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Outline 

• Bayesian Decision Theory 
– How to make the optimal decision? 
– Maximum a posterior (MAP) decision rule 

 
• Generative Models 

– Joint distribution of observation and label sequences 
– Model estimation: MLE, Bayesian learning, discriminative training 

 
• Discriminative Models 

– Model the posterior probability directly (discriminant function) 
– Logistic regression, support vector machine, neural network 

 
 



Plug-in MAP Decision Rule 
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Statistical Models: Roadmap 
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Model Parameter Estimation (I)  
• Maximum Likelihood (ML) Estimation: 

– Objective function: likelihood function of all observed data 
– ML method: most popular model estimation; simplest 
– EM (Expected-Maximization) algorithm 
– Examples: 

• Univariate Gaussian distribution 
• Multivariate Gaussian distribution 
• Multinomial distribution 
• Gaussian mixture model (GMM) 
• Markov chain model: n-gram for language modeling 
• Hidden Markov model (HMM) 

• Bayesian Model Estimation 
– The MAP (maximum a posteriori) estimation (point estimation) 
– General Bayesian theory for parameter estimation 
– Recursive Bayes learning (Sequential Bayesian learning) 



Model Parameter Estimation (II)  
• Discriminative Training: 

– Maximum mutual information (MMI) estimation 
• The model is viewed as a noisy data generation channel 
 Class id Ci  observation feature X 
• Maximize mutual information between Ci and X 

– Minimum classification error (MCE) 
• Minimize empirical classification error  

• error rate in training data set 
 

• Minimum Discrimination Information (MDI): 
– A PDF f(X|Λ) defined by model with unknown parameters 
– A sample distribution p(X) derived directly from data 
– Determine Λ to minimize KL-divergence between f(X|Λ) and p(X)  



Maximum Likelihood Estimation (I) 
• After data modeling, we know the model form of p(X | Ci). 

 
• For each class Ci, p(X | Ci ,θi ) with unknown parameters θi. 

 
• In pattern classification problem, we usually collect a sample set for 

each class, we have N data sets, D1,D2, …, DN. 
 

• The parameter estimation problem: to use the information provided 
by the training samples D1,D2, …, DN, to obtain good estimates for 
the unknown parameter vectors, θ1, θ2, … , θN. 



Maximum Likelihood Estimation (II) 

• The Maximum Likelihood (ML) principle: we view the parameters as 
fixed values but unknown. The best estimate is defined to maximize 
the probability of observing the samples actually observed.  
– Best interpret the data 
– Fit the data best. 

 
• The likelihood function 

– p(X | θ)  data distribution PDF of different X if θ is given 
– p(X | θ)  likelihood function of θ if data X is given 

 
  
      

 
 



Maximum Likelihood Estimation (III) 
• Problem: use information D1,D2, …, DN to estimate θ1, θ2, …, θN. 

 
• Assumption I: samples in Di give no information about θj if i!=j. 

Thus we estimate parameters for each class separately and 
estimate each θi solely based on Di.  
– the joint estimation becomes: use a set D of training samples 

drawn independently from the probability density p(X | θ) to 
estimate the unknown parameter vector θ.  

 
• Assumption II: all samples in each set Di are i.i.d. (independent and 

identically distributed), i.e., the samples are drawn independently 
according to the same probability law p(X | θi). 



Maximum Likelihood Estimation (IV) 
• Assume D contains n samples, X1, X2, …, Xn, since the samples were 

drawn independently from p(X | θ), thus the probability of observing 
D is  
 
 

• If viewed as a function of θ, p(D|θ) is called the likelihood function of 
θ with respect to the sample set D. 

• The maximum-likelihood estimate of θ is the value θML that 
maximizes p(D|θ).  
 
 
 

• Intuitively, θML corresponds to the value of θ which in some senses 
best agrees with or supports the actually observed training samples. 
 

∏
=

==
n

k
kXpDp

1
ML )|(maxarg)|(maxarg θθθ

θθ



Maximum Likelihood Estimation (V) 

• In many cases, it is more convenient to work with the logarithm of 
the likelihood rather than the likelihood itself.  

• Denote the log-likelihood function l(θ)= ln p(D|θ), we have 
 
 
 

• How to do maximization in ML estimation: 
– For simple models: differential calculus 

• Single univariate/multivariate Gaussian model 
– Model parameters with constraints: Lagrange optimization 

• Multinomial/ Markov chain model 
– Complex models: Expectation-Maximization (EM) method 

• GMM/HMM 
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Maximization: Differential Calculus 
• The log-likelihood function: 

 
 

• Assume θ is a p-component vector θ=(θ1, θ2,…, θp), and let      be 
the gradient operator as:    
 
 
 
 
 

• Maximization is done by equating to zero:  



Example: Univariate Gaussian (I) 

• Training data D={x1, x2, … , xn}  
• Model the data by using a univariate Gaussian distribution: 

 
 
 

• Assume we know the variance, we only need to estimate the 
unknown mean from the data by using ML estimation. 

• The log-likelihood function: 
 
 
 
 



Example: Univariate Gaussian (II) 

• Maximization: 
 
 
 
 
 
 
 
 
 

• ML estimate of the unknown Gaussian mean is the sample mean. 
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Example: Multivariate Gaussian (I) 
• Training data D={X1, X2, …, Xn}  (a set of vectors) 
• Model the data with a multivariate Gaussian distribution 

 
 
 

• Assume both mean vector and variance matrix are unknown. 
• The log-likelihood function: 
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Example: Multivariate Gaussian (II) 
• Maximization: 
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Pattern Classification via Gaussian models  

• Given N classes {C1, C2, …, CN}, for each class we collect a set of 
training samples, Di = {Xi1, Xi2, …, XiT}, for class Ci. 

• For each sample, we observe its feature vector X with its true class id 

• If the feature vector is continuous and uni-modal, we may want to 
model each class by a multivariate Gaussian distribution, N(μ,Σ). 

• Thus we have N different multivariate distributions, N(μi,Σi) 

• The model forms are known but parameters μi and Σi  are unknown. 

• Use training data to estimate the parameters based on ML criterion.  

• When observing an unknown pattern Y, classify with the estimated 
models based on the plug-in Bayes decision rule: 
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Example: Multinomial Distribution (I)  

• A DNA sequence consists of a sequence of 4 different types of 
nucleotides (G, A, T, C). For example, 
 

 
 
 

• If assume all nucleotides in a DNA sequence are independent, we 
can use multinomial distribution to model a DNA sequence 

• Use p1 to denote probability to observe G in any one location, p2 
for A, p3 for T, p4 for C, then p1+p2+p3+p4=1 

• Given a DNA sequence X, the probability to observe X is 
 
 

• Where N1 is frequency of G appearing in X, N2 frequency of A, N3 
frequency of T, N4 frequency of C. 
 

 

X=GAATTCTTCAAAGAGTTCCAGATATCCACAGGCAGATTCTACAAAAGAAGTGTTTCAATACTGCTCTATAAAAGATGTATTCCACTCAGTTACT  
TTCATGCACACATCTCAATGAAGTTCCTGAGAAAGCTTCTGTCTAGTTTTTATGTGAAAATATTTCCTTTTCCATCATGGGCCTCAAAGCGCTCAAA
ATGAACCCTTGCAGATACTAGAGAAAGACTGTTTCAAAACTGCTCTATCCAAAGAACGGTTCCACTCTGTGAGGTGAATGCACACATCACAAAGC
AGTTTCTGAGAACGCTTCTGTCTAGTTTGTAGGTGAAGATATTTCCTTTTCCTTCATAGGCCTCTAATCGCTCCAAATATCCACAAGCAGATTCTTC
AAAATGTGTGTTTCAACACTGCTCTATCAAAAGAAAGGTTCAAGTCTGTGAGTTGAATGCACACATCACAAAGCAGTTTCTGAGAATGCCTCTGT
CTAGTTTGTATGTGAAGATATTTCTTTTTCCGTCTTATGCCTCAAATCGCTCCAAATATCCACTTGCAGATACTTCAAAA  



Example: Multinomial Distribution (II)  
• Problem: estimate p1, p2, p3, p4 from a training sequence X based 

on the maximum likelihood criterion. 
• The log-likelihood function: 

 
 

• Maximization l(.) subject to the constraint  
 
 

• Use Lagrange optimization: 
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Example: Multinomial Distribution (III)  

• Finally, we get the ML estimation for the multinomial distribution as: 
 
 
 
 
 

• We only need count the occurrence frequency of each nucleotides. 
 

• Similar derivation also holds for Markov chain model. 
– An important application in language modeling (n-gram model) 



Example: Markov Chain Model (I)  

• Markov assumption: a discrete-time Markov chain is a random 
sequence x[n] whose n-th conditional probability function satisfy: 

       p(x[n] | x[n-1]x[n-2]…x[n-N]) = p(x[n] | x[n-1]) 
 
• In other words, probability of observing x[n] only depends on its 

previous one x[n-1] (for 1st order Markov chain) or the most 
recent history (for higher order Markov chain). 
 

• Parameters in Markov chain model are a set of conditional 
probability functions. 



Example: Markov Chain Model (II)  
• Stationary assumption:  
 p(x[n] | x[n-1]) = p(x[m] | x[m-1]) for all n and m. 

 
• For stationary discrete Markov Chain model:  

– Only one set of conditional probability function  
  

• Discrete observation: in practice, the range of values taken on by 
each x[n] is finite, which is called state space. Each distinct one is a 
Markov state.  
– An observation of a discrete Markov chain model becomes a 

sequence of Markov states. 
– The set of conditional probabilities  transition matrix 



Example: Markov Chain Model (III)  

• Markov chain model (stationary & discrete): 
– A finite set of Markov states, to say M states. 
– A set of state conditional probabilities, i.e., transition matrix 
    in 1st order Markov chain model,  aij = p( j|i)   (i,j=1,2,…,M) 
 

• Markov chain model can be represented by a directed graph. 
– Node  Markov state 
– Arc  state transition (attached with a transition probability) 
– A Markov chain observation can be viewed as a path traversing 

 
• Probability of observing a Markov chain can be calculated based 

on the path and the transition matrix.     



Example: Markov Chain Model (IV)  

• First-order Markov chain model for DNA sequence 
     Full Transition matrix (6 by 6) 

 
p(A|G)  =  0.16 
p(C|G)  =  0.34 
p(G|G)  =  0.38 
p(T|G)  =  0.12 
… 
… 
 
One transition probability is 
attached with each arc. 

Pr(GAATTC) = p(begin)p(G|begin)p(A|G)p(A|A)p(T|A)p(T|T)p(C|T)p(end|C) 



Example: Markov Chain Model (V)  
• Markov chain model for language modeling (n-gram) 

– Each word is a Markov state, total N words (vocabulary size) 
– A set of state (word) conditional probabilities 

• Given any a sentence: 
 S = I would like to fly from New York to Toronto this Friday 
• 1st-order Markov chain model:  N*N conditional probabilities 
  Pr(S) = p(I|begin) p(would|I) p(like|would) p(to|like) p(fly|to) … 

– This is called bi-gram model 
• 2nd-order Markov chain model: N*N*N 
     Pr(S) = p(I|begin) p(would|I,begin) p(like|would,I) p(to|like,would) … 

– This is called tri-gram model 
• Multinomial (0th-order Markov chain): N probabilities  
     Pr(S) = p(I) p(would) p(like) p(to) p(fly) … 

– This is called uni-gram model 



Example: Markov Chain Model (VI)  

• How to estimate Markov chain model from training data  
– Similar to ML estimate of multinomial distribution 
– Maximization of log-likelihood function with constraints. 

• Results: 
 
 
 
 
 
 

    
 
 

• Generally n-gram model: a large number of probabilities 
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