
期中考前复习 1 基础题型分析

1 基础题型分析

1.1 求极限

面对一道让你求极限的题目，可以出现的情况有：

1.1.1 利用极限定义

如果题目中明确出现“用定义证明...”这样的表述1，那么我们就只能利用 ε-δ 语言来证
明。下面介绍常用的一些构造 δ(ε) 的放缩技巧。

例 1.1.

利用定义证明如下极限：

lim
x→0

x · sinx = 0, lim
x→+∞

lnx

xa
= 0, lim

x→+∞

xn

ex = 0.

其中 a ∈ (0, 1)，n > 1.

证明: 涉及到三角函数，最简单的放缩就是其有界性：| sinx| ⩽ 1. 希望 |x sinx| < ε，则只
需 |x| < ε.

涉及到对数和指数，需要牢记：增长速度“对数 < 任意幂次 < 指数”。我们可以利用
泰勒展开将指数“缩小”为 x 的任意幂次，例如本题目中分子是 n 次，那就找 n+ 1 次：

ex = 1 + x+
x2

2
+

x3

6
+ · · ·+ xn

n!
+ · · · > xn+1

(n+ 1)!
, x > 0.

希望 xn

ex < ε，只需
xn

ex < (n+ 1)! · 1
x
< ε,

只需 x > (n+ 1)! · ε−1.
反过来，我们可以将对数“放大”为 x 的任意幂次，例如本题目中分母是 a 次，那就找

a
2
次：

lnx =
2

a
lnx

a
2 <

2

a
(x

a
2 − 1) <

2

a
x

a
2 .

希望 | lnx
xa | < ε，只需 lnx > 0 且

lnx

xa
<

2

a
x−a

2 < ε,

只需

x > max
{
1,

(
2

aε

) 2
a

}
.

1.1.2 处理不定式

不定式的情况有很多种，包括 0
0
、∞

∞、0 · ∞、1∞ 以及 ∞−∞.

1即使题目中没有出现这样的表述，也依然可以用定义证明。
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期中考前复习 1 基础题型分析

最基本的三种情况：0
0
、∞

∞、0 · ∞ 此时，洛必达法则通常是最有用、最简便的方法。但盲
目使用有可能会毫无作用、甚至越用越复杂：

x√
x2 − 1

→ 1
2x

2
√
x2−1

=

√
x2 − 1

x
→ x√

x2 − 1
→ · · ·

我个人总结的简化原则是：复杂的根式、指数先用等价无穷小来代换、多项式和对数尽量放
在分子上，三角函数可以“被迫”放在分母上。因为多项式和对数是越求导越简单的，而根
式和指数是越求导越复杂的。至于三角函数放哪里都差不多，反正也消不掉，最好尽早用等
价无穷小代换掉。

例 1.2.

求极限：

lim
x→0

sinx · lnx+ ex(cosx− 1)

(
√
1 + x− 1)e 1

x

.

证明: 这是一个 0·∞+0
0·∞ 型不定式。

OE = lim
x→0

ex(cosx− 1)

(
√
1 + x− 1)e 1

x

+ lim
x→0

sinx · lnx

(
√
1 + x− 1)e 1

x

（加减部分不能用等价无穷小代换，先拆成两部分）

= lim
x→0

ex 1
2
x2

1
2
xe 1

x

+ lim
x→0

x · lnx
1
2
xe 1

x

（用等价无穷小代换来简化式子）

= lim
x→0

2xex

e 1
x

+ lim
x→0

2 lnx

e 1
x

（前者现在是 0/∞，直接得 0；后者可以用洛必达法则继续化简）

= 0 + lim
x→0

2 1
x

− 1
x2 e 1

x

= − lim
x→0

2x

e 1
x

= 0.

可能涉及自然底数：1∞ 一般情况下，我们可以直接取对数转化成 0 · ∞. 个人认为，除非
题目明确要求你只能用自然底数的定义，否则能不去凑定义就别凑，因为很容易算错、算漏
系数和符号。最稳妥的方式，还是先取对数再求极限。

考虑
lim

x→+∞
(1 + g(x))f(x) ,

其中 lim
x→+∞

f(x) = ∞， lim
x→+∞

g(x) = 0，那么

lim
x→+∞

f(x) · ln (1 + g(x)) = lim
x→+∞

f(x)g(x),

因此

lim
x→+∞

(1 + g(x))f(x) = e lim
x→+∞

f(x)g(x)
,
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期中考前复习 1 基础题型分析

例 1.3. 2022Mid.1.1

若

lim
x→+∞

(
x− 2

x

)kx

=
1

e ,

求参数 k.

证明: f(x) = kx，g(x) = − 2
x
，所以原极限等于 e−2k，于是 k = 1

2
.

可能会用到微分中值定理：∞−∞ 一般情况下，我们可以直接取指数简化成前三种情况。
但有时趋于 ∞ 的两个部分具有相似的形式，则可以尝试使用同一个函数来表达，然后利用
微分中值定理简化成一项。

例 1.4. 2023Mid.2.2/习题 1.2.15(2)

0 < k < 1，求极限：
lim
n→∞

((n+ 1)k − nk).

证明: 令 f(x) = xk，那么 f ′(x) = kxk−1. 由微分中值定理可得，

(n+ 1)k − nk = k · ξk−1
n , ∃ξn ∈ (n, n+ 1),

当 n → +∞ 时，ξn → +∞，而 lim
ξn→+∞

ξk−1
n = 0，因此原极限 = 0.

递推式数列极限 见第 3 周作业解答。

例 1.5. 2021Mid.7

设函数 f(x) 定义在 [a, b]，且 f(x) ∈ [a, b]，满足：

|f(x)− f(y)| < |x− y|, ∀x, y ∈ [a, b], x ̸= y.

令 x1 ∈ [a, b]，归纳定义 xn+1 =
1
2
(xn + f(xn))，求证：

(1). {xn} 单调；
(2). {xn} 收敛于 [a, b] 中一点 c，且 f(c) = c.
(3). c 是 f(x) 唯一一个不动点。

证明: 由
|f(x)− f(y)| < |x− y|, ∀x, y ∈ [a, b], x ̸= y.

可知 f(x) 连续。
(1). 当 n ⩾ 2 时，若 xn > xn−1 则

xn+1 − xn =
xn − xn−1 + f(xn)− f(xn−1)

2

=
|xn − xn−1|+ f(xn)− f(xn−1)

2

⩾ |xn − xn−1| − |f(xn)− f(xn−1)|
2

> 0.
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同理，若 xn < xn−1 则

xn+1 − xn =
−|xn − xn−1|+ f(xn)− f(xn−1)

2
⩽ −|xn − xn−1|+ |f(xn)− f(xn−1)|

2
< 0.

因此数列单调。
(2). 注意到 ∀xn ∈ [a, b] 有界，因此 {xn} 收敛到 c ∈ [a, b]. 对 xn+1 =

1
2
(xn + f(xn)) 两边取

极限则得到 f(c) = c.
(3). 假设有不动点 c1 ̸= c2，则 |c1 − c2| = |f(c1)− f(c2)| < |c1 − c2|，矛盾。

Stolz 定理的应用 Stolz 定理经常用在求和级数当中。除此以外，当题目给出的递推式
f(x) = x 求不出解或者根本就无解时2，Stolz 定理可能会非常有用，例如习题 3.4.2.

例 1.6. 2024Mid.7 改

设数列 {an} 满足 a1 > 0，

an+1 = an +
1

an
, ∀n ∈ N+,

证明：
(1). lim

n→∞
an√
2n

= 1,
(2). lim

n→∞
(an −

√
2n) = 0.

证明:
(1). 注意到 an+1 − an = 1

an
> 0，所以 an 单调递增。假设 an → a，则 a = a+ 1

a
，矛盾。因

此 an → +∞. 由 Stolz 定理可得

lim
n→∞

a2n
2n

= lim
n→∞

a2n+1 − a2n
2

= lim
n→∞

a−2
n + 2

2
= 1.

(2).

lim
n→∞

(an −
√
2n) = lim

n→∞

a2n − 2n

an +
√
2n

= lim
n→∞

a2n − 2n√
2n( an√

2n
+ 1)

= lim
n→∞

a2n − 2n

2
√
2n

(由 (1) 结论)

= lim
n→∞

a2n+1 − a2n − 2

2
√
2(
√
n+ 1−

√
n)

(由 Stolz 定理)

= lim
n→∞

√
n+ 1 +

√
n

2
√
2a2n

= lim
n→∞

√
n+1+

√
n

2n

2
√
2a2n
2n

= 0.

2这往往意味着数列不收敛。
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例 1.7.

已知 an → a，证明：

lim
n→∞

a1 + 2a2 + · · ·+ nan
n2

=
a

2
.

证明: 利用 Stolz 定理：

lim
n→∞

a1 + 2a2 + · · ·+ nan
n2

= lim
n→∞

(n+ 1)an+1

2n+ 1
= lim

n→∞

(n+ 1)

2n+ 1
· lim
n→∞

an+1 =
a

2
.

1.1.3 实数的完备性

实数的完备性的几个重要推论：
(1). 单调递增有上界数列一定收敛，且收敛到上确界（递减同理）；
(2). 有界数列都有收敛子列；
(3). 柯西列 = 收敛列。

1.1.4 证明极限不收敛

想要证明数列 {an} 不收敛，可以采取的方法有：
1. 任取 a，验证 an → a 定义的否命题：

∃ε0 > 0, ∀N ∈ N+, ∃n0 > N s.t. |an − a| > ε0.

2. 证明数列不是柯西列；
3. 选取两个收敛子列使其极限不相等，或者选取发散的子列（例如单调递增到无穷的子
列）。
想要证明 lim

x→a
f(x) 不存在，可以采取的方法有：

1. 证明函数不满足柯西收敛条件；
2. 选取数列 an → a，并证明数列 f(an) 不收敛；
3. 选取两个数列 an → a 和 bn → a，并证明 f(an) 和 f(bn) 的极限不相等。

1.2 求导数

1.2.1 导数的定义

注意区分

f ′
+(a) = lim

x→a+

f(x)− f(a)

x− a

和
f ′(a+) = lim

x→a+
f ′(x).

1.2.2 求导法则的应用

四则运算、链式法则。求高阶导数则考虑积法则的二项式展开：

(f(x)g(x))(n) =
n∑

k=0

Ck
nf

(k)(x)g(n−k)(x).

5



期中考前复习 2 证明题思路分析

1.2.3 隐函数求导

第一种是用参数方程所表示的隐函数，形如：{
x = f(t),

y = g(t).

这种情况下，如果题目要求 y 对 x 的导数，则分别求出

dx
dt = f ′(t),

dy
dt = g′(t),

然后
dy
dx =

dy
dt
dx
dt

=
g′(t)

f ′(t)
.

最终结果要写成只跟 t 有关的形式即可（不必再用 x 或者 y 去表示 t）。
第二种是形如 F (x, y) = 0所表示的隐函数，这种情况下，我们要利用链式法则来求导：

例 1.8.

已知 ex · sin y + lnx · cos y = 0，求 dy
dx .

解答:

d
dx(e

x · sin y) = ex · sin y + ex d
dx sin y

= ex · sin y + ex cos ydy
dx

d
dx(lnx · cos y) = cos y

x
+ lnx · d

dx cos y

=
cos y
x

− lnx sin y
dy
dx,

因此

ex · sin y + ex cos ydy
dx +

cos y
x

− lnx sin y
dy
dx = 0,

于是
dy
dx =

ex · sin y + cos y
x

lnx sin y − ex cos y .

1.2.4 导数的几何意义、单调性、凹凸性

求切线方程、求单调区间、求凹凸区间、求零点个数及其所在区间... 都是高考题，这里
不多赘述。

2 证明题思路分析

总结了两个经典题型，供大家参考。
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期中考前复习 2 证明题思路分析

2.1 构造函数应用中值定理

先看一道例题：

例 2.1. 课本第三章综合习题 4 改

f(x) 在 [a, b] 上连续，(a, b) 上可导，且 f(a) = f(b) = 0，证明：存在 ξ ∈ (a, b) 使
得 3f(ξ) + f ′(ξ) = 0.

证明: 令 g(x) = e3x · f(x)，则 g(a) = g(b) = 0，因此存在 ξ ∈ (a, b) 使得

g′(ξ) = eξ(f ′(ξ) + 3f(ξ)) = 0,

即 3f(ξ) + f ′(ξ) = 0.

此构造的关键在于：
d
dxekxf(x) = ekx (kf(x) + f ′(x)) ,

然后与题目给出的 f ′(ξ) + 3f(ξ) 对比，则确定参数 k = 3.
对于更一般的情形，我们令 g(x)eh(x)f(x)，根据

d
dxeh(x)f(x) = eh(x) (f(x)h′(x) + f ′(x)) ,

与题目来确定 h(x).

例 2.2. 课本第三章综合习题 6

f(x) 在 [0, 1] 上二阶可导，f(0) = f(1)，证明：存在 ξ ∈ (0, 1) 使得

f ′′(ξ) =
2f ′(ξ)

1− ξ
.

证明: 设
g(x) = eh(x)f ′(x),

则
g′(x) = eh(x) (f ′′(x) + f ′(x)h′(x)) ,

我们希望的是：

f ′′(ξ)− 2

1− ξ
f ′(ξ) = 0,

于是令

h′(x) = − 2

1− ξ
⇒ h(x) = 2 ln 1− ξ + C,

即
g(x) = (1− x)2f ′(x).

由 f(1) = f(0) 可得，存在 a ∈ (0, 1) 使得 f ′(a) = 0，于是 g(a) = 0，同时 g(1) = 0，因此存
在 ξ ∈ (a, 1)，使得 g′(ξ) = 0.
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例 2.3. 2022Mid.7/习题 3.3.17

f(x) 在 [0, 1] 上有二阶导数，且 f(0) = f ′(0)、f(1) = f ′(1)，求证：存在 ξ ∈ (0, 1)
满足 f(ξ) = f ′′(ξ).

解答: 由 f(ξ) = f ′′(ξ) 联想到 f(ξ) + f ′(ξ) = f ′(ξ) + f ′′(ξ)，我们取

g(x) = ex(f(x)− f ′(x)),

那么 g(0) = g(1) = 0，存在 ξ ∈ (0, 1) 使得

g′(ξ) = eξ(f(ξ)− f ′′(ξ)) = 0,

即 f(ξ) = f ′′(ξ).

有时候这个方法并不奏效，例如下面这道题：

例 2.4. 课本第三章综合习题 8 改

f(x) 在 [0, 1] 上非负可导，f(0) = 1，f(1) = 1
2
，求证：存在 ξ ∈ (0, 1) 使得

f 2(ξ) + f ′(ξ) = 0.

这个时候，我们直接求解微分方程：

y2 +
dy
dx = 0

也就是

− 1

y2
dy = dx ⇒ 1

y
= x+ C,

然后，我们把常数 C 替换成 g(x)，得到

g(x) =
1

f(x)
− x.

这就是我们想要的构造。
证明: 假设 (0, 1) 上 f(x) > 0，令

g(x) =
1

f(x)
− x,

那么 g(0) = g(1) = 1，存在 ξ ∈ (0, 1) 使得

g′(ξ) = −f ′(ξ) + f 2(ξ)

f 2(ξ)
= 0,

即 f ′(ξ) + f 2(ξ) = 0.
现在考虑 (0, 1) 上 f(x) 有零点 x0 的情况，此时零点 x0 必然是 f(x) 的极小值，因此

f ′(x0) = 0，从而取 ξ = x0 即可。
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例 2.5. 2024Mid.8

f(x) 在 [0, 1] 上非负可导，f(0) = 1，f(1) = 1√
3
，求证：存在 ξ ∈ (0, 1) 满足

f 3(ξ) + f ′(ξ) = 0.

解答: 求解微分方程：

df
dx + f 3 = 0 ⇔ − 1

f 3
df = dx ⇒ 1

2f 2
= x+ C,

把常数 C 替换成 g(x)，构造：

g(x) =
1

2f 2(x)
− x,

其余过程与例 2.2 类似。

如果题目中出现的端点值比较复杂，则很可能要用 Cauthy 中值定理。

例 2.6. 习题 3.3.25

b > a > 0，函数 f(x)在 [a, b]上连续，在 (a, b)上可微，求证：存在 ξ ∈ (a, b)使得

2ξ(f(b)− f(a)) = (b2 − a2)f ′(ξ).

类似的题目还有作业中的习题 3.3.26.

2.2 用泰勒展开估计导数

例 2.7. 习题 3.6.8

f(x)在 [0, 2]上二阶可导，且对于任意的 x ∈ [0, 2]，有 |f(x)| ⩽ 1以及 |f ′′(x)| ⩽ 1.
证明：|f ′(x)| ⩽ 2.

证明: 任取 x ∈ (0, 2)，对 f(0) 在 x 处做二阶展开：

f(0) = f(x) + f ′(x)(−x) +
f ′′(ξ0)

2
x2, ξ0 ∈ (0, x).

对 f(2) 在 x 处做二阶展开：

f(2) = f(x) + f ′(x)(2− x) +
f ′′(ξ1)

2
(2− x)2, ξ1 ∈ (x, 2).

于是

|f(2)− f(0)| =
∣∣∣∣2f ′(x) +

f ′′(ξ1)

2
(2− x)2 − f ′′(ξ0)

2
x2

∣∣∣∣ ⩽ 2,

9
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因此

|2f ′(x)| ⩽ 2 +

∣∣∣∣f ′′(ξ1)

2
(2− x)2 − f ′′(ξ0)

2
x2

∣∣∣∣
⩽ 2 +

∣∣∣∣f ′′(ξ1)

2
(2− x)2

∣∣∣∣+ ∣∣∣∣f ′′(ξ0)

2
x2

∣∣∣∣
⩽ 2 +

(2− x)2 + x2

2
⩽ 2 + 2 = 4, x ∈ (0, 2).

即 x ∈ (0, 2) 时 |f ′(x)| ⩽ 2，再由 f ′(x) 的连续性可得 x ∈ [0, 2] 也成立。

例 2.8. 2023Mid.7

f 在 [0, 1] 上二阶可导，f(0) = f(1)，|f ′′(x)| ⩽ 2，证明：|f ′(x)| ⩽ 1.

证明: 任取 x ∈ (0, 1)，对 f(0) 在 x 处做二阶展开：

f(0) = f(x) + f ′(x)(−x) +
f ′′(ξ0)

2
x2, ξ0 ∈ (0, x).

对 f(1) 在 x 处做二阶展开：

f(1) = f(x) + f ′(x)(1− x) +
f ′′(ξ1)

2
(1− x)2, ξ1 ∈ (x, 1).

因为 f(0) = f(1)，所以：

f ′(x) =
f ′′(ξ1)

2
(1− x)2 − f ′′(ξ0)

2
x2,

因此

|f ′(x)| ⩽ 1

2

∣∣f ′′(ξ1)(1− x)2
∣∣+ 1

2

∣∣f ′′(ξ0)x
2
∣∣

⩽ (1− x)2 + x2 ⩽ 1.

注意此式是对 x ∈ (0, 1) 成立的，利用 f ′(x) 连续性可知端点值也不超过 1.

例 2.9. 2018Mid.7

非常值函数 f(x) 在 R 上有二阶导数，且满足 |f ′′(x)| ⩽ |f ′(x)|，求证：f(x) 在 R
上严格单调。

证明: 假设 f(x) 不严格单调，即存在 x1 ̸= x2 使得 f(x1) = f(x2)，不妨 f(0) = f(1).
同理于上一题，我们得到

f ′(x) =
f ′′(ξ1)

2
(1− x)2 − f ′′(ξ0)

2
x2, ξ0 ∈ (0, x), ξ1 ∈ (x, 1).

10
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因此

|f ′(x)| ⩽ 1

2

∣∣f ′′(ξ1)(1− x)2
∣∣+ 1

2

∣∣f ′′(ξ0)x
2
∣∣

⩽ |f ′′(ξ1)|
2

(1− x)2 +
|f ′′(ξ0)|

2
x2

⩽ |f ′(ξ1)|
2

(1− x)2 +
|f ′(ξ0)|

2
x2

⩽ 1

2

(
sup

x∈[0,1]
|f ′(x)|

)
·
(
(1− x)2 + x2

)
⩽ 1

2

(
sup

x∈[0,1]
|f ′(x)|

)
, ∀x ∈ (0, 1).

由于 |f ′(x)| 是闭区间 [0, 1] 上的连续函数，所以存在 x0 ∈ [0, 1] 使得

|f ′(x0)| = sup
x∈[0,1]

|f ′(x)|,

如果 x0 ∈ (0, 1)，则得到

sup
x∈[0,1]

|f ′(x)| = |f ′(x0)| ⩽
1

2
sup

x∈[0,1]
|f ′(x)|,

从而
sup

x∈[0,1]
|f ′(x)| = 0.

如果 x0 ∈ {0, 1}，则根据 |f ′(x)|的连续性，∀ε > 0，存在 a ∈ (0, 1)使得 |f ′(x0)| ⩽ |f ′(a)|+ε，
从而

sup
x∈[0,1]

|f ′(x)| = |f ′(x0)| ⩽ |f ′(a)|+ ε ⩽ 1

2
sup

x∈[0,1]
|f ′(x)|+ ε,

那么由 ε > 0 的任意性可知
sup

x∈[0,1]
|f ′(x)| = 0.

综上所述，我们得到 f ′(x) 在 [0, 1] 上恒为 0.
最后，我们希望 f ′(x) 在整个 R 上恒为 0. 设 t ∈ (1, 3

2
]，那么

f(t) = f(1) + f ′(t)(t− 1) +
f ′′(ζ0)

2
(t− 1)2, ζ0 ∈ (1, t).

f(1) = f(t) +
f ′′(ζ1)

2
(t− 1)2, ζ1 ∈ (1, t).

于是
f ′′(ζ0) + f ′′(ζ1)

2
(t− 1)2 + f ′(t)(t− 1) = 0,

即
f ′′(ζ0) + f ′′(ζ1)

2
= − f ′(t)

t− 1
,

11
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根据导函数的介值性，∃ζ 介于 ζ1, ζ2 之间，使得

|f ′(t)|
t− 1

=

∣∣∣∣f ′′(ζ0) + f ′′(ζ1)

2

∣∣∣∣ = |f ′′(ζ)| ⩽ |f ′(ζ)| ⩽ sup
x∈[1,t]

|f ′(x)|.

因为 t ⩽ 3
2
，那么

2|f ′(t)| ⩽ |f ′(t)|
t− 1

⩽ sup
x∈[1,t]

|f ′(x)|,

从而 f ′(t) = 0，从而

f ′(x) = 0, ∀x ∈ [1,
3

2
].

至此，我们成功地把 [0, 1] 延长到原来的 1.5 倍，进而可以延拓到整个 [0,+∞)，另一侧的延
拓过程则完全同理。

这个方法思路比较直观，但最繁琐，尤其是延拓到 R 上那一步。

证明: （构造单调函数）假设 f ′(x) 有零点 f ′(x0) = 0，我们来证明 f ′(x) 恒等于 0.
设 g(x) = e−2x(f ′(x))2，那么

g′(x) = e−2x(2f ′(x)f ′′(x)− 2(f ′(x))2) = 2e−2xf ′(x)(f ′′(x)− f ′(x)),

由于 |f ′′(x)| ⩽ |f ′(x)|，所以 f ′′(x)− f ′(x) 的符号由 f ′(x) 决定：{
f ′′(x)− f ′(x) ⩾ 0, f ′(x) ⩽ 0

f ′′(x)− f ′(x) ⩽ 0, f ′(x) ⩾ 0

因此 g′(x) ⩽ 0. 那么 g(x0) = 0，而 g(x) ⩾ 0，所以那么 g(x) 在 [x0,+∞) 恒等于 0，即 f ′(x)
在 [x0,+∞) 上恒等于 0.
另一方面，设 h(x) = e2x(f ′(x))2，则 h′(x) = 2e2xf ′(x)(f ′′(x)+ f ′(x)) ⩾ 0，因此 h(x) 在

(−∞, x0] 上恒等于 0，即 f ′(x) 在 (−∞, x0] 上恒等于 0.
综上所述，如果 f ′(x) 有零点，则 f ′(x) 在 R 上恒等于 0，因此 f(x) 是常函数；如果

f ′(x) 无零点，则由连续性可知 f ′(x) 恒正或恒负，从而 f(x) 单调。

这个构造挺巧妙，同学们不妨积累一下。

证明: （应用中值定理）假设存在 x1 ̸= x2 使得 f(x1) = f(x2)，那么存在 c 使得 f ′(c) = 0，
从而 f ′′(c) = 0.

对于 ∀x ∈ R，

f ′(x) = f ′(x)− f ′(c) = f ′′(ξ1)(x− c), ξ1介于 c, x 之间

因此
|f ′(x)| = |f ′′(ξ1)| · |x− c| ⩽ |f ′(ξ1)| · |x− c|,

对于 ξ1，则有

f ′(ξ1) = f ′(ξ1)− f ′(a) = f ′′(ξ2)(x− c), ∃ξ2介于 c, ξ1 之间

12
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因此
|f ′(x)| ⩽ |f ′(ξ1)| · |x− c| = |f ′′(ξ2)| · |x− c|2,

以此类推，可以得到

|f ′(x)| ⩽ |f ′′(ξn)| · |x− c|n ⩽ |f ′(ξn)| · |x− c|n,

|f ′(x)|连续，因此在有限区间上有界。于是当 |x− c| < 1时，一定有 |f ′(x)| = 0，即我们证明
了 (c− 1, c+1)上 f ′(x) = 0，在这个区间上选择新的点作为 c继续延拓，最终可得 f ′(x) = 0
在整个 R 上成立。

这个方法由同学提供:)

例 2.10. 课本第三章综合习题 18

f(x) 在 [−1, 1] 上有三阶连续导数，且 f(−1) = 0，f(1) = 1，f ′(0) = 0，证明：存
在 ξ ∈ (−1, 1) 使得 f ′′′(ξ) = 3.

证明: 对 f(0) 在 x = 1 处三阶展开：

f(0) = f(1)− f ′(0) +
f ′′(0)

2
− f ′′′(ξ1)

6

= 1 +
f ′′(0)

2
− f ′′′(ξ1)

6
, ξ1 ∈ (0, 1).

对 f(0) 在 x = −1 处三阶展开：

f(0) = f(−1) + f ′(0) +
f ′′(0)

2
+

f ′′′(ξ2)

6

=
f ′′(0)

2
+

f ′′′(ξ2)

6
, ξ2 ∈ (−1, 0).

对比可得
f ′′′(ξ1) + f ′′′(ξ2)

6
= 1,

根据导函数的介值性，可知存在 ξ ∈ [ξ2, ξ1] 使得

f ′′′(ξ) =
f ′′′(ξ1) + f ′′′(ξ2)

2
= 3.
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