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Math Review

• Probability & Statistics
– Bayes’ theorem
– Random variables: discrete vs. continuous
– Probability distribution: PDF and CDF
– Statistics: mean, variance, moment
– Parameter estimation: MLE

• Information Theory
– Entropy, mutual information, information channel, KL divergence

• Function Optimization
– Constrained/unconstrained optimization 

• Linear Algebra
– Matrix manipulation



Information Theory

• Claude E. Shannon (1916-2001, from Bell Labs to MIT): Father of 
Information Theory, Modern Communication Theory …

– C. E. Shannon, “A Mathematical Theory of Communication”, 
Parts 1 & 2, Bell System Technical Journal, 1948.

• Information of an event

• Entropy(Self-Information) : in bit/nat, amount of info in a R.V.

– Entropy represents average amount of information in a R.V., the 
average uncertainty related to a R.V.
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Joint and Conditional Entropy

• Joint entropy: average amount of information (uncertainty) about two 
R.V.s.

• Conditional entropy: average amount of information (uncertainty) of 
Y after X is known.

• Chain rule for entropy

• Independence
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Mutual Information

• Average information about Y (or X) we can get from X (or Y).

• Maximizing I(X,Y) is equivalent to establishing a closer relationship 
between X and Y, i.e., obtaining a low-noise information channel 
between X and Y.
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Shannon’s Noisy Channel Model 

• Shannon’s noisy channel model

• A binary symmetric noisy channel

• Channel capacity: the tightest upper bound on the rate of information 
that can be reliably transmitted over a communication channel
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Example

• X,Y is equiprobable: Pr(X=0)=Pr(X=1)= Pr(Y=0)=Pr(Y=1)= 0.5 

• p=0 (noiseless)

• p=0.1(weak noise)

• p=0.4(strong noise)
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Channel Modeling and Decoding
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Bayes’ Theorem Application

• Bayes’ theorem for channel decoding
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Kullback-Leibler Divergence

• KL divergence (Information divergence)

– Introduced by Solomon Kullback and Richard Leibler in 1951 

– Distance measure between two PMFs or PDFs (relative entropy)

– D(p||q)    0, D(p||q)=0 if and only if q=p, D(p||q)    D(q||p)

• Mutual information is a measure of independence
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Classification: Decision Trees

Example: fruits classification based on features



Classification and Regression Tree (CART)

• Binary tree for classification

– Each node is attached a YES/NO question

– Traverse the tree based on the answers to questions

– Each leaf node represents a class

• CART: Automatically grow a classification tree on a data-driven basis

– Prepare a finite set of all possible questions

– For each node, choose the best question to split the node

– Maximum entropy reduction

– Small entropy → more homogeneous the data is
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The CART algorithm

1) Question set: create a set of all possible YES/NO questions.

2) Initialization: initialize a tree with only one node which consists 
of all available training samples.

3) Splitting nodes: for each node in the tree, find the best splitting 
question which gives the greatest entropy reduction.

4) Go to step 3) to recursively split all its children nodes unless it 
meets certain stop criterion, e.g., entropy reduction is below a 
pre-set threshold OR data in the node is already too little.

CART method is widely used in machine learning and data mining:

1. Handle categorical data in data mining;
2. Acoustic modeling (allophone modeling) in speech recognition;
3. Letter-to-sound conversion;
4. Automatic rule generation
5. etc.



Optimization of objective function (I)

• Optimization:

– Set up an objective function Q;

– Maximize or minimize the objective function

• Maximization (minimization) of a function:

– Differential calculus;

• Unconstrained maximization/minimization

– Lagrange optimization: 

• Constrained maximization/minimization
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Karush–Kuhn–Tucker (KKT) Conditions

• Primary Problem:

• Introduce KKT multipliers:

– For each inequality constraint:

– For each equality constraint: 

 

min
x

f (x)

subject to

gi (x) £ 0 (i = 1, ,m)

h j (x) = 0 ( j = 1, n)

 mi (i = 1, ,m)

 li (i = 1, ,m)



Karush–Kuhn–Tucker (KKT) Conditions

• Dual problem:  
– if x* is local optimum of the primary problem, x* satisfies:

• The primary problem can be alternatively solved by the 
above equations. 

 

Ñ f (x*) + miÑgi (x
*) + liÑh j (x

*) = 0
j=1

l

å
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å

mi ³ 0 (i = 1, ,m)

migi (x
*) = 0 (i = 1, ,m)



Optimization of objective function (II)

• Gradient descent (ascent) method:

– Step size is hard to determine

– Slow convergence

– Stochastic gradient descent (SGD) 
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Optimization of objective function (II)
• Newton’s method

– Hessian matrix is too big; hard to estimate 
– Quasi-Newton’s method: no need to compute Hessian matrix; 

quick update to approximate it.

 

Q = f (x)
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• Convex optimization algorithms:
– Linear Programming
– Quadratic programming (nonlinear optimization) 
– Semi-definite Programming

• EM (Expectation-Maximization) algorithm.

• Growth-Transformation method.

Optimization Methods



Other Relevant Topics

• Statistical Hypothesis Testing
– Likelihood ratio testing

• Linear Algebra:
– Vector, Matrix;
– Determinant and matrix inversion;
– Eigen-value and eigen-vector
– Derivatives of matrices;
– etc.


