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Problem settings

We observe i.i.d pairs of data (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖 are the covariates
in the compact domain Ω ⊂ ℝ𝑑 and 𝑦𝑖 ∈ ℝ are the corresponding
labels. Suppose the 𝑛 pairs are drawn from an unknown probability
distribution 𝜇(𝑥, 𝑦).
We are interested in estimating the conditional expectation
function 𝑓∗(𝑥) = 𝔼(𝑦|𝑋 = 𝑥), which is assumed to lie in a
Reproducing Kernel Hilbert Space (RKHS) ℋ.
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Conventional wisdom: kernel ridge regression

According to traditional statistical wisdom, explicit regularization
should be added to the least-squares objective

̂𝑓𝑛,𝜆(𝑥) = arg min
𝑓∈ℋ

1
𝑛

𝑛
∑
𝑖=1

(𝑓(𝑥𝑖) − 𝑦𝑖)
2 + 𝜆‖𝑓‖2

ℋ.

The solution can be explicitly written as

̂𝑓𝑛,𝜆(𝑥) = 𝕂(𝑥, 𝑋) {𝕂(𝑋, 𝑋) + 𝑛𝜆}−1 𝑌 .
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Min-norm interpolate solution

C. Zhang et al. (2017) simply fitted a model using linear kernel
that interpolates the MNIST dataset, and observed that the model
achieved 1.2% testing error. Furthermore, adding regularization
does not improve model’s performance.
This phenomenon lead more research in ridgeless interpolators. It
is well known that the solution can be written as:

̂𝑓inter(𝑥) = 𝕂(𝑥, 𝑋)𝕂(𝑋, 𝑋)−1𝑌
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Bounds for kernel interpolators

▶ Rudi, Camoriano, and Rosasco (2016) provides bound on the
excess risk of KRR estimator ̂𝑓𝑛,𝜆.

Theorem 1 (Rudi, Camoriano, and Rosasco 2016)
With high probability,

𝐿( ̂𝑓𝑛,𝜆) − 𝐿(𝑓∗) ≲ ‖ ̂𝑓𝑛,𝜆‖𝛼
ℋ

𝑛𝛽

for some constants 𝛼, 𝛽.
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Bounds for kernel interpolators(Continued)

▶ Belkin, Ma, and Mandal (2018) illustrates the strong
generalization performance of interpolated classifiers. But
norm-based concentration bounds fails to explain this
phenomenon and a new theory of kernel methods is needed to
understand this behavior.

Theorem 1 (Belkin, Ma, and Mandal 2018)
With high probability, any h that 𝑡-overfits the data, satisfies

‖𝑓‖ℋ > 𝐴𝑒𝐵𝑛1/𝑑

for some constants 𝐴, 𝐵 > 0 depending on 𝑡.
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Bounds by Liang and Rakhlin (2020)

▶ Liang and Rakhlin (2020) showed that kernel interpolation
can generalize when 𝑑 ≍ 𝑛. Note that the bound is
data-dependent.

Assumptions
▶ ‖Σ𝑑‖𝑜𝑝 ≤ 1, where Σ𝑑 = Var(𝑋).
▶ 𝑋 has 8 + 𝑚 moments for some 𝑚 > 0.
▶ 𝔼[𝑋𝑖] = 0.
▶ sup𝑥∈ℝ𝑑 Var(𝑌 ∣ 𝑋 = 𝑥) ≤ 𝜎2 for some 𝜎 > 0.
▶ 𝑐 < 𝑑

𝑛 < 𝐶 for 𝑐, 𝐶 ∈ (0, ∞).
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Bounds by Liang and Rakhlin (2020)(Continued)

Theorem 1 (Liang and Rakhlin 2020)
Under the above assumptions,

𝐿( ̂𝑓𝑛) − 𝐿(𝑓∗) ≤ 𝜙𝑛,𝑑(𝑋, 𝑓∗) + 𝜖𝑛,𝑑,
where

𝜙𝑛,𝑑(𝑋, 𝑓∗) = 8𝜎2‖Σ𝑑‖𝑜𝑝
𝑑 ∑

𝑗

𝜆𝑗 (𝑋𝑋⊤
𝑑 + 𝛼

𝛽 11⊤)

[𝛾
𝛽 + 𝜆𝑗 (𝑋𝑋⊤

𝑑 + 𝛼
𝛽 11⊤)]2 +

‖𝑓∗‖2
ℋ inf

0≤𝑘≤𝑛
{ 1

𝑛
𝑛

∑
𝑗=𝑘

𝜆𝑗(𝐾(𝑋, 𝑋)) + 2𝑀√ 𝑘
𝑛} ,
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Bounds by Liang and Rakhlin (2020)(Continued)

Theorem 1 (Liang and Rakhlin 2020)(Continued)
Here the error term is

𝜖𝑛,𝑑 = 𝑂 (𝑑−𝑚/(𝑚+8) log4.1 𝑑) + 𝑂 (𝑛−1/2 log0.5 𝑛) .

The curvature-related parameters are

𝛼 ∶= 𝑔(0) + 𝑔″(0)Tr(Σ2
𝑑)

𝑑2 , 𝛽 ∶= 𝑔′(0),

𝛾 ∶= 𝑔 (Tr(Σ𝑑)
𝑑 ) − 𝑔(0) − 𝑔′(0)Tr(Σ𝑑)

𝑑 .
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Few remarks on Liang and Rakhlin (2020)

▶ The bounds only work under regimes where 𝑑 ≍ 𝑛. Its
mechanism of implicit regularization relies on high
dimensionality 𝑑 of the input space.

▶ Non-linearity of 𝑔 is crucial. Results of Theorem 1 still holds
when 𝑔 is the RBF kernel.

▶ Bias-variance trade-off: Fast eigenvalue decay leads to
insufficient regularization, indicating large variance; Slow
eigenvalue decay brings about too much regularization,
inducing large bias.
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Other bounds

▶ (fixed input dimension case) Rakhlin and Zhai (2018) suggest
that minimum-norm interpolant does not appear to perform
well in low dimensions, by studying the case with Laplacian
kernels. Li, H. Zhang, and Lin (2023) proved more general
results in fixed dimension settings.

▶ (𝑑 ≍ 𝑛𝛼, 𝛼 ∈ (0, 1)) upper bounds on the risk are of a
multiple-descent shape. (Liang, Rakhlin, and Zhai 2020)
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Multiple descent

(a) Origin (b) My

Figure: Multiple descent with inner product kernel
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Kernel machines: computational perspective

I refer to M.Belkin’s series of EigenPro here.
Ma and Belkin (2017) show extremely slow convergence of
gradient descent on kernel interpolation setting.
Corollary 1 (Ma and Belkin 2017)
Any 𝑓 ∈ 𝐿2(Ω) that for any 𝜖 > 0 can be 𝜖-approximated with
polynomial in 1/𝜖 number of steps of gradient descent is infinitely
differentiable. Thus, if 𝑓 is not infinitely differentiable it cannot be
𝜖-approximated in 𝐿2(Ω) using a polynomial number of gradient
descent steps.
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Limits of computational reach of GD methods

An example considers the Heaviside step function 𝑓(𝑥), taking 1
and −1 values for 𝑥 ∈ (0, 𝜋] and 𝑥 ∈ (𝜋, 2𝜋], respectively.

(a) 100 iters (b) 100,000 iters

The approximation for the Heaviside function is only marginally
improved by going from 100 to 106 iterations of gradient descent.
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EigenPro iterations

▶ Ma and Belkin (2017) proposed EigenPro, using a left
preconditioner to reduce the top 𝑘 eigenvalues of covariance
matrix 𝐻 =

𝑛
∑
𝑖=1

𝑥𝑖𝑥𝑇
𝑖 .

▶ Ma and Belkin (2019) designed EigenPro2.0 for a class of
classical kernel machines. This work extends linear scaling to
match the parallel computing capacity of a resource.

▶ Abedsoltan, Belkin, and Pandit (2023) introduced EigenPro
3.0, an algorithm based on projected dual preconditioned
SGD. This enables kernel machines to scale to large datasets.
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Something interesting but not yet mentioned

▶ NTK, RMT, empirical process
▶ Mean-field theory
▶ DL-GP
▶ Spectral complexity of deep neural networks. (Lillo et al.

2024)
▶ Covariate shift. (Ge et al. 2023)
▶ Inductive bias.
▶ Double & multiple descent.
▶ Moreau Envelope generalization theory.
▶ Optimistic rates. (Zhou et al. 2021)
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Recent work
▶ Pytorch realization of paper Liang and Rakhlin (2020).

(a) Origin (b) My

Figure: MNIST experiment
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Recent work
▶ Pytorch realization of paper Liang and Rakhlin (2020).

(a) Origin (b) My

Figure: Synthetic dataset
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