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Results on kernel machines/interpolators

Problem settings

We observe i.i.d pairs of data (z;,y,), where x, are the covariates
in the compact domain  C R? and y, € R are the corresponding
labels. Suppose the n pairs are drawn from an unknown probability
distribution u(x,y).

We are interested in estimating the conditional expectation
function f,(z) = E(y|X = z), which is assumed to lie in a
Reproducing Kernel Hilbert Space (RKHS) 7¢.

Yukun Dong



Results on kernel machines/interpolators

Conventional wisdom: kernel ridge regression

According to traditional statistical wisdom, explicit regularization
should be added to the least-squares objective

Fun(@) =argmin = 37 (£(z,) — ) + M-

ferH n =
The solution can be explicitly written as

J?n,,\(ﬂf) = K(z, X) {K(X, X) + n)\}*1 Y.
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Min-norm interpolate solution

C. Zhang et al. ( ) simply fitted a model using linear kernel
that interpolates the MNIST dataset, and observed that the model
achieved 1.2% testing error. Furthermore, adding regularization
does not improve model’s performance.

This phenomenon lead more research in ridgeless interpolators. It
is well known that the solution can be written as:

~

finter (@) = K(z, X)K(X, X)71Y
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Bounds for kernel interpolators

» Rudi, Camoriano, and Rosasco ( ) provides bound on the
excess risk of KRR estimator f,, ;.

Theorem 1 (Rudi, Camoriano, and Rosasco )
With high probability,

L(fap) = L(f) = ”fn;“”f

for some constants «, 5.
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Bounds for kernel interpolators(Continued)

P Belkin, Ma, and Mandal ( ) illustrates the strong
generalization performance of interpolated classifiers. But
norm-based concentration bounds fails to explain this
phenomenon and a new theory of kernel methods is needed to
understand this behavior.

Theorem 1 (Belkin, Ma, and Mandal )
With high probability, any h that ¢-overfits the data, satisfies

£l > AePm

for some constants A, B > 0 depending on t.
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Bounds by Liang and Rakhlin ( )

P Liang and Rakhlin ( ) showed that kernel interpolation
can generalize when d < n. Note that the bound is
data-dependent.

Assumptions
P 2], < 1, where X; = Var(X).
P X has 8 + m moments for some m > 0.
» E[X,]=0.
» sup, . Var(Y | X = z) < o2 for some o > 0.
P c<d<C for ¢,Ce€(0,00).
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Bounds by Liang and Rakhlin ( )(Continued)

Theorem 1 (Liang and Rakhlin )
Under the above assumptions,

where

8a2|%
¢n¢ﬂ)(afﬁiz 7 “dd”W7§£:

0<k<n

J
1 & L
If. 15 inf {n N (K(X, X)) +2M },
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Bounds by Liang and Rakhlin ( )(Continued)

Theorem 1 (Liang and Rakhlin )(Continued)

Here the error term is
€na =0 (d m/(m+8) Jog™ d) +0 < —1/210g"? n) .

The curvature-related parameters are

a:=g(0) + (0>Trc(i§ >, B:=g'(0),
vi=g (Tr(dzd)> —9(0) — 9’(0)Tr(dzd>
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Few remarks on Liang and Rakhlin ( )

P The bounds only work under regimes where d < n. Its
mechanism of implicit regularization relies on high
dimensionality d of the input space.

P Non-linearity of g is crucial. Results of Theorem 1 still holds
when g is the RBF kernel.

P> Bias-variance trade-off: Fast eigenvalue decay leads to
insufficient regularization, indicating large variance; Slow
eigenvalue decay brings about too much regularization,
inducing large bias.
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Other bounds

P (fixed input dimension case) Rakhlin and Zhai ( ) suggest
that minimum-norm interpolant does not appear to perform
well in low dimensions, by studying the case with Laplacian
kernels. Li, H. Zhang, and Lin ( ) proved more general
results in fixed dimension settings.

P (d=n*ae€(0,1)) upper bounds on the risk are of a
multiple-descent shape. (Liang, Rakhlin, and Zhai )
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Multiple descent

Multiple descent
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Figure: Multiple descent with inner product kernel
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Kernel machines: computational perspective

| refer to M.Belkin's series of EigenPro here.
Ma and Belkin ( ) show extremely slow convergence of
gradient descent on kernel interpolation setting.

Corollary 1 (Ma and Belkin )

Any f € L*(Q) that for any € > 0 can be e-approximated with
polynomial in 1/e¢ number of steps of gradient descent is infinitely
differentiable. Thus, if f is not infinitely differentiable it cannot be
e-approximated in L?()) using a polynomial number of gradient
descent steps.
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Limits of computational reach of GD methods

An example considers the Heaviside step function f(x), taking 1
and —1 values for x € (0, 7] and = € (7, 27|, respectively.

(a) 100 iters (b) 100,000 iters

The approximation for the Heaviside function is only marginally
improved by going from 100 to 10° iterations of gradient descent.
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EigenPro iterations

» Ma and Belkin ( ) proposed EigenPro, using a left
preconditioner to reduce the top k eigenvalues of covariance

n
matrix H = Y z;zl.
i=1

P Ma and Belkin (2019) designed EigenPro2.0 for a class of
classical kernel machines. This work extends linear scaling to
match the parallel computing capacity of a resource.

P Abedsoltan, Belkin, and Pandit ( ) introduced EigenPro
3.0, an algorithm based on projected dual preconditioned
SGD. This enables kernel machines to scale to large datasets.

Yukun Dong



Results on kernel machines/interpolators

Something interesting but not yet mentioned

NTK, RMT, empirical process
Mean-field theory
DL-GP

Spectral complexity of deep neural networks. (Lillo et al.

)

Covariate shift. (Ge et al. )
Inductive bias.
Double & multiple descent.

Moreau Envelope generalization theory.

VVVVYVY VVYVYY

Optimistic rates. (Zhou et al. )
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P Pytorch realization of paper Liang and Rakhlin ( ).
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Figure: MNIST experiment
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P Pytorch realization of paper Liang and Rakhlin ( ).
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Figure: Synthetic dataset
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