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Outline -

« Bayesian Decision Theory
— How to make the optimal decision?
— Maximum a posterior (MAP) decision rule

« Generative Models
— Joint distribution of observation and label sequences
— Model estimation: MLE, Bayesian learning, discriminative training

« Discriminative Models
— Model the posterior probability directly (discriminant function)
— Logistic regression, support vector machine, neural network
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Plug-in MAP Decision Rule

C, =argmax p(C, | X)=argmax P(C.)- p(X | C,)

Ci C,

~argmax P, (C;)- p, (X |C;)
Ci
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l Statistical Models: Roadmap -

Gaussian
(1-d)

=) GMM == CDHMM
Multivariate

Gaussian

Continuous data

Graphical
Multinomial / Estimation:
\ Mixture of

ML, Bayesian, DT
Multinomial
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l Model Parameter Estimation (I) -

e Maximum Likelihood (ML) Estimation:
— Objective function: likelihood function of all observed data
— ML method: most popular model estimation; simplest
— EM (Expected-Maximization) algorithm
— Examples:
« Univariate Gaussian distribution
Multivariate Gaussian distribution
Multinomial distribution
Gaussian mixture model (GMM)
Markov chain model: n-gram for language modeling
 Hidden Markov model (HMM)
e Bayesian Model Estimation
— The MAP (maximum a posteriori) estimation (point estimation)
— General Bayesian theory for parameter estimation
— Recursive Bayes learning (Sequential Bayesian learning)
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l Model Parameter Estimation (II) -
« Discriminative Training:
— Maximum mutual information (MMI) estimation

« The model is viewed as a noisy data generation channel
Class id Ci = observation feature X

« Maximize mutual information between Ci and X
— Minimum classification error (MCE)

« Minimize empirical classification error
e error rate in training data set

Minimum Discrimination Information (MDI)

— A PDF f(X|A\) defined by model with unkﬁown parameters
— A sample distribution p(X) derived directly from data

— Determine A to minimize KL-divergence between f(X|A) and p(X)
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l Maximum Likelihood Estimation (I)-

After data modeling, we know the model form of p(X | Ci).

For each class Ci, p(X | Gi ,6i ) with unknown parameters Oi

In pattern classification problem, we usually collect a sample set for
each class, we have N data sets, D1,D2, ..., Dn.

by the training samples D1,D2

, ..., DN, to obtain good estimates for
the unknown parameter vectors, 01, 62, ..., ON.

The parameter estimation problem: to use the information provided
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l Maximum Likelihood Estimation (II) -

The Maximum Likelihood (ML) principle: we view the parameters as

fixed values but unknown. The best estimate is defined to maximize

the probability of observing the samples actually observed
— Best interpret the data

— Fit the data best.

The likelihood function

— p(X| ©) > data distribution PDF of different X if 6 is given
— p(X| 6) > likelihood function of 8 if data X is given
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lI\/IaX|mum Likelihood Estimation (III)-

Problem: use information D1,D2, ..., DN to estimate 01, 02, .

« Assumption I: samples in Di give no information about 6; if il=]

Thus we estimate parameters for each class separately and
estimate each 0i solely based on Di

— the joint estimation becomes: use a set D of training samples

drawn independently from the probability density p(X | ©) to
estimate the unknown parameter vector 0

Assumption II: all samples in each set Di are i.i.d. (independent and

identically distributed), i.e., the samples are drawn independently
according to the same probability law p(X | 6i)
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lI\/IaX|mum Likelihood Estimation (IV)-

Assume D contains n samples, X1, X2, ..., Xn, since the samples were

drawn independently from p(X | 6), thus the probability of observing
Dis

p(D16)=T] p(X,10)

If viewed as a function of 6, p(D|0) is called the likelihood function of
0 with respect to the sample set D.

The maximum-likelihood estimate of 0 is the value Om. that
maximizes p(D|0).

Oy =argmax p(D|0) =argmax | | p(X, |6)
0 _

0

Intuitively, ©OmL corresponds to the value of O which in some senses
best agrees with or supports the actually observed training samples.
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l Maximum Likelihood Estimation (V) -

In many cases, it is more convenient to work with the logarithm of
the likelihood rather than the likelihood itself.

Denote the log-likelihood function [(8)= In p(D|B), we have

O =argmax 1(8) =argmax Y In p(X, | 6)
0

0
How to do maximization in ML estimation:
— For simple models: differential calculus
 Single univariate/multivariate Gaussian model

— Model parameters with constraints: Lagrange optimization
« Multinomial/ Markov chain model

— Complex models: Expectation-Maximization (EM) method
« GMM/HMM
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l Maximization: Differential Calculus -

« The log-likelihood function:
[(@)=Inp(D[6)=) Inp(X,|6)
k=1
Assume O is a p-component vector 6=(01, 62,..., Bp), and letV , be
the gradient operator as:

1 0/06,
V,=|

9/00,
Maximization is done by equating to zero:

V,10)=3V, np(X,|6)  V,1(0)=0
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Example: Univariate Gaussian (1)

Training data D={x1, x2, ..., Xn}

Model the data by using a univariate Gaussian distribution:

1 _Ge=p)?
p(x|0)=N(x|p,0%)=——

2
e 20

2o
[ J

Assume we know the variance, we only need to estimate the

unknown mean from the data by using ML estimation.
« The log-likelihood function:

() =10 p(D| 4= | P, | 0

n

n 1 2 2 - 2
=Y pts, | = YR A

\
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Example: Univariate Gaussian (II)

Maximization:

d
@l(ﬂ)=0

=) (%, — ) =0

n

k=1
= Hue =
n
e ML estimate of the unknown Gaussian mean is the sample mean.

N\
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Example: Multivariate Gaussian (I)

Training data D={X1, X2, ..., Xn} (a set of vectors)

Model the data with a multivariate Gaussian distribution

- 1 (X =)' X (X = p)
p(X |,Ll,2) B (ij_)dIZ |Z |1/2 exp{ }

2

Assume both mean vector and variance matrix are unknown.
The log-likelihood function:

1(4,5) = p(D| 2,5) = >IN p(X, | 1,3
=C-DInIS |- Y (X~ ) SHX, - )

\
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Example: Multivariate Gaussian (II)

e Maximization:

ol(u,2) LI
— X — =
5 0 = k21§ (X, —u)=0

=2 D (X = )X~ ) (T =0

N

T =52 (X, K]

= 2w = Z (X =) (X — i )
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I Pattern Classification via Gaussian models I

« Given N classes {C1, C2, ..., CN}, for each class we collect a set of
training samples, Di = {Xi1, Xi2, ..., Xit}, for class Ci.
« For each sample, we observe its feature vector X with its true class id

 If the feature vector is continuous and uni-modal, we may want to
model each class by a multivariate Gaussian distribution, N(y,2).

« Thus we have N different multivariate distributions, N(pi,Zi)
« The model forms are known but parameters pi and i are unknown.
« Use training data to estimate the parameters based on ML criterion.

« When observing an unknown pattern Y, classify with the estimated
models based on the plug-in Bayes decision rule:

C, =argmaxP(C,)- p(Y |C,)=argmax N(Y | &£, >"")
C, C.

" . )
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Example: Multinomial Distribution (I)

A DNA sequence consists of a sequence of 4 different types of
nucleotides (G, A, T, C). For example,

X=GAATTCTTCAAAGAGTTCCAGATATCCACAGGCAGATTCTACAAAAGAAGTGTTTCAATACTGCTCTATAAAAGATGTATTCCACTCAGTTACT

TTCATGCACACATCTCAATGAAGTTCCTGAGAAAGCTTCTGTCTAGTTTTTATGTGAAAATATTTCCTTTTCCATCATGGGCCTCAAAGCGCTCAAA
ATGAACCCTTGCAGATACTAGAGAAAGACTGTTTCAAAACTGCTCTATCCAAAGAACGGTTCCACTCTGTGAGGTGAATGCACACATCACAAAGC
AGTTTCTGAGAACGCTTCTGTCTAGTTTGTAGGTGAAGATATTTCCTTTTCCTTCATAGGCCTCTAATCGCTCCAAATATCCACAAGCAGATTCTTC
AAAATGTGTGTTTCAACACTGCTCTATCAAAAGAAAGGTTCAAGTCTGTGAGTTGAATGCACACATCACAAAGCAGTTTCTGAGAATGCCTCTGT
CTAGTTTGTATGTGAAGATATTTCTTTTTCCGTCTTATGCCTCAAATCGCTCCAAATATCCACTTGCAGATACTTCAAAA

If assume all nucleotides in a DNA sequence are independent, we
can use multinomial distribution to model a DNA sequence

Use p1 to denote probability to observe G in any one location, p2
for A, p3 for T, pa for C, then p1+p2+p3+ps=1

Given a DNA sequence X, the probability to observe X is

Pr(X)=C" sz

Where N1 is frequency of G appearmg in X, N2 frequency of A, N3
frequency of T, N4 frequency of C.
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I Example: Multinomial Distribution (II) I

Problem: estimate p1, p2, p3, p4 from a training sequence X based
on the maximum likelihood criterion.

The log-likelihood function:

4
(P, D2.P3-P4) =Y N, -In p,

i=l1
°

Maximization I(.) subject to the constraint

4
Zpi =1
i=l1

Use Lagrange optimization:

4 4
L(P,, P,y Pss PsyA) =D N;-Inp, —A(Q p, —1)
i=1 =1

a—p_L(pl, P,, Ps, Py, A)=0 = N;/p,—4=0

\
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I Example: Multinomial Distribution (III) I

e Finally, we get the ML estimation for the multinomial distribution as:

p=N (121234

>N

i=1

e We only need count the occurrence frequency of each nucleotides.

e Similar derivation also holds for Markov chain model.

— An important application in language modeling (n-gram model)

\
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I Example: Markov Chain Model (I) I

« Markov assumption: a discrete-time Markov chain is a random
sequence x[n] whose n-th conditional probability function satisfy:

p(x[n] | x[n-1]x[n-2]...x[n-N]) = p(x[n] | x[n-1])

« In other words, probability of observing x[n] only depends on its
previous one x[n-1] (for 15t order Markov chain) or the most
recent history (for higher order Markov chain).

« Parameters in Markov chain model are a set of conditional
probability functions.

- . .
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Example: Markov Chain Model (II)

Stationary assumption:

p(x[n] | x[n-1]) = p(x[m] | x[m-1]) for all n and m.

For stationary discrete Markov Chain model:

— Only one set of conditional probability function

Discrete observation: in practice, the range of values taken on by
each x[n] is finite, which is called state space. Each distinct one is a
Markov state.

— An observation of a discrete Markov chain model becomes a
sequence of Markov states.

— The set of conditional probabilities = transition matrix
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Example: Markov Chain Model (III)

Markov chain model (stationary & discrete):
— A finite set of Markov states, to say M states

— A set of state conditional probabilities, i.e., transition matrix
in 15t order Markov chain model, aijj =

p(l) (ij=1,2..M)

Markov chain model can be represented by a directed graph
— Node »> Markov state

— Arc - state transition (attached with a transition probability)
— A Markov chain observation can be viewed as a path traversing

Probability of observing a Markov chain can be calculated based

on the path and the transition matrix
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I Example: Markov Chain Model (IV) I

e First-order Markov chain model for DNA sequence

Full Transition matrix (6 by 6)

p(A|G) = 0.16
p(C|G) = 0.34
p(G|G) = 0.38
p(T|G) = 0.12

begin

\ F P / One transition probability is
' ’\> attached with each arc.

Pr(GAATTC) = p(begin)p(G[begin)p(A[G)p(A[A)p(T[A)p(T|T)p(C[T)p(end|C)
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I Example: Markov Chain Model (V) I

« Markov chain model for language modeling (n-gram)
— Each word is a Markov state, total N words (vocabulary size)
— A set of state (word) conditional probabilities
« Given any a sentence:
S =T would like to fly from New York to Toronto this Friday
« 1st-order Markov chain model: N*N conditional probabilities
Pr(S) = p{lbegin) p(wouldfl) p(like/would) p(to/like) p(fly/to) ...
— This is called bi-gram model
« 2"d-order Markov chain model: N*N*N
Pr(S) = p{lbegin) p(wouldfl begin) p(like/would.l) p(toflike would) ...
— This is called tri-gram model
« Multinomial (Oth-order Markov chain): N probabilities

Pr(S) = p{) p(would) p(like) p(to) p(fly) ...
— This is called uni-gram model

" . )
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I Example: Markov Chain Model (VI)

How to estimate Markov chain model from training data
— Similar to ML estimate of multinomial distribution

— Maximization of log-likelihood function with constraints
« Results:

Frequency of W W, in training data
pW. [ W;)= .

Frequency of W, in training data

Frequency of W, W W, in training data
p(VI/z|W9Wk): . . . .
! Frequency of W, W, in training data

A\

Generally n-gram model: a large number of probabilities
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