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Review 

• Probability & Statistics 
– Bayes’ theorem 
– Random variables: discrete vs. continuous 
– Probability distribution: PDF and CDF 
– Statistics: mean, variance, moment 
– Parameter estimation: MLE 

 
• Information Theory 

– Entropy, mutual information, information channel, KL divergence 
 

• Function Optimization 
– Constrained/unconstrained optimization  

 
• Linear Algebra 

– Matrix manipulation 
 
 
 



Outline 

• Pattern Classification Problems 

– Inference and decision 

 

• Bayesian Decision Theory 

– How to make the optimal decision? 

– Maximum a posterior (MAP) decision rule 

 

• Generative Models 

– Joint distribution of observation and label sequences 

– Model estimation: MLE, Bayesian learning, discriminative training 

 

• Discriminative Models 

– Model the posterior probability directly (discriminant function) 

– Logistic regression, support vector machine, neural network 

 

 



Bayesian Decision Theory (I) 

• Bayesian decision theory is a fundamental statistical approach to all 
pattern classification problems 

 

• Pattern classification problem is posed in probabilistic terms 

– Observation X is viewed as random variables (vectors,…) 

– Class id C (C1, C2, … , CN) is treated as a discrete random variable 

– All info about X and C can be obtained via joint distribution 

 

 

• Bayesian decision theory leads to the optimal classification with  

– Optimal  guarantee minimum average classification error 

– The minimum classification error is called the Bayes error 
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Bayesian Decision Theory (II) 

• Prior probabilities of each class 

– How likely any pattern from class C before observing any features  

– Prior knowledge from previous experience 

 

 

 

• Class-conditional probability of observed feature 

– How the feature X distributes for all patterns belonging to class C 

– If X is continuous,                is a PDF 

 

 

– If X is discrete,                is a PMF 
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Examples of Class Conditional Probability  
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Bayes Decision Rule (I) 

• If not observe any feature of an incoming unknown pattern P, 
classify it based on prior knowledge only 

– Roughly guess it as the class with largest prior probability 

 

 

• If observe some features X of the unknown patter P, we can 
convert the prior probability        into a posterior probability 
based on the Bayes’ theorem: 
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Bayes Decision Rule (II) 
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Bayes Decision Rule (III) 

• Intuitively, we can classify an unknown pattern into the class with 
the largest posterior probabilities, resulting in the maximum a 
posterior (MAP) decision rule, also called Bayes decision rule 
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The MAP Decision Rule is Optimal (I) 

• How well the MAP decision rule behaves?? 

 

• Optimality: assume we have complete knowledge             , the 
MAP decision rule is optimal to classify patterns, which means it 
will achieve the lowest average classification error rate. 

 

• Proof of optimality of the MAP rule:  

– Given a pattern P, if its true class id is Ci, but we classify it as Cp, 
then the classification error is counted as 

 

 

 

 

     which is also known as 0-1 loss function. 
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The MAP Decision Rule is Optimal (II) 

• The expected (average) classification error 
 
 
 
 
 

• The optimal classification is to minimize  

–   maximize  

–   the MAP decision rule is optimal  
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The MAP Decision Rule 

• A general decision rule is a mapping function: X C 

• A decision rule will partition the entire feature space of X  into N 
different regions, O1, O2, … , ON. Each region Oi could consist of 
many contiguous areas. 

• If X  is located in the region Oi, we classify it as class Ci. 

• The MAP decision rule is optimal among all possible decision rules 
in terms of minimizing average classification errors conditional on 
that we have complete knowledge about the underlying problem. 
 

Feature space 

X 

Class C1 

Class C2 

Class CN 



Example 
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Classification Error Probability  

• Assume N-class problem, any a decision rule partitions the feature 
space into N regions, O1, O2, … , ON.  

•                       denotes the probability of the observation X  with 
true class id Cj in the region Oi. 

• The overall classification error probability of the decision rule is: 
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Example 
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Bayes Error 

• Bayes error: error probability of the Bayes (MAP) decision rule. 

 

• Since Bayes decision rule guarantees the minimum error, the Bayes 
error is the lower bound of all possible error probabilities. 

 

• It is difficult to calculate the Bayes error, even for the very simple 
cases because of discontinuous nature of the decision regions in 
the integral, especially in high dimensions. 

 

• Some approximation methods to estimate an upper bound. 

– Chernoff bound 

– Bhattacharyya bound 

 

• Evaluate on an independent test set. 



Example: X is Discrete (I) 

• A simple case (Binomial model): 2-class (C1, C2), feature vector 
is d-dimensional vector, whose components are binary-valued 
and conditionally independent.  
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Example: X is Discrete (II) 

 The MAP decision rule: 
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Example: X is Continuous 

• Gaussian model: 2-class (C1, C2), the feature vector is a scalar 
which is real-valued 

 

 

 

 

 

• The MAP decision rule: 
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Missing Features/Data (I) 

• If we know the full probability structure of a problem, we can 
construct the optimal Bayes decision rule. 

• In some practical situations, for some patterns, we can’t observe 
the full feature vector described in the probability structure. Only 
partial information of the feature vector is observed, but some 
components are missing.  

• How to classify such corrupted inputs to obtain minimum 
average error? 

• Let the full feature vector X=[Xg,Xb], Xg represents the observed 
or good features, Xb represents the missing or bad ones. 

• In this case, the optimal decision rule is constructed as follows: 
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Missing Features/Data (II) 
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Practical Issue 

• The optimal Bayes decision rule is not feasible in practice. 

– In any practical problem, we can not have a complete 
knowledge about the problem. 

– E.g., the class-conditional probability are always unavailable 
and extremely hard to estimate. 

 

• However, possible to collect a set of sample data for each class in 
question. 

– The sample data are always far from enough to estimate a 
reliable PDF by using sample data themselves ONLY. 

 

• Question: How to build a reasonable classifier based on a  
         limited set of sample data, instead of the true PDF? 



Statistical Data Modeling 

• For any real problem, the true PDFs are always unknown 

 

• Statistical data modeling: based on the available sample data set, 
choose a proper statistical model to fit into the available data set. 

– Data modeling stage: once the statistical model is selected, its 
function form becomes known except a set of model parameters 
associated with the model are unknown to us. 

– Learning (training) stage: the unknown parameters can be 
estimated by fitting the model into the data set based on certain 
estimation criterion.  

– Decision (test) stage: the estimated PDFs are plugged into the 
optimal Bayes decision rule in place of the real PDFs， so called 
plug-in MAP decision rule 

• Not optimal but performs reasonably well in practice 
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Plug-in MAP Decision Rule 

• Once the statistical models are estimated, they are treated 
as if they were true distributions of the data, and plug into 
the form of the optimal Bayes (MAP) decision rule in place 
of the unknown true PDFs. 

 

• The plug-in MAP decision rule:  
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