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Introduction

Many techniques have been developed to
extract a model from data. In general, these
techniques are based on minimization of the
misfit between measured data and predicted
“data.” The model is connected to the pre-
dicted “data” by a physical theory. To know
how good the model is, one must evaluate
model variance. Since the data variance, or
alternatively the misfit, is generally nonzero,
model variance is generally nonzero. In many
cases, the model is a linear function of the
data, and model variance can be estimated by
formally mapping the data variance to model
space [e.g., Menke, 1984].

Estimation of data variance is a problem in
itself. Because many geophysical data are
nonreproducible (e.g., a certain earthquake
cannot be repeated), it is not possible to di-
rectly verify any assumptions made with re-
spect to the probability distribution of the
data. A further difficulty in estimating model
variance is that the physical relation between
data and model is nonlinear in many prob-
lems. For these cases, it is often not possible
to find an analytical expression for model
variance in terms of data variance. Thus it is
important to use methods that are insensitive
to assumptions made with respect to the sta-
tistical properties of the data and that do not
need an analytical expression for the connec-
tion between model variance and data vari-
ance.

Resampling techniques form a group of
such statistical methods. Resampling tech-
niques can be designed that are insensitive to
the probability distribution of the data, e.g.,
each datum does not need to have equal vari-

ance (data may be heteroscedastic), nor do
the data have to follow a normal distribution.
Furthermore, these techniques allow evalua-
tion of statistical properties that cannot be de-
termined analytically.

Resampling techniques are based on notion
that we can repeat the experiment by con-
structing multiple data sets from the one
measured data set. Our presentation will fo-
cus on two techniques: jackknifing and boot-
strapping. We do not intend to be complete;
statisticians have written many technical pa-
pers about jackknifing and bootstrapping.
Our goal is merely to promote the use of re-
sampling techniques in geophysics. These
techniques are easy to use and offer great
promise for estimating the best model and
model variance in linear and complicated
nonlinear problems [e.g., McLaughlin, 1988;
Guttorp and Walden, 1987; Willmott et al.,
1985]. In fact, many scientists may already
have applied some resampling technique to
their data without realizing that it is a “legiti-
mate” statistical technique. Jackknifing and
bootstrapping are fields of current research
in statistics, and some topics discussed in this
paper are still controversial. The reader who
wants to use a resampling method is advised
to use the reference list for a more detailed
description. The two main sources for this
paper are Wu [1986] and Efron [1982].

Resampling

The key concept of jackknifing and boot-
strapping is that the original data set is re-
sampled to form a large number of data sets,
and the subsequent multiple estimates of the
model give information on model variance.
Henceforth, we shall assume that both data

Cover.

Southern California earthquakes light up
not only faults (blue) but also folds (red).
Some 24,000 events during 1980-1986
(yellow circles proportional to magnitude,
1.5<ML=<6.5) recorded on 700 seismome-
ters concentrate along some portions of
the San Andreas or in the Los Angeles
Basin (through-going diagonal line) and
other faults that can be seen at Earth’s
surface. But many earthquakes such as
those parallel to the San Andreas or in the
Los Angeles Basin (lower right corner),
appear more closely bounds to folds, an
association explicable if folds mark the lo-
cation of active blind thrust and reverse
faults.
This argument is advanced in “Hidden
Earthquakes,” appearing in the June 1989

issue of Scientific American. In addition, a
Special Section of the July 1989 issue of
the Journal of Geophysical Research-Solid
Earth and Planets will focus on the small
but ominous 1987 M=6 Whittier Narrows,
Calif. earthquake in the Los Angeles Basin
(largest hexagon in the lower right) which
struck beneath and uplifted the Santa
Monica Mountains fold. The computer
file containing the folds can be accessed
via the United States Geological Survey’s
GSVAXO. Run we:[oppenheimer.map]
sift. The folds are in the “special fea-
tures” menu; each has a citation and a
known or inferred age. (This map provid-
ed by John E. Estreem, Jerry P. Eaton,
and Ross S. Stein of the United States

Geological Survey, Menlo Park, Calif.)

and model are discretized. A resample is a
“copy” of the original data that may contain a
certain original datum more than once, once,
or not at all. To be more specific, suppose the
model that is to be estimated can be repre-
sented by a set of p model parameters
(my, ...,mp)T =1, and the data can be written
as a vector with n components d = (d1y..d)T,
where T denotes the transpose. Suppose also
that a physical theory connects each datum d;
to the model with a mathematical function f;,
that is, d; = f; () +&;, where ¢; represents the
noise in the physical system. The model T is
typically estimated by minimizing the squared
distance between d and f with respect to the
model, Mes = ming,; [(d-f(T))T(d-f(im))]. This
least squares procedure may or may not produce
a unique M. In the latter case, a unique M
can be produced by model damping. Let us
now derive a new model estimate from a
“new,” i.e., resampled, data set. The resam-
pled data set is a vector with k components.
Note that k may be smaller than n because
the resampled data vector may have fewer
components than the original data. In com-
pact notation we can write the resampled
data vector d* as

d*=D-d (1

where the dot stands for matrix contraction.
The matrix D, which we will refer to as the
resampling operator, has k rows and n col-
umns, and each row contains only one non-
zero component. The value of this compo-
nent is always 1. Of course, for the model
estimation we select £*(ifi) such that it corre-
sponds with d* : t* = D - f. Each resample
defines a model estimate m*,, =

ming [(d* -F* @)T (d* -F* (m))], and in a
jackknife or bootstrap resampling scheme
these multiple model estimates give informa-
tion on the model variance. Jackknifing and
bootstrapping both resample the data set but
use a different resampling scheme. Techni-
cally, it comes down to a different choice and
dimension of the resampling operator, which
has direct consequences for the way in which
the multiple model estimates are combined to
calculate model variance.

Jackknifing

A jackknife resample is extracted from the
original data by deleting a fixed number, say
j, of the n data points (Figure 1). In other
words, the resampling operator has k=n-j
rows and n columns. Not only each row, but
also each column, has only one nonzero com-
ponent (with the value of 1), which implies
that an original datum is never copied into a
resample more than once. The total number
of possible jackknife resamples and model es-
timates is [ }]. How is model variance estimat-
ed from these multiple model estimates? Be-
fore we give a general expression for the
variance estimator of the “delete-j” jackknife,
we will follow Efron’s [1982] example to illus-
trate how the variance of the sample average
is obtained, using the “delete-1” jackknife
(j=1, k=n-1). Because most researchers are
interested in standard deviation rather than
variance, all expressions will be for the square
root of variance. For a sample average,
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Figure 1. Schematic representation
of the jackknife. The original data vec-
tor has four components d; to ds. The
data are resampled by deleting a fixed
number of components (in this exam-
ple 1) from the original data to form
multiple jackknife resamples (in this
example 4). Each resample defines a
model estimate. The multiple model
estimates are then combined to a best
model and its standard error.

%= X;
i=1

the usual estimator for the standard deviation

is

2 (xi-%) J o))

= [n(n =

For the sample average of the data set delet-
ing the i™™ datum, we can write

(&)

This procedure will give [ ] = n jackknife av-
erages %; , with average

X =
i=1
Note that the numerical value of ¥ = %, i.e.,
the average of the jackknife averages equals
the average of the full data set. It is casy to
verify that the “delete-1” jackknife estimator
of standard deviation o

IR 12
&= [“—nl > & %7 ] @

equals the usual expression (2). The advan-
tage of (4) is that it can be generalized to an
estimator of the standard deviation for any
statistic 8 that can be estimated from the data.
Where 8 is a scalar, this can simply be done
by replacing &* with ;* and % with 8, where
6;* is an esnmator of 8, calculated for the
data set with the i datum deleted. A follow-
ing step is then to study the properties of this
estimator of the standard deviation of 8. The
smaller its bias, the closer its expectation to
the true standard deviation. Furthermore,
the estimator should be robust with respect to
the statistical properties of the data. Efron and
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Stein [1981] show that the “delete-1” jackknife
variance estimator for a general scalar statis-
tic, 8(d,,dy, -+ -, dy), is biased upward (if bi-
ased) and thus gives a conservative estimate
of the true variance. Their result is proven
for independently, identically distributed data
d;. There is no special reason why only one
sample should be deleted to form a jackknife
resample. Furthermore, Wu [1986] remarks
that if there is a good reason to believe that
certain jackknife resamples give better model
estimates than others, this should be account-
ed for in the estimator. He arrives at the fol-
lowing expression for the general weighted
“delete-j” jackknife estimator of standard
deviation o 4¢x.

Ojack =

1/2

[k—;p:—l Susdx - 6T 0 - é)] )

where Kk is the subset size (k=n-j), p the num-
ber of model parameters, and the summation
is over all the subsets of size k. The statistic 8
can be the model B but can in general be any
function of the data. For every subset esti-
mate 6;*, a weight w;* accounts for the rela-
tive importance of the corresponding jack-
knife resample in the calculation of model
variance. These weights are normalized as

Z wH =
i

Wu [1986] gives the expression for w;* and
0;* for the case in which 0 i is a linear function
of the data and shows that G, cx is almost
unbiased for mdependently, 1dent1cally dis-
tributed data, and that o,4cx is robust against
data error variance heteroscedasticity for
k=n-1. Wu also considers the case in which
8 is a nonlinear function of the data.

To illustrate the use of the jackknife, we
did a simple experiment in linear analysis,
where analytical expressions for model vari-
ance are available: estimation of the variance
of the slope of a straight line through the ori-
gin. The data (Figure 2a) consist of 20 un-
equally spaced points y;, that follow the rela-
tion y; = cx;+&; (c=1.5). Each noise compo-
nent g; is drawn from a white distribution
with a standard deviation of 1.5 and mean 0.
The linear least squares estimator for the
standard deviation of the slope is

5 = [(X vi - éxi)z)/(n—l) > xf]m

where & = 3x;y/3x;>. We calculated the stan-
dard error of the slope using two jackknife
estimators, equation (5): (i) for the “delete-1”
jackknife (k = n—1) and (u1) for the “delete-
half” jackknife (k = n/2). The jackknifes are
unweighted (w;* = constant for all (i)). For
the “delete-half” jackknife we used a Monte
Carlo evaluation of 100 resamples because
the total number of resamples is very large.
Figures 2b and 2¢ show the results. The esti-
mated standard deviations agree with the an-
alytic least squares value. An interesting as-
pect is the difference in scale of the frequen-
cy distribution for the two jackknifes (Figures
2b, 2c¢). This scale difference arises from the
fact that for general k the resampling error
8;* — 8 has a different stochastic order than

DELETE-1 JACKKNIFE

(b)

DELETE-HALF JACKKNIFE

BOOTSTRAP

Fig. 2. (a) A least squares fit through the
noisy data give a slope of ¢ =
1.518+0.0138 (1 standard error). () The
normalized frequency (f) distribution for
the “delete-1” jackknife yields an estimate
of 1.518%0.0136. (¢) For the “delete-half”
jackknife the value is 1.517+0.0141. (d)
Bootstrapping gives an estimated slope of
1.517+0.0132. Note the scale difference
between the distributions in 26 and 2¢ (see
also formula (5)). The dashed line (2¢, 2d)
represents the analytical distribution of ¢.




the sampling error & — 8 [Wu, 1986]. The
scale difference is corrected by the scale fac-
tor V(k—p+1)/(n—k) in expression (5). For

the “delete-half” jackknife, this factor is 1.

Bootstrapping

A bootstrap resample is a random selection
of n data out of n original data (Figure 3). In
contrast with the jackknife, the resampling
operator is a square matrix and each column
may contain more than one 1, which means
that a resample may contain a certain original
datum more than once. Just like the jack-
knife, the bootstrap estimator of standard de-
viation Ggoor can be calculated without
knowing an analytical expression that relates
the statistic of interest with the data. Suppose
that 6;* is an estimator of the statistic 8 of in-
terest, calculated for the bootstrap resample i.
To do a Monte Carlo approximation of 0gogr,
a large number L of bootstrap estimators 6;*
need to be calculated. The bootstrap estimate
of the standard deviation of 8 is

]1/2

8L (6)

L

. 1 A - N .

Gpoor = —Z(ei* - 87 (B* - 6)
L-13

with § = 2
The summation is over all L bootstrap sam-
ples. Figure 2d shows the bootstrap evalua-
tion for the straight-line example from the
previous section (L=100). The bootstrap
standard error of the slope is slightly smaller
than both the jackknife estimates. Efron
[1982], who introduced the bootstrap, shows
that for the linear case with independently,
identically distributed data, Gsoor is slightly
downward biased. Just like the jackknife,
there are different bootstrap estimators of
standard deviation. The weighted bootstrap,
bootstrapping of normalized residuals, the
smoothed bootstrap, and the parametric
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MULTIPLE MODEL ESTIMATES

model;| |model, model | o,
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Figure 3. Schematic representation
of the bootstrap. The original data vec-
tor has four components d, to ds. The
data are resampled by randomly chos-
ing 4 components with replacement.
This is repeated a large number of
times to form a large number of model
estimates. The multiple model esti-
mates are then combined to a best
model and its variance.
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bootstrap are some examples. [Wu, 1986;
Efron, 1979, 1982; Efron and Gong, 1983].
Whether one should use a jackknife or boot-
strap estimator to estimate model variance,
and what type of bootstrap or jackknife, de-
pends on the particular problem, but also
seems to be somewhat controversial (see, e.g.,
the discussions by several authors that are
published together with Wu’s [1986] paper).
The big advantage for all discussed resam-
pling techniques is that they can be used to
evaluate the statistical properties of a statistic
that is related to the data in a complicated,
nonanalytical way. Apart from estimation of
standard deviation, resampling can be used to

' estimate mean, median, and even to construct

confidence intervals. This completes our in-
troductory discussion of jackknifing and
bootstrapping. We now cross over to a seis-
mological problem.

Earthquake Depth

Depth is a fundamental focal parameter of
earthquakes. For example, the depth of large,
shallow earthquakes that occur on the inter-
face between two plates in a subduction zone
is of importance with respect to the study of
seismic coupling [Tichelaar and Ruff, 1988].
Although routine determination of focal pa-
rameters may give adequate estimates of the
epicentral coordinates and focal mechanism,
depth estimates for shallow earthquakes may
not be accurate enough for geophysical con-
siderations of seismic coupling. We determine
the best depth by P wave inversion, where we
match the direct P and surface reflections of
a set of well-distributed seismographic sta-
tions simultaneously [Ruff, 1989]. Focal depth
is a nonlinear parameter in waveform inver-
sion. The waveforms (seismic waves) are gen-
erated by the earthquake, propagate through
the Earth, and are recorded by seismographs.
For long-period P waves the focal mechanism
and propagational effects, as well as the sys-
tem response of the seismograph can be char-
acterized by a Green’s function G,(t) for a
“unit impulse” earthquake at depth z. The
seismic source time history can be represent-
ed by the moment rate function M(t), which
is proportional to the fault-averaged displace-
ment rate. A P wave seismogram is simply
the convolution of the Green’s function with
the moment rate function. For a set of { seis-
mograms s?(t),...,s?(t), the relation with
depth and moment rate is

S“)([)

Gz(l)([>

*M(1) +

Every seismogram s¥(t) has its own Green’s
function G,%(t); the asterisk stands for convo-
lution. The noise in the physical system is
represented by €. The moment rate function
is generally unknown. A discretized version
of the above set of equations is

d=A, m+% 8

where T =_(m,,...,m,)" is the discretized mo-
ment rate, d = (d,...,d,)T a stack of the dis-
cretized seismograms (p<n). Matrix A, con-
tains discretized versions of the Green’s func-
tions G, and is contracted with . It is
generally assumed that the components of €
are independently distributed and that their
probability distribution is centered around
zero. For an assumed depth z’, estimating
is a least squares inverse problem and (8) can
be solved using standard technqiues [e.g.,
Menke, 1984]: T, = F7' - d, where F~1is
some generalized inverse. For a given data set
we can simply try a range of depths z', the best

CHILE 26 SEP 1967
(@)

CHILE 4 OCT 1983

(b)

—

Fig. 4. Focal mechanism and station dis-
tribution for the () 1967 and (b) 1983
earthquake. Shown is the stereographic
projection of the focal sphere for both
events [e.g, Aki and Richards, 1980]. The
solid circles represent stations with a com-
pressional direct P arrival, while the cross-
es are nodal arrivals. From the orienta-
tions of the fault and auxiliary planes
(great circles), combined with the epicen-
tral locations, it is known that both earth-
quakes occurred on the interface between
the South American Plate and the sub-
ducting Nazca Plate.




depth given by the case that produces the best
fit to the darta. In a resampling scheme, for each
resampled data vector d* the best depth estimate
follows from

Z¥%, = min, [€"¢]

- - 9)
e =d* — A¥- F;:,—l «d*

The parameter z' is a very complicated non-
linear function of the data, and it is not possi-
ble to theoretically assess whether the jack-
knife or the bootstrap variance estimator give
better results.

As an example, we estimate depth and its
standard deviation for two earthquakes by re-
sampling a set of long-period P wave seismo-
grams. We applied both the bootstrap estima-
tor (6) and the “delete-half” jackknife estima-
tor (formula (5) with k=n/2). The two
earthquakes are the September 26, 1967, Co-
quimbo earthquake (M, = 5.9, origin time
1611 GMT) in central Chile, and the much
larger October 4, 1983, Taltal earthquake
(My = 7.3, origin time 0419 GMT) in north-
ern Chile. Both seismic events occurred on
the interface between the South American
Plate and the subducting Nazca Plate. Several
previous depth estimates are available for
these events: first of all, the International
Seismological Center depths are 40 km and 5
km for the 1967 and 1983 earthquake, re-
spectively; the Harvard CMT depth for the
1983 event is 39 km; and Malgrange and Ma-
dariaga [1983] estimate a depth of 48 km for
the 1967 event. To ensure a good depth reso-
lution, we collected a set of eight seismo-
grams that are well distributed in source-sta-
tion azimuth for both earthquakes (Figure 4).
The results of the jackknife (Figures 5a, 6a)
and the bootstrap (Figures 5b, 6b) are similar
and yield a depth of 48 + 1 km (20’) for the
1967 earthquake and 26 + 11 km (20) for the
1983 event. For all resampling experiments
the total number of resamples was 100. It is
interesting to compare these depths to the
data variance as a function of assumed depth
for the full data set. The minimum variance
depth for the 1967 earthquake (Figure 5c¢) is
similar to the depth found with the two re-
sampling techniques, and data variance in-
creases rapidly around the minimum, which
agrees qualitatively with a small standard er-
ror. For the 1983 earthquake the data vari-
ance curve is much wider (Figure 6¢) and has
several minima, which agrees with a large
standard error of the depth. Figure 7 shows
the waveforms and the estimated moment
rate function (source time function) for both
events. The 1967 earthquake has a source
duration of 2 s, and the waveforms show the
arrival of secondary phases. These phases are
the depth phases, and their timing relative to
the direct arrival provides an independent
way of estimating depth and its standard er-
ror. Unlike the direct phase, the depth phase
is seismic energy that does not travel directly
to the seismographic station, but first travels
almost vertically upward from the earth-
quake’s focus to the surface of the Earth and
then reflects partly back into the Earth, head-
ing for the station. We measured the relative
timing for the eight seismograms, which
translates into a depth of 45 % 5 km (20), a
depth compatible with the resampling results.
The standard error is larger than the jack-
knife and bootstrap estimate. This is to be ex-
pected because the number of data used to
measure the relative timing of depth phases
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Fig. 5. Results for the 1967 M,, = 5.9
Coquimbo earthquake in central Chile.
The full data set consists of 320 samples,
40 per seismogram. The (a) “delete-half”
Jjackknife depth estimate is 48.3+1.1 km
(20'1,4c1<) which is the same as the (b)
bootstrap result. The normalized data
variance e for the full (¢) data set has a
sharp minimum at 48 km.

is more than a factor of ten smaller than the
number of data used in waveform inversion.
The 1983 waveforms do not show the sec-
ondary depth phase arrivals. Because this
large earthquake has a moment rate function
with a total duration of more than 30 s, the
depth phases arrive while the direct phase is
still significantly affecting ground motion at
the seismographic station. Thus the relative
timing of a depth phase cannot be measured
directly from the seismogram. Depth resolu-
tion from long-period P waves results com-
pletely from the depth phases. For a large
earthquake like the 1983 Taltal event, the
noise in the depth phase has superimposed
on it the noise in the direct phase. Thus it is
not surprising that the 1983 depth has a
large standard error. Perhaps the most im-

CHILE 4 OCT 1983 My, = 7.3
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Fig. 6. As Figure 5, but now for the 1983
M,, = 7.3 Taltal earthquake in northern
Chile. The full data set has 400 samples,
50 per seismogram The (a) “delete-half”
jackknife depth estimate is 26.5+10.3 km
(QO'JACK) which is essentlally the same as
the (b) bootstrap esitmate of 25.8+10.8
km (265007). The normalized data vari-
ance e for the (c) full data set has a poorly
defined global minimum.

portant conclusion we now state is that jack-
knifing and bootstrapping “prove” that the
1967 earthquake is resolvably deeper than
the 1983 earthquake.

Discussion

We have introduced the statistical concepts
of resampling to a geophysical audience. Two
methods, jackknifing and bootstrapping, can
be used to estimate model variance. Applica-
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Fig. 7. The eight long-period P wave
seismograms for both earthquakes are
shown as the solid lines, with the predict-
ed seismograms plotted on top as the
dashed line. The predicted seismograms
are calculated for the best depths of 48
km for the (a) 1967 event and 26 km for
the (b) 1983 event. The code next to each
seismogram is the World Wide Standard-
ized Seismographic Network station code.
On the bottom the discretized moment
rate M (formula 8) is plotted versus time,
again for the best depths.
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tion of the methods to two Chilean earth-
quakes yield earthquake depth, as well as its
standard error. Resampling techniques are a
topic of current research in statistics, and as
noted by Diaconis and Efron [1983], they rep-
resent a new generation of “computationally
intensive” statistical techniques. We believe
that resampling techniques offer a way for
geophysicists to estimate model variance in
complicated geophysical problems.
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The activity of the Sun occurs in the solar
atmosphere and is driven and confined by
the Sun’s magnetic field. The plasma atmo-
sphere comprises the cool (= 10°K) and
dense chromosphere, an intermediate transi-
tion region, and the hot (T, = 10°K) and dif-
fuse (n, = 10® cm™) corona; the solar atmo-
sphere has been well observed from the ultra-
violet through hard X rays, by the Skylab and
Solar Maximum Mission spacecraft, among
others. The atmospheric magnetic field has
its source in the solar interior and is driven
and energized by the global differential rota-
tion and local turbulent motions at the visible
photospheric surface; this field is mostly
known from Zeeman-effect and microwave
measurements. The magnetic field lines re-
turn to the surface in active regions and are
open in coronal holes that provide the source
for the solar wind.

The primary concern of the Solar Plasma
Theory Group at the University of California,
Irvine, involves the dynamics and energetics
of magnetic activity. The coronal field is
strong (B? /2peP >> 1), nonuniform, and
stressed by currents driven from the surface.
This field provides a source of stored energy
and an anisotropic medium for the channel-
ing of mass and energy flows in the atmo-
spheric plasma.

There are a number of unsolved problems
connected with observed solar activity. They
are briefly stated (to be amplified in the fol-
lowing sections) here. How is the corona
heated; that is, how is the necessary energy
transported up the adverse temperature gra-
dient from the photospheric source surface
and deposited in the corona, apparently most
effectively in strong-field regions? How does
the atmospheric magnetic field channel and
confine the ambient heat and mass flows so

that the former are suppressed, allowing run-
away radiation losses to occur, and the latter
are abetted so that the cool condensation of a
solar prominence is formed? How can the
stressed magnetic field of an active region be
reconnected quickly enough, in the highly
conducting corona, to explain the short time
scales of a solar flare? How are coronal mass
ejections launched against the gravitational
and magnetic forces of the lower atmosphere
so that they can escape into the solar wind?

The UCI group has made significant pro-
gress on each of these problems, as will be
described in the following sections. The key
to our attack on the coupled dynamics and
energetics of such nonuniform, anisotropic,
nonlinear, active phenomena is the applica-
don of large-scale numerical simulations, bal-
anced and supported by analytic calculations
and perturbation computations.

Coronal Heating

One of the outstanding mysteries of solar
physics is how the corona is able to sustain its
high temperature while the chromosphere
below, separated only by a narrow transition
region, has a temperature two orders of mag-
nitude lower. Energy must be transported
from the solar surface to the corona by mech-
anisms other than thermal conduction, or
large-scale convection, which is not present in
the transition region.

Because the corona is threaded by magnet-
ic fields of various intensities, Alfven waves
provide a promising medium of energy trans-




