.7

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON IN-SHOP

CLOTHES RETRIEVAL DATASETS. † INDICATES THAT TRIPLET LOSS USES
THE DISTANCE-BASED SAMPLING STRATEGY AS MARGIN LOSS [14].

In-shop Clothes Retrieval
Method Setting R@1 R@10 R@20 R@30

A-BIER [21] G512 83.1 95.1 96.9 97.8
ABE [22] G512 87.3 96.7 97.9 98.5
MS [15] BN128 88.0 97.2 98.1 98.5
ProxyAnchor [38] BN128 90.8 97.9 98.5 99.0
HTL [13] BN512 80.9 94.3 95.8 97.2
XBM [41] BN512 89.9 97.6 98.4 98.6
MIC [24] R128 88.2 97.0 - 98.0
Divide [23] R128 85.7 95.5 96.9 97.5

MS+SR [33] R128 87.8 97.2 98.0 98.5
Margin+SR [33] R128 88.0 97.3 98.2 98.6
Triplet†+SSR BN512 91.0 98.0 98.7 99.0
Margin+SSR R128 88.6 97.4 98.3 98.7
Margin+SSR R512 90.4 97.8 98.6 99.0

help to retrieve images correctly and also keep their relative
rankings while the original baseline fails, since there are
misleading poses, viewpoints, background, or colors from
various semantically similar objects of the same class.

D. Comparison with SOTAs

We compare our approach with the state-of-the-art deep
metric learning methods. We list the performances with cor-
responding settings since the backbone and embedding di-
mension (generally, larger is better) can affect performances
greatly. Tab. III, IV, and V demonstrate that our method out-
performs state-of-the-art methods on five typical benchmarks.
For example, it surpasses the SOTA deep metric learning
losses, such as HTL [13], RLL-H [17], Circle [10], and so on
by at least 2% R@1 gains for all the datasets, especially for
the current strong model (e.g., SoftTriple [40], ProxyAnchor
[38], and XBM [41]). It proves the effectiveness of SSR.

TABLE V
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON PKU

VEHICLEID DATASET. THE TEST SETS ARE SPLITED INTO THREE SIZES
(THE SMALL, MEDIUM, AND LARGE).

Small Medium Large
Method Setting R@1 R@5 R@1 R@5 R@1 R@5

BIER [20] G512 82.6 90.6 79.3 88.3 76.0 86.4
A-BIER [21] G512 86.3 92.7 83.3 88.7 81.9 88.7
MS [15] BN512 91.0 96.1 89.4 94.8 86.7 93.8
MIC [24] R128 86.9 93.4 - - 82.0 91.0
Divide [23] R128 87.7 92.9 85.7 90.4 82.9 90.2
FastAP [61] R512 91.9 96.8 90.6 95.9 87.5 95.1

MS (ReImp) R128 91.4 96.3 89.5 95.1 86.6 94.1
Margin (ReImp) R128 91.8 96.7 90.3 95.4 87.4 94.4
MS+SR [33] R128 92.0 96.9 89.8 95.3 87.3 94.4
Margin+SR [33] R128 92.9 97.8 91.1 95.5 88.6 94.8
MS+SSR R128 92.8 96.8 91.4 95.6 89.0 95.1
Margin+SSR R128 93.5 96.9 92.0 95.9 89.7 95.3

When compared with other boost-like methods, such as MIC
[24], Divide [23], PADS [26], and RaMBO [60], with the
same backbone and baseline loss (R128 + Margin loss), our
approach still gets better promotion and generalization. For
example, we achieve a higher R@1 performance than Divide
[23] by 65.9%→ 66.3% on CUB, 85.7%→ 88.6% on Inshop.
Our method outperforms MIC [24] by 82.6% → 83.7% on
CARS, PADS [26] by 76.5% → 78.2% on SOP, and all these
ensemble methods with a large margin on VehicleID. Besides,
our method achieves better performance than the previous
conference version work [33] in terms of all the benchmarks
and baselines, expect for the R128 setting on Cars-196 (There
are about 1% R@1 decreasing gaps, probably the latent space
can not be learned and measured well in this instance).

It is worth noting that, despite our method uses 128-d
embeddings, it still gets better results than some state-of-
the-art ensemble methods with 512-d embeddings, such as
BIER [20], A-BIER [21], ABE [22] and RaMBO [60]. These
results show our method can lead to stronger generalization
and construct more discriminative embedding spaces.
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TABLE VI
INFORMATIVE EVALUATION PROTOCOLS [34] AND RANKING PERFORMANCES ON FOUR BENCHMARKS. ALL OF THE METHODS USE RESNET50 [59] AS

BACKBONE AND 128 AS EMBEDDING SIZE ( R128). WE REPORT THE MEAN AND STANDARD DEVIATION OF RESULTS OVER 4 INDEPENDENT RUNS

CUB-200-201 Cars-196 Stanford Online Products In-shop Clothes Retrieval
Method MAP@R R-Precision MAP@R R-Precision MAP@R R-Precision MAP@R R-Precision
Contrastive [35] 23.5±0.3 34.5±0.3 23.6±0.4 34.0±0.4 38.3±0.2 41.7±0.2 44.5±0.5 47.5±0.5

N-pair [12] 21.7±0.5 32.6±0.5 20.5±0.6 31.9±0.6 34.6±0.4 38.2±0.4 43.7±0.6 47.3±0.6

ProxyNCA [39] 23.8±0.2 34.7±0.2 22.9±0.2 33.1±0.2 38.7±0.3 42.2±0.3 48.4±0.2 52.1±0.2

Triplet [36] 22.0±0.4 33.1±0.4 20.3±0.5 31.5±0.5 37.0±0.3 40.5±0.3 44.8±0.4 48.5±0.4

Margin [14] 23.5±0.3 34.6±0.3 24.4±0.2 34.8±0.2 40.8±0.1 44.2±0.1 50.5±0.3 53.4±0.3

MS [15] 23.2±0.2 34.4±0.2 25.2±0.3 35.6±0.3 40.9±0.1 44.3±0.1 52.1±0.2 54.6±0.2

Margin+SR [33] 24.0±0.3 34.9±0.3 27.5±0.2 37.3±0.2 41.3±0.1 44.5±0.1 53.3±0.1 56.6±0.1

MS+SR [33] 23.5±0.3 34.4±0.3 27.8±0.2 37.8±0.2 41.5±0.1 44.8±0.1 52.8±0.1 56.0±0.1

Margin+SSR 24.3±0.2 35.2±0.2 27.2±0.3 36.9±0.3 41.7±0.1 45.0±0.1 53.7±0.1 57.1±0.1

MS+SSR 23.7±0.2 34.7±0.2 27.9±0.2 37.8±0.2 41.5±0.1 44.8±0.1 53.0±0.2 56.3±0.2

Query Margin Margin + SSR

(a)

(b)

(c)

(b)

(c)

Fig. 6. Qualitative retrieval results with or without our method on Margin
loss [14]. (a), (b), (c), (d), (e) is for five datasets (CUB, CARS, SOP, Inshop,
and VehicleID) respectively. For each query image (leftmost with blue edge),
the top-5 recall results are presented with left-to-right ranking by relative
distances. Correct recall are highlighted with green, while incorrect red.

E. Informative Evaluation Protocol

Recent works present more objective evaluation procedures
with regard to fairness [34]. Therefore, we evaluate the per-
formance by computing more informative metrics for ranking
results, the MAP@R and R-precision. Then we conduct 4
independent runs for each experiment and report the mean and
the standard deviation of them for an unbiased evaluation. Tab.
VI shows that our method enhances the specific evaluation
results for every dataset and new metric.

The MAP@R metric is also reasonable to measure ranking
performance and shows our method improves the correspond-
ing results when compared to others, which confirms the
effectiveness in learning intra-class variance. There are lots of
samples in every class on CUB [51] and CARS [60] datasets,
hence their intra-class variances are abundant and the ranking
improvements are impressive. However, SOP [37] and InShop
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Fig. 7. Recall@1 comparison with various values of four significant hyper-
parameters: (a) ranking margin α (in Lsort), (b) positive boundary β (in
Lpos), (c) scale factor τ (in Lsort,Lpos), and (d) synthetic radius r.
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Fig. 8. Recall@1 comparison on various embedding dimensions (32 - 512)
on CUB-200-2011 and Cars-196 dataset.

[56] datasets has a few examples under each class, the capture
of intra-class features is not sensitive for retrieval, which leads
to little gain with our method.

F. Ablation Study

We provide ablation experiments to verify the effectiveness
of our method and evaluate the contribution of different
modules. We choose Margin loss [14] and train models on
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TABLE VII
RECALL@1 COMPARISON WITH DIFFERENT MODULES IN THE

FRAMEWORK. ‘✓’ MEANS RETAINING THE CORRESPONDING PARTS ON
OUR FRAMEWORK OTHERWISE REMOVING. gθ IS A MULTI-LAYER

PERCEPTION IN SR [33].

CUB CARS
Lsort Lpos Ldist / gθ SSR SR SSR SR

63.4 79.5
✓ 64.5 61.9 82.4 78.3

✓ 64.0 60.7 81.3 76.5
✓ ✓ 65.3 62.5 82.7 79.4

✓ ✓ 64.6 64.3 82.1 82.3
✓ ✓ 65.8 65.8 83.2 84.0
✓ ✓ ✓ 66.3 66.5 83.7 84.5

CUB-200-2011 [51] (CUB) and Cars-196 [55] (CARS). We
also run multiple times independently and report the mean
for each experiment. ResNet50 backbone with 128 embedding
sizes is the default setting unless otherwise noted.

1) Hyper-parameters: We show the impact of four impor-
tant hyper-parameters in Fig. 7: (a) ranking margin α (in
Lsort), (b) positive boundary β (in Lpos), (c) scale factor
τ (in Lsort,Lpos), and (d) synthetic radius r. When one is
variable, the other is fixed as the default setting for controlled
experiments. As the boundary of positive pairs, β can’t be too
large or small otherwise the performances drop heavily. And
the performances are stable when α is changed in a proper
range, but useless if two small. The scale factor is sensitive to
results since it controls the weights of hard synthetic samples.
Finally, the size of radius r depends on the threshold δ of
the local neighbor in given datasets, which can be estimated
by original data distributions and intra-class variance diversity.
Note that the setting Section VI is not best since we did not
tune them elaborately according to the test set performance.

2) Framework components: In order to analyze the ef-
fectiveness of different parts in our proposed ranking loss
Lranking , including Lsort, Lpos and Ldist. We evaluate our
framework with different compositions of them. Tab. VII
shows that these modules are complementary. When only
Lsort or Lpos is incorporated into the self-supervised learning
procedure, the performances are inconspicuous. By contrast,
the combination help to learn more robust embeddings, and
the best result comes with the incorporation of all modules.
Lsort is most important and Lpos,Ldist can further enhance
the positive influence. We also find that SSR is more effective
and robust than SR with different changes of ranking loss.

3) Batch sizes of generative samples: According to previ-
ous works [15], [41], [61], large batch sizes can boost the
performance of metric loss significantly. To investigate the
effect of batch sizes for generative samples, we vary different
batch sizes for our ranking loss in Tab. VIII. We find our
ranking loss need not large batch sizes and to promote the
best performance, unlike typical metric loss functions.

4) Computation cost: Though our model requires an extra
self-supervised task, the additional computing time (6% more)
and memory cost (1% more) are trivial compared to the
baseline, as shown in Tab. VIII. So the memory or computing
cost problems [15], [41] are nonexistent during training.

TABLE VIII
RECALL@1 COMPARISON WITH VARIOUS BATCH SIZES (M ×N ) FOR
SYNTHETIC SAMPLES. M IS THE NUMBER OF REAL ANCHOR SAMPLES
FOR SYNTHETIC GENERATION AND N IS THE NUMBER OF SYNTHETIC

SAMPLES FOR RANKING PRESERVING. WE ALSO REPORT RUNTIME (100
ITERATIONS) AND GPU MEMORY COST FOR SELF-SUPERVISED TASK.

M N Batch CUB CARS Runtime GPU Mem.
0 0 0 63.4 79.5 45.7 s 10.72 GB
16 5 80 65.2 82.7 48.2 s 10.78 GB
20 5 100 65.6 83.0 48.5 s 10.79 GB
28 5 140 65.9 83.3 48.8 s 10.80 GB
32 5 160 64.3 82.8 48.8 s 10.80 GB
24 3 72 64.9 82.6 47.3 s 10.75 GB
24 4 96 65.1 83.5 48.6 s 10.79 GB
24 6 144 65.3 82.8 49.0 s 10.80 GB
24 7 168 64.0 82.6 49.1 s 10.81 GB
24 5 120 66.3 83.7 48.7 s 10.80 GB

TABLE IX
RECALL@1 COMPARISON WITH DIFFERENT IMAGE DEFORMATIONS IN

CARS DATASET. WE CHOOSE THE SAME DEFORMATIONS AS [50].

Image Deformations Margin Margin + SSR
Not apply 79.5 83.7 (+4.2)
Cutout 70.1 73.5 (+3.4)
Dropout 56.5 59.8 (+3.3)
Zoom in 59.2 61.3 (+2.1)
Zoom out 74.3 76.8 (+2.5)
Rotation 67.5 69.4 (+1.9)
Shearing 65.2 67.8 (+2.6)
Gaussian noise 61.2 63.6 (+2.4)
Gaussian blur 69.6 71.1 (+1.5)

5) Embedding dimension: In metric learning and similarity
search, the trade-off between speed and accuracy is an impor-
tant issue, where embedded size is the key factor. We test our
method with embedding dimensions varying from 32 to 512.
The result is quantified in Fig. 8. Our method significantly
improves the performance of the baseline in all embedding
dimensions. It indicates that our method constructs a highly
efficient embedding space for all the dimensionality.

G. Robustness analysis

1) Image deformation: To further evaluate the robustness
of embeddings learned by our models, we perform the image
deformation test as [50]. As shown in Tab. IX, we add
certain deformations which are not used in training to the test
images. The results show our models have great robustness
and generalization with a large variety of image deformations.

2) Convergence analysis: To evaluate the stability and
convergence of ranking loss Lranking , we provide the conver-
gence analysis in the learning process. First, as shown in Fig.
9, our method gets larger metric learning loss Lmetric values
during train, but higher performances than the baseline on test
set, which proves that our method can lead to less overfitting
and stronger generalization for models. Besides, the ranking
loss can steadily decline and gradually converge with Lmetric

during learning process, as shown in Fig. 10. It demonstrates
that intra-class variance has been preserved well during train,
and is helpful to metric learning.

3) Synthetic certainty: Since synthetic samples are sam-
pled from the Gaussian distribution, the quality of generated
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TABLE X
RECALL@1 OF SYNTHETIC SAMPLES. WE USE ALL ORIGINAL SAMPLES
ON TEST SET AS GALLERY, AND USE SYNTHETIC SAMPLES AS QUERY TO
COMPUTE R@1 (FIND THE ORIGINAL SAMPLES WITH THE SAME CLASS,

LINE 2). WE ALSO LIST THE GENERAL R@1 PERFORMANCES WITH
ORIGINAL SAMPLES AS QUERY (LINE 1).

Gallery side
Query side CUB CARS
Original (General) 66.3 83.7
Synthetic 78.5 90.4

Fig. 9. Metric learning loss curves (Lmetric) of train set, and Recall@1
curve of test set in the learning process. We train models with GoogleNet
backbone and MS loss.

samples have an effect on the performance. We use the
synthetic samples as the query side, and compute the Recall@1
performances with the original samples as the gallery side. Tab
X shows synthetic samples have higher R@1 performances
than original samples, which proves generated samples have
high certainty and quality to the original samples and classes.

4) Similarity distribution: To evaluate our method on the
effect of similarity distribution, we compute the histograms
of cosine similarity of the positive and negative pairs by the
models trained with or without our method on test set. The Fig.
11 shows that the similarity distribution of the whole datasets
have been improved with our method, since negative pairs and
positive pairs are separated further.

H. Visualization

1) Embedding space: To better qualitatively evaluate the
embedding space, we illustrate the t-SNE [62] visualizations
of image embedding representations by our method on two
datasets. As shown in Fig. 13 and Fig. 14, the synthetic
samples are generated in-between train samples and can over-
lap areas of the real training set. Thus, training process can
guarantee the authenticity of generated synthetic samples.

2) Pixel domains: To demonstrate that our method generate
meaningful semantically synthetic samples, we utilize GAN

Fig. 10. Different loss curves, which includes Lobj , Lmetric, Lranking in
Eq. (24). Lranking is the proposed ranking preserving loss.

Fig. 11. Histogram of cosine similarities of positive pairs and negative pairs
on test set of CARS dataset. We take the whole sample-pairs in the dataset.

[31] to map the synthetic samples back to the pixel space
to explicitly show the change of intra-class variance. The
visualization results in Fig. 12 show we can get various of
virtual samples with different changes of semantic strengths
and directions, e.g., viewpoint, background, and color, which
are controllable with our generation strategy.

VII. CONCLUSION

This work presents a novel self-supervised synthesis ranking
auxiliary framework for deep metric learning. We define the

Initial Generated

𝑛 increases

Fig. 12. Visualization results of our synthetic samples in the pixel space.
The first columns represent the original (real) images of four different classes
in Cars196. The rest columns present the related synthetic (virtual) images
according to original samples by our generation method.
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(a) CUB (b) CARS

Fig. 13. t-SNE visualization of embedding representations learnt by our model on CUB-200-2011 and Cars-196 dataset. We show these points of original
samples (blue) and generated synthetic samples (red) from the train set.

Fig. 14. t-SNE visualization of the embedding representations by our model on Cars-196 dataset. We randomly select 10 classes from the train set. Different
colors represent different classes. Then we show original samples from these 10 classes and generated synthetic samples.

standard form of intra-class variance and present a synthetic
samples generation strategy to quantify them. A specific rank-
ing preserving auxiliary loss is proposed to maintain their local
structure and relative ranking information in the embedding
space, which can help models learn more class-discriminative
embeddings. Extensive experiments show that our approach
significantly improves all baselines, and outperforms state-of-
the-art methods on all retrieval and ranking benchmarks.
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