高维情形下线性模型的泛化误差研究

2024 春季学期 week11

Yukun Dong

目录

1

1 任务:

1.1	Diving	into	$_{ m the}$	shal	lows:	а	cc	omp	out	atic	onal	ре	ersp	oec	tive	9 (n		
	large-so	cale sh	allo	w lea	arning	g													2
	1.1.1	问题的	的动	汎 .															2
	1.1.2	Eigen	Pro	itera	ation													•	4
参考文献	肰																		5
1 任务:																			
• 阅读代码以及 Eigenpro 系列文章,弄清楚其原理。																			
• 阅读 Ma, Bassily, and Belkin (2018) 的文章,观察其如何证明最优的													的						
ba	tch size	m^* .																	
• 尝	试利用于	P取样	的方	法仇	è化 R	K]	HS	nor	m l	的ì	算	,继	续'	尝话	式复	现	В	elk	in,
M_{i}	a, and M	Ianda	1 (20	18)	的 fig	54 \circ)												
• Random feature 的 double descent。																			

• 为什么 Gaussian 核表现不好?

• 超参数怎么选?

1.1 Diving into the shallows: a computational perspective on large-scale shallow learning

1.1.1 问题的动机

有限样本对应的是 Gram matrix K,而无限样本情形(总体情形)对应的是 Hilbert-Schmidt operator \mathcal{K} . \mathcal{K} 是一个 $L^2(\mathcal{X}) \to L^2(\mathcal{X})$ 的紧自伴算子:

$$\mathcal{K}f(x) = \int K(x,z)f(z)d\mu_z$$

其中 μ_z 可以看做是总体分布对应的测度, $\mathcal X$ 为样本空间。这里设 $\mathcal X$ 具有 递降趋于 0 的特征值 $\lambda_1,\lambda_2,\cdots$,我们有如下定理:

Theorem 1. If k is an infinitely differentiable kernel, the rate of eigenvalue decay is super-polynomial, i.e.

$$\lambda_i = O(i^{-P}) \quad \forall P \in \mathbb{N}$$

Moreover, if k is an infinitely differentiable radial kernel (e.g., a Gaussian kernel), there exist constants C, C' > 0 such that for large enough i,

$$\lambda_i < C' \exp\left(-Ci^{1/p}\right)$$

即对于无限次可导的核函数,其对应的 Hilbert-Schmidt operator 具有超多项式特征值衰减性质。

下面考虑我们要估计的向量(无穷维时就是函数),是否能由梯度下降方法得到?在最小二乘的设定之下有如下的迭代:

Linear regression. Consider n labeled data points $\{(\boldsymbol{x}_1,y_1),...,(\boldsymbol{x}_n,y_n)\in\mathcal{H}\times\mathbb{R}\}$. To simplify the notation let us assume that the feature map has already been applied to the data, i.e., $\boldsymbol{x}_i=\phi(\boldsymbol{z}_i)$. Least square linear regression aims to recover the parameter vector α^* that minimize the empirical loss as follows:

$$L(\boldsymbol{\alpha}) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} (\langle \boldsymbol{\alpha}, \boldsymbol{x}_i \rangle_{\mathcal{H}} - y_i)^2$$
 (1)

$$\alpha^* = \arg\min_{\alpha \in \mathcal{H}} L(\alpha) \tag{2}$$

Minimizing the empirical loss is related to solving a linear system of equations. Define the data matrix $X \stackrel{\text{def}}{=} (x_1,...,x_n)^T$ and the label vector $\mathbf{y} \stackrel{\text{def}}{=} (y_1,...,y_n)^T$, as well as the (non-centralized) covariance matrix/operator,

$$H \stackrel{\text{def}}{=} \frac{2}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} = \frac{2}{n} X^{T} X \tag{3}$$

Rewrite the loss as $L(\boldsymbol{\alpha}) = \frac{1}{n} \|X\boldsymbol{\alpha} - \boldsymbol{y}\|_2^2$. Since $\nabla L(\boldsymbol{\alpha}) \mid_{\boldsymbol{\alpha} = \boldsymbol{\alpha}^*} = 0$, minimizing $L(\boldsymbol{\alpha})$ is equivalent to solving the linear system

$$H\boldsymbol{\alpha} - \boldsymbol{b} = 0 \tag{4}$$

For linear systems of equations gradient descent takes a particularly simple form known as Richardson iteration [Ric11]. It is given by

$$\boldsymbol{\alpha}^{(t+1)} = \boldsymbol{\alpha}^{(t)} - \eta (H\boldsymbol{\alpha}^{(t)} - \boldsymbol{b}) \tag{5}$$

We see that

$$\boldsymbol{\alpha}^{(t+1)} - \boldsymbol{\alpha}^* = (\boldsymbol{\alpha}^{(t)} - \boldsymbol{\alpha}^*) - \eta H(\boldsymbol{\alpha}^{(t)} - \boldsymbol{\alpha}^*)$$

and thus

$$\boldsymbol{\alpha}^{(t+1)} - \boldsymbol{\alpha}^* = (I - \eta H)^t (\boldsymbol{\alpha}^{(1)} - \boldsymbol{\alpha}^*)$$
(6)

It is easy to see that for convergence of α^t to α^* as $t \to \infty$ we need to ensure⁴ that $||I - \eta H|| \le 1$. It follows that $0 < \eta < 2/\lambda_1(H)$.

下面定义梯度下降算法的 computational reach $\mathcal{CR}_t(\varepsilon) := \{\mathbf{v} \in \mathcal{H} : || (I - \eta H)^m \mathbf{v} || \le \varepsilon || \mathbf{v} || \}$ 。我们下面通过一个简单的实验去看看梯度下降方法要拟合一个函数,大概需要多少次迭代?考虑一个在分类问题中很自然的函数,Heaviside step function g(x),在 $(0,\pi)$ 上取 1,在 $(\pi,2\pi)$ 上取-1。我们考虑无穷样本下(样本量趋于无穷),使用高斯核进行梯度下降,在平方损失下逼近该函数。简单的理论推导显示,需要 $O(\exp(\frac{1}{\varepsilon^2}))$ 次迭代才能得到 g(x) 的 ε -逼近。因此在迭代次数分别为 100 和 1000000 时,得到的逼近效果相差不多。

这个简单的例子展现了梯度下降方法的局限性:数据的需求量是指数级别的。

在此复现了论文的图,对比如下:

图 1: 我的模拟结果

1.1.2 EigenPro iteration

Preconditioned (stochastic) gradient descent. We will modify the linear system in Eq. 4 with an invertible matrix P, called a left preconditioner.

$$PH\alpha - P\mathbf{b} = 0 \tag{14}$$

Clearly, the modified system in Eq. 14 and the original system in Eq. 4 have the same solution. The Richardson iteration corresponding to the modified system (preconditioned Richardson iteration) is

$$\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha} - \eta P(H\boldsymbol{\alpha} - \boldsymbol{b}) \tag{15}$$

It is easy to see that as long as $\eta \|PH\| < 1$ it converges to α^* , the solution of the original linear system.

Preconditioned SGD can be defined similarly by

$$\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha} - \eta P(H_m \boldsymbol{\alpha} - \boldsymbol{b}_m) \tag{16}$$

Algorithm: EigenPro $(X, \boldsymbol{y}, k, m, \eta, \tau, M)$ input training data (X, \boldsymbol{y}) , number of eigendirections k, mini-batch size m, step size η , damping factor τ , subsample size M output weight of the linear model $\boldsymbol{\alpha}$ 1: $[E, \Lambda, \hat{\lambda}_{k+1}] = \text{RSVD}(X, k+1, M)$ 2: $P \stackrel{\text{def}}{=} I - E(I - \tau \hat{\lambda}_{k+1} \Lambda^{-1}) E^T$ 3: Initialize $\boldsymbol{\alpha} \leftarrow 0$ 4: while stopping criteria is False do

5: $(X_m, \boldsymbol{y}_m) \leftarrow m$ rows sampled from (X, \boldsymbol{y}) without replacement

6: $\boldsymbol{g} \leftarrow \frac{1}{m}(X_m^T(X_m \boldsymbol{\alpha}) - X_m^T \boldsymbol{y}_m)$ 7: $\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha} - \eta P \boldsymbol{g}$

1.1.2.1 Linear EigenPro

8: end while

Algorithm: EigenPro($\mathbf{k}(\cdot,\cdot),X,\boldsymbol{y},k,m,\eta,s_0$)
input kernel function $\mathbf{k}(\cdot,\cdot)$, training data (X,\boldsymbol{y}) , number of eigen-directions k,
mini-batch size m, step size η , subsample size M, damping factor τ output weight of the kernel method $\boldsymbol{\alpha}$ 1: $K \stackrel{\mathsf{def}}{=} \mathbf{k}(X,X)$ materialized on demand
2: $[E,\Lambda,\lambda_{k+1}] \leftarrow \mathrm{RSVD}(K,k+1,M)$ 3: $D \stackrel{\mathsf{def}}{=} E\Lambda^{-1}(I-\tau\lambda_{k+1}\Lambda^{-1})E^T$ 4: Initialize $\boldsymbol{\alpha} \leftarrow 0$ 5: while stopping criteria is False do
6: $(K_m,\boldsymbol{y}_m) \leftarrow m$ rows sampled from (K,\boldsymbol{y}) 7: $\boldsymbol{\alpha}_m \stackrel{\mathsf{def}}{=} \text{portion of } \boldsymbol{\alpha} \text{ related to } K_m$ 8: $\boldsymbol{g}_m \leftarrow \frac{1}{m}(K_m\boldsymbol{\alpha} - \boldsymbol{y}_m)$ 9: $\boldsymbol{\alpha}_m \leftarrow \boldsymbol{\alpha}_m - \eta \boldsymbol{g}_m$, $\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha} + \eta DK_m^T \boldsymbol{g}_m$ 10: end while

1.1.2.2 Kernel EigenPro 需要注意的细节:

- 步长的选择
- 代码的细节

参考文献

Belkin, Mikhail, Siyuan Ma, and Soumik Mandal. 2018. "To Understand Deep Learning We Need to Understand Kernel Learning." In *Proceedings of the 35th International Conference on Machine Learning*, edited by Jennifer Dy and Andreas Krause, 80:541–49. Proceedings of Machine Learning Research. PMLR. https://proceedings.mlr.press/v80/belkin18a.html.

Ma, Siyuan, Raef Bassily, and Mikhail Belkin. 2018. "The Power of Interpolation: Understanding the Effectiveness of SGD in Modern over-Parametrized Learning." In *Proceedings of the 35th International Conference on Machine Learning*, edited by Jennifer Dy and Andreas Krause,

80:3325–34. Proceedings of Machine Learning Research. PMLR. https://proceedings.mlr.press/v80/ma18a.html.