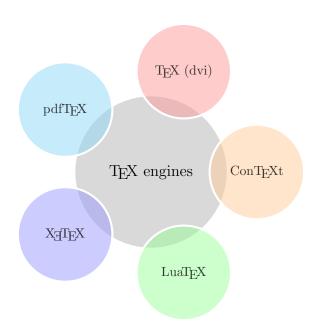
大二上学期复习笔记



adydio dyk2021@mail.ustc.edu.cn 2022 年 12 月 中国科学技术大学

映射的微分

这一章很难,需要配合补充习题进行学习。重点有映射的微分,逆映射定理,隐映 射定理和秩定理。

1.1 零碎的知识

定义 1 (**同胚**). 设 $f: X \to Y$ 是一一对应,若 f 和 f^{-1} 均连续,f 称为 C^0 同胚;若 f 和 f^{-1} 均为 C^1 映射,则称 f 为 C^1 同胚。

同胚具有一些性质:

- 同胚既是开映射又是闭映射,也就是说,它把开集映射到开集,把闭集映射到闭集。
- 两个同胚的空间具有相同的拓扑性质。例如,如果其中一个是紧空间,那么另外一个也是紧空间;如果其中一个是连通空间,那么另外一个也是连通空间,等等。然而,这不能推广到通过度量所定义的性质;如果两个度量空间是同胚的,那么仍然有可能其中一个是完备的,而另外一个不是。
- 同胚是一个等价关系。

以下是一些同胚的例子:

- 开区间 (-1,1) 与实直线 ℝ 同胚。
- $\exists n \neq m \text{ th}, \mathbb{R}^n \text{ } \exists \mathbb{R}^m \text{ } \exists \mathbb{R}^n$
- 一个连续和双射但不是同胚的函数的例子,是把半开区间 [0,1) 缠绕到圆上的映射。在这个情况中,逆映射虽然存在,但不是连续的。

定义 2 (**线性变换与范数**). 设 L(X,Y) 为向量空间 X 到向量空间 Y 内的所有线性变换构成的集合,简记 L(X,X) 为 L(X)。对于 $A \in L(X,Y)$ 的范数 $\|A\|$ 为所有数 $\|A\|$ 的上确界,这里 \mathbf{x} 取遍 \mathbb{R}^n 中所有 $\|\mathbf{x}\| \le 1$ 的向量 \mathbf{x} 。

此时,不等式

$$|A\mathbf{x}| \le |A| |x|$$

成立。还有以下几个事实:

定理 1.1. (a) 若 $A \in L(\mathbb{R}^n, \mathbb{R}^m)$,则 $\|A\| < \infty$ 且 A 为 \mathbb{R}^n 到 \mathbb{R}^m 的一致连续映射。 (b) 若 $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$,c 为一标量,那么

$$||A + B|| \le ||A|| + ||B||, ||cA|| = |c||A||.$$

(c) 若 $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, $B \in L(\mathbb{R}^m, \mathbb{R}^k)$, 则

$$|| BA || \le || B || || A ||$$
.

结合课本上的 Thm17.2, 再重复一遍结论:

定理 1.2. 设 Ω 为 $L(\mathbb{R}^n)$ 上可逆映射的集合,那么 Ω 为开集,且映射 $A \mapsto A^{-1}$ 是 Ω 到自身的连续映射。

证明. 先证明若 $\| \mathcal{B} - \mathcal{A} \| \cdot \| \mathcal{A}^{-1} \| < 1$, 则 $\mathcal{B} \in \Omega$ 。再由恒等式

$$\parallel \mathcal{B}^{-1} - \mathcal{A}^{-1} \parallel \leq \parallel \mathcal{B}^{-1} \parallel \cdot \parallel \mathcal{B} - \mathcal{A} \parallel \cdot \parallel \mathcal{A}^{-1} \parallel$$

控制即得结论。

定理 1.3 (压缩映射原理). 完备度量空间上的压缩映射有唯一的不动点。

需要注意度量空间的完备性。

引理 1 (微分中值定理对可微映射的推广). 设 f 是区间 [a,b] 到 \mathbb{R}^m 的连续映射,且 f 在 (a,b) 上可微,那么存在 $t_0 \in (a,b)$ 使得

$$|f(b) - f(a)| \le (b - a)|f'(t_0)|.$$

证明分两步: 首先令 $z := f(b) - f(a) \neq 0$, 构造函数 $\varphi(t) = \langle z, f(t) \rangle$, 这样, φ 就可以用微分中值定理。再由 $\varphi'(t) = \langle z, f'(t) \rangle$ 和柯西不等式 $|\langle u, v \rangle| \leq |u| |v|$ 即证。利用这个引理,可以证得下面的定理:

定理 1.4 (**拟微分中值定理**). 设 $E \in \mathbb{R}^n$ 的凸开集, $f: E \to \mathbb{R}^m$ 是可微映射, 那么 $\forall x,y \in E$, 存在 $\xi \in E$ 使得

$$|f(y) - f(x)| \le ||df(\xi)|| ||y - x|| = ||Jf(\xi)|| ||y - x||.$$

1.2 逆映射定理 3

1.2 逆映射定理

引理 2. 设 f 是从 \mathbb{R}^n 的开集 A 到 \mathbb{R}^n 的 C^1 映射,存在以 x^0 为中心的开球 $B_r(x^0) \subset A$,使得 f 限制在 $B_r(x^0)$ 上是单射。

引理 3. 映射 $g:=f^{-1}:V\Rightarrow U$ 连续。其中, $V=B_{\frac{\lambda r}{2}}(y^0),\lambda=1/(2\parallel(Jf(x^0))^{-1}\parallel)$ 。

定理 1.5 (**逆映射定理**). 设 f 是从 \mathbb{R}^n 的开集 A 到 \mathbb{R}^n 的 C^1 映射,如果 $x^0 \in A, d_{x^0}$ 可 逆, $y^0 = f(x^0)$,那么存在 x^0 的的邻域 U 和 y^0 的邻域 V, $f: U \Rightarrow V$ 是 C^1 同胚。这 表明存在定义在 V 上的连续映射 $g = f^{-1}$,且 $\mathrm{d}g_y = (\mathrm{d}f_{g(y)})^{-1}$ 。

定理 1.6. 如果 **f** 是开集 $E \subset \mathbb{R}^n$ 内的 C^1 映射, $\mathbf{f}'(\mathbf{x})$ 在每个 $\mathbf{x} \in E$ 可逆,那么对于每个开集 $W \in E$, $\mathbf{f}(W)$ 是 \mathbb{R}^n 的开子集。

1.3 隐映射定理

引理 4. 若 $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ 而 A_x 可逆,那么对每个 $\mathbf{k} \in \mathbb{R}^m$,存在唯一的 $\mathbf{h} \in \mathbb{R}^n$ 使 得 $A(\mathbf{h}, \mathbf{k}) = \mathbf{0}$ 。 \mathbf{h} 和 \mathbf{k} 满足关系:

$$\mathbf{h} = -(\mathcal{A}_x)^{-1} \mathcal{A}_y \mathbf{k}.$$

定理 1.7. 设 **f** 是开集 $E \in \mathbb{R}^{n+m}$ 到 \mathbb{R}^n 内的 C^1 映射,在某一点 $(\mathbf{a}, \mathbf{b}) \in E$ 使得 $\mathbf{f}(\mathbf{a}, \mathbf{b}) = 0$,令 $\mathcal{A} = \mathbf{f}'(\mathbf{a}, \mathbf{b})$,并且假定 \mathcal{A}_x 可逆。那么存在开集 $U \in \mathbb{R}^{n+m}$, $(\mathbf{a}, \mathbf{b}) \in U$; $W \in \mathbb{R}^m$, $\mathbf{b} \in W$,满足:

对于每个 $\mathbf{y} \in W$, 有唯一的 \mathbf{x} , 使得:

$$(\mathbf{a}, \mathbf{b}) \in U, \mathbf{f}(\mathbf{a}, \mathbf{b}) = 0.$$

定义 $\mathbf{x} = \mathbf{g}(\mathbf{y})$,则 \mathbf{g} 是 W 到 \mathbb{R}^n 上的 C^1 映射,并且有:

$$\mathbf{g}'(\mathbf{b}) = -(\mathcal{A}_x)^{-1}\mathcal{A}_y.$$

1.4 秩定理

定理 1.8 (**秩定理**). 设 $f \in \mathbb{R}^m$ 的开集 M 到 \mathbb{R}^n 的 C^1 映射,f 在 M 上的秩为 r。设 $x_0 \in M, y^0 = f(x^0)$,则存在 x_0 的邻域 U_1 , y_0 的邻域 V_1 ,以及 C^1 同胚 $\varphi: U_1 \Rightarrow U \subset \mathbb{R}^m$, C^1 同胚 $\psi: V_1 \Rightarrow V \subset \mathbb{R}^n$,使得复合映射 $\psi \circ f \circ \varphi^{-1}: U \Rightarrow V$ 满足:

$$\psi \circ f \circ \varphi^{-1} = (Id_r, 0).$$

1.5 条件极值

定义 3 (图). 设 m < n,考虑定义在开集 $U \subset \mathbb{R}^m$ 上的 n - m 个 C^1 函数 $\varphi_1, \ldots, \varphi_{n-m}$ 。 映射 $\Phi = (\varphi_1, \ldots, \varphi_{n-m}) : U \to \mathbb{R}^{n-m}$ 定义了一个 \mathbb{R}^n 上的一个子集合 $\Gamma(\Phi) = \{(x, \Phi(x)) | x \in U\}$ 称为映射 Φ 的图。

定义 4 (曲面). 一个 \mathbb{R}^n 上的一个子集 M 称为一个 m 维曲面是指对 $\forall x \in M$,存在 x 在 \mathbb{R}^n 上的一个邻域 V 使得 $M \cap V$ 可以表示为一个定义在 m 维开球 $U \in \mathbb{R}^m$ 上的 C^1 映射的图。

定理 1.9 (曲面的判定). $W \in \mathbb{R}^n$ 上的开集, $F = (f_1, \dots, f_{n-m}) : W \to \mathbb{R}^{m-n}$ 是 C^1 映射,映射 F 满秩。则当 $M = \{x \in W | F(x) = 0\}$ 非空时,M 是 m 维曲面。

定义 5 (切空间). 设 $M \subset \mathbb{R}^n$ 是一个 m 维曲面, $x^0 \in M$ 。以下给出几种切空间的等价 定义:

- $T_{x^0}M = \{(V, d\Phi_{\tilde{x^0}}(v)) | v \in \mathbb{R}^m\}, \text{ 其中 } \tilde{x^0} \text{ 为 } x^0 \text{ 前 } m \text{ 个坐标的投影向量}.$
- $T_x M = \{v \in \mathbb{R}^n | \mathrm{d}F_x(v) = 0\}$.
- $T_x S(f) = \{v \in \mathbb{R}^n | \langle v, \nabla f(x) \rangle = 0\}$. S(f) 为 f 的等值面.

下面讨论条件极值。设 $M \in \mathbb{R}^n$ 的 m 维曲面,我们关注定义在 \mathbb{R}^n 的开集上的函数 f 限制在 M 上时的极值问题。

定理 1.10. 设 f 是定义在 \mathbb{R}^n 的一个开集 W 内的一阶连续可微函数,M 是 W 内的 m 维曲面。设 $x^0 \in M$ 是函数 $f|_M$ 的极值点,且 $\nabla f(x^0) \neq 0$,则

$$T_{r^0}M \subset T_{r^0}S(f)$$
,

其中, S(f) 为 $f(x^0)$ 的等值面。

证明. x^0 是极值点就意味着 x^0 在任何一个 M 上过 x^0 的曲线上,都是极值点。取 $v \in T_{x^0}M$, $\gamma(t)$ 是 M 上的曲线,满足 $\gamma(0) = x^0$, $\gamma'(0) = v$ 。则单变量函数 $f \circ \gamma(t)$ 在 0 处取极值。那么

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} f \circ \gamma(t)|_{t=0} = \mathrm{d}f_{x^0}(v) = \langle \nabla f(x^0), v \rangle,$$

故 $v \in T_{x^0}S(f)$ 。

定理 1.11 (拉格朗日乘数法). 设 W 是 \mathbb{R}^n 的开集,f 是定义在 W 上的 C^1 函数, $G = (g_1, \ldots, g_m) : W \to \mathbb{R}^m$ 是 C^1 映射, $x^0 \in W, G(x^0) = 0$ 且 $\mathrm{rank}G_{x^0} = m$ 。如果 x^0 是函数 f 限制在集合 $M = \{x \in W | G(x) = 0\}$ 上的极值点,那么存在常向量 $\lambda^0 = (\lambda^0_1, \ldots, \lambda^0_m)$ 使得 (x^0, λ^0) 是函数

$$H(x,\lambda) = f(x) + \langle \lambda, G(x) \rangle = f(x) + [\lambda_1 g_1(x) + \dots + \lambda_m g_m(x)]$$

的驻点。

2

Riemann 积分

2.1 Jordan 测度

引理 5. D 是可测集当且仅当存在一系列分割 $\{\pi_n\}$ 使得

$$\lim_{n \to \infty} \sigma_{\pi_n}^+(D) - \sigma_{\pi_n}^-(D) = 0.$$

定理 2.1. 平面有界子集 D 是 Jordan 可测集当且仅当 $\sigma(\partial D) = 0$ 。

定理 2.2 (**萨德定理**). $U \in \mathbb{R}^2$ 的非空开集, $f: U \to \mathbb{R}^2 \in C^1$ 映射, $E \subset U$ 是一个紧致集合,记 $C = \{x \in E | \det \mathrm{d}f(x) = 0\}$,则 f(C) 为零测集。

可积函数类:

- 设 D 是一个可测集, f 是 D 的闭包 \overline{D} 上的连续函数, 则 f 在 D 上可积。
- 定义在可测紧致集合 D 上的函数 f 是 Riemann 可积的当且仅当 f 的不连续点是 Lebesgue 零测集。
- 设 $D \in \mathbb{R}^2$ 或 \mathbb{R} 上的可测集,f 是定义在 D 上的有界函数,f 在 D 上 Riemann 可积当且仅当对任意 $\delta > 0$,集合 $D_{\delta}(f) = \{P \in D | \omega_f(P) \geq \delta\}$ 是零测集。

注:平面的有界集合是 Lebesgue 零測集,是指对任意 $\varepsilon>0$,存在一系列区间 $\{I_n\}$ 满足 $E\subset\bigcup_{j=1}^\infty I_j; \sum_{j=1}^\infty \sigma(I_j)<\varepsilon$ 。