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Summary. We propose a method for solving non-linear inverse problems in
the case where the unknown is a function of the spatial coordinates and the
data set is discrete and finite. The method is based on a generalized least-
squares criterion, it is defined directly for non-linear problems (without
previous linearization of the forward problem), and in the particular linear
case it gives the same results (although slightly more general) than the
Backus & Gilbert approach. As an example, we apply the method to the
three-dimensional seismic velocity inverse problem, using as data the arrival
times of seismic waves. The following paper (Nercessian et al.) shows some
results obtained using the present method.

1 Introduction

In many geophysical inverse problems the unknown is a function of the spatial coordinates.
One way of solving such inverse problems is by parameterizing the unknown function. This
parameterization may be done in several ways, as for example by developing the function on
a truncated basis, or, more commonly, by assuming that the function takes constant values
in blocks of an a priori division of the space. In both cases the unknown function is replaced
by a discrete and finite number of unknown parameters.

An alternative approach consists of taking the function itself as the unknown, without
a priori parameterization, and defining the inverse problem as the search for a particular
function verifying some a priori assumptions and allowing computed values of data which
are reasonably close to the observed values. A first and general approach to this problem
was done, in the linear case, by Backus & Gilbert (1970). In particular, they argued that the
solution of such a functional, linear, inverse problem, can always be interpreted as a filtered
version of the ‘true solution’. The preferred solution is then the one for which the
corresponding filter is ‘the closest’ to the identity filter. This means that from the Backus &
Gilbert point of view, we can define preferred solutions for whichever different criteria of
closeness we use. The simplest results are obtained when the traditional least-squares
criterion of closeness is used.

The aim of this paper is to show that when using the least-squares criterion at a much
more preliminary step of the argument, a theory is obtained that contains as a special case
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the Backus & Gilbert solution, but which is more general in the sense that: (1) it takes
naturally into account the estimated error distribution in the data set — and also a wide class
of a priori assumptions on the character of the solution; and (2) it is directly defined for
non-linear problems (with the corollary that although our solution and the Backus & Gilbert
solution are coincident for linear problems, the solution which is obtained by an iterative
use of the Backus & Gilbert solution for a linearized forward problem is not coincident
with our non-linear solution).

We now develop some results demonstrated in Tarantola & Valette (1982), which will be
referred to as Paper I.

2 The general inverse problem

Let m(r) represent a model of the Earth (i.e. a function of the spatial coordinates). We
assume that m(r) is defined inside a volume ¥ which will represent the entire Earth or a part
of it. It is well known that if we restrict the space of functions to be considered to the set
such that for any two functions m,(r) and m,(r) the integral fdrm(r) m,(r) is defined,
then this set of functions forms a vector Hilbert space for which some general theorems are
available. The functions m(r) and m,(r), when considered as elements of the vectorial space
will be simply noted m; and m,. The scalar product of m; and m, is noted m}¥m, and
defined by :

m¥m, = fdrm,(r)mz(r). 1)

Let d’ represent a set of observable quantities whose values depend on the actual value of
the model m through an equation of the form

d' =gi(m) i=1,...,n) ()

where the gi are a set of non-linear functionals which are assumed to be known. Equation
(2) represents the solution of the forward problem. The quantities (d', ..., d"™) are named
the data set and are noted d for short. Equation (2) is then rewritten

d=g(m). (©))

We assume that we have performed a physical experiment that has furnished the
‘observed values’

d0=(d6"", g)

for the data set. Experimental uncertainties are assumed to be conveniently described using a
covariance matrix Cy, .

Let mo(r) be the a priori model, i.e. a model that has been defined without using the
observed values of the data set, and which should be preferred in the absence of any
effective measurement of the data set. Let Cm,(r, 1) be the covariance function describing
our confidence in the a priori model mo(r). We recall here that a covariance function is a
straightforward generalization of a covariance matrix: the value G, (r, 1) represents the
variance at the point r and the value Cn, (r, t") represents the covariance between points r
and r". For instance, the simplest analytical forms that can be used for Cmo(r, r') are:

Cm, (1, 1) = 0% exp[— Y (r—1")?/L?]
Cn,(t, ") = 6% exp(—|r—t'|/L)

o?if |r—t'|< L
0 otherwise

Cn (1, 1) = ‘
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where o represents the a priori uncertainty at each point, and where L represents the corre-
lation length of uncertainties. Intuitively such choices correspond to the a priori assumption
that we can accept, as solutions to the inverse problem, functions whose deviations from
mo(r) are, at each point, of the order of o, and such that if at a given point there is a
deviation from my(r) of given sign and magnitude, we want in a neighbourhood of r
deviations of the same sign and similar magnitude, i.e. we want the deviation from m(r) to
be smooth, with smoothness length equal to L.

Of course, more complicated forms may be used for the a priori covariance function, in
particular, forms depending effectively on r and r’, and not only on the difference r—r'.

As we will see later, the use of that kind of a priori information will allow us to obtain in
a very intuitive manner results related with the so-called ‘regularization’ techniques
(Tikhonov 1963; Mikhlin 1970).

The matrix Cy and the function Cp, (r, r') can be considered as the kernels of linear
operators acting respectively in the data space and in the model space. The corresponding
operators are named covariance operators, and will be noted here respectively Cy, and Cp, .
It is well known that covariance operators are, by definition, positive semi-definite (see for
instance Pugachev 1965). If we assume that they do not contain null or infinite variances,
or perfect correlations, they will be positive definite, i.e. regular operators. Their inverses,
C4! and G, can then be uniquely defined.

The generalized non-linear least-squares problem can now be stated as the problem of
finding the pair d and m, which is, among all the pairs obeying the forward equation
d = g(m), the closest to the pair do and m, in the least squares sense. More precisely, d and
m are defined by the condition

(do—d)* C3! (do—d) + (mo—m)* Gy, (mo—m) minimum “4)

under the constraint

d =g(m). )
As shown in Paper I, the solution of the problem satisfies

m=mg+ Cp, G*(Cyq, +GCpy, G*)™! {dg—g(m) + G(m—m,)} ©)

where the linear operator G is the (Fréchet) derivative at the point m of the non-linear
operator g, and where G * is the adjoint of G.
To solve equation (6) we may use a fixed point algorithm:

My =M+ Gy G¥(Cy, + GiCm, G&)™' {do—8(my) + Gr(mg—mo)} , @)

where Gy is the derivative of g at the point my.

Our experience in using this algorithm for solving non-linear problems has shown that the
convergence is good and that a correct solution is obtained in general after a few iterations
(the number of which ranges, say, between 1 and 10), unless the problem is strongly non-
linear in which case the algorithm may not converge.

To make effective use of equation (7) we must rewrite it in terms of the kernels of the
operators. Let us note such kernels as G*(r). We have

My+1(r) = mo(r) + ZW,’( fdr'Cmo(r,r')G,i(r') (8a)

where

Wi = LSV, (8b)
]
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S{= ()7 + [ e [ at'GL) G, 5,1 G (®
and
Vi =(doy—g’(my) + feri(f) {m(r) —mo(r) }. (8d)

The integrals in equations (8) should be evaluated using traditional techniques of
numerical integration (i.e. by defining a grid in the space dense enough to warrant sufficient
accuracy). For particular problems, more astute techniques can be imagined for computing
these sums more economically (see for instance Section 3).

The solution for a linear problem can readily be obtained from equation (6). That a
problem is linear means that the forward problem takes the form

d=g(m)=Gm

where the linear operator G is independent of m and coincides with the derivative of g. We
obtain

m=mg +C,, G¥Cy, +GCp, G*) (do— Gmy), ()]
and we see that the solution is explicit (no iterations are needed). The solution for this linear
case was first obtained in a different (although equivalent) form by Franklin (1970).

In the linear case the a posteriori covariance operator in the model space can easily be
computed (see Paper I):

Cm =(I~A) Cp, (10)
where [ is the identity operator and where A is defined by
A=Cp G¥Cyq,+GCp G*)'G. an

The explicit form of equation (10) is

Cp(r, ") = fdr' {6(r—1") —A(r, 1)} Cpo(r', t"). (12)

If we were able to perform a set of measurements (i.e. to use sets of functionals g') such that
we had

A(r,t') = 8(r—r1"),

then the a posteriori covariance operator C,,, would vanish, i.e. the model would be perfectly
resolved. We see then that the function A(r, r') defined by (11) generalizes the definition of
the ‘resolving kernel’ of Backus & Gilbert, integrating naturally the estimated error distri-
bution in the data set and the @ priori information on the model. To take the comparison
further, let us introduce the ‘true model’ my and assume that, by chance, we have obtained
observed values for the data set which are not contaminated by errors, i.e. such that they
are identical to the values predicted by the forward problem for the true model:

do = Gm']" .
Using (9) and (11) we obtain
m—mgy=A(mt —my),

i.e. the computed correction to the a priori model is a filtered version of the true correc-
tion, with the filter 4. The solution m obtained by Backus & Gilbert [when they use as a
criterion of closeness between A(r, r') and 8(r—r") a least squares criterion] is obtained as a
special case of (9) by assuming that experimental errors are negligible (C40=0) and that the
a priori information is non-existent (Cm, = constant I).
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Although we have shown that the concept of resolving the kernel can be introduced in
our theory, it is clear that all the information about resolution that can be extracted from
the knowledge of A(r, r’) can also be extracted from the knowledge of C,,(r,t'), with the
advantage that the covariance operator also gives the absolute error (variance), and allows
an easy interpretation of the results in terms of probability.

We have been able to give a closed form for the a posteriori covariance operator only for
linear problems. For a rigorous computation in the non-inear case, we would need to
compute not only the derivatives of the functionals g/, but also higher order derivatives, and
the corresponding formulae become too complicated to be useful. Nevertheless, when the
algorithm (7) has converged to the true solution of the non-linear problem and if the non-
linearity of the functionals g’ is not too strong in the vicinity of the solution, then a
reasonable approximation to the a posteriori operator C,, can be obtained using formulae
(10—11) where the derivative G is taken at the point where we decide to stop the iterations.

Traditionally, to solve a non-linear inverse problem, the method is to ‘linearize’ the
forward problem around some ‘starting point’, and to use a linear inverse method for obtain-
ing a ‘corrected point’. This corrected point is used as a starting point for the next
computation, and this procedure is iterated until convergence. As the problem we are dealing
with here is essentially under-determined, the use of this traditional approach should ask for
each corrected point to be close to the previous point. This method is not the same as we
follow in this paper, where it is asked for the final model to be close to the a priori model.
Although the results between the two approaches do not differ dramatically, our
experience shows that the second approach converges faster (besides the fact that we believe
it to be fundamentally more coherent). (See Paper I for a more detailed discussion.)

Our final remark will be that our algorithm needs the inversion of the matrix

§=Cy,+G Cp, G*.

It is easy to prove that if Cy, is regular, S will also be regular. Our experience shows that for
all reasonable choices of Ca, and Cy, , the matrix is never ill-conditioned, whatever the
derivative G can be.

3 3-D seismic velocity inverse problem using arrival time data

The pioneering work in that domain was made, using a block technique, by Aki,
Christofferson & Husebye (1977) for distant earthquakes, and by Aki & Lee (1976) for local
earthquakes. More recently, some papers have applied the Backus & Gilbert approach to this
problem (Chou & Booker 1979; Yanovskaya 1980; Thomson & Gubbins 1982).

An array of stations is assumed at the surface of the Earth. These stations record signals
from distant or local earthquakes. The problem consists of using the arrival time data at the
array’ to infer the 3-D model of seismic velocities under the array. The two main physical
assumptions to be made are: (1) the travel time is obtained by integration along the
geometric ray, and (2) the phase from which we use the arrival time is unambiguously
determined (which is not so easy for a true 3-D heterogeneous medium). Furthermore, we
assume in this paper that the position of each one of the sources is exactly known; if it is
not the case, these positions have to be introduced as unknowns into the inverse problem.
Spencer & Gubbins (1980) show the best manner of doing that.

Let n(r) denote the slowness of the medium (or n in compact notation), and ¢/ the travel
time for the /th ray path. The solution of the forward problem can be written

ti=gl(n) =L"( ) ds'n(r) (13)
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where

J" dst
R'(n)

denotes integration along the ith ray path, and where the symbol n in R !(n) recalls that the
ray path itself depends on n. It is then clear that equation (13)is non-linear.

Let us note by G’ the derivative of the non-linear operator g'. By definition of the
derivative, we must have, 5n being any ‘small’ slowness function,

g'(n+8n) —g'(n)=G'6n +0(8n%). (14)
We have

g'.(n+5n)—g"(n)=f' ds* {n(r") + 8n(r")} —f_ ds'n(r?).

Rim+5n) RH(m)

Fermat’s principle states that the travel time is stationary along the true ray path; in
particular, this means that

f_ ds’ {n(r') + sn(r")} =f. ds' {n(r') + 8n(t%)} +o(5n?).
i +5n) Ri(n)

We then have

g'(n+8n) —g(n)= f ds'8n(x") +o(8n?),

Ri(n)
and by comparison with the definition (14), we see that the derivative of the non-inear
operator g at the point n is the linear operator G’ that to any function n'(r) associates the
number

o ds'n'(eh).
v Rl(n)

If we wish to introduce the kernel of G’, we must write

G"n'=fer"(n;r)n'(r)= ~ds'n'(r'). ‘ (15)
R(n)

Where we denote by G¥(n; r) [rather than by G'(r)] the kernel to recail explicitly that it

"depends on n. We see that the ‘function’ G¥(n; r) is a delta-like function, null everywhere

in the space except along the corresponding ray path.

Let no(r) be the a priori slowness model, C, S, r ") the a priori covariance function,
to the observed arrival times, and (C, )’ the covarlance matrix describing experimental
uncertainties. The best model is then obtained using equations (8a—d), (13) and (15). We
readily obtain

Np+1(r) = no(r) + Z W,’cf dsiC,.o(r, ri) (16a)
Ring)

i

wWi=Y(siyiv] (16b)
)
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S =(C,)7+ f ~ast f . ds’c, (Y, ¥) (16c¢)
R(ng) Rl@g)
Vimd= [ asinate) (164)
R/ (ng)

When this iterative process has converged to the final model n = n.,, uncertainties on this
a posteriori model can be computed approximately using equations (10—11). Using explicit
notation, we have:

Calr, 1) =Cp (1, x)-Y Y| a5 f o dsdCy (1, 1Y) (ST C,, (1) (16e)
i J JR@mw)  “Rl(ne)

Let us make some comments on these results. The first is that, at each iteration, the rays
corresponding to the current model n; must be known. To do that, a useful strategy is to
compute n(r), at each iteration, on the points of a grid which is well adapted to the needs
of the ray-tracing routine. It should be noted that, without extra computing cost, we can
obtain at each iteration the gradient of the slowness model: from equation (16a) we have

Vng+1(r) = Vng(r) + Y W,i f ] dsiVC,,o(r, rf).
i 'R (ny)

This gradient should be useful for most ray-tracing routines.

The second remark is that if the corrections to the a priori model are small, the first
iteration can give an accurate enough solution. This means in particular that no iterations
should be needed, and that if the a priori model is simple (homogeneous or layered model),
no ray-tracing routines should be needed.

In the block approach to the problem, the main computational task is to divide each ray
into the blocks, to form the matrix containing the time spent by each ray in each block, and
to multiply this matrix by its transpose. We see here that in the present approach no such
matrix exists, and that the main computational task is to evaluate the simple and double
integrals along ray paths. Our personal experience shows that both approaches need a
computing time of the same order,

As the solution is densely defined (i.e. is defined for each point of the space), we suggest
that the most convenient output for the results can be obtained by defining a series of planes
representing cross-sections in both horizontal and vertical directions, by representing each
one of these planes on a cathodic colour screen terminal, by computing the value of 7..(r)
at each point of the screen and by plotting the corresponding colour for each point. The
absolute a posteriori uncertainty, \/C,_(r, 1), should be plotted in the same manner, and if
we wish to have an idea of the resolving power attained with the data set, the a posteriori
covariance function itself, Cp_(ro, r), should be plotted, as a function of r, for some chosen
points ry, around which we wish to study the resolution.

In the following paper (Nercessian, Hirn & Tarantola 1984), an example of the results
obtained with the present method is shown.

4 Conclusion

The main characteristics of the approach presented here are: (1) it does not need any a priori

partition of the space into blocks; (2) it is directly defined for non-linear problems and it

practically proves to be superior to the approaches based on a ‘linearization’ of the forward
11
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problem; (3) in the linear case, and if the a priori information on the model is neglected, it
gives the same results as the Backus & Gilbert approach. We have shown, as a particular
application, the formulae obtained for the 3-D seismic inversion problem using arrival time
data; probably the most convincing argument in favour of these formulae can be obtained
by alook at the results of the accompanying paper (Nercessian et al. 1984).
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