Geology 793 lab

Nonlinear Inversion of "Slug Test" Data - Alternate Methods


Today you will be using other nonlinear inversion methods to solve the "slug test" problem.  Recall that the theoretical equation is:


 EMBED "Equation" \* mergeformat  


where h is hydraulic head (in units of meters), Q is the slug volume  (in cubic meters), T is transmissivity (in square meters per hour), t is time (in hours), r is distance from the well (in meters), and S is storage (dimensionless).  We will use the same 4 measurements of h, made at a distance r at non-uniform time intervals, from 5 to 50 hours.  The problem is to set up and solve the nonlinear least squares equations to determine S and T from the head values.  The approach is to make an initial guess of the values of S and T, compute the predicted data (hi at times ti), then use the residuals (vector b) and several different iterative methods to solve for adjustments to the model x (that is, S and T) until convergence is reached (we hope!).

Today you will experiment with the gradient method and Newton’s method, and compare to last week’s results.  Turn in the two labs together, discussing all your findings, and comparing advantages and disadvantages of the different methods.

FIRST, FROM YOUR RESULTS FROM LAST WEEK, ENTER XSAVE AND MSAVE VALUES FOR YOUR LS AND BEST DLS SOLUTIONS - THEN RUN THE FOLLOWING CODE:

Q=50.; r=60.; hobs = [0.7279 0.4913 0.2854 0.1249]; t = [5. 10. 20. 50.];

TT=[0.2:0.02:1.2]'; SS=[-0.0005:0.0001:0.004]';

[ss,tt]=meshgrid(SS',TT');


mh1=Q/(pi*t(1)*4.)*exp(-r^2/(t(1)*4)*ss./tt)./tt;


mh2=Q/(pi*t(2)*4.)*exp(-r^2/(t(2)*4)*ss./tt)./tt;


mh3=Q/(pi*t(3)*4.)*exp(-r^2/(t(3)*4)*ss./tt)./tt;


mh4=Q/(pi*t(4)*4.)*exp(-r^2/(t(4)*4)*ss./tt)./tt;

mof=(hobs(1)-mh1).^2+(hobs(2)-mh2).^2+(hobs(3)-mh3).^2+(hobs(4)-mh4).^2;

%  define contour intervals

conts=[0.64 0.32 0.16 0.08 0.04 0.02 0.01];

%  contour plot of objective function

cc=contour(ss,tt,mof,conts,'w:');

clabel(cc); hold('on');

%  solution trajectories

plot(xsave(1,1:5),xsave(2,1:5),'w:');

plot(msave(1,1:5),msave(2,1:5),'w-')

DISCUSS HOW GAUSS-NEWTON AND DLS STEPS COMPARE TO MISFIT CONTOURS

WARNING - IN THE PLOTS, THE S AND T AXES HAVE DIFFERENT SCALES, SO IT APPEARS THAT THE GRADIENT IS NOT PERPENDICULAR TO THE MISFIT CONTOUR LINE.
NOW TRY THE GRADIENT METHOD

Recall that the gradient method involves compute the gradient g of the objective function at the current guess of the solution x and taking a step dx given by

dx = - k g

The coding of the gradient method is pretty simple, the only real complexity is that one has to carry out a line search to find the optimal constant k to use.  There is one other trick we are going to use.  For this problem, the sizes of the model parameters and their gradients are vastly different, so it is wise to "scale" the problem to improve convergence and stability.  In this case, we do this by multiplying the derivative with respect to T by a large scalar (we will try 200 first and then 5000) and then dividing the perturbation by that scalar before applying it to the model.

From MATLAB, select Options -> Numeric Format -> Long and Options -> Numeric Format -> Compact.  Then select File -> Run Script, go to the Desktop and open a320, then folder Thurber, then slugGRAD.m and next slugGRAD2.m.  Plot the resulting figures, and make note of the values of the final solutions and the iteration counter i.

DISCUSS PERFORMANCE OF GRADIENT METHOD - NOTE HOW THE SOLUTION TRAJECTORIES, NUMBER OF ITERATIONS (i),AND FINAL SOLUTION VALUES FOR S AND T DIFFER FOR SCALING OF 200 (SLUG1) AND 5000 (SLUG2).

NOW TRY NEWTON'S METHOD - FIRST ENTER SECOND DERIVATIVES

Procedure:  File -> New -> M-file, then type in

function [dhdS2,dhdSdT,dhdT2] = slug2d(t,S,T)

% head second derivatives for slug test

Q=50.;

r=60.;

eterm=exp(-r^2*S/(4.*T*t))

dhdS2 = -Q*r^4/(64.*pi*T^3*t^3)*eterm;

dhdSdT = Q*r^2/(16.*pi*t^2)*(2./T^3-r^2*S/(4.*T^4*t))*eterm;

dhdT2 = Q/(4.*pi*T^2*t)*(-r^4*S^2/(16.*T^3*t^2)-r^2*S/(4.*T*t)+2./T)*eterm;

Save As -> slug2d.m

hobs = [0.7279 0.4913 0.2854 0.1249]; t = [5. 10. 20. 50.];

S=0.001; T=1.; i=1;

for n=1:5

for j = 1:4, hcal(j)=hhead(t(j),S,T); end;

b=(hobs-hcal)'

for j = 1:4, [dhdS dhdT]=slugd(t(j),S,T); A(j,1:2)=[dhdS dhdT]; end;

BR=zeros(2,2);

for j = 1:4, [dhdS2,dhdSdT,dhdT2] = slug2d(t(j),S,T);

BR=BR+b(j)*[dhdS2 dhdSdT; dhdSdT dhdT2]; end

BR

dx=inv(A'*A+BR)*A'*b

% note different variable!

nsave(1:4,i)=[S T sqrt(b'*b) sqrt(dx'*dx)]'

i=i+1; S=S+dx(1)

T=T+dx(2)

end

plot(nsave(1,1:5),nsave(2,1:5),'w--')

legend('w:','NDLS','w-','NLS (G-N)','w-.','Gradient','w--','Newton')

DISCUSS PERFORMANCE OF NEWTON'S METHOD, AND COMPARE ALL METHODS.

NOW TRY CONJUGATE GRADIENT METHOD

S=0.001; T=1.; i=1; betadxold=[0 0]'; dxold=[0 0]';

LOOP BEGINS HERE
for j = 1:4, hcal(j)=hhead(t(j),S,T); end;

b=(hobs-hcal)'

for j = 1:4, [dhdS dhdT]=slugd(t(j),S,T); A(j,1:2)=[dhdS dhdT]; end;

g=-2.*A'*b; if i==1, gold=g, end;

beta=(g'*g)/(gold'*gold); betadxold=betadxold+beta*dxold; gold=g

k=0.0005/abs(gold(1)); dx=-k*(g+betadxold)  {use 'reasonable' value for "k"}

dxold=dx; gsave(1:4,i)=[S T sqrt(b'*b) sqrt(dx'*dx)]'

i=i+1; S=S+dx(1)

T=T+dx(2)

REPEAT LOOP [stop after 5 iterations]
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