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SUMMARY
Monte Carlo direct search methods, such as genetic algorithms, simulated annealing,
etc., are often used to explore a ¢nite-dimensional parameter space. They require
the solving of the forward problem many times, that is, making predictions of obser-
vables from an earth model. The resulting ensemble of earth models represents all
`information' collected in the search process. Search techniques have been the subject of
much study in geophysics; less attention is given to the appraisal of the ensemble. Often
inferences are based on only a small subset of the ensemble, and sometimes a single
member.

This paper presents a new approach to the appraisal problem. To our knowledge
this is the ¢rst time the general case has been addressed, that is, how to infer information
from a complete ensemble, previously generated by any search method. The essence
of the new approach is to use the information in the available ensemble to guide a
resampling of the parameter space. This requires no further solving of the forward
problem, but from the new `resampled' ensemble we are able to obtain measures of
resolution and trade-o¡ in the model parameters, or any combinations of them.

The new ensemble inference algorithm is illustrated on a highly non-linear wave-
form inversion problem. It is shown how the computation time and memory require-
ments scale with the dimension of the parameter space and size of the ensemble. The
method is highly parallel, and may easily be distributed across several computers.
Since little is assumed about the initial ensemble of earth models, the technique is appli-
cable to a wide variety of situations. For example, it may be applied to perform `error
analysis' using the ensemble generated by a genetic algorithm, or any other direct search
method.
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1 INTRODUCTION

Inversion techniques are often used in the Earth Sciences to
provide constraints on Earth structure, or processes, from
indirect observations at the surface. If the quantities of interest
have been discretized into a ¢nite (usually small) number of
unknowns, and the relationship between observation and
unknown is highly non-linear, then Monte Carlo direct search
methods become useful (see Sen & Sto¡a 1995 for a review).
Usually, their role is to explore a multidimensional parameter
space and collect models (i.e. sets of unknowns) which ¢t
the observed data to some satisfactory level. Many examples
exist in the literature. Popular methods have been uniform
search (Keilis-Borok & Yanovskaya 1967; Press 1968; Wiggins

1969), simulated annealing (Rothman 1985, 1986) and genetic
algorithms (Sto¡a & Sen 1991; Sambridge & Drijkoningen
1992; Scales et al. 1992).
With these derivative-free search methods one is forced to

solve the forward problem many times; that is, to calculate
predictions based on an earth model, and compare them to the
observations. This results in a large ensemble of models for
which the ¢t to the data has been determined. The ensemble
will often contain models with a wide range of data ¢ts, and,
one hopes, some at an acceptable level, given the noise in the
data.
Once the ensemble has been collected, the next stage of

the inverse problem is to draw inferences from the ensemble.
Although much attention has been devoted to developing
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methods which e¤ciently search a parameter space, much
less e¡ort has been devoted to the problem of analysing the
resulting ensemble in a quantitative manner. In many cases
the appraisal of the results is based on only a subset of the
ensemble, with the rest discarded. For example, this is the case
if the objective is to locate a single optimal model (in some
sense), and also with statistical methods such as importance
sampling (e.g. Smith & Roberts 1993; Mosegaard & Tarantola
1995), which use only a statistically independent subset of
the ensemble. In principle, however, the entire ensemble may
provide useful information from which to draw inferences. In
some cases, models which ¢t the data poorly may tell us just as
much as those which ¢t the data well.
Several authors have proposed methods for analysing an

ensemble of data-acceptable models, primarily using cluster
analysis techniques (Kennett 1978; Kennett & Nolet 1978;
Vasco et al. 1993; Lomax & Snieder 1995). However, use
of the entire ensemble has largely been restricted to purely
graphical methods (e.g. Nolte & Frazer 1994; Shibutani et al.
1996; Kennett 1998). Techniques have also been developed
for characterizing an in¢nite set of acceptable models by
determining the properties which they all share (Parker 1977;
Constable et al. 1987). This approach involves seeking a
solution with extremal properties, or testing a hypothesis on
the observed data, and has mainly been applied to linear or
weakly non-linear problems.
In this paper we study the appraisal stage of the inverse

problem; that is, how to make quantitative inferences from
the entire ensemble produced by a direct search method. We
make no assumption as to how that ensemble may have been
generated, only that it is available and that the forward problem
has been solved for all models within it. Any randomized,
or deterministic, algorithm may be used to generate the
ensemble, for example genetic algorithms, simulated anneal-
ing, evolutionary programming or even guesswork! We present
a new approach for extracting information from the ensemble,
which requires no further solving of the forward problem, but
allows measures of resolution and trade-o¡ to be determined,
within a Bayesian framework. The algorithm presented here is
based on some simple geometrical concepts, which are also
used in a related paper (Sambridge 1999) (hereafter referred to
as Paper I) as the basis of a new direct search method.
In the next section we brie£y outline the Bayesian approach,

and de¢ne the measures of constraint, resolution and trade-o¡
that are commonly used to appraise the information in the
data. All of these take the form of integrals over the multi-
dimensional model space, and may be evaluated using Monte
Carlo (MC) integration techniques. This involves sampling the
parameter space according to a prescribed distribution, and
evaluating ensemble averages of various quantities. It is shown
that, in general, the complete ensembles, generated by tech-
niques commonly used for the search stage of the inverse
problem, follow unknown distributions and, therefore, cannot
be used directly for MC integration.
Section 3 contains the details of the new approach proposed

here. It is shown how the input ensemble may be used to con-
struct a multidimensional interpolant of the data ¢t measure,
or more generally the posterior probability density function
(PPD). This interpolant is based on Voronoi cells (nearest
neighbour regions) and we use it to represent all information
contained in the input ensemble. The key idea in the paper is to
replace the real PPD with this approximate PPD, and then

evaluate any Bayesian integral through MC integration. This
requires a second ensemble to be generated with a distribution
that follows the shape of the approximate PPD, but no further
solving of the forward problem. All integrals then become
simple averages over this `resampled' ensemble and are trivial
to evaluate.
The main computational task of the new algorithm is the

generation of the resampled ensemble. It is shown how one may
importance sample the approximate PPD using a standard
statistical technique known as Gibbs sampler (Geman & Geman
1984). In order to apply the technique in this case several
geometrical problems need to be solved concerning multi-
dimensional Voronoi cells, and these are discussed in detail. The
computational costs and memory requirements of the method
are carefully analysed. It is shown that the resulting numerical
algorithm lends itself easily to a parallel implementation.
In Section 4 the new resampling algorithm is illustrated

with a numerical example. The problem is one of inversion of
receiver functions for crustal seismic structure, which is known
to be highly non-linear (Ammon et al. 1990). The resampling
algorithm is used to calculate Bayesian measures of resolution
and trade-o¡ from two separate ensembles generated with
di¡erent search methods. The results show that useful con-
straints and `error' information can be obtained if the infor-
mation is contained in the input ensemble. The technique
presented here is only one route to addressing the appraisal
problem, although at present we know of no comparable
alternative.

2 ENSEMBLE INFERENCE AND BAYESIAN
INTEGRALS

The starting point for our study is an ensemble of models
(pj ; j~1, . . . , Ne) with their corresponding ¢ts to the data. For
example, the ensemble may represent a collection of seismic
velocity pro¢les with depth, and the data a set of surface wave
dispersion measurements, as in Lomax & Snieder (1995). The
ensemble is generated by the search stage of the non-linear
inverse problem. The objective of the appraisal stage is to
infer information (on the earth) from the ¢nite irregularly
distributed ensemble. We do not expect there to be a simple
or unique solution. Two factors limit the information that
can be obtained from the ensemble. The ¢rst is the degree of
constraint provided by the observed data, and the second is the
distribution of the given ensemble; that is, how well it samples
the `important' (good data ¢tting) regions of parameter space.
Both of these are di¤cult to quantify.
In geophysical problems one often ¢nds that the data/model

relationship is non-linear, sometimes highly so, leading to
multiple minima in the data mis¢t function. An example is
the inversion of high-frequency body waveforms for seismic
structure (e.g. Cary & Chapman 1988; Koren et al. 1991;
Gouveia & Scales 1998). This can make it very di¤cult
to identify the acceptable regions of parameter space and
generate a `good' ensemble. Also, the constraints provided by
the data may result in there being none, one, or an in¢nite class
of models which ¢t the data satisfactorily (even if the allowable
earth models are restricted to a ¢nite-dimensional parameter
space). Therefore, we must accept that the ensemble will always
be inadequate, and the information it contains limited, regard-
less of how sophisticated a search method may have been used
to collect it.
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2.1 Bayesian integrals

To address the appraisal problem we choose the framework
of Bayesian inference. This has been presented many times
in the geophysical literature and we do not attempt to repeat
that material here. For summaries and tutorials within a geo-
physical context the reader is referred to Tarantola (1987),
Duijndam (1988a,b), Cary & Chapman (1988), Mosegaard &
Tarantola (1995) and Gouveia & Scales (1998). Useful books
on posterior simulation are Gelman et al. (1995) and Tanner
(1996), and summary papers are by Smith (1991) and Smith &
Roberts (1993). From the Bayesian viewpoint, the solution
to the inverse problem is the posterior probability density
function (PPD). This quantity is used to represent all infor-
mation available on the model. Its calculation depends upon
the data, any prior information, and the statistics of all noise
present, which must be assumed known. At any point, m, in
model space, M, the PPD is given by

P(mjdo)~ko(m)L(mjdo) , (1)

where o(m) is the prior probability distribution which we
shall refer to simply as `the prior', L(mjdo) is a likelihood
function which represents the ¢t to the observations, and k is a
normalizing constant. (Note that the likelihood function and
hence the PPD are conditional on the vector of observed data,
do; however, for notational convenience we will drop the jdo
terms from here on.) For Gaussian error statistics we have the
familiar expression

L(m)~k exp {
1
2
(do{g(m))TC{1

D (do{g(m))
� �

, (2)

where g(m) are the predictions from the model, and CD is the
data covariance matrix describing noise statistics. Since the
PPD is a multidimensional function, it is usually characterized
in terms of its properties in model space (often moments of the
distribution). The model which maximizes the PPD is one
property of interest, and in the absence of prior information
would correspond to the best data ¢t model. The posterior
mean model for the ith parameter, mi, is given by the integral

SmiT~

�
M

miP(m) dm . (3)

Note that if the PPD were Gaussian then the mean would
be equal to the maximum PPD model. Another quantity of
particular interest is the posterior model covariance matrix,

CM
i, j~

�
M

mimjP(m) dm{SmiTSmjT . (4)

The diagonals of the posterior model covariance matrix are
the posterior variances of the model parameters, and the
o¡-diagonal terms contain information on trade-o¡ between
the model parameters. From this a resolution matrix can be
determined using

R~I{C{1
M,priorC

M , (5)

where C{1
M,prior is the inverse prior model covariance

matrix determined from o(m), and I is the identity matrix
[see Tarantola (1987) for a proof of (5)]. The columns of R
give a discrete approximation of the resolution kernel, which
indicates how the real Earth is resolved by the model para-

meters. (Note that the posterior model covariance matrix and
the resolution kernels are essentially linearized concepts. They
are most useful if the PPD has a single dominant peak, and
become less useful if multiple `signi¢cant' maxima are present.)
Another type of PPD property that may be useful, even when
multiple maxima are present, is the marginal PPD. This is a
function of one or more variables and is formed from an
integral of the PPD over the remaining dimensions of the
parameter space. For example, the marginal distribution of
variable mi is given by

M(mi)~
�

. . .

�
P(m)

Yd
k~1
k=i

dmk . (6)

Joint marginals between any pair of variables, M(mi, mj), can
be de¢ned in a similar manner to the 1-D case. The marginals
are a useful way of looking at the information provided on a
single variable, or pair of variables, with all possible variations
of other parameters taken into account.

2.1.1 Monte Carlo integration

In each case the integrals in eqs (3)^(6) take the form

J~

�
M

g(m)P(m) dm , (7)

where the function g(m) is used to de¢ne each integrand. A
numerical estimate can be obtained using multidimensional
Monte Carlo integration over M. We have

Jê ~
1
N

XN
k~1

g(mk)P(mk)
h(mk)

, (8)

where N is the number of discrete samples in the MC
integration, mk is the kth model sample and h(m) is the density
distribution of the samples. (We use a hat to denote an MC
estimate of a variable.) The sampling density is assumed to be
normalized, so we have�
h(m) dm~1 . (9)

Methods of multidimensional integration is an active area of
statistical research (see Flournay & Tsutakawa 1989, Gelfand
& Smith 1990 and Smith 1991 for reviews). Eq. (8) is just a
weighted average of the g(mk) over the ensemble,

Jê ~
1
N

XN
k~1

g(mk)wk:g , (10)

where the weights are

wk~
P(mk)
h(mk)

, (11)

and are usually called importance ratios.
The error in the numerical integration for Jê depends on the

variance of wkg(mk) over the ensemble and is given by

�Jê ~
1�����
N
p [g2{g2]1=2 . (12)

By evaluating this simultaneously with (8), the standard error
in the MC integral can be monitored, and the integration
stopped when the error has been reduced to an acceptable level.
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The rate at which the standard error in the Monte
Carlo estimate decreases depends heavily upon the choice of
sampling density, h(m). The integration will be most e¤cient
when the ensemble `importance samples' the integrand, that is,
so that h(m) is similar in shape to each integrand in eq. (7).
Since the PPD is the common factor in all integrals, then
ideally one would have h(m)&P(m), and evaluate all integrals
from the resulting ensemble. However, the distribution of
the input ensemble is determined by whichever technique was
used in the search stage of the inverse problem, and hence we
have no control over it. Therefore, it is worthwhile knowing
what type of distributions are produced by search algorithms
used in geophysics. In the next section we brie£y consider the
three most common types of method, uniform Monte Carlo
sampling (UMC), genetic algorithms (GA) and simulated
annealing (SA).

2.1.2 The sampling densities of common search methods

For uniform sampling, by de¢nition, the distribution of
the ensemble tends to a constant, as the number of samples
becomes large. [However, di¡erent methods, e.g. pseudo- or
quasi-random sampling, di¡er in how quickly they converge.
See Press et al. (1992) for a comparison.] In principle it is quite
straightforward to perform MC integration when the samples
are uniform; however, it is well known that the error in Jê will
decrease very slowly, especially when the dimension of the
space is high and the integrand complex. In the case of a
genetic algorithm, it is not known what type of distribution
the samples follow. Indeed, since the details of a GA can vary
signi¢cantly between applications, it seems likely that no single
sampling density will exist.
In simulated annealing a statistical importance sampling

method is used to generate samples which follow a `rescaled'
posterior probability density function. The rescaled function
takes the form

h(m)~ exp {
�(m)
T

� �
, (13)

where T is the scaling parameter (called temperature), and
�(m) represents the negative logarithm of the PPD. (Note that
for T~1, the sampling density, h(m), becomes equivalent to the
PPD.) For each ¢xed temperature the SA algorithm uses an
importance sampling method such as theMetropolis^Hastings
method (Metropolis et al. 1953; Hastings 1970) to generate
samples whose distribution tends towards the target h(m)
in (13). As the algorithm proceeds the value of T is gradually
decreased towards T~1, and so the ¢nal ensemble contains a
subset which is distributed according to the PPD. We see then
that by using an importance sampling algorithm on a gradually
changing target distribution, SA e¡ectively combines the
search and appraisal stages of the inverse problem.
The ratio of the number of models for which the forward

problem has been solved to that in the subset which is drawn
from the PPD has been called the `loss factor' by Sambridge
(1998). Its value is determined by the number of temperature
steps required for the algorithm to sample the true PPD
e¤ciently. Usually the loss factor is quite large because for
each ¢xed temperature it is only the statistically independent
models which tend towards the target distribution h(m), and
again these are usually only a small subset of the total. For
all intervening samples the target distribution h(m) must

also be evaluated, and hence the forward problem solved
(see Mosegaard & Tarantola 1995 and Sambridge 1998 for a
discussion). For every independent model in the ¢nal `PPD
subset ensemble' it is common for the forward problem to be
solved between 100 and 1000 times (Mosegaard & Tarantola
1995). This type of loss factor occurs in all importance
sampling methods, e.g. Vasco et al. (1993).
In summary, both GA and SA produce an ensemble which

preferentially samples the model space where the PPD is high,
but in neither case does the complete ensemble follow a known
sampling distribution. Therefore, to make use of all sampling
produced by these or any other method, one needs to deal with
the general case, that is, to construct estimates of the Bayesian
integrals (3)^(6), from an ensemble with unknown distribution.
In the next section we propose a solution.

3 INFERENCE FROM AN IRREGULARLY
DISTRIBUTED ENSEMBLE

The central idea in this paper is to construct an approximation
of the PPD everywhere in model space directly from the
input ensemble, and then use this approximate PPD for Monte
Carlo evaluations of the Bayesian integrals (7). In the next
section we describe our choice of constructing an approximate
PPD. In the subsequent section we show how the Bayesian
integrals may be evaluated by generating a second ensemble of
integration points which importance sample the approximate
PPD. Since we only apply importance sampling to the approxi-
mate PPD, this requires no solving of the forward problem and
hence the computational ine¤ciency associated with the loss
factor, referred to above, is avoided.

3.1 The neighbourhood approximation of the PPD

The reconstruction of the PPD from a ¢nite ensemble of
samples is e¡ectively an interpolation problem in a multi-
dimensional space. The interpolation of scattered data is a
much studied problem in two and three dimensions (see
Watson 1992). However, for higher dimensions most methods
become computationally unwieldy. Here we construct a multi-
dimensional interpolant using Voronoi cells (Voronoi 1908).
These geometrical constructs have been used in many areas of
the physical sciences (see Okabe et al. 1992 for a review) and
more recently in geophysics (Sambridge et al. 1995; Sambridge
& Gudmundsson 1998; Gudmundsson & Sambridge 1998).
Voronoi cells are simply the nearest-neighbour regions about
each point in model space, as de¢ned by a particular distance
norm. Fig. 1 shows an example in two dimensions using the
L2-norm.

Voronoi cells have some useful properties which make them
ideal for the basis of our multidimensional interpolant. For any
distribution of irregular points in any number of dimensions,
they are unique, space-¢lling, convex polyhedra, whose size
and shape are automatically adapted to the distribution of the
point set. Note that the size (volume) of each cell is inversely
proportional to the density of the points.Voronoi cells are also
used in Paper I as the basis of a new direct search algorithm. In
that case they are repeatedly updated as more models are
generated. Here we use them to construct an approximate PPD
from a ¢xed ensemble. This is done by simply setting the known
PPD of each model to be constant inside its Voronoi cell. In
this way the scale lengths of variation in the interpolated
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function are directly tied to the spacing of the samples in the
ensemble. In e¡ect, each Voronoi cell acts as a `neighbourhood
of in£uence' about the corresponding model in the ensemble.
We call this the neighbourhood approximation to the PPD, and
write it as PNA(m). Speci¢cally, we have

PNA(m)~P(pi) , (14)

where pi is the model in the input ensemble which is closest to
the point m.
It is interesting to note that the approximation PNA(m)

is related to the bootstrap method (Efron 1982; Efron &
Tibshirani 1986), used for determining measures of statistical
accuracy. The philosophy behind the bootstrap is similar to
that here; that is, to reconstruct a probability distribution
from a ¢nite set of realizations. In the bootstrap it is achieved
as a sum of Dirac delta functions centred on the members
of the ensemble. Therefore, resampling with the bootstrap
always produces copies of the original samples. In contrast,
the neighbourhood approximation, PNA(m), has a uniform
probability inside each Voronoi cell. Therefore, with PNA(m)
the in£uence of each model is spread uniformly across each
cell, rather than concentrated at a point.
Voronoi cells are de¢ned in terms of a distance norm in

model space, which must be chosen a priori. For the L2-norm
the distance between points xa and xb in model space is de¢ned
as

kxa{xbk~((xa{xb)TC{1
M (xa{xb))1=2 , (15)

where C{1
M is a matrix that removes the dimensionality of

the variables. In e¡ect, it controls the in£uence of di¡erent

variables on the shape of Voronoi cells, and is particularly
important when the variables have di¡erent physical dimen-
sion. An appropriate, although not necessary, choice is to use
the prior model covariance matrix (see Menke 1989).

3.2 Monte Carlo integration of the neighbourhood
approximation

In this work we use the neighbourhood approximation to
represent all information contained in the input ensemble of
models. Since this is the only information we have on the PPD,
we use our approximate PPD in place of the real PPD in all
Bayesian integrals, i.e. we have

PNA(m)&P(m) . (16)

This approximation is at the heart of the algorithm presented
in this paper and is discussed further below. The Bayesian
integrals can then be evaluated by generating a new set of MC
integration points in model space, sk(k~1, . . . , Nr), whose
distribution asymptotically tends towards PNA(m).We call this
the `resampled ensemble'. In other words, the new points are
designed to importance sample the neighbourhood approxi-
mation to the PPD. Therefore, if the sampling is performed
correctly the sampling density, hR(m), should satisfy

hR(m)&PNA(m) . (17)

Combining (16) and (17) in (11) gives

wk&1 (k~1, . . . , Nr) , (18)

so the Bayesian integrals (7) become

Jê NA~
1
Nr

XNr

k~1

g(sk) , (19)

where we use the subscript NA to indicate that the approxi-
mate PPD has been used. Therefore, only simple averages over
the resampled ensemble have to be calculated. Note that by
replacing the true PPD with PNA(m) in (7) we have only
approximated part of each integrand. The spatial variability
of the remaining term, g(m), is fully taken into account in
estimating the numerical integral because g(m) is evaluated at
the resampled points sk(k~1, . . . , Nr) in (19). Note also that
the approximate PPD no longer appears in eq. (19) directly, but
instead controls the distribution of the resampled ensemble
(17). Therefore, to proceed we need only to be able to generate
the new ensemble and then evaluate simple ensemble averages
using (19).

3.3 Importance sampling the neighbourhood
approximation of the PPD

The resampled ensemble can be generated with a standard
approach known as a Gibbs sampler (Geman & Geman 1984;
Smith & Roberts 1993). With this method one can generate
a random walk in model space, whose distribution asymp-
totically tends towards any given distribution (see Geman &
Geman 1984, Gelman et al. 1995 and Tanner 1996 for proofs of
convergence). Here we use it to generate samples distributed
according to the approximate PPD, PNA(m). Fig. 1 illustrates
the procedure in two dimensions. The random walk starts at
point B, which we write as mB. (This can be a model from the
input ensemble.) From this point it takes a series of steps along

Figure 1. Two independent random walks through the neighbour-
hood approximation of the PPD. The Gibbs sampler is used. For the
¢rst step (x-direction) of the walk starting at cell B (shaded) the shape
of the conditional, PNA(xijx{i), is shown above the ¢gure. After many
steps the density distribution of the random walk will asymptotically
tend to the approximate PPD, PNA(x).
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each parameter axis in turn. A step is performed by drawing
a random deviate from the conditional probability density
function of PNA(m) along the ith axis. We write this as
PNA(xijx{i), where xi is a position variable along the ith axis
and x{i denotes the ¢xed values of all other components of the
vector mB. It is clear that the conditional PNA(xijx{i) is just
the function PNA(m) sampled along the ith axis which passes
throughmB. Fig. 1 shows the conditional for the ¢rst step. Since
PNA(m) is constant inside each Voronoi cell, the conditional is
built from the PPD values inside each Voronoi cell intersected
by the axis. Note that it is possible for the random walk to
move into any of these Voronoi cells, with probability deter-
mined by the product of the PPD value and the width of the
intersection.
The Gibbs sampler continues by generating the next step

along the (iz1)th axis through the new point, B', and so on,
cycling through each parameter axis in turn. At each step one
element of mB is updated. An iteration is completed when all
dimensions have been cycled through once, and a complete
new model space vector has been generated. It can be shown
that after many iterations this random walk produces model
space samples with a distribution that asymptotically tends
towards the target distribution, i.e. PNA(m) (see Gelman et al.
1995 for a proof). Note that overall the random walk is
in£uenced by all Voronoi cells that are intersected by the axes,
not just the cells that the walk passes through. Fig. 1 shows four
iterations of a walk starting from point B, and four more from
an independent walk starting from point G.
In this way the Gibbs sampler can be used to generate the

resampled ensemble of any chosen size, Nr. (One would expect
Nr&Ne, i.e. the size of the input ensemble.) Note that one does
not have to collect the ensemble from just a single random
walk. It is preferable to use multiple independent random
walks, each starting from a di¡erent point in model space.
This will signi¢cantly reduce computation time, because calcu-
lations can be performed simultaneously, and also improves
the sampling of the parameter space, since each walk starts in a
di¡erent place. A useful choice might be to select the starting
points from the positions of the better data ¢tting models in the
input ensemble.
After all random walks have been performed, the results can

be combined and the ensemble averages in (19) evaluated. For
Nw walks we have

Jê NA~
1
Nr

XNw

j~1

njgj , (20)

where nj is the number of samples generated in the jth walk, Nr

is the total number of samples, given by

Nr~
XNw

j~1

nj , (21)

and gj is the average (of the variable) from the jth walk, i.e.

gj~
1
nj

Xnj
i~1

gij , (22)

where gij is the ith sample from the jth walk.
In practice these expressions will be trivial to evaluate. In the

next section we describe how to determine the 1-D conditional,
PNA(xijx{i), for each axis, and then show how to calculate the
steps of the random walk.

3.3.1 Calculating the conditional

Fig. 1 shows that the conditional, PNA(xijx{i), is simply a set of
step functions with abrupt changes at the points where the axis
passes into a new Voronoi cell. These intersection points must
be found for each new axis produced during the random walk.
This `intersection' problem is the main computational task
involved in the resampling algorithm. A method for e¤ciently
calculating the intersection points of a single multidimensional
Voronoi cell and any 1-D axis is given in Paper I. We do not
repeat the description here. Using this `single-cell method' we
obtain the intersection points of a given Voronoi cell with the
axis, as well as the indices of the two neighbouring Voronoi
cells; that is, starting from cell B in Fig. 1 the single-cell
algorithm would give us the intersection points (xab, xbc) and
identify the neighbouring cells A and C.
To ¢nd the points where the remaining Voronoi cells inter-

sect with the axis, one simply repeats the procedure in both
directions until the boundaries of the parameter space are
reached. In this way we ¢nd all Voronoi cells intersected by
the current axis, between (li, ui), and their intersection points.
The computational cost of solving the intersection problem is
crucial to the overall e¤ciency of the resampling algorithm.
This aspect is discussed in detail below. It turns out that even
in high dimensional spaces the number of Voronoi cells inter-
sected by any axis is usually quite small, and so one only has
to apply the single-cell method a few times. In the numerical
example presented in Section 4, there are 10 000 Voronoi cells
in a 24-D space, and these produced an average of less than
four intersections per axis. [The reason that this number is
small is because an L2-norm (eq. 15) is used to de¢ne Voronoi
cells. We recall that in order to move from one Voronoi cell
to another, the point along the axis must be closer to a new
model in the input ensemble (see eq. 14). However, only one
variable in the n-D distance norm changes as we move along
a coordinate axis and so this only has a relatively small e¡ect
on the overall distance. Even with a large number of points in
the input ensemble, the nearest neighbour will only change
occasionally as we move along the axis. Hence each axis will
only pass through a few Voronoi cells.]

3.3.2 Generating a random step

Once the intersection points (xab, . . . , xef ) and cells (A, . . . , F)
are known, then the conditional is completely speci¢ed and
standard techniques may be used to generate a random deviate
from this 1-D probability distribution. Here we use a `rejection'
method (see Press et al. 1992 for full details). In this approach a
proposed step, xpi , is generated as a uniform random deviate
between the endpoints of the axis, that is, in the interval (li, ui)
in Fig. 1. This proposed step is accepted if a second random
deviate, r, generated on the unit interval (0, 1), satis¢es

r¦ PNA(x
p
i jx{i)

PNA(xmax
i jx{i)

, (23)

where PNA(xmax
i jx{i) is the maximum value of the conditional

along the axis. If the proposed step is rejected then the whole
procedure is repeated until an accepted step is produced. It is
simple to show that the density distribution of the accepted
steps is equal to the 1-D conditional PDF, as required (for
example, see pp. 281^282 of Press et al. 1992).
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A salient feature of the rejection method is that only the ratio
of two PPD values appears in eq. (23). Therefore, the PPD
need only be known up to a multiplicative constant, that is, its
normalization can be ignored. Furthermore, by taking logs of
both sides, the condition (23) becomes

log (r)¦ log (PNA(x
p
i jx{i)){ log (PNA(xmax

i jx{i)) . (24)

Therefore, to implement the rejection method one need only
evaluate the di¡erence between logs of the PPD, and never the
actual PPD itself. In practice, this becomes important because
in many problems the ratio of the PPD values can become
in¢nitesimally small and cause numerical `under£ow' problems
when implemented. (An example occurs in the numerical
example below.) Since (24) uses only the log of the PPD no
such problems arise. Note that the other common method for
generating a random deviate from a 1-D conditional is the
transformation method (see Press et al. 1992), which is simpler
to implement than the rejection method, but requires explicit
evaluation of the PPD, and hence will be prone to this type of
numerical problem.
This completes the description of the resampling algorithm.

Note that even though a random walk is generated through
the multidimensional function PNA(m), the only calculation
involving Voronoi cells is to determine their intersections with
a known 1-D axis. This problem must be solved many times
over, but one does not have to determine any data structure
de¢ning the Voronoi cell itself, for example the vertices of each
cell (see Fig. 1). It turns out that the number of vertices of
each Voronoi cell grows extremely rapidly with the dimension
of the space (Okabe et al. 1992; Sambridge 1998), so the
problem would become computationally intractable if the full
multidimensional Voronoi cells had to be determined. With
the resampling algorithm we are able to take advantage of
the properties of Voronoi cells in a multidimensional space,
without having actually to calculate them.

3.4 Computational issues

The computation time and memory requirements of the
resampling algorithm are the factors which determine its
practicality for many applications. It is therefore important
to know how these quantities scale with the size of the
input ensemble, resampled ensemble, and dimension of the
parameter space.

3.4.1 Memory requirements

The storage required by the algorithm is controlled by the
input ensemble only; that is, the total memory, M, scales as

M!Ned . (25)

The point to note here is that the resampled ensemble need not
be stored in memory, hence Nr does not appear in (25). This is
because all calculations can be performed with only a `single
loop' over the resampled ensemble; that is, once each model
of the resampled ensemble is determined it contributes to the
appropriate ensemble averages and is discarded. (This is true of
many MC integration techniques.) In the Appendix it is shown
how the MC estimates of all Bayesian integrals in eqs (3)^(4)
and their error estimates (12) can be arranged as `single-loop
calculations', which require only ensemble averages to be
determined.

3.4.2 Computation time

Two factors in£uence the computational time of the algorithm.
These are the generation of the resampled ensemble and the
evaluation of the ensemble averages. The latter clearly depends
linearly onNr, and in practice is quite trivial. The time taken to
generate the resampled ensemble follows

T!NrNed . (26)

The linear dependence on Nr and d is clearly optimal because
we generate Nr samples, each of which is a d-dimensional
vector. It is unknown whether the linear dependence on the size
of the input ensemble, Ne, can be improved upon. This factor
comes from solving the intersection problem along a single axis
(described in Paper I). The intersection algorithm requires
extra overhead calculations to be performed which are linearly
dependent on d, but the solution for a single axis becomes
independent of d. Therefore, the overall computation time in
(26) remains linearly dependent on d.
It seems likely that, in practice, the most e¡ective way of

further reducing computational time, for any application,
would be by exploiting the parallel nature of the resampling
algorithm. Note that we e¡ectively have perfect parallelization;
that is, if the walks are distributed across n processors of the
same CPU speed, the overall time taken will be reduced by a
factor of n. This is because no communication is required
between processors until the very end, when the ensemble
averages are combined. Typical CPU times are given for a
numerical example in the next section.

4 APPLICATION OF THE RESAMPLING
ALGORITHM TO RECEIVER FUNCTION
INVERSION

To illustrate the resampling technique we apply it to the
inversion of receiver functions for crustal seismic structure.
This is a highly non-linear waveform ¢tting problem (Ammon
et al. 1990), which serves as an example of the di¤culties
present in many studies of seismogram inversion.
The crustal structure is parametrized using 24 variables. The

S-velocity depth pro¢le is constructed from six horizontal
layers, with four parameters in each layer, representing the
thickness of the layer (km), the S velocity at the topmost point
in the layer (km s{1), the S velocity at bottommost point in
the layer (km s{1) and the ratio of P to S velocity in the layer.
The velocity pro¢le is completed by imposing a linear gradient
between the two velocities in each layer. Each parameter is
identi¢ed by an index. See Table 1 for the list. This table
also includes indices for 12 additional variables, which are
combinations of the inversion parameters. The resampling
algorithm can be used to evaluate Bayesian indicators involving
these, or any other, transformed parameters in an identical
manner to the original variables. The parametrization used
here is the same as has previously been used for the inversion of
receiver functions recorded in Eastern Australia (Shibutani
et al. 1996). Table 1 contains the parameter space bounds for
each parameter, and Paper I contains ¢gures of typical velocity
pro¢les produced with this parametrization.
Since the Bayesian indicators re£ect the information in

sampling of the ensemble as well as the data, we need to
distinguish between the two in assessing the resampling
algorithm. We therefore choose a synthetic data problem so
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that the results of Bayesian integrals (using either ensemble)
can be compared to a known `true earth' model. To illustrate
the resampling algorithm we calculate a series of Bayesian
integrals for two separate ensembles of earth models and com-
pare results. Both were produced with direct search methods.
The ¢rst was generated with the neighbourhood algorithm
described in Paper I (we call this the `NA ensemble') and
the second with a genetic algorithm (we call this the `GA
ensemble'). Both ensembles contain approximately 104 crustal
S-wave velocity pro¢les. Details of both algorithms and a
comparison of the two ensembles can be found in Paper I.
(See Figs 5b and d of Paper I for a plot of the GA ensemble and
receiver function of the best-¢tting model, and Figs 6a and c of
Paper I for the NA ensemble.)

4.1 The data covariance and prior PDF

A prior PDF is required for the Bayesian method. Here
we simply set it to be uniform within the parameter space
boundaries. These are chosen to allow a wide class of potential
earth models (see Table 1), and hence impose relatively weak
prior information on all variables. In many situations one
might have more complex prior information than is assumed
here; however, this is su¤cient to illustrate the algorithm.
To calculate the posterior we need to determine the inverse

data covariance matrix, C{1
D , describing the statistics of the

noise added to the synthetic data (see Paper I). We treat
the synthetic data as if it were observed data and calculate CD

using the method described by Gouveia & Scales (1998). This
involves obtaining realizations of noise receiver functions, ri
(i~1, . . . , Nd), and calculating their covariance matrix using

CD~
1
Nd

XNd

i~1

rirTi . (27)

Since our noise is synthetically generated we have the luxury
of choosing a large number of realizations. Here we set
Nd~500. The matrix CD was calculated using eq. (27) and
then smoothed by replacing each element with the average of
its diagonal. (This removes some numerical artefacts and
assumes stationarity of the noise.) A plot of the resulting noise
covariance function (i.e. the cross-diagonal terms) is shown in
Fig. 2. The sampling frequency is 25 Hz and the length of each
trace is 30 s, giving 876 samples, and hence CD is a matrix of
size 876 | 876. The covariance function shows how the noise is

temporally correlated in the receiver function. We choose to
use only the ¢rst 50 diagonals either side of the main diagonal,
since the amplitude of the covariance function falls away
rapidly beyond +2 s.
In theory,CD should have full rank, but in this case we found

that contamination by numerical noise caused it to be singular.
We obtained an inverse using singular value decomposition
(Lanczos 1961). After some experimentation, we chose to
construct an inverse from the largest 140 eigenvalues of CD,
which also produced an excellent recovery of the original
matrix.

4.2 Data ¢t of the two ensembles

Fig. 3 shows histograms of the s2l values of data ¢t for all
models in both ensembles, where

s2l(m)~
1
l
(do{g(m))TC{1

D (do{g(m)) (28)

Table 1. Parameter space bound used in the receiver function inversion. Brackets show indices. All
values above 24 are combinations of the model parameters. H denotes a layer thickness (km), Vs1

the S velocity at the top of a layer (km s{1), Vs2 that at the bottom of a layer (km s{1), Vp/Vs the
velocity ratio in a layer, and Z the depth of the bottom of the layer (km). The Moho depth, Zmoho, is
represented by parameters 26 and 36. The variable 25 is missing from the table and represents the
velocity jump across the Moho, *Smoho.

Layer H Vs1 Vs2 Vp/Vs LVs/LH Z

Sediment 0=2 (1) 1:75=3:0 (7) 1:75=3:0 (13) 2:0=3:0 (19) {12:5=12:5 (27) 0=2 (32)
Basement 0=3 (2) 1:5=3:5 (8) 1:5=3:5 (14) 1:65=2:0 (20) {20:0=20:0 (28) 0=5 (33)
Uppercrust 1=15 (3) 2:6=3:6 (9) 2:8=4:0 (15) 1:65=1:8 (21) {0:8=1:4 (29) 1=20 (34)
Middlecrust 5=20 (4) 3:2=4:5 (10) 3:2=4:5 (16) 1:65=1:8 (22) {0:26=0:26 (30) 6=40 (35)
Lowercrust 5=20 (5) 3:2=4:5 (11) 3:2=4:5 (17) 1:65=1:8 (23) {0:26=0:26 (31) 11=60 (36)
Mantle 5=30 (6) 4:0=5:0 (12) 4:0=5:0 (18) 1:70=1:9 (24)

Figure 2. The diagonals of the data covariance matrix describing the
statistics of the noise in the receiver functions. The central diagonal
is plotted as sample 0. The ¢rst 50 upper and lower diagonals of
the matrix are non-zero, corresponding to a covariance function of
width +2 s.
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and l is the number of degrees of freedom (number of
data minus the number of independently constrained model
parameters). Its value is taken as 116 in evaluating (28)
(i.e. 140{24). Note that this is an approximation because we
do not expect all model parameters to be well constrained. The
two histograms in Fig. 3(a) were determined from the NA
ensemble using the data covariance matrix restricted to the
main diagonal (light) and using all +50 diagonals (dark). As
the number of diagonals is increased, the s2l values tend
to decrease because the temporal correlation of the receiver
function noise is taken into account. This trend is also re£ected
in the best-¢t models. The smallest s2l in the GA ensemble are
1.69 and 3.03 for CD with 1 and 50 diagonals, respectively.
Similarly, in the NA ensemble the best-¢t value changes from
1.42 to 1.87.We take the +50 diagonal data covariance matrix

to be more representative of the noise in the data. (In Paper I
the temporal correlation in the noise was ignored and a single
diagonal was used to construct C{1

D .)
In Fig. 3(b) we compare the histograms of s2l, calculated with

the full C{1
D , for both the NA and the GA ensembles. This

shows that the GA ensemble apparently contains a higher
proportion of better data ¢tting models; however, the ¢gure is
rather misleading because the GA ensemble contains multiple
copies of models, which tends to skew the histogram towards
the lower s2l values. (An examination showed that of the 100
models with the lowest s2l values, 50 were complete copies of
other models, and over 30 per cent of the entire GA ensemble
was at least partial copies of other models.) The NA ensemble
contained no copies and no pair of identical s2l values.

Figure 3. (a) Histograms of the s2l values of 10 000 models in the `NA
ensemble', determined with two alternative inverse data covariance
matrices. The ¢rst is constructed using only the main diagonal of CD

(lighter) and the second with +50 diagonals (darker). The second
histogram takes account of temporal correlation in the receiver
function noise. (b) Same as (a) except ¢rst histogram (lighter) is of s2l
values of models generated by a genetic algorithm (`GA ensemble').
This ensemble contains many duplicate models with a higher data ¢t
giving a more skewed distribution.

Figure 4. Estimated error in numerical integration for (a) mean
Moho depth and (b) mean S-velocity jump across the Moho, as a
function of the number of samples in the numerical integration. In both
¢gures the open symbols represent a uniform Monte Carlo integration
on a test function (see text); the solid lines (¢lled symbols) are the
corresponding curves for the new resampling algorithm. The dashed
curves are for the resampling algorithm applied to the neighbourhood
approximation of the PPD. The resampling scheme has a much faster
error reduction than uniform integration, suggesting that it is able to
importance sample the PPD.
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4.3 Estimating Bayesian integrals

With the data covariance matrix and prior information
established, the PPD can be written as follows:

P(m)~k exp {
l
2

s2l (m)
� �

; (29)

compare eqs (1), (2) and (28). The PPD of the 10 000
models in the two ensembles is therefore known, although as
stated above we only need their logs and hence the term in
the brackets. The task of the resampling algorithm is then to
calculate the Bayesian integrals in eqs (3)^(6) using either of
the available ensembles.

4.3.1 Verifying importance sampling

To determine whether the new approach is adequately
importance sampling the multidimensional approximation
to the PPD, we evaluate the mean integrals in eq. (3) for two
transformed parameters, the Moho depth (Zmoho) (de¢ned as
the sum of the ¢rst ¢ve layer thicknesses) and the S-velocity
jump across the Moho (*Smoho) (de¢ned as the di¡erence
between the S velocity at the top of layer six and that at the
bottom of layer ¢ve.) The importance sampling can be assessed
by comparing the rate at which the integration error reduces.
We evaluate these integrals using both the resampling algorithm
and a simple uniformMonte Carlo integration (UMC). In both
cases the approximate PPD is built from the NA ensemble. By
de¢nition, the UMC estimate is guaranteed to produce an
accurate result, albeit with extremely slow convergence.
It turns out that it was not possible to evaluate these, or

any other, integrals using UMC. This is because UMC requires
direct evaluation of the PPD, which resulted in an arithmetic
under£ow in the computation. One can see from Fig. 3 that the
largest s2l values in both ensembles is greater than 25, which

means that the actual PPD values vary by many orders of
magnitude. This e¡ect is likely to occur in many applications,
and shows the merit of avoiding direct evaluation of the PPD.
In order to make a comparison with the resampling algorithm
we devised a test function to replace the PPD in the integrals.
This was produced by using eq. (13) to rescale the PPD values
so that the range of s2l values was reduced.

In Fig. 4, three error curves are plotted for both Zmoho and
*Smoho. The ¢rst two (indicated by open and ¢lled squares)
show the integration errors for UMC and the resampling
method using the test function, and the third (dashed line) that
for the resampling algorithm using the full PNA(m).
One can see from Figs 4(a) and (b) that the integration error

in the means reduces much more rapidly using the resampling
algorithm on the test functions than with uniform sampling.
For example, after 107 samples UMC has a higher integration
error than the resampling algorithm after only 2:5|104

samples. The curves for the real PPD decrease slightly faster
than using the test function, so we assume that a similar level of
importance sampling occurs here. These results were found
to be characteristic of all other integrals that we evaluated.
We conclude that the NA resampling algorithm is able to
importance sample the approximate PPD.

4.3.2 The posterior model covariance matrix

Each element of the 24|24 posterior model covariance matrix,
Ci, j , was determined using the resampling algorithm. In this
case we generated 105 samples from 100 independent random
walks starting at the 100 best data ¢tting models in the
ensemble. We included the 12 transformed parameters shown
in Table 1. The diagonals of the covariance matrix can be taken
as `standard errors' in the parameters. For the o¡-diagonal
elements we can plot the matrix. Since the variables di¡er in
type and dimension it is di¤cult to display the covariance

Figure 5. Posterior model correlation matrix from (a) the NA ensemble and (b) the GA ensemble. Each element of this matrix is the result of a
multidimensional integration with the resampling algorithm. In all cases 105 resamples were used. The elements in the ¢rst 24 rows and columns are
the original model parameters and the last 12 are determined from combinations of these parameters (see Table 1). Several patterns and trade-o¡
features are observed.
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matrix directly. Instead, we calculate the correlation matrix,
de¢ned by

!i, j~
Ci, j��������������
Ci,iCj, j

p , (30)

which conveys similar information in the o¡-diagonal
elements.
Fig. 5(a) shows the correlation matrix calculated from the

NA ensemble for all 36 parameters. The strongest patterns in
the o¡-diagonal elements are simply due to the dependence
of the transformed parameters on the original parameters;
however, many other more subtle patterns are present, too
numerous to discuss in detail. (Here we display the entire
matrix, although for real problems one would probably need
to plot submatrices of selected parameters to examine the
trade-o¡s in detail.) Some simple observations can be made
from Fig. 5. The covariances of the layer thickness parameters
(upper left corner) show a negative correlation between the
¢rst and deeper layers, the strength of which decreases with
depth. The negative correlation between the ¢rst two layers is
reasonable because these layers are largely responsible for the
high-amplitude reverberation in 0^3 s of the receiver functions
(for examples see Paper I). If one layer is thick then a similar
alignment of the high-amplitude phase can be obtained by
making the other layer thinner. We note also that the velocity
gradients in the ¢rst two layers (parameters 27 and 28) are also
negatively correlated. On average the Vp/Vs ratio parameters
have higher-amplitude correlations with each other and with
other parameter types, suggesting that they may be more
poorly constrained.
The equivalent calculation for the GA ensemble (shown

in Fig. 5b) leads to a covariance matrix with a broadly similar
pattern to that from the NA ensemble, although the ampli-
tudes di¡er in some parts of the matrix. In particular, all
cross-correlation coe¤cients involving the layer thickness
parameters seem to have relatively small amplitude, which
apparently indicates that these parameters are independently
resolved, when in fact we know them not to be. This may be an
indication that the GA ensemble contains less information on
layer thicknesses. The fact that we obtain similar results based
on the two di¡erent ensembles is encouraging, and suggests
that the resampling algorithm is estimating the true posterior
covariance matrix.

4.3.3 1 -D marginal distributions

The next indicators we examine are 1-Dmarginal distributions.
By comparing eqs (6), (8) and (17) one also sees that the
marginals are equal to the distribution of the resampled
ensemble projected onto the corresponding axes. For example,
the 1-D marginal for the ith parameter is given by a histogram
of the ith variable of the models in the resampled ensemble.
Figs 6(a) and (b) show the prior and posterior marginals

for Zmoho and *Smoho. (Note that the prior distributions
are not uniform because they are transformations of the
original variables.) With both the GA and the NA ensembles,
the posterior distribution is narrower than the prior, due
to the information provided by the data. Note that the peak
of the marginal is at the true value of the Moho depth. This is
very encouraging, and strongly suggests that the resampling
algorithm has been able to extract a realistic marginal from

both distributions. We note that the GA marginal does not
contain the higher probabilities at shallower depths seen in the
NA ensemble.
For the *Smoho marginals determined from the NA ensemble

(Fig. 6b), we again see a narrower posterior than the prior, with
a peak centred on the true value. In this case the GA ensemble
lies midway between the prior and the NA posterior. The
di¡erence between these curves cannot be attributed to a lack
of information in the data (which is common to both) but must
re£ect the information contained in the ensembles themselves.
The GA ensemble appears to be inferior to the NA ensemble in
sampling this parameter.
These results suggest that the resampling algorithm is able to

construct the posterior 1-D marginals accurately for these two
parameters, if enough information exists in the input ensemble.
Also, they indicate that, in this case, the posterior marginals
provide useful information on the true values of the model
parameters. Note that the width of the posterior marginals is

Figure 6. (a) The prior and posterior marginal PDFs for the Moho
depth determined from the NA and GA ensembles. The posteriors are
determined using the resampling algorithm. In both cases the posterior
has a narrower width than the prior, with the peak at the true value.
The NA ensemble also gives an increased likelihood at lower depths
relative to the GA ensemble. (b) Same as in (a) but for the S-velocity
jump across the Moho. The areas under all curves are the same.
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another indicator of the degree of constraint that may be
placed on each parameter, together with the model variances,
pmoho and p*S , obtained from the posterior model covariance
matrix.
Fig. 7 shows similar marginals calculated using the NA

ensemble for all 24 original parameters, together with their
true values. In all cases the prior distributions are uniform. In
this ¢gure the plots are individually normalized to a maximum
amplitude, so it is not possible to compare densities between
variables directly. We see that the shape and spread of
the marginals varies signi¢cantly. On average the peaks of the
marginals (when they exist) appear reasonably well correlated
with the true values. The correlation appears to be strongest
with the velocity parameters at the base of each layer (13^18),
and weakest with the Vp/Vs ratio parameters, which appear to
be poorly resolved. The ¢rst layer (de¢ned by parameters 1, 7,
13 and 19) and the fourth layer (4, 10, 16 and 22) seem to be the
best resolved layers, since all marginals are peaked close to
the true values.
The 1-D marginals also provide a useful way of testing

whether the resampling algorithm is needed in the ¢rst place.
We recall that resampling could be avoided if the input
ensemble were already distributed according to the PPD.
We ask what di¡erence it makes if we simply assume that
the input ensemble is distributed according to the PPD. This
is equivalent to setting

h(m)~P(m) (31)

in eq. (8). In this case there is no need to generate a resampled
ensemble and all Bayesian integrals reduce to simple averages
over the input ensemble. Also, the marginals (in eq. 6) simply
become the distributions of the input ensemble projected onto
the appropriate axes (we call these the `raw' marginals). Fig. 8
shows the raw and resampled marginals for the NA ensemble,
plotted with the same area normalization.
Signi¢cant di¡erences can be seen between the two sets

of curves. The `raw' 1-D marginals all tend to have higher
amplitudes and narrower peaks than the resampled marginals;
that is, they imply greater constraint on the model parameters
than is actually present. Note that there are cases where the
shape of the resampled marginal di¡ers signi¢cantly from
the raw marginal, and has a peak closer to the true value (e.g.
parameter 16). Also, there are cases where a double peak in the
raw marginal has been removed (parameter 9), and where one
has been added (parameter 12). The assumption that the input
ensemble is distributed according to the PPD seems to lead to
poorly determined marginals, which give a false impression
of accuracy, and potentially a completely false shape as well.
Note that the roughness of the raw marginals is partially due to
the smaller size of the ensemble (104 compared to 105 in the
resampled marginals).
Fig. 9 shows a similar plot for the GA ensemble. The

most striking feature here is the di¡erence between the GA
raw marginals and those in Fig. 8 for the NA raw ensemble.
This di¡erence re£ects the underlying di¡erences in the
two ensembles. The GA ensemble produces marginals with

Figure 7. 1-D marginal PDFs for all 24 model parameters obtained by the resampling algorithm (using the NA ensemble). The prior distributions
for each are uniform. The panels are arranged so that each row represents a di¡erent parameter type and each column a di¡erent layer in the velocity
model. The x-axis of each panel is over the complete range of the parameter, found in Table 1. The solid lines show the true value of each model
parameter. Each curve is scaled to the same maximum height, not the same area.
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multiple spikes, which are a result of the crude discretization
of the parameter space used by the genetic algorithm which
generated it (see Paper I). The amplitudes of the spikes are
very large and dominate over the resampled marginals, which
appear quite small on the plot (due to the area normalization).
Nevertheless, we again see that the resampled marginals are
not dominated by the irregular distribution of the underlying
ensemble, but instead are more distributed and smooth. In this
case the peaks are not as well correlated with true values as
those from the NA ensemble, again indicating that the GA
ensemble contains less information.

4.3.4 2-D marginal distributions

Figs 10, 11 and 12 show 2-D posterior marginals calculated
with the resampling algorithm for selected pairs of parameters
using the NA ensemble. Fig. 10 shows the prior and posterior
for the (Zmoho, *Smoho) pair. The posterior is clearly more
highly peaked than the prior (note the greyscales) and its peak
is shifted close to the position of the true values (triangle). In
this case accurate information has been extracted from the
ensemble, and the posterior itself seems to indicate reasonable
resolution in the data for these parameters.
Fig. 11 is a similar plot for the S velocity just above and just

below the bottom of the Moho. (Note that the di¡erence in
these parameters is *Smoho.) The prior in this case is uniform,
with a value falling in the second lowest contour interval. In
this case we again see a well-de¢ned posterior with a peak close

to the true values (triangle). There is also a suggestion of a
secondary maximum in the posterior just beyond the bounds of
the parameter space.
To get an impression of how representative these results are

across a range of parameters, we plot a selection of 2-D prior
and posterior marginals in Fig. 12. The ¢rst set of ¢ve plots
show the velocity gradient in each of the ¢rst ¢ve layers (x-axis)
against the S velocity at the base of the layer (y-axis). The next
¢ve are various combinations of parameters. The correlation
between the position of the peak of each marginal and the true
values (triangles) is quite high. However, in a few cases it is very
poor (e.g. for variables 2 and 8, and 2 and 14). Note that a poor
correlation does not necessarily mean that the posterior has
not been recovered well, but could indicate that the data
contain little information on these variables. Overall, the shape
of the marginals varies signi¢cantly between plots, which we
interpret as re£ecting the relative constraint imposed by the
data. Many of the 2-D marginals show a clear correlation
between the true values and their peaks, suggesting that the
resampling algorithm has recovered the posterior reasonably
well.

4.3.5 Resolution kernels

In cases where di¡erent parameter types are involved (e.g. layer
thicknesses and seismic velocities), the non-diagonal elements
of the resolution matrix (5) become dimensionally dependent.
This can be seen by close inspection of eq. (5), but is also made

Figure 8. Marginal distributions, from the `NA ensemble', assuming that it is distributed according to the PPD (shaded), compared to the
corresponding marginals determined by the resampling algorithm, i.e. same as in Fig. 7 (unshaded). The areas under the two curves are equal in each
panel. The two sets di¡er quite markedly, indicating that the input ensemble is not distributed according to the PPD.
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clear when we recall the de¢nition of the resolution matrix for
a discrete linear inverse problem (see Menke 1989),

mest~Rmtrue , (32)

where mtrue are the true earth values of the parameters and
mest are the estimated values. Clearly, the ijth element of the
resolution matrix Ri, j will have the dimension of parameter i
divided by that of parameter j. The sizes of the o¡-diagonal
elements will therefore be in£uenced by the relative scale of
the di¡erent parameter types and do not lend themselves easily
to plotting. Rather than plotting the rows or columns of R, we
de¢ne a `non-dimensional' resolution matrix, R0i, j, by multi-
plying each element by pj/pi, where pi is a representative scale
length for parameter i. Here we choose the square roots of the
diagonals of the prior covariance matrix, CM,prior, so

R0i, j~Ri, j
pj

pi
. (33)

Fig. 13 shows an example of `non-dimensional' resolution
kernels (i.e. the rows of R0) determined by applying the
resampling algorithm to the NA ensemble. The prior model
covariance is calculated using the formulae in the Appendix,
and the resolution matrix is determined using (5). We see
from (32) that each column of the resolution kernel gives an
indication of how the `true earth' model parameters in£uence
the estimated values. Conversely, the rows of the resolution
matrix show how well each parameter can be independently

resolved. Strictly speaking, these concepts apply to linearized
inverse problems, but they nevertheless give an impression
of resolution for the non-linear case. [Snieder (1991), Snieder
(1998) presents an extension of resolution kernels for the
non-linear case.]
Fig. 13 shows that the level of contamination in the receiver

function problem varies signi¢cantly between parameters. The
thicknesses and velocities in the ¢rst two layers are the best-
resolved parameters, whilst the Vp/Vs parameters are the
worst resolved. Note that when `leakage' occurs it does so
across all parameter types, not just between those in the same
class. It is particularly severe between the Vp/Vs parameters.
This is consistent with the previously calculated Bayesian
indicators, and also our prior expectation that the Vp/Vs

parameters would be poorly resolved.

4.3.6 Convergence of the Gibbs sampler

All of the results presented here rely on the convergence of the
Gibbs sampler, that is, the assumption that eq. (17) has been
satis¢ed, and hence the resampled ensemble is distributed
according to the approximate PPD, PNA(m). Convergence to
the required distribution can be monitored using standard
statistical techniques. We recall that the resampled ensemble
is generated from Nw independent random walks. In this case
the convergence of the Gibbs sampler can be monitored by
calculating the `potential scale reduction' (PSR) factor for all

Figure 9. Same as Fig. 8 but for the GA ensemble. Note that the GA ensemble results in many tall spikes which arise from the discretized nature
of the parameter space used by the GA. The resampling algorithm smoothes these out. The NA and GA ensembles have very di¡erent sampling
densities.
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estimands of interest (see Gelman et al. 1995 and Tanner 1996
for full details). [Estimands include all parameters and other
quantities of interest, i.e. that represented by g(m) in eq. (7).]
The PSR factor is a scalar which measures the di¡erence
between the `within-walk' and `between-walk' variances for
any estimand. Let gij be the ith estimand from the jth walk
(see eqs 20^22), and let each walk generate n samples, then we

write W for the average of the within-walk variances for gij,

W~
1
Nw

XNw

j~1

s2j , (34)

where

s2j ~
1

n{1

Xn
i~1

(gij{gj)
2 : (35)

The between-walk variance, B, is given by

B~
n

Nw{1

XNw

j~1

(gj{g)2 , (36)

where gj is given by (22), and

g~
1
Nw

XNw

j~1

gj . (37)

The potential scale reduction factor,
����
Rê
p

, is then given by����
Rê

p
~

1
W

n{1
n

Wz
1
n
B

� �� �1=2
. (38)

The PSR factor decreases to 1 as n??. If the value is high
then the variance within the walks is small compared to that
between the walks and there is reason to believe that longer
walks are needed to achieve convergence. Usually a Gibbs
simulation is considered acceptable if all values of

����
Rê
p

(for all variables) are less than 1.2 (Gelman et al. 1995). In the
calculations performed here (Nw~100, n~1000), PSR factors

Figure 10. (a) prior and (b) posterior 2-D marginal PDFs for Moho
depth and S-velocity jump across the Moho calculated with the
resampling algorithm from the NA ensemble. The triangle represents
the position of the true values and the shading scale indicates the value
of the probability density function. Note that the posterior is more
concentrated than the prior and its peak is close to the true values.

Figure 11. Posterior 2-D marginal PDF for the parameters
representing the S velocity above and below the Moho. In this case the
prior is uniform in both parameters and falls in the second lowest
(lightest) shading interval. The posterior has a well-de¢ned peak close
to the true values (triangle). Note that there is a suggestion of a
secondary peak in the marginal beyond the range of the parameter
space.
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were calculated for all 36 parameters in Table 1. For the NA
ensemble the maximum PSR factor was 1.18 and the median
was 1.09; for the GA ensemble the maximum was 1.19 and the
median was 1.01. Therefore, PSR factors for all posterior means
suggest that the Gibbs sampler has converged reasonably well.
Another test for convergence is to examine the dependence

of the results on the starting points for each random walk.
Most of the results were generated with 100 independent
random walks, starting from the 100 best data ¢tting models in
the input ensemble. In each case we repeated the calculations
starting from randomly chosen starting models. In all cases
the results were virtually identical to those shown in Figs 5^13.
A ¢nal test was performed to determine the in£uence of
the starting point on each individual walk. This consisted
of increasing the length of each walk to twice the number of
samples (i.e. 2000), but collecting the results from the second
halves of each walk. (Note that this means that the same
number of samples is used to evaluate the Bayesian integrals
and marginals, only they are generated further down each
chain.) We did this for both the GA and the NA ensembles and
again all results were indistinguishable from those presented
above.
From these tests we can conclude that the Gibbs sampler

has converged. The resamples may therefore be treated as
being drawn from the approximate PPD, PNA(m) (hence 17 is
satis¢ed). If this had not been the case and the Gibbs sampler
had exhibited excessively slow convergence, then it is possible
to try and speed up convergence. It is well known that slow

convergence of a Gibbs sampler can occur if the parameters are
highly dependent (Gelman et al. 1995). Here this might occur if
a Voronoi cell containing a relatively high PPD value were
elongated and inclined at n/4 to several axes. The most com-
monly used technique to speed up convergence is to rotate
the parameter space so that the axes become aligned with
independent parameters. These could be detected from the
correlation matrix built from some trial random walkers using
the original parameter axes (see Smith 1991, Gelman et al. 1995
and Tanner 1996 for further details). This remains an option
for the NA resampling algorithm, although it has not been
necessary in the example given here.

4.3.7 Computational costs

All of the Bayesian integrals (with the exception of those in
Fig. 4) were calculated with 105 samples generated from 100
independent random walks. Since the parameter space has 24
dimensions, then the 105 samples required the Voronoi inter-
section problem to be solved 2.4 million times, and this resulted
in approximately 10.5 million intersections, with an average of
just over four Voronoi cells being intersected for each axis.
Overall, 93 per cent of theVoronoi cells were intersected by the
axes.
The calculations were performed on four separate SUN

Ultra 5 workstations simultaneously, and the total amount of
CPU time taken was 3:9|104 s (&104 s on each machine).
This represents almost perfect parallelization because the CPU

Figure 12. 10 selected 2-D marginals calculated from the NA ensemble, together with their prior distributions below. Each pair of parameter indices
is labelled above the panel. The ¢rst parameter is plotted on the x-axis and the triangle represents the true values. The shading scale is normalized for
each pair of prior and posterior plots, so a comparison of relative heights (greyscales) is only meaningful between prior and posterior pairs. Many, but
not all, show a peak near the true value.
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time spent calculating and combining the ensemble averages
was just 0.2 per cent of the total. These ¢gures suggest that the
algorithm presented here is reasonably e¤cient for the 24-D
problem and may be practical in much higher dimensions,
especially if parallelization can be exploited.

5 DISCUSSION

The key idea in this paper is to extract information
from an ensemble of forward solutions by constructing a
multidimensional interpolant in model space. The resampling
algorithm consists of drawing random deviates from the

neighbourhood approximation to the PPD, and using these
as the basis of Monte Carlo integration. In this way any
Bayesian integral can be evaluated. However, the accuracy
of the approximation and hence the numerical integrals will,
necessarily, depend on how well the input ensemble samples
the regions of high data ¢t. This will be re£ected in the
accuracy of the approximation in eq. (16). There seems to be no
comprehensive way of assessing how well this approximation is
satis¢ed, without extensive further solving of the forward
problem. However, a simple way to test the `quality' of the
input ensemble would be to experiment with di¡erent subsets
and examine the variability in the results. Clearly, if little

Figure 13. Non-dimensional resolution kernels, i.e. rows of the estimated `non-dimensional' resolution matrix [see eq. (33) for each of the 24 model
parameters]. Each row shows how the particular model parameter (indicated by the arrow) is contaminated by estimates of the other model
parameters. The relatively poor resolution in Vp/Vs parameters (19^24) is evident. The shallow layer thickness parameters (1^3) are better resolved
than the deeper ones (4^6). Numbers in boxes indicate the parameter index.
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information is contained in the ensemble then the results will
be poor. The objective of the algorithm presented in this paper
is to extract what information exists in an input ensemble of
any size, generated with any method, so the quality of the input
ensemble will always be an issue.
In the receiver function example presented here, the

resampling algorithm appears to have worked well. We have
also shown that it is reasonably e¤cient computationally and
demonstrated its parallel nature. The Bayesian indicators
recovered with the resampling algorithm collectively provide
information on the degree of constraint, resolution and trade-
o¡ between di¡erent parameters. Any transformation of the
variables can be treated in the same way. Not all of these results
are simple to interpret. In the synthetic example presented
here the 1- and 2-D marginal distributions were the most
useful in assessing the information content of the data, and
distinguishing between the `quality' of the two input ensembles.
All Bayesian integrals and their error estimates can be
evaluated by collecting simple averages over the resampled
ensemble.
A powerful feature of the resampling algorithm is that

nothing is assumed about the distribution of the initial
ensemble of earth models. This means that it may be used in a
variety of situations, for example, the quantitative appraisal
of the ensemble produced by a genetic algorithm, which was
previously only possible in a qualitative manner with graphical
methods. It may be used in conjunction with the new direct
search algorithm described in Paper I, or even as a `correction'
procedure, in cases where it was previously assumed that an
ensemble was already distributed according to the PPD. One
could equally well apply it to the ensemble produced from the
combination of several di¡erent search methods.
A prerequisite of any Bayesian method is a suitable

de¢nition of a prior and a likelihood function (eqs 1 and 2). The
accuracy of all results will be dependent on these terms. The
NA resampling method is no di¡erent from any other Bayesian
approach in this respect.
The main philosophy behind this paper has been that

all solutions to the forward problem should, in principle,
contain information. We have presented one particular
method to extract that information from an ensemble of
solutions. Although the method has its limitations, it pro-
vides a way of incorporating all models for which the forward
problem has been solved into the appraisal stage of the
inverse problem, which is preferable to the alternative of being
forced to throw most of them away. The author's computer
programs associated with this work will be made available.
See http://rses.anu.edu.au/~malcolm/na/na.html for details.
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APPENDIX A: MONTE CARLO ESTIMATES
OF BAYESIAN INTEGRALS AND THEIR
NUMERICAL ERROR

The general formula for estimating the numerical error in
Monte Carlo integrals is given by eq. (12). Applying this to the
estimated mean of variable mi in eq. (3) and using (17) gives
immediately

�SmiT~
Sm2

i T{SmiT2

Nr

� �1=2
, (A1)

thus two ensemble averages need to be calculated to obtain the
numerical error in the mean of any variable. (Note that this is
just the well-known expression for the error of a sample mean.)
To ¢nd the error in each element of the covariance matrix we

¢rst need to rewrite eq. (4) in the form

CM
i, j~

1
l

�
M

(mi{SmiT)(mj{SmjT)P(m) dm . (A2)

This is the original de¢nition of the ijth element of the
covariance matrix. Using eq. (A2) and eqs (17) and (8), we
obtain the Monte Carlo estimate of CM

i, j ,

Cê i, j~
1
Nr

XNr

k~1

(mk
i {mi)(mk

j {mj) , (A3)

where mk
i denotes the value of variable mi for the kth member

of the ensemble, and

mi~
XNr

l~1

ml
i . (A4)

Note that we have dropped the superscript M for convenience.
By expanding the double summation terms we get

Cê i, j~mimj{mi mj , (A5)

so each covariance element requires one extra ensemble
average to be evaluated, i.e. the cross-term mimj . Eq. (A5)
shows that each element of the covariance matrix can be esti-
mated with a single loop over the ensemble. From eq. (A3), we
see that each element of the covariance matrix is itself an
ensemble average of the variable Ck

i, j, where

Ck
i, j~(mk

i {mi)(mk
j {mj) . (A6)

The numerical error of the ijth covariance element can be
found from the variance of Ck

i, j over the ensemble, i.e. we apply
eq. (12) to get

�Ci, j~
1������
Nr
p [C2

i, j{Ci, j
2
]1=2 . (A7)

By substituting eq. (A6) into eq. (A7) and expanding the
summation terms, we obtain

�Ci, j~
1������
Nr
p [m2

i m
2
j zm2

i mj
2zmi

2 m2
j {2 m2

i mj mj

{2 mi mim2
j {4 mi

2 mj
2z6 mimj mi mj{mimj ]1=2 , (A8)

which again only requires ensemble averages to be determined,
and allows the error estimates to be evaluated with a `single
loop' over the ensemble. The same expressions may be used to
determine MC estimates of the means, covariances and their
numerical errors for any transformed variable.

A1 Variance estimates of the prior

The prior probability density distribution used in this paper is
simply a constant over the parameter space. In this case the
prior is separable and the mean of the ith variable according to
the prior is given by

SmiT~
1

*mi

�ui
li
mi dmi , (A9)
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where *mi:ui{li. This gives

SmiT~
1
2
(lizui) , (A10)

as one would expect. The elements of the prior model
covariance matrix, Cprior, can be determined by replacing P(m)
with the prior in eq. (A2). For the ijth element we get

Cprior
i, j ~

1
*mi*mj

�ui
li

�uj
lj

(mi{SmiT)(mj{SmjT) dmjdmi ,

(A11)

which gives

Cprior
i, j ~

1�����
12
p (ui{li)2 if i~j

0 otherwise

8><>: . (A12)

With these expressions the prior model covariance matrix
can be calculated and used in eq. (5) to determine the resolution
matrix. If the prior does not take a simple analytical form then
it will be necessary to evaluate the above integrals numerically.
This can be done by generating an ensemble with a distribution
that follows the prior, and using eq. (8). If the prior can be
evaluated (up to a multiplicative constant) for any point in
model space, then a standard Gibbs sampling algorithm can be
used to generate integrals over the prior, that is, by replacing
PNA(m) with the prior distribution in eq. (24). In cases where
the prior cannot be directly evaluated then it may still be
possible to generate an ensemble distributed according to the
`prior'. Recently, several authors have presented examples
of generating an ensemble according to complex priors
(Mosegaard & Tarantola 1995; Gouveia & Scales 1998). These
authors have also stressed the importance of using a realistic
prior in any Bayesian treatment of non-linear inverse problems.
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