T AETE I T 2 E R B2 AL IR AT T

2024 HFZ=H week11

Yukun Dong

BHx

1 1£%: 1

1.1 Diving into the shallows: a computational perspective on

large-scale shallow learning . . . . . . ... ... ... .. .. 2

LI MMEHL . .. 2

1.1.2 EigenPro iteration . . . . .. ... ... ... ... .. 4

S 5
1 %

o [RIEACAY LA K Eigenpro R, FrifhfEHJH A,

o [#i%Z Ma, Bassily, and Belkin (2018) f3C#, M & Anm[E AR K
batch size m*.

o AR FHURE 7 AL RKHS norm [1H5, 4k 22523 2 I Belkin,
Ma, and Mandal (2018) [ figd.

e Random feature [f] double descent.

o Nit4 Gaussian IZRIAUF?

o BSEEAILE?



1.1 Diving into the shallows: a computational perspective on large-scale shallow learning?

1.1 Diving into the shallows: a computational perspective

on large-scale shallow learning
1.1.1  [EEAYEH

A IRFEAKT B /& Gram matrix K, TMiERFEAREE CRARE) X R
& Hilbert-Schmidt operator X. X f&—4> L2(X) — L*(X) KIS HHEE T

K fla) = / K(z,2) f(=)dp.

Horfr g, WTUAE MO B AR AR NI EE, X RS KR X B
BT 0 FIRHEE Ay, Ay, -, FATH QR € 2.
Theorem 1. If k is an infinitely differentiable kernel, the rate of eigenvalue decay is

super-polynomial, i.e.
M=0G") VPecN

Moreover, if k is an infinitely differentiable radial kernel (e.g., a Gaussian kernel), there
exist constants C,C" > 0 such that for large enough i,

Ai < C'exp (76‘7:1/‘”)

BT BRI AT S B AZ %,  Ho6 N Hilbert-Schmidt operator A Z
T R A A 5 il 2

NHEFEEIRATEMG TR R oI R R B, R B R Tk
37 /N IRAIBE Z A AT B4R

Linear regression. Consider n labeled data points {(z1,v1), ..., (Zn,yn) € H x R}. To
simplify the notation let us assume that the feature map has already been applied to the
data, i.e., Z; = ¢(z;). Least square linear regression aims to recover the parameter vector
«* that minimize the empirical loss as follows:

L@) = -3 (o — )’ 1)
i—=1
o' = arg;réiﬁ L(a) (2)

Minimizing the empirical loss is related to solving a linear system of equations. Define
the data matrix® X & (x1,...,2,)" and the label vector y e (Y1, ey )T, as well as the
(non-centralized) covariance matrix/operator,

o 2 2
HE - > zal = EXTX (3)
£ )

Rewrite the loss as L(a) = % [Xa -yl Since VL(@) |a_q-= 0, minimizing L(a) is
equivalent to solving the linear system

Ha—-b=0 (4)
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For linear systems of equations gradient descent takes a particularly simple form known
as Richardson iteration [Ricl1|. It is given by

o) =¥ —n(Ha® —b) (5)

We see that
™ —a* = (@ —a') — gH(@" —a*)

and thus
a™l —o* = (I — nH)!(a) - a¥) (6)

It is easy to see that for convergence of a! to a* as t — 0o we need to ensure? that

I =nH| < 1. It follows that 0 < n < 2/A1(H).

T E R FESE R computational reach CR,(g) == {v € H : ||(I —
nH)™v|| < e||v||}e FATT HEE— AN PRI SIS £ B E N EE
AR, KR EZ D UGER? FE—ANES K R H AR R %L
Heaviside step function g(z), 7E (0,7) LHU 1, 7E (7, 27) LH-1. ATESE
LIHHAT FEAEBTIT, FHEIZEATHE TR, A8k T
BITZE . FRERHE SRR, FHE Olexp(L)) WERA AR g(a)
(¥ e-@ir . DULEEAR AL 3]0y 100 F 100000 B, 45 31 1 18 I/ R AR 2
ZIEZR

AT E B 7 REBL 1 BB N BT IR R R HdE 10 7R SR B AR S
.

FEWEI TR, X

;' —— Gradient descent (100 iterations), L2 loss = 6.64e-02
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100,000 iterations Ir=0,0002

100 terations Ir=0.0002

(a) AL 100 & (b) 4% 10 JiiK

K1 FRARBLNL,

1.1.2 EigenPro iteration

Preconditioned (stochastic) gradient descent. We will modify the linear system in
Eq. 4 with an invertible matrix P, called a left preconditioner.

PHa— Pb=0 (14)

Clearly, the modified system in Eq. 14 and the original system in Eq. 4 have the same
solution. The Richardson iteration corresponding to the modified system (preconditioned
Richardson iteration) is

a+—a—nP(Ha-b) (15)

It is easy to see that as long as 7| PH|| < 1 it converges to a*, the solution of the original
linear system.
Preconditioned SGD can be defined similarly by

o+ a—nP(H,a—b,) (16)

Algorithm: EigenPro(X,y,k,m,n, 7, M)
input training data (X,y), number of eigen-
directions k, mini-batch size m, step size
1, damping factor 7, subsample size M
output weight of the linear model
1: [E,A, Apy1] = RSVD(X, k + 1, M)
2% PET—E(I — A A V)ET
3: Initialize @ < 0
4: while stopping criteria is False do
5 (Xm.y,,) < m rows sampled from
(X,y) without replacement
6: g+ L(XT(Xma)— X1y,
a+—a—nPg
8: end while

1.1.2.1 Linear EigenPro
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Algorithm: EigenPro(k(-,-), X,y, k,m,n, so)
input kernel function k(-,-), training data
(X,y), number of eigen-directions k,
mini-batch size m, step size 7, subsam-
ple size M, damping factor 7
output weight of the kernel method a
def

1: K = k(X, X) materialized on demand

2. [E, A, Apy1] < RSVD(K,k + 1, M)

3 DEEN YT — Aea A YET

4: Initialize c - 0

5. while stopping criteria is False do

6:  (Kmn,y,,) < m rows sampled from
(K.y)

T 2of portion of a related to K,,

8 g, — %(Kma —Ym)

9 QG — NG, @t T;DK,ng
10: end while

1.1.2.2 Kernel EigenPro & E=E 407
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