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Preface to the Fourth Edition

A Modern Course in Statistical Physics has gone through several editions. The
first edition was published in 1980 by University of Texas Press. It was well re-
ceived because it contained a presentation of statistical physics that synthesized
the best of the american and european “schools” of statistical physics at that time.
In 1997, the rights to A Modern Course in Statistical Physics were transferred to
John Wiley & Sons and the second edition was published. The second edition was
amuch expanded version of the first edition, and as we subsequently realized, was
too long to be used easily as a textbook although it served as a great reference on
statistical physics. In 2004, Wiley-VCH Verlag assumed rights to the second edi-
tion, and in 2007 we decided to produce a shortened edition (the third) that was
explicitly written as a textbook. The third edition appeared in 2009.

Statistical physics is a fast moving subject and many new developments have
occurred in the last ten years. Therefore, in order to keep the book “modern’, we
decided that it was time to adjust the focus of the book to include more applica-
tions in biology, chemistry and condensed matter physics. The core material of
the book has not changed, so previous editions are still extremely useful. Howev-
er, the new fourth edition, which is slightly longer than the third edition, changes
some of its focus to resonate with modern research topics.

The first edition acknowledged the support and encouragement of Ilya Pri-
gogine, who directed the Center for Statistical Mechanics at the U.T. Austin from
1968 to 2003. He had an incredible depth of knowledge in many fields of science
and helped make U.T. Austin an exciting place to be. The second edition was ded-
icated to Ilya Prigogine “for his encouragement and support, and because he has
changed our view of the world” The second edition also acknowledged another
great scientist, Nico van Kampen, whose beautiful lectures on stochastic process-
es, and critically humorous view of everything, were an inspiration and spurred
my interest statistical physics. Although both of these great people are now gone,
I thank them both.

The world exists and is stable because of a few symmetries at the microscopic
level. Statistical physics explains how thermodynamics, and the incredible com-
plexity of the world around us, emerges from those symmetries. This book at-
tempts to tell the story of how that happens.

Austin, Texas January 2016 L. E. Reichl
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1
Introduction

Thermodynamics, which is a macroscopic theory of matter, emerges from the
symmetries of nature at the microscopic level and provides a universal theory
of matter at the macroscopic level. Quantities that cannot be destroyed at the mi-
croscopic level, due to symmetries and their resulting conservation laws, give rise
to the state variables upon which the theory of thermodynamics is built.

Statistical physics provides the microscopic foundations of thermodynamics.
At the microscopic level, many-body systems have a huge number of states avail-
able to them and are continually sampling large subsets of these states. The task
of statistical physics is to determine the macroscopic (measurable) behavior of
many-body systems, given some knowledge of properties of the underlying mi-
croscopic states, and to recover the thermodynamic behavior of such systems.

The field of statistical physics has expanded dramatically during the last half-
century. New results in quantum fluids, nonlinear chemical physics, critical phe-
nomena, transport theory, and biophysics have revolutionized the subject, and
yet these results are rarely presented in a form that students who have little back-
ground in statistical physics can appreciate or understand. This book attempts to
incorporate many of these subjects into a basic course on statistical physics. It in-
cludes, in a unified and integrated manner, the foundations of statistical physics
and develops from them most of the tools needed to understand the concepts
underlying modern research in the above fields.

There is a tendency in many books to focus on equilibrium statistical mechan-
ics and derive thermodynamics as a consequence. As a result, students do not get
the experience of traversing the vast world of thermodynamics and do not under-
stand how to apply it to systems which are too complicated to be analyzed using
the methods of statistical mechanics. We will begin in Chapter 2, by deriving the
equations of state for some simple systems starting from our knowledge of the
microscopic states of those systems (the microcanonical ensemble). This will give
some intuition about the complexity of microscopic behavior underlying the very
simple equations of state that emerge in those systems.

In Chapter 3, we provide a thorough grounding in thermodynamics. We review
the foundations of thermodynamics and thermodynamic stability theory and de-
vote a large part of the chapter to a variety of applications which do not involve
phase transitions, such as heat engines, the cooling of gases, mixing, osmosis,

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2016 by WILEY-VCH Verlag GmbH & Co. KGaA.
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chemical thermodynamics, and batteries. Chapter 4 is devoted to the thermo-
dynamics of phase transitions and the use of thermodynamic stability theory in
analyzing these phase transitions. We discuss first-order phase transitions in liq-
uid—vapor-solid transitions, with particular emphasis on the liquid—vapor transi-
tion and its critical point and critical exponents. We also introduce the Ginzburg—
Landau theory of continuous phase transitions and discuss a variety of transitions
which involve broken symmetries. And we introduce the critical exponents which
characterize the behavior of key thermodynamic quantities as a system approach-
es its critical point.

In Chapter 5, we derive the probability density operator for systems in thermal
contact with the outside world but isolated chemically (the canonical ensemble).
We use the canonical ensemble to derive the thermodynamic properties of a va-
riety of model systems, including semiclassical gases, harmonic lattices and spin
systems. We also introduce the concept of scaling of free energies as we approach
the critical point and we derive values for critical exponents using Wilson renor-
malization theory for some particular spin lattices.

In Chapter 6, we derive the probability density operator for open systems (the
grand canonical ensemble), and use it to discuss adsorption processes, properties
of interacting classical gases, ideal quantum gases, Bose—Einstein condensation,
Bogoliubov mean field theory, diamagnetism, and super-conductors.

The discrete nature of matter introduces fluctuations about the average (ther-
modynamic) behavior of systems. These fluctuations can be measured and give
valuable information about decay processes and the hydrodynamic behavior of
many-body systems. Therefore, in Chapter 7 we introduce the theory of Browni-
an motion which is the paradigm theory describing the effect of underlying fluc-
tuations on macroscopic quantities. The relation between fluctuations and decay
processes is the content of the so-called fluctuation—dissipation theorem which
is derived in this chapter. We also derive Onsager’s relations between transport
coefficients, and we introduce the mathematics needed to introduce the effect of
causality on correlation functions. We conclude this chapter with a discussion of
thermal noise and Landauer conductivity in ballistic electron waveguides.

Chapter 8 is devoted to hydrodynamic processes for systems near equilibrium.
We derive the Navier—Stokes equations from the symmetry properties of a fluid of
point particles, and we use the derived expression for entropy production to ob-
tain the transport coefficients for the system. We also use the solutions of the lin-
earized Navier—Stokes equations to predict the outcome of light-scattering exper-
iments. We next derive a general expression for the entropy production in binary
mixtures and use this theory to describe thermal and chemical transport process-
es in mixtures, and in electrical circuits. We conclude Chapter 8 with a derivation
of hydrodynamic equations for superfluids and consider the types of sound that
can exist in such fluids.

In Chapter 9, we derive microscopic expressions for the coefficients of diffusion,
shear viscosity, and thermal conductivity, starting both from mean free path ar-
guments and from the Boltzmann and Lorentz—Boltzmann equations. We obtain
explicit microscopic expressions for the transport coefficients of a hard-sphere
gas.



1 Introduction

Finally, in Chapter 10 we conclude with the fascinating subject of nonequilibri-
um phase transitions. We show how nonlinearities in the rate equations for chem-
ical reaction—diffusion systems lead to nonequilibrium phase transitions which
give rise to chemical clocks, nonlinear chemical waves, and spatially periodic
chemical structures, while nonlinearities in the Rayleigh—Bénard hydrodynamic
system lead to spatially periodic convection cells.

The book contains Appendices with background material on a variety of top-
ics. Appendix A, gives a review of basic concepts from probability theory and the
theory of stochastic processes. Appendix B reviews the theory of exact differen-
tials which is the mathematics underlying thermodynamics. In Appendix C, we
review ergodic theory. Ergodicity is a fundamental ingredient for the microscop-
ic foundations of thermodynamics. In Appendix D, we derive the second quan-
tized formalism of quantum mechanics and show how it can be used in statistical
mechanics. Appendix E reviews basic classical scattering theory. Finally, in Ap-
pendix F, we give some useful math formulas and data. Appendix F also contains
solutions to some of the problems that appear at the end of each chapter.

The material covered in this textbook is designed to provide a solid grounding
in the statistical physics underlying most modern physics research topics.

3



2
Complexity and Entropy

2.1
Introduction

Thermodynamics and statistical physics describe the behavior of systems with
many interacting degrees of freedom. Such systems have a huge number of mi-
croscopic states available to them and they are continually passing between these
states. The reason that we can say anything about the behavior of such systems
is that symmetries (and conservation laws) exist that must be respected by the
microscopic dynamics of these systems.

If we have had a course in Newtonian mechanics or quantum mechanics, then
we are familiar with the effects of conservation laws on the dynamics of classical
or quantum systems. However, in such courses, we generally only deal with very
special systems (usually integrable systems) that have few degrees of freedom.
We seldom are taught the means to deal with the complexity that arises when in-
teracting systems have many degrees of freedom. Fortunately, nature has given
us a quantity, called entropy, that is a measure of complexity. Thermodynamics
shows us that entropy is one of the essential building blocks, together with con-
servation laws, for describing the macroscopic behavior of complex systems. The
tendency of systems to maximize their entropy gives rise to effective forces (en-
tropic forces). Two examples of entropic forces are the pressure of an ideal gas
and the tension in an elastic band.

In this chapter, we focus on tools for measuring the complexity of systems with
many degrees of freedom. We first describe methods for counting microscopic
states. Then we introduce the measure of complexity, the entropy, that will play
a fundamental role in everything we discuss in the remainder of the book.

2.2
Counting Microscopic States

The first step in counting the number of microscopic states, for a given system,
is to identify what these states are. Once the states are identified, we can start
the counting process. It is useful to keep in mind two very important counting

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2016 by WILEY-VCH Verlag GmbH & Co. KGaA.
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principles [125, 146, 183]:

1. Addition principle: If two operations are mutually exclusive and the first can
be done in m ways while the second can be done in # ways, then one or the
other can be done in m + 1 ways.

2. Multiplication principle: If an operation can be performed in # ways, and af-
ter it is performed in any one of these ways a second operation is performed
which can be performed in any one of m ways, then the two operations can be
performed in n X m ways.

Let us consider some very simple examples which illustrate the use of these count-
ing principles. As a first example (Exercise 2.1), we count the number of distinct
signals that a ship can send if it has one flagpole and four distinct (distinguish-
able) flags. The number of distinct signals depends on the rules for distinguishing
different signals.

Exercise 2.1

A ship has four distinct flags, [W], [X], [Y], and [Z], that it can run up its flagpole.
How many different signals can it send (assuming at least one flag must be on
the flagpole to create a signal)? Consider two different rules for defining a signal
(a state): (a) the order of the flags on the flagpole is important and (b) the order of
the flags is not important. (Note that the cases of one flag, two flags, three flags,
and four flags on the flag pole are mutually exclusive. Therefore, we must find the
number of signals for each case and add them.)

(a) Order of flags important. With one flag there are 4! /(4 — 1)! = 4 signals, with
two flags 4!/(4 — 2)! = 12 signals, with three flags 4!/(4 — 3)! = 24 signals, with
four flags 4!/(4 — 4)! = 24 signals, for a total of 4 + 12 + 24 + 24 = 64 signals.

(b) Order of flags not important. With one flag there are 4! /((4 — 1)!1!) = 4 sig-
nals, with two flags 4!/((4 — 2)!2!) = 6 signals, with three flags 4!/((4 — 3)!3!) = 4
signals, with four flags 4!/((4 — 4)!4!) = 1 signal, for a total of 4+ 6+ 4 +1 =15
signals.

In Exercise 2.1(a), the number of signals is given by the number of permutations
of the flags, while for Exercise 2.1(b) the number of signals corresponds to the
number of combinations of flags. Below we discuss these two quantities in more
detail.

A permutation is any arrangement of a set of N distinct objects in a definite
order. The number of different permutations of N distinct objects is N! To prove
this, assume that we have N ordered spaces and N distinct objects with which to
fill them. The first space can be filled N ways, and after it is filled, the second space
can be filled in (N — 1) ways, etc. Thus, the N spaces can be filled in N(N — 1)(N —
2) X -+ X 1= N!ways.

The number of different permutations of N objects taken R at a time is N!/
(N = R)!. To prove this, let us assume we have R ordered spaces to fill. Then
the first can be filled in N ways, the second in (N — 1) ways, ..., and the Rth in
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(N — R +1) ways. The total number of ways Pﬁ[ that R ordered spaces can be filled
using N distinct objects is Pﬁ[ =NIN-1)X-+X(N-R+1)=N!/(N-R)!.

A combination is a selection of N distinct objects without regard to order. The
number of different combinations of N objects taken R at a timeis N!/(N — R)!R!).
R distinct objects have R! permutations. If we let Cg denote the number of com-
binations of N distinct objects taken R at a time, then RICY = PY and CY =
N!/((N — R)!R!).

Exercise 2.2

A bus has seven seats facing forward, F, and six seats facing backward, B, so that
F/B—-(nhnnNnnnnnN)/(UuUuUUUU). Nine (distinct) students get on the bus, but
three of them refuse to sit facing backward. In how many different ways can the
nine students be distributed among the seats on the bus?

Answer: Three students must face forward. The number of ways to seat three
students in the seven forward facing seats is equal to the number of permu-
tations of seven objects taken three at a time or 7!/(7 — 3)! = 210. After these
three students are seated, the number of ways to seat the remaining six students
among the remaining ten seats is equal to the number of permutations of ten ob-
jects taken six at a time or 10! /(10 — 6)! = 151 200. Now using the multiplication
principle, we find that the total number of distinct ways to seat the students is
(210) x (151 200) = 31 752 000, which is an amazingly large number.

It is also useful to determine the number of distinct permutations of N objects
when some of them are identical and indistinguishable. The number of permu-
tations of a set of N objects which contains 7, identical elements of one kind,
n, identical elements of another kind, ..., and 7, identical elements of a kth kind
is N!/(n;!ny! -+ n!), where n; + n, + -+ + n;, = N. A simple example of this is
given in Exercise 2.3.

Exercise 2.3

(a) Find the number of permutations of the letters in the word, ENGINEERING.
(b) In how many ways are three E’s together?
(c) In how many ways are (only) two E’s together.

Answer: (a) The number of permutationsis (11!/3!3!2!12!) =277 200, since there
are 11 letters but two identical pairs (I and G) and two identical triplets (E and N).
(b) The number of permutations with three E’s together = the number of per-
mutations of ENGINRING = (9!/3!2!2!) = 15120.
(c) The number of ways that only two E’s are together = 8 x (15 120) = 120 960,
since there are eight ways to insert EE into ENGINRING and its permutations.

When we are considering a physical system with N particles, the number of mi-
croscopic states can be enormous for even moderate values of N. In Exercise 2.4,
we count the number of different microscopic magnetic states available to a col-
lection of N spin-1/2 particles.

7
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Exercise 2.4

Consider a system of N spin-1/2 particles lined up in a row. Distinct states of
the N-particle system, have different spatial ordering of the spins-up 1 and spins-
down |. For N = 10, one such state might be 1/]1/111]1. How many microscopic
states (different configurations of the N particle spin system) does this system
have?

Answer: Use the multiplication principle. The first spin has two configurations,
1 and |. After the configuration of the first spin is set, the second spin can exist in
one of these two configurations, and so on. Thus, the total number of microscopic
statesis 2 X 2 X -+ X 2 = 2N For N = 10, the number of microscopic states is 1024.
For N = 1000 the number of microscopic states is 1.071 51 x 10!, For a small
magnetic crystal with N = 10?% atoms, the number of microscopic spin states is
so large that it is beyond comprehension.

Exercise 2.5

Take a bag of N distinct coins (each coin from a different country and each having
one side with the picture of a head on it) and dump them on the floor. How many
different ways can the coins have n heads facing up?

Answer: First ask a different question. How many different ways can N distinct
coins be assigned to # pots (one coin per pot)? There are N distinct ways to assign
a coin to the first pot and, after that is done, N — 1 distinct ways to assign the
remaining N — 1 coins to the second pot, ..., and N — n + 1 ways to assign the
remaining coins to the nth pot. Thus, the total number of distinct ways to assign
the N coinsto npotsis N X (N —1)X ... X (N —n+1) = N!/(N — n)!. Now note
that permutation of the coins, among the pots, doesn’t give a different answer,
so we must divide by #n!. Thus, the number of distinct ways to assign 7 heads to
N distinct coins is N'(n) = N!/(n!(N — n)!).

As we will see, these counting rules are extremely important when we attempt to
count the different microscopic states available to a quantum system containing
N particles. The symmetry properties of the Liouville operator or Hamiltonian
operator, under interchange of the particles, determines whether the particles are
identical or distinct. The number of microscopic states available to the system,
and therefore its physical properties, are very different for these two cases. Con-
sider the example discussed in Exercise 2.5. If we have N distinct coins and drop
them on the floor, the number of distinct ways to assign # “heads” to the coins
(have 1 “heads” face up) is N'(n) = N!/(n!(N — n)!). However, if the coins are
identical (all US quarters) the number of distinct ways that # “heads” can face up
is N(n) = 1.

The question of whether the particles comprising a system are distinct or iden-
tical has measurable physical consequences because the number of microscopic
states available to the system is very different for the two cases. As we have seen,
the number of microscopic states available to a collection of N particles is gener-
ally huge.



2.3 Probability |9

23
Probability

Once we have identified the microscopic states of a system, we can ask what might
be observed in an experiment. Because the number of microscopic states associat-
ed with a macroscopic system is so large, the outcome of an experiment generally
will be different every time it is performed. However, if we perform an experiment
many times, we can begin to assign quantitative weights (probabilities) to the var-
ious outcomes, consistent with the probabilities associated with the microscopic
states. This relation between the outcome of experiments and the probabilities
assigned to those outcomes is the content of the Central Limit Theorem (see Ap-
pendix A).

The simplest situation (and one very common in nature) is one in which the
microscopic states are all equally likely to occur. Then, if we have N microscopic
states, x; (j = 1,..., N), the probability that the state x; appears as a result of an
experiment is P(x;) = 1/N. The entire collection of microscopic states, with
their assigned probabilities, forms a sample space S.

An event is the outcome of an experiment, and it can involve one or more micro-
scopic states. Let us consider two events, A and B, each of which involves several
microscopic states. Let P(A) (P(B)) denote the probability that event A (B) oc-
curs as the outcome of the experiment. The probability P(A) (P(B)) is the sum of
the probabilities of all the microscopic states that comprise the event A (B). If the
event includes the entire sample space then P(S) = 1 and, if the event includes no
elements of the sample space so A = fJ (f denotes an empty set), then P(#) = 0.

The union of events A and B (denoted A U B) contains all microscopic states that
participate in both events. The intersection of events A and B (denoted A N B) con-
tains all microscopic states shared by the two events. Therefore, the probability
that both events occur as a result of an experiment is the probability of the union,
which can be written

P(AUB)=P(A)+ P(B)—P(AnB), (2.1)

where P(A N B) is the probability associated with microscopic states in the inter-
section. When we add the probabilities P(A) and P(B), we count the states A N B
twice, so we correct this mistake by subtracting off one factor of P(A N B).

If the two events A and B are mutually exclusive, then they have no microscopic
states in common and

P(AUB) = P(A) + P(B). (2.2)

We can partition the sample space S into a complete set of mutually exclusive
events A, A,,..., A, sothat A, UA, U+ UA,, = S. Then, the probabilities as-
sociated with the m events satisfy the condition

P(A) +P(A) + - +P(A,)=1. (2.3)

This partitioning of the sample space will prove extremely useful in subsequent
chapters.
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Exercise 2.6

Three distinguishable coins (labeled a, b, and c) are tossed. The coins are each fair
so “heads” (h) and “tails” (t) are equally likely. (a) Find the probability of getting no
heads. (b) Find the probability of getting at least two heads. (c) Show that the event
heads on coin a and the event tails on coins b and c are independent. (d) Show that
the event only two coins heads and the event three coins heads are dependent and
mutually exclusive. (e) Find the conditional probability that, given heads on coin
a, coin b will be tails.

Answer: Construct a sample space of the following equally probable events:
(a,b,c) = {(h,h,h),(h,h,t), (h,t,h), (h,t,t), (t, h,h), (t, h,t), (t, t,h), (t, t, t) }.

(a) The probability of no heads = 1/8. (b) The probability of at least two heads
= 1/2. (c) Define event A = “heads on the first coin” Define event B = “tails
on the last two coins” Then P(A) = 1/2 and P(B) = 1/4. The union, A U B
has probability, P(A U B) = 5/8. Thus, the probability of the intersection is
P(ANB)=PA)+ PB) - P(AUB) =1/8 = P(A) X P(B). Thus, the events,
A and B are independent. (d) Define event C = “only two coins heads”” Define
event D = “three coins heads” Then P(C) = 3/8 and P(D) = 1/8. The union,
C U D has probability, P(C U D) = 1/2. Thus, the probability of the intersection
is P(Cn D) = P(C)+ P(D) — P(CU D) =0 # P(C) X P(D). Thus, the events C
and D are dependent and are mutually exclusive. (e) Use as the sample space all
events with heads on coin a. This new sample space has four states. The condi-
tional probability that, given coin a is heads, then coin b will be tails is 1/2.

The events A and B are independent if
P(A N B)=P(A)P(B) . (2.4)

Note that independent events have some microscopic states in common because
P(A N B) # 0. It is important to note that independent events are not mutually
exclusive events.

Another important quantity is the conditional probability P(B|A), defined as
the probability of event A, using event B as the sample space (rather than S). The
conditional probability is defined by the equation

P(B|A) = %E)B) . (2.5)
Since P(A N B) = P(B N A), we find the useful relation

P(A)P(A|B) = P(B)P(B|A) . (2.6)
From Egs. (2.4) and (2.5), we see that, if A and B are independent, then

P(B|A)=PA). (2.7)

In Exercise 2.6, we illustrate all these aspects of probability theory for a simple
coin-toss experiment.
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In the next sections, we consider several different physical systems and deter-
mine how the number of microscopic states, and their probability distributions,
depend on physical parameters of those systems.

24
Multiplicity and Entropy of Macroscopic Physical States

For a dynamical system with N interacting particles (3N degrees of freedom in 3D
space), there will be a very large multiplicity N} (number) of microscopic states
available to the system. In addition, a few conservation laws will allow us to define
a set of macroscopic states that are parametrized by the values of the conserved
quantities. Two of the most important conserved quantities associated with an
interacting many-body system are the particle number (assuming no chemical
reactions occur) and the total energy of the system. However, there can be oth-
er conserved quantities. For example, for a lattice of spin-1/2 particles, the spin
is a measure of a conserved internal angular momentum of each particle. Spin
cannot be destroyed by interactions between the particles or with external forces.
Therefore, the spin provides an additional parameter (along with particle number
and total energy) that can be used to specify the state of an N-particle spin lattice.
We can assign a macroscopic variable, the number # of “spins up,” to the system.
Each value of the macroscopic variable # has a multiplicity of N (1) microscopic
states associated to it.

The total energy is generally proportional to the number of degrees of freedom
of the system. When we discuss thermodynamics we also need a measure of the
multiplicity of a system that is proportional to the number of degrees of freedom.
That quantity is the entropy, S. The entropy of an N-particle system with energy E
and macroscopic states characterized by a parameter 7, is defined

S(N, E, n) = kg In(Ny(E, n)) . (2.8)

The quantity k5 = 1.38 X 10723J/K is Boltzmann’s constant. This expression for
the entropy implicitly assumes that all microscopic states with the same values
of N, E, and # have the same weight. Another way to say this is that all such mi-
croscopic states are equally probable.

The fact that all microscopic states with the same energy are equally probable,
derives from the ergodic theorem, which has its origins in classical mechanics.
A classical mechanical system is ergodic if it spends equal times in equal areas
of the mechanical energy surface. All fully chaotic mechanical systems have this
property, and it is the foundation upon which statistical mechanics is built. It un-
derlies everything we talk about in this book.

In subsequent sections, we will compute the multiplicity and entropy of the four
physical systems; a spin system, a polymer chain, an Einstein solid, and an ideal
gas.

11
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Multiplicity and Entropy of a Spin System

Consider a collection of N spin-1/2 atoms arranged on a lattice. The spin is a mea-
sure of quantized angular momentum internal to the atom. Spin-1/2 atoms have
a magnetic moment and magnetic field associated with them due to the intrin-
sic charge currents that give rise to the spin. Generally when an array of spin-1/2
atoms is arranged on a lattice, the various atoms will interact with one another via
their magnetic fields. These interactions give rise to many interesting properties
of such lattices, including phase transitions. We will discuss these in later sections
of the book.

2.5.1
Multiplicity of a Spin System

Since the atoms are fixed to their respective lattice sites, they can be distinguished
by their position on the lattice and therefore are distinct. Let # denote the number
of atoms with spin up (7). Note that for this problem, the method of counting
microscopic states is the same as that for the bag of N coins in Exercise 2.5. The
number of distinct ways to assign 7 spins “up” is the same as the number of distinct
ways that N distinct objects can be assigned to n pots, assuming their ordering
among the pots does not matter. Thus, the multiplicity of the macroscopic state
“n spins up” is

N!

N(n) = (N =)

(2.9)
This is the number of microscopic states available to the lattice for the given value
of n. As a check, let us sum over all possible values n =0, 1, ..., N. If we make use
of the binomial theorem

N
N _ N' N-npn
(a + b) _Zg—nz(z\z—n)!“ b", (2.10)

and set a = b = 1 we can use Eq. (2.9) to obtain the total number of microstates

N N
N!
NN=V§)NN(VI)=F§W=2N. (211)

Thus, the sum of all the microstates contained in the macrostates gives 2V, as it
should. Note that our ability to count the number of microscopic states is due to
the fact that the angular momentum intrinsic to the atoms is quantized and is
a consequence of the quantum nature of matter.

Let us now focus on the limit N — o0, and consider the behavior of the fraction
of microstates, Fy(n) = (Ny(1n))/(Ny) with # spins “up,’

___N' 1 _ NI 1\" (1\N"
PN(H)_n!(N—n)IZ_N_n!(N—n)!(2) (2) : (2.12)
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Figure 2.1 A plot of the fraction of microscopic states,
7 Fy(n) that belong to the macroscopic state “n spins

Fn) up,” plotted as a function of n. The macroscopic state

n = (n) = N/2 contains the most microscopic states.

O
N As N increases, the ratio o, /(n) decreases as 1 /\/N,
and the macrostate n = (n) begins to dominate the
physical properties of the system.
T
0 (m n

If all microstates are equally probable, then 7(#) is the probability of finding
the chain of N spin-1/2 particles with # spins “up,” and is given by the binomial
distribution (see Appendix A). For large N, the binomial distribution can be ap-
proximated by a Gaussian distribution (this is derived in Appendix A) so we can
write

Fn(n) ~

2
20N

exp l—wl , (2.13)

onV2m

where (n) = N /2 is the peak of the distribution and oy = \/ﬁ /2 is a measure
of its width. Notice that limy,_, o) /(#) = 0. Thus, for very large N, to good ap-
proximation, the macrostate with n = (n) governs the physical properties of the
system.

If we plot the fraction F(n) of microscopic states having n spins up (see Fig-
ure 2.1), we find that it is sharply peaked about the value n = (#). As the number of
degrees of freedom tend to infinity (N — ), the physical properties of the system
become determined by that one value of the macroscopic variable # = (1), and this
is called the equilibrium state of the system. The tendency of a macrostate to be
dominated by a single most-probable value of its parameter, in the limit of a large
number of degrees of freedom, is universal to all systems whose interactions have
short range. It is a manifestation of the Central Limit Theorem (Appendix A) and
is the basis for the universal behavior found in thermodynamic systems.

252
Entropy of Spin System

The entropy of a spin lattice (with N spin-1/2 particles) that has » spins up is
given by Egs. (2.8) and (2.9) and can be written

N!
For large N (N > 10), we can use Stirling’s approximations,
N!~ V2nNNNe™ and In(N!)~ NIn(N)-N, (2.15)
to simplify the factorials. The entropy then takes the form
NN
S(IN,n) ~ kgln | ———— 2.16
= n[nn(N—mN—"] (216

13
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The form of the entropy in Eq. (2.16) is easier to deal with than Eq. (2.14) because
it does not depend on factorials.
In the limit N — oo, the entropy is well approximated by the value
NN
()N — (-0
which is called the entropy of the equilibrium state of the system. If no external
magnetic fields are present, then (n) = N/2, and we find

S(N,(n)) %~ NkzIn2. (2.18)

S(N, (1)) ~ kg In , (2.17)

In this case, because the spins are independent of one another, the total entropy
of the system is just N times the entropy of a single spin. Note that the entropy is
additive because the entropy of the whole system is the sum of the entropies of
the independent parts of the system.

2.5.2.1 Entropy and Fluctuations About Equilibrium
In the limit N — oo, the entropy is equal to S(N, (1)), which is the equilibrium
value of the entropy. However, in the real world we never reach the limit N = oo.
Any given system always has a finite number of particles and there will be macro-
scopic states with # # (n). Therefore, there will be fluctuations in the entropy
about the equilibrium value S(N, (n)). Since the multiplicity of the macroscopic
states with n # (n) is always less than that of the state with n = (n), fluctuations
away from equilibrium must cause the value of the entropy to decrease. Thus, for
systems with fixed energy, the entropy takes its maximum value at equilibrium.
The spin system considered above has zero magnetic energy so we have sup-
pressed the energy dependence of the entropy. If all microscopic states with the
same energy, particle number, and number of spins-up are equally probable, then
the probability Py, () of finding the system in the macrostate, (N, n) is simply the
fraction of microstates, Fy(n) = (Ny(n)) /Ny with parameters N, n. Therefore,
we can write

N, N(n) 1 1
=—exp| —SWN,n) ) . 2.19
Ny NP < ( )> (2.19)
Thus, the entropy, written as a function of the macroscopic variable #, can be
used to determine the probability of fluctuations in the value of # away from the
equilibrium state n = (n).

Py(n) =Fy(n) =

2.5.2.2 Entropy and Temperature

In the absence of a magnetic field, the spin lattice has zero magnetic energy. How-
ever, if a magnetic flux density B is present and directed upward, then spin-up lat-
tice sites have energy —u /3 and spin-down lattice sites have energy 45, where y is
the magnetic moment of the atoms. In the limit of large N, we can make the re-
placement » — () and the energy becomes a thermodynamic energy. Then the
total magnetic energy takes the form

(E) = —pu(m)B + u(N — (n))B = uB(N = 2(n)), (2.20)
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and the magnetization is
(M) =u(2(n)—N) . (2.21)

The physical properties of the system are determined by the equilibrium value
n = (n). Note that, in the presence of a magnetic field, the average number of
spins-up (n) will be shifted away from its value for the field-free case but, using
Eq. (2.20), it can be written in terms of the magnetic energy
E
my=N_E) (2.22)
2 2uB

The entropy can be written in terms of the average energy and number of atoms on
the lattice. If we combine Egs. (2.14) and (2.22) and use Stirling’s approximation
in Eq. (2.15), the entropy takes the form

S(N, (E), B) ~ kyNIn N — k; (% - 2%3) ln<% _ 2%)3)
N () N (E)
—kp <5+2”—B>1n<3+2#—8> . (2.23)

Note that, both the average energy and entropy are proportional to the number
of degrees of freedom.

Let us now introduce a result from thermodynamics that we will justify in the
next chapter. The rate at which the entropy changes as we change the thermody-
namic energy is related to the temperature T of the system (in kelvin) so that

a2S 1
(75),.= % 224

At very low temperature (in kelvin), a small change in energy can cause a large
change in the entropy of the system. At high temperature, a small change in energy
causes a very small change in the entropy.

We can use Eq. (2.24) to determine how the thermodynamic energy of the sys-
tem varies with temperature. We need to take the derivative of S(N, (E)) with
respect to (E) holding N and 5 constant. Then with a bit of algebra, we obtain

05\ _ K (NoB/GBY 1
<E>B,N B 2ﬂB In <N+<E>/(/,{B)> T (225)

Solving for (E), we finally obtain

B Nu2B?
# )z— il (2.26)

E)N,T,B)=—-NuBtanh [ —
to lowest order in 3. We have just demonstrated the power of thermodynamics
in allowing us to relate seemingly unrelated physical quantities. However, having
entered the realm of thermodynamics, the thermodynamic energy (E)(N, T, B),
now contains information about thermal properties of the system.

15
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We can also obtain the magnetization (M) of this system. We find

Nu’B

<M>=kB—T,

(2.27)
to lowest order in BB. Equation (2.27) is equation of state for the magnetic system.
The magnetization can also be found from the entropy, but we will need to de-
velop the full machinery of thermodynamics in order to see how this can be done
properly. The equation of state relates the mechanical and thermal properties of
a system, and generally can be determined from measurements in the laboratory
on the system in question. It is one of the most common and important relation-
ships that we can know about most physical systems.

The magnetic equation of state (2.28) is often written in terms of the number
of moles n of atoms in the system. The total number of moles is related to the
total number of atoms on the lattice via Avogadro’s number N, = 6.022 X 10%.
Avogadro’s number is the number of atoms in one mole of atoms or N = nN,.
Then the magnetic equation of state takes the form

nD B

(M) =——,

(2.28)

where D, = N,u?/ky is a parameter determined by fundamental constants and
the magnetic moment of the atoms in the particular system being considered.

2.6
Entropic Tension in a Polymer

A very simple model of a polymer consists of a freely jointed chain (FJC) of N non-
interacting directed links, each of length #. The links are numbered from 1 to N,
and each link is equally probable to be either left pointing («) or right pointing
(—). The net length X of the polymer chain is defined as the net displacement from
the unattached end of link 1 to the unattached end of link N so X = npyZ —n, ¢,
where n; (ny) is the number of left (right) pointing links, and N = ny + ny..
This system is mathematically analogous to the chain of spin-1/2 particles in
Section 2.5. The multiplicity of microscopic states with 7y links to the right is
Ny(ng) = N . (2.29)

np (N — np)!

The total number of microscopic states is 2V, Assuming that all microscopic states
are equally probable, the probability of finding a polymer that has a total of N links
with ny right-directed links is

1 N! N! N—rg

Py(ng) = — = nw gNmw 2.30
NUIR) = X TN =il N =t P4 (2.30)
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where p = ¢ = 1/2. This probability is a binomial distribution (see Appendix A).
The average number of right-pointing links 7y is given by
< N
(ng) = Z ngPy(ng) = pN = —, (2.31)
ngp=0 2

so the average number of left pointing links is (#;) = N — (ng) = N/2 and the

average net length of the polymer is (X) = 0. In the limit N — oo the proba-

bility distribution in Eq. (2.30) approaches a Gaussian narrowly peaked about

ng = (ng) = N/2. Thus, most of the polymers are tightly and randomly coiled.
The entropy of the collection of polymers with 7 right-pointing links is

N!

S=kgln | ———
np!(N — np)!

] ~ kg[NInN —nglnny — (N —np) In(N — ng) 1,
(2.32)

where we have used Stirling’s approximation. If we plot the entropy as a function
of ng, the curve has an extremum whose location is given by the condition

N_
£=k31n< "R>=o. (2.33)
nr

This has the solution ny = N /2, so the state of maximum entropy (the peak of the
curve) occurs for ny = N/2 and X = 0. Thus, the collection of the most tightly
curled-up polymers have the maximum entropy.

In the absence of interactions, all microscopic states have the same energy. The
tension J of the polymer can be related to the displacement X via the thermo-
dynamic relation J = —T(0S/0X), 5. But we can write ny, = X/(2£) + N/2 so
J =-=T/Q2¢)(0S/0ng) n- We use the expression for the entropy to find the ten-
sion / in the chain, as a function of X. We obtain

kBT1 N — ny kBT1 N-X/¢ kg T
———1In =—— ~
27 e 20 "\N+x/¢) " Ne?

J= X+... (2.34)
In the last term, we have expanded J in powers of X/N¢ (which is only valid if
X/N¢ < 1). For the case X/NZ < 1, we have obtained J ~ kz T/(N£H)X + ...,
which is Hooke’s law for the elastic force needed to stretch the polymer. The force
constant is k = ky T/(N£?). The tension ] is an entropic force (per unit length). If
the chain is stretched to maximum length, it will have very few microscopic states
available. On the average, it will contract back to a length where it maximizes the
entropy (multiplicity of states).

The theory described here is a random walk model for polymer coiling in one
space dimension. The results would be different if we considered the random walk
in three space dimensions. Nevertheless, this type of one-dimensional entrop-
ic elasticity has been observed in polymers. One example is the macromolecule
DNA, which is a very long molecule, with lengths on the order of tens of mil-
limeters (although it is generally coiled into a complex structure). There are short

17
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segments of the molecule (with lengths of order 50 nm) whose elasticity, for small
deviations from equilibrium, is well described by the FJC model described above.
For these short segments in DNA, the force constant associated with Hook’s law
is found to be k = 0.1 pN [11].

2.7
Multiplicity and Entropy of an Einstein Solid

Einstein developed a very simple model for mechanical vibrations on a lattice.
This model is called the Einstein solid and consists of a three dimensional lattice
which contains N /3 lattice sites, with one atom attached to each lattice site. Each
atom can oscillate about its lattice site in three independent spatial directions,
(%, ¥, z). Thus, each lattice site contains three independent oscillators. The entire
lattice contains a total of N oscillators, which are assumed to be harmonic os-
cillators, all having the same radial frequency w. The vibrations of the solid are
due to these N harmonic oscillators. A single harmonic oscillator has an ener-
gy E = (1/2)hw + qhe, where 7 is Planck’s constant, (1/2)Aw is the zero-point
energy of the harmonic oscillator, and ¢ = 0, 1,2, ..., oo is an integer. A harmon-
ic oscillator has zero point energy because of the Heisenberg uncertainty rela-
tion Ap,Ax > h, which arises from the wave nature of particles. The oscillator
can never come to rest because that would cause Ax — 0 and Ap, — 0, which
can not be satisfied quantum mechanically.

For a lattice with N harmonic oscillators, the total vibrational energy can be
written

E(N,q) = %th +qho, (2.35)

where ¢ =0,1,2, ..., is again an integer. The oscillators are independent of
one another and can be in different states of motion. If the lattice has a total en-
ergy E(N, gq), the g quanta of energy can be distributed among the N harmonic
oscillators in many different ways.

2.7.1
Multiplicity of an Einstein Solid

Let us assume that “q quanta on the lattice” is a macroscopic state, and let us deter-
mine the multiplicity of this macroscopic state [190]. We need to determine how
many ways g quanta can be distributed among N distinct pots. This is straightfor-
ward if we draw a picture. Represent a quantum of energy by an “x” and N pots by
N — 1 vertical lines. For example, if ¢ = 9 and N = 6, then one way to distribute
the quanta is represented by the picture {xx|xxx||x|xx|x}. We can determine all
possible ways to distribute g = 9 quanta among N = 6 pots by finding the number

permutations of nine “x”s and five vertical lines. More generally, the number of
ways to distribute g quanta among N pots is the total number of permutations
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of g “x”s with N — 1 vertical lines. This number is the multiplicity N'(g) of the
macrostate “gq quanta on the lattice” and is given by

(N+q-1)!

N =D (2.36)

Ny(g) =
If there is only one quantum of vibrational energy on the lattice and the lattice
has N = 12 oscillators (four lattice sites), then it can be placed in the N = 12 os-
cillators in N},(1) = 12 different ways. However, if there are g = 12 quanta on
the lattice of N = 12 oscillators, they can be distributed among the oscillators
in WV;,(12) = 1352078 different ways. Generally, we are interested in a piece of
a crystal which typically has N = 10?2 oscillators. Then, if there are enough quanta
on the lattice to excite even a small fraction of the oscillators, the number of mi-
croscopic states available is amazingly large. It is clear that we need a way to make
contact with measurable quantities, and thermodynamics will give us that. Note
again that our ability to count the number of vibrational states available to the lat-
tice is a consequence of quantum mechanics and the quantization of vibrational
energy.

2.7.2
Entropy of the Einstein Solid

For the Einstein solid, we have one less macroscopic parameter than for the spin
system. In the spin system, in the absence of a magnetic field, all microscopic con-
figurations have the same energy. However, for the spin system we have another
parameter, #, (due to spin conservation) which is the number of spins-up on the
lattice and we can use it to construct different macroscopic states depending on
the value of n. For the Einstein solid, for a fixed number of harmonic oscillators N,
we only have the parameter g which is the number of quanta of oscillation energy
and is proportional to the energy E. Therefore, for the Einstein solid, we have only
one macroscopic state, determined by the value of ¢, and many microscopic states
given by the number of ways to distribute the g quanta among the N harmonic
oscillators.
If we use Egs. (2.8) and (2.36), the entropy of the Einstein solid is given by

N+g-D!] _
g!(N - 1D)! ] ~ Kgln 257

(N + )N+ ]

S(N, q) = kg In [ g

where we have assumed that N and q are large and we have used Stirling’s approx-
imation Eq. (2.15). We can now use thermodynamics to relate the energy to the
temperature via the relation

aS ) 1 (oS 1
=) == (Z2) ==, 2.38
(()E N ho <0q > N T (2.38)
where, in the middle term, we have used the relation between E and g given in
Eq. (2.35). If we take the derivative of the entropy, as indicated in Eq. (2.38), and
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solve for the energy, we obtain

Nhwe P

1
ENN, T) = 2Nnho + Mo
N, T) = 5 Nho + 7 ooy

(2.39)
where f = 1/(kgT). As we shall see in the chapter on thermodynamics, the heat
capacity of the Einstein solid can be written

2 n—fhw
oF ) = Nroye (2.40)
N

en=(5%) = .
N7 \or ky T2(1 — e-Bho)?

In the limit 7" — 0, the heat capacity of the Einstein solid goes to zero exponen-
tially as a function of temperature 7. This result provided an important break-
through in our understanding of the effect of quantum mechanics on the thermal
properties of solids at low temperature. Classical physics could not explain the ex-
perimentally observed fact that the heat capacity of solids do tend to zero as the
temperature tends to 0 K. The heat capacity given by the Einstein solid is not quite
correct. The heat capacity of real solids goes to zero as T2, not exponentially. The
reason for this will become clear when we consider a Debye solid, which allows
lattice sites to be coupled.

2.8
Multiplicity and Entropy of an Ideal Gas

We now consider an ideal gas of N particles in a box of volume V = L3. State-
counting in this system is different from the spin system and Einstein solid be-
cause the particles in the gas move freely through the box. If the gas particles have
no distinguishing internal characteristics such as different mass or different spin,
they are indistinguishable. For the spin system and the Einstein solid, particles are
attached to specific lattice sites and remain there, so they are distinguishable and
distinct.

2.8.1
Multiplicity of an Ideal Gas

‘We want to determine the multiplicity of states available to an ideal gas of N par-
ticles. By ideal gas we mean the real gas density is low enough that the energy of
interaction between the particles is negligible. The key to obtaining a countable
set of microscopic states is to remember that this system is intrinsically quantum
mechanical and that the quantum states available to each particle occupy a finite
size region of phase space whose size is determined by Planck’s constant, /. Since
the particles move in three dimensional configuration space, the number of de-
grees of freedom of the system is D = 3N and the momentum of each particle has
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three independent components. The total energy of the gas can be written
E % pf (2.41)
h = 2m’ '

where the sum is over all 3N components of momentum, p; is one of the 3N com-
ponents of momentum, and m is the mass of each particle.

The volume of phase space available to a single quantum state of the gas is
Ap Axy X - X ApsyAxsy = B3N, where & is Planck’s constant. The volume
of phase space QP)(E) that has energy less than E can be written Q®)(E) =
VN _Q;D)(E), where we have explicitly separated the spatial volume V' from the
volume of the momentum coordinates. This is possible because there are no
external fields present and interactions between the particles are neglected.

It is useful to begin with a very simple case. Let us first obtain the phase space
volume available to one particle (N = 1) in two dimensional configuration space
and D = 2 degrees of freedom. The energy of the particle is E = 1/(2m)(p> + pi).
Therefore, we can write p2 + p> = 2mE = R?, where R is the radius of the allowed
circle in momentum space. The area (volume) within the circle in momentum
space is _Q;z)(E) = 71(\/2mE)* = m2mE. Thus, the volume of phase space with
energy less than or equal to E is Q®(E) = L?m2mE.

In a similar manner, we can determine the volume of phase space QP (E) =
vN _Q;D)(E) that has energy less than or equal to E for the case of N particles in
aboxofvolume V.For D = 3N degrees of freedom, Eq. (2.41) can be written in the
form p% + pzD = 2mE = R%. The volume in momentum space with energy less
than or equal to E can be written in the form Q?(E) = ApRP = Ap(R»)P/?, where

Ap is an unknown constant. It is useful to write (d_Q;D) (E))/(dR?) = Ap,D/2RP2
and, therefore,

© =AD§F<§> , (2.42)

t_do®E

2 )4 -
[ ar =g
0

where I'(x) is the Gamma function.
To determine the constant A, compute Q? (E) in another way. Note that

QP(E) = J dp, - J dpp® (R = pl = = pp) (243)

where O(R?> — p? — --- — p1) is the Heaviside function. (Heaviside functions have
the property that ©(x) =0ifx <0, O(x) = 1ifx > 0, and O(x) = 1/2 ifx = 0.)
Because the derivative of a Heaviside function is a Dirac delta function, d(x) =
dO(x)/dx, we can write

d0P(E) T
# = J dp, - J dppd (R* = p} — = pp) - (2.44)

—00
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Now note that
¢ d0P(E T T 2, :
JdRZ dpRz( )e—R2 — J dpl J dpDe_(pf+p§+"'+pZD) = ﬂD/2 . (245)
0 —co —o0

If we equate Eqs. (2.42) and (2.45), we obtain A, = 27°/2/(DI'(D/2)).

Using the above results we find that, for an ideal gas with D = 3N degrees of
freedom, the total volume of phase space with energy equal to or less than energy E
is
VN@QrmE)*N/?

(BN/2)!

where we have assumed that 3N is an even integer and the Gamma function can
be written I'(n + 1) = n!.

We now can determine the multiplicity N (E) of the microstates of the ideal gas
with energy less than or equal to E. We divide the phase space volume QP)(E) by
the volume /3N of a single quantum state of the N particle gas. Since the particles
are indistinguishable, we must also divide by N'! to avoid over counting states. We
then obtain

OPYE) = VN _Q(pD)(E) = VNAL(RHP? = , (2.46)

VN@QrmE)3N/2
Ny(E) = ——-——. 2.47
~(E) Ni3N3N/2)! 2.47)
As we shall see later, the factor N'! is essential to obtain the correct equation of
state for an ideal classical gas of indistinguishable particles.

2.8.2
Entropy of an Ideal Gas

The entropy of an ideal gas is determined by the number of microscopic states
with energy E and not the number of microscopic states with energy less than
or equal to E, which was obtained in Eq. (2.47). However, as we will now show,
in the limit N — oo, these two numbers give values of the entropy that are the
same, to good approximation. Let us first divide phase space into a sequence of
energy shells, each of width AE. The phase space volume of the shell at energy E
is Q2 p(E). We can then write a sequence of inequalities between the sizes of these
various volumes such that

Q,p(E) < QPUE) < (E/AE)Q £ (E) . (2.48)

Next note that In(Q, z(E)) ~ D, In(Q®)(E)) ~ D and In E ~ In D. Therefore, for
avery large number of degrees of freedom (10%3), we can assume that In(Q , z(E)) ~
In(QP)(E)) and the multiplicity Ny, (E), derived in Eq. (2.47), can be used to ob-
tain the entropy of an ideal gas.

The entropy of an ideal gas can now be written

VN©QrmE)3N/2 ]

N3N (3N /2)! (2.49)

S = kg In(Ny(E)) = kg In [
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This formula can be simplified if we use Stirling’s approximation. Then the en-
tropy takes the form

5 V (4mmE\/?
Equation (2.50) is called the Sackur—Tetrode equation and gives the entropy of an
ideal gas of indistinguishable particles.

We can obtain a relation between the energy and temperature of an ideal gas

from the Sackur—Tetrode equation using the thermodynamic equation

T ) (2.51)

L_(%) -3

oE/vn 2 E
where the last term was obtained by taking the derivative of Eq. (2.50). Therefore,
E = (3/2)NkgT. The pressure of the ideal gas can be obtained from the entropy
using another thermodynamic relation

Nk
£=<§) - % (2.52)
T oV /EN Vv

where, again, the last term was obtained by taking the derivative of Eq. (2.50).
Thus, we obtain PV = Nkg T, which is the equation of state of an ideal gas.

2.9
Problems

Problem2.1 A bus has nine seats facing forward and eight seats facing backward.
In how many ways can seven passengers be seated if two refuse to ride facing
forward and three refuse to ride facing backward?

Problem 2.2  Find the number of ways in which eight persons can be assigned to
two rooms (A and B) if each room must have at least three persons in it.

Problem 2.3 Find the number of permutations of the letters in the word,
MONOTONOUS. In how many ways are four O’s together? In how many ways
are (only) 3 O’s together?

Problem 2.4 In how many ways can five red balls, four blue balls, and four white
balls be placed in a row so that the balls at the ends of the row are the same color?

Problem 2.5 Various six digit numbers can be formed by permuting the digits
666655. All arrangements are equally likely. Given that a number is even, what is
the probability that two fives are together?

Problem 2.6 Fifteen boys go hiking. Five get lost, eight get sunburned, and six
return home without problems. (a) What is the probability that a sunburned boy
got lost? (b) What is the probability that a lost boy got sunburned?

23
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Problem 2.7 A deck of cards contains 52 cards, divided equally among four suits,
Spades (S), Clubs (C), Diamonds (D), and Hearts (H). Each suit has 13 cards which
are designated: (2, 3,4, 5,6,7,8,9,10,], Q, K, A). Assume that the deck is always
well shuffled so it is equally likely to receive any card in the deck, when a card is
dealt. (a) If a dealt hand consists of five cards, how many different hands can one
be dealt (assume the cards in the hand can be received in any order)? (b) If the
game is poker, what is the probability of being dealt a Royal Flush (10, ], Q, K, and
A all of one suit)? (c) If one is dealt a hand with seven cards, and the first four cards
are spades, what is the probability of receiving at least one additional spade?

Problem 2.8 A fair six-sided die is thrown N times and the result of each throw
is recorded. (a) If the die is thrown N = 12 times, what is the probability that odd
numbers occur three times? If it is thrown N = 120 times, what is the probability
that odd numbers occur 30 times? Use the binomial distribution. (b) Compute
the same quantities as in part (a) but use the Gaussian distribution. (Note: For
part (a) compute your answers to four places.) (c) Plot the binomial and Gaussian
distributions for N = 2 and N = 12.

Problem 2.9 A gas of N identical particles is free to move among M distinguish-
able lattice sites on a lattice with volume V/, such that each lattice site can have at
most one particle at any time. The density of lattice sitesis 4 = M/ V. Assume that
N < M and that all configurations of the lattice have the same energy. (a) Com-
pute the entropy of the gas. (b) Find the equation of state of the gas. (Note: the
pressure of an ideal gas is an example of an entropic force.)

Problem 2.10 An Einstein solid (in 3D space) has 100 lattice sites and 300
phonons, each with energy 2w = 0.01 eV. (a) What is the entropy of the solid
(give a number)? (b) What is the temperature of the solid (give a number)?

Problem 2.11 A system consists of N noninteracting, distinguishable two-level
atoms. Each atom can exist in one of two energy states, E, = 0 or E; = ¢. The
number of atoms in energy level, E, is 7, and the number of atoms in energy lev-
el, E,, is n;. The internal energy of this system is U = nyE, + n,E,. (a) Compute
the multiplicity of microscopic states. (b) Compute the entropy of this system as
a function of internal energy. (c) Compute the temperature of this system. Un-
der what conditions can it be negative? (d) Compute the heat capacity for a fixed
number of atoms, N.

Problem 2.12 A lattice contains N normal lattice sites and N interstitial lattice
sites. The lattice sites are all distinguishable. N identical atoms sit on the lattice, M
on the interstitial sites, and N — M on the normal sites (N > M > 1). If an atom
occupies a normal site, it has energy E = 0. If an atom occupies an interstitial site,
it has energy E = . Compute the internal energy and heat capacity as a function
of temperature for this lattice.

Problem 2.13  Consider a lattice with N spin-1 atoms with magnetic moment y.
Each atom can be in one of three spin states, S, = —1,0,+1. Let n_;, n,, and
n; denote the respective number of atoms in each of those spin states. Find the
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total entropy and the configuration which maximizes the total entropy. What is
the maximum entropy? (Assume that no magnetic field is present, so all atoms
have the same energy. Also assume that atoms on different lattice sites cannot be
exchanged, so they are distinguishable.)

Problem 2.14 A system consists of N = 3 particles, distributed among four en-
ergy levels, with energies E, = 0, E; = 1, E, = 2, and E; = 3. Assume that the
total energy of the system is £ = 5. Answer questions (a), (b), and (c) below for
the following two cases: (I) The N particles and the four energy levels are distin-
guishable; and (II) the N particles are indistinguishable, but levels with different
energy are distinguishable. (a) Compute the multiplicity of microstates. (b) What
is the probability of finding two particles occupying energy levels E,? (c) Given
that one particle occupies energy level E;, what is the probability that one particle
occupies energy level E,?
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Thermodynamics

3.1
Introduction

The science of thermodynamics began with the observation that matter in the
aggregate can exist in macroscopic states which are stable and do not change in
time. Once a system reaches its equilibrium state, the system will remain foreverin
that state unless some external influence acts to change it. This inherent stability
and reproducibility of the equilibrium states can be seen everywhere in the world
around us.

Thermodynamics has been able to describe, with remarkable accuracy, the
macroscopic behavior of a huge variety of systems over the entire range of ex-
perimentally accessible temperatures (10~ to 10° K). It provides a truly universal
theory of matter in the aggregate. And yet, the entire subject is based on only four
laws [183, 220], which may be stated rather simply as follows:

Zeroth Law  Two bodies, each in equilibrium with a third body, are in equilib-
rium with each other.

First Law Energy is conserved.

Second Law  Heat flows spontaneously from high temperature to low tempera-
ture.

Third Law It is not possible to reach the coldest temperature using a finite set

of reversible steps.

Even though these laws sound rather simple, their implications are vast and give us
important tools for studying the behavior and stability of systems in equilibrium
and, in some cases, of systems far from equilibrium.

The state of thermodynamic equilibrium can be specified completely in terms of
a few parameters — called state variables. State variables emerge from the conser-
vation laws governing the underlying dynamics of these systems. State variables
may be either extensive or intensive. Extensive variables always change in value
when the size (spatial extent and number of degrees of freedom) of the system is
changed, and intensive variables do not.

Certain pairs of intensive and extensive state variables occur together because
they correspond to generalized forces and displacements which appear in expres-

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
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sions for thermodynamic work. Examples of such extensive and intensive pairs
include, respectively, volume, V, and pressure, P; magnetization, M, and mag-
netic field, H; length, L, and tension, J; area, A, and surface tension, o; electric
polarization, P, and electric field, E. The relation of these state variables to un-
derlying conservation laws is direct in some cases. For example, the existence
of magnetization is related to the conservation of the internal angular momen-
tum of atoms and electric polarization is related to the conservation of electric
charge.

The pair of state variables related to heat content of a thermodynamic system
are the temperature, 7', which is intensive, and the entropy, S, which is extensive.
There is also a pair of state variables associated with “chemical” properties of a sys-
tem. They are the number of particles N (number of moles n) which is extensive,
and the chemical potential per particle (per mole), i, which is intensive. If there is
more than one type of particle in the system, then there will be a particle number
or mole number and chemical potential associated with each type of particle.

Other state variables used to describe the thermodynamic behavior of a system
are the various response functions, such as heat capacity, C; compressibility, x;
magnetic susceptibility, y; and various thermodynamic potentials, such as the in-
ternal energy, U; enthalpy, H; Helmholtz free energy, A; Gibbs free energy, G; and
the grand potential, Q. We shall become acquainted with these state variables in
subsequent sections.

If we change the thermodynamic state of our system, the amount by which the
state variables change must be independent of the path taken. If this were not so,
the state variables would contain information about the history of the system. It is
precisely this property of state variables which makes them so useful in studying
changes in the equilibrium state of various systems. Mathematically, changes in
state variables correspond to exact differentials. The mathematics of exact differ-
entials is reviewed in Appendix B.

It is useful to distinguish between three types of thermodynamic systems. An
isolated system is one which is surrounded by an insulating wall, so that no heat
or matter can be exchanged with the surrounding medium. A closed system is
one which is surrounded by a conducting wall that allows heat to be exchanged
with the surrounding medium, but not matter. An open system is one which al-
lows both heat and matter exchange with the surrounding medium. If the insulat-
ing/conducting wall can move, then mechanical work can be exchanged with the
surrounding medium.

It is possible to change from one equilibrium state to another. Such changes can
occur reversibly or irreversibly. A reversible change is one for which the system
always remains infinitesimally close to the thermodynamic equilibrium — that is,
is performed quasi-statically. Such changes can always be reversed and the system
brought back to its original thermodynamic state without causing any changes in
the thermodynamic state of the universe. For each step of a reversible process, the
state variables have a well-defined meaning.

An irreversible or spontaneous change from one equilibrium state to another is
one in which the system does not stay infinitesimally close to equilibrium during
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each step. Such changes often occur rapidly and give rise to flows and “friction”
effects. After an irreversible change the system cannot be brought back to its orig-
inal thermodynamic state without causing a change in the thermodynamic state
of the universe.

3.2
Energy Conservation

There is a store of energy in a thermodynamic system, called the internal ener-
gy U. Infinitesimal changes dU in internal energy content can occur by causing
the system to do mechanical work, dW or by adding heat, dQ, to the system. The
internal energy can also be changed by adding particles of types j = 1,2,...,v
to the system causing infinitesimal changes in the internal energy equal to
Z,V-:l #; dN;, where y; is the chemical potential of particles of type jand N is the
infinitesimal change in the number of type j particles. We use the notation, d W, to
indicate that the differential d W is not exact (see Appendix B). The quantities dQ
and dW are not exact differentials because they depend on the path taken (on
the way in which heat is added or work is done). The quantities dN; are exact
differentials.

The change in the internal energy that results from these thermal, mechanical,
and chemical processes is given by

14

dU =dQ—dW + ), dN;. (3.1)

J=1

The work, dW, may be due to changes in any relevant extensive “mechanical”
variable. In general it can be written

dW =PdV - JdL—-0dA—E-dP—-H-dM — ¢ de, (3.2)

wheredl,dV,dL,dA,dP,dM,and de are exact differentials. The magnetization
M and the magnetic field H are related to the magnetic flux density B by the
equation B = uyH + M, where 4, is the permeability of free space. The definition
of the first five terms in Eq. (3.2) was discussed in Section 3.1. The term, —¢ de, is
the work the system does if it has an electric potential, ¢, and increases its charge
by an amount, de. We may think of —P, /, 0, E, H and ¢ as generalized forces, and
we may think of dV,dL,dA, dP,dM, and de as generalized displacements.

It is useful to introduce a generalized mechanical force, Y, which denotes quan-
tities such as, —P, J, 0, E, H, and ¢, and a generalized displacement, X, which de-
notes the corresponding displacements, V, L, A, P, M, and e, respectively. Then
dW = —Y dX and the first law of thermodynamics can be written in the form

dU =dQ+YdX+ ) u;dN;. (3.3)

j=1
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Note that 4; is a chemical force and dN; is a chemical displacement. Note also
that the pressure, P, has a different sign from the other generalized forces. If we
increase the pressure, the volume increases, whereas if we increase the force, Y,
for all other cases, the extensive variable, X, decreases.

33
Entropy

The second law of thermodynamics is of immense importance for many rea-
sons [24, 47, 183]. We can use it to compute the maximum possible efficiency of
an engine that transforms heat into work. It also enables us to introduce a new
state variable, the entropy S, which is conjugate to the temperature. The entropy
gives us a measure of the degree of thermal disorder in a system and also gives us
ameans for determining the stability of equilibrium states. In addition, it provides
an important link between reversible and irreversible processes.

3.3.1
Carnot Engine

The second law is most easily discussed in terms of a universal heat engine first
introduced by Carnot. The construction of all heat engines is based on the obser-
vation that, if heat is allowed to flow from a high temperature to a lower tempera-
ture, part of the heat can be turned into work. Carnot observed that temperature
differences can disappear spontaneously without producing work. Therefore, the
most efficient heat engines must be those whose cycles consist only of reversible
steps, thereby eliminating wasteful heat flows. There are many ways to construct
reversible heat engines, and they generally have different levels of efficiency. How-
ever, Carnot found the most efficient of all possible heat engines.

The Carnot heat engine is universal because, not only is it the most efficient of all
heat engines, but the efficiency of the Carnot engine is independent of the materials
used to run it. The Carnot engine consists of the four steps shown in Figure 3.1.
These include:

1. Isothermal (constant temperature) absorption of heat AQ;, from a reservoir at
ahigh temperature 7}, (we use A to indicate a finite rather than an infinitesimal
amount of heat) (the process 1 — 2).

2. Adiabatic (constant heat content) change in temperature from 7}, to the lower
value T, (the process 2 — 3).

3. Isothermal expulsion of heat AQ,; into a reservoir at temperature T, (the pro-
cess 3 — 4).

4. Adiabatic return of the state at temperature T to the state at temperature T},
(the process 4 — 1).

The work done by the engine during one complete cycle can be found by inte-
grating the differential element of work Y dX about the entire cycle and, there-
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isothermal (Th)
¥ AQw 1A Y

adiabatic

3¢ b hermal (T,
AQs, isothermal (T)

(@) X (b) X

Figure 3.1 (a) A Carnot engine which runs cess takes place reversibly. (b) An arbitrary

on a substance with state variables, X and Y. reversible heat engine is composed of many
The heat absorbed is AQ;, and the heat eject- infinitesimal Carnot engines. The area en-

ed is AQ,;. The shaded area is equal to the closed by the curve is equal to the work done
work done during the cycle. The whole pro- by the heat engine.

fore, the net work AW, , done by the engine is given by the shaded area in Fig-
ure 3.1a.

The efficiency i of any heat engine is given by the ratio of the net work done AW,
to heat absorbed AQ, so, in general, the efficiency of a heat engine is given by
n= (A VVtot)/(AQabs)’

For the Carnot engine, heat is only absorbed during the process 1 — 2, so the
efficiency of the Carnot engine (CE) can be written

AW,

tot
= . (3.4)
Yo

The internal energy U is a state variable and, therefore, the total change AU/, for
one complete cycle of the engine must be zero because completion of the cycle
returns the system to the thermodynamic state it started in. The first law then
enables us to write

Al = AQo = AW =0 (3.5)
and thus
AW = AQuy = AQyp + AQ3y = AQpy — AQy; . (3.6)

If we combine Eqs. (3.4) and (3.6), we can write the efficiency of the Carnot engine
in the form

AQy3
AQq,

A 100% efficient engine is one which converts all the heat it absorbs into work.
However, as we shall see, no such engine can exist in nature because real engines
do not operate in a completely reversible manner.

Carnot engines can operate using any of a variety of substances (examples are
left as problems). In Exercise 3.1, we compute the efficiency of a Carnot engine
which uses an ideal gas as an operating substance. However, regardless of the op-
erating substance, all Carnot engines have the same efficiency.

Hep=1- (3.7)
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The Kelvin temperature scale 7 was introduced by W. Thomson (Lord Kelvin)
and is a universal temperature scale because it is based on the universality of the
Carnot engine. It is defined as

20, T, .

AQy Ty
where T}, (T,) is the hottest (coldest) temperature reached by the Carnot engine.
The units of degree Kelvin (K) are the same as degree Celsius (°C). The ice point
and boiling points of water, at one atmosphere pressure are defined to be 0 °C and
100 °C, respectively. The triple point of water is 0.01 °C and occurs at a pressure
of 611.73 Pa. The relation between degree Celsius, ., and degree Kelvin, T, is
T = (t. + 273.15). The triple point of water is fixed at T = 273.16 K.

We can use the Carnot engine to define a new state variable called the entropy.
All Carnot engines have an efficiency

A T
Heg =1- Qus _ 1-— (3.9)
AQy, Ty

regardless of operating substance. Using Eq. (3.9), we can write the following re-
lation for a Carnot cycle:

AQlZ + AQ34
T, T

C

=0 (3.10)

(note that AQs, = —AQy3).

Equation (3.10) can be generalized to the case of an arbitrary reversible heat
engine because we can consider such an engine as being composed of a sum of
many infinitesimal Carnot cycles (cf. Figure 3.1b). For an arbitrary reversible heat
engine we have

dQ _
(J; 2o, (3.11)

and, therefore,
ds = d—Q (3.12)
T

is an exact differential. The quantity S, is called the entropy and is a state variable
because the integral of dS about a closed path gives zero.

Exercise 3.1

Compute the efficiency of a Carnot cycle which uses a monatomic ideal gas as
an operating substance. Use the equation of state of a monatomic ideal gas PV =
nRT and the internal energy U = (3/2)nRT.
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Answer: The Carnot cycle for an ideal gas is shown in the figure below.

P1.

D 2 D

i VoV v

(a) Let us first consider the isothermal paths 1 — 2 and 3 — 4. Since the tempera-
ture is constant along these paths,d7 =0and dU = (3/2)nRd T = 0. Thus, along
the path 1 = 2,dQ = dW = nRT,(dV/V). The heat absorbed/ejected along the
paths 1 - 2and 3 — 4 are

Va

AQq, = nRT, J d_V = nRT, In (ﬁ) and AQ,;, = nRT_.In <E>
12 h Y h v, 34 ¢ v,)
1
respectively. Since V, > V;, AQ,, > 0 and heat is absorbed along the path 1 — 2.
Since V5 > V,, AQs, < 0 and heat is ejected along the path 3 — 4.

(b) Let us next consider the adiabatic paths 2 — 3 and 4 — 1. Along the adi-
abatic path, dQ = 0 = dU + PdV = (3/2)nRdT + PdV. If we make use of
the equation of state, we find (3/2)d7T/T = —dV/V. We now integrate to find
T3V = constant for an adiabatic process. Thus, along the paths 2 — 3 and
4 — 1, respectively, we have T \/'32/ =T, \/22/ ®and T. V:/ =T, Vlz/ ® which gives
Vs3/V, = V,/ V. Because U is a state variable, for the entire cycle we can write
AU, = AQuoy — AW, = 0. Thus AW, = AQ,, = AQ;y + AQsy. The efficiency
of the Carnot cycle is

_ A Wit —14 AQs, =1_£ln(\/},/\/4) _ I

AQy, AQy Ty In(Vy/V}) Ty

n

No heat engine, operating between the same high and low temperatures, can be
more efficient than a Carnot engine. Thus, an engine which runs between the same
two reservoirs but contains spontaneous or irreversible processes in some part of
the cycle will have a lower efficiency. Therefore, for an irreversible heat engine we

can write
A T A A
Quz s 2¢ and Qi _ Qa3 P
AQy, Ty Ty, T

C

0. (3.13)
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For an arbitrary heat engine which contains an irreversible part, Eq. (3.13) gives
the very important relation

dQ
(J; 7 <0 : (3.14)

For an irreversible process, dQ/ T can no longer be considered an exact differen-
tial.

A system may evolve between two thermodynamic states either by a reversible
path or by a spontaneous, irreversible path. For any process, reversible or irre-
versible, the entropy change depends only on the initial and final thermodynamic
equilibrium states of the system, since the entropy is a state variable. If the system
evolves between the initial and final states via a reversible path, we can compute
the entropy change along that path using thermodynamic relations. However, if
the system evolves via an irreversible path, then we must construct a hypothetical
reversible path between the initial and final states in order to use the equations of
thermodynamics to compute the entropy change during the spontaneous process.

For an irreversible path between two thermodynamic states, the heat absorbed
by the system will be less than the heat absorbed along a reversible path between
the same two thermodynamic states. Therefore, [, dQ/T < [ dQ/T. This

irrev
means that for an irreversible process, erev dQ/T does not contain all contribu-
tions to the entropy change. Some of it comes from the disorder created by spon-
taneity. This result is usually written in the form
i§+ds, (3.15)

L

ds =

where d;S denotes the entropy production due to spontaneous processes. For a re-
versible process, d;S = 0 so the entropy change is entirely due to a flow of heat into
or out of the system. For a spontaneous (irreversible) process, d;S > 0.

For an isolated system we have dQ = 0, and we obtain the important relation

ds=4d;S>0, (3.16)

where the equality holds for a reversible process and the inequality holds for
a spontaneous or irreversible process. Since the equilibrium state is, by defini-
tion, a state which is stable against spontaneous changes, Eq. (3.16) tells us that,
for an isolated system, the equilibrium state is a state of maximum entropy. As
we shall see, this fact gives an important criterion for determining the stability of
the equilibrium state for an isolated system.

3.3.2
The Third Law

An alternative statement of the third law — It is impossible to reach absolute zero
in a finite number of steps if a reversible process is used — is easily demonstrated
by means of a plot in the S—T plane [24, 47, 196]. In Figure 3.2 we have plotted S
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Figure 3.2 ThefactthatcurvesY =0andY =Y,

T Y=0 v= Y must approach the same point (the third law) makes it
5 / impossible to reach absolute zero by a finite number
of reversible steps.

re

S

versus T for two states whose generalized forces have values Y =0 and ¥ = Y;.
(A specific example might be a paramagnetic salt with Y = H.) We can cool the
system by alternating between the two states, adiabatically and isothermally. From
the identities in Appendix B, we write

<g_§)s,N=_<%>y,N<g_}S/>T,N : (3.17)

As we shall show in Section 3.7, thermal stability requires that Cy /T =
(0S/0T)y > 0. Equation (3.17) tells us that if T decreases as Y increases adiabat-
ically, then S must decrease as Y decreases isothermally, as shown in Figure 3.2.
For the process 1 — 2 we change from state Y = Y] to state ¥ = 0 isothermal-
ly, thus squeezing out heat, and the entropy decreases. For process 2 — 3, we
increase Y adiabatically from Y = 0 to Y = Y] and thus decrease the tempera-
ture. We can repeat these processes as many times as we wish. However, as we
approach T = 0K, we know by the third law that the two curves must approach
the same point and must therefore begin to approach each other, thus making it
impossible to reach 7' = 0K in a finite number of steps.

Another consequence of the third law is that certain derivatives of the entropy
must approach zero as 7 — 0K. Let us consider a process at 7' = 0K such that
Y - Y +dY and X — X + dX. Then the change in entropy if Y, 7, and N are
chosen as independent variables is (assume dN = 0) dS = (9S/9Y)y —odY or
if X, T, and N are chosen as independent we obtain dS = (dS/0X), 7, dX. Thus,
if the states (Y, 7 = 0K) and (Y + dY, T = 0K) or the states (X, T = 0K) and
(X + dX, T = 0K) are connected by a reversible process, we must have dS =0
(third law) and therefore

<3_§>N,T:o=° and (%)N,Tsz (3.18)

Equation (3.18) appears to be satisfied by real substances.

3.4
Fundamental Equation of Thermodynamics

The entropy plays a central role in both equilibrium and nonequilibrium ther-
modynamics. It can be thought of as a measure of the disorder in a system. As
we have seen in Chapter 2, entropy is obtained microscopically by state counting.
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The entropy of an isolated system is proportional to the logarithm of the number
of microscopic states available to the system.

From Egs. (3.3) and (3.12), the entropy must be an extensive, additive quantity
since dU has that property and T is intensive. If a system is composed of a num-
ber of independent subsystems, then the entropy of the whole system will be the
sum of the entropies of the subsystems. This additive property of the entropy is
expressed mathematically by the relation

SAU,AX, {AN,}) = AS(U, X, {N,}) . (3.19)

That is, the entropy is a first-order homogeneous function of the extensive state
variables of the system. If we increase all the extensive state variables by a fac-
tor A, then the entropy must also increase by a factor A. It is easy to check that
the Sackur—Tetrode equation in Eq. (2.50) (the entropy of an ideal gas) has this
property.

Differential changes in the entropy are related to differential changes in the ex-
tensive state variables through the combined first and second laws of thermody-
namics:

TdS>dQ=dU-YdX- ) u;dN;. (3.20)
j=1

The equality (inequality) holds if changes in the thermodynamic state are re-
versible (irreversible). Equations (3.19) and (3.20) now enable us to define the
Fundamental Equation of thermodynamics. Let us take the derivative of 1S with
respect to A:

d oS d 0S d
el = (2> — o (X
a s ((uu)x,w,; dA(wH(an)u,{N,; a0
S os d(AN))
+Z(MN'> T (3.21)
j=1 7/ UX, (N

However, from (3.20) we see that

(ﬁ) -1 (E) -_Y 95 __H
ou/xuy T \oX/uny T’ ON; T
UX, Ny}

(3.22)

The first, second, and third relations in Eq. (3.22) are called the thermal, mechan-
ical, and chemical equations of state, respectively. If we now combine Egs. (3.21)
and (3.22), we obtain

TS=U-XY =Y uN;. (3.23)
j=1
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Equation (3.23) is called the Fundamental Equation of thermodynamics (it is also
known as Euler’s equation).

If we take the differential of Eq. (3.23) and subtract Eq. (3.20) (we will take the
reversible case), we obtain another important equation,

SdT +XdY + Nidﬂ,:o, (3.24)
=1
which is called the Gibbs—Duhem equation. The Gibbs—Duhem equation relates
differentials of intensive state variables.

For a monatomic system (v = 1), these equations simplify if we work with den-
sities. Let us work with molar densities. For a single component system, the Fun-
damental Equation can be written 7S = U — Y X — un and the combined first and
second laws (for reversible processes) can be written 7dS =dU — YdX — ypdn.
Let us now introduce the molar entropy, s = S/n, the molar density, x = X /n, and
the molar internal energy, u = U /n. Then the Gibbs—Duhem equation takes the
formdy = —sdT — xdY and, therefore, the chemical potential is a function only
of intensive variables y# = p(T, Y). The fundamental equationis 7s = u — Yx — u
and the combined first and second laws become (for reversible processes) T'ds =
du — Y dx. Thus, (0s/0u), =1/T and (0s/ox), = =Y /T.

Exercise 3.2

The entropy of n moles of a monatomic ideal gas is given by the Sackur—Tetrode
equation in Eq. (2.50). The mechanical equation of state is PV = nRT and the
internal energy is U = (3/2)nRT. Compute the chemical potential of the ideal
gas.

Answer: Starting from Eq. (2.50), molar entropy can be written in the form

3/2
+RlIn [(27;;”) kg/z].

5 T5/2
=2R+Rln [ —
N 5 + n [ )

From the Gibbs—Duhem equation in Eq. (3.24), we have (du/0T ), = —s and
(0u/oP); = v = RT /P. If we integrate these we obtain the following expression
for the molar chemical potential:

5/2 3/2
4 =—-RTIn [(kﬁi (2”’”) ] .

p h?

Exercise 3.3

Mixing of distinct molecules provides an example of a spontaneous process that
leads to entropy increase without heat exchange. Consider an isolated rigid con-
tainer of volume V which is divided into / compartments of equal volume V//.
The walls of the compartments are massless, rigid, and conduct heat so the tem-
perature T is the same in all compartments. Each compartment contains n moles
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of a different kind of molecule A4; (j =1, ..., /) and the system is in equilibrium.
If the walls of the compartments are suddenly removed and the system is allowed
to come back to equilibrium, what is the change in the entropy of the system?

Answer: (a) Initially, the pressure is the same in each compartment and is given
by P?) = nRT/(V/I). Also, the internal energy is the same in each compartment
andis U; = (3/2)nRT. The entropy of the initial equilibrium state is the sum of the
entropies of the gases in each compartment. Using the Sackur—Tetrode equation,
it can be written as

!
5 T5/? 2mm\*"? 5
Sinitial=l§nR+Elann 20 + n/RIn [( 2 ) kB/ .
j= j

(b) The pressure of the gas of each type of molecule, after the walls are removed, is
P;f) =nRT/V,because each type of gas now fills the entire volume V. The internal
energy and temperature of the gases don’t change because, for an ideal gas, they
are independent of volume and the entire system is isolated. The total pressure of
the mixed gas is P = Zi,:l P;f) (Pi.f) is called the partial pressure of molecules of
type j). The entropy of the mixed gas is

+niRIn [(2”’”)3/2 k5/2] .

!
5
Sﬁnal = 15 nRk + ],_El nRlIn F 2 B
= j

The change in the entropy is

! pY
ASpix = Stinat = Simitial = 2, WRIn| —= | = niRIn 1.

- pb

j=1 j
The quantity AS_,, is called the entropy of mixing. If the particles were all identi-
cal, we would not have a summation in the expression for Sg,,;, but a single term
involving final pressure P) = n/RT/V and the entropy would not change. This
difference in behavior of identical and distinct particles is called the Gibbs para-
dox. The origin of this difference lies in quantum mechanics and the fact that the
number of microscopic states available to identical particles is different from the
number of microscopic states available to the same number of distinct particles.

3.5
Thermodynamic Potentials

In conservative mechanical systems, such as a spring or a mass raised in a gravita-
tional field, work can be stored in the form of potential energy and subsequently
retrieved [24, 145, 183]. Under certain circumstances the same is true for thermo-
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dynamic systems. We can store energy in a thermodynamic system by doing work
on it through a reversible process, and we can eventually retrieve that energy in
the form of work. The energy which is stored and retrievable in the form of work
is called the free energy. There are as many different forms of free energy in a ther-
modynamic system as there are combinations of constraints. In this section, we
shall discuss the five most common ones: internal energy, U; the enthalpy, H; the
Helmholtz free energy, A; the Gibbs free energy, G; and the grand potential, Q.
These quantities play a role analogous to that of the potential energy in a spring
when their respective dependent variables are held fixed and, for that reason, they
are also called the thermodynamic potentials.

3.5.1
Internal Energy

The combined first and second laws of thermodynamics (Eq. (3.20)) yield the fol-
lowing expression for the total differential of the internal energy U(S, X, { N i

dU <TdS+YdX+ ) u;dN,, (3.25)
j=1

where T, Y, and p j are considered to be functions of S, X, and {N j} and can be
expressed as partial differentials of the internal energy (see Table 3.1). The equal-
ity holds for reversible changes, and the inequality holds for changes which are
spontaneous. The internal energy is a thermodynamic potential or free energy be-
cause for processes carried out reversibly in an isolated, closed system at fixed S,
X and {N}, the change in internal energy is equal to the maximum amount of
work that can be done on or by the system.

Table 3.1 The equations for internal energy changes in a closed, isolated system.

Internal energy ues, X, {N;)
Total Differential dU=TdS+YdX+ 3, u;dN;
Fundamental Equation U=TS+YX+ Z;:l #;N;
ou
Equati f Stat T= (—)
quations of State 3s ) xin,)

ou ou
() (2

0X /s,(n)) oN;

S, X {Nizj}

Maxwell Relations

(2) () <£> _<%>
0X /s,(N;) 0S8 /X,(N;} N S, Nig)) aS X(N;)

<£> _ (%)
oN; SN 0X ) s n)

J
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For a substance with a single type of particle, the equations in Table 3.1 simplify
if we work with densities. Let # = U /n denote the molar internal energy. Then the
Fundamental Equation can be written u = Ts + Yx + y, where s is the molar en-
tropy and x is a molar density. The combined first and second laws (for reversible
processes) are du = T'ds+ Y dx. Therefore, we obtain the identities 7' = (du/0ds),
and Y = (du/0x),, and the Maxwell relations reduce to (07 /dx), = (0Y /0s),.

If a process takes place in which no work is done on or by the system, no matter
is exchanged with the outside world, and the entropy of the system doesn’t change,
then Eq. (3.25) becomes

d u)s,x,{]\]’.} <0 (3.26)

and the internal energy either does not change (reversible process) or decreas-
es (spontaneous process). Since a system in equilibrium cannot change its state
spontaneously, we see that an equilibrium state at fixed S, X, and {N,} is a state
of minimum internal energy.

352
Enthalpy

The enthalpy, H(S, Y, {N;}), is a thermodynamic potential for systems which are
thermally isolated and closed but mechanically coupled to the outside world. It is
obtained from the fundamental equation for the internal energy by adding to the
internal energy an additional energy —XY due to the mechanical coupling:

H=U-XY=ST+ Y wN;. (3.27)
7

The addition of the term —XY has the effect of changing the independent vari-
ables from (S, X, N ;) to (S, Y,N)) and is called a Legendre transformation. If we
take the differential of Eq. (3.27) and combine it with Eq. (3.25), we obtain the
following equation for the exact differential of the enthalpy

dH < TdS-XdY + ) u;dN;. (3.28)
J

The quantities 7', X and {y ;1 are functions of S, Y and {N i and can be expressed
in terms of partial derivatives of the enthalpy as shown in Table 3.2.

For a substance with a single type of molecule, the equations in Table 3.2 be-
come particularly simple if we work with densities. Let # = H/n denote the mo-
lar enthalpy. Then the fundamental equation for the molar enthalpy can be writ-
ten 1 = u —xY = sT + p. The exact differential of the molar enthalpy is dz =
T ds — xdY (for reversible processes), which yields the identities 7' = (0/1/0s)y
and x = (0h/0Y),. Maxwell’s relations reduce to (07 /0Y), = —(0x/0s), . In Exer-
cise 3.4, we compute the enthalpy for a monatomic ideal gas in terms of its natural
variables s and Y.
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Table 3.2 The equations for enthalpy changes in a system mechanically coupled to the out-
side world but closed to thermal and material exchange.

Enthalpy H(S, Y, AND
Total Differential dH=TdS-XdY + ¥, u;dN;
Fundamental Equation H=U-XY=TS+3¥_, uN;
Equations of State T= (d_H)
98 /Y, (N))

x=(21) uo (o

Y /Js,(n;) / ON;

S,Y Nz}

Maxwell Relations

() (o) T _(%>
Y /s,(N;) 0S8 JY,(N;} N, SY(N)) S YN}

<a_x> =_(%> (L) =<%>
oN; SN Y ) gin N /5,y Nii) oN; SriN)

J

Exercise 3.4

Compute the enthalpy for n moles of a monatomic ideal gas and express it in terms
of its natural variables. Assume the entropy is given by the Sackur-Tetrode equa-
tion S = (5/2)nR + nRIn[(V /Vy)(ny/n)(T/T,)>/*] and the mechanical equation
of state is PV = nRT.

Answer: If we combine the Sackur—Tetrode equation and the equation of state,
we can write the molar entropy in terms of temperature and pressure so that s =
(5/2)R + RIn[(P,/P)(T/ TO)S/Z]. Now since d# = T ds + vdP we have

2/5
oh RT oh P _
—_ = = —_ d —_ =T=T —_ (s SO)/SU,
<ap>s ' " p o <aS>P 0<P0> ¢

If we integrate, we find /1 = (5/2)RT(P/P,)*/>e“=50/% = (5/2)RT. In terms of
temperature, the molar enthalpyis 7 = (5/2)RT. Note that there is an easier way to
obtain these results. The molar internal energy is # = (3/2)RT. The fundamental
equation for the molar enthalpy is # = u + vP. Since v = RT /P, we obtain /1 =
(5/2)RT and H = (5/2)nRT.

If a process takes place at constant S, Y, and {N}, then
(dH)g,y,n,) SO (3.29)

Since the equilibrium state cannot change spontaneously, we find that the equi-
librium state at fixed S, Y, and {N,} is a state of minimum enthalpy.
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Helmholtz Free Energy

For processes carried out at constant 7', X, and {N,}, the Helmholtz free energy
corresponds to a thermodynamic potential. The Helmholtz free energy, A, is use-
ful for systems which are closed and thermally coupled to the outside world but
are mechanically isolated (held at constant X). We obtain the Helmholtz free en-
ergy from the internal energy by adding a term —ST due to the thermal coupling:

v
A=U-ST=YX+ ) uN,. (3.30)
j=1

The addition of —ST is a Legendre transformation which changes the indepen-
dent variables from (S, X, {N j}) to (T, X, {N j}). If we take the differential of
Eq. (3.30) and use Eq. (3.25), we find

dA < -SdT+YdX + #;dN,-- (3.31)

v
j=1

The equations of state and the Maxwell relations that result from Eq. (3.31) are
given in Table 3.3.

Let us consider a monatomic substance and let 2 = A/n denote the molar
Helmbholtz free energy. Then the fundamental equation for the molar Helmholtz
freeenergyisa = u —sT = xY + y, whereu = U/n,s = S/nand x = X/n. The
combined first and second laws (for reversible processes) can be written da =
—sdT + Y dx sothats = —(da/0T ), and Y = (da/dx)r. Maxwell’s relations re-

Table 3.3 The equations for changes in the Helmholtz free energy in a system thermally cou-
pled to the outside world but closed to mechanical energy and chemical exchange.

Helmholtz free energy A(T, X, {Nj})
Total Differential dA=-SdT+YdX + Z;Zl #;dN;
Fundamental Equation A=U-ST=XY+ Z/‘;l #iN;
. 0A
Equations of Stat T=- (—)
quations of State ot Jxin,)
(dA ) 0A
Y=(— =\ —
0X /1n)) / oN;
T.X{Nizj}
Maxwell Relations
(2) =) <£> __ ai)
0X /1 (ny) OT /X,(N;) N; X (Nij ) 9 X,(N;}

0 T
<a_y> =<%) (%) (z)
ON; XN X )1 n;) ON; ) 1.3, (Niwi) ON; XN
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duce to (0s/0x); = —(0Y /0T ),. In Exercise 3.4, we compute that Helmholtz free
energy for a monatomic ideal gas in terms of its natural variables.

If no work is done for a process occurring at fixed 7, X, and {N;}, Eq. (3.31)
becomes

dA)rx,v,) <0 (3.32)

Thus, an equilibrium state at fixed T, X, and { N, } is a state of minimum Helmholtz
free energy.

Exercise 3.5

Compute the Helmholtz free energy for n moles of a monatomic ideal gas and
express it in terms of its natural variables. The mechanical equation of state is
PV = nRT and the Sackur—Tetrode equation for the entropy can be written S =
(5/2)nR + nRIn[(V/Vy)(ny/n)(T/Ty)>?].

Answer: Sinceda = —sdT — Pdv we have

3/2
(‘)—“) —s=-2p_rm|X (L
oT /v 2 vo \ Ty
and

<@_ﬂ) —_p—_RT
ov/r v

If we integrate, we find a = —RT — RTIn [(v/vo)(T/T0)3/2] and A = —nRT —
nRT In [(V/Vy) - (ng/n)(T/Ty)*?].

354
Gibbs Free Energy

For processes carried out at constant T, Y and {N,}, the Gibbs free energy cor-
responds to the thermodynamic potential. Such a process is coupled both ther-
mally and mechanically to the outside world. We obtain the Gibbs free energy,
G(T, Y, {N;}), from the internal energy U by adding terms —ST and —XY" due to
the thermal and mechanical coupling, respectively,

G=U-TS-XY=) uN,. (3.33)
j=1

In this way we change from the independent variables (S, X, { N, }) for the internal
energy to the independent variables (T, Y, {N;}) for the Gibbs free energy. If we
take the differential of Eq. (3.33) and use Eq. (3.25), we obtain

dG <-SdT - XdY + ) u;dN;. (3.34)
J
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Table 3.4 The equations for changes in the Gibbs free energy in a system thermally coupled
and mechanically coupled to the outside world but closed to chemical exchange.

Gibbs free energy G(T, Y, {N;}
Total Differential dG=-SdT - XdY + ¥, u;dN;
Fundamental Equation G=U-TS-YX= Z;:l #;N;
Equations of State S=- <E)
0T /v,(N;)
Y /1(n;) / oN;
T,Y,{ Ny}

Maxwell Relations

(85) (&) 0 __(%>
Y T,{N;} oT Y,{N;} TYANi)) oT YN}

(a_x> () () (@L)
N T.Y,(Njg)) W Jrny) i/ TYANp) N; T,Y,(Niy))

The equations of state and Maxwell equations for the Gibbs free energy are given
in Table 3.4.

Let us consider a monomolecular substance and let ¢ = G/n denote the molar
Gibbs free energy. Then the fundamental equation for the molar Gibbs free ener-
gyis g =u —sT —xY = p and the molar Gibbs free energy is equal to the chemical
potential (for a monomolecular substance). The combined first and second laws
(for reversible processes) can be writtendg=—sd 7 —x dY so that s =—(dg/0T )y
and x = —(dg/dY);. Maxwell’s relations reduce to (0s/0Y); = +(0x/0T ),. For
a monatomic substance, the molar Gibbs free energy is equal to the chemical po-
tential.

n

9] (7]
2

u

~

U
=

Exercise 3.6

Consider a system which has the capacity to do work, dW = —Y dX + dW’. As-
sume that processes take place spontaneously so that dS = 1/TdQ + d,S, where
d;S, is the entropy change due to the spontaneity of the process. Show that
—(dG)y.r =dW' + T d;S, so that, at fixed Y and T, all the Gibbs free energy is
available to do work for reversible processes but only part of it is available to do
work for spontaneous processes.

Answer: From the fundamental equation for the Gibbs free energy, we know that
dG=dU-XdY -YdX - TdS—SdT. Also we know that dl/ =dQ + Y dX —
dW’, so we can write dG =dQ —dW’' — XdY — TdS — SdT. For fixed Y and T
we have (dG)y ; = dQ —dW’ — T dS. Now remember that dS = 1/TdQ + d,S.
Then we find (dG)y ; = -dW' — T d;S.
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For a process at fixed 7', Y, and {N,} we obtain
dG)ry,n) <0, (3.35)

and we conclude that an equilibrium state at fixed T, Y, and {N,} is a state of
minimum Gibbs free energy.

3.5.5
Grand Potential

The Grand Potential is a thermodynamic potential that is extremized for a sys-
tem in thermal and chemical equilibrium with the surrounding environment but
is mechanically isolated. It describes systems that are held at the same tempera-
ture and chemical potential as the environment. It is a thermodynamic potential
energy for processes carried out in open systems where particle number can vary
but 7', X, and {4} are kept fixed.

The grand potential, (2, can be obtained from the internal energy U by adding
terms to U that are due to thermal and chemical coupling of the system to the
outside world:

Q=U-TS-Y uN;=XY. (3.36)

=1
The Legendre transformation in Eq. (3.36) changes the independent variables
from (S, X, {N,}) for the internal energy to (T, X, {¢,}) for the grand potential.

Table 3.5 The equations for changes in the Grand Potential in a system thermally and chemi-
cally coupled to the outside world.

Grand potential (T, X, {uj})
Total Differential dQ=-SdT+YdX - Z;:l N;du;
Fundamental Equation Q=U-TS- Z;:l uiN; =XY
00
Equations of State S=- (—)
d 0T /X, {u;}

r=(22) y--(2)

T’ . .

(/4/) /4] T'X'(Ml#j)

Maxwell Relations

(85) -2 9 =<%>
X ) 1,41 T ) X,tu)) i) gy N 0T Xty

<£> =_<%> (2 =<6Nf>
5 ) ) OX /) 1,14y Wi ) rxtms) N\ )

U
=z
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If we take the differential of Eq. (3.36) and combine it with the differential dUJ
in Eq. (3.25), we obtain

dQ <-SdT+YdX - ) N;dy, . (3.37)
J

The equations of state and Maxwell relations that result from the fact that dQ is
an exact differential, are listed in Table 3.5.
For a process at fixed T, X, and {ﬂj }, we obtain

(dQ)7,x,uy <O (3.38)

Thus, an equilibrium state at fixed T, X, and {;} is a state of minimum grand
potential.

3.6
Response Functions

The response functions are the thermodynamic quantities most accessible to ex-
periment. They give us information about how a specific state variable changes
as other independent state variables are changed under controlled conditions. As
we shall see in later chapters, they also provide a measure of the size of fluctu-
ations in a thermodynamic system. The response functions can be divided into
(a) thermal response functions, such as heat capacities, (b) mechanical response
functions, such as compressibility and susceptibility, and (c) chemical response
functions. We shall introduce some thermal and mechanical response functions
in this section.

3.6.1
Thermal Response Functions (Heat Capacity)

The heat capacity, C, is a measure of the amount of heat needed to raise the tem-
perature of a system by a given amount. In general, it is defined as the derivative,
C = (dQ/dT). When we measure the heat capacity, we try to fix all independent
variables except the temperature. Thus, there are as many different heat capac-
ities as there are combinations of independent variables, and they each contain
different information about the system. We shall derive the heat capacity at con-
stant X and {N,}, Cx N and we shall derive the heat capacity at constant Y and
{N;}, Cy, Ny} We will derive these heat capacities in two different ways, first from
the first law and then from the definition of the entropy.

To obtain an expression of Cy , Ny We shall assume that X, T, and {N,} are

independent variables. Then the first law, dQ = dU — Y dX — Zj #;dNj, can be
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written
ou ou
= (2= dT + (—) —y|dx
4Q (()T)x,(N/} [ 0X /1,(N}) ]
ou
+ (W) —u; |dN; . (3.39)
j 7/ TX (N
For constant X and {N;}, we have [dQ]X,(N]-} = CX,{N/} dT and we find
ou
Cramy = (57) 3.40
X,(N;) oT Jxv) (3.40)

for the heat capacity at constant X and {N j}.
To obtain an expression for Cy N, We shall assume that Y, T, and {N} are
independent variables. Then we can write

X X 0X d 3.41
dX:(—) dT+(—> dY + E N;. (3.

0T /y,(N)) oY / 1,(N;) j Ni T,Y,{Ny;} ] | )

2 L5 il

If we substitute the expression for dX into Eq. (3.39), and hold Y and {N i fixed
so thatdY = 0 and {de = 0}, we obtain

ou X
[4Qly v, = {CX,{N,_} + [<0_X>T,(N-} - Y] <a_T>y,{N.} } dT  (342)

Since [dQ]Y,{N’_) = Cy,(x,) dT and we obtain

ou 0X
Cy vt =Cx oy + (—) —y (—) 3.43
YN AN [ 0X /1,(N}) ] 0T /v,(N)) ( )

for the heat capacity at constant Y and {N;}.

For a monatomic substance, these equations simplify. Let us write them in
terms of molar quantities. We can write the heat capacity in the form Cy , =
U/oT )x,, = n(0u/dT ),, where u = U/n is the molar internal energy and
x = X/n is a molar density of the mechanical extensive variable. The molar heat
capacity is then ¢, = (du/0T ), so that Cy , = nc,. Similarly, let us note that
(0X/0T )y, = n(0x/0T )y and (0l /0X)y, = n(du/dx)y. Therefore, the molar
heat capacity at constant Y is ¢y, = ¢, + [(0u/0x); — Y1(0x/0T )y.

Itis useful to rederive expressions for Cy | N} and Cy N)) from the entropy using
the definitiondQ = T dS. Let us first assume that 7, X, and {N ;}are independent.
Then for a reversible process, we obtain

S aS aS
dQ=T(—) T(—) ax+¥Y 1L AN, .
0T / x,(N;} 0X /) 1,(N;) ; aNj XN j

XNz

(3.44)
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For a process which occurs at constant X and {N i1 Eq. (3.44) becomes

0S

— dT, 3.45
()T)x,{N/} ( )

QL = T (

and therefore

oS ?A
Cov =T (—) —_r(%4 . 3.46
X,{N;} oT XN)) <aT2>X{Nv) ( )
4 ]

The second term uses the fact that S = —T (0A /0 T)X,(N]-} (see Table 3.3).
Let us now assume that 7', Y, and {N,} are independent. For a reversible pro-
cess, we can write

0S 0S oS
=T(—) dT+T(—) ar+ ¥ 1 & dn.,.
4Q 0T /v, (n;) oY /1N Z]: ON; S /
VY (N

]
(3.47)

If we combine Egs. (3.41) and (3.44), and hold Y and {N/} fixed, we can write

Qly ) = T [(%)X{N’) + (%)T,{N’_} <%>yw,;] dT.  (348)

If we now compare Eqs. (3.47) and (3.48), we find

oS 0’G
Cyny=T (—) =-T\ 5=
V(NG 0T ) v,n;) <6T2 > Y,(N;)

aS 0X
= Cys+T (—) (—) . 3.49
XN 0X /1,(Njy \OT /v,(N}) ( )

The top line in Eq. (3.49) uses the relation S = =T (0G /9 T)Y,{N’_} (see Table 3.4).
We can obtain some additional useful identities from the above equations. If

we use the Maxwell relation (aS/dX)Ty(N]_} =—-(Y/o T)X{N/} (see Table 3.3) and
Eqgs. (3.43), and (3.49), we obtain the identity
1 Y
(%)T,(Nj} T [(%)T,(N,} - Y] =_<3_T)x,{1v,} ’ (3.50)
Therefore,
<52_Y> __1 (aCX’{N'}> , (3.51)
oT? XN T 0X .

where we have used identity (0/0T (05/0X)7,,) ., = (9/9X (95/9T)x. ), and
Eq. (3.50).

For a monatomic substance, it is fairly easy to show that the molar heat ca-
pacity at constant molar density, x, is ¢, = T(ds/0T ), = —T(9*a/0T?),, and the
molar heat capacity at constant Y is ¢, = T(ds/dT )y = —T(3*a/0T?)y. We also
obtain the useful identities (0s/0x); = (1/T)[(Qu/ox); — Y] = —(0Y /0T ), and
(%Y /0T?), = —(1/ T)(dc, /9x) -
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3.6.2
Mechanical Response Functions

There are three mechanical response functions which are commonly used. They
are the isothermal susceptibility,

0X > ( 0*G )
=5 =—(== , (3.52)
XT,(N;) <6Y TN;) Y2 1N
the adiabatic susceptibility,
0X > ( 0*H )
1= lay =—( = , (3.53)
PRI <6Y SN;) Y2 S.N))
and the thermal expansivity,
0X
Ay (N = <0_T)Y,{N/) . (3.54)

Using the identities in Section 3.5, the thermal and mechanical response functions
can be shown to satisfy the identities

XT,(N,}(CY,{N,} - Cx,(N,}) = T(aY,(N]-})Z ’ (3.55)
Cy,inyUrny = Xs,iv ) = T(“y,(N/))z , (3.56)
and
Cyiny X1
— =7 (3.57)
Cx,{N,} Xs,(N;)

The derivation of these identities is left as a homework problem.

For PVT systems, the mechanical response functions have special names.
Quantities closely related to the isothermal and adiabatic susceptibilities are
the isothermal compressibility,

1 ( A% > 1 (0°G
P —_— (%Y =—— (2= , 3.58
T,{N;} vV \oP /1) % <0P2 TN ( )
and adiabatic compressibility,
1 ( A% > 1 (0*H
P —_— (%Y =—— (2= , 3.59
S,{N;} v \ oP S.N)) % <0P2 S ( )

respectively. The thermal expansivity for a PVT is defined slightly differently from
above. It is

1 ( A% )

a == (== . 3.60

PN = v \oT /o) (3:60)

For a monatomic PVT system the mechanical response functions become even

simpler if written in terms of densities. The isothermal and adiabatic compress-

ibilities are k; = —(1/v)(dv/0P); and k, = —(1/v)(0v/0P),, respectively, where

v = V/nands = §/n are the molar volume and molar entropy, respectively. The

thermal expansivity is ap = (1/v)(0v/0T )p.
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Exercise 3.7

Gases are composed of atoms or molecules that have a repulsive core and a weak
attractive region surrounding the repulsive core. The van der Waals equation of
state

p+ 4 (V —=nb) =nRT
V

gives corrections to the ideal gas equation of state due to these interactions. The
parameter a accounts for a reduction in pressure due to the attractive interaction
and b reduces the volume available to the particles because of the repulsive core.
(a) Compute the molar heat capacity cp, (b) the adiabatic compressibility g, and
(c) the thermal expansivity a) for a van der Waals gas. Assume a monatomic gas
so that ¢, ,, = 3R/2.

Answer: (a) First note that from Eq. (3.51) and the van der Waals equation, we
have the relation (0Cy,,,/0V), = T (0*P/dT?), = 0, which shows that Cy,
is independent of V. We can compute ¢p using Eq. (3 43). From the van der Waals
equation of state and Eq. (3.50), we find

(), =[5 (5,8

v—>b v3 ov v2
where v = V/n. If we combine Eq. (3.43) and the above equations, and use the
van der Waals equation of state, we obtain

3

—_p217t
=2r+R 1_M]

RTv3

Cp

(b) The derivation of the adiabatic compressibility, x, is more involved. We first
find the entropy. Note that (ds/dT), = 3R/(2T ) and (9s/0v); = (0P/dT), =
R/(v — b). If we integrate, we obtain the molar entropy s = RIn[(v — b)T%/?] +
constant. Using the van der Waals equation, we obtain

3/2

s:%R+Rln [(V—b)5/2<P+%) + constant .
v

If we now take the derivative of s with respect to P holding s fixed, we obtain

K___(dv) 5 RTv  2a]

s op 3(v=>0)2 12

(c) The thermal expansivity a is easy to compute. If we take the derivative of the
van der Waals equation with respect to T holding P fixed, we find

1<6v> _e|_RT _20c(v—b)]‘1

aP:? T /» (v=>) v3
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3.7
Stability of the Equilibrium State

The entropy of an isolated system takes its maximum value at equilibrium. If the
system has a finite number of particles, the thermodynamic quantities describe
the average behavior of the system and there can be spontaneous fluctuations
away from this average behavior. Fluctuations away from equilibrium must cause
the entropy to decrease. If this were not the case, the system could spontaneously
move to a new equilibrium state with a higher entropy because of fluctuations.
For a system in a stable equilibrium state this, by definition, cannot happen.

We can use the fact that the entropy must be maximum for an isolated system
to obtain conditions for local equilibrium and for local stability of equilibrium
systems [67, 109, 183]. We will restrict ourselves to PVT systems. However, our
arguments also apply more generally to YXT systems.

3.7.1
Conditions for Local Equilibrium in a PVT System

Let us consider a mixture of [ types of particles in an isolated box with total vol-
ume, Vi, total internal energy Uy, total entropy St, and total number of parti-
cles N 1 of type j. Assume that the box is divided into two parts, A and B, by
a conducting porous wall which is free to move and through which particles can
pass. With this type of dividing wall there is a free exchange of heat, mechanical
energy, and particles between A and B. One can think of A and B as two different
parts of a fluid (gas or liquid), or perhaps as a solid (part A) in contact with its
vapor (part B). We shall assume that no chemical reactions occur. Since the box
is closed and isolated, we can write

UT=ZUQ, VT=ZVD{’ ST=ZSW’ Nj,T=ZN]',ot’

a=A,B a=A,B a=A,B a=A,B
(3.61)

where U,, V,, S,, and N, , are the internal energy, volume, entropy, and total
number of particles of type j in compartment a, respectively.

Let us now assume that spontaneous fluctuations can occur in the energy, vol-
ume, and particle number of each cell subject to the constraints

AUy =AVy=AN;1 =0 (3.62)

sothat AU, = —AlUg, AV, = —AVg,and AN, , = —AN 5. As long as the system
is not near a phase transition, the fluctuations will be small. Then changes in the
entropy, due to these fluctuations, can be expanded in a Taylor series to first order
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in the fluctuations and can be written

25, \° 25, \"°
AST= Z W AL[a+ W A‘/(x

a=A,B VAN o} UpiNj o)

l 0
as,
+Z(0N‘ ) AN; | +... (3.63)

a
/ uwva'(Nk%j,a}

where the superscript “0” denotes absolute equilibrium. From Egs. (3.22) and
(3.62), we can write Eq. (3.63) in the form

i 0 0
Hin  Hip
_Z(F_F ANj + ..., (3.64)

where T9 and P are the equilibrium temperature and pressure, respectively, of
the material in compartment «a, and u?}a is the equilibrium chemical potential of
particles of type j in compartment a.

For a system in equilibrium, the entropy is a maximum. Therefore, any spon-
taneous changes must cause the entropy to decrease. However, AlU,, AV,, and
AN 5 can be positive or negative. Thus, in order to ensure that AS; <0, we must
have

Tg:Tg, P0A=Pg, and /A?}A=ﬂ?yB for j=1,...,[. (3.65)

Equations (3.65) give the conditions for local equilibrium in a system in which
no chemical reactions occur. Thus, if the interface between A and B can transmit
heat, mechanical energy, and particles of all types, then the two systems must have
the same temperature, pressure, and chemical potential for each type of particle
in order to be in equilibrium. It is important to note that if the partition cannot
pass particles of type, i, then AN; , = AN; = 0 and we can have p, # u) . If
the partition is nonporous and fixed in position so no particles can pass and no
mechanical work can be transmitted, then we can have P # P) and ,u?y A F ﬂ?}B
(j =1, ..., 1) and still have equilibrium.

3.7.2
Conditions for Local Stability in a PVT System

Stability of the equilibrium state places certain conditions on the sign of the re-
sponse functions. To see this, let us again consider a closed isolated box with vol-
ume V7, total entropy Sy, total internal energy U, and a total number of par-
ticles N 1 of type j, where j = 1,..., v. We shall assume that the box is divided
into [ cells which can exchange thermal energy, mechanical energy, and particles.
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We shall denote the equilibrium volume, entropy, internal energy, and number of
particles of type j for the ath cell by V?, S%, 119, and N;),zx’ respectively. The equi-
librium pressure, temperature, and chemical potentials of the various cells are P°,
T and ;4?, respectively (they must be the same for all the cells). As we have seen
in Section 3.7.1, when we expand the total entropy in terms of fluctuations AU,
AV,, and AN} ,, first-order terms are zero. Thus, the changes in the entropy, to
second order in fluctuations, can be written

1

AST=%Z lA(%)uALIa+A<? : ” <%>uANj'“] +o

a=1

~
~—
]
>
<
|
M
>

(3.66)

which is a compact way to write the many terms that contribute to second order.
The fluctuations AU, AV,, and AN, , are defined as AU, = U, — u,Av, =
V, = V2,and AN, , =N, , = N? and denote the deviation of the quantities U/,
, f ja
V,,and N , from their absolute equilibrium values, U 2, V% and N' 0 | respectively.
s Jra
For [ = 1, there will be nine terms.

Exercise 3.8

A spherical droplet of liquid floats in equilibrium with its gas phase (neglect grav-
ity) in a large room with volume Vi, = V| + V,, where V| (1}) is the volume
of the liquid (gas). The droplet has radius R and surface tension o. (For water
0 =0.072N/m at T = 25°C.) The gas and liquid are free to exchange heat and
molecules, so the temperature and chemical potential are uniform throughout the
system. Find the condition for mechanical equilibrium.

Answer: The condition for chemical equilibrium is ﬂg( T, Pg) = w(T, Py,
where y (p4,) is the chemical potential of the liquid (gas) and P; (P,) is the pres-
sure of the liquid (gas). Since we are dealing with a system of fixed total volume,
temperature and chemical potential, it is convenient to use the grand potential.
The grand potential for the entire system can be written

Q=-P,V,— PV +0A = (Vtot - %nzﬁ) P, - %nRsPl + o4nR? .
For a system at equilibrium with fixed temperature, total volume, and chemical
potential, the grand potential must be a minimum so the condition for thermody-
namic equilibrium is (d€2/dR)y,,, , = 0. Therefore, when the interface between
two parts of a thermodynamic system has a surface tension and the surface has
curvature, the condition for mechanical equilibrium takes the form

20
P=Pg =

The pressures in the two parts of the system need not be equal.
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To obtain the full expansion of Eq. (3.66) in terms of fluctuations AU, AV,
and AN, ., note that

ja

A<1> _A<()S> A(P) _A<()S>
T/« Uy )y, x| T/« Vo uy i,

i S
and A=) =-A “ . (3.67)
T/, N, ,
4/ U,V N

l#/ya)

We can expand A (9S,/dU,),,  , in terms of fluctuations AlU,, AV, and
a’ ja
AN; , as follows:

S 25\ °
A( ) <_’352> AU +
Uy )y vy \NOU? vy
0

S| o /oS
+ Z (£ AN, . (3.68
IZ{ laNj (au)v,w,;] - (3.68)

U, V,{Niz;}

0

2 (%5 ] AV
oV \ol /v,(n;) LN, “

The quantities A0S, /0V, ), JANa) and A0S, /ON; )y v, (N, ) €D be expand-
ed in a similar manner. In Eq (3 68) the superscrlpts 0 on partial derivatives in-
dicate that they are evaluated at absolute equilibrium.

It is useful to write Eq. (3.66) in a slightly different form. If we use the com-
bined first and second laws to relate the fluctuations as T°AS = AU + P°AV —
Z/ L ﬂo AN, then we find

1 v
ASy = —% Y (ATaASu —APAV, + Y A,uj’aANj,u> +or, (3.69)
a=1

j=1

where T? is the equilibrium temperature of the system. Equation (3.69) gives the
entropy change, due to spontaneous fluctuations, in a completely general form.
This expression for AS|, can be expanded in terms of any set of independent vari-
ables we choose.

Let us now obtain stability conditions for the PVT system. For simplicity, we
will assume that only one kind of particle exists in the system and we will as-
sume that different parts of the system cannot exchange particles. Then AN, = 0.
Let us choose T and V as the independent variables. With these assumptions, we
can write

[AS, Iy, = (%);N AT, + (22

0

) AV, (3.70)
T,N

and

oP\° oP\°
(AP, Iy, = <ﬁ>VNATa+<—V>TNAV . (3.71)
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If we substitute Egs. (3.70), (3.71), and the constraint AN, = 0 into Eq. (3.69), and
use the Maxwell relation (0S/0 V') 5y = (0P/0T)y,  for the Helmholtz free energy
(see Table 3.3), the entropy change becomes

1w [/35\° P \°
ASy =525 ; [(ﬁ)m (AT,)? - <W>T,N (Av;,)z] o (372)

Because the fluctuations AT, and AV, are independent, the requirement that
AS < 0 for a stable equilibrium state leads to the requirements that

aS

1 /oV
6T> >0 and KTYN=—V(—) >0. (3.73)

C _T(
V,N aP

The constraints in Eq. (3.73) are a realization of Le Chételiers’s famous principle:
If a system is in stable equilibrium, then any spontaneous change in its parameters
must bring about processes which tend to restore the system to equilibrium.

The first constraint in Eq. (3.73), Cy, 5y > 0, is the condition for thermal stability.
It tells us that if a small excess of heat is added to a volume element of fluid, the
temperature of the volume element must increase relative to its surroundings so
that some of the heat will flow out again. This requires that the heat capacity be
positive. If the heat capacity were negative, the temperature would decrease and
even more heat would flow in, thus leading to an instability. A similar analysis
shows that Cp 5, > 0. From Eq. (3.56), we obtain the condition

Cpn > Cyn 20. (3.74)

The second constraint in Eq. (3.73), k7 5 > 0, is a condition for mechanical stabil-
ity. If a small volume element of fluid spontaneously increases, the pressure of the
fluid inside the fluid element must decrease relative to its surroundings so that the
larger pressure of the surroundings will stop the growth of the volume element.
This requires that the compressibility be positive. A similar analysis shows that
Kgn = 0. From the analog of Eq. (3.56) for PVT systems, we can show that

Kpn > Kgn 20 (3.75)

We can also obtain conditions for chemical stability. If we expand Eq. (3.69) in
terms of fluctuations AT, AP and AN, and hold P and T fixed, we obtain the
following condition for chemical stability

oy
(AN)" -7 - (AN) = ZZ( ’) AN,AN, >0, (3.76)
i=1 j= T,P (Nt}

where AN; and AN are independent and arbitrary variations,

K11 M1 0 Hig AN;

Ho1 Moo 0 Hoy

p=| 2 e R AN = (3.77)

Ui Hip = By ANV
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(AN)T denotes the transpose of (AN), and Wi = (d/tj/aNi)oT,me#i
the Maxwell relation y1; ; = y; ; (see Table 3.4), the matrix g is symmetric. In ad-
dition, in order to satisfy the condition for chemical stability, the matrix z must
be a positive definite matrix. A symmetric matrix is positive definite if y;; > 0
(i =1,...,1) and if every principal minor is positive or zero.

It is important to note that a thermodynamically stable state may not be a state
of thermodynamic equilibrium unless the appropriate free energy is minimum.
A thermodynamically stable state which is not an equilibrium state is sometimes
called a metastable state. It can exist in nature but eventually will decay to an
absolute equilibrium state.

- Because of

3.7.3
Implications of the Stability Requirements for the Free Energies

The stability conditions place restrictions on the derivatives of the thermodynam-
ic potentials. Before we show this, it is useful to introduce the concept of concave
and convex functions [193]:

1. A function f(x) is convex if &2 f(x)/dx?® > 0 for all x (cf. Figure 3.3). For
any x, and x, the chord joining the points f(x;) and f(x,) lies above or on the
curve f(x) for all x in the interval x; < x < «,. If d f(x)/ dx exists at a given
point, the tangent at that point always lies below the function except at the
point of tangency.

2. A function f(x) is concave if the function — f(x) is convex.

From Table 3.3 and the stability conditions in Eqgs. (3.74) and (3.75), we can write

2 CV, N.
<a_,2> =—(§> LTIy (3.78)
oT V,IN)) 0T /v,(N}) T

2
<‘)—“§> =-(&) =o——>0. (3.79)
1% T,(N]-} 1% T,{N/v} VKT,{N/‘}

The Helmholtz free energy is a concave function of temperature and a convex func-
tion of volume.

1
1
1
1 1
I 1
1 1
1 ]
1 1
)}1 )2’2 “" Figure 3.3 The function f(x) is a convex function of x.
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From Table 3.4 and the stability conditions in Eqs. (3.74) and (3.75), we can write

02G> ( oS ) Crinp
gz =—(= =——27 <0, (3.80)
<6T2 RN} oT /Ny T

02G> (0V>
s = (L =—Viky v, <0. (3.81)
<aP2 T,(N;) 0P / 1,(N;) i

Thus, the Gibbs free energy is a concave function of temperature and a concave
function of pressure.

Exercise 3.9
A mixture of particles, A and B, has a Gibbs free energy of the form

G = 0 0 NNy
= (P, T)+npgug(PT)+RTn,Inx, + RTnplnxy + 1 e

where n = n, + ng, ¥, = n,/n, and xz = ny/n (n indicates mole number), 4%
and 49 are functions only of P and T'. Plot the region of thermodynamic instability
in the x, —T plane.

Haa  HaB

Answer: (a) For chemical stability, the matrix ( ) must be symmetric

HBA  HBB

positive definite. This requires that (9p /0n,)p 7,0, > 0, (Op/Ong)p 7, > 0,and
(Opn/On)p1m, = Opg/0n\)p 7y, <O0.The chemical potential of the A-type par-
ticle is

NaNp

n
ﬂA=<ﬁ> =0, T)+RT Inxy + A2 —
PTng n

2
ony n

A condition for thermodynamic stability is

<c),u_A> _RT Mg Ang N An,ng
ony, AT, 3

or xi —x, +RT/(21) > 0. For T > A /(2R), this is always satisfied. A plot of T' =
2A/R)(x — xi) is given below.

2 critical point
el -------=
» &
S %
S 7
b ‘ unstable ‘
| ‘ ’ |
0 0.5 Xa 1.0

The shaded region corresponds to x3 —x, + RT/(21) < 0 and is thermodynami-
cally unstable. The unshaded region is thermodynamically stable. For T < 1/(2R),
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two values of x, satisfy the condition x5 — x, + RT/(21) > 0 for each value of T.
These two values of x, lie outside and on either side of the shaded region and
are the mole fractions of two coexisting phases of the binary mixture, one rich
in A and the other rich in B. For T > 1/(2R), only one value of x, satisfies the
condition x5 — x, + RT/(21) > 0, so only one phase of the substance exists.

The form of the Gibbs and Helmholtz free energies for a magnetic system is not so
easy to obtain. However, Griffiths [74] has shown that for a system of uncharged
particles with spin, G(T, H) is a concave function of 7'and H and A(T, M) is a con-
cave function of 7" and convex function of M.

3.74
Correlations Between Fluctuations

The probability distribution of fluctuations about absolute equilibrium can be
written in terms of the entropy function associated with those fluctuations (see
Eq. (2.19)). We can generalize Eq. (2.19) to include simultaneous fluctuations in
several macroscopic variables. Then we can use Eq. (3.69) to determine the proba-
bility density for fluctuations in thermodynamic quantities about the equilibrium
state.

Let us consider a closed isolated system with energy E. We shall assume that the
macroscopic state of the system is describable in terms of # independent macro-
scopic state variables A;(i = 1,2, ...,n). Let I'(E, A, ..., A,) denote the number
of microstates with energy E and parameters A4, ..., A,. Then the probability that

the system is in a macroscopic state described by parameters E, A, ..., A,,, is giv-
en by
[(E,A,,...,A,)
P(E,Ay,...,A,) = —————, (3.82)
I'(E)

where I'(E) is the total number of microscopic states with energy E. The entropy
of the system in a state with parameters (E, A, ..., A,,) is given by

S(E,A,,...,A,) =kgIn[[(E,A,,...,A)]. (3.83)
Hence

P(E, A A,) = 1 ex iS(EA A,) (3.84)

PAp o An) = T p i SE AL A .

The entropy will be a maximum when the system is in an equilibrium state,
A‘l), ,A?l. Any fluctuation about the equilibrium state must cause the entropy
to decrease. If we let a; denote the fluctuations

a,=A;—A?, (3.85)

then we can expand the entropy about its equilibrium value to obtain

n n
1
S(E, Ay, ..., A,) =S (E,AS, ..., A%) - 5 DD gma (3.86)

i=1 j=1
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where

9%S
g =—( L3 , (3.87)
L] (0A10A1 )szA(J'A,.:AO
=4 j

We assume that the fluctuations about the equilibrium state are small so we can
terminate the expansion of the entropy at second order. This approximation is
not good near a phase transition where fluctuations can become very large. The
matrix g;; is positive definite since the entropy must decrease and it is symmet-
ric since the quantities, A;, are state variables. Equation (3.86) contains no terms
which are first order in A, to ensure that spontaneous fluctuations about the equi-
librium do not cause an increase in the entropy. Equilibrium is a state of maximum
entropy.

We can now substitute Egs. (3.86) into Egs. (3.84) and obtain the following
expression for the probability distribution of fluctuations about the equilibrium

state,
Play = | Setlel (oL ZZ aa (3.88)
(2mky )" P 2y S & 8% | - '

where & denotes the 1 x 7 column matrix composed of elements a; and g denotes
the 7 X n square symmetric matrix composed of matrix elements g; ;. The quan-
tity, det |g], is the determinant of the matrix g. The probability P(a) is normalized

to one

J daP(a) = J da; X -+ X J da,P(a) =1 (3.89)

(see Exercise A.7). Since only small fluctuations are assumed to be probable, there
is no difficulty in extending the limits of integration in Eq. (3.89) from —oo to +c0.

We often want to find expectation values of various moments of the fluctua-
tions. To do this, it is convenient to introduce a more general integral,

[oe]

det |§| 1 1 = T gt gt
1 = d - .o a+ . — e3P & /3’
B Gk, J a exp 2/<Ba g-a+pf -a e

—00

(3.90)

where 8 is 1 X # column matrix and ™ and 8T denote the transpose of a and 3,
respectively (see Exercise A.8). The moment, (a;a;), is defined as

. 0? —1
(a,a;) = }312?) (6/J’i6/)’j1(ﬁ)) = kg(g ;- (3.91)
Since the probability density, P(a), is a multivariant Gaussian with zero mean, the
first moment, (a;) = 0, and all higher moments can be expressed in terms of the
moments (a?) and (a;a;) (see Exercise A.8).
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Let us now apply this formalism to a PVT system. We consider a monatomic
fluid in a closed isolated box with volume, V7., total entropy, Sy, total energy, Er,
total number of particles, N, and total mass, M. We shall assume that the box
is divided into [ cells of equal size and that at equilibrium the volume, entropy,
internal energy, and mass of particles in the ith cell are V; = V|, S;, U;, and M,
respectively. The total volume of the box is then Vi = [V[. The equilibrium pres-
sure, temperature, and chemical potential of the whole system are denoted P°, T°,
and y°, respectively.

From Eq. (3.69), the entropy change due to deviations in various thermodynam-
ic quantities from their equilibrium state can be written

l
ASy = 2LT0 (=ATAS; + APAV, = Ap;AM;) (3.92)

i=1
where we now use the mass of particles in the ith cell as the extensive chemical
state variable (as opposed to particle number or mole number) and the chemical
potential has appropriate units for that choice.

We next obtain an expression for AS} in terms of a set of independent vari-
ables. Let us first pull the volume dependence out of the expression for AS;. We
will write S = Vs and M = V| p, where s is entropy/volume and p is mass/volume.
Let us next note that the Gibbs—Duhem equation, when written in terms of mass
density, p, takes the form p dy = —s d T+ d P so the fluctuations satisfy the relation
pApu = —sAT + AP. Therefore, ATAS — APAV + AgAM = Vo(ATAs + Aulp).
The differential of the Helmholtz free energy/volume, a, satisfies the equation
da = —sdT + udp, so (0u/dT ), = —(ds/dp)r. If we now choose temperature
T and mass density p as independent variables, we obtain

ATAS — APAV + AuAM =V,

C—p(AT)2+ a—”>0(A )? (3.93)
7o ). P s .

where c, is the equilibrium specific heat.
We can write the probability of a fluctuation a® = ({AT,}, {Ap,}) in the form

(Voc,/T*2)" [(Vo/ T*)Ou/9p)s|'
Qmkg)*

l 0
1 Vocy 2, Vo (ou 2
X - AT. — | — Ap; ,  (3.94
exp{ 2/{32{ [ T AT+ 70 (5,) @ (3.94)

(see Eq. (3.88)), where we have used the fact that g; ; = (V;c,)/ T°%if i = j and
1<i<bg,;=(/T° (6/4/0p)0T ifi=jand/+1<i<2)andg; ;=0 otherwise,
and we have written the determinant of g under the square root. From Eq. (3.91),

P({AT;, Ap;}) = \J
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we obtain expressions for moments of the fluctuations inside various cells

o AT = |+ [ d@p) - dwppdaT)...daTy
X P({AT,, Ap;))Ap,AT, =0, (3.95)
kT [ fou\°]
2y _ KB oH
((Ap))°) = v, l( ap)J , (3.96)
(AT)?) = ks (3.97)
f) - ‘/Ocp ’ :
and
(Ap;)=(AT;)=0. (3.98)

Note that the variances in temperature and density fluctuations are inversely pro-
portional to response functions. We have found that fluctuations in temperature
and density are statistically independent. Pressure and entropy fluctuations are
also statistically independent, but fluctuations in most other pairs of thermody-
namic variables are not statistically independent.

It is important to note that, in Egs. (3.95)—(3.98), we found no correlation be-
tween various cells. This result was built into the theory because Eq. (3.92) con-
tains no information about coupling between cells. In real systems, there is cou-
pling between cells. This can be included in the theory by expressing AS; and AP;
in terms of temperature and volume variations in other cells and not just those
of cell i. The more general expression will then contain coupling constants which
reflect the strength of the coupling between the cells.

In this section, we have analyzed fluid systems by dividing them into discrete
cells. This, of course, is a rather artificial way to proceed, but it is conceptually
very simple and gives us good intuition about which thermodynamic quantities
govern the behavior of fluctuations about the equilibrium state. It is a simple mat-
ter to change the summations over discrete cells to integrations over continuously
varying densities, provided that the spatial variations have sufficiently long wave-
lengths (vary slow enough). We shall look at the spatial dependence of fluctuations
in later chapters.

3.8
Cooling and Liquefaction of Gases

The molecules that compose neutral gases interact via a potential that has a hard
core and a short-ranged attractive region. If such a gas is allowed to expand freely,
it must do work against the attractive forces and its temperature will decrease.
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Figure 3.4 The Joule-Kelvin effect. Throttling of a gas through a porous plug can cause cool-
ing or heating.

This effect can be used to cool a gas, although the amount of cooling that occurs
via this mechanism alone is very small. (An ideal gas will have no temperature
change during free expansion.) Throttling of a gas through a porous plug or a small
constriction provides a much more efficient means of cooling than free expansion
and is the basis of most liquification machines [220]. The throttling process in its
simplest form is depicted in Figure 3.4. A gas initially at a pressure, P;, temper-
ature, T;, and volume, V;, is forced through a porous plug into another cham-
ber, maintained at pressure, P; < P,. All chambers and the plug are insulated so
AQ = 0 for the process. The gas inside the plug is forced through narrow twisting
chambers irreversibly. Work must be done to force the gas through the plug. Even
though the entire process is irreversible, we can use thermodynamics to relate the
initial and final states.
The net work done by the gas is

v 0
AW:JPde+JPidV=PfV}—PiVi. (3.99)
0 4

From the first law, AU = —AW since AQ = 0. Thus,
H = U +PV,=U +P;V; = H; . (3.100)

Thus, the throttling process is one which takes place at constant enthalpy.

Let us now construct a hypothetical reversible path to describe the constant
enthalpy process. For each differential change along the reversible path, we have
(assuming the total particle number remains constant) [dH], =0=TdS+ V dP.
We see that the increase in entropy due to the throttling process is accompanied
by a decrease in pressure. It is convenient to use temperature and pressure as
independent variables rather than entropy and pressure. We therefore expand the
entropy [dS], = (05/0T)p, dT + (0S/0P),, dP and obtain
oV

VT (—)Rn] ar. (3.101)

dH], =0=Cp,dT
[dH], pndT + =

In Eq. (3.101) we have used Eq. (3.50). Equation (3.101) can be rewritten in the
formdT = (0T /0P)y , AP, where (0T /0P), ,, is the Joule—Kelvin coefficient and
is defined

oT\ _ (@H/oP)r, 1 P
(a_P)H,n B _(5H/5T)p,n - aﬂ [T <0_T>p,n - V] . (3.102)
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Let us now compute the Joule—Kelvin coefficient for various gases. For an ideal
gas, (0V /0T)p, = V/T and therefore the Joule—Kelvin coefficient, (0T /0P); ,, =
0. There will be no temperature change during the throttling process for an ideal
gas. Furthermore, since T; = T for ideal gases, P¢V; = P;V; and no net work will
be done (AW = 0).

For a van der Waals gas, assuming that Cy,, = 3/2#1R, we find

(88,3 ()] /-3 ()]

(3.103)

where v = V /n is the molar volume. Equation (3.103) is straightforward to obtain
from the right-hand term in Eq. (3.102) using the Maxwell relation (0S/0X) 1y =
—(0Y /0T )y x (see Table 3.3) and Eq. (3.49). For an interacting gas, such as the
van der Waals gas, the Joule—Kelvin coefficient can change sign. This is easiest to
see if we consider low densities so that RTv > a and v > b. Then

(ﬂ) v [R5 -] (3.104)
OP /Hn  5R LRT

For low temperatures (07 /dP), , > 0, and gases cool in the throttling process,
but at high temperatures, we have (07 /dP), , < 0, and they heat up. Two effects
determine the behavior of the Joule—Kelvin coefficient. On the one hand, the gas
expands, which gives rise to cooling. On the other hand, work can be done on or
by the gas. If P, V| > P;V;, then net work is done on the gas, which causes heating.
If P,V; < P;V;, then net work is done by the gas, which causes cooling.

The inversion temperature (the temperature at which the sign of 4, changes)
for the Joule—Kelvin coefficient will be a function of pressure. Since Cp,, > 0, the
condition for inversion (from Eq. (3.102)) is (V' /0T)p, = V/T or, for a van der
Waals gas (cf. Eq. (3.103)),

2
2a (v=b\ _ (3.105)
RT v

We can use the van der Waals equation of state to write Eq. (3.105) in terms of
pressure and temperature. First solve Eq. (3.105) for v as a function R, T, a, and b,

Table 3.6 Van der Waals constants for some simple
a(Pam®/mol’)  b(m*/mol) fyids [124].

H, 0.024: 53 0.000 026 51
He 0.003 456 0.000 02370
CO, 0.3658 0.000 042 86
H,O 0.5537 0.000 030 49
0O, 0.1382 0.000 031 86

N, 0.1370 0.000 0387
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4 7
P(Pj\x 107)

1 1 1 1 1 1
23 123 223 323 423 523 6237 (K)
Figure 3.5 A plot of the inversion temperature versus pressure for the Joule-Kelvin coefficient

of N,. The solid line is the experimental curve [220]. The dashed line is the curve predicted by
the van der Waals equation for a = 0.1408 Pam® /mol? and b = 0.000039 13 m*/mol.

and substitute into the van der Waals equation. This gives

=22 (3.106)

The inversion curve predicted by the van der Waals equation has the shape of
a parabola with a maximum at TIXX =8a/9bR. For CO,, TIXX =911 K while the
experimental value [24] is T}, = 1500K. For H,, TV¥ = 99 K while the exper-
imental value is T,,,, = 202 K. In Figure 3.5, we plot the van der Waals and the
experimental inversion curves for N,. The van der Waals equation predicts an in-
version curve which lies below the experimental curve but qualitatively has the
correct shape. For nitrogen at P = 10° Pa, g = 1.37 x 1077 K/Paat T = 573K,
= 1.27 x 107°K/Paat T' = 373K, py = 6.40 X 107°K/Paat T = 173K, and
Hix = 2.36 X 107°K/Paat T = 93 K. (For experimental value of the Joule—Kelvin
coefficient for other substances, see the International Critical Tables [207].) We
see that the cooling effect can be quite large for throttling.

At times the Joule—Kelvin effect can lead to serious difficulties. For example,
highly compressed H,, which has a low inversion temperature, can ignite sponta-
neously when leaking from a damaged container, because of Joule—Kelvin heating.

3.9
Osmotic Pressure in Dilute Solutions

Each spring, when the weather begins to warm up, sap rises in trees and the yearly
cycle of life starts again. The rising of sap is one of many examples in biological
systems of the phenomenon called osmosis. One can easily demonstrate the ef-
fect in the laboratory. Take a beaker of water and partially immerse a long tube
(open at both ends) in it and let it stand vertically. The water levels of the tube
and of the beaker will be the same. Next, close off the bottom end of the tube with
a membrane which is permeable to water but not sugar. The water levels will still
be the same in the tube and the beaker. Now add a bit of sugar to the water in the
tube. Additional water will begin to enter the tube through the membrane, and
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the level of the sugar solution will rise a distance / above the level of the water
in the beaker. The excess pressure created in the tube, 7 = p hg, is called the os-
motic pressure (p, is the density of the sugar solution and g is the acceleration of
gravity). After equilibrium is reached, the pressure at the surface of the pure water
will be P, (atmospheric pressure) and the pressure in the sugar solution, at the
same level, will be P, + p,ig. The membrane must sustain the unbalanced force
between the pure water and the sugar solution.

We can show the same phenomenon in another way (cf. Figure 3.6). Consider
a system consisting of pure water, separated by a permeable (to water) membrane
from a solution of sugar and water. The entire system is kept at a fixed temper-
ature T, and the membrane is rigid and fixed in place. At equilibrium, there will
be an imbalance in the pressures of the two sides. If P is the pressure of the pure
water, than the sugar solution will have a pressure P = P, + 7, where 1 is the
osmotic pressure. This imbalance of pressures is possible because the membrane
is rigid and cannot transmit mechanical energy. Since the water is free to move
through the membrane, the chemical potential of the pure water must be equal to
the chemical potential of the water in the sugar solution.

Let us write the thermodynamic relations for this system. First consider the
sugar solution. A differential change in the Gibbs free energy, G = G(&, T, n,, ny),
of the sugar solution (with n,, moles of water and ng moles of sugar) can be written

dG =-SdT+ VdP+u,dn, +pu,dng, (3.107)

where § = —(0G/0T )p,, v is the entropy of the solution, V' = (0G/0P) 1, is
the volume of the solution, and y,, = (0G/dn,,)p 1., and pg = (0G/0ng)p 1,  are
the chemical potentials of the water and sugar, respectively, in the solution. The
chemical potentials are intensive and depend only on ratios n,/n,. It is conve-
nient to introduce mole fractions
nW 1 nS nS/nW
= and x, = =

n,+n, l+4+n/n, n,+n, l+4+n/n,

Xy = . (3.108)
Since x,, + x, = 1, the chemical potentials can be written as a function of mole
fraction, x,. Thus, u,, = u,, (P, T, %) and p, = p (P, T, x).

At equilibrium, the chemical potentials of the pure water and the water in the
sugar solution will be equal. If we let ﬂi(v)) (Py, T') denote the chemical potential of

the pure water, we can write
u (P, T) = (P, T, x,) (3.109)

as the condition for thermodynamic equilibrium.
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We want to obtain an expression for the osmotic pressure in terms of measur-
able quantities. We will assume that the solution is dilute so that n,/n, < 1 and
x, & ng/n, < 1. We can construct a fairly simple model to describe the solution.
We write the Gibbs free energy of the solution in the form

ngny

G, T,ng,n,) = ud@T)+nu® P T)— A
+n,RTInx, + nRT Inx, . (3.110)

The chemical potential /458) (/420)) contains contributions to the Gibbs free energy

due to the presence of water (sugar) molecules and due to self-interactions. The
term —A(n n, /n) gives the contribution to the free energy due to interactions
between sugar and water molecules. The last two terms on the right give contri-
butions to the free energy due to mixing. The chemical potential of the water in
the solution can now be written (see Exercise 3.3).

26

u (BT, %) = <an

w

> =pQ@,T)- x>+ RTIn(1 - x,), (3.111)
P Tng

where /458)(13, T') is the chemical potential of pure water at pressure P and temper-
ature 7. For a dilute solution, ¥, = n,/n < 1and In(1 — x,) = —x, — 1/2x% — -
Thus, to lowest order in x; = n /n, we find

(P, T, x) m u (P, T) — x,RT (3.112)

for the chemical potential of water in a dilute sugar solution.

We now can find an expression for the osmotic pressure, 7 = P — P. Let us
note that water, as well as most liquids, is very incompressible. The compress-
ibility, x, of water at 0°C is x = 4.58 x 1071 m2/N. Therefore the quantity
(0u® /oP) N VO/on,)rp =10 (10 is the partial molar volume of water in the
absence of solute and V? is the volume of water in the absence of solute) remains
approximately constant for small changes in pressure. With this observation we
can integrate (0u° /0P) I, to find

O, T)—pd Py, T)m V(P —Py)=v2r. (3.113)

The change in the volume of water as we increase the number of moles is propor-
tional to the number of moles so that V° = n, 1% . Also, for very small concentra-
tions of solute, we can assume that the change in the volume of water due to the
presence of the solute is negligible so that V* ~ V, where V is the volume of the
mixture. Then we can combine Egs. (3.109), (3.112), and (3.113) to obtain

nRT

~ . 3.114
mR = (3.114)

Equation (3.114) is called van’t Hoff’s law and, surprisingly, looks very much like
the ideal gas law, although we are by no means dealing with a mixture of ideal gas-
es. Equation (3.114) is well verified for all dilute neutral solvent—solute systems.
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Exercise 3.10

An experiment is performed in which the osmotic pressure of a solution, contain-
ing ng,. moles of sucrose (C,,H,,0;,) and 1kg of water (H,0), is found to have
the following values [85]: (a) for ng,. = 0.1, ¥ = 2.53 X 10° Pa, (b) for ng,. = 0.2,
7 =5.17 X 10° Pa, and (c) for ny,. = 0.3, 7 = 7.81 X 10° Pa. Compute the osmotic
pressure of this system using van’t Hoff’s law. How do the computed values com-
pare with the measured values?

Answer: The molecular weight of water (H,0) is M, o = 18 g/mol. Therefore,
1 kg of water contains 55.56 mol of water. The molar volume of water is v;; o =
18 X 107® m® /mol. The osmotic pressure of the solution, according to van't Hoff’s
law, is

g (8.317]/K)(303K)
~ 55.56 18 x 10~° m3/mol

The computed values are as follows: (a) For ng,. = 0.1, 7 = 2.52 X 10° Pa, (b) for
ng,. = 0.2, 7 = 5.04 X 10° Pa, and (c) for ng,. = 0.3, & = 7.56 X 10° Pa. The pre-
dictions of vant Hoft’s law are good for a dilute solution of sucrose in water, but
begin to deviate as the mole fraction of sucrose increases.

3.10
The Thermodynamics of Chemical Reactions

Chemical reactions involve the breaking and formation of electrical bonds be-
tween constituent atoms or parts of a molecule involved in the reaction. The man-
ner in which atoms are joined together to form molecules is important for deter-
mining their thermodynamic properties. The two major types of chemical bonds
are covalent bonds and ionic bonds. The strongest bonds are the covalent bonds,
formed by the mutual sharing of electron pairs. In the molecule H,, for example,
the two hydrogen atoms are held together by a covalent bond. Ionic bonds involve
the transfer of electrons from one atom to another, thus leaving one atom posi-
tively charged and the other atom negatively charged. The molecule is then held
together by the electrostatic attraction of the two oppositely charged ions. In the
sodium chloride molecule NaCl, for example, Na loses an electron and Cl gains
an electron and the electrical attraction between Nat and CI~ holds the molecule
together. There is a whole range of chemical bonds between the two extremes
of covalent and ionic bonds. For example, polar bonds involve the unequal shar-
ing of electrons between the atoms that comprise the molecule and this can give
rise to an electric dipole moment in the molecule. The water molecule H,O, is
held together by a covalent bond, but since the oxygen molecule is larger than the
hydrogen atom the concentration of negative charge is greater around the oxygen
atom than around the hydrogen atoms. As a consequence, the water molecule has
a permanent electric dipole moment d, = 6.2 x 1073 C - m.
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When we deal with chemical reactions, we generally deal with large quantities
of molecules breaking and reforming their chemical bonds. Regardless of the type
of bonds involved, the macroscopic properties of all chemical reactions can be
described by thermodynamics. In this section, we will limit our considerations to
reactions involving electrically neutral species. The thermodynamics of ionic so-
lutions (the flow of charged ions in electrically neutral solutions) requires a slight
generalization of the discussion in this section [81, 95, 189].

Chemical reactions, in systems containing several species of molecules (which
we will call A}, A,, A;, and A,), change the identity of the molecules through
inelastic collisions. A typical case might be one where molecules A, and A, collide
inelastically to form molecules A; and A,. Conversely, molecules A; and A, can
collide inelastically to form molecules A; and A,. Collisions between molecules
occur at random and can be either elastic or inelastic. For an inelastic collision to
occur, the two molecules must have sufficient energy to overcome any potential
barriers to the reaction which might exist. Chemical equilibrium [171, 172, 208]
occurs when the rate of production of each chemical species is equal to its rate of
depletion through chemical reactions. The chemical reactions themselves never
stop, even at equilibrium.

In the early part of this century a Belgium scientist, de Donder, found that it
was possible to characterize each chemical reaction by a single variable &, called
the degree of reaction. In terms of &, it is then possible to determine when the
Gibbs free energy has reached its minimum value (chemical reactions usually take
place in systems with fixed temperature and pressure) and therefore when the
chemical system reaches chemical equilibrium. The concept of degree of reaction
assumes that we can generalize the concept of Gibbs free energy to systems out
of equilibrium.

3.10.1
The Affinity

Let us consider a chemical reaction of the form
kl
V1A — VA, k‘ﬁ vsAg + VA, (3.115)
2

The quantities vy, v, v3, and v, are called stoichiometric coefficients; v, is the num-
ber of molecules of type j needed for the reaction to take place. By convention, v,
and v, are negative. The constant k; is the rate constant for the forward reaction,
and k, is the rate constant for the backward reaction.

Since we generally deal with large quantities of molecules undergoing chemical
reactions, it is convenient to describe changes in the amounts of each species of
molecule in terms of moles. Let dn; denote the change in the number of moles
of a molecule of type j. It is possible to characterize the changes dn; for a given
chemical reaction in terms of the single parameter, &, called the degree of reaction.
We will use the convention that d€ > 0 for reactions proceeding to the right and
d¢ < 0 for reactions proceeding to the left. Any changes in the concentrations due
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to the reaction can therefore be written
dn, =v;d¢§, dny,=v,df, dnyg=v;df, dn,=v,d¢. (3.116)

These changes in the thermodynamic properties of a system, due to a given chem-
ical reaction, can be characterized by a single variable §.

From Table 3.4 and Eq. (3.116), differential changes in the Gibbs free energy
may be written

pjdn, =—=SdT+VdP+ ) uv,d¢, (3.117)
j=1 j=1

m
dG=-SdT+VdP+
where the sum is over the species which participate in the reaction and m is the

number of species that participate in the reaction (for the reaction in (3.115) m =
4). Therefore,

0G B
oG = v.=A. 3.118
<65>RT j:Zlu,, (3.118)

The quantity A = 271:1 u;v; is called the affinity (in some books the affinity is
defined with an opposite sign). At chemical equilibrium, the Gibbs free energy
must be a minimum,

06\’ o
& =A"=0 3.119
<a£>m G

(the superscript 0 denotes equilibrium) and, therefore, at chemical equilibrium
the affinity must be zero.

At constant P and T, the Gibbs free energy, G, must always decrease as the sys-
tem moves toward chemical equilibrium (at equilibrium G is a minimum). There-
fore,

[dGlpy = (%) d€<o0. (3.120)
PT

If the reaction goes to the right, then d > 0 and A < 0. If the reaction goes to
the left, then d§ < 0 and A > 0. This decrease in the Gibbs free energy is due to
spontaneous entropy production resulting from the chemical reactions.

If there are r chemical reactions in the system involving species, j, then there
will be r parameters, {, needed to describe the rate of change of the number of

moles, n;

dn; =) v, d& . (3.121)
k=1

The sum over k is over all chemical reactions in which molecules of type j partic-
ipate.
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Table 3.7 Values of the chemical potential, 1°, for some
Molecule  p° (kcal/mol) molecules in the gas phase at pressure P, = 1 atm and tempera-
ture Ty = 298 K [189].

H, 0.00
HI 031
I, 4.63
N, 0.00
NO, 12.39
NH, -3.98
N,O, 23.49

Using ideal gas laws, some useful relations can be obtained for reactions in the
gas phase. Consider a gas composed of four different kinds of molecules which
undergo the reaction in Eq. (3.115). If the partial pressure of the ith constituent
is P;, the chemical potential of the ith constituent can be written in the form

P, T
ujPy, T) = u)(Py, Tp) = RTIn | —— |, (3.122)
P.T
jto
where /l?(PO, T,) is the chemical potential of the jth constituent at pressure P,
and temperature T;,. Values of 4, with Py = 1atm and T, = 298 K, have been

tabulated for many kinds of molecules [189]. Some of these are listed in Table 3.7.
If we use Eq. (3.122), the Gibbs free energy can be written

G(T, P, &) = Y muf(Py, Ty)
j

POTS/2 n, o n, n
— ) nRTIn| ——— |+ RTIn (x T 3x ) , (3.123)
j 5/2 3
; PT,

and the affinity can be written

P, T5/? x?xf
A(T, P, E)_Z Vil O(Py, Ty)— Z v RTln( >+RT1H(—x|V1|x|V2| )

PT." il
(3.124)

where T and P = ), j P; are the temperature and pressure, respectively, at which
thereaction occursand x; = P;/P = n;/n are the mole fractions of the constituent
chemicals.

For “ideal gas reactions” the equilibrium concentrations of the reactants can
be deduced from the condition that at equilibrium the affinity is zero, A° = 0.
From (3.124) this gives the equilibrium condition

Vs V4
P, T>/? 1 o
ln(xlvll |v2|> ZV ln( ) - ﬁ Zviﬂi(PO’ To). (3125)

5/2
1 PT
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Equation (3.125) is called the law of mass action. As we shall show in Exercise 3.11,
we can use it to compute the value of the degree of reaction, and therefore the
mole fractions, at which chemical equilibrium occurs as a function of pressure
and temperature.

We can deduce a number of useful results regarding the approach to chemical
equilibrium. First, let us note that

022G\’ <aA>°
G\ _ (94 0. 3.126
<062>m 9 )y~ (3126

Equation (3.126) is a statement of the fact that the Gibbs free energy, considered
as a function of P, T, and ¢, is minimum at equilibrium for fixed 7" and P.

From the fundamental equation, H = G + T'S, we obtain several important re-
lations. First, let us note that at equilibrium, since (0G /3§ )%T = 0, we have

0 0
o0H _ E
<a_5>m_T<0€>m' (3.127)

Thus, changes in enthalpy are proportional to the changes in entropy. The left-
hand side of Eq. (3.127) is called the heat of reaction. 1t is the heat absorbed per
unit reaction in the neighborhood of equilibrium. For an exothermic reaction,
(0H/o¢ )%T is negative. For an endothermic reaction, (0H /0§ )%T is positive. Equa-
tion (3.127) can also be written (see Table 3.4)

0 0
(a—H> =—T(M) , (3.128)
aé‘ PT oT P¢

where we have used the relation

0 (0G _ |9 (9G
-7 [0_6 <ﬁ>P"E:|P,T_ T|:0T<65>P,T:|p,g.

For an “ideal gas reaction,” we can use Eqs. (3.124) and (3.128) to obtain an explicit
expression for the heat of reaction. We find

0 5/2 V3, Va
o0H 5 Py T ¥3' %y
— == V.RT + v.RT In —RTIn{ ——— | .
< 65 > 2 Z / Z J ( PTS/2 x|V1|x|V2|

BT 1
(3.129)

If the total number of particles changes during the reaction ()] jvj # 0), there
will be contributions to the heat of reaction from two sources: (1) There will be
a change in the heat capacity of the gas due to the change in particle number, and
(2) there will be a change in the entropy due to the change in the mixture of the
particles. If the total number of particles remains unchanged (3}, v; = 0), the only
contribution to the heat of reaction will come from the change in the mixture of
particles (assuming we neglect changes to the heat capacity due to changes in the
internal structure of the molecules).

71



72| 3 Thermodynamics

Let us now obtain some other general properties of chemical reactions. From
the chain rule (see Appendix B), we can write

(ﬁ) _ 0A/0T)pe 1 OH/[0)pr
oT ) p 4 0A))pr T (0A/IE)pr '

The denominator in Eq. (3.130) is always positive. Thus, at equilibrium any small
increase in temperature causes the reaction to shift in a direction in which heat is
absorbed.

Let us next note the Maxwell relation, (0.A/dP) ¢ = (AV /9§)p 1, which enables
us to write

<0_£> _ @A/oP)re  (@V/0S)pr
OP)ry  (OA[0pr  (0A[0)pr
(we have used identities from Appendix B). At equilibrium an increase in pressure

at fixed temperature will cause the reaction to shiftin a direction which decreases
the total volume.

(3.130)

(3.131)

O Exercise 3.11

Consider the reaction N,O, = 2NO, which occurs in the gas phase. Start initially
with one mole of N,O, and no NO, and let ny 5, =1 - § and nyg, = 2¢. For
P, =1latmand T, = 298K, /4%204 = 23.49 kcal/mol and /4?\102 = 12.39 kcal/mol.
Assume that the reaction occurs at temperature 7 and pressure P. Use ideal gas
equations for the chemical potential. (a) Compute and plot the affinity, A(T, B, §),
as a function of the degree of reaction, &, for P = P, and for T = Ty and T = 27T,.
(b) What is the degree of reaction, ¢, at chemical equilibrium for P = 1 atm and
temperature 7' = 298 K and how many moles of N,0, and NO, are present at
equilibrium? (c) If initially the volume is Vj, what is the volume at equilibrium
for P = 1atm and T = 298 K? (d) What is the heat of reaction for P = 1 atm and
T =298 K?

Answer:  The mole fractions are xy o, = (1 = ¢)/(1 + ¢) and xyo, = 2¢/(1 +¢).
(a) The affinity is

Py T°/? (26
A(T,P)= Z Vil (P, Ty) = Z ViRTln( POTj/Z )+RT1n [Tf(l +¢)

Plots of A(T, P) are given in the figure.

(b) Chemical equilibrium occurs for A = 0. From the plot for T = T, at equilib-
rium the degree of reaction is {; ~ 0.166. Thus, at equilibrium ny, ,, =0.834and
NyNo, = 0.332. At equilibrium the mole fractions are x\, 5, = 0.834/1.166 = 0.715
and xy, = 0.332/1.166 = 0.285.

(c) Initially ny o, = 1 mol and nyp, = 0mol so one mol of gas is present. At
chemical equilibrium, ny o, = 0.834mol and nyg, = 0.332mol so 1.166 mol of
gas is present. The reaction occurs at temperature 7, and pressure P,. There-
fore, the initial volume is V; = 1RT,/P, and the equilibrium volume is V =
1.166RT,/P, = 1.166V,.
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As)

0.2 0.4 - 0.8 £ 1.0

(d) If the reaction occurs at 7 = Ty and P = P,, the heat of reaction is

oH\" 5 o
<—> = =RT,— RT,In -
o pr 2 xN,0,

2
= 2RT, — RT,In | 228
2 0.715

> = 4.68RT, .

It is useful to note that much basic information about a given chemical reaction
can be obtained using the lists of “Standard Thermodynamic Properties of Chem-
ical Substances” found in [124]. These lists tabulate the standard molar Gibbs
free energy Ag®, enthalpy Ak°, entropy s°, and heat capacity cj, at T = 298.15K
and P = 1.0 bar. The standard molar Gibbs free energy Ag® (enthalpy A/4°) is the
Gibbs free energy (enthalpy) of formation of one mole of a given substance at
T =298.15K and P = 1.0 bar. By convention, elements in their most stable states
at 7 =298.15Kand P = 1.0 bar have zero Gibbs free energy (enthalpy). The stan-
dard molar entropy is defined relative to the entropy of a pure crystal of the given
substance at 7 = 0K. For a pure crystal, at 7 = 0K, s° = 0.

As an example of the use of these numbers, consider the chemical reaction
O, +2H, — 2H,0 at T =298.15 K and P = 1.0 bar. From the tables of “Standard
Thermodynamic Properties of Chemical Substances” in [124], the molar Gibbs
free energies of gaseous O, and H, and liquid H,O are Agg =0, Ag;[ =0, and
AgH o = —237.1k]/mol, respectively. The change in molar ‘Gibbs free energy is
Agtotal 2AgH20 AgH2 Ago2 = —474.2]/mol and it decreases. Therefore, this
reaction occurs spontaneously because it attempts to minimize the Gibbs free en-
ergy (approach equilibrium).

The molar enthalpies are Ak =0, Ahy, =0and Ahy, 11,0 —285.8kJ/mol. The
change in enthalpy is Aky | = 2Ah° Ah°2 AR o, = ~571. 6]/mol. Ahp
shows that a large amount of heat is released in this reaction, which explains why
this reaction is used to fuel rockets.

The molar entropies are So = 205.2kJ/(mol K), s = = 130.7 kJ/(mol K) and

H o0 = 70kJ/(molK). The change in entropy is s; | = 25;[ o sH2 - so2 =
~195.9 kJ/(mol K). Entropy decreases because the reaction has gone from a mix-
ture to a pure substance and the H,O has condensed into a liquid.
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3.11
The Thermodynamics of Electrolytes

Electrolytes are substances that ionize when dissolved in certain solvents, such
as water. Once the substance dissociates into ions in the solution, it has the ca-
pacity to conduct electricity or to create an electric potential energy gradient in
the system [42, 81, 189]. When we consider a mixture of charged particles in the
presence of an electrostatic potential ¢, the definition of the chemical potential
must be expanded to include the contribution to the energy required to add a par-
ticle with charge g to the mixture in the presence of the field. Let us assume there
are N different kinds of charged particle in the mixture. Particles j =1, ..., m are
ions with charge q; = ez;, where z; is the valency or charge of the ion and e is the
charge of a proton. Particles j = m + 1, ..., N are neutral (uncharged). Then dif-
ferential changes in the internal energy density (internal energy per unit volume
u = U/V) can be written

m N
du = Tds+2/4§dcj+ Z uide;, (3.132)

j=1 Jj=m+1

wheres =S§/V,c; =n;/V is the molar concentration of type j particles, ;4? =u;+
z;¢F is the electrochemical potential, and F is the amount of charge in one mole
of protons and is called a Faraday (1 F = 96.485 C/mol). For charged particles,
equilibrium occurs when the electrochemical potentials of each species are equal.

A particularly important type of charged mixture (the type considered in this
section) contains charged ions in an electrically neutral solution. Such systems are
common in biological systems and form the basis for the construction of batteries.
Let us consider the behavior of dilute solutions of a salt (the solute), such as NaCl,
CaCl,, AgNO;, or Cu(NO,), in water (the solvent). If we denote the negative ion
(the anion) as A~ and the positive ion (the cation) as C*, the dissociation of the
salt into charged ions can be denoted

A,C, =v,A”+v,CF (3.133)

(e.g., CaCl, = 2Cl~ + Ca**), where v, and v, are the stoichiometric coefficients
for the dissociation. (We could also have Ag — Ag™ + e~ in an aqueous solution.)
The condition for equilibrium is

Hac = Valhg + Velhe » (3.134)

where ¢ (4¢) is the electrochemical potential of ion, A~(C*) and 4, is the chem-
ical potential of the undissociated salt. Electrical neutrality of the fluid requires
that v,z, + v .z, = 0, where z,e(z e) is the charge of the ion, A~(C"), and e is the
proton charge.

The chemical potential of the salt in aqueous solution is extremely complicated,
but experiments show that it can be written in the form

aeB T x,) = (P, T) + RT Ina,, , (3.135)
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where a,, is called the activity and u° (P, T) is the chemical potential of the salt in
aqueous solution at temperature T and pressure P in the limit of infinite dilution
(42 (P, T) is proportional to the energy needed to add one salt molecule to pure
water).

We can relate the activity, «
define a,. = a;'a.c. Then

for the salt molecule to activities for the ions. We

ac’

In(ar,) = v, In(ar,) + v In(a,) . (3.136)

The quantities a, and a, are defined to be the activities of the anion and cation, re-
spectively. It is found experimentally that in the limit of infinite dilution, &, = f,c,
and a. = f,c., where c, and c_ are the concentrations (mol/volume) of the anions
and cations, respectively. The quantities f. and f, are called activity coefficients.
In the limit ¢; — 0, f; = 1(i = a, ¢). Solutions for which f, =1and f, = 1aresaid
to be ideal.

The condition for equilibrium, Eq. (3.134), for ideal solutions is satisfied if we
define the electrochemical potentials of the ions to be

us = ;4‘;(1% T)+RTInc; +z;F¢ (3.137)

where j = {a, c}. Two important applications of the thermodynamics of elec-
trolytes concerns the functioning of batteries and biological cells. We first con-
sider batteries and then biological cells.

3.11.1
Batteries and the Nernst Equation

A simple battery consists of two “half-cells.” Each half-cell contains a pure metal
electrode immersed in a dilute aqueous solution of the corresponding salt (e. g.,
an Ag electrode with a dilute solution of AgNO; or a Cu electrode with a dilute
solution of Cu(NO,),).

For a half-cell with a silver (Ag) electrode, the salt dissociates into a dilute solu-
tion of Ag™ and NO, ™ ions, and an equilibrium is set up between the silver ions on
the electrode and those in the solution. Either silver ions dissolve from the elec-
trode into the solution, leaving excess electrons on the electrode, or silver ions in
the solution can attach to the electrode leaving it with a net positive charge. In
either case, a charged bilayer is set up at the interface between the electrode and
the solution causing an electric potential energy difference between the solution
and the electrode.

For simplicity, consider two half-cells, with silver electrodes, which we label
T and IT. When the whole system is at equilibrium, the chemical potential of
the silver ions in solution and silver ions on the electrode must be equal. The
chemical potential on the electrode in 7 can be written ,uiy (s)= ﬂOA’gZ+ () +zF D4,
since it is pure solid silver. The chemical potential of ions in the solution in 7 is
uig+ @)= ;4?\’; ()+RT In[c;]+zF ¢ ;. Similar expressions can be written for half-

cell 7. The quantities ﬂOA'gI+ (s) and uOA’gl+ (7) are the energies required to add one
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silver ion to the silver electrode and an infinitely dilute solution, respectively, @;
and ¢; are the electric potentials on the electrode and in the solution, respectively,
and c; is the concentration of silver ions in the solution.

The conditions for equilibrium between the silver ions on the electrode and the
solution, in each of the half-cells, can be written

ﬂ"A'gi () +zFD; = ﬂg'gﬂ(f) +RTInc; +zF¢; , (3.138)
ﬂ"A'gI} (s) + zF Dy = ﬂ"A'gI} () + RTIncy; +2zFp;; . (3.139)
Now note that ,ui’gﬂ(s) = ,uOA'gI} (s), since they both apply to pure silver, and

,uOA’; @) = ,uOA’ng (¢) since they both apply to infinitely dilute solutions. Assume
that electrical contact is made (via a salt-bridge for example) between the solu-
tions in the two half-cells so that the electric potential energies of the solutions is
the same. Then ¢; = ¢4, but the concentrations and temperatures need not be
the same. We can now subtract Egs. (3.138) and (3.139) and obtain

@, - d,, = XL, (C—Z> = (0.0257V)In (c—1> . (3.140)

zF Cr1 Crr
Equation (3.140) is the Nernst equation. It relates the difference in the electric
potential energy of the electrodes to the difference in the concentrations of silver
ions in the two solutions. This electric potential difference can be measured with a
volt meter. For example, if c; = 2¢;; then @; — @;; =0.0178 V and a small voltage
difference has been created between the two electrodes when thermodynamic
equilibrium exists between the two half-cells. Thus, we have created a battery,
although a rather weak one.

There are a number of different metals that can be used for batteries. The ab-
solute potential on an electrode cannot be measured without changing the chem-
istry of the half-cell, so all voltages have been standardized relative to a standard
hydrogen half-cell. A standard hydrogen half-cell uses a porous platinum elec-
trode that serves as a catalyst for the reaction H, — 2H" + 2e~. The platinum
electrode is partially submerged in a dilute sulfuric acid (H,SO,) solution at a tem-
perature of 7' = 298 K. Hydrogen gas (H,), at a pressure of P = 1.0 bar, flows over
the porous platinum (see Figure 3.7) catalyzing the reaction. The concentration
of hydrogen ions (H") in the solution is maintained at ¢;; = 1.0 M = 1.0 mol/dm?3.
This standard hydrogen half-cell is connected to a half-cell containing a solid
metal electrode and corresponding salt solution (e. g. Cu and Cu,SO, or Zn and
Zn(NOs;),). The connection between the solutions is made via a “salt-bridge,” so
the potentials in the solutions can equilibrate. The concentration of the metal ion
(let us assume Cu**) is also maintained at ¢, = 1.0 M = 1.0 mol/dm?. The po-
tential energy difference between the “hydrogen” (platinum) electrode and the
Cu electrode, A®° = @Y. — @7, is measured. The potential @Y, = 0, by con-
vention. In this way, the standard electrode potential @° of various metal half-
cells can be determined and tabulated. Some standard electrode potentials in-
clude @9, = -3.03V, @) =-0.76V, @’ = —0.44V, % =0.0V, %, =+0.34V,
@}, =+0.80V, and @, =+1.50V.
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Figure 3.7 The standard hydrogen cell used to measure the standard electrode potential of
various metals (in this case Cu).

The Nernst equation can also be used to determine the variation of a metal
electrode potential from it’s standard value @° by an analysis similar to that in
Eqgs. (3.138)—(3.140). We compute equilibrium conditions between the standard
metal half-cell (metal ion concentration ¢ = 1.0 M) and the standard hydrogen
half-cell, and then we compute equilibrium conditions between the metal half-
cell with metal ion concentration ¢ and the standard hydrogen half-cell. If we then
eliminate the parameters related to the standard hydrogen half-cell, we obtain

o=+ L1, (3.141)
zF

where @ is the potential of the metal electrode, for metal ion concentration ¢, and
@ is the standard electrode potential of the metal.

The standard electrode potentials can be used to determine the potential dif-
ference of two different metal half-cells. For example, a battery consisting of a Cu
half-cell connected to a Zn half-cell, under standard conditions, can generate a
voltage @, — @) = 40.34V —(-0.76 V) = 1.10V.

3.11.2
Cell Potentials and the Nernst Equation

Sports drinks contain electrolytes, such as potassium chloride KCl and sodium
chloride NaCl, to help maintain the balance of cations (K* and Na*) and anions
(ClI7) needed for proper cell function. All animal cells are surrounded by a lipid
bilayer that is largely inert but contains embedded proteins that form selective ion
channels. For example, potassium channels allow passage of potassium ions but
effectively block passage of other types of ions. An aqueous solution of K*, Nat,
and CI~ ions outside a cell with potassium channels will allow the passage of 1000
potassium ions into the interior of the cell for every Na* ion allowed passage. As a



78

3 Thermodynamics

consequence of this selective flow of potassium ions, an electric potential energy
difference is established across the cell wall. Lipid bilayers have a width of about
Ad = 8nm and have a capacitance of about C = 2.0 uF/cm?. They can sustain a
potential energy difference of up to about 0.2 V before breaking down.

When the system is in equilibrium, the electrochemical potential of K* inside,
,ui?, and outside, 4", the cell must be equal. This equilibrium condition allows us
to derive a Nernst equation that relates the potassium concentrations inside and
outside the cell to the potential energy difference across the cell wall. The chemical
potential inside the cellis i = 0™ + RT In ¢ + z F¢,,,, where ¢, is the electric
potential inside the cell and zy = 1 is the charge of potassium ions. Outside the cell
the chemical potential is 0" = 0°" + RT In ¢ + zy F . Since py " » py™
is the energy needed to add one potassium ion to an infinitely dilute solution, we
can equate these equations and obtain

COllt
AP = Pin = Pout = = ln( i ) : (3.142)

ZKF CK

The potential energy difference, Ag, needed to maintain the potassium concen-
tration difference is called the Nernst potential or equilibrium potential. For a
body temperature of 7' = 98 °C = 295.6 K the potential difference across the walls
of a cell with only potassium channels is Ag ~ (0.0255 V) In (¢*/cir).

The potassium channel is only one of several types of channels that exist in
membranes. There are also sodium channels, calcium channels, and other types
of ion channels. In addition, there are ion pumps, which play an active role in
maintaining a potential difference across cell walls, and often these processes act
together. The Nernst equation only applies when equilibrium exists between the

intracellular and extracellular fluids.

3.12
Problems

Problem 3.1 Electromagnetic radiation in an evacuated vessel of volume V" at
equilibrium with the walls at temperature T (blackbody radiation) behaves like
a gas of photons having internal energy U = aV T* and pressure P = 1/3aT*,
where a is Stefan’s constant. (a) Plot the closed curve in the P—V plane for a Carnot
cycle using blackbody radiation. (b) Derive explicitly the efficiency of a Carnot
engine which uses blackbody radiation as its working substance.

Problem 3.2 A Carnot engine uses a paramagnetic substance as its working sub-
stance. The equation of state is M = nDH /T, where M is the magnetization, H is
the magnetic field, n is the number of moles, D is a constant determined by the
type of substance, and T is the temperature. (a) Show that the internal energy U,
and therefore the heat capacity C,;, can only depend on the temperature and not
the magnetization. Let us assume that C,; = C = constant. (b) Sketch a typical
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Carnot cycle in the M—H plane. (c) Compute the total heat absorbed and the to-
tal work done by the Carnot engine. (d) Compute the efficiency of the Carnot
engine.

Problem 3.3  Find the efficiency of the engine shown in Figure 3.8a. Assume that
the operating substance is an ideal monatomic gas. Express your answer in terms
of V; and V,. (The processes 1 — 2 and 3 — 4 are adiabatic. The processes 4 — 1
and 2 — 3 occur at constant volume.)

Problem 3.4 One kilogram of water is compressed isothermally at 20 °C from 1
to 20 atm. (a) How much work is required? (b) How much heat is ejected? Assume
that the average isothermal compressibility of water during this process is k; =
0.5 X 10~ /atm and the average thermal expansivity of water during this process
isap =2x107%/°C.

Problem 3.5 Compute the efficiency of the heat engine shown in Figure 3.8b.
The engine uses a rubber band whose equation of state is /] = aLT, where « is
a constant, J is the tension, L is the length, and T is the temperature in kelvins.
The heat capacity is a constant, C; ;; = C. Assume the mass M is held fixed.

Problem 3.6 A heat engine uses blackbody radiation as its operating substance.
The equation of state for blackbody radiation is P = 1/3aT* and the internal en-
ergy is U = aV T*, where a = 7.566 x 1071¢]/(m? K*%) is Stefan’s constant, P is
pressure, T is temperature, and V is volume. The engine cycle consists of three
steps. Process 1 — 2 is an expansion at constant pressure P; = P,. Process 2 — 3
is a decrease in pressure from P, to P; at constant volume V, = V;. Process 3 — 1
is an adiabatic contraction from volume V; to V;. Assume that P; = 3.375P;,
T, = 2000K, and V] = 103 m3. (a) Express V; in terms of V| and T} = T, in
terms of 7. (b) Compute the work done during each part of the cycle. (c) Com-
pute the heat absorbed during each part of the cycle. (d) What is the efficiency
of this heat engine (get a number)? () What is the efficiency of a Carnot engine
operating between the highest and lowest temperatures.

F1"___ 1

adi/labanc 2,

Figure 3.8 (a) Figure for P3.3.
(b) Figure for P3.5.

79



80| 3 Thermodynamics

Problem 3.7 Experimentally one finds that for a rubber band

aJ T Ly’

—= =2 1422 and

oL )y Lo L

Y _alf_ (LY

oT ), i Lo L '
where J is the tension, a = 1.0 X 103dyn/K, and L, = 0.5m is the length of the
band when no tension is applied. The mass M of the rubber band is held fixed.
(a) Compute (0L /0T ); 5, and discuss its physical meaning. (b) Find the equation
of state and show that d J is an exact differential. (c) Assume that the heat capacity
at constant length is C; = 1.0]/K. Find the work necessary to stretch the band
reversibly and adiabatically to a length of 1 m. Assume that when no tension is

applied, the temperature of the band is 7' = 290 K. What is the change in temper-
ature?

Problem 3.8 Blackbody radiation in a box of volume V and at temperature 7'
has internal energy U = aV T* and pressure P = 1/3aT*, where a is the Stefan—
Boltzmann constant. (a) What is the fundamental equation for blackbody radia-
tion (the entropy)? (b) Compute the chemical potential.

Problem 3.9 For alow-density gas the virial expansion can be terminated at first
order in the density and the equation of state is

NkgT
Vv

P

[1 + %Bz(T)] ,

where B,(T') is the second virial coefficient. The heat capacity will have correc-
tions to its ideal gas value. We can write it in the form

Nk,

Cyn= ;NkB— F(T).
(a) Find the form that F(7') must have in order for the two equations to be ther-
modynamically consistent. (b) Find Cp, 5. (c) Find the entropy and internal energy.

Problem 3.10 Prove that

Con=(2) and (Z1) =7(Z) -x.
’ oT /y,N Y /TN 0T /y,N

Problem 3.11 Compute the entropy, enthalpy, Helmholtz free energy, and Gibbs
free energy of a paramagnetic substance and write them explicitly in terms of their
natural variables when possible. Assume that the mechanical equation of state is
m = (DH /T )and that the molar heat capacity at constant magnetizationis ¢, =,
where m is the molar magnetization, H is the magnetic field, D is a constant, c is
a constant, and T is the temperature.
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Problem 3.12 Prove that (a) k;(Cp — Cy) = TVoci and (b) (Cp/Cy) = (k7 /Ks).

Problem 3.13 Show that T'ds = ¢,(0T/0Y), dY + ¢y (0T /0x)y dx, where x =
X /n is the amount of extensive variable, X, per mole, c, is the heat capacity per
mole at constant x, and ¢y is the heat capacity per mole at constant Y.

Problem 3.14 Compute the heat capacity at constant magnetic field Cy, ., the
susceptibilities 7, and xs ,,, and the thermal expansivity ay, ,, for a magnetic sys-
tem, given that the mechanical equation of state is M = nDH/T and the heat
capacity is Cy; , = nc, where M is the magnetization, H is the magnetic field, n is
the number of moles, D is a constant, c is the molar heat capacity, and T is the
temperature.

Problem 3.15 A material is found to have a thermal expansivity a, = R/Pv +
a/RT?v and an isothermal compressibility x; = 1/v(T f(P) + (b/P)), where v =
V' /n is the molar volume. (a) Find f(P). (b) Find the equation of state. (c) Under
what conditions is this material mechanically stable?

Problem 3.16 Compute the efficiency of the two reversible heat engines in Fig-
ure 3.9a,b. Which engine is the most efficient? (Note that these are not Carnot
cycles. The efficiency of a heat engine is 7 = AW, .1/ A Qqpsorbed-)

Problem 3.17 It is found for a gas that x; = Tv f(P) and ap = Rv/P + Av/T?,
where T is the temperature, v is the molar volume, P is the pressure, A is a con-
stant, and f(P) is an unknown function of P. (a) What is f(P)? (b) Find v =
v(P, T).

Problem 3.18 A boy blows a soap bubble of radius R which floats in the air a few
moments before breaking. What is the difference in pressure between the air in-
side the bubble and the air outside the bubble when (a) R=1cmand (b) R =1 mm?
The surface tension of the soap solution is ¢ = 25 dyn/cm. (Note that soap bubbles
have two surfaces.)

Problem3.19 Imagine a droplet of water, in equilibrium with its vapor, placed on
a wire frame that can stretch the surface area of the droplet, keeping the temper-
ature fixed. Assume that the whole system, droplet, frame, and vapor is contained
in a fixed total volume V and kept at temperature 7. The grand potential of the
system can be written Q = Q,+ Q, where Q, = ¢A is the surface grand potential,
o is the surface tension, A is the surface area of the liquid, and Q, is the grand po-
tential of the remainder of the system. Neglect contributions from the frame and

Tg -=- To4---

I
|
|
@) 3 S, (b 3 S, ~ Figure 3.9 Figure for P3.16.
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changes in the volume of the water droplet as it is stretched. The surface tension
of water can be written

n
0=00<1—t—t,> )

where 0, = 75.5 dyn/cm is the surface tension at temperature, t = 0°C, n = 1.2,
and ¢/ = 368 °C. (a) Compute the internal energy per unit area of the surface as-
suming that the number of surface atoms, Ny = 0. (b) Plot the surface area and
the surface internal energy per unit area for the temperature interval £ = 0°C to
t=1t.

Problem 3.20 A stochastic process, involving three fluctuating quantities, x;, x,,
and x5, has a probability distribution

—% (Zx"; + 2x%5 + 4x§ + 2x%3 + 2x,%5 + 2x§)] ,
where C is the normalization constant. (a) Write probability distribution in the
form P(x, x5, x3) = Cexp(—1/2xT - g - x), where g is a 3 X 3 symmetric matrix,
x is a column matrix with matrix elements «x;, i = 1,2, 3, and T is its transpose.
Obtain the matrix g and its inverse g~!. (b) Find the eigenvalues A, (i = 1,2, 3)
and orthonormal eigenvectors of g and obtain the 3 X 3 orthogonal matrix O that
diagonalizes the matrix g (get numbers for all of them). Using this orthogonal
matrix, we canwritex -g-x=x"-0"-0.-g-0"-0-x=a"-A-a= Z?:I/Iiaf,
where O - g- O" = A is a 3 X 3 diagonal matrix with matrix elements (4); j=24:6;;
and O - & = a is a column matrix with elements «; (i = 1, 2, 3). (c) Compute the
normalization constant, C. (d) Compute the moments (x;) (i = 1,2, 3), (x;x;) (i =
1,2,3,j=1,2,3), (x}x,x3) and (x,x5%;). (Note that Exercises A.7 and A.8 might
be helpful.)

P(xy,%,,x3) = Cexp [

Problem 3.21 A monatomic fluid in equilibrium is contained in a large insulated
box of volume V. The fluid is divided (conceptually) into 7 cells, each of which has
an average number N, of particles, where N, is large (neglect coupling between
cells). Compute the variance of fluctuations of enthalpy per particle # = H/N
fluctuations. ((Ak;)?), in the ith cell. (Hint: Use pressure Pand entropy per particle
s = §/N as independent variables.)

Problem 3.22 A monatomic fluid in equilibrium is contained in a large insulated
box of volume V. The fluid is divided (conceptually) into 7 cells, each of which has
an average number of particles N, where N, is large (neglect coupling between
cells). Compute the variance in fluctuations of internal energy per particle u =
U/N, ((Au;)?), in the ith cell. (Hint: Use temperature T and volume per particle
v =V /N as independent variables.)

Problem 3.23 A monatomic fluid in equilibrium is contained in a large insulated
box of total volume V. The fluid is divided conceptually into m cells, each with
approximately the same average number of particles, N, where Nj, is large (ne-
glect coupling between cells). Compute the variance, ((As;)?) (s = S/N is the en-
tropy per particle), the variance ((Av;)?) (v = V/N is the volume per particle),
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and the correlation between them ((As;Av;)) in the ith cell (neglect interaction
between neighboring cells). Where possible express your answers in terms of re-
sponse functions, equilibrium temperature T, and equilibrium densities.

Problem 3.24 A van der Waals gas can be cooled by free expansion. Since no
work is done and no heat is added during free expansion, the internal energy re-
mains constant. An infinitesimal change in volume dV causes an infinitesimal
temperature change in d 7', where
T
dT = <W)u,ndv‘

(a) Compute the Joule coefficient (07 /dV); ,, for a van der Waals gas (note that
the heat capacity Cy, , is independent of volume and use Cy, , = 3/2nR). (b) Com-
pute the change in temperature of one mole of oxygen (O,) and one mole of carbon
dioxide (CO,) if they each expand from an initial volume V; = 1073 m? at temper-
ature T; = 300K to a final volume V; = 0. (For O, the van der Waals constant is
a = 0.1382 Pam®/mol? and for CO, it is @ = 0.3658 Pam®/mol?.)

Problem 3.25 Consider a gas obeying the Dieterici equation of state,

p= nRT ox (_ na )
V—ub) P\"VRT)

where @ and b are constants. (a) Compute the Joule coefficient (0T /0V); ..
(b) Compute the Joule-Kelvin coefficient (T /0P),, ,. (c) For the throttling pro-
cess, find an equation for the inversion curve and sketch it. What is the maximum
inversion temperature?

Problem 3.26 Two containers, each of volume V/, contain ideal gas held at tem-
perature T and pressure P. The gas in chamber 1 consists of N, , molecules
of type a and N, , molecules of type b. The gas in chamber 2 consists of N, ,
molecules of type a and N, ;, molecules of type b. Assume that N; , + N, , =
N, , + N, ,. The gases are allowed to mix so the final temperature is 7" and the
final pressure is P. (a) Compute the entropy of mixing. (b) What is the entropy
of mixing if N, , = N, , and N, , = N, ;. (c) What is the entropy of mixing if
N,,=N,,and N, , = N, , = 0. Discuss your results for (b) and (c).

Problem 3.27 An insulated box with fixed total volume V is partitioned into m
insulated compartments, each containing an ideal gas of a different molecular
species. Assume that each compartment has the same pressure but a different
number of moles, a different temperature, and a different volume. (The thermo-
dynamic variables for the ith compartment are (P, n;, T}, V;).) If all partitions are
suddenly removed and the system is allowed to reach equilibrium: (a) Find the
final temperature and pressure, and the entropy of mixing. (Assume that the par-
ticles are monatomic.) (b) For the special case of m =2 and parameters n; =1 mol,
T, =300K, V; =11, n, = 3mol, and V, = 21, obtain numerical values for all pa-
rameters in part (a).
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Problem 3.28 A tiny sack made of membrane permeable to water but not NaCl
(sodium chloride) is filled with a 1% solution (by weight) of NaCl and water and
is immersed in an open beaker of pure water at 38 °C at a depth of 1 ft. (a) What
osmotic pressure is experienced by the sack? (b) What is the total pressure of
the solution in the sack (neglect surface tension)? Assume that the sack is small
enough that the pressure of the surrounding water can be assumed constant. (An
example of such a sack is a human blood cell.)

Problem 3.29 Hemoglobin is a protein, carried by red blood cells, that trans-
ports oxygen from the lungs to tissue throughout the body. A m = 21.5x 1073 g
sample of hemoglobin protein is dissolved in water at a temperature of 5°C
to form a 1.5 ml solution. The osmotic pressure of the solution is found to be
= 0.00475 atm. What is the molecular weight (in atomic mass units) of the
hemoglobin molecule? (Historically, the molecular weight of the hemoglobin
molecule was first determined by measuring osmotic pressure of such solutions.)

Problem 3.30 A biological molecule of unknown mass can be prepared in pure
powdered form. If 15 g of this powder is added to a container with 1L of water at
T = 300K, which is initially at atmospheric pressure, the pressure inside the con-
tainer increases to P = 1.3atm. (a) What is the molecular weight of the biological
molecules? (b) What is the mass of each molecule expressed in atomic units?

Problem 3.31 A solution of particles A and B has a Gibbs free energy

1, "1, W
G(P’T’nA’nB)=nAgA(P’T)+ntB(P’T)+§A'AA7+§ABB?
nang
+ A +n,RTInx, + ngRT Inxyg . (3.143)

Initially, the solution has n, moles of A and n moles of B. (a) If an amount, Ang,
of B is added keeping the pressure and temperature fixed, what is the change in
the chemical potential of A? (b) For the case A4, = Agg = A,p, does the chemical
potential of A increase or decrease?

Problem 3.32 Consider the hypothetical reaction 2XY, = 2XY + Y,, which
occurs in the gas phase. Start initially with two moles of XY, and zero moles
each of XY and Y,. Assume the reaction occurs at temperature 7" and pres-
sure P. Use ideal gas equations for the chemical potential. The chemical poten-
tials for these molecules in the gas phase at 7= 298.15K and P = 1 bar are
Hxy, = —394.37]/mol, yyy = —137.17]/mol, and py, = 0. (a) Compute and plot
the Gibbs free energy, G(T, P, €), as a function of the degree of reaction ¢ for
(i) P=1barand T = 298.15K and (ii) P = 1 bar and T = 398.15 K. (b) Compute
and plot the affinity A(T, P, §), as a function of the degree of reaction ¢ for (i) P =1
bar and 7' = 298.15 K and (ii) P = 1 bar and 7' = 398.15 K. (c) What is the degree
of reaction ¢ at chemical equilibrium for P = 1 bar and 7' = 298.15 K? How many
moles of XY,, XY, and Y, are present at equilibrium? (d) If initially the volume of
the gas was V[, what is the volume at equilibrium for P = 1 bar and 7' = 298.15K?
(e) What is the heat of reaction for P = 1 bar and 7 = 298.15K?
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Problem 3.33 Consider the reaction
2HI = H, + I,

which occurs in the gas phase. Start initially with 2 mol of HI and 0 mol each of H,
and I,. Assume that the reaction occurs at temperature T’ and pressure P. Use
ideal gas equations for the chemical potential. (a) Compute and plot the Gibbs
free energy, G(T, P, ), as a function of the degree of reaction, &, for (i) P = 1 atm
and 7 =298 Kand (ii) P = 1 atm and 7 = 596 K. (b) Compute and plot the affinity,
A(T, P, ), as a function of the degree of reaction, &, for (i) P=1atmand 7 =298 K
and (ii) P = 1 atm and 7 = 596 K. (c) What is the degree of reaction, &, at chemical
equilibrium for P = 1 atm and temperature 7' = 298 K? How many moles of HI,
H,, and I, are present at equilibrium? (d) If initially the volume is Vj, what is
the volume at equilibrium for P = 1atm and T = 298 K? (e) What is the heat of
reaction for P = 1atm and 7' = 298 K?

Problem 3.34 Consider the reaction
2NH, = N, + 3H,

which occurs in the gas phase. Start initially with 2 mol of NH; and 0 mol each
of H, and N,. Assume that the reaction occurs at temperature 7" and pressure P.
Use ideal gas equations for the chemical potential. (a) Compute and plot the Gibbs
free energy, G(T, P, ), as a function of the degree of reaction, &, for (i) P = 1 atm
and 7 =298 Kand (ii) P = 1 atm and 7 = 894 K. (b) Compute and plot the affinity,
A(T, P, §), as a function of the degree of reaction, &, for (i) P=1atmand 7 =298 K
and (ii) P = 1 atm and 7 = 894 K. (c) What is the degree of reaction, &, at chemical
equilibrium for P = 1latm and temperature 7' = 894 K? How many moles of NH3,
H,, and N, are present at equilibrium? (d) If initially the volume is V[, what is
the volume at equilibrium for P = 1atm and T = 894 K? (e) What is the heat of
reaction for P = 1atm and 7 = 894 K?

85



4
The Thermodynamics of Phase Transitions

4.1
Introduction

A thermodynamic system can exist in a number of different phases and the macro-
scopic behavior of these various phases can differ dramatically. Generally, systems
become more ordered as temperature is lowered because forces of cohesion begin
to overcome thermal motion and atoms can rearrange themselves into more or-
dered states. Phase changes occur abruptly at some critical temperature, although
evidence that a phase change will occur can be found on a macroscopic scale as
the critical temperature is approached. In this chapter we will be concerned with
the thermodynamics of phase transitions — that is, the description of phase tran-
sitions in terms of macroscopic variables. In later chapters we shall study them
from a microscopic point of view.

The first step in analyzing phase changes is to map out the phase diagram for the
system. At a transition point, two (or more) phases can coexist in equilibrium with
each other. Since phases can exchange thermal and mechanical energy and matter,
equilibrium occurs when the chemical potentials of the phases become equal for
given values of Y and T From this equilibrium condition, we can determine the
maximum number of phases that can coexist and, in principle, find an equation
for the regions of coexistence (the Clausius—Clapeyron equation, for example).

Phase transitions can be divided into two classes according the behavior of the
Gibbs free energy. Phase transitions with discontinuous first derivatives of the
Gibbs free energy (taken with respect to T and Y) are called first-order phase
transitions. Phase transitions with continuous first derivatives, but discontinuous
higher order derivatives, are called continuous phase transitions. We give exam-
ples of both in this chapter.

Classical fluids provide some of the most familiar examples of first-order phase
transitions. The vapor-liquid, vapor—solid, and liquid—solid transitions are all
first order. For these phase transitions, we can use the Clausius—Clapeyron equa-
tion to find explicit approximate equations for the coexistence curves. Since the
vapor-liquid transition terminates in a critical point, we will focus on this tran-
sition and compare the observed behavior of the vapor-liquid coexistence region
to that predicted by the van der Waals equation.

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2016 by WILEY-VCH Verlag GmbH & Co. KGaA.
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A binary mixture of molecules in the fluid state provides a different example
of a first-order phase transition. For such systems, below a certain critical tem-
perature we can have a physical separation of the mixture into two fluids, each of
which is rich in one of the types of molecules.

Superconductors and superfluids are especially interesting from the standpoint
of thermodynamics because they exhibit phase transitions that depend on the
quantum statistics of the particles. In the absence of a magnetic field, the transi-
tion of electrons in a metal, from a normal to a superconducting state, is a con-
tinuous phase transition. It is quantum mechanical in nature and results from
a macroscopic condensation of pairs of electrons into a single quantum state. The
superfluid transitions in liquid He® and liquid He?* are of similar quantum ori-
gin. The superfluid transitions in liquid He? involve pairs of “dressed” He3 atoms
which condense, on a macroscopic scale, into a single quantum state. In liquid He*
a macroscopic number of “dressed” He* atoms condense into the ground state.
When liquid He?® and liquid He* are mixed together, they form a binary mixture
which can undergo both a continuous superfluid phase transition and a first-order
binary phase transition.

A continuous phase transition is accompanied by a change in the symmetry
properties of the two phases. Ginzburg and Landau developed a general theory of
continuous symmetry-breaking phase transitions which involves an analytic ex-
pansion of the free energy in terms of the order parameter. We shall discuss the
Ginzburg-Landau theory in this chapter and show how it can be applied to mag-
netic systems at the Curie point and to superfluid and superconducting systems.

The critical point plays a unique role in the theory of phase transitions. At a crit-
ical point, some thermodynamic variables can become infinite. Critical points oc-
cur in a huge variety of systems, but regardless of the particular substance or me-
chanical variable involved, there appears to be a universality in the behavior of all
systems as they approach their critical points. One of the best ways to characterize
the approach to a critical point is by means of critical exponents. We shall define
critical exponents in this chapter and give explicit examples of some of them for
the liquid—vapor transition in simple fluids and for the Curie point.

4.2
Coexistence of Phases: Gibbs Phase Rule

The Gibbs phase rule tells us how many phases can coexist, for a system in thermo-
dynamic equilibrium. Generally, coexisting phases are in thermal and mechanical
equilibrium and can exchange matter. Under these conditions, the temperature
and chemical potentials of the phases must be equal (cf. Section 3.7) and there
will be a condition expressing mechanical equilibrium. For example, for a simple
PVT system, the pressures of the two phases will be equal (if surface tension can
be neglected).

For simplicity, let us first consider a YXT system which is pure (composed of one
kind of particle). For a pure system, two phases, I and II, can coexist at a fixed value
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Figure 4.1 Coexistence curves for the solid
and liquid phases of water. In accordance
with the Gibbs phase rule, no more than three
phases can coexist [21] (based on [172]).

P (kbar)

of Y and T if their respective chemical potentials are equal y!(Y, T') = (Y, T').
(The chemical potentials are functions only of intensive variables.) This gives us a
relation between the values of Y and T for which the phases can coexist, Y = Y(T')
and in the YT plane it defines a coexistence curve for the two phases.

If the pure system has three phases, I, II, and III, they can only coexist at a single
point in the Y-T plane (the triple point). Three coexisting phases must satisfy the
equations (Y, T) = u'(Y, T) = p™(Y, T'). Since we have two equations and two
unknowns, the triple point is uniquely determined. For a pure system, four phases
cannot coexist, because we would then have three equations and two unknowns
and there would be no solution. For a mixture of | different types of particles, at
most | + 2 phases can coexist.

As an example of the Gibbs phase rule for pure substances, we show the coexis-
tence curves for various solid phases of water (cf. Figure 4.1). We see that although
water can exist in many different solid phases, no more than three phases can co-
exist at a given temperature and pressure.

4.3
Classification of Phase Transitions

As we change the independent intensive variables (Y, T, x, ..., x;) of a system, we
reach values of the variables for which a phase change can occur. At such points
the chemical potentials of the phases must be equal and the phases can coexist.
The fundamental equation for the Gibbs free energy, in a system with / different
kinds of molecules, is G = Zi,:l n;u;, where n; is the number of moles of the
jth constituent and ; is its chemical potential (see Table 3.4). For processes which

occur at constant Y and T, changes in the Gibbs free energy can be written

1

[dGly,; = ) p;dn;. (4.1)
j=1

Thus, at a phase transition, the derivatives y; = (6G /on j) in the two
Y,T,{n,v#,-}

phases must be equal. However, no restriction is placed on the derivatives
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X = —(0G/()Y)T,{n/_} and S = —(0G/oT )y, (n))- The behavior of these deriva-
tives is used to classify phase transitions. If the derivatives (0G/0 V)1, m)) and
(0G/oT )y, (n,) are discontinuous at the transition point (i. e., if the extensive vari-
able X and the entropy S have different values in the two phases), the transition
is called first order. If the derivatives (0G/0T )y, (n)) and (0G/0Y)r, (n,) are con-
tinuous at the transition but higher order derivatives are discontinuous, then the
phase transition is continuous. (The terminology “nth-order phase transition” was
introduced by Ehrenfest to indicate a phase transition for which the nth derivative
of G was the first discontinuous derivative. However, for some systems, higher
order derivatives are infinite, and the theory proposed by Ehrenfest breaks down
for those cases.)

In Figure 4.2, we plot the Gibbs free energy for a first-order transition ina PVT
system. For such a system the Gibbs free energy must be a concave function of P
and T (cf. Section 3.7). A discontinuity in (0G/0P)r, (n,) Means that there is the
discontinuity in the volume of the two phases,

av=viovio(96) _(9G)" (42)
OP / 1,{n) OP /1,{n})
and a discontinuity in (0G /0T )p {n,) Means there is a discontinuity in the entropy
of the two phases,

1l I

as=si-st=(22)  -(%2) . (4.3)
0T /pinyy  \OT /pny)

Since the Gibbs free energy is the same for both phases at the transition, the fun-

damental equation H = G + T'S shows that the enthalpy of the two phases is dif-

/ A
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Y
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Y | Si|I—
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Figure 4.2 Typical behavior for the Gibbs free energy at a first-order phase transition. Plots of
(@) Gvs Pand V versus P, and (b) G versus T and S versus T.



4.4 Classical Pure PVT Systems

ferent,
AH = H'— HY' = TAS, (4.4)

for a first-order phase transition. The enthalpy difference, AH, is also called the
latent heat.

For a continuous phase transition, the Gibbs free energy is continuous but its
slope changes rapidly. This in turn leads to a peaking in the heat capacity at the
transition point. For a continuous transition, there is no abrupt change in the en-
tropy or the extensive variable (as a function of Y and 7)) at the transition.

In the subsequent sections we shall give examples of first-order and continuous
phase transitions.

4.4
Classical Pure PVT Systems

A classical pure PVT system is a system composed of only one type of molecule
that can exist in solid, liquid, and/or vapor phases [116, 196, 220]. This class of
PVT system does not include the isotopes of helium, He? or He* at low tem-
perature where they have superfluid phases, but it is typical of most other pure
substances. Since we deal with pure substances in this section, it is convenient to
describe their phase transitions in terms of molar densities.

441
Phase Diagrams

A typical set of coexistence curves for pure substances is given in Figure 4.3a.
Point A on the diagram is the triple point, the point at which the gas, liquid, and
solid phases can coexist. Point C is the critical point, the point at which the va-
porization curve terminates. The fact that the vaporization curve has a critical
point means that we can go continuously from a gas to a liquid without ever going
through a phase transition, if we choose the right path. The fusion curve does not
have a critical point (none has ever been found). We must go through a phase tran-
sition in going from the liquid to the solid state. This difference between the gas—
liquid and liquid—solid transitions indicates that there is a fundamental difference
between liquid—solid transition and the liquid—gas transition. The difference lies
in their symmetry properties. Solids exhibit spatial ordering, while liquids and
gases do not. (We will use “vapor” and “gas” interchangeably.)

The transitions from gas to liquid phase, from liquid to solid phase, and from
gas to solid phase are all first-order transitions and are accompanied by a latent
heat and a change in volume. In Figure 4.3b, we have drawn the phase diagram in
the P—v plane. The dashed lines are lines of constant temperature. We notice that
the slope of the dashed lines is negative, (0P/dv); < 0. This is a statement of the
stability condition, x> 0 (cf. Section 3.7). In the region of coexistence of phases,
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Figure 4.3 (a) Coexistence curves for a typical
pure PVT system. Point A is the triple point
and point C is the critical point. The dashed
line is an example of a fusion curve with neg-

ative slope. (b) A plot of the coexistence re-
gions for a typical PVT system. All the phase
transitions here are first order. The dashed
lines represent isotherms.

the isotherms (dashed lines) are always flat, indicating that in these regions the
change in volume occurs for constant P and 7.

4.4.2
Coexistence Curves: Clausius-Clapeyron Equation

The molar Gibbs free energies (the chemical potentials), g = G/n, of two coex-
isting phases (which we call I and II) of a monatomic PVT system must be equal.
If we change the pressure and temperature at which the two phases coexist (i. e.,
if we move to a new point on the coexistence curve), the molar Gibbs free energy
of the two phases must change by equal amounts. Thus, [dg"]oexist = [A€™ lcoexist
and, using Table 3.4, we can write

vidP —s'dT =v"'dP—s"dT (4.5)
along the coexistence curve, where v is the molar volume and s is the molar entropy.
Thus,

P I_ I
(§),.. 7w =% =7 @9
I v v

along the coexistence curve, where As = s' — s (Av = v! — V) is the difference
in the molar entropy (molar volume) of the two phases. In the right-most term
in Eq. (4.6), we have introduced the latent heat, A1 = T'As (cf. Table 3.2). Equa-
tion (4.6) is called the Clausius—Clapeyron equation. The latent heat, Al, is the
heat absorbed per mole in the transition from phase II to phase L.

It is useful to consider the Clausius—Clapeyron equation for each of the three
coexistence curves in Figure 4.3. We first consider the vaporization curve. If we
evacuate a chamber and partially fill it with a pure substance, then for the tem-
peratures and pressures along the coexistence curve (the vaporization curve) from
the triple point to the critical point (point A to point C in Figure 4.3a) the vapor
and liquid phases will coexist in the chamber. In the absence of gravity, droplets
of liquid will coexist with vapor. For a given temperature T, the pressure of the
vapor and liquid is called the saturated vapor pressure. The Clausius—Clapeyron
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equation tells us how the vapor pressure changes as a function of temperature
along the coexistence curve.

We can obtain a rather simple equation for the vaporization curve if we make
some approximations. Let us assume that changes in the molar volume of the
liquid may be neglected relative to changes in the molar volume of the vapor (gas)
as we move along the coexistence curve, and let us assume the vapor obeys the
ideal gas law. Then Av ~ RT /P, and the Clausius—Clapeyron equation for the
vapor pressure curve takes the form

dp PAh,
< d_T ) coex - RT2 ’ (4‘7)

where Ah,, is the latent heat of vaporization. If we assume that the latent heat of
vaporization is roughly constant over the range of temperatures considered, we
can integrate Eq. (4.7) from (P, T,) to (P, T') along the coexistence curve to obtain

(4.8)

Ah (T — T,)
P:POexp I:M:l

RTT,

Thus, as the temperature is increased, the vapor pressure increases exponentially
along the vaporization curve. Conversely, if we increase the pressure, the temper-
ature of coexistence (boiling point) increases.

Exercise 4.1

Prove that the latent heat must always be positive (heat is absorbed) when making
a transition from a low-temperature phase to a high-temperature phase.

Answer: Let us assume that phase I is the high-temperature phase and phase Il is
the low-temperature phase. Since for fixed pressure and temperature the equilib-
rium state is a state of minimum Gibbs free energy, we must have G; < G;; above
the transition temperature and G; > G|; below the transition temperature. This
implies that (dGl/aT)P{,, y < (aGH/dT)P(n , both above and below the transi-
tion temperature. Therefore S = —(dGI/()T)P{,, y > Sy = (()GH/()T)P{,, , and
AS = TAH is always positive in going from the low- temperature phase to the
high-temperature phase.

The fusion curve does not terminate at a critical point but can have either positive
or negative slope. The Clausius—Clapeyron equation for the liquid—solid transi-
tion is

dT ) ... TAvy’ ’

where Avg is the change in molar volume in going from the solid to the liquid
phase and Ak is the latent heat of fusion. If the volume of the solid is greater
than that of the liquid, then Av will be negative and the slope, (dP/ d T ),y Will
be negative (the dashed line in Figure 4.3a).
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For the case of a fusion curve with positive slope (the solid line in Figure 4.3a),
if we increase the pressure at a fixed temperature, we simply drive the system
deeper into the solid phase. However, if the fusion curve has a negative slope,
then increasing the pressure at fixed temperature can drive the system into the
liquid phase. Water is an example of a system whose fusion curve has negative
slope.

Exercise 4.2

Compute the molar heat capacity of a vapor along the vaporization curve.

Answer: Along the vaporization curve there is only one independent variable,
which we choose to be the temperature. In general, the entropy of the vapor is
a function of both the pressure and temperature, but along the vaporization curve
the pressure is related to the temperature by the Clausius—Clapeyron equation.
The molar heat capacity along the vaporization curve can be written

as av aP
=T (5 ) e == T(57), (57 )
Ceoex 0T / coex ‘r 0T /p \OT /coex

where we have used identities in Appendix B and Table 3.4 ((ds/oP); =
—(0v/0T)p). The molar heat capacity, c,, is the heat capacity of the vapor held
at constant pressure as we approach the coexistence curve. If we use the ideal gas
equation of state to describe the properties of the vapor phase and if we use the
Clausius—Clapeyron equation, we obtain the following expression for the molar
heat capacity along the coexistence curve, ¢ oo = cp — (Ahyy)/T).

If a solid is placed in an evacuated chamber and maintained at some pressure and
temperature along the sublimation curve, a vapor will coexist in equilibrium with
the solid phase. If we again assume that the gas phase obeys the ideal gas equation
of state, then the volume of the solid can be neglected and Av,, = RT/P, is the
change in molar volume in going from the solid to the gas phase. The Clausius—
Clapeyron equation for the sublimation curve can then be written

dp PAh,

where Ahg, is the latent heat of sublimation. If the vapor pressure is known over
a small temperature interval, then the latent heat of sublimation can be obtained
from Eq. (4.10). We can rewrite Eq. (4.10) in the form

din(P)

s = ~Raa/my

(4.11)

Then Ahg, is proportional to the slope of the curve, In P versus 1/7.
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Exercise 4.3

Two crystalline forms of calcium carbonate, CaCOj, are called calcite and arago-
nite. At T, = 298 Kand P, = 1.0 bar, calcite and aragonite have molar Gibbs free
energy g° = —1128.8k] and g7 = —1127.8 k], molar entropy s? = 92.9]J/K and
s2 = 88.7] /K, and molar volume v? = 36.93 x 107 m? and v° = 34.15 x 10~ m?,
respectively [190]. (a) At T = Ty and P = P, which form is stable? (b) At what tem-
perature does a phase transition occur between the two substances when P = P;,?
(c) At what pressure does the phase transition occur when 7' = T,?

Answer: (a) At T, = 298 K, calcite is stable because g, < g,.

(b) At fixed P = Py, [dglp = —s d T so g.(T}, Py) — g.(Ty, Py) = s2(T, — T;p) and
&.(Ty, Py) — g,(T1, Py) = s3(T, — Tj) (assumingss is slowly varying). Let Ag = g, —
g.and As = s, — s, so Ag(T,, P,) — Ag°® = As°(T, — T;). The phase transition
occurs when Ag(T,, Py) =0or T, = T, + Ag° /As® =298 K+ 1000 k] /(—4.2] /K) =
59.9K.

(c) The Clausius—Clapeyron equation for this transitionisdP/d T ~ As° /Av° =
15.1bar/Kso dP ~ (15.1 bar/K) dT.If we integrate, with lower limit at the tran-
sition point (7}, = 59.9K, P, = 1.0 bar), we find P, — P, = (15.1 bar/K)(T,, — T}).
At T = T, the transition occurs at P, = 3.6 kbar.

443
Liquid-Vapor Coexistence Region

The liquid—vapor coexistence region culminates in a critical point and will be of
special interest later. Therefore, it is useful at this point to examine this coexis-
tence region more closely [116, 196]. Let us redraw the coexistence curve (va-
porization curve) for the liquid—vapor transition in the P—v plane (cf. Figure 4.4).
The isotherms for stable thermodynamic states are indicated by the solid lines.
As we decrease the molar volume of the gas with temperature fixed at T, < T,
the pressure increases until we reach the coexistence curve (point A). At point A,
the vapor starts to condense and the pressure remains fixed until all vapor has
changed to liquid (point B). Then the pressure begins to rise again.

A

Figure 4.4 The coexistence curve for the
- Vvapor-liquid coexistence region for a pure
PVT system.
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443.1 LeverRule

The amounts of liquid and vapor which coexist are given by the lever rule. Let
us consider a system with temperature 7, < T, pressure P,, total volume V.
The liquid and vapor phases coexist. The total volume V}; and total mole number
n can be written Vj, = ngv, + myv; and n = n, + n), respectively, where v, (v|)
is the molar volume of the gas (liquid) and g (ng) is the number of moles of gas
(liquid). The total molar volume, v, = V;,/n, is given in terms of the molar volume
v, of the liquid at point B, and the molar volume v, of vapor (gas) at point A, by
Vp = xv; + x,V,, where x; is the mole fraction of liquid at point D and x, is the
mole fraction of gas at point D. If we multiply v, by % + x, = 1, we find

x  (vg—vp)

a_s D (4.12)

%,  (vp—vp)
Equation (4.12) is called the lever rule. It tells us that the ratio of the mole fractions
of liquid to gas at point D is equal to the inverse ratio of the distance between
point D and points A and B.

Exercise 4.4

In the neighborhood of the triple point of ammonia (NH;), the equation for the
sublimation curve is In(P) = 27.79 — 3726/ T and the equation for the vaporiza-
tion curve is In(P) = 24.10 — 3005/ T, where P is measured in Pascals and T is
measured in Kelvin. (a) Compute the temperature and pressure of the triple point.
(b) What is the latent heat of sublimation? What is the latent heat of vaporization?

Answer: (a) At the triple point, the pressure and temperature of the vapor, liquid,
and solid are the same. Therefore, the equation for the triple point temperature,
T, is 27.79 — 3726/ T, = 24.10 — 3005/ T, or T, = 195.4 K. The triple point pres-
sure, P, is P, = 6.13 kPa.

(b) The slope of the sublimation curve is (0P/0T)ex * (PAhy,)/(RT?) =
(3726P)/ T?. Therefore, Ahg, =3726R ~ 31 kJ/mol. The slope of the vaporization
curve is (0P/0T)¢pex * (PAMy)/(RT?) = (3005P)/ T?. Therefore, Aly, = 3005R ~
25kJ/mol.

coex

Aslongas (dv/0P); < 0, the system is mechanically stable (see Section 3.7). If we
continue the isotherm, T, past the points A and B (the dashed line), we obtain
curves which are mechanically stable but no longer correspond to a minimum of
free energy. States along the dashed line at point A correspond to supercooled va-
por states, while those along the dashed line at point B correspond to superheated
liquid states. Such states are metastable and can be produced in the laboratory for
very pure samples.

443.2 Law of Corresponding States

The actual shape of the coexistence curve in the T—p plane (p is the mass density)
has been given by Guggenheim [76] for a variety of classical pure substances and
is reproduced in Figure 4.5. Guggenheim plots the coexistence curve in terms of
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Figure 4.5 Experimental vapor-liquid coexistence curve for a variety of substances. The plot is
of the reduced temperature versus reduced density (based on [76]).

the reduced quantities /T, and p/p., where T, and p, are the critical tempera-
ture and mass density, respectively, of a given substance (T, and p,_ are different
for each substance). Most classical substances, when plotted in terms of reduced
temperature and density, lie in approximately the same curve. This is an exam-
ple of the so-called law of corresponding states, which says that all classical pure
fluids, when described in terms of reduced quantities, obey the same equation of
state.

It is found from experiment that the reduced densities of the liquid and gas
phases along the coexistence curves obey the following equations:

+ — 1/3
PitPs 143 (1LY g 2225 7(1_LY) . (413
2p. 4 T 2 T

C

C pC

These equations will be useful later.

4.43.3 Response Functions in the Coexistence Region

It is possible to obtain expressions for response functions in the coexistence re-
gion. As an example, we will consider the molar heat capacity, c,, for a liquid and
vapor coexisting at a fixed molar volume, v, (cf. Figure 4.4). If we neglect any ef-
fects of gravity, then the system will consist of droplets of liquid in equilibrium
with and floating in vapor. The internal energy per mole of the liquid at point D
is u)(vg, T) and that of the vapor at point D is u#,(v,, T}) (the thermodynamic
properties of the liquid and the vapor at point D are the same as on their re-
spective sides of the coexistence curve). The total internal energy at point D is
Uyo = ngu(vy, To) + mu(vy, Ty) and the total internal energy per mole at point D
is

Ut = xgu(vg’ TO) + ‘xlu(vl’ T()) ) (414)
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where v, = v,, | = vg, and 7, and #, are the number of moles of gas and liquid,

respectively, at point D.
Let us now look at the variation of the internal energy with temperature along
a line of fixed molar volume at point D (the molar heat capacity at point D),

autot aug " 6141 " ( axl
c, =\ —— = —_— -_— u —u -_— ,
' a T 15)) xg a T coex xl a T coex l ¢ a T coex

(4.15)

where we have used the fact that dx; = — d«,. Equation (4.15) can be expressed
in terms of directly measurable quantities. There are several steps involved which
we itemize below.

1. First consider the quantity (du,/0T)
we can write

e = — +{ — — =c¢y, +{ — — ,
or coex or v avl T or coex avl T or coex

(4.16)

Using identities from Appendix B,

coex”*

where ¢, is the molar heat capacity of the liquid at point B. Similarly,

ou, ou, v,
(_) —o 42 <_> , (4.17)
oT coex ¢ avg T oT coex

where ¢, is the molar heat capacity of the vapor at point A.
2. Next consider the difference Au = u, — u; between the molar internal energies
of the gas and liquid. From the Clausius—Clapeyron equation (4.6) and the

fundamental equation for the enthalpy (see Table 3.2), we can write

dp AP
dr _Ah _ Au APV Au i (4.18)
dT /) ex TAv TAv TAv TAv T

where Al = h, — hjand Av = v, — v; (AP = 0 because the pressure of the two
coexisting phases are the same). Therefore,

dp
Au=u, —u = { [T (d_T>mex - P] (vg — vl)}mex . (4.19)

3. Finally, let us consider the quantity (0x /07T ) .. Since the total molar volume
at point D can be written v, = x,v, + x,v}, we can write

ovp —0=( ) 0x, N v, N av
aT Vb - - VI Vg aT coex xg aT coex xl aT coex ‘

(4.20)
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Here we have used the fact that as we vary the temperature along the line

vp = constant, the liquid and vapor vary along their respective sides of the
coexistence curve. We can rewrite Eq. (4.20) in the form

axl 1 avg 61/1
) _ v (==) (= . (4.21)
oT coex (Vg - Vl) oT coex oT coex

We can combine Eqs. (4.15), (4.17), (4.19), and (4.21) to obtain the following ex-
pression for the heat capacity along the line v, = constant;

_ N N 0I/£g an N aul avl
CV - xgc"g xlCVl xg al/g T oT coex xl avl T oT coex
dp ov ov
(@) () e ()
d T coex a T coex a T coex
We now can make two final changes to Eq. (4.22). We can use the identity

ou, oP,
—) =7(=2) -p (4.23)
v, aT ),

T

g

(4.22)

and an analogous identity for (du, /dv;) (cf. (3.50)). Also, we can write

(2) —(2) (& P @24)
oT Vg 0T / coex an r oT coex '

and an analogous expression for (0P/dT'), . If Egs. (4.23) and (4.24) and the anal-
ogous expressions for the liquid are substituted into Eq. (4.22), we find

2 2
" avg) <0P> <aVI>
c,=x, ¢, =T | — — +x ¢, - T =— — .
f l ¢ (avg)T <aT coex : ! avl T oT coex
(4.25)

All quantities in Eq. (4.25) are measurable, and therefore a numerical value for
the heat capacity can be obtained without much difficulty. Equation (4.25) will be
useful later when we consider critical exponents.

The heat capacity at constant volume is finite in the coexistence region. How-
ever, the heat capacity at constant pressure is infinite in the coexistence region.
If we add heat to a system with coexisting liquid and vapor phases and keep the
pressure fixed, liquid will turn to vapor but the temperature will not change. Thus,
¢p = o in the coexistence region, while ¢, can remain finite.
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444
The van der Waals Equation

The van der Waals equation, P = (nRT )/(N — nb) — (an?)/V?, was first derived
by van der Waals in his doctoral dissertation in 1873. The parameters a and b ac-
count for attractive and repulsive forces, respectively, between molecules in a fluid
(see Table 4.1 for values of a and b for some simple fluids). It is the simplest equa-
tion of state which exhibits many of the essential features of the liquid—vapor
phase transition. The van der Waals equation is cubic in the molar volume and
can be written in the form
3 RT
v = (b + T)

y a ab

14 +FV+7—O, (426)
where v = V/n. An isotherm of the van der Waals equation is plotted in Fig-
ure 4.6a. For small values of T and P, the cubic equation has three distinct real
roots (three values of v) for each value of P and T (this case is shown in Fig-
ure 4.6a). As T increases, the roots coalesce at a critical temperature, 7, and
above T, two of the roots become imaginary and therefore unphysical. As 7' — o,
(4.26) reduces to the ideal gas equation of state, v = RT'/P.

The critical point is the point at which the roots of Eq. (4.26) coalesce. It is
also the point at which the critical isotherm (T = T,) has a vanishing slope
(or/ dv)T:Tc = 0 and an inflection point (0>P/ dvz)TzTC = 0, so the curve changes
from convex to concave and (0>P/0v?); changes sign. If we use the fact that

2
(E) =0 and (22 —0 (4.27)
ov/r=r, ov? ), o,

Table 4.1 Values of specific enthalpy, specific entropy, and specific volume of H,0 along the
liquid and gas coexistence curves from the triple point to the critical point [70]. (Note that
1dm=10""m)

t P h, h s Sg v, Vg

(°Q)  (bar) (kJ/kg) (kJ/kg) (kJ/(kgK)) (kJ/(kgK)) (dm?/kg) (dm?/kg)

0.01 0.006 0 2502 0 9.158 1.000 206163

25 0.0317  104.8 2547 0.3674 8.559 1.003 43402

50 0.123 209.3 2592 0.704 8.078 1.012 12046
100 1.013 419.1 2676 1.307 7.355 1.044 1673
150 4.760 632.2 2745 1.842 6.836 1.091 392.5
200 15.55 8524 2791 2.331 6.428 1.157 127.2
250 39.78 1086 2800 2.793 6.071 1.251 50.04
300 85.93 1345 2751 3.255 5.708 1.404 21.65
350 165.4 1672 2568 3.780 5.218 1.741 8.798

374.15 221.2 2107 2107 4.443 4.443 3.170 3.170
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Figure 4.6 (a) A sketch of a typical van der
Waals isotherm for T < T_. The line from D

to F corresponds to mechanically unstable
states. The area, CDE, is labeled 2, and the area
EFG is labeled 1. (b) A plot of the molar Gibbs
free energy as a function of pressure for the
isotherm in Figure 4.6a.

at the critical point, then we obtain the following values for the temperature 7,
pressure P_, and molar volume v, at the critical point:

a 8a
=, = 3b 5 T = .
TR <~ 27bR

(4.28)

If we introduce reduced variables P = P/P,, T = T/T,, and v = v/v,, then we
may write the van der Waals equation in the form

<ﬁ + _%) (37 —1)=8T. (4.29)
v

It is important to note that Eq. (4.29) is independent of @ and b. We are now mea-
suring pressure, volume, and temperature in terms of their fractional distance
from the critical point. The values of v, T, and P, will differ for different gases,
but all gases obey the same equation if they are the same fractional distance from
their respective critical points — that is, if they have the same values of P= pr/p,,
T= T/T., and v = v/v,. Thus, we see again the law of corresponding states.

An unphysical aspect of the van der Waals equation is its prediction of positive
slope, (0P/0v), for certain segments of the isotherms below T, (the segment be-
tween D and F in Figure 4.6a). This region corresponds to mechanically unstable
thermodynamic states. However, the unphysical parts of the P-V curve can be
removed by use of the Maxwell construction, which we will now describe.

We can write the equation for infinitesimal changes in the molar Gibbs free
energy in the formdg = —sd T+ v dP. If we follow one of the isotherms sod 7' =0,
we can determine how g varies with pressure along that isotherm. In Figure 4.6a,
we plot the molar volume as a function of pressure along a typical van der Waals
isotherm, and in Figure 4.6b, we plot the molar Gibbs free energy as a function
of pressure for the isotherm in Figure 4.6a. Along the isotherm the difference in
molar Gibbs free energy between any two points is equal to the area under the
curve, v = v(P), between those two points:

Py

&H—& = J v(P)dP. (4.30)

Py

The Gibbs free energy increases and is concave between A and D. Between D
and F it decreases and is convex. Then between F and I it becomes concave again
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and increases. Between D and F the states are mechanically unstable since me-
chanical stability requires that g be concave (see Section 3.7). The regions from A
to D and from F to I are both mechanically stable since g is concave. However, only
the curve ACI in Figure 4.6b corresponds to states in thermodynamic equilibrium
because for these states the Gibbs free energy is a minimum. The states FCD are
metastable. The equilibrium states thus correspond to those states whose Gibbs
free energy has values lying along the curve ACI. To obtain the equilibrium states
on the isotherm between C and G we must draw a straight line (line of constant
pressure) between them, since this is the only way the Gibbs free energy will re-
main constant in going from C to G. The physical isotherm (isotherm containing
equilibrium states) is the line BCEGH in Figure 4.6a.

Before we can complete our construction of isotherms, we must decide where C
and G lie. For the points C and G, the molar Gibbs free energies are equal. Thus,
gc—gc = LfCG v(P)dP = 0so

Py P P Pg
0= J v(P)dP + J v(P)dP + J v(P)dP + J v(P)dP (4.31)
Pe Py Py Py

or, after rearranging,

Py Py Py Pg
J v(P)dP — J v(P)dP = J v(P)dP — J v(P)dP. (4.32)
P Py P Py

The left-hand side is equal to Area 2 in Figure 4.6a and the right-hand side is equal
to Area 1. Thus, the line from C to G must be drawn so that Area 1 = Area 2. If
this is done, the curve BCEGH gives the equilibrium states of the system. This
requirement of equal areas is called the Maxwell construction. Using the Maxwell
construction, we obtain the equilibrium isotherms from the van der Waals equa-
tion and the curves for metastable states.

445
Steam Engines — The Rankine Cycle

The steam engines historically have provided much of the power that has driven
the growth of modern civilization. They continue to be one of our most impor-
tant sources of power because coal-based power plants or modern nuclear power
plants use steam engines to change heat into electrical power. Water is plentiful,
chemically stable and poses no health risks. Water and steam have relatively large
heat capacities and latent heat, making them good heat sponges. The steam en-
gine cycle runs through the liquid—vapor coexistence region of the water phase
diagram. Water is converted to steam which then drives a turbine or piston.

A basic steam engine generally consists of a boiler, a condenser, a pump, and
a turbine or piston. A reversible version of the steam engine, called the Rankine
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Figure 4.7 (a) The basic elements of a steam engine. (b) The Rankine cycle.

cycle, is shown in Figure 4.7a and b [220]. The Rankine cycle runs through the
closed cyclea — b — ¢ — d — a in Figure 4.7b as follows

a — b: Cold water is pumped adiabatically from low temperature T, and pres-
sure P, to slightly higher temperature T, and much higher pressure P, (T, <
T,, P, < Py).

b — c¢: Water at high pressure P, and cold temperature T/, is heated at constant
pressure P, to the boiling point T, then turned into steam at constant pres-
sure P, and temperature 7, and then further heated to a superheated (dry
steam) state at pressure P, and temperature T, (T, < Ty < T.).

¢ = d: Superheated steam at pressure P, and temperature T flows into a com-
partment where it expands approximately adiabatically against a piston or tur-
bine blades until its pressure and temperature drop to approximately P, and
temperature 7, (T; < T,) forming wet steam.

d — a: Wet steam at pressure P, and temperature 7; condenses into water at
pressure P, and temperature T, and the cycle is complete.

For the Rankine cycle, an amount of heat/mass AQ,, is absorbed, but over a range
of temperatures, and an amount of heat/mass AQ,, is ejected. For the part of the
process a — b, there is only a slight decrease Av;, = v, — v, in the volume/mass
of the water since water is very incompressible. Because the processes b — ¢ and
d — a occur at constant pressure, the heat/mass absorbed and ejected can be
expressed in terms of the change in enthalpy/mass / of the water. (Note that d/z =
T ds + vdP, where s is the entropy/mass. If dP = 0 we have dz = T 'ds = dq.)
Thus, AQ,, = h. — h, and AQ,, = h, — h,.

Since the Rankine cycle is reversible, the change in the internal energy for the
complete cycle is AU, = AQ,,, — AW, = 0. Thus, the work/mass done by the
engine is AW, = AQuo = AQy, + AQ,, = AQ,, — AQ,,. The efficiency of the
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Table 4.2 Truncated Steam Table - Values super-heated steam (separated by dots) [70].
of specific enthalpy (kJ/kg), specificentropy ~ (Note that 1dm = 10~ m. The dots sepa-
(kJ/kg K), and specific volume (dm? /kg) of rate data for subsaturated water from data for
H, 0 as functions of pressure (bar) and tem- super-heated steam.)

perature (°C) for subsaturated water and

Pl \t— 100 200 250 300 350 400 450 500

20 h 420 853 ... 2902 3025 3139 3249 3358 3467
20 s 131 233... 6.55 6.77 6.960 7.13 7.286  7.432
20 v 104 116... 111 126 138.6 151 163.4 175.6
50 h 423 854 1086 ... 2926 3072 3194 3318 3434
50 s 1.30 2.33 2.79 ... 6.21 6.455  6.65 6.822  6.977
50 v 104 115 1.25... 45.3 51.94  57.8 63.25  68.49
100 h 427 856 1086 1343 ... 2926 3100 3244 3375
100 s 1.30 2.32 2.78 3.25... 5949  6.22 6.424  6.576
100 v 104 115 1.24 1.40 ... 2242  26.4 29.74  32.76

Rankine cycle can be written
= AV(/tot — Ach_AQad — hc_hb_hd+ha
Ach Ach hc - hb

The process a — b is reversible and adiabatic so d# = vdP and h, — h, =

(4.33)

Ifb vdP = v, (P, — P,), where v, is the approximately constant volume/mass
of water during the transition a — b. The quantity v (P, — P,) is called the feed-
pump contribution. Thus, the efficiency of the Rankine engine can be written
_ hC_hd_VW(Pb_Pa)

h,—h,—v,P,-P,)"

Vi (4.34)
The quantity /1, is the enthalpy of water in the coexistence region. It can be found
as follows. The point e in Figure 4.7b is on the vapor side of the coexistence curve
at temperature 7, and pressure P,. The Gibbs free energy per unit mass at point d
isg; =hy; — T,s,; and at point eitis g, = h, — T ;s,. Because the process ¢ — d
is reversible and adiabatic we have s. = s,;. If we use the fact that g, = g, we can
write h; = h, — T,(s, — s.). All these quantities can be found in steam tables [70]
(see Tables 4.1 and 4.2).

Exercise 4.5

A steam engine outputs superheated steam at a temperature of 7' = 250 °C and
pressure P = 20 bar. After the steam has driven engine turbines, it is liquified in
acondenser at a temperature of 7 = 25 °C. (a) Compute the efficiency of the steam
engine assuming that it operates on a Rankine cycle. (b) Compute the efficiency
of a Carnot engine operating between the same high and low temperatures.
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Answer: (a) Referring to the Rankine cycle in Figure 4.7b, assume that the tem-
perature at points @ and eis T, = T, = 25°C = 298K, since both points lie on
(opposite sides of) the coexistence curve. From Table 4.1, the pressure at points
aand eis P, = P, = 0.0317 bar = 3.17 x 103 Pa. The specific volume of water at
pointa is v, = 1.003 dm3/kg = 1.003 x 10~ m3 /kg. Assume that the pressure at
points b and ¢ is P, = P, = 20 bar = 2.0 X 10° Pa, and the temperature at point ¢
is T, = 250 °C = 523 K. The efficiency of the Rankine cycle is

_h,—hy—v,(P,—P,)
" he—h, —v,(P,—P,)

Vi with hy=h,—-T,(s, —s.).

From Table 4.1, the specific enthalpy and entropy at point e are &, = 2547 k] /kg
and s, = 8.56 k] /(kg K), respectively. From Table 4.2, the specific enthalpy and
entropy at point ¢ are i1, = 2902 k] /kg and s, = 6.55 k] / (kg K), respectively. Thus,
the feed-pump term gives v, (P, — P,) = 1.97 k] /kg. The enthalpy at point d is
hy=h, —T,(s, —s.) = 1948k]/kg. The efficiency of the Rankine cycle (using
the above formula) is # = 0.34. (b) The efficiency of a Carnot engine operating
between T4 = 298 Kand T}, = 523 Kis #caunor = 0.43.

4.5
Binary Mixtures

If we consider a fluid which is a mixture of several different types of interacting
particles, a phase transition can occur in which there is a physical separation of
the fluid into regions containing different concentrations of the various types of
particles [83, 106, 172, 188]. The simplest example of this type of phase transition
occurs for binary mixtures.

The Gibbs free energy for a binary mixture composed of n; moles of type 1
particles and n, moles of type 2 particles is G(T, P, ny, n,) = n,py; + n,u, and
differential changes in the Gibbs free energy can be writtendG =—-Sd7+ V dP+
uq dny +p, dn, (see Table 3.4). The molar Gibbs free energyis g = G/n =x,y; +
X, 4y, where n = n; + n, and x; and x, are the mole fractions of particles of type
1 and 2, respectively. It is straightforward to show that

dg=—-sdT +vdP+ (4 — py)dx,, (4.35)

so that g = g(T, P, x,).
The chemical potential of type 1 particles is

G og
=\ — =g+(1—x)<—> (4.36)
' (anl )p,T,n2 ' 0%y ) pr

and the chemical potential of type 2 particles is

0G og )
Uy = — =g—x (— , (4.37)
: <0"2>1>,T,n1 ! 0%, ) pr
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where we have used the fact that (dx, /on, ) " = %, /nand (0x1/0n2 ) " = —x,/n.
From Eqs. (4.35)—(4.37), we see that the chemical potential depends on the mole
numbers n; and n,, only through its dependence on the mole fraction, ;.

We can also show that

0 0% 0 0%
I\ _qoay (P ana (%) - (%
ox 7\ a2 ox T\ o2
1/pT *1 /) pr 1/pT X1 )bt
(4.38)

From Eq. (4.38) and the stability conditions in Section 3.7, namely (9, /on, )P I'n
(L)

> 0 we find that the molar Gibbs free energy must satisfy the conditions

pe P
28) >0 and <ﬁ> <0. (4.39)
()xf oy 0xy ) pr

Thus, for chemical stability, the molar Gibbs free energy must be a convex function
of the mole fraction.

451
Equilibrium Conditions

For a binary mixture to be in equilibrium, the chemical potentials of the two types

of particle must be equal. This equality of chemical potentials of the two types

of particle gives us a condition for locating the coexistence curve when a phase
: ; I _ I

separation occurs. For type 1 particles we have H, =y, or

1 1 og : 1 I og !
g+(1-) = =g"+(1-4) (= , (4.40)

0% ) pr 0%y / pr

and for type 2 particles we have u} = yll or

ag 1 ag 11
g - x11 <_> =gl— xlll <_> , (4.41)
0%, ) pr 0x1 ) pr

where I and II denote the two phases. If we combine Eqs. (4.40) and (4.41), we can
write the conditions for equilibrium in the form

90 \! 90 \ I 90 \!
<_g> = <_g> and gI—gH=(x11—xIII) (—g> . (4.42)
0x1 ) pr 0xy ) pr 0x;

1y

Equations (4.42) tell us that the equilibrium points in the (g, x;) plane have equal
slopes, and they have a common tangent. These two conditions enable us to locate
the coexistence curve.

In Figure 4.8a, we show a sketch of the molar Gibbs free energy which illus-
trates these various properties. It shows a region where two phases can coexist.
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metastable
region

coexistence
&1~ curve
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0 X X 1T g 0 0.5 X T g

@)

Figure 4.8 (a) A sketch of the molar Gibbs free energy of a phase-separated binary mixture.
The two points with common tangent are equilibrium states. (b) The phase diagram for a bina-
ry mixture. Point C is the critical point.

The points that have a common tangent are the equilibrium points. The concave
region in the middle is unstable. In a test tube, the heavier phase will sink to the
bottom and the lighter one will float to the top.

As long as (du,/0x,)p7 < 0, the binary mixture will be chemically stable and
exist in one phase. However, if (dp,/0x,)pr > O the system has an unstable re-
gion and phase separation occurs. The critical point for this phase separation is
given by (du,/0%,)5 . = 0. The critical point is the point where the x, first be-
comes a double-valued function of y1; or u, as the temperature is changed. That
is, two different values of x; give the same value of the chemical potential. Thus,
in analogy to the liquid—vapor critical point (with P — y, and v — x;), the critical
point is a point of inflection of the curve y, = p,(T, P, x,) for T and P constant.
Therefore, we have the additional condition that (04, /dx = 0 at the critical
point.

A sketch of the coexistence curve, and the curve separating stable from unsta-
ble states is given in Figure 4.8b. The region outside and above the coexistence
curve corresponds to allowed single-phase equilibrium states. Below the coexis-
tence curve is a coexistence region in which two equilibrium states with different
concentrations of type 1 particles can coexist at the same temperature. The shad-
ed region corresponds to metastable states. These are single-phase states which
are not in thermodynamic equilibrium but are chemically stable. All single-phase
states below the dashed line are unstable and cannot be realized in nature. Let
us follow the horizontal line at temperature, 77 < T, in Figure 4.8b. At x; = 0,
we have a system consisting only of type 2 particles. As we start adding type 1
particles, the concentration of type 1 particles increases until we reach the coex-
istence curve at point I. At this point, the system separates into two phases, one
in which type 1 particles have concentration xll and another in which type 1 parti-
cles have concentration xIlI. As we increase the number of type 1 particles relative
to type 2 particles, the amount of phase II increases and the amount of phase I
decreases until we reach the coexistence curve at point II. At point II, phase I has
disappeared and we again have a single-phase equilibrium state of concentration,

11
xl .

2\c
I)P,T
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i one phase Figure 4.9 The phase diagram for a mixture of n-
Teb----- <~ — - - ——1 hexane and nitrobenzene (C;H;NO,) at atmospheric
15k pressure. The solid line is the coexistence curve (based

T(OC) on [172]).
10F two phases
coexist
5-
0 05 1
XCgHsNO,
Exercise 4.6

Consider a binary mixture of particles of types 1 and 2, whose molar Gibbs free
energy is given by

g= xl,u? + xz,ug + RTx; Inx; + RTx,Inx, + Ax;x,

where x, and x, are the mole fractions of particles of types 1 and 2, respectively.
(a) For the case when 9 = 1.0, 4 =1.05, RT = 0.39,and A = 1, what are x} and x!'?
(b) Use conditions (9, /9x,)5, . = (0%41/0x7)5, ;- = O to locate the critical point.

Answer: (a) In the expression for the molar Gibbs free energy let x, = 1 — x; and
find points with equal slope dg/dx, and a common tangent. This can be done
graphically and gives equilibrium concentrations x! = 0.13 and x' = 0.87.

(b) The chemical potential, 4y, is sty = u3(P, T) + RT In(1 — x,) + Ax?. There-
fore, at the critical point we have (dy,/0x,);,, = =RT /(1 — x;) + 2Ax; = 0 and
(0*py/0x3)5 . = =RT /(1 = x1)* + 21 = 0. If we solve these two equations for T
and x;, we find that the critical point is located at w; = 1/2and T'= 1/2R.

We see that there many analogies between the liquid—gas transition and the sep-
aration of a binary mixture into two phases. An example of a system exhibiting
this type of behavior is a mixture of n-hexane and nitrobenzene at atmospheric
pressure. The phase diagram for this system is given in Figure 4.9.

4.6
The Helium Liquids

Helium atoms, because of their small mass and weak attraction, remain in the
liquid state for a wide range of pressures and temperatures down to the lowest
measured values. The helium atom occurs in nature in two stable isotopic forms,
He® and He*. He?, with nuclear spin (1/2), obeys Fermi—Dirac statistics; while
He?, with nuclear spin 0, obeys Bose—Einstein statistics. At very low temperatures,
where quantum effects become important, He® and He* provide two of the few
examples in nature of quantum liquids.

Chemically, He® and He* are virtually identical. The primary difference between
them is a difference in mass. However, at low temperatures the two systems exhibit
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very different behavior due to the difference in their statistics. Liquid He*, which is
a boson liquid, exhibits a rather straightforward transition to a superfluid state at
2.19K. Liquid He? also undergoes a transition to a superfluid state, but at a much
lower temperature (2.7 X 1073 K). The mechanism for the superfluid transition in
liquid He? is quite different from that of liquid He*.

When He? and He* are combined to form a binary mixture, a new type of phase
point occurs (called a tricritical point) in which a A-line connects to the critical
point of a binary phase transition.

46.1
Liquid He*

He? was first liquefied in 1908 by Kamerlingh Onnes at a temperature of 4.215 K
at a pressure of 1atm [101, 127, 218]. Unlike the classical liquids we described
in Section 4.4, it has two triple points. The coexistence curves for liquid He* are
shown in Figure 4.10a (compare them with the coexistence curve for a classical
liquid in Figure 4.5). He* at low temperature has four phases. The solid phase
only appears for pressures above 25 atm, and the transition between the liquid
and solid phases is first order. The liquid phase continues down to temperatures
approaching 7' = 0 K. However, there are in fact two liquid phases. As the normal
liquid [liquid He(I)] is cooled, a line of A-points occurs at about 7' = 2 K (the exact
temperature depends on the pressure), indicating that a continuous symmetry-
breaking phase transition occurs at this line. There is a triple point at each end
of the A-line. The symmetry that is broken is gauge symmetry. The specific heat
of liquid He? along the A-line is shown in Figure 4.10b. We can see that it has the
lambda shape characteristic of a continuous phase transition.

The phase diagram of He* provides a good example of the third law. The vapor—
liquid and solid-liquid coexistence curves approach the P-axis with zero slope.
This is a consequence of the third law.

Below the A-line, the liquid phase (which was called liquid He(II) by Keesom
and Wolfke [99]) begins to exhibit very strange properties. In 1938, Kapitza [94]

P(atm
{atm) A
40 50
30 = 2
= 9
201 L0
&}
10
~
00— 2% " 22 " 2%
@ (b) T(K)

Figure 4.10 (a) The coexistence curves for He*. (b) The specific heat of He* at vapor pressure at
the A-point [127].
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and Allen and Misener [3] simultaneously published data that showed abnormal-
ly low viscosity in Hell (Kapitza called it a “superfluid”). Indeed, the first experi-
menters who worked with Hell, found that it was able to leak out of their contain-
ers through cracks so tiny that even He* gas could not leak through them. This
apparently frictionless flow is a consequence of the fact that the condensed phase
is a highly coherent macroscopic quantum state. The thermodynamic behavior of
the liquid involves an unusual coupling of thermal and mechanical effects that are
described below.

4.6.1.1 Thermomechanical Effect

The thermodynamic behavior of liquid He* below the A-line can be modeled in
terms of two interpenetrating fluids. One fluid (superfluid) can flow through tiny
cracks and carries no entropy. The other fluid (normal fluid) behaves normally.
The fact that the superfluid carries no entropy leads to interesting behavior that
can be described with classical thermodynamics.

Let us consider two vessels A and B, insulated from the outside world and filled
with liquid He* at a temperature below 2.19 K. We assume that A and B are con-
nected by a capillary so thin that only the superfluid can pass through it (cf. Fig-
ure 4.11a). This means that the total entropy must remain constant if no irre-
versible processes take place. We also assume that the total mass and total volume
of the system remain constant. Under these conditions, the equilibrium state is
a state of minimum internal energy.

We can obtain the condition for equilibrium between the vessels if we assume
that matter can flow between them but entropy cannot. The total internal energy
will be denoted U+, and u; will denote internal energy per kilogram (specific inter-
nal energy) in vessel . The total internal energy is then given by Uy = 37,_, s M,u,,
where M, is the total mass of liquid He? in vessel /. At equilibrium, the total in-
ternal energy must be a minimum. Thus,

SUp=0= Y (,0M; +M;0u;). (4.43)
I=A,B

Let us now assume that the total volume, V}, and the total entropy, S, of liquid
He? in vessel [ (for [ = A, B) are constant (this is possible because only superfluid
can flow between the vessels and superfluid carries no entropy). The entropy of
liquid He* in vessel [ can be written S; = M,s,, where M, and s, are the total mass
and specific entropy of liquid He? in vessel . Similarly, V; = M,v,, where v, is the
specific volume of liquid He? in vessel /. Since S; and V] are constants, we can

N\
N2

SA!‘/A SB’ VB
He* below 2.19K and connected by a very
fine capillary. Only superfluid can pass be-

@) (b) tween the two vessels. (b) The fountain effect.

Ii%i\i Figure 4.11 (a) Two vessels containing liquid
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write 8S; = M;0s; + s;,0M; = 0 and 8§V, = M,;6v, + vi6M; = 0. Therefore,

oM, oM,
s, =—-s,—— and Ov,=—-v—. (4.44)
M, M,
Let us now expand the differential, §u,, in (4.43) in terms of specific entropy and
specific volume. Equation (4.43) then takes the form

aul aul
> woM+ M | ==) Os,+ () ow| p=0. (4.45)
IZAB asl " 61/1 s

If we note that (0u/ds), = T and (du/dv), = —P and make use of Eq. (4.44), we
obtain

I1=A,B I=A,B

where g, is the chemical potential of liquid He? in vessel /. Since the total mass is
conserved, we can write M, = —dMp and we obtain the equilibrium condition

Ua(Ty, Py) = pup(Ty, Py) . (4.47)

Since matter can flow between the two vessels, the chemical potentials in the two
vessels must be equal. However, heat cannot be exchanged and the volume cannot
change (no mechanical energy transfer), so the pressure and temperature of the
two vessels need not be the same.

We can now vary the temperature and pressure in one of the vessels (vessel A,
for example) in such a way that the two vessels remain in equilibrium. The change
in chemical potential in vessel A is

Appy = —sAT, +vAP,, (4.48)

where s = —(0u/0T )p and v = (0u/0P) . But to maintain equilibrium, we must
have Ay, = 0 so the chemical potentials of the two vessels remain equal. There-
fore,

AP, = 3AT, . (4.49)
1%

Thus, a change in temperature of vessel A must be accompanied by a change in
pressure of vessel A. If the temperature increases, the pressure will increase. This
is called the thermomechanical effect.

The thermomechanical effect is most dramatically demonstrated in terms of
the fountain effect. Imagine a small elbow tube filled with very fine powder, with
cotton stuffed in each end. Assume that a long, thin capillary tube is put in one
end and the elbow tube is immersed in liquid He? at a temperature below 2.19 K.
If we now irradiate the elbow tube with a burst of light, the pressure of helium
in the elbow tube will increase and helium will spurt out of the capillary tube (cf.
Figure 4.11b). This is called the fountain effect and is a consequence of Eq. (4.49).
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When helium in the elbow tube is heated by radiation, superfluid will flow into
the elbow tube to equalize the chemical potentials and increase the pressure in
the elbow tube. It is interesting that in the fountain effect there is a spontaneous
flow of matter from a cooler to hotter vessel. However, since the superfluid does
not carry entropy, this does not violate the second law.

462
Liquid He3

The He® atom is the rarer of the two helium isotopes [123, 137, 211]. Its rela-
tive abundance in natural helium gas is one part in a million. Therefore, in order
to obtain it in large quantities, it must be “grown” artificially from tritium solu-
tions through -decay of the tritium atom. Thus, He® was not obtainable in large
enough quantities to study until the late 1940s and it was first liquefied in 1948 by
Sydoriack, Grilly, and Hammel [195]. Since the He? atom has only 3/4 the mass
of a He? atom, it has a larger zero point energy than the He* atom. As a result,
He? boils at a temperature about 25% lower than He*, and it requires a pressure
about 25% greater than that of He* to solidify.

The phase diagram for He? (on the same scale as that for He*) is given in Fig-
ure 4.12a. On this scale there appears to be no transition to a superfluid state.
There is, however, a minimum in the liquid—solid coexistence curve. This is at-
tributed to the spin of the He® atom. At low temperature the spin lattice of the He?
solid has a higher entropy than the liquid. The entropy difference, AS = Sy;qyq —
S.olids 18 positive at high temperature, vanishes at about 7' = 0.3 K and becomes
negative below 0.3 K. Since volume differences remain virtually unchanged, the
Clausius—Clapeyron equation dP/d7T = AS/AV leads to a positive slope at high
temperature and a negative slope at low temperature. At low temperature, if the
third law is to be satisfied, the slope of the liquid—solid coexistence curve must
become flat as 7 — 0 K.

P (atm) P (atm)
\ A
#9150l ] solid
304 304 superfluid
204 20 superfluid
liquid B
10 10+ normal liquid
4 vaéor a
1 2 3 4 0.001 0.002 0003 _~
@ T(K) (b) T(K)

Figure 4.12 (a) Coexistence curves for He3. (b) Coexistence curves for superfluid phases of He3
when no magnetic field is applied [99].
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Superfluidity was first observed in liquid He® in 1971 by Osheroff, Richardson,
and Lee [159]. In 1997, they received the Nobel prize for this work. The transition
occursat 2.7 X 1073 Kat a pressure of about 34 atm. The phase diagram for a small
temperature interval is shown in Figure 4.12b. There are, in fact, several superfluid
phases in liquid He?, depending on how the bound pairs orient themselves. The
so-called A-phase is an anisotropic phase. The He® atoms (more accurately He?
atoms “dressed” by interactions with the surrounding medium) form bound pairs
with a spin s = 1 and relative angular momentum, / = 1, which means the spatial
distribution of the pairs is flattened and have structure. The fact that the bound
pairs in the A-phase have structure leads to many fascinating effects. The B-phase
is a more isotropic phase. The bound pairs have spin s = 0 and relative angular
momentum, / = 0, so the spatial distribution of the pairs is spherical. This phase
has many features in common with the superfluid phase of a superconductor. If
we apply a magnetic field to liquid He3, a third superfluid phase appears. The
transition between the normal and superfluid phases appears to be continuous,
while that between the A and B superfluid phases appears to be first order.

4.6.3
Liquid He3-He* Mixtures

When He® and He? are mixed together and condensed to the liquid state, some
interesting phenomena occur. We will let x; denote the mole fraction of He?. In
1949, Abraham, Weinstock, and Osborne [1] showed that He3-He* mixtures can
undergo a transition to a superfluid state. In this early experiment, they found
that the A-line extended from 7' = 2.19 K for x5 = 0 to about 7' = 1.56 K for x5 =
0.282. Later experiments extended the A-line down to T = 0.87 K for x5 = 0.67
(cf. Figure 4.13).

In 1954, Prigogine, Bingen, and Bellemans [171] predicted the existence of
a phase separation of liquid He®-He* mixtures into an He?-rich phase and an
He®-rich phase. This phase separation was found in 1956 by Walters and Fair-

2.0
normal He®- He*
T(K)
1.5F
superfluid
3_ ot
1ol He*- He
0.5¢
coexistence region
Figure 4.13 The phase diagram for a liquid
He3-He* mixture plotted as a function of tem-

000 025 050 x, 075 1.00 perature T and mole fraction x; of He®.
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bank [206], using nuclear magnetic resonance techniques. The critical point for
this binary phase transition lies at the end of the A-line at 7= 0.87 Kand %3 = 0.67.
The phase transition along the A-line is second order. The binary phase separation
is a first-order phase transition. In 1982, the region of metastable states for this
first-order phase transition was measured by Alpern, Benda, and Leiderer [4].
The end point of the A-line is the critical point of the first-order binary phase
transition. It was first called a tricritical point by Griffiths [75]. In a suitable space,
it is the meeting point of three lines of second-order phase transitions. One line
is the A-line and the other two are lines of critical points associated with the
first-order phase transition. Thus, the tricritical point is different from the triple
points we have seen in classical fluids.

4.7
Superconductors

Superconductivity was first observed in 1911 by Kamerlingh Onnes [126, 154,
197]. He found that the resistance to current flow in mercury drops to zero at
about 4.2 K (cf. Figure 4.14). At first this was interpreted as a transition to a state
with infinite conductivity. However, infinite conductivity imposes conditions on
the magnetic field which were not subsequently observed. The relation between
the electric current J and the applied electric field E in a metal is given by Ohm’s
law J = oE, where o is the conductivity. The electric field E is related to the mag-
netic field B by Faraday’s law, V. X E = —0B/0dt. If we combine these two laws
we get V. X J/o = —0B/0t. Therefore, infinite conductivity, o — oo, implies that
0B /0t = 0. This in turn implies that the state of the system depends on its histo-
ry. If we first cool the sample below the transition temperature and then apply an
external magnetic field, H, surface currents must be created in the sample to keep
any field from entering the sample, since B must remain zero inside. However, if
we place the sample in the H-field before cooling, a B-field is created inside. Then,
if we cool the sample, the B-field must stay inside. Thus, the final states depend
on how we prepare the sample. With the hypothesis of infinite conductivity, the
state below the transition temperature cannot be a thermodynamic state since it
depends on history.

In 1933, Meissner and Ochsenfeld [135] cooled a monocrystal of tin in a mag-
netic field and found that the field inside the sample was expelled below the tran-
sition point for tin indicating a transition to a state of perfect diamagnetism, B =0
inside the sample. It is now known that superconductors are perfect diamagnets.

1 L1115 Figure 4.14 The resistance of mercury drops to zero at about
4.24 4.28 T(K) 4.2K(based on [154]).
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When superconducting metals are cooled below their transition point in the pres-
ence of a magnetic field, currents are set up on the surface of the sample in such
a way that the magnetic fields created by the currents cancel any magnetic fields
initially inside the medium. Thus, B = 0 inside a superconducting sample regard-
less of the history of its preparation.

No electric field is necessary to cause a current to flow in a superconductor.
A magnetic field is sufficient. In a normal conductor, an electric field causes elec-
trons to move at a constant average velocity because interaction with lattice im-
purities acts as a friction which removes energy from the electron current. In
a superconductor, an electric field accelerates part of the electrons in the metal
because no significant frictional effects act to slow them down. This behavior is
reminiscent of the frictionless superflow observed in liquid He* below 2.19 K. In-
deed, the superfluid flow in He* and the supercurrents in superconductors are
related phenomena. The origin of the apparently frictionless flow in both cases
lies in quantum mechanics. Electrons in a superconducting metal can experience
an effective attractive interaction due to interaction with lattice phonons. Because
of this attraction, a fraction of the electrons (we never know which ones) can form
“bound pairs” The state of minimum free energy is the one in which the bound
pairs all have the same quantum numbers. Thus, the bound pairs form a single
macroscopically occupied quantum state which acts coherently and forms the
condensed phase. Any friction effects due to lattice impurities must act on the
entire phase (which will contain many pairs and have a large mass) and not on
a single pair. Thus, when an electric field is applied, the condensed phase moves
as a whole and is not slowed significantly by frictional effects.

If a superconductor is placed in a large enough external magnetic field, the su-
perconducting state can be destroyed. A plot of magnetic induction, B, versus
applied field, H, appears as in Figure 4.15a. For applied field, H, with a value less
than some temperature-dependent critical value, H .., (7T ), the system is a per-
fect diamagnet. That is, the permeability 4 = 0 and therefore B = 0. However,
for H > H_,.(T ) the system becomes normal and B = yH. (For normal metals
U =~ py, where y is the permeability of the vacuum.) Thus, inside the sample B=0
if H < H,,(T)and B = poH if H > H,(T).

The field, H ... (T ) lies on the coexistence curve for the two phases. It has been
measured as a function of the temperature and has roughly the same behavior for
most metals (cf. Figure 4.15b). The coexistence curve for the normal and super-
conducting phases is well approximated by the equation

Hcoex(T) = HO <1 - 2) ’ (450)
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Figure 4.15 (a) A plot of the magnetic induc-
tion, B, versus the applied magnetic field, H,
in a superconductor (b) The coexistence curve
@) Hewex H (000 ~ T(K)y T~ fornormal and superconducting states.
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where T is the critical temperature when no external fields are present. The slope
(dH/dAT)epex = 0at T = 0K and is negative at T = T.. The phase diagram for
a superconducting metal has analogies to the vapor-liquid transition in a PVT
system, if we let H_,,, replace the specific volume. Inside the coexistence curve,
condensate begins to appear.

Along the coexistence curve, the chemical potentials of the superconducting
and normal phases must be equal and, therefore, any changes in the chemical
potentials must be equal. Thus, along the coexistence curve —s, dT — B, dH =
—s,dT — B;dH and

dT

where we have used the fact that B, = 0 and B,, = pytqH .., (T ) on the coexistence
curve. Equation (4.51) is the Clausius—Clapeyron equation for superconductors.
Here s, is the entropy per unit volume of the normal (superconducting) phase.
We see that the transition has a latent heat (is first order) for all temperatures
except T = T, where H,,., = 0. When no external magnetic fields are present,
the transition is continuous.

The change in the heat capacity per unit volume at the transition is

s, = s,) Hy (T 378

(€ = Co)coex = [Ta—T]mex = 2/40TC <Tc - TS) . (4.52)
We have used Eq. (4.50) to evaluate the derivatives (AH/dT ). .. At low tem-
peratures the heat capacity of the normal phase is higher than that of the super-
conducting phase. At T = T (the critical point) the heat capacity is higher in the
superconductor and has a finite jump, (¢; — ¢,,)7—7, = (444o/ T )H;. It is worth-
while nothing thatas T — 0, (s, — s,,) = Osince (dH/dT ) ye — 0as T — 0. This
is in agreement with the third law of thermodynamics.

H
Sp =8 = _/’lOHcoex(T) (d_> ’ (451)

coex

4.8
Ginzburg-Landau Theory

In the late 1930s, Ginzburg and Landau proposed a mean field theory of contin-
uous phase transitions which relates the order parameter to the underlying sym-
metries of the system. First-order phase transitions may or may not involve the
breaking of a symmetry of the system. For example, in the liquid—solid and va-
por—solid transitions, the translational symmetry of the high-temperature phase
(liquid or vapor) is broken, but for the vapor-liquid transition no symmetry of the
system is broken. Solids may also exhibit first-order phase transitions in which
the lattice structure undergoes a sudden rearrangement from one symmetry to
another and the state of the solid changes discontinuously.

At a continuous phase transition, the slope of the free energy curve changes
continuously and a symmetry is always broken. In such transitions, a new macro-
scopic parameter (the order parameter) appears in the less symmetric phase. The
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order parameter may be a scalar, a vector, a tensor, a complex number or some
other quantity. The form of the order parameter is determined by the type of sym-
metry that is broken [118]. For example, in the transition from a paramagnetic to
a ferromagnetic system, rotational symmetry is broken because a spontaneous
magnetization occurs which defines a unique direction in space. The order pa-
rameter is a vector. In the transition from normal liquid He* to superfluid liquid
He?, gauge symmetry is broken. The order parameter is a complex scalar. In a sol-
id, the lattice might begin to undergo a gradual reorientation as the temperature is
lowered. The order parameter is the change in the spatially varying number den-
sity. In continuous transitions, one phase will always have a lower symmetry than
the other. Usually the lower temperature phase is less symmetric, but this need
not always be the case.

All transitions which involve a broken symmetry and a continuous change in the
slope of the free energy curve can be described within the framework of a mean
field theory due to Ginzburg and Landau [118]. Ginzburg—Landau theory does
not describe all features of continuous phase transitions correctly, but it does give
us a good starting point for understanding such transitions.

4.38.1
Continuous Phase Transitions

We will let 77 denote the order parameter and let ¢ denote the free energy and
write

&(T,Y, f)=¢o(T, Y)+ay(T, V)i* + a3(T, V)* + ay(T, VIy* + - = f1,
(4.53)

where f is the force conjugate to the order parameter and coefficients a;(Y, T')
depend on the details of the transition. There is no term in Eq. (4.53) which is
first order in # because that would ensure a nonzero value for the order param-
eter above the transition point. The molar free energy, ¢,(7,Y), describes the
thermodynamic quantities not directly involved in the transition and generally
will depend on other state variables. The value of the order parameter, #, that is
realized in nature, is the one that gives a minimum of the free energy.

A continuous phase transition can occur if the cubic term in Eq. (4.53) cannot
appear and if no external field is present. The free energy then takes the form

&(T, Y, n) = ¢o(T, Y) + ay(T, V)* + ay(T, Y)y* + - (4.54)

The dependence of a,(T, Y) on temperature is chosen so that for temperatures
above and at the critical temperature, the free energy will only be minimized for
n = 0, while below the critical temperature it will be minimized for |5| > 0.

In general, the free energy will be minimum if

2
<0_¢> =0 and <a—f> >0. (4.55)
on T,Y on*)ry
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Figure 4.16 The behavior of the free eteris n. = 2.7386.(b) The free energy,
energy for a, = 4.0. (a) The free energy ¢ = a,n?® + a,n* — fnforf = 0.06,and
¢ = a,n? + a,n*. Forthe curves (A) a, = 0.6, (A) a, = 0.6, (B) a, = 0.0,and (C) a, = —0.6.
(B) a, = 0.0,and (C) a, = —0.6.In the fig- na = 0.0485,ng = 0.1554,and n. = 0.2961
ure, the nonzero equilibrium order param- give the location of the minima of the curves.

Equations (4.55) give us conditions that must be satisfied for equilibrium states.
Global stability requires that a,(T,Y) > 0 and ensures that, as we increase 7 to
very large values, the free energy will continue to increase.

The critical point occurs when a,(7,Y) = 0. This happens at a temperature
T = T.(Y). If the critical temperature is a function of another variable, Y, then
there will be a line of critical points in the (T, Y) plane. If we choose a,(7, Y) > 0
for T > T, (Y)and a,(T,Y) < Ofor T < T (Y), then the free energy, @, will have
its minimum value at # = 0 when 7' > T(Y) and will have its minimum value for
7 #0when T < T (Y). Since the free energy must vary continuously through the
transition point, at 7 = T (Y) we must have a,(7,, Y) = 0. We can combine all
this information if we write a, (7, Y), in the neighborhood of the transition point,
in the form

ay(T, Y) = ao(T, YX(T = T.(Y)), (4.56)

where a is a slowly varying function of 7 and Y.

In Figure 4.16a, we sketch the free energy for three values of «,. In curve (A),
the free energy has a minimum for # = 0. Curve (B) shows the critical point. The
free energy becomes flattened in the neighborhood of # = 0. In curve (C), the free
energy has minima at # = +#, # 0. The system will randomly select one of these
two nonzero values of the order parameter, 7, below the critical point. The re-
gion on curve (C) for which (0>¢/d1*); , < 0 corresponds to a region of unstable
states. The free energy has extrema when

0
<_¢>> =2, +4a,° =0 (4.57)
on)ry

and therefore when

7=0 or }7=i\/2(x4 \/—(T T). (4.58)

When T > T, the minimum occurs for y =0. When T < T, the minimum occurs

for y = +4/(ay/2a,)(T, — T). Thus, below the critical temperature, the order pa-
rameter is nonzero and increases as 1/ T, — T. From the above discussion, the free




4.8 Ginzburg-Landau Theory

c ’g’ 6.3} i
o ® oo
= i oe® 1
X 42F ° 1
O ° 1
B 1
2.1 1 1 l L 1 I 1
@) ) 73 373 573 T(K)

Figure 4.17 (a) The jump in the heat capacity at the critical point (lambda point) as predicted
by Ginzburg-Landau theory. (b) The specific heat of nickel in the neighborhood of the Curie
point. The dashed line gives the Curie point (based on [120].).

energy takes the following form:

oo(T,Y) for T>T,

T,Y,n) = CX(T -T2 s 4.59
P Y, 9o(T, V)= L for T<T, (4.59)
Xy

where we have suppressed the dependence of T, on Y and the dependence of «,,
and ¢, on T and Y.

The molar heat capacity is ¢, = =T (9*¢/0 T2) y- 1f we neglect derivatives of
a, and a, (we assume that they vary slowly with temperature), we find that the
molar heat capacity has a finite jump at the critical point:

2
T.a,

ey (TD) = ¢y (TF) = 5 (4.60)

a,
The jump in the heat capacity has the shape of a A, as shown in Figure 4.17a, and
therefore the critical point for a continuous phase transition is sometimes called
a A-point.

If we turn on an external force, f, which couples to the order parameter, then
the continuous phase transition is destroyed. In the presence of an external force,
the free energy has the form

¢ (T.Y, H=¢(T, Y, n) — f1=¢o(T, V) +a,y* +ayn*+--— fr, (4.61)

where a, = a,(T,Y) and a, = a,(T, Y). The order parameter is nonzero for all
temperatures. A plot of the free energy in the presence of a force is shown in
Figure 4.16b for the same parameters as Figure 4.16a.

From Eq. (4.61), we can obtain the susceptibility,

_ a_;7> =_<02¢”) 4.62
X <af T,Y afZ T,Y‘ ( )

The equilibrium state is a solution of the equation

a !
<i> =2, +4a,® - f=0. (4.63)
on T,Y
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If we take the derivative of Eq. (4.63) with respect to f and solve for (d1/0 f) 1y,
we obtain

_ (o _ 1
x(f)= <ﬁ>T,Y = —2% T 12a (4.64)

In the limit, f — 0,7 =0for T > T, and y = \/—a,/2a, for T < T_. Therefore,
in the limit f — 0 the susceptibility will be different above and below the critical
point. We find

1

x = lim (a_;7> = 2T for T>Te, (4.65)
f-0 af TY m for T < TC .

Note that the susceptibility diverges at the critical point.

4.8.2
First-Order Transitions

If the order parameter is a scalar, then there is no reason to exclude a third-order
term in the molar free energy, ¢. Also, if the order parameter is a second-order
tensor, there are ways to contract a product of three such tensors to yield a scalar
and again the free energy can have a third-order term. Such systems cannot exhibit
a continuous transition. To see why, let us write the free energy in the form

ST, Y, ) = ¢o(T, Y) + ayn? + asn® + agn + -, (4.66)

where ay = a,(T,Y), a3 = a5(T, Y),and a, = a,(T,Y).
The extrema of the free energy are given by the equation (d¢/d#); y = 0, which

has solutions # = 0 and 7 = (—3a5 + \/96(23 - 32a,a,)/8a,. As long as 9a§ -
32a,a, < 0, the only minimum of the free energy occurs at # = 0 because oth-
er values of 77 will be complex and therefore unphysical. When 90{% —32a,a, >0,

¢_ A BC DE

L . \ L h L L
-04 =02 + 02 04 6 08 1.0 n

Figure 4.18 The behavior of the free energy, ¢ = a,n*> + asn* + a,n* fora, = 2.0,a, = 4.0,
and (A) a; = —4.5,(B) a; = —5.333,(C) a; = =5.5,(D) a; = —5.6568, and (E) a; = —5.85.In the
figure, ng = 0.7738.
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two minima and one maximum can exist. A plot of the free energy for a, > 0,
a, > 0, and a range of values of a4 is given in Figure 4.18. For curves A, B, and C
the state of minimum free energy (the equilibrium state) occurs for 7 = 0. Curve
D shows the behavior of the free energy at the critical temperature for this system.
At this point the equilibrium state shifts from one with order parameter 7 = 0 to
one with order parameter # = 7. Therefore, this is a discontinuous transition
and is of the type one expects for a first-order transition. The transition point
for the first-order transition (curve D in Figure 4.18) is easily found. It must sat-
isfy the conditions ¢ — ¢y = 0 and (d0¢/0dn)7 = 0. These two conditions give
1= —a3/2a, and a, = a3 /4a,. Therefore, the first-order transition occurs when
a, > 0, and therefore it occurs before any continuous transition as the tempera-
ture is lowered. If a5 < 0, then it occurs for a positive value of the order parameter.
If a3 > 0, then it occurs for a negative value of the order parameter.

4.8.3
Some Applications of Ginzburg-Landau Theory

In this section, we discuss three applications of Ginzburg—Landau theory: super-
fluids, magnetic systems, and superconductors.

4.8.3.1 Superfluids

The phase transition from normal to superfluid phase is a transition in which
gauge symmetry is broken. A gauge transformation is a transformation that
changes the phase of all wave functions in the system. It is generated by the
number operator. The transition from normal to superfluid in liquid He? is an
example of a continuous phase transition which involves broken gauge symmetry.
The order parameter, 7, is the macroscopic wave function, ¥, for the condensed
phase. The free energy can be written

O(T, B, ¥) = ¢o(T, P) + ay | V> + a| P|* + -, (4.67)

where a, (T, P) = ay(T, P)(T — T.) and ay(T, P) and a,(T, P) are slowly varying
functions of T"and P. The order parameter, ¥ = 0, above the critical temperature,
and ¥ = e'%/(a,/2a,)(T. — T ) below the critical temperature. The phase factor,
0, can be chosen to be zero as long as no currents flow in the system. For liquid
He* (see Figure 4.10a), there is a line of continuous transition points in the (P, T)
plane. In Figure 4.10b, the heat capacity has a finite lambda-shaped jump as we
pass through the line of critical points.

4.83.2 The Curie Point

The transition from a paramagnetic to ferromagnetic system is one of the simplest
examples of a continuous phase transition. A system which exhibits this behavior
is a magnetic solid, such as nickel, whose lattice sites contain atoms with a mag-
netic moment. The critical temperature is called the Curie temperature. Above
the Curie temperature, the magnetic moments are oriented at random and there
is no net magnetization. However, as the temperature is lowered, magnetic inter-
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action energy between lattice sites becomes more important than randomizing
thermal energy. Below the Curie temperature, the magnetic moments became or-
dered on the average and a spontaneous magnetization appears. The symmetry
that is broken at the Curie point is rotation symmetry. Above the Curie point,
the paramagnetic system is rotationally invariant, while below it the spontaneous
magnetization selects a preferred direction in space. The order parameter for this
continuous phase transition is the magnetization, M. The magnetization is a vec-
tor and changes sign under time reversal. The free energy is a scalar and does not
change sign under time reversal. If a magnetic field, H, is applied to the system,
the Ginzburg—Landau free energy can be written in the form

¢(T,H)= ¢o(T)—M-H+ayM - M+ a,(M- M)* + -, (4.68)

where the coefficients a, and a, have the same properties as described above.
For the case when the applied field H equals 0, the magnetization M equals 0
above the Curie temperature and M = ++/(a/2a,)(T. — T )é,; below the Curie
temperature, where &, is a unit vector which gives the direction of the magneti-
zation vector. The actual direction of the magnetization vector, if H = 0, will be
determined by random fluctuations or outside influences. The heat capacity at the
Curie point exhibits the characteristic 1-shaped peak. As an example, the A-point
in nickel is shown in Figure 4.17b.

4.8.3.3 Superconductors

The condensed phase in a superconductor corresponds to a macroscopically oc-
cupied quantum state and therefore the order parameter is a complex scalar func-
tion (a macroscopic “wave function”) which we denote as ¥. Gauge symmetry is
broken in the transition to the superconducting phase. We can use Ginzburg—
Landau theory to determine the shape and width of the interface between normal
and condensed phases.

Under a gauge transformation, the order parameter ¥ changes its phase. How-
ever, the free energy must remain invariant under the gauge transformation.
Therefore, if no magnetic fields are present, the Ginzburg—Landau expression for
the free energy per unit volume has the form

¢(r, T)=¢,(T)+ ay(T|Fr)|* + a,(T)|¥(r)|* + ﬁ |ihV,Y’(r)|2 ,

(4.69)

where 71 is Planck’s constant, | ¥|> = ¥* ¥, and m is the mass of the superconduct-
ing electron pairs.

The total free energy, @(T' ), can be found by integrating ¢(r, T') over the entire
volume so that

(T)

= Jdr [¢W(T) + ay(TH| P ()| + ay(TH| P (r)|* + ﬁ |ihV,‘I’(r)|2] .
(4.70)



4.9 Critical Exponents

We now extremize the total free energy with respect to variations in ¥* by setting
8@ = [ 8¢ /5¥*8¥* = 0. This gives

h2

a, ¥ +2a,Y|V|* - o

V2¥(r) =0, (4.71)
where we have performed an integration by parts and have assumed that both ¥
and the normal component of V, ¥ are zero at the surface of the volume of inte-
gration. Current flow involving condensed electron pairs in the superconductor
is given by J(r) = eh/(2mi)(¥Y*V,¥ — PV, ¥"). In the absence of a magnetic or
electric field J(r) = 0 and we can assume that the order parameter ¥ is real.

We can now determine how the order parameter ¥(r) varies in space at the
interface between a normal region and a condensed region. For simplicity, assume
that the spatial variation of ¥(r) is along the z-direction so that ¥ = ¥(z). We
introduce the dimensionless function f(z) = ¥+/a,/2|a,|. Then Eq. (4.71) takes
the form

2

oS - reri=o, (4.72)
dz?

where §(T') = \/h?/2m|a,| is the Ginzburg—Landau coherence length. Let us as-
sume that the sample extends from z = —oo to z = +oc0 and the region from z = —co
to z = 0 is normal (contains no condensate) so f(z = 0) = 0. We further assume
that deep inside the condensed phase the order parameter takes its maximum
value ¥(z - o) = v/|a,|2a, so f(z - o) = 1.

We can now solve Eq. (4.72). First multiply by d f/ dz, rearrange terms and
integrate to obtain

d 2
—fz(T)<d—£> =f2—%f4+C, (4.73)

where C is an integration constant. Next require thatd f/dx =0 and f =1 at
z = o0. This gives C = —1/2 and Eq. (4.73) takes the form
df\> 1
~€X(T) (d—f) = (- fH (4.74)
z 2
We can solve Eq. (4.74) to obtain f(z) = tanh(z/4/2¢) for z > 0 and f(z) =0
for z < 0. Thus, most of the spatial variation of the order parameter occurs within

adistance z = 2§(T') of the boundary between the normal and condensed phases.
Near a critical point {(T") becomes very large.

4.9
Critical Exponents

The critical point is the point at which the order parameter of a new phase be-
gins to grow continuously from zero [58, 82, 193]. As we approach the critical
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point from above (higher temperature), microscopic regions become ordered and
fluctuate, although the order parameter on the average remains zero. These mi-
croscopic ordered regions grow and become very large as the critical point is ap-
proached. Just below the critical point, the order parameter of the new phase as-
sumes a nonzero average value.

4.9.1
Definition of Critical Exponents

The behavior of thermodynamic systems, as they approach their critical point, ap-
pears to be universal. This can best be seen in terms of their critical exponents. As
one approaches the critical point, various thermodynamic functions may diverge
or go to zero or even remain finite. We therefore introduce an expansion parame-
tere = (T — T,)/T. thatis a measure of the distance from the critical point. Near
the critical point all thermodynamic functions can be written in the form

f(e) = Ae*(1 4+ Be” + ) (4.75)
where y > 0. The critical exponent for the function f(¢) is defined

/1=limm.

4.76
=0 Ineg ( )

If 1 is negative, f(¢) diverges at the critical point. If A is positive, f(¢) goes to zero
at the critical point.

The case where 1 = 0 may correspond to several different possibilities; for ex-
ample, it may correspond to a logarithmic divergence f(¢) = A|lne| + B or to
a dependence on ¢ of the form f(g) = A + Be!/2. For such cases a modified ex-
ponent is introduced. If j is the smallest integer for which d’ f(¢)/de/ = fU)(e)
diverges, then

1 0}
A = j o+ lim 22O

4.77
£—0 Ine ( )

Although we have chosen to write € in terms of temperature, we can also introduce
critical exponents for quantities such as pressure, density, magnetic field, and so
on. Thus, there are a number of different critical exponents that can be defined
for a system, depending on how the critical point is approached. We give some
examples below.

49.2
The Critical Exponents for Pure PVT Systems

There are four critical exponents that are commonly used to describe the bulk
thermodynamic properties of PVT systems. Below, we define them and give their
experimental values.
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1. Degree of the Critical Isotherm, §. The deviation of the pressure (P — P) from
its critical value varies at least as the fourth power of (V — V) as the critical
point is approached along the critical isotherm. It is convenient to express this
fact by introducing a critical exponent, J, such that

s
sign(p—p,), T=T., (4.78)

C

P-P,
po

C

P~ Pc

C

EAé‘

where P, is the critical pressure, p, is the critical density, A is a constant,
and P? is the pressure of an ideal gas at the critical density and temperature.
Experimentally it is found that 6 > ,,, > 4. The exponent § is called the degree
of the critical isotherm.

2. Degree of the Coexistence Curve, 5. Guggenheim [76] has shown that the de-
viation (T — T,) varies approximately as the third power of (V — V,) as the
critical point is approached along either side of the coexistence curve. One
quantifies this by introducing a critical exponent S, such that

P1— pg
Pc

= Aﬁ(—é’)ﬁ ’ (4.79)

where p; is the density of liquid at temperature T < T, p, is the density of
gas at temperature T’ < T, each evaluated on the coexistence curve, and Az is
a constant. The quantity p, — p, is the order parameter of the system. It is zero
above the critical point and nonzero below it. The exponent f is called the
degree of the coexistence curve and is found from experiment to have values
Bexp ~ 0.34.

3. Heat Capacity, a. The heat capacity at constant volume appears to have a loga-
rithmic divergence for ' — T, along the critical isochore (V = V). The critical
exponent for heat capacity is denoted a and is defined as follows:

A (—e), T<T., =
_{ «(—9) <T., p=p. (4.80)

Vo A+, T>T., p=pe,

where A’ and A, are constants. The exponents a and a’ are found experimen-
tally to have values a,,, ~0.1and a/,  ~ 0.1.

4. Isothermal Compressibility, y. The isothermal compressibility diverges ap-
proximately as a simple pole:

(4.81)

T
K. A e, T>T., p=p,

5__{A%%rﬂ T<T,, p=p(T) or pyT)
where A; and A, are constants. For T < T, one approaches the critical point
along the coexistence curve; for T > T, one approaches it along the critical
isochore. Typical experimental values are y! o~ 12 and Yoy, ~ 1.3.

It is possible to obtain inequalities between the critical exponents using thermo-
dynamic arguments. We shall give an example here. Equation (4.25) can be rewrit-
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ten in terms of the mass density as

op T (dp\*
€, = Xy, F+HC,, " ( g) + 31 py (6_?> , (4.82)
’<g coex pl coex

wherec,, ¢, and c,, are now specific heats (heat capacity per kilogram), and x is
the 1sothermal compre551b111ty All terms on the right-hand side of Eq. (4.82) are
positive. Thus, we can write

op,
¢, > —— SKg ( )mx. (4.83)

As the critical point is approached for fixed volume, x, — (1/2), p, = p. (p. is
the critical density), x; divergesas (T, — T )" (cf. Eq. (4.81)), and (0pg/0T )eoex
diverges as (T, — T )P~! if we assume that [(1/2)(p, + Pg) — Pl goes to zero more
slowly than (p; — p,) (cf. Eq. (4.13)). Thus,

L 1 TB(T =Ty
= 23

where B is a constant, so that Inc, > (2 — y’ — 28)| In(—¢)|. If we next divide by
| In(—¢)| and take the limit 7 — T, we find

, (4.84)

\S}

a +28+y >2. (4.85)

The inequality in Eq. (4.85) is roughly satisfied by real fluids. If we choose a’ =
0.1, =1/3,and y’ = 1.3, then a’ + 28 + y’ =~ 2. Equation (4.85) is called the
Rushbrook inequality.

493
The Critical Exponents for the Curie Point

For magnetic systems, exponents a, 3, y, and § can be defined in analogy with
pure fluids. The coexistence curve for a ferromagnetic system is given in Fig-
ure 4.19a. Below some critical temperature the spins begin to order spontaneous-
ly. The coexistence curve separates the two directions of magnetization. In Fig-
ure 4.19b, we plot some isotherms of the magnetic system. It is helpful to refer to
these curves when defining the various exponents.

1. Degree of the Critical Isotherm, §. The exponent § describes the variation of
magnetization with magnetic field along the critical isotherm

H —_—
H°
C

(4.86)
0)
where H? = kyT/m,, My(0) is the magnetization in zero field at zero tem-
perature, m, is the magnetic moment per spin, and B, is a proportionality
constant. Experimentally, 4 < §,,, < 6, in agreement with the values of J,,
for pure fluids.

exp =
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Figure 4.19 (a) Coexistence curve for a typical magnetic system. Below the Curie point the
magnetization occurs spontaneously. The curve H = 0 separates the two possible orientations
of the magnetization. (b) A sketch of the isotherms for a ferromagnetic system.

2. Magnetization Exponent, B. In a magnetic system, the exponent 5 describes
how the magnetization approaches its value at the critical point when no ex-
ternal field is present. It is defined as follows:

=B, (=€), (4.87)

where By is a constant. For magnetic systems, 8., ~ 1/3 as it is for fluids.
3. The Heat Capacity, . For magnetic systems, the coefficients a and a’ are de-
fined as follows:

c B (—e)™*, T<T,,
w(H =0) = (4.88)
Bye™®, T>T,,

a

’
exp ~ aexp ~ 0.

4. The Magnetic Susceptibility, y. The magnetic susceptibility in the vicinity of
the critical point can be written

&_{B;(—s)‘yﬂ T<T, H=0,
0 - —
X3\ B, T>T, H=0,

where B, and B/, are constants. Experimentally, one finds «

(4.89)

where B; and B, are constants and y9 is the susceptibility of a noninteracting
system at the critical temperature. From experiment y,,,, ~ 1.3.

The striking feature about the critical exponents for fluids and for magnetic sys-
tems is that the values are roughly the same. Indeed, there appears to be a great
similarity in the way in which many systems approach their critical points.

The critical exponents can be computed fairly easily starting from mean field
theories such as the van der Waals equation of state or Ginzburg—Landau theory.
All mean field theories give similar results. The common feature of these theo-
ries is that they assume that the particles move in a mean field due to all other
particles. The mean field theories do not properly take into account the effects of
short-ranged correlations at the critical point and do not give the correct results
for the critical exponents. We shall return to this point when we discuss Wilson
renormalization theory of critical points.
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494
The Critical Exponents for Mean Field Theories

In this section, we compute the critical exponents, «, 3, §, and y for a gas whose
equation of state is given by the van der Waals equation.

The van der Waals equation, in terms of reduced variables, is (ﬁ +(3 /72))(37 -
1) = 8T. In order to examine the neighborhood of the critical point, we introduce
expansion parameterse =(7/7T.)—1,0 =(v/v,)—1,and w = (P/P.)— 1. Interms
of these parameters, the van der Waals equation can be written

1+ m+ L Blw+1)—1]=8(1+¢). (4.90)
1+ w)?
If we solve for 77, we find

_ 8¢+ 16cw + 8cw? — 303

4.91
2+ 70w+ 8w? + 3w3 ( )

‘We can use this expression to obtain the critical exponents.
1. The degree of the critical isotherm, J. Let ¢ = 0 in Eq. (4.91) and expand 7 in
powers of w. This gives

ﬂ=_%w3+... (4.92)

The degree of the critical isotherm is § = 3.
2. Theisothermal compressibility exponent, y. Let us compute (077 /dw), and then
set @ = 0. We obtain

(0_71) = —6¢ (4.93)
ow /e
for @ = 0. The critical exponent, y,is y = 1.
3. Thedegree of the coexistence curve, f3. In the neighborhood of the critical point,
the van der Waals equation can be written

7T =4¢e — 6c0 + Yew? — ;w3+ (4.94)
The values of w on either side of the coexistence curve can be found from two
conditions along the isotherm:
(i) The condition that the pressure and temperature of the liquid and gas in
the coexistence region be equal (P(v)) = P(Vg)) yields

—gwf — 6w + 98(012 = —%wz —6ew, + 98&); , (4.95)

where w; = (v;/v.) —1and &, = (v,/v.) — 1. If we note that o, is negative and
write w; = —&, and w, = +@,, then Eq. (4.95) gives

de (& +5y) + 66 (67 = @2) + &) + &} = 0 (4.96)
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(ii) The molar Gibbs free energy of the liquid and gas phases are equal so that
[*vdP = 0, which can also be written
g

1
J do(1+ ) (—68 + 18we — ng + )

©g

~ —6e(w) — w )+ 6¢e ( wg)

le

(wf’—wg> +oe=0  (497)
so that
4e(wl+w)+4s<wl—w>+wl+w =0. (4.98)

In order for Egs. (4.96) and (4.98) to be consistent, we must have &, = &,. If we
plug this into Eqs. (4.96) or (4.98), and let & = &, = @, then &2 ~ —4e. Note
that ¢ is negative. Thus,

By~ @) =2le|'/? (4.99)

and the degree of the coexistence curveis f = 1/2.

The heat capacity exponent, a. The jump in the heat capacity can be obtained
from Eq. (4.25). Let us approach the critical point along the critical isochore,
v=v.Thenas T - T, x ~ x;, — 1/2 and Cyp = Cypr Thus, the jump in the
heat capacity is given by

¢ (T) —e, :
2
hm _Z _g + ﬁ % ’
=T 2 or coex avl T oT coex .

(4.100)

Along the coexistence curve (aV/aT)weX = +|e|"'/2, where the minus sign

applies to the liquid and the plus sign applies to the gas. From Eqgs. (4.94)
and (4.99) we find

oP oP
P0) = Z8) —6fe| = 202 — 180¢| + - = —12]¢| + O(|e[*'2).
a7 . av . 2

g
(4.101)

If we note that (P.v./RT.) = (3/8), we find
e, (T2) =6, (T7) = 2R+ 0. (4.102)

Thus, the van der Waals equation predicts a finite jump in the heat capacity
at the critical point and therefore it predicts «’ = a = 0.
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4.10
Problems

Problem 4.1 A condensible vapor has a molar entropy s = s, + RIn[C(v —
b)(u + (a/v))*?], where C and sy are constants. (a) Compute the equation of
state. (b) Compute the molar heat capacities, ¢, and cp. (c) Compute the latent
heat between liquid and vapor phases at temperature T in terms of the tempera-
ture 7, the gas constant R, and the liquid and gas molar volumes v and v,. How
can you find explicit values of v, and v, if you need to?

Problem 4.2  Find the coefficient of thermal expansion, a o, = 1/v(0V/0T )cpexs
for a gas maintained in equilibrium with its liquid phase. Find an approximate
explicit expression for a,.,, using the ideal gas equation of state. Discuss its be-
havior.

Problem 4.3 Prove that the slope of the sublimation curve of a pure substance at
the triple point must be greater than that of the vaporization curve at the triple
point.

Problem 4.4 Approximately, how much pressure must be applied to an ice cube
to make it melt at temperature 7' = —1.5°C? (Note that the latent heat of fusion
of H,Ois L; = 3.33 x 10° J/kg, the density of water is p,, = 1.0 x 10° kg/m3, and
the density of ice is p; = 0.917 x 10% kg/m3.)

Problem4.5 Consider the vaporization curve for liquid mercury. The latent heat
of vaporization, L (in J/mol) varies slowly with pressure, but has significant varia-
tion with temperature and can be written L = (7724 — 0.9768 T)R, where R is the
gas constant and T is measured in kelvin. It is known that at atmospheric pres-
sure (P,,, = 1.013 X 10° Pa) mercury begins to vaporize at temperature 7 = 630 K.
(a) Plot the vaporization curve for mercury between temperatures 7' = 500 K and
T =650 K. (b) At what pressure does mercury begin to vaporize when 7' = 530 K?
(Hint: The volume of the liquid mercury can be neglected relative to that of the
vapor and the vapor can be treated as an ideal gas.)

Problem 4.6 Two phases of solid carbon are called graphite and diamond. At
standard temperature (7, = 298 K) and standard pressure (P, = 1.0 bar), the dif-
ference in the molar Gibbs free energy for these two phases is Ag = go — gp =
—2.9kJ/mol, so graphine is the stable phase at standard temperature and pressure
(STP). At STP, the difference in molar volume is Av=vg —vp = 1.9% 10~°m3 /mol,
and the difference in molar entropy is As = sg — sp = 3.4J/(Kmol). (a) If tem-
perature is held fixed at T = T, = 298K, estimate the pressure at which a phase
transition occurs and diamond becomes the most stable form of the crystal. (b) At
temperature T = 398 K, at approximately what pressure does the phase transition
from graphine to diamond occur?

Problem 4.7 One kilogram of superheated steam, at temperature ¢ = 350°C,
pressure P = 100 bar, and specific entropy s = 5.949k]/(kgK), is expanded re-
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versibly and adiabatically to form wet steam at t = 200°C and pressure P =
15.55 bar. The specific entropy of water vapor and liquid water on the coexistence
curveat t = 200°Care s, = 6.428 kJ/(kg K) and s; = 2.331 kJ / (kg K), respectively.
The specific enthalpy of water vapor (gas) and liquid water on the coexistence
curve at t = 200°C are h, = 2791kJ/kg and h; = 852.4k]/kg. (a) What is the
specific enthalpy of the wet steam at ¢t = 200°C? (b) What fraction of the wet
steam is liquid water?

Problem 4.8 Consider a monatomic fluid along its liquid—gas coexistence curve.
Compute the rate of change of chemical potential along the coexistence curve,
(dp/ d T )epex, Where u is the chemical potential and T is the temperature. Express
your answer in terms of s;, v; and s, v,, which are the molar entropy and molar
volume of the liquid and gas, respectively.

Problem 4.9 A system in its solid phase has a Helmholtz free energy per mole,
a, = B/Tv3, and in its liquid phase it has a Helmholtz free energy per mole,

= A/Tv?, where A and B are constants, v is the volume per mole, and T is
the temperature. (a) Compute the molar Gibbs free energy density of the liquid
and solid phases. (b) How are the molar volumes, v, of the liquid and solid related
at the liquid—solid phase transition? (c) What is the slope of the coexistence curve
in the P-T plane?

Problem 4.10 Deduce the Maxwell construction using stability properties of the
Helmholtz free energy rather than the Gibbs free energy.

Problem 4.11  For a van der Waals gas, plot the isotherms in the P-V plane (P
and V are the reduced pressure and volume) for reduced temperatures 7' = 0.5,

=1.0,and T = 1.5. For T = 0.5, is P = 0.1 the equilibrium pressure of the
hquld gas coexistence region?

Problem 4.12 Medium size steam-based power stations in the Middle East typi-
cally output superheated steam at a temperature of £ = 496 °C and condense it at
a temperature of £ = 38°C. (a) Compute the efficiency of these power stations
assuming that they operate on a Rankine cycle. (b) Compute the efficiency of
a Carnot engine operating between the same high and low temperatures. (Hint:
you will need to estimate values for specific enthalpy, entropy and volume by ex-
trapolating between data points in the steam tables.)

Problem 4.13 Consider a binary mixture composed of two types of particles,
A and B. For this system the fundamental equation for the Gibbs free energy is
G = nyp, + nppy, the combined first and second laws aredG = -SdT + VdP +
Uy dny + pp dng (S is the total entropy and V is the total volume of the system),
and the chemical potentials 4, and g are intensive so that g, =y, (P, T, x,) and
up = pug(P, T, x,), where x, is the mole fraction of A. Use these facts to derive the
relations

sdT —vdP+ Z xX,dp, =0

a=A,B
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and

Z x,(dpy +5,dT —-v,dP)=0,
a=A,B

where s = S/n, v=V/n, n=n, +ng, 5, = (()S/ana)P,Tynﬁ%a, and v, = @V/
a"a)P,T,nB# witha =A,Band 8 =A,B.

Problem 4.14 Consider liquid mixture (1) of particles A and B coexisting in equi-
librium with vapor mixture (g) of particles A and B. Show that the generalization
of the Clausius—Clapeyron equation for the coexistence curve between the liquid
and vapor phases when the mole fraction of A in the liquid phase is held fixed is
given by

<dp> _ %R =sh

dT o xi(vi—v1)+x (VgB_Via),

wheres, = (65/011“)RT,”B# andv, = (aV/ana)M,,M witha=A,Band f =A,B.
(Hint: Equations from Problem 4.13 are useful.)

Problem4.15 A PVT system has a line of continuous phase transitions (a lambda
line) separating two phases, I and II, of the system. The molar heat capacity ¢, and
the thermal expansivity a) are different in the two phases. Compute the slope
(dP/dT ). of the A line in terms of the temperature 7', the molar volume v,
Acp = ¢! I 1

11 — ol _
p—Cpand Aap =a, —ap.

Problem4.16 Assume that two vessels of liquid He*, connected by a very narrow
capillary, are maintained at constant temperature; that is, vessel A is held at tem-
perature Ty, and vessel B is held at temperature 7. If an amount of mass, AM, is
transferred reversibly from vessel A to vessel B, how much heat must flow out of
(into) each vessel? Assume that 7 > T}.

Problem 4.17 Water has a latent heat of vaporization, A/ = 540 cal /g. One mole
of steam is kept at its condensation point under pressure at 7' = 373 K. The tem-
perature is then lowered to 7' = 336 K, keeping the volume fixed. What fraction
of the steam condenses into water? (Treat the steam as an ideal gas and neglect
the volume of the water.)

Problem 4.18 The molar free energy of a spin system can be written

¢(T, H) = po(T) — %sz
+ %kB TIA+m)InQ+m)+ A —m)In(1 — m)] — mH

where J is the interaction strength, m1 is the net magnetization per mole, ¢,(7)
is the molar free energy in the absence of a net magnetization, H is an applied
magnetic field, kj is Boltzmann’s constant, and 7 is the temperature. (a) Compute
the critical temperature (called the Curie temperature). (b) Compute the linear
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magnetic susceptibility of this system. (Hint: Only consider temperatures in the
neighborhood of the critical point where m is small.)

Problem 4.19 A liquid crystal is composed of molecules which are elongated
(and often have flat segments). It behaves like a liquid because the locations of the
center-of-mass of the molecules have no long-range order. It behaves like a crystal
because the orientation of the molecules does have long-range order. The order
parameter for a liquid crystal is given by the dyatic § = y(un — 1/3I), where n is
a unit vector (called the director) which gives the average direction of alignment
of the molecules. The free energy of the liquid crystal can be written

1 1 1
¢ =¢ot EASi/'Si/' - gBSiijkSki + ZCSijSijSlekl

where A =Ay(T —T"), A, Band Care constants, I is the unit tensorso &; - - &; =
8,/,S;j = %; - § - %, and the summation is over repeated indices. The quantities
&; are the unit vectors &; = &, &, = ¥, and &; = 2. (a) Perform the summations
in the expression for @ and write @ in terms of #, A, B, C. (b) Compute the crit-
ical temperature T, at which the transition from isotropic liquid to liquid crystal
takes place, and compute the magnitude of the order parameter 7 at the critical
temperature. (c) Compute the difference in entropy between the isotropic liquid
(1 = 0) and the liquid crystal at the critical temperature.

Problem 4.20 The equation of state of a gas is given by the Berthelot equation
(P+a/Tv*)(v—b)=RT.(a) Find values of the critical temperature T, the critical
molar volume v, and the critical pressure P, in terms of a, b, and R. (b) Does the
Berthelot equation satisfy the law of corresponding states? (c) Find the critical
exponents f3, §, and y from the Berthelot equation.

Problem 4.21 A mixture of particles A and B have a molar Gibbs free energy of
the form

g=x s (P T)+xpup(P,T)+ RTxy Inxy + RTxgInxg + Axyxp

where p§ (P, T') and p3 (P, T') are the chemical potentials of pure A and pure B,
respectively, at pressure P and temperature 7, R is the gas constant, x, and x5 are
the mole fractions of A and B, respectively, and A measures the strength of cou-
pling between A and B. In terms of dimensionless parameters, g = g/A, i, (P, T ) =
U (B T)H/A, ﬁ;(P, T)=uy(P, T)/A and T = RT /A, the molar Gibbs free energy
takes the form

Z=xpf (P, T )+ xpuy(P, T )+ 125 Inix, + 74 Inwp + x5 x5 .

Assume that 7y = 0.45 and iz = 0.40.
(a) Find the critical temperature 7, at which phase separation occurs and plot the
curve separating the chemically stable from unstable regions in the 7—x, plane.
(b) For 7 = 1/2.6, find equilibrium values of x, on the coexistence curve.
(c) For 7 = 1/3.6, find equilibrium values of x, on the coexistence curve.
(d) On the same plot as in (a), plot (sketch) the coexistence curve. You can esti-
mate its location based on your results in (b) and (c).
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Problem 4.22 For a binary mixture of particles of type 1 and 2, the Gibbs free
energy is G = n,y, + n,u, and differential changes in the Gibbs free energy are
dG =-SdT + VdP + p; dn, + y, dn,. The Gibbs free energy of the mixture is
assumed to be

G=mud(PT)+nyu)(P,T)+RTn Inx, + RTn, Inx, + Anx;x,,

where 419 = 4§ are the chemical potentials of the pure substances. In the region in
which the binary mixture separates into two phases, I and II with concentrations
) and !, find the equation, (x} /0T ), for the coexistence curve. Write your
answer in terms of x} and 7 = T /T, where T, = 1/2R.

Problem 4.23 Consider a mixture of molecules of type A and B to which a small
amount of type C molecules is added. Assume that the Gibbs free energy of the
resulting tertiary system is given by

G(P, T, ny, g, 0c) = Wppl + nppy + nope.
+RTn,Inx, + RTnglnxy + RTngInx,

+Amng/n+ A nne/n+ A ngng/n,

where n = n, + 1 + ¢, Ne < Ny, and ne < ng. The quantities 8 = uS (P, T),
py = uy(P, T), and u® = p2(P, T') are the chemical potentials of pure A, B, and
C, respectively, at pressure P and temperature 7. For simplicity, assume that ,uOA =
py = pl.. To lowest order in the mole fraction x¢, compute the shift in the critical
temperature and critical mole fraction of A due to the presence of C.

Problem 4.24 Compute the equilibrium vapor pressure of a monomolecular gas
in equilibrium with a spherical droplet of liquid of the same substance, as a func-
tion of the radius R of the droplet and for fixed temperature. Assume the gas phase
is well described by the ideal gas equation of state and the liquid can be assumed
to be incompressible. Use the fact that for mechanical equilibrium P, — P, = 20/R,
where P (P,) is the pressure of the liquid (gas) and o is the surface tension.
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5.1
Introduction

The entropy of weakly interacting systems can be obtained by counting the micro-
scopic states available to those systems at a given energy. Then, assuming that all
microscopic states have equal weight (are equally probable), we can assign proba-
bility distributions to macroscopic states that emerge due to underlying conserva-
tion laws, and we can compute average properties of these macroscopic quanti-
ties. In Chapter 2, the thermodynamic properties of noninteracting spin lattices,
polymers, the Einstein solid and a classical ideal gas were derived in this manner.
The assumption that all microscopic states with the same energy are equally prob-
able can be justified in terms of the underlying Newtonian dynamics governing
the system, provided that the dynamics is ergodic (see Appendix C). Hard-sphere
gases have been rigorously proven to be ergodic. Chaotic dynamical systems are
ergodic. Ergodicity forms the dynamical basis of statistical mechanics.

For a closed isolated system, such as those considered in Chapter 2, the entropy
is determined by the number of microscopic states available to the system, and is
defined S = kg In[N(E)], where ky = 1.38 x 10723 ] /K is the Boltzmann constant
and N(E) is the number of microscopic states with energy E. The entropy must be
an additive function of extensive variables, it must be positive, and it must have
a maximum value at equilibrium. We can also write the entropy in terms of the
probability density operator p (see Appendix A) and, in this form, it is called the
Gibbs entropy and is given by

S=—kgTr(pInp). (5.1)

The trace, Tr, is taken over any complete orthonormal set of basis states.

For closed, isolated systems, the equilibrium probability density, must be a func-
tion of the Hamiltonian, p = p(H) so it commutes with the Hamiltonian A and
therefore does not vary in time. Let |E, n) denote a set of states of energy E with
respect to which the density operator is diagonal. The integer, n, takes values
n=1,..., N(E), where N(E) is the total number of states with energy E. The prob-
ability to find the system in state |E, n) is P, = (E, n|p|E, n), and the entropy can

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2016 by WILEY-VCH Verlag GmbH & Co. KGaA.
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be written
N(E)
S=—kTr(pInp) = —kg 2 P, InP, . (5.2)
n=1

We can determine the set of probabilities, { P, }, which extremize the entropy sub-
ject to the constraint, Tr(p) = 221:(? P, = 1. The simplest way to do this is to use
Lagrange multipliers. Since we have one constraint, we need one Lagrange mul-
tiplier, which we call a;,. We then require the following variation to be zero:

N(E) N(E)
5| D (@P, —kgP,InP,)| = Y (ag—ky — kyInP,)oP, =0.  (53)
n=1

n=1

Since the variation, §P,, is arbitrary we must have ay — kg — kzInP, =0or P, =
exp(a,/ky — 1) = constant. The Lagrange multiplier, ), is determined by the nor-
malization condition, Tr(p) = z]y:]:(? P, = 1. We find that the probability, P,, is
given by

1

Thus, the probability distribution which extremizes the Gibbs entropy is the one
for which all states of the same energy are equally probable. This is called the
microcanonical ensemble. If we substitute Eq. (5.4) into Eq. (5.2), we find that the
entropy is given by

S =kyInN(E), (5.5)

as we expect.

If we wish to derive thermodynamic quantities under a variety of different ex-
ternal constraints, we must have the ability to describe the microscopic behavior
of systems under those constraints. Isolated closed systems have fixed total energy
and fixed particle number. Closed systems have fixed particle number but vary-
ing energy so only the average energy is specified. Open systems can have varying
particle number and energy. The probability density for closed systems (called the
canonical ensemble) will be determined below. The probability density for open
systems will be derived in Chapter 6. Once the equilibrium probability density
for a system is known, the problem of computing thermodynamic quantities is
straightforward.

We begin by computing the partition function and the probability density oper-
ator for closed systems. We then use them to obtain the thermodynamic proper-
ties of semiclassical gases, and we obtain the thermodynamic properties of solids
using approximations developed by Debye to account for the interactions between
atoms in the solid. The Debye model of a solid uses phonon collective modes as a
basis for counting microscopic states and obtains results that are in good agree-
ment with experiment at low temperatures.

We next compute the thermodynamic properties of an Ising spin lattice. We can
obtain exact expressions for the thermodynamic properties of one-dimensional
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spin lattices, and we use a mean field model to obtain approximate expressions
for the thermodynamic properties of higher dimensional spin lattices. We show
that, near critical points, fluctuations become correlated over a wide region of
space, indicating that long-range order has set in.

As thermodynamic systems approach a critical point, we must have a system-
atic way of treating thermodynamic functions in the neighborhood of the critical
point. Such a method exists and is called scaling. The idea of scaling can be ex-
pressed mathematically by saying that the thermodynamic functions are homoge-
neous functions of their distance from the critical point. As we shall see, scaling
underlies all theories of critical phenomena and enables us to compute micro-
scopic expressions for critical exponents. The scaling behavior of thermodynamic
functions near a critical point has been verified experimentally.

5.2
Probability Density Operator - Canonical Ensemble

A closed nonisolated system can exchange heat with its surroundings and as
a consequence will have a fluctuating total energy. We therefore need to find
a probability density which corresponds to an extremum of the entropy for such
systems.

In order to obtain the probability density operator for a closed nonisolated sys-
tem we extremize the Gibbs entropy subject to two constraints. We require that
the probability density operator, p, be normalized to one, and we require that the
average energy be fixed to some value (E), so that

Try(p) =1 and  Try(Hyp) = (E) . (5.6)
If we introduce the Lagrange multipliers, &, and a;, we can find the probability
density operator, p, which extremizes the entropy subject to the constraints in
Eq. (5.6). The extremization condition is

S[Try(aop + apHyp — kypIn p)]

= Try{[(ay — kg) + azHy — ks Inp16p} =0, (5.7)

where I is the unit operator. Since 8p is arbitrary, we must have

(ag — k) + apHy —kglnp =0, (5.8)
and therefore

5= Do _1)i+Zpy (5.9)

p=exp kg kg N '
The two Lagrange multipliers, «, and a, can be determined from the constraints
in Egs. (5.6). From Egs. (5.6) and (5.9) we find

Zy(ap) = exp <1 - @> =Tr (e”‘EHN/kB) . (5.10)
kg

The quantity Z,,(T') is called the partition function.
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We next determine the Lagrange multiplier, az. Let us multiply Eq. (5.8) by p
and take the trace. We obtain

Tryl(ag — kp)p + apHyp — kypInpl = —kg In[Zy(ap)] + ag(E)y + S =0,
(5.11)

where we have made use of the constraints in Eq. (5.6), and the definitions of the
partition function in Eq. (5.10) and the Gibbs entropy Eq. (5.1). From Table 3.3,
the fundamental equation for the Helmholtz free energy can be written A — U +
ST = 0. If we note that the internal energy is U = (E), then we can make the
identification ay = —1/T and we find that the Helmholtz free energy is

A =—kgTIn[Z\(T)]. (5.12)
The partition function, Zy,(T ), takes the form

Zy(T) = ePA = Tr (e Piix),, (5.13)
where f = 1/(kg T). The probability density operator can be written
e—BHN

P e—ﬁ(I:IN—A) L.
Try(e=PHN)

b (5.14)

Equation (5.14) is the probability density for the canonical ensemble. The trace
is evaluated using any convenient complete orthonormal set of N-particle basis
states.

Equation (5.12) is the fundamental equation for a closed system. From it we
can obtain all thermodynamic quantities. For example, the entropy is given by
S§=—(0A/0T )x y- The generalized force is given by Y = (0A /0X) . The chem-
ical potential is given by i = (0A /0N) x. Another useful relation for the internal
energy is U = (0BA/0f)x n-

5.2.1
Energy Fluctuations

In the canonical ensemble the temperature T is fixed and the average energy, U =
(E), is fixed. However, because there can be a flow of energy in and out of this
system, it is important to know how large fluctuations in the energy (about the
average energy, (E)) will be. Let us therefore compute the variance of the energy
fluctuations. We first write the normalization condition

Try (PATXN-Anly — 1, (5.15)

If we differentiate Eq. (5.15) twice with respect to 3, we find

2
0= Try { l(iﬁf)XN + (—HN + (%)XN> ] eﬁ[A<T,x,N>—HN]} ‘

(5.16)




5.3 Semiclassical Ideal Gas of Indistinguishable Particles
This gives

02BA
op>

where Cy , is the heat capacity at constant X and N. The heat capacity Cy 5, and
average energy (E) are each proportional to N. Therefore, the fractional deviation
behaves as

VY-
(Ey

and goes to zero as the number of degrees of freedom becomes infinite. This
means that the fluctuations in energy become very small relative to the magni-
tude of the energy itself. In the thermodynamic limit, most microstates will have
an energy approximately equal to the average energy, U = (E), and the canonical

<E2>—<E>2=—< ) C T2C (5.17)
X,N

(5.18)

ensemble becomes equivalent to the microcanonical ensemble.

In evaluating the trace in Eq. (5.13) we must distinguish between systems of
indistinguishable particles and systems of distinguishable particles. A system of
N indistinguishable particles, by definition, has the property that the Hamiltoni-
an and all other physical observables remain invariant under permutation of the
particles. We will consider both cases below.

53
Semiclassical Ideal Gas of Indistinguishable Particles

For systems of identical particles, we must evaluate the trace in Eq. (5.13) either
in terms of complete sets of symmetrized or antisymmetrized N-body position
or momentum eigenstates, or in terms of the “number” representation. The fact
that, in the canonical ensemble, the number of particles is restricted to N makes
the particle number representation unwieldy when using the canonical ensemble.
For a semiclassical gas, some of the quantum effects contained in the symmetrized
and antisymmetrized states are negligible and expressions for the partition func-
tion can be simplified considerably.

5.3.1
Approximations to the Partition Function for Semiclassical Ideal Gases

The trace of the probability density for a set of N identical particles may be written
(see Appendix D)

Try(P) =6, D0 Ok koo kg lplky Ky oy k)@

kyyeorky
1 ~
= D ke kBl k) =1, (5.19)
T kyseoky
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where k; = (k;, 0;) denotes the momentum and spin of a particle, a = 4, S, and
€, is a counting factor the prevents the summation from overcounting states.

The symmetrized and antisymmetrized states |ky, k,, ..., ky )@ form a complete
orthonormal set, and
ey o k) = D EDP Ik, k) (5.20)
P

where ), denotes the sum over all N! permutations of the moment/spin vari-
ables k;.

It is instructive to evaluate the partition function Zy(7") for the (unrealistic)
case of N = 3 noninteracting identical particles in a box of volume V = L3. For
simplicity, we neglect any spin or other internal degrees of freedom The Hamilto-
nian for this three-body ideal gas is H; = pl/(2m) +p /(2W1) +p /(2m) where
P i = = nk i is the momentum operator for the jth particle and k i is the wavevector
of the jth particle.

The partition function for a single particle is Z,(T) = Tr, {exp[-Bp*/(2m)]} =
ilkl exp[—/)’h27<2/(2m)]|k>. The particle is confined to a cubic box of volume
V = L3. We can use the momentum eigenstates, which have periodic boundary
conditions, to evaluate the trace. The allowed wavevectors are

2mn,, | 27my ) 2mn,
k= 7 e, + I e, + 3 e,, (5.21)

where n,, n,,, and n, are integers —co < 1, < o0, etc. The momentum eigenstates,

in the position basis, are

n21mxx 2y Y m2nngz

1
Yoo, n, (%5 9, 2) = e Le et . (5.22)

The single particle partition function can then be written

Z,(T) = Z Z Z [ = 2’22 (n§+nj+n§)]. (5.23)

Hny=—00 VI =—00 n,=—0

If the volume, V, is very large compared to microscopic length scales, we can
change the summation to an integration in Eq. (5.23). We write Z;" e =
ﬁ; dn,, and make a change of variables, p, = 27n, 1/ L. The quantity, 2rh /L = 0
is very small so an integer change in 7, gives a very small change in p,, and we

find

— L3 ﬁ 2 2 2
ZI(T)_ 9373 J dprdpyJ dpzexp [_ﬁ (px+py+pz)

8m3n3
-, (5.24)
AT
where
Ap=—2 (5.25)
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is the thermal wavelength and has units of length. The thermal wavelength is
a measure of the distance over which the particles maintain phase coherence in
the gas.

A straightforward calculation shows that a three-body partition function can
be written

_BF, 1 R 4
Zy(T) = Trye ) = = 3 (ki Ky, kg, Pl ey, ey)™
ok ko ks

3 3 3 2
1({vVv 3 (Ar 2 (A7
=3—(7> 11%(7)*@(7 ' (5.26)
T

The semiclassical limit corresponds to high temperatures and/or low densities
(large V). In that case, we can neglect terms proportional to /1?} /V and we obtain
the semiclassical partition function for a gas of three identical particles:

3
Z,(T) ~ % (%) . (5.27)
' T

This is equivalent to neglecting the permuted terms in Eq. (5.26) and writing

1 _ A

Zy(T) = 5 Z (ky, ky, ks|e P |k, ky, ks) (5.28)

" kyeeaks
for the three-body partition function.

Symmetrized and antisymmetrized states must be used when computing the
partition function for systems of identical particles at low temperatures and/or
high densities where quantum effects strongly influence the translational degrees
of freedom. However, for moderately high temperatures and/or moderate densi-
ties, for a gas of N identical particles, the partition function takes the approximate
form

Zy(T) ~ > (ki kyle Pk, ky) (5.29)

L

!
Nt Kyperokyy
where we now neglect the contributions from permuted states. In doing so, we
are neglecting terms of order, (N/ V)/l?}. Thus, the semiclassical limit gives an

approximate partition function:

N
Z(T) ~ % (%) . (5.30)
’ T

The factor N'!in Eq. (5.30) is exactly the counting factor used in the microcanon-
ical ensemble for indistinguishable particles. It resolves the Gibbs paradox. Equa-
tion (5.30) gives a good description of a semiclassical gas of N identical particles.
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For a semiclassical ideal gas with no internal degrees of freedom, the partition
function is

N N
1 Vv eV
T T

where we have made use of Stirling’s approximation, N! ~ (N /e)N. The Helmholtz
free energy is

v » \"
A=—kBTanN=—NkBT—NkBTln ﬁ (W) . (532)

The entropy is

A 5 v m» \"
S=- —) = 2Nk In |2 ( —2— , 5.33
(aT yn = 2 ket kg In lN <2nkaT> (5.33)

which is just the Sackur—Tetrode equation.

Let us now consider a gas of noninteracting molecules which have internal
degrees of freedom which can absorb energy. Such internal degrees of free-
dom might include the rotational and vibrational motions of the molecule and
electronic or nuclear excitations. For such a system, the Hamiltonian of the ith
molecule can be written Ff ;= ja? /@m)+H jrot) + i jwiby H jelec) T H j(nuc)» Where

H i(roty H j(viby H j(elecy and H j(nucy denote the rotational, vibrational, electronic,
and nuclear internal degrees of freedom, respectively. We have assumed that
these various internal degrees of freedom are uncoupled from one another. For
a gas of N noninteracting particles in a box of volume V/, in the semiclassical limit

the partition function can be written
1 -B Z;\il < f—'l +]:Ii(rot)+]:1i(vib) +]:Iz(el)+]:1i(nuc))
ZN(V, T) = mTI’N e " . (534)

The partition function takes a particularly simple form for this system if the
Hamiltonians in Eq. (5.34) commute with one another. Then we find

1
ZN(T, V) = ﬁ(Zl(tr)Zl(rot)Zl(vib)Zl(elec)Zl(nuc))N ) (5.35)

where Z,,,, = Tr, (e #7*/®"™), Z, 0 = Tr, (e PA10°) and so on. The trace, Tr, is
taken over a complete set of single particle states appropriate for the Hamiltonian
appearing under it.

In Exercise 5.1, we compute the thermodynamic properties for a semiclassical
gas of N identical spin-1/2 particles in a magnetic field. In Exercise 5.2, we con-
sider the effect of rotational degrees of freedom on the thermodynamic properties
of a gas.
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Exercise 5.1

A box of volume, V = L2, contains an ideal gas of N identical atoms, each of which
has spin, s = 1/2, and magnetic moment, . A magnetic field, B, is applied to
the system. (a) Compute the partition function for this system. (b) Compute the
internal energy and the heat capacity. (c) What is the magnetization?

Answer: (a) The partition function takes the form Zy = (1/N!)(Z; )N -
(Z1(mag)"» where Zy, = V/A3. Each atom has magnetic energy E(s) =
—(1/2)suB, where s = +1. The magnetic partition function for a single atom is
Z(mag) = Dis—s1 € PHE/2 = 2 cosh [(BuB)/2]. The partition function for the gas is
Zy = (A/NY (2V/23)" cosh™ [(BuB)/2).

(b) The internal energy is given by

U=-(dInZy/0B) =3/2NkyT — 1/2NuB tanh [(BuB)/2] .

The heat capacity is
ou 3
Cyn=(5%), = SNky+ Nk (BuB/2)" sech? [(BuB)/2] .
0T JviNnp 2

(c) The magnetization is given by M = —(0®/0B) 1, where @ is the free energy
this system (the translational part is like a Helmholtz free energy, a function of
T, V,and N, and the magnetic part is like a Gibbs free energy, a function of T, B,
and N). The free energy of the combined system doesn’t have a name so we call
it @. Then @ = —kyTInZy and M = — (09 /dB) = (1/2)Nutanh [(BuB)/2].

532
Maxwell-Boltzmann Distribution

We consider a dilute semiclassical gas of N particles contained in a volume V.
We assume that the gas is in equilibrium and that the interaction energy between
particles is negligible compared to the kinetic energy of the particles. The particle
number density 7(k) is defined (see Appendix D)

()
. 1 R
n(k1)=(k1|p|kl>=m Y (kykys o Ky lpliy Ky, Ky )
* Ky, oky

(5.36)

and the density operator p is defined p = exp(z;\[ jﬂ? /(2m))/Tr[exp(Z;V ja? /
(2m))]. With some algebra we can write

A3 22
—Nn_L _ <
nk) =N 7 exp < 2kaT> . (5.37)

Note that 7(k) is normalized to the number of particles so that Y, n(k) = N.
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Exercise 5.2

A single molecule has rotational kinetic energy H,,, = L2/(2I), where L is the
angular momentum operator and / is the moment of inertia of the molecule. The
rotational partition function, for a single particle, is given by Z!°* = Yool +
1) exp[—Bky 0I(I + 1)], where [ is the angular momentum quantum number, 2/ +
1 is the multiplicity of states with angular momentum /, and 0, = h?/(2Iky) is
the rotational temperature. The CO molecule has a rotational temperature 6o =
2.8 K and atomic mass of M- = 28. A semiclassical ideal gas, consisting of one
mole of CO molecules, is contained in a box of volume V = 1.0 m® and cooled
to a temperature of 7 = 3.0 K (assume the molecules remain in the gas phase
under these conditions). What fraction of the internal energy is associated with
the rotational degrees of freedom (a) at 7 = 3.0K (b) at 7' = 300 K?

Answer: The partition function for this gasis Z = (1/N!) (V /A3T)N (Z2)N. The
thermal wavelength is A = h/+/2nmqoky T, where m is the mass of a single
CO molecule. The Helmholtz free energy is A = —kzT'InZ = A, + A, With
Appans = —Nky T = Nk T'In [V /(NA3)| and A, = —ky TN In Z™°". The internal
energy is U = (0fA/df)y - The internal energy associated with translational de-
grees of freedom is U, = (3/2)Nky T. The internal energy associated with ro-
tational degrees of freedom is U/, = (N/Z1*") 32 (21 + 1)kp 0I( + 1)ePrsbl+D),

(a) For temperature 7' = 3.0K, only the first few terms in the summations give
nonnegligible contributions, and we obtain U, = 1.95Nky. The fraction of in-
ternal energy that is rotational is U, /(U + Uypans) = 0.30.

(b) For temperature T = 300K, U,,, ® NkgT so U,y /(U + Uprans

) =2/3.

The Maxwell Boltzmann distribution F(v) is the probability density to find a par-
ticle in the velocity interval v — v + dv. We can obtain F(v) from n(k) by a change
of variables

v ___ N __r
210 =5 J Yt = ey TP J v eXp< 2m/<BT>

3/2 )

m mv
=N d - =N | dvF(v).
(2nkBT> J ”‘”‘P< 2kBT> J V)

The Maxwell-Boltzmann distribution

3/2 )
m my
Fv) = <2nkBT> Jdvexp <_2/<BT> (5.39)

is normalized to one so that [ dvF(v) = 1.

(5.38)
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5.4
Interacting Classical Fluids

For fluids at high enough temperature that quantum statistics do not play an im-
portant role, expressions for and calculation of the partition function can be sim-
plified, considerably [27, 61, 85, 134]. Let us assume that we have a classical fluid
consisting of N particles with mass m whose dynamics is determined by a Hamil-
tonian of the form A = TN + VN, where

N 192 N(N-1)/2
AN p ANy 2 ("N raN\y A
™{p })—;M and VN({#N}) = U;:,l 4GHY (5.40)

are the kinetic and potential energy operators, respectively, and 7;;
relative displacement operator of particles, i and j.
The partition function can be written

=7;—F;isthe

Zy(T) = Tr(e PT" V) = Tre BT e By L (BTN, VN]},  (5.41)
where Of ... } denotes terms depending on the commutator

N
(TN, VN = ~in/@2m) Y [p; - (V, V) +(V, VY) - p)]
j=1

and on 2. If we neglect contributions from these terms in Eq. (5.41), the partition
function takes the form

Zy(T) = Tr(e PT" V) » Tr(e AT e 7"y (5.42)

By neglecting the commutator in Eq. (5.41), we neglect contributions due to the
noncommutivity of p; and #; and B2%. Such terms, at high enough temperature,
can be neglected.

We can now compute the partition function. In the position basis it is

1 _RAN  _pirh
Zy(T) = derl ...JdrN(rl, o ryle BT o ﬁvv|r1, U )

= % J dr; ... J dry(ry, ..., ere_ﬁTN [y, ... rN>e_ﬁVN({’N}) .
(5.43)

Next insert a complete set of momentum eigenstates and perform the momentum
integration. This gives

Z(T) = % J dr; ... J dry Z e BTN Y o=BVN ((rN))

11

X1y oo rxlky, o k) = NN
T

QN(T, V), (5.44)
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where we have used the fact that |(ry, ..., rylky, ..., ky)|> = VN (see Ap-
pendix D) and
QN(T, V) = Jdr1 v J drNe_ﬁvN({’N}) (5.45)

is called the configuration integral.

5.4.1
Density Correlations and the Radial Distribution Function

One of the simplest quantities to compute is the internal energy, U(T, V, N). The
internal energy is just the average value of the Hamiltonian and can be written

U(T, V,N) = () = %NkBT + % Jdrl dry Vi (ry, 1y, (546)

where ng)(rl, r,) is the reduced two-body density matrix (see Appendix D). The
term (3/2)NkgT is the kinetic contribution to the internal energy, and the re-
maining term is the contribution due to the interaction between the particles.

The expression for the internal energy simplifies considerably for systems
whose particles interact via spherically symmetric potentials, V(r;;) = V(r;)),
where r;; = |r; — r;| is the magnitude of the relative displacement. Then the two-
particle reduced density matrix takes the form ) (r,, r,) = 1) (r},). If we change
the integration variables to relative, r;;, and center-of-mass, R;; = (r; + r;)/2,
coordinates and let ng\[ (r;p) = (N/ V)zgé\[ (rij then we can integrate over the
center-of-mass coordinates and find

2
U(T, V,N) = %ng T+ %NV J amr® drV(ng (r) , (5.47)

where r = r,. The function ggj (r) is called the radial distribution function. The
radial distribution function completely characterizes the behavior of a classical
fluid of spherically symmetric particles. It also has a direct physical interpretation.
The quantity (N/V)g(r)4mr? dr is the average number of particles in a spherical
shell of width r — r + dr at a distance r from any particle in the fluid.

The radial distribution function gé" (r) is closely related to the density correla-
tion function C,,,(r) for the fluid, which is defined

C, (r) = % J dr' (A(r + DA (5.48)

where the density phase function is defined 71(r) = Zf\il 8(7; — r). In order to veri-
fy this relationship, it is useful to compute the Fourier transform S, (k) of C,,,,(r),
which is called the structure function. The structure function S,,,, (k) can be deter-
mined from neutron scattering experiments in which slow neutrons scatter from
atomic nuclei in a liquid. The angular dependence of the scattered neutrons is



5.4 Interacting Classical Fluids

measured, and this information can be used to construct the structure function
of the liquid.

The structure function S,,,,(k) can be expressed in terms of the radial distribu-
tion function. First note that

N N
S, (k) = Jdre Jdr’(ﬁ(r’+r)h(r’)>=%22( i)y, (5.49)
J=

i=1

where we have made use of Eq. (5.48) and, in the last term, we have integrated
over rand r'. If we evaluate the average (e’ "=/} in the canonical ensemble, we

find

N N
1 ik-(r;—r;) —ﬁV(r )
Sk = NWZ;JM Janern
1 1 N(N-1)
== | N+ ——F7—"= Jdr J dry ek Cimre V™
v\ & 4]

Il
,_.

% J dr; J drye® il (r, ry) =1+ % J dre*regl(ry,).
(5.50)

The minimum value of the wavevector, k, is determined by the size of the box.
In the limit N - o0 and V — oo with # = N/V = constant, the length of the
wavevector can be zero. We can separate this contribution from the remainder of
the integral. We find

S,u(k) =1+ nd(k) +n J drpe*me (g (r,) - 1). (5.51)
The integration over angles in Eq. (5.51) can be performed to finally give
47rn .
S,n(K) =1+ nd(k) + - J rdrsin(kr)(g) (r) — 1) . (5.52)

The structure function can be measured in neutron scattering experiments, and
the term nd(k) is the contribution due to coherent forward scattering.

In Figure 5.1 we show the structure function and the radial distribution func-
tion obtained from neutron scattering experiments on liquid 3°Ar at 85 K. The
radial distribution function goes to zero at about the hard-core radius of 3°Ar, in-
dicating that no particles can penetrate the hard core. It has a maximum at about
the distance of the minimum of the attractive potential between nearest-neighbor
argon atoms in the liquid. The next peak is due to the high probability of finding
next nearest neighbors at that position, and so on.
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5 10 15 20 25

r
Figure 5.1 (a) The structure function, solid line is a best fit to the data. (b) The radi-
S(k) = S,,,(k), versus k (in A for liquid al distribution function, g(r), versus r (in A)
36Ar at 85\ K obtained from neutron scattering obtained from the data in (a). Reprinted, by
experiments. The dots are data points. The permission, from [219].
5.4.2

Magnetization Density Correlations

For the case of a fluid whose particles have spin and a magnetic moment, the mag-
netization density operator 771(r) and total magnetization operator M are defined

N N
n(r) =ﬂ2§i6(i"]-—r), and M = Jdrrh(r) =ﬂZ§j, (5.53)
j=1 j=1

respectively, where N is the number of particles, 4 is the magnetic moment, 3, is
the spin operator for the jth particle, and 7; is the position operator for the jth
particle. If a magnetic induction field, B(r), is present, the total Hamiltonian can
be written

N Ag N(N-1)/2
H= Z — + Z V(#533:,8;) = J drn(r) - B(r) . (5.54)
=2m R

The average magnetization, in the presence of the magnetic induction field is
(M) = Tr(We ™)/ Tr(e ") (5.55)

If we let M, (« = «, ¥, z) denote the ath component of the magnetization oper-
ator M, then the (@, a’) component of the magnetic susceptibility matrix can be
written

Xaw = (f‘;—“) = B, = (M) = (M) . (5:56)
a T,N,B=0
Note that the susceptibility x, ,, as we have defined it, is a linear susceptibility
and is independent of the applied magnetic field. It contains information about
magnetic properties of the unperturbed equilibrium system.
Let us now introduce magnetization density fluctuations 671, (r) = 71,(r) —
(,(r)). Then the correlation function C, ,(ry,r,) for magnetization density



5.5 Heat Capacity of a Debye Solid

fluctuations at points r; and r, in the fluid can be written

Co o (ry,1y) = (07, (1)1, (1ry)) = (07, (r) — 15)071,,(0))
=Cppri—ry, (5.57)

where we have made use of the fact that the equilibrium correlation function, in
the absence of spatially varying external fields, will depend on the relative dis-
placement of two points in the fluid and not on their absolute position.

It is useful to introduce the Fourier transform of the correlation function, the
magnetic structure function G, , (k),

Gyl = Jdre”‘"Cm, (r) = % Jdr1 J drye® =) (S (r))8h1, (ry))

- %(&hu(k)drhul (—k)),
(5.58)

where we have made use of the Fourier decomposition of spatially varying mag-
netic fluctuations 871, (r)=(1/V) X, e 7511, (k). From these results we see that
the magnetic susceptibility can be written in terms of the infinite wavelength com-
ponent of the magnetic structure factor y, o = BV G, o (k=0)=BV [ drC, ,(r).

In Chapter 4, we found that the magnetic susceptibility becomes infinite as we
approach the critical point of a magnetic phase transition. Thus, near the criti-
cal point, the correlation function will have a large long-wavelength component,
indicating that long-range order has begun to occur.

5.5
Heat Capacity of a Debye Solid

In simple atomic crystals, the long-range attractive forces between atoms hold the
atoms of the crystal in place at some fixed lattice spacing, although the atoms can
undergo oscillations (vibrations) about their lattice positions. The short-range
repulsive forces between atoms make crystals virtually incompressible. While
the potential which governs the oscillations is anharmonic, to lowest approxima-
tion, in deriving the heat capacity, we can treat it as harmonic. If the crystal has
N atoms, it will have 3N degrees of freedom and the Hamiltonian can be written
in the form

3N »? N(N-1)/2
i = Z g Z ki (5.59)
i=1 (i)

where p; and ¢; are the momentum and the displacement from the lattice site,
respectively, of the ith degree of freedom, m is the mass of the atom, and «; ;
contains information about interaction between neighboring atoms. Hamiltoni-
ans like the one in Eq. (5.59), can be transformed to normal mode coordinates
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(Py, ..., Psy, Qy, ..., Q3,) via a canonical transformation and written in the form
3N B2 3N 2
A P mow*
H=) —=+) —Q. 5.60
a=1 2m 1; 2 QD{ ( )

The lattice now consists of a collection of independent harmonic oscillators that
correspond to sound waves or phonons on the lattice. The thermodynamic prop-
erties of such a lattice can be computed exactly [183]. However, Debye proposed
a very simple continuum approximation to the lattice that well describes the low-
temperature thermodynamic behavior of the lattice.

In this section we shall compute the heat capacity for a three-dimensional har-
monically coupled lattice using the continuum approximation first proposed by
Debye [10, 38, 40]. Consider a rectangular lattice with sides of lengths L,, L,
and L,. We will assume that the sound waves form standing waves with wave-
lengths 2L, /1,, 2L, /1,, and 2L /I, in the x-, y-, and z-directions, respectively,
where /,, [, and /, are integers ([, = 1,2, ..., o, etc.). The ath sound mode will
have a dispersion relation of the form

2
7l 2 nl,, 7l \?
o= < m) Y A < w) , (5.61)
a L, L, L,

where c is the speed of sound. The Hamiltonian operator takes the form

3N
N 1
H= n (A + —1) , 5.62

where 71, is the number operator for energy quanta (phonons) in the ath normal
mode. Let |n,) be the eigenvector of the number operator, 71,. Then 71,|n,) =
nglng), wheren, =0,1, ..., c.

The partition function can be written

o0 o 3N
an BN o (4l e Bhoy/2
ZN(T) = TI'N(e BH) = Z Z e ﬁz“=1 w"(n"+2) = H m .
n;=0 n3n=0 a=1
(5.63)
The average energy is
0lnZy Who, w ho,
(Ey = — T =z‘; 5 +ZM' (5.64)
a= a=

Since the average energy can also be written (E) = (221;]1 ho,(71,+1/2)), compar-
ison with Eq. (5.64) shows that the average number of quanta in the ath phonon
mode is
A 1
(1)

= m ) (565)

which is Planck’s formula.
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The allowed values of w, in Eq. (5.61) consist of discrete points in a three-
dimensional frequency space. The distance between points in the x-direction is
mc/L,, in the y-direction it is 77¢/L , and in the z-direction it is 77¢/L,. The vol-
ume per point in frequency space is therefore (77¢)®/V, where V = L L yL, is the
volume of the crystal. The number points per unit volume in frequency space
is V/(7rc). The total number of allowed values of w, less than some value o is
given by (1/8)(4rw?®/3)(V /(1c)®), where (1/8)(47rw?/3) is the volume of 1/8 of
a sphere of radius w (the phonon frequency is positive). Thus, the number of al-
lowed frequencies in the range w — o + dw is given by

dv= s~ —o*do. (5.66)
In general, there will be two transverse sound modes and one longitudinal sound
mode since crystals can sustain both longitudinal and transverse sound modes
(a fluid can only sustain longitudinal sound modes). The transverse and longitu-
dinal sound modes in a crystal propagate at different velocities, which we shall
denote as ¢, and ¢y, respectively. If the three different sound modes are taken into
account, the number of allowed frequencies dv in the interval, » — ® + dw, is

vf2. 1),
dV—2—nz(—3+—3> do. (567)

Cy Cl

Since there is a minimum wavelength allowed on the lattice due to the finite spac-
ing of the atoms, there will be a cutoff frequency, w, (the Debye frequency). We
can then determine the Debye frequency by relating it to the total number of
sound modes,

(1)3
3N=Jdv=L 2.1 szdw=L 2:1) 0 e
2712 ct3 cf 2772 ct3 cf 3

1

If we solve for w?]’), we find that the Debye frequency is given by

-1
18N 7? ( 2 1
3
== =+ —> ) (5.69)
Vio\d g
The density of states can be written
dv Ve (2 1 INw?
_dv _ 2.1\ , 5.70
gl)= =7 (CE C?) ) (5.70)

Once we are given the density of states, g(w), the average energy is given by
@p

J hog(w)do + J hon(w)g(w)do . (5.71)
0

0

(E) =

N =
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3% Figure 5.2 The solid line is the heat capacity curve
4 predicted by Debye theory. The dashed line is that
1.0} - predicted for an Einstein solid. The circles and trian-
| ol gles are experimental values for the heat capacity
osk A7 of Al (T, = 390K) and Cu (T, = 315K), respectively
/I (based on [38]).
L /
0.2}
! . LT
0 1 2 7 h
We then find
@p
INhwp 9N [ he®dw
(=222 20 | =2 22 (5.72)
8 w3 | ePro 1
D9
The heat capacity is

wp Tp/T
9N kg J (Bho)*elre _ 9N kg J xte*
(

= n2p2wd @ (ePro — 12 (hfwp)? 12’ (5.73)
0

N

where the Debye temperature, T}, is defined T, = hwp/kg. In the limit 7 — 0,
the heat capacity becomes approximately

[oo]

9Nk J xter  12Nkgn'T®
N7 mBopy ) e —12 T 573

(5.74)
0

These results are in good qualitative agreement with the experimentally observed
heat capacity of many solids at low temperature. We give two examples in Fig-
ure 5.2 where we have plotted the prediction of Debye theory and have compared
it to experimental results for aluminum and copper (using the appropriate Debye
temperatures for those substances). Experimentally, one finds that at high temper-
atures the heat capacity, Cy, is roughly constant with Cy; &% 3Nk = 3nR, where
n is the number of moles and R is the gas constant. However, as the temperature
approaches T = 0K, the heat capacity goes to zero as T°.

It is interesting to compare the density of states for an Einstein solid, a Debye
solid, and the density of states obtained from experiment on real solids. For the
Einstein solid, all phonon modes have a single frequency and therefore the den-
sity of states is g(w) = 3NJ(w — w,), where w, is the frequency of all the phonon
modes. In real solids, the phonon modes have a distribution of frequencies, and
this is more accurately taken into account by the Debye (continuum) theory. In
Figure 5.3a, we compare the density of states for the Einstein solid and the Debye
solid.

The density of states of solids can be measured using neutron scattering tech-
niques. Neutrons interact with the nuclei of atoms in the solid and are scattered by
phonons, which are the normal modes of the atomic oscillations. In Figure 5.3b we
show the density of states for aluminum. The low-frequency contribution looks
like the Debye result, but at high frequencies the Debye density of states is com-
pletely inadequate.
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Figure 5.3 (a) Plots of the density of states of Einstein and Debye solids. (b) The density of
states for aluminum, obtained from neutron scattering experiments. Reprinted, by permission,
from [194].

5.6
Order-Disorder Transitions on Spin Lattices

One of the simplest systems that exhibits a phase transition is the Ising system [89]
which consists of a lattice of N spin-1/2 objects with magnetic moment y. Each
lattice site can interact with the magnetic fields of their nearest neighbors and
with any external applied magnetic fields that might be present. The Hamiltonian
for an Ising lattice can be written

N
H= Z €;;8:S; — B Z ;s (5.75)
1ij) i=1
where }; j denotes the sum over nearest-neighbor pairs i/ (one must be careful to
count each pair only once), €;; is the magnetic interaction energy between near-
est neighbors i and j, s; is the z-component of spin at the ith lattice site, and B is
the external magnetic field. For spin-1/2 objects, s; = +1 (—1) if the spin of site
i is oriented in the positive (negative) z-direction. There is no kinetic energy in
Eq. (5.75). The Hamiltonian only contains information about spin orientation and
the spatial distribution of lattice sites. If €;; < 0, then for B = 0 the lattice will
have its lowest energy when all the lattice sites have spin up or all the lattice sites
have spin down (ferromagnetic), both cases being equally probable. If B # 0, then
the configuration in which all lattice sites are oriented with spin up will be ener-
getically favored. Similarly, if €;; > 0, then for B = 0 the configuration in which
neighboring spins are oriented opposite to one another will be favored (antiferro-
magnetic).
The partition function for this spin lattice can be written

N
Zy(T) = Z exp (—/)’ Z €;;8:8; + puB Z sl) , (5.76)
all config {ij} i=1

where ¥ ,naq denotes the sum over all 2V possible different configurations of
spin on the lattice. The partition function introduces an additional influence, that
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of thermal energy, k; T'. While the magnetic interaction energy will cause the spins
on the lattice to become ordered, the thermal energy, k; T', will tend to randomize
the spins on the lattice. It is these two competing influences that lead to an order—
disorder phase transition on the spin lattice. At low temperature, the lattice will
be ordered. As we raise the temperature, at some point the order disappears and
the spins become randomly oriented.

The system described by the partition function (5.76) was originally used by
Ising [89] as a model for ferromagnetism, but it also has been used to describe lat-
tice gases and binary alloys. The model also has applications outside of physics. It
has been used to model learning [36] and information storage [29] in neural net-
works. In molecular biology, it has been used to model cooperative conformation-
al changes due to ligand binding in macromolecules [72], and heat denaturation
of DNA [35]. It has been used in biology to model cultural isolation [91].

The Ising model can be solved exactly for the case of lattices with one or two
space dimensions, and analytic expressions for its thermodynamic properties can
be found for those cases. However, no one has ever succeeded in solving it analyt-
ically in three dimensions. In one dimension it does not exhibit a phase transition
at finite temperature, but in two dimensions it does. In one dimension the lattice
does not have enough nearest neighbors for the ordering effects of the interaction
energy to compete effectively with the disordering thermal energy. However, for
two or more spatial dimensions it does. The Ising model was first solved in two
dimensions by Onsager [96, 97, 156]. It is one of the few exactly soluble models
which exhibit a phase transition.

In this section, we will first obtain exact expressions for the thermodynamic
properties of a one-dimensional Ising lattice. The one-dimensional lattice does
not exhibit a phase transition at finite temperature. However, the method of so-
lution contains some ideas that are used to solve the much more difficult case of
a two-dimensional lattice. Because of space constraints, we will not attempt to
solve the two-dimensional case but we will give the exact expression for the spe-
cific heat for a two-dimensional square lattice and show how the phase transition
occurs for this system. In this section, we will also compute the thermodynamic
properties of an Ising lattice with d-dimensions in the mean field approximation.
The mean field approximation of the d-dimensional lattice does have a phase tran-
sition at finite temperature.

5.6.1
Exact Solution for a One-Dimensional Lattice

Let us consider a one-dimensional periodic lattice that consists of N lattice sites
evenly spaced. We will assume that all nearest neighbors have the same interaction
energy, €;; = —¢, so that the configuration with lowest energy is one in which the
spins are totally aligned. The periodicity of the lattice is imposed by assuming that
s;+n = ;- The total energy for a given configuration, {s;}, is
N N
E{s;} = —¢ Z 88,0 —HUB ) s;. (5.77)
=1

i=1 i
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The partition function can be written
N
1
=Y Y e {/52 [esisiﬂ + SuBGs, +si+1)]} , (5.78)
s;=x1  sy=%1 i=1

where we have used the fact that Zf\il s;=1/2 Zi\il (s;+s;,,) foraperiodic lattice.
It is now convenient to introduce a 2 X 2 matrix,

_ eﬁ(€+/4B) e—ﬁe
P = (5.79)
e_ﬁe eﬁ(g_ﬂB) ’
whose matrix elements are defined as
(5:|Plsiyy) = st arbrsanl (5.80)

The partition function may then be written

Zn(T, B) = Z Z <51|ﬁ|52><52|ﬁ|53>"'<SN|ﬁ|51>

s;=+1 sy==1

N
= Z <Sl|ﬁN|Sl> = Tr(ﬁN) =/1i\_1+/11:1 =/1i\—[ [1+ <:11__> ] ’

s;=%1

(5.81)

where A, are the eigenvalues of the matrix P. We shall use the convention LA

The eigenvalues of Pare easily found to be

A, = efe [cosh(ﬁﬂB) + \/coshz(/)’ﬂB) — 2e~2pe sinh(2/)’e)] . (5.82)

In the limit N — oo, only the largest eigenvalue, 1, contributes to the thermody-
namic quantities. This is easily seen if we note that the Gibbs free energy per site
is
.1 .1
¢(T,B) = lim —Gy(T,B) = ~kyT lim —InZ,(T,B)=~k;TInl, .
(5.83)

In Eq. (5.83), we have used the fact that limy_ (A_/1,)N = 0. Thus, the Gibbs
free energy per site is

g(T,B) = —e — kg In [COSh(ﬁﬂB) + \/Coshz(ﬁuB) — 2e~2B¢ sinh(2fe)| .

(5.84)
The order parameter is given by
%) inh(BuB
(=) = Sinh(Bub) . (5.85)
ouB
Ty cosh(BuB) — 225 sinh(2Be)

From Eq. (5.85) we see that the one-dimensional Ising model cannot exhibit
a phase transition because when B — 0 the order parameter also goes to zero.
Hence, no spontaneous nonzero value of the order parameter is possible.
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5.6.2
Mean Field Theory for a d-Dimensional Lattice

We can obtain analytic expressions for the thermodynamic properties of a d-
dimensional Ising lattice using the mean field approximation first introduced by
Weiss [209]. In the mean field approximation, the Hamiltonian of a d-dimensional
spin lattice with N lattice sites can be written

N N N
A= —% Z ve(s)s; — uB Z 5= - Z E(e, B)s; , (5.86)
i=1 i=1 i=1

where ¢ is the coupling constant, v is the number of nearest-neighbor spins, and
E(e, B) = (1/2)ve(s) + uB. The factor of 1/2 ensures that we don’t count the same
pair of spins twice. The quantity (s) = (s;) is the average spin per site. The quantity
ve(s)s; is an average magnetic interaction energy between site i and its nearest
neighbors, assuming that the neighbors all have spin (s). As we shall show below,
the average spin per site, (s), must be determined in a self-consistent manner.

The partition function can be written

N
Zy = ( D eﬁfsz> = (2 cosh(BE)N . (5.87)

s;==1

The Gibbs free energy per site is
. 1
gle,B) = —ky T lim (ﬁ In ZN> = —ky T In[2 cosh(BE)] . (5.88)

The probability P(s;) that site i has spin s; is

eﬁEsi e/’)ESi

P L) = = .
(5:) Y _.€fPsi 2cosh(BE)

(5.89)

Note that the probability P(s;) depends on (s), which must be determined self-
consistently.
The average magnetization of the lattice is given by

(M) = Nu(s), (5.90)

where

zs,=¢1 SieﬁEsi 1
m = tanh(BE) = tanh [/J’ <§V€(S> + ﬂB)] ) (5.91)

The magnetization is the order parameter for the spin lattice. If B = 0, the mag-
netization will be zero for the high-temperature paramagnetic phase of the lattice
(randomly ordered spins) and it will be nonzero at lower temperatures where the
spins have spontaneously aligned.

(s) =
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We can determine the critical temperature, 7, at which the lattice starts to
become ordered as temperature is lowered (the Curie point) from the expression
for the average spin per site, (s). Let us write (s) for the case B = 0;

(s) = tanh (%ﬁvs(s)) — tanh (;2“%) : (5.92)
B

We must solve Eq. (5.92) for (s). This can be done graphically by plotting f; =
(s) versus (s) and f, = tanh(a(s)) versus (s) on the same graph. The solution to
Eq. (5.92) is given by those points where the two curves cross — that is, where
f1 = f>- In Figures 5.4a and 5.4b, we plot f; and f;, versus (s) fora < land a > 1,
respectively. For the case a < 1, there is only one crossing point and it is at (s) = 0.
For a > 1, there are three crossing points, at (s) = 0 and at (s) = +s,. The free
energy per site for these various cases is

0 ks TIn2 if {(s)=0, 5.93
860 = ks T'In [2cosh<%/3ves0>] it (s) =50 oo

Thus, the values, (s) = +s,, (when they are solutions to Eq. (5.92)) describe possible
states of thermodynamic equilibrium since they minimize the free energy. The
transition point (critical point) occurs at « = 1 in Figure 5.4 and therefore when
ve/(2kg T) = 1. Thus, the critical temperature in the mean field approximation is
T = T. = ve/(2kg). In Figure 5.5a, we plot the order parameter (s), versus T/ T.

We see that mean field theory predicts a phase transition at a finite temperature
for a d-dimensional lattice. This does not agree with our exact result for the case
d =1 (cf. Section 5.6.1) where we found no phase transition at finite temperature.
Mean field theory gives too high an estimate of the critical temperature for spatial
dimensions, d < 3. It gives good estimates for d > 4 which is not of physical interest
but is of mathematical interest.

Let us next examine the behavior of the heat capacity in the neighborhood of
the critical temperature. The internal energy for B = 0 is

0Z
U=-—L228 _ Lnyesy. (5.94)
Zy 0B 2
The heat capacity is
ou 2 (U 20 (948)
Co=(22) =k — ) =Nk — ) . 5.95
N <0T>N 4 <5/5>N svel <s><a/5 N (>99)
fi=(s) fi=(s)
f. f,

o
—~
()
~

(@)

Figure 5.4 Plots of f; = (s) versus (s) and f, = tanh(a(s)) versus (s). (@) a < 1.(b) a > 1.
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Figure 5.5 (a) A plot of the order parameter, (s), versus the reduced temperature, T/T.
(b) A plot of the heat capacity, C,, as a function of temperature in the neighborhood of the
critical point.

But
KD\ _ gech? (¥0)) | 2e ve (94s)
(%), == (5[50 05 (55) o
0
<@> = ve(s) . (5.97)
9B /n 3cosh? (/)’%(S)) — Bve
The heat capacity finally takes the form
C, = Nkyp2v2e?(s)? _ 2Nkg(s)X(T,/T ) (5.98)

2 cosh? (/)’%) — Bre (C05h2(<5> T./T)- Tc/T) ‘

In Figure 5.5b, we plot the heat capacity as a function of temperature. We see that
the heat capacity has a finite jump at the critical temperature. It reaches a maxi-
mum value of 3Nkg at T = T.

The final quantity we wish to compute is the magnetic susceptibility, y; n(B).
The magnetic susceptibility is defined as

(M) a(s)
(B) = (—> _N (_) . (5.99)
XN B ). F\0B ),

From (5.91) we can write

o(s) _ ve ve (0(s)
<a_B>T,N = sech” (B ) + puB) [/57 <a_B>T,N + B

<@> - 2hu . (5.101)
9B /1N 2cosh? (/)’V—26<s) +/)’ﬂB> — Bve

The magnetic susceptibility, y 7 (B), is then given by
28Ny’
2 cosh? (ﬁ%(s} + ﬁﬂB) — Bve

(5.100)

or

Xrn(B) = (5.102)
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The magnetic susceptibility in the limit B = 0 is

o 25N _ 2N (T/T)
o 2 cosh? (ﬁ%(s)) — Bve ve cosh®((s)T./T) = T/T ’

(5.103)

with (s) given by Eq. (5.92). Examination of Eq. (5.103) shows that the magnetic
susceptibility has an infinite jump at the critical point.

The results we have obtained in this section for the thermodynamic properties
of a spin lattice in the neighborhood of the phase transition are qualitatively simi-
lar to the results we obtained in Chapter 4 using mean field theories. Using statis-
tical mechanics to obtain these results allows us to compute various constants that
appear in the thermodynamic expressions in terms of microscopic interaction en-
ergies and magnetic moments. As we shall see in subsequent sections, where we
give some exact results for the two-dimensional spin lattice and use renormal-
ization theory, mean field theory gives a rough qualitative picture of the phase
transition, but it is not quantitatively correct.

5.6.3
Mean Field Theory of Spatial Correlation Functions

Let us now use a version of Ginzburg—Landau mean field theory to write a phe-
nomenological expression for the partition function of a spin lattice

Zy(T) = Z e~ Vo) (5.104)

{m}

where @(m,) is the free energy density of the system, e~V ®") is proportional to
the probability to find the lattice in configuration {1}, and the summation is over
all possible configurations of the lattice. We assume that, at temperature 7' > T,
(my) = 0 and @(m;) must be an even function of m,.

If the lattice is very large, we can let the discrete spatial variation of the local
magnetization density become continuous so 1, — m(r). For small fluctuations
away from equilibrium we can write

O{dm(r)} = ¢(T) + %Cl(T)J‘dr((?m(r))2
1%

+ %CZ(T) J dr(Vom(r)) - (Vém(r)) + ... , (5.105)
v

where ¢(T') is the nonmagnetic free energy density. Let us next note that

1
2 _ _
Jdr(dm(r)) = Ek om(k)dm(=k) , (5.106)
174
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where dm(—k) = §m* (k) and

Jdr(Vdm(r)) - (Vom(r)) = % Z K2 Sm(k)dm(=k) . (5.107)
k
%

The free energy can then be written

O{omk)} = ¢(T) + % D(C(T) + K Cy(T)Smk)dm(~k) . (5.108)
k

We can use this free energy to obtain the probability for a fluctuation dm(k) to
occur. It is

P(Sm(k)) = Cexp [—% (CU(T)+ K*Cy(T)) |6m(k)|2] ) (5.109)

where C is a normalization constant. Given the probability density in Eq. (5.109),
we can compute the static structure function. We obtain

1
G(k) = | d[8m(K)||5m(K)|*P(Em(k)) = ———— . 5.110
(k) Jlm()llm()l(m()) Cr G ( )
The static susceptibility is given by
14
x=BVGk=0)= /);— ) (5.111)

1

Near a phase transition, the susceptibility behaves as y ~ (T — T.)~!. Therefore,
C,=(T-T,.
The static correlation function is given by

1 _ik- dk e ikr 1 -/ /C
Clr)=— Gk)e‘r=J = e TVt
( 14 Zk: ( @) (Cy+ Cyk2)  4mCyr

(5.112)

The correlation function has a correlation length § ~ 1/C,/C;. Since C; ~ (T —
T,) near a critical point, the correlation length { =~ 1/C, /(T — T.) goes to infinity
as (T — T,)~'/? as we approach a critical point. Therefore, at the critical point the
spatial correlations between fluctuations extend across the entire system.

5.6.4
Exact Solution to Ising Lattice for d = 2

The two-dimensional Ising model is one of the simplest systems that exhibit
a phase transition and one of the few for which the thermodynamic properties
can be obtained exactly [156, 183, 186]. Although we will not derive the exact
solution here, we will write the partition function and then give the exact result
for the heat capacity.
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We consider a planar lattice of N spin-1/2 objects with magnetic moment .
A planar lattice is one that can be laid out flat in a two-dimensional plane without
any bonds intersecting (a lattice with periodic boundary conditions is not planar).
Each lattice site can interact with the magnetic fields of its nearest neighbors. The
Hamiltonian for a two dimensional planar lattice can be written

H==Y Jiss;—1), (5.113)
{07}
where {i, j} denotes the sum over nearest neighbors, i and j, J is the magnetic in-
teraction energy between nearest neighbors, and s, is the z-component of spin at
the jth lattice site. The factor, —1, merely shifts the zero point of energy. The quan-
tity s; = +1(—1) if the spin of site j is oriented in the positive (negative) direction.
The partition function can be written

ZN(T)=ZeXP(ZK(SiS]’_1)) =e_NnnK Z Z HeKsis,-

ac. ) si=tl  sy=xl (i,))

(5.114)

where K = 8], Y, . denotes the sum over all 2 possible configurations of spin
on the lattice, and N,,, is the number of nearest neighbor pairs. The sum 3
and product [, j are taken only over nearest neighbor pairs. The mathematics
involved in obtaining expressions for thermodynamic properties of the planar lat-
tice is challenging. We only give the results here.

For an infinite square 2D planar lattice, the specific heat (heat capacity per lat-
tice site) is

o«T)= %kBKZ coth?(2K) {2K(;<) — 2E(x)
—2sech?(2K) [% + (2 tanh(2K) — l)K(K)] } (5.115)

where x = 2sinh(2K)/ cosh?(2K) and K(x) (E(x)) is the complete elliptic integral
of the first kind (second kind) [23]. The complete elliptic integral of the first kind
has a singularity at x = 1 and the phase transition occurs at this point. The tem-
perature at which the phase transition occurs is therefore given by the condition

2 sinh(2K,
. = sinh( C)_1

= = (5.116)
cosh?(2K,)

This gives a critical temperature 7. = 2.269] / k. In Figure 5.6a, we plot the specif-
ic heat as a function of K (note that K is proportional to the inverse temperature).
Ising-like transitions have been measured in the two-dimensional Ising-like
anti-ferromagnets, K,CoF, and Rb,CoF,. These substances behave like two-
dimensional spin systems because they consist of strongly coupled antiferromag-
netic CoF, planes separated by weakly coupled planes containing the remaining
molecules. In Figure 5.6b, we show two measurements of the heat capacity of
Rb,CoF,. We see the characteristic Ising-like singularity in the heat capacity.
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Figure 5.6 (a) The specific heat for the 2D pla- bitrary units) as a function of temperature T
nar Ising lattice, as a function of K. The phase  (measured in kelvin). Two sets of experimen-
transition occurs at K. = 1/2.269 = 0.4407. tal data are shown. Reprinted, by permission,
(b) The heat capacity of Rb,CoF, (giveninar-  from [88].

5.7
Scaling

As we approach the critical point, the distance over which fluctuations are corre-
lated approaches infinity and all effects of the finite lattice spacing are wiped out.
There are no natural length scales left. Thus we might expect that, as we change
the distance from the critical point (e. g., by changing the temperature), we do not
change the form of the free energy but only its scale. The idea of scaling underlies
all critical exponent calculations [179, 193]. To understand scaling, we must first
introduce the concept of a homogeneous function.

5.7.1
Homogeneous Functions

A function F(Ax) is homogeneous if, for all values of 1, we obtain
F(Ax) = g(M)F(x) . (5.117)
The general form of the function g(1) can be found easily. We first note that

FOlux) = gOwE (@) = g)g()F(x) (5.118)

so that

gp) = gg(y) . (5.119)

If we take the derivative with respect to 4, we find
0
ag(w) =1 Aw) = g)g' (W), (5.120)

where ¢’ (1) = dg(u)/ dp. We next set y = 1 and g’(1) = p. Then

Ag'A) = pgh) . (5.121)
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If we integrate from 1 to A and note that g(1) = 1, we find g(A) = A?. Thus,
F(Ax) = APF(x) (5.122)

and F(x) is said to be a homogeneous function of degree p. In Eq. (5.122), if we let
A = x71, we obtain

F(x) = F(L)x? . (5.123)

Thus, the homogeneous function F(x) has power-law dependence on its argu-
ments.

Let us now consider a homogeneous function of two variables f(x, y). Such
a function can be written in the form

JAPx, Ay) =1 f(x, y) (5.124)

and is characterized by two parameters, p and g. It is convenient to write f(x, y)
in another form. We will let A = y~/9, Then
VO N
fe,=y"1f <yp/q, 1> ) (5.125)
and we see that the homogeneous function, f(x, y), depends on x and y only
through the ratio x/y?/7 aside from a multiplicative factor. We can now apply
these ideas to thermodynamic quantities near the critical point.

5.7.2
Widom Scaling

When a phase transition occurs in a thermodynamic system, singular behavior
occurs in some thermodynamic response functions, and the nature of the singu-
larity can be quantified in terms of the critical exponents. Widom [212] obtained
relations between different critical exponents by assuming that the “singular” part
of the free energy scales. We will use magnetic systems to illustrate Widom scaling
and we will assume that a magnetic induction field, B, is present.

Let us write the free energy per lattice site of a magnetic system in terms of
aregular part, g.(7, B), that does not change in any significant way as we approach
the critical point, and a singular part, g,(¢, B), that contains the important singular
behavior of the system in the neighborhood of the critical point. Then

&(T,B) = g(T, B) + g(&, B), (5.126)

where e = (T — T,)/T, and T is the critical temperature.
We shall assume that the singular part of the free energy is a generalized homo-
geneous function of its parameters,

g.(APe, M1B) = Mg (¢, B) . (5.127)
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We now write the free energy as a function of the magnitude of B. For the sys-
tems considered here, its direction does not play an important role. The critical
exponents can be expressed in terms of p and ¢.

Let us first find an expression for the critical exponent f3, which quantifies the
behavior of the order parameter in the neighborhood of the critical point, and is
defined (see Eq. (4.87))

M(e,B=0)~ (—e)f . (5.128)
If we differentiate Eq. (5.127) with respect to B, we obtain

MM\ e, A1B) = AM(¢, B) . (5.129)
If we next let A = (—e)"/? and set B = 0, we obtain

M(e, 0) = (—&)"=7/P M(~1,0) . (5.130)
Thus,

1-¢g

ﬁzp

(5.131)

and we have obtained a relation between the critical exponent 5 and Widom scal-
ing exponents p and q.

Let us next determine the exponent § (the degree of the critical isotherm),
which is defined (see Eq. (4.86)) as

M(0, B) = |B|"/%signB . (5.132)
If weset e = 0 and A = B~/7 in Eq. (5.129), we obtain
M(0, B) = BA=D/91(0,1) . (5.133)

Thus,

o=—1_ (5.134)
1-¢q

and we related the critical exponent § to the Widom scaling exponent g.
The magnetic susceptibility is obtained from the thermodynamic relation (see
Eq. (4.89))

92 eV, T<T.,
y=— <_g> .19 c (5.135)
0B ), (7, T>T,.

By differentiating Eq. (5.129) twice with respect to B, we can write
A22y(APe, A1B) = Ay(e, B) . (5.136)
If we now set B = 0 and let A = (¢)"/?, we find

x(&,0) = 1720/74(1,0) . (5.137)
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Thus, the critical exponent for the susceptibility is

2qg—1
. (5.138)
p
and we have related the critical exponent y to the Widom scaling exponents p and
q. By a similar calculation, we find that y = y’.
The heat capacity at constant B is given by (see Eq. (4.88))

Cy=-T (%)B ~(e)". (5.139)
From Eq. (5.127), we obtain

A*P Cp(APe, A1B) = ACpy(e, B) . (5.140)
If we set B =0and A = (¢)"1/7, we find

Cy(e,0) = 1729/ CL(1,0), (5.141)
and therefore

a=2- 1 (5.142)

p

and the critical exponent a is related to the Widom scaling exponent p. By a similar
calculation we find « = o’.

In Egs. (5.131), (5.134), (5.138), and (5.142), we have obtained the four critical
exponents, &, f3, y, and §, in terms of the two Widom scaling exponents p and g.
If we combine Egs. (5.131), (5.134), and (5.138), we find

y'=y=p0-1). (5.143)
From Egs. (5.131), (5.134), and (5.142) we find
a+p0+1)=2. (5.144)

Thus, the Widom scaling assumption allows us to obtain exact relations between
the critical exponents. These relations agree with mean field theory (a =0, § =
1/2, 8 = 3, y = 1) as one can easily check. They also agree with experimentally
obtained values of the critical exponents which generally differ from mean field
results (cf. Table 5.1).

For later reference, it is useful to express p and g in terms of the critical expo-
nents. We find

1 1

p= E m (5.145)
and
g=>9 (6—J1r1) . (5.146)

The scaling property for systems near the critical point has been verified experi-
mentally for fluids [152] and magnetic systems [193].
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5.7.3
Kadanoff Scaling

Kadanoff [93] showed how to use the idea of scaling to obtain important infor-
mation about the Ising model. Let us consider a d-dimensional Ising system with
nearest-neighbor coupling (I" nearest neighbors). The Hamiltonian is

IN/2 N
H{S}=-K ) S§S;-B) S, (5.147)

) i=1

where N is the number of lattice sites and S; = +1 is the spin on lattice site i.
We will divide the lattice into blocks of lattice sites with block edges of length
La, where a is the distance between lattice sites (cf. Figure 5.7a). We choose L so
that La <« & where ¢ is the correlation length of spin fluctuations on the lattice
(cf. (5.112)). The total number of spins in each block is L. The total number of
blocks is NL=¢. The total spin in block I is

Sp=)S;. (5.148)
iel
Since L is chosen so that La < &, the spins in each block will be highly correlated
and it is likely that they will be aligned to some extent. In view of this, it is useful
to define a new spin variable, S, through the relation

Sl =28, (5.149)

where S| = +1, Z = L? and y is a parameter to be determined.
Spins interact with nearest-neighbor spins, so blocks should also interact with
nearest-neighbor blocks. Thus, the block Hamiltonian will be of the form

I'NL=%/2 NL™
H{S, } =-K, Z 818y - By, Z S, (5.150)
an I=1

where K is the new effective interaction between nearest-neighbor blocks. The
block Hamiltonian looks exactly like the site Hamiltonian except that all quantities

ele o s

Figure 5.7 (a) Decomposition of a square lattice into square blocks whose sides have length
La = 4a. (b) A hyperbolic fixed point with its eigencurves and the flow of points in the neigh-
borhood of the fixed point.
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are rescaled. Therefore, we expect the free energy per block, g(g; , By), to have the
same functional form as the free energy per site, g(¢, B). Since there are L? sites
per block, we have

gler, B)) = L(e, B). (5.151)

If we rescale our system and describe it in terms of blocks rather than sites, we
reduce the effective correlation length (measured in units of La) and therefore we
move farther away from the critical point. Thus, the correlation length will behave
as

&(ey, B) =L, B). (5.152)

Since rescaling moves us away from the critical point, the temperature ¢ and mag-
netic field B must also rescale. We assume that

g =¢el”, (5.153)
where x is a positive parameter. Similarly,
N NL™ NL™ NL™
BY.S;=B Y Y S,=BY S=BZ) S, (5.154)
i=1 =1 iel =1 =1
so that
B, =BZ=L’B. (5.155)
Equation (5.150) now becomes
g(L*e,L”B) = L%(¢, B) . (5.156)
If we compare Egs. (5.156) and (5.127), we find x = pd and y = gd. Thus,
g<1 (5.157)

in agreement with experiment.

The Kadanoff view of scaling allows us to introduce two new critical exponents
which are associated with the spatial correlations of spin fluctuations in the sys-
tem. The block correlation function is defined

C(ry, &) = (518) = (SIS » (5.158)

where r; is the distance between blocks I and ] in units of La. We can write
Eq. (5.158) as

Clry, &) = Z72(S[S)) = (SIS (5.159)
=772 PSS = (S)(S))] (5.160)
i€l jej

= ZWDS;S)) — (Si)(S) = Z L)’ Clre) (5.161)
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where r is the distance between sites i and j on different blocks. The distances r|,
and r are related by the expression

rn=L"r, (5.162)
and we write

C(L™'r el*) = LX49C(r¢) . (5.163)

If we choose L = r/a, the correlation function takes the form

C(r,e) = (2)2(y_d) C [a, € (2)1 . (5.164)

We can now introduce two new exponents for the correlation function. We first
define a critical exponent, v, for the correlation length as

E~(T-T)™". (5.165)

For mean field theories v = 1/2. From Eq. (5.112) we see that the correlation func-
tion away from the critical point depends on r and ¢ in the combination /& = re".
In Eq. (5.164) the correlation function depends on r and ¢ in the combination er*.
Thus,

x=pd=v". (5.166)
At the critical point, ¢ = 0 and the correlation function varies as
C(r,0) ~ (r?0=9. (5.167)

In three dimensions, we expect the correlation function at the critical point to
behave as

C(r,0) ~ (%)H” , (5.168)

where 7 is another new exponent. For mean field theories, # = 0. In d-dimensions,
C(r,0) varies as

(d-2+7)
C(r,0) = (1> (5.169)
r
and we can make the identification
d=2+n)=2d-y)=2d(1-¢q). (5.170)

Thus, the exponents for the correlation function can be written in terms of the
exponents for the thermodynamic quantities we have already considered. From
Egs. (5.142) and (5.166) we find

2—«a
= 5.171
V== (5.171)
and from Egs. (5.146) and (5.170) we find,
5—1 dy
=2-d|——=)=2- . 5.172
g ( 5+ 1 > 2B+y (5.172)

Thus, Kadanoft scaling allows us to obtain two new critical exponents and new
identities between all the exponents.
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5.8
Microscopic Calculation of Critical Exponents

The Kadanoff picture of scaling was given firm mathematical foundation by Wil-
son [215], who developed a technique for computing the critical exponents micro-
scopically. We shall outline Wilson’s procedure for the case of spin systems whose
spatial lattice structure is self-similar, and then we apply it to a self-similar trian-
gular planar lattice (see also [13, 59, 128, 179, 216, 217]). The use of self-similar
lattices provides the simplest way to illustrate the techniques used in renormal-
ization theory. For most systems found in nature, the lattice structure is not self-
similar and a different method can be used to obtain critical exponents using
self-similar spin blocks based on wavelength components of the thermodynamic
quantities. At the end of this section, we shall briefly describe the scaling approach
based on wavelengths and then give results.

5.8.1
General Theory

Let us consider a system described by the partition function

Z(K,N) = Z exp[-H(K, {S;},N)] . (5.173)
{S:}

The effective Hamiltonian, H(K, {S;}, N) (which includes temperature), can be
written in the form

[1] [2]
HK, (S}, N) = Ko+ K, )\ S+ K, 30 S,S;+ K3 ) S8,
i (i,)) (i, ))
[1]
+ Ky ) S8+ (5.174)
@,,k)

where K is an infinite-dimensional vector containing all coupling constants,
and the summation Z[i] means that only (ith) nearest neighbors are includ-
ed. The coupling constants, K;, contain the temperature. For the Ising model,
K, = -8B, K, = —f8] where ] is the strength of the coupling between spins, and
Ky=K,=--=0.

We can introduce blocks and let S; denote the total spin of the /th block and o;
denote the spins internal to block /. Thus, we can write

Z(K,N) = Z exp[-H(K, {S;, o1}, N)] (5.175)
{Spor}
=Y expl—H(K,, {S;}, NL™)] = Z(K,, NL™), (5.176)
{S1}

where we have summed over spins interior to each block. Since the new partition
function has the same functional form as the old one, we can write the following
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expression for the free energy density per site:
gUK) = lim % In Z(K, N) = lim % InZ(K,NL %) =L"g(K,). (5.177)

The coupling constant vectors, K and K, of the site spin and block spin systems,
respectively, will be related by a transformation,

K, =TK), (5.178)

where K will be a vector whose elements are nonlinear functions of the compo-
nents of K. Since our new Hamiltonian is identical in form to the old one, we can
repeat the process and transform to larger blocks nL. After n transformations, we
find

K, = T(K_1) - (5.179)

If the system is not critical, there will be a finite correlation range. Thus, when we
transform to larger blocks the effective correlation range appears to shrink and
we move away from the critical point. However, when the system is critical, the
correlation range is infinite and we reach a fixed point of the transformation. At
the fixed point, the transformation 7' can no longer change the vector K. Thus,
the critical point occurs for values of the coupling constant vectors, K*, which
satisfy the condition

K* = T(K*). (5.180)

The sequence of transformations 7 is called the renormalization group (although
T only has properties of a semigroup).

It is useful to illustrate the behavior of K for the case of a two-dimensional
vector, K = (K3, K;). Equation (5.179) can be thought to describe the motion of
K in K space (the space of components of K) as we change block size. To locate
a critical point in K space, we must locate the fixed points of Eq. (5.179). Let us as-
sume that a fixed point of the transformation K; = T(K) occurs at K* = (K", K3).
We will want to know how the vector K moves in the neighborhood of the point
K*. We must linearize Eq. (5.179) about K*. We will let 6K; = (K — K*) and
0K = (K — K™). Then for small K| and K we get a linearized transformation

0K, =A 6K, (5.181)

where

oK, 0K,

oK, 0K,
0K, 0K,

0Ky 0Ky Jye sy

|
I

(5.182)
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We next find the eigenvalues and eigenvectors of the matrix A. Since A, in gen-
eral, will be nonsymmetric, its left and right eigenvectors will be different. The
right eigenvectors can be mapped

Su, = Adu, (5.183)

where A (the matrix of eigenvalues) and du (the right eigenvector) can be written

a=(M %) and su=(2"), (5.184)
0 A, Su,

respectively.

The eigenvalues 1, and A, of the matrix A determine the behavior of trajectories
in the neighborhood of the fixed point. In Figure 5.7b, we have drawn the case of
a hyperbolic fixed point and its eigencurves. Points along the eigencurves move
as

Ouyy =0 6uy (5.185)
Ouyp 5 = (Ay)" Ouy (5.186)

Thus, for A > 1 the point moves away from the fixed point under the transforma-
tion, and for 1 < 1 it moves toward the fixed point. The dashed lines represent
the trajectories of points which do not lie on the eigencurves. For a hyperbolic
fixed point, they will always move away from the fixed point after many transfor-
mations. All systems with vectors K lying on an eigencurve with eigenvalue A < 1
are critical, since with enough transformations they will come arbitrarily close
to the fixed point. Such systems are said to exhibit “universality” The behavior
of a point along an eigencurve with A > 1 is reminiscent of the actual behavior of
noncritical systems. As we increase the block size, we move away from the critical
point. Thus, an eigenvalue A > 1 is called relevant and its eigenvector is identified
as one of the physical quantities (¢ or B, for example) which measure the distance
of the system from the critical point.

In general, we write the singular part of the free energy density in terms of the
eigenvectors du; and eigenvalues A, as follows:

8.(8uy, Suy, Suy,...) = L™ (A, 8uy, AyOuy, A3dus, ...) (5.187)

(cf. Eq. (5.177)). This looks very much like Widom scaling. Indeed, for the case
of an Ising system for which there are two relevant physical parameters which
measure the distance of the system from the critical point, we expect that two
of the eigenvalues will be relevant, let us say A; > 1 and 1, > 1. If we compare
Eq. (5.187) with Widom scaling of the Ising model in Eq. (5.127), we can make the
identification du; = € and Su, = B. Thus, 1 = L4 (Kadanoff scaling),
InA InA
M= =p=—"t and L, =LY 2g=—>.
1 =S p=gn 2 =S a= g

If we now use Egs. (5.145) and (5.146), we have expressed the critical exponents
in terms of the relevant eigenvalues.

(5.188)
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5.8.2
Application to Triangular Lattice

Let us now compute the critical exponents for 3-spin blocks on the triangular
planar lattice for the two-dimensional nearest-neighbor Ising model (see Fig-
ure 5.8a) [151]. We will retain terms to lowest order in (V'). The Hamiltonian can
be written

H=-KY s;s;=B)s,. (5.189)
ij i

We assign to a single block (block I in Figure 5.8b) a spin given by §; = sign(s! +
s} + s3). Therefore, S; = +1 for the following configurations:

(@=L =21 =311 =4111). (5.190)

The internal spin degrees of freedom are defined, of = s} + s} + s} ,,. For config-
urations defined above we have: 6] = ¢} = ¢} = 1,and of = 3.
The partition function can be written

Z(K,,N)= Z exp[-H(K |, {S;})]= Z Z exp[-H(K, {S;, o, D]. (5.191)
{81} {Si} {or}

Now define
H(K, {S;, 01}) = Hy(K, {S}, o1}) + VK, {S1, o1 }), (5.192)
where
HyK, {Sp o) ==K 3" ) Y s;s (5.193)
1 iel jel
and

VK, (S, ) ==K Y. Y D sis;=BY s, (5.194)

17 il jeJ I el
We next define the expectation value

Zal A({SI» 01}) eXP[—Ho(K, {SI» 01})]

5.195
ZUI exp[—Hy(K, {S;, o D] ( )

(A({SI})> =

2 Figure 5.8 (a) The planar triangle lattice. (b) Coupling
between neighboring blocks.
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Note that
SZU e~ HotV) — Z (Ze_H") Z —<Z _:0H0> e V. (5.196)
Y1

If we now perform the summation over o7 in the left-hand term, we can equate
arguments under the summation ) s, and write

exp[—H (K, {S; )] = (Z exp[—H,y(K, {S;, al})]> (e™) (5.197)

91
o (Ze_HU> <e<v>+§[<v2>—<V>21 + ) , (5.198)
91

where we have expanded (e~") in a cumulant expansion (see Appendix A). We
can perform the summations in the unperturbed part to get

[Zo(KO1" = ) expl—Ho(K, (S, o D], (5.199)

i

where M is the number of blocks and Z,(K) is the partition function of a single
block and can be computed explicitly to obtain

Zy(K) = Z exp [K (s 5y + s s + 3233)] =K 4 3e7K, (5.200)

oy

for §; = +1and S; = —1. The interaction is Vj; = —K(s s + s s ) (see Figure 5.8).
The average value of a single spin index is

(sg) = Zy(K)™* Zs; exp [K (s]s] +s] s] + s]s] )]

o1

= Zy(K)'S (e + 7). (5.201)

In order to obtain the result in Eq. (5.201), construct diagrams of the eight spin
configurations of block I and separate them according to their total spin S;. When
configurations with the same total spin S| are added, several terms cancel.

If we take the logarithm of Eq. (5.197), we obtain

H(K;, B {S;}) = MIn(Zy,(K)) +{V) + %[(\/2) —(VH] -

3K | o=K \ 2
= MIn(Zy(K)) - 2K Y <¢> 515

3K —K
7 \¢ + 3e

BK
—3Z< te >SIB+---, (5.202)

e3K 4 3e~K
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where we have retained terms up to (V). Thus, the Hamiltonian for the blocks
has been written in the form

H(Ky, By, (Si) = =Ky ) S8 = By ) S, (5.203)
I 1

If we now compare Egs. (5.202) and (5.203), we find

3K 4 oK \?
and
eBK + e—K

Fixed points occur for (K* = 0, B* = 0) and for (K* = K}, B* = 0), where K; is the
solution to the equation

1 3K 4 e~Ki \?

Equation (5.206) has eight solutions, only one of which is real and positive. This
solution gives K; = i In(1+2 \/E) ~ 0.3356. Thus, the fixed points occur for (K* =
0, B* = 0) and for (K* = 0.3356, B* = 0). The (K* = 0, B* = 0) fixed point corre-
sponds to infinite temperature since K is proportional to 8 = (k5T )7L

Let us next consider the fixed point, (K* =0.3356, B* =0). If we let K = 0.3356 +
0K and B = §B and linearize Egs. (5.204) and (5.205) in K and §B, we obtain

0K, =1.6236K and 0B =2.1216B, (5.207)

so the eigenvalues are A, = 1.623 and Az = 2.121. The Widom scaling exponents
become

In(A In(A
pe 2O 0441 and g= 218 _gesa (5.208)
21n(1/3) 21n(V/3)
The critical exponents are
1 —
a=2-L—_027, p=""9_o7,
p p
2 -1
y==2""_083, and 6=—1_=22. (5.209)
p I-¢q

The exact solution of this two-dimensional Ising model yields (Ag)eaet = 1.73
and (Ag)exact = 2.80. Thus, we are close for A, but our calculation of A5 is not
very good. It is possible to carry the calculation to higher orders in (V). In so
doing, more elements of the vector, K|, are introduced and better agreement with
the exact results is obtained.



5.8 Microscopic Calculation of Critical Exponents

5.8.3
The $* Model

Most spin lattices do not have spatial self-similar structure so a more general
method of scaling was developed that focuses on wavelength components of spa-
tial correlation functions. A widely used model for wavelength-based scaling is
the S*-model. We derive the S*-model here, and we give results of the scaling
process, but we do not explicitly discuss how the scaling process unfolds. More
discussion can be found in [128, 179, 183, 216].

Let us consider a d-dimensional cubic Ising lattice with N lattice sites. The par-
tition function can be written in the form

Z(K) = ) exp (1( > S,,S,,+e> : (5.210)
(52 n e

where K = f3] is the effective interaction and e is the vector indicating the posi-
tions of various nearest neighbors of the site, #. The summation is over all possible
configurations of the lattice. We can change the summation to an integration if we
introduce a weighting factor W(S,) = 6(531 —1). Then Eq. (5.210) can be written

za =[] J ds,, w<s,,) |exp (K > S,,S,,+e) , (5.211)

where the product is taken over all lattice sites. The partition function is now in
a form that allows some generalization.
Let us choose the weighting factor in a slightly different form,

W(S,) = e ¢/25uss (5.212)

Note that if we choose b = —4u, then W(S,) = e “S»~1’, which is a softened
version of the exact weighting function, W(S,,) = §(S% — 1). With the weighting
factor in Eq. (5.212), the partition function takes the form

Z(K) = H J ds,, |exp [H], (5.213)

m

where the effective Hamiltonian H can be written

H=K) »'S,Sue— Z%si +ust

1 ' b
= EK; [;(sm _S, 7+ <E - 2d> sf,] + u;si (5.214)

and the sum Z'E is restricted to positive values of e. Note that Z'E = d for a cubic
lattice.
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We next rewrite the effective Hamiltonian in terms of wavelength components
of the spin field S,,, where S, denotes the spin at point ¥ = na on the lattice (we
will now assume an infinitely large cubic lattice with spacing a between lattice
sites). The Fourier amplitude S(k) of the spin field is defined

S(k) = a® )’ s, e*me (5.215)
n
The components k; (i = 1, ..., d) of the wavevectors k can only take on values in

therange —mr/a < k; < m/a since wavelengths smaller than the lattice spacing are
not allowed. It is useful to note the identities

n/a n/a
d ) )
(%) J dk, ... J dkge" =5, and a?Y k" = 5(k).
—1/a —n/a "

(5.216)

When written in terms of the Fourier amplitudes, the effective Hamiltonian 7
takes the form

K
2

)d J dk2|5(k)|2|eik-na _ 1|2

(57
3(( > ﬂ) Jdle(k)|2
vl (%) JdlideJdkBth

X S(kl)5(k2)5(1c3)5(k4)5(k1 kg +ky+ k). (5.217)

Near the critical point spin fluctuations begin to exhibit long-range order and only
long wavelength (small wavevector) contributions to H are important. With this
in mind, the expression for H can be simplified to some extent. Note that z; |k -
e|?> = k2 so that |e*”* — 1|2 ~ k?a? for small k. Then the effective Hamiltonian
can be written in the form

d
Hr !, {S')) = % (%) Jdk(r+k2)|S’(k)|2

1 4d
+u <E> Jdkl J dk, J dk, J dk,
x '(ky)S' (ky)S' (k3)S' (ky)S(ky + Ky + ks + ky),  (5.218)

where S’ (k) = S(k)(Ka* )%, r = (b/K — 2d)a? and v’ = (Ka> %)~2. The par-
tition function takes the form

Z(r ' {S')) = JDS’eH(”””{S’}) , (5.219)

where DS’ denotes a function integral over all values of spin variables S’(k).



5.9 Problems

Equations (5.218) and (5.219) are called the $* model because of the quartic
dependence on the spin variables. They form the starting point for the renor-
malization theory based on the $* model. When u’ = 0, the model is called the
Gaussian model. The renormalization procedure is the same as that used in pre-
vious sections for the self-similar lattices, except that now the block Hamiltonians
are formed in terms of their dependence on intervals of values of wavevectors k;.
A renormalization map is constructed for the variables r and u’.

In Table 5.1, we compare results for values of the critical exponents obtained
from experiment, from mean field theory, the exact Ising model (with results ob-
tained numerically), and the S* model. For d = 3 the S* model gives very good
agreement with experiment and with exact Ising values of the exponents. For d =4
(not listed in Table 5.1), mean field theories and the S* model give the same results
(d = 4 is unphysical but mathematically interesting).

5.9
Problems

Problem 5.1 The magnetization operator for the ith atom in a lattice contain-
ing N atoms is M, = ﬂgm, where 4 is the magnetic moment and gm is the spin
of the ith atom. Neglecting interactions between the particles, the Hamiltonian
(energy) of the lattice is /I = —M B, where B is an applied magnetic field and
My = Z; 1M is the total magnetization of the lattice. Derive an expression for
the variance (M? T)eq in terms of a thermodynamic response function. Which re-
sponse function is it?

Problem 5.2  Use the canonical ensemble to compute the entropy, internal ener-
gy, and heat capacity of the Einstein solid.

Problem 5.3 Two distinguishable three-level atoms on a lattice can each have
energies 0, ¢, 2¢. Thus, the two-atom system can exist in nine different states with
energies £,(j = 1,...,9), where E; =0, E, = E3 = ¢, and E, = E5 = Eg = 2¢,
E; = Eg = 3¢ and E, = 4e. Find the probabilities f; of the nine configurations

Table 5.1 Values of critical exponents from experiment and various theories.

Critical Experimental Exact Ising Mean $* Model

Exponent  Value (d =3) Field (d =3)
Theory

a 0-0.2 0.12 0 0.17

B 0.3-0.4 0.31 1/2 0.33

é 4-5 5.2 3 4

y 1.2-14 1.25 1 1.17

v 0.6-0.7 0.64 1/2 0.58

0.1 0.056 0 0

=
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(j=1,...,9), assuming that they extremize the entropy S = kBZ, fjIn f; sub-
ject to the conditions that the probability be normalized Z =1 fj =1and the av-

erage energy be z} Eif; = 26‘.

Problem 5.4 A system has three distinguishable molecules at rest, each with
a quantized magnetic moment which can have z-components +1/24 or —1/24.
Find an expression for the distribution function, f; (i denotes the ith config-
uration), which maximizes entropy subject to the conditions ) ; f; = 1 and
> M, f; = yu, where M, is the magnetic moment of the system in the ith
configuration. For the case y = 1/2, compute the entropy and compute f;.

Problem 5.5 Whatis the partition function for a van der Waals gas with N parti-
cles? Note that the result is phenomenological and might involve some guessing.
It is useful to compare it to the partition function for an ideal gas. Remember
that the particles are indistinguishable, so when using the partition function one
must insert a counting factor. Use this partition function to compute the internal
energy, U(N, T, V), the pressure, P(N, T, V), and the entropy, S(U, V, N).

Problem 5.6 Consider a solid surface to be a two-dimensional lattice with N
sites. Assume that N, atoms (N, < N,) are adsorbed on the surface, so that each
lattice site has either zero or one adsorbed atom. An adsorbed atom has energy
E = —¢, where ¢ > 0. Assume the atoms on the surface do not interact with one
another. If the surface is at temperature 7', compute the chemical potential of the
adsorbed atoms as a function of T, ¢, and N, /N (use the canonical ensemble).

Problem 5.7 Consider a two-dimensional lattice in the x—y plane with sides of
length L, and L, which contains N atoms (N very large) coupled by nearest-
neighbor harmonic forces. (a) Compute the Debye frequency for this lattice. (b) In
the limit 7 — 0, what is the heat capacity?

Problem 5.8 The CO molecule has a rotational temperature 6 = h%/(2lkg) =
2.8 K, where I is the moment of inertia of the CO molecule. The rotational parti-
tion function for one molecule is Z2°" = ¥7° (21 + 1)e™*D¥/T () If one mole of
CO molecules could freely rotate at temperature T = 3.2 K, what is their total ro-
tational entropy? (b) What is the rotational entropy of one mole of CO molecules
at temperature 7' = 320 K? (Hint: At high temperature, where many angular mo-
menta contribute, Z2°" & [° /(2] + 1)e~"*D9/T ) (c) What is the translational en-
tropy of one mole of CO molecules in a box of volume V = 1.0 m? at temperature
T = 320K?

Problem 5.9 The CIF molecule has a rotational temperature 6y = h*/(2Iky) =
0.737 K, where I is the moment of inertia of the molecule. A gas consisting of
one mole of CIF molecules is contained in a box of volume V = 1073 m? and is
cooled to a temperature of 7' = 2 K (assume the molecules remain in the gas phase
under these conditions). (a) At 7' = 2 K, what fraction of the internal energy of the
gas is associated with the rotational degrees of freedom? (b) At 7' = 250K, what
fraction of the internal energy of the gas is associated with the rotational degrees
of freedom?
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Problem5.10 The vibrational frequency of the I, moleculeis f =6.42x 1012571,

The vibrational temperature is 6"“’ hf = 308 K. The rotational temperature

is 6“” = 0.0538 K. Consider a gas of N 12 molecules at temperature 7" = 300 K.
(a) \X/hat fraction of the molecules is in the vibrational ground state and what
fraction have one vibrational quantum of energy? (b) What percentage of the to-
tal internal energy of the gas is: (1) translational?; (2) vibrational?; (3) rotational?.

Problem 5.11 A dilute gas, composed of a mixture of N| iodine atoms I and N,
iodine molecules L,, is confined to a box of volume V = 1.0 m3 at temperature T =
300 K. The rotational temperature of the iodine molecules is 8,,, = 0.0537 K (for
simplicity we neglect vibrational modes). (a) Compute the chemical potentials, 4,
and 4, , of the iodine atoms and molecules, respectively. (b) The numbers of the
iodine atoms and molecules can change via chemical reactions with one another.
The condition for chemical equilibrium is 4#;, = 24;. Use this condition to find
the ratio NI2 /N, when the gas is in equilibrium. (c) Does the inclusion of the
rotational degree of freedom increase or decrease the number of I, molecules at
chemical equilibrium.

Problem 5.12 A cubic box (with infinitely hard walls) of volume V = L? contains
an ideal gas of N rigid HCI molecules (assume that the effective distance between
the H atom and the Cl atom is d = 1.3 A. (a) If L = 1.0 cm, what is the spacing
between translational energy levels? (b) Write the partition function for this sys-
tem (include both translation and rotational contributions). At what temperature
do rotational degrees of freedom become important? (c) Write expressions for
the Helmholtz free energy, the entropy, and the heat capacity of this system for
temperatures where the rotational degrees of freedom make a significant contri-
bution.

Problem 5.13 An ideal gas is composed of N “red” atoms of mass m, N “blue”
atoms of mass m, and N “green” atoms of mass m. Atoms of the same color are
indistinguishable. Atoms of different color are distinguishable. (a) Use the canon-
ical ensemble to compute the entropy of this gas. (b) Compute the entropy of an
ideal gas of 3N “red” atoms of mass m. Does it differ from that of the mixture? If
so, by how much?

Problem 5.14 An ideal gas, in a box of volume V, consists of a mixture of N,
“red” and N, “green” atoms, both with mass 2. Red atoms are distinguishable from
green atoms. The green atoms have an internal degree of freedom that allows the
atom to exist in two energy states, E, ; = p?/(2m) and E,,= p?/(@2m) + A. The
red atoms have no internal degrees of freedom. Compute the chemical potential
of the “green” atoms.
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Problem5.15 Consider a one-dimensional lattice with N lattice sites and assume
that the ith lattice site has spin s; = +1. The Hamiltonian describing this lattice is
H=-¢ Zf\il §;8;,1- Assume periodic boundary conditions, so sy, =s,. Compute
the correlation function, (s;s,). How does it behave at very high temperature and
at very low temperature?

Problem 5.16 In the mean field approximation to the Ising lattice, the order
parameter, (s), satisfies the equation (s) = tanh({s)7./T), where T, = ve/2kg
with € the strength of the coupling between lattice sites and v the number of
nearest neighbors. (a) Show that (s) has the following temperature dependence:
(i) (s) # 1—=2e2T/Tif T ~ 0K, and (ii) (s) ~ 1/3(1 — T/T,)if T ~ T.. (b) Compute
the jump in the heat capacity at T = T.. (c) Compute the magnetic susceptibility,
Xr.n(B = 0), in the neighborhood of T'= T for both T'> T and T < T,.. What
is the critical exponent for both cases?

Problem 5.17 Consider a magnetic system whose free energy, near the critical
point, scales as A°g(e, B) = g(A%¢, A3B). Compute (a) the degree of the coexis-
tence curve, (b) the degree of the critical isotherm, (c) the critical exponent for
the magnetic susceptibility, and (d) the critical exponent for the heat capacity. Do
your results agree with values of the critical exponents found in experiments?

Problem 5.18 A one-dimensional lattice of spin-1/2 lattice sites can be decom-
posed into blocks of three spins each. Use renormalization theory to determine
whether or not a phase transition can occur on this lattice. If a phase transition
does occur, what are its critical exponents? Retain terms in the block Hamiltonian
to order (V'), where V is the coupling between blocks.

Problem 5.19 Find the critical exponents for five spin blocks on a square lattice
for the two-dimensional nearest-neighbor Ising model. Retain terms to lowest or-
der in (V'), where V is the interaction energy between blocks (cf. Figure 5.9).

L=\/?: : Figure 5.9 Problem 5.19.

Problem 5.20 The order-disorder phase transition on a two-dimensional trian-
gular lattice can be analyzed in terms of a two-dimensional Ising model with seven
spins as shown in Figure 5.10. In all calculations, only retain terms to lowest order
in (V). Assume the nearest-neighbor spacing between lattice sites is a. (a) Com-
pute Z,. (b) Compute (s; ) (the central spin in the block in Figure 5.10 and (s,) (an
outer spin in the block shown in Figure 5.10). (c) Construct the renormalization
map and find its relevant fixed point. (d) Linearize the renormalization map about
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its relevant fixed point and find its eigenvalues. (¢) Compute the Widom scaling
exponents p and g. (f) Compute the critical exponents «, f3, y, . (Note: Each block
has 27 = 128 spin configurations. Blocks with S; = +1 have 64 configurations. The
various S| = +1 configurations can be grouped so that each group gives a term in
Z,. These groupings also make the derivation of (s;) and (s, ) straightforward.)

Figure 5.10 Problem 5.20.
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6.1
Introduction

When a system is open to the surrounding environment, both the energy and
particle number of the system can fluctuate. In that case, the system will be in
equilibrium with the environment if the temperature and chemical potential (of
each kind of particle) are the same in the system and the environment. The proba-
bility distribution and the thermodynamic properties of particles in open systems
are given by the grand canonical ensemble, which we derive and discuss in this
chapter.

The process of adsorption provides an important classical example of a ther-
modynamic process in an open system and is easily analyzed in the grand canon-
ical ensemble. Adsorption occurs when a fluid mixture (gas or liquid) is in con-
tact with a solid surface that can selectively bind (at multiple sites) one type of
molecule in the fluid. For adsorption, the system consists of the binding sites and
the fluid is the environment. We will use the grand canonical ensemble to derive
adsorption isotherms.

The theory of interacting semiclassical fluids (composed of neutral particles) is
also easily described in the grand canonical ensemble. For such systems, the in-
terparticle potential has a hard core and a weak attractive region so perturbation
expansions in terms of the potential are not convergent. For the case of dilute or
moderately dense fluids, the only small parameter is the density and, therefore it
is useful to express thermodynamic quantities in terms of density (virial) expan-
sions. We shall use the grand canonical ensemble to derive microscopic expres-
sions for the virial coefficients in the density expansion of the equation of state of
interacting classical fluids. We shall apply these results to fluids whose particles
interact via hard-core potentials, square-well potentials, and the Lennard-Jones
6—12 potential, and we will compare them with experiment.

The grand canonical ensemble is especially suitable for describing systems with
broken gauge symmetry because particle number can fluctuate. We will use the
grand canonical ensemble to compute the thermodynamic properties of ideal
quantum gases, both Bose—Einstein and Fermi—Dirac. An ideal Bose—Einstein gas
is composed of indistinguishable bosons. At very low temperatures, it can exhibit

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
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a phase transition (even though the particles do not interact) in which a macro-
scopic number of particles condense into the lowest energy state. For the case of
interacting bosons, Bogoliubov mean field theory can be used to obtain equilibri-
um properties of the condensate at very low temperatures. An ideal Fermi—Dirac
gas does not exhibit a phase transition because no two fermions can have the
same set of quantum numbers (the Pauli exclusion principle). Therefore, at low
temperature the fermions fill all the low energy states and even at 7 = 0K some
particles can have a very high energy. If coulomb interactions are neglected, an
ideal Fermi—Dirac gas of electrons provides a simple model that can explain both
the paramagnetic and diamagnetic properties of many condensed matter systems.
If we allow an attraction between fermions, then they can form bound pairs that
can condense in momentum space. This is what happens to electrons in a super-
conductor. In a superconducting solid, electrons interact with lattice phonons and
with one another through a phonon-mediated interaction which is attractive in
the neighborhood of the Fermi surface. The fermion pairs condense in momen-
tum space and act coherently, thus giving rise to the unusual superconducting
properties observed in such systems. We derive microscopic expressions for the
energy gap and the heat capacity of such systems at the end of this chapter.

6.2
The Grand Canonical Ensemble

An open system can exchange both heat and matter with its surroundings, causing
both energy and particle number to fluctuate. To obtain the equilibrium proba-
bility density in such a fluctuating environment, we use the method of Lagrange
multipliers to extremize the Gibbs entropy subject to the following three con-
straints. We require that the normalization take the form

Tr(p) = 1. (6.1)
We require that the average energy have a fixed value, (E), so that
Tr(Hp) = (E). (6.2)

And finally, we require that the average particle number have a fixed value, (N),
so that

Tr(Np) = (N), (6.3)

where N is the total particle number operator.
We can find the probability density operator, p, that extremizes the Gibbs en-
tropy subject to the constraints in Eqgs. (6.1)—(6.3). The extremization condition is
S[Tr(aop + apHp + ayNp — kypIn p)]
= Tr{[(ag — k)] + azH + ayN — ks In(p)18p} = 0, (6.4)



6.2 The Grand Canonical Ensemble

where a,, ag, and a); are Lagrange multipliers. Since §p is arbitrary, we have
(ag — k) + apH + ayN —kylnp=0. (6.5)

We can now use Eq. (6.5) and the three constraints, Eqs. (6.1)—(6.3) to determine
the Lagrange multipliers. The normalization condition, Eq. (6.1), allows us to in-
troduce the grand partition function. If we take the trace of Eq. (6.4), we can write

7 _ @ B Ap A~ Oy o
(ap,ay) = exp o 1) ="Tr |exp k_H + k_N , (6.6)
B B B

which relates a to a; and ay;. To determine a; and a;, let us multiply Eq. (6.5)
by p and take the trace. We find

—kgIn[Z(ag, ay)] + ap(E) + ay(N)+S=0. (6.7)

If we compare Eq. (6.7) to the fundamental equation for the grand potential, Q =
U — TS — uN (cf. Table 3.5), we can make the identifications, ay = —1/T and
ay =u/T,and

QT ) = ~kg TIn Z,(T) . (6.8)
The grand partition function can now be written
— o POTw _ ~BUH~uN)
Z,(T) = e 000 = Ty (1), (69)

with = 1/ky T, and the probability density operator can be written
e_ﬁ(]:[_ﬂ](])

e BH-uN-0) _ _ €T T
Tr (e—/))(H—ﬂN))

p (6.10)
Equation (6.10) is the probability density operator for the grand canonical ensem-
ble.

Although we have not written it explicitly, the grand potential will generally
depend on a generalized displacement, X, whose form is determined by the me-
chanical properties of the system being considered. For a gas, X = V' is the volume
and, for a magnetic system, X = M is the magnetization. Once we know the grand
partition function, we can compute the grand potential, and from it we can ob-
tain all thermodynamic quantities. The entropy is given by § = —(0Q2/9T )y ,.
The generalized force is given by Y = (002/0X),,,. The average particle number
is given by (N) = —(0Q/0u) 1 x-

6.2.1
Particle Number Fluctuations

In the grand canonical ensemble, the temperature 7" and chemical potential 4 are
fixed and the average energy (E) and average particle number (N) are fixed. How-
ever, because there can be a flow of energy and particles in and out of the system,
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it is important to determine the size of energy and particle number fluctuations.
The derivation of the variance in energy fluctuations is similar to the derivation
given in Section 5.2, so here we only derive the variance in particle number fluc-
tuations. We first write the normalization condition in the form

Tr (HOT-HHNT) = 1 (6.11)

If we differentiate Eq. (6.11) twice with respect to y, we can obtain

__ 20N _ oHN)
(N?) =(N)* = kT ( o >T,x = kBT< o >T,X . (6.12)

Thus, the fractional deviation behaves as

V(N?) —(N)?

N ~N7/2, (6.13)

As the average number of particles increases, the size of the fluctuations in particle
number becomes small compared to the size of the average particle number. For
very large (N), most microstates will have a particle number approximately equal
to (N) and we retrieve the canonical ensemble.

It is useful to write Eq. (6.12) in terms of the isothermal compressibility.
From the chain rule in Appendix B, (N /ou)r, = — (()N/&V)T’” @V /ou)r -
From Table 3.5, (du/0V) y = = (OP/ON) . Also, (OP/ON) 1\, = —(OP/0V) 1
(0V/ON)7,p. If we now combine these equations and note that (N/dV)y, =
(ON/oV)p = (N)/V since u = u(T, P), we find

-y =k (%0 =kt

V2 opP 1% r
(6.14)

(N)? < Av) > _ kT
T,N

Thus, the variance in particle number fluctuations is proportional to the isother-
mal compressibility. Near a critical point, the compressibility can become infinite
and, therefore, fluctuations in the particle number (or density) become very large.

6.2.2
Ideal Classical Gas

The equation of state for an ideal classical gas of indistinguishable particles,
of mass m, can be computed starting from the grand canonical ensemble. The
Hamiltonian of an ideal gas, in the absence of external fields, consists only of
kinetic energy H, = zf;lrﬂ/}f /(2m). In general, when evaluating the trace for
a fluid of indistinguishable particles, we can ether use a complete set of sym-
metrized or antisymmetrized N-body momentum/energy eigenstates or we can
use the number representation (see Appendix D). Since we are interested in the
classical limit, it is most convenient to use the momentum/energy eigenstates.
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In general, the grand partition function can be written

ZAT, V)= D Cun D lky kg o kyle POk Ky, kY
N=0 kpyeeoky

(6.15)

where &« = A, S, €,  is a counting factor the prevents the summation from
overcounting states, and |ky, ky, ..., k)@ are symmetrized (a = S) or antisym-
metrized (a = A) states (see Appendix D).

As discussed in Section 5.3, in the classical limit contributions due to the sym-
metrization or antisymmetrization can be neglected and the grand partition func-
tion takes the form

Z,(T, w:Z% 3 (kg oo kgl POk Ky, Ky
N=0"N" kyky

& eBuN N
= Z eN' % = exp (J”%) . (6.16)
N=0 : AT AT
The pressure is
0 kT eﬁﬂ
P=-T= ‘37 InZ,(T,V) = kBT/l—S 6.17)
T
The average particle number is
—Bu
(N)=_(£> =Ve_3. (6.18)
owu )1y A%

If we combine Egs. (6.17) and (6.18), we obtain the classical equation of state PV =
(N)kg T for an ideal gas of indistinguishable particles.

6.3
Adsorption Isotherms

The adsorption of atoms and molecules from a gas or liquid onto a surface is a
process of great importance for biological function and for processes that involve
the storage of molecules or the removal of contaminants from a gas or liquid. The
adsorption process can be classified as physisorption (from van der Waals forces)
or chemisorption (characteristic of covalent bonding).

One material commonly used for storage or cleaning of gases and liquids is
activated carbon, which is a form of carbon processed to have small pores that
significantly increase its surface area. Activated carbon is widely used to remove
pollutants from air or water or store gases, such as natural gas or hydrogen. The
pollutants or gases adhere to the surface and then can be retrieved by raising the
temperature of the carbon surface.
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The adsorption of oxygen molecules, O,, by myoglobin or hemoglobin is an ex-
ample of a biologically important adsorption process. Myoglobin is a protein that
is found in muscles and hemoglobin is a protein found in the blood. Hemoglobin
is responsible for transporting oxygen from the lungs to the muscles. Both myo-
globin and hemoglobin contain a complex organic group of molecules called
the heme that contains an iron ion. Myoglobin contains one heme group and
hemoglobin contains four heme groups. Oxygen in the lungs is adsorbed onto the
heme groups in hemoglobin and then is transported to the myoglobin molecules.
The adsorption of oxygen on myoglobin takes place in solution, but one can ob-
tain a rough estimate of the chemical potential of oxygen in solution from its
chemical potential in the atmosphere, which is in equilibrium with the oxygen in
solution. The atmosphere is approximately 21% oxygen so at one atmosphere the
partial pressure of oxygen is Py, = 0.21 bar. Given P, , we can use the ideal gas
expression to obtain the chemical potential of O, in the atmosphere.

Let us now obtain an expression for the fraction of surface sites that have ad-
sorbed molecules. We consider an adsorbing surface (the adsorbent), with N ad-
sorbing sites, in contact with a gaseous mixture containing an adsorbate molecule,
“M” at partial pressure Py;. Let us assume that the adsorption sites are distinguish-
able and don'’t interact with each other, and let us assume that each site can only
adsorb one molecule. The adsorption occurs because the “M” molecule can be-
come bound to the site with a binding energy, —e. The system will be in equilibrium
when the chemical potential of the molecules “M” in the gas is equal to the chemical
potential of the adsorbed molecules “M” at the sites.

The grand partition function, for the case when there are N binding sites and
any number 0 < n < N of “M” molecules bound to the sites, is given by

N
N! : :
T,u) = ) —————e PCmemm) = (1 4 PN 6.19
2(T, ) Z:,)(N_n)!n! ( ) (6.19)
where (Ni\:),n - is the number of different ways that # identical “M” molecules can

be attached to N distinct sites and E(n) = —ne is the total binding energy when
molecules are attached to # of the N sites. The fact that the molecules don’t in-
teract allows the grand partition function to factor into a product of single-site
grand partition functions,

Z (T, p) =1+ &P (6.20)

The probabilities that a given site is empty, f;, or occupied, f;, are given by

1 eBletu)

= T ohem Yy and f) = T ofem’ (6.21)

So
respectively.
Let us now assume that the gas mixture is well described by the ideal gas equa-
tion of state and that the adsorbate molecules “M” in the gas mixture have a partial
pressure Py, and mass m. The chemical potential of the adsorbate molecules in
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the gas is
kg T
p=—kyTln| == , (6.22)
PyA3
; 2 \32 .
where 15 = (MnkBT) . If we now combine Egs. (6.21) and (6.22), we can

write the following expression for the fraction of surface sites with adsorbed “M”
molecules

Py

kT _pe :
Ee ﬁ6+PM

fu= (6.23)

Equation (6.23) is called the Langmuir adsorption isotherm and gives the fraction
of occupied sites as a function of the partial pressure of the adsorbate molecules
for a fixed temperature.

In Figure 6.1, we have plotted the fraction of myoglobin molecules with ad-
sorbed O,, as a function of partial pressure of O, for several different tempera-
tures. The partial pressure of O, in the atmosphere, at T=0°C, is P, =0.21bar =
159 Torr. The data fits the Langmuir adsorption isotherm very well and indicates
that most myoglobin molecules contain adsorbed oxygen.

When the adsorption sites can adsorb more than one molecule, the Langmuir
adsorption isotherm is no longer adequate to describe the fraction of adsorbed
molecules, and other adsorption isotherms have been developed to describe these
more complex situations. It is interesting to compare the O, adsorption isotherms
for myoglobin and hemoglobin, which can adsorb as many as four O, molecules.
In Figure 6.2, we show the isotherms for myoglobin and hemoglobin at temper-
ature T = 310K as a function of the partial pressure of oxygen. The adsorption
isotherm for hemoglobin is significantly different from that of myoglobin because

Poz(mmHg)
123 456 78

Figure 6.1 The fraction f, of myoglobin molecules with adsorbed oxygen, as a function of
partial pressure P02 of oxygen, for several different temperatures (based on [187]).
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the binding energy of the heme sites, on a given hemoglobin molecule, is a func-
tion of the number of oxygen molecules already adsorbed on that hemoglobin
molecule. We can still use the grand canonical ensemble to determine the fraction
of adsorbed molecules, as long as the adsorption sites on different hemoglobin
molecules remain independent. An example of this more general use of the grand
canonical ensemble is given in Exercise 6.1.

Exercise 6.1

Consider a hypothetical molecule “P” that has two heme sites that can bind an
oxygen molecule O,. The binding energies E, when zero, one, and two O, are
bound to the molecule are E, = 0, E; = —0.51, and E, = —1.05 eV, respectively.
Assume that N = 1000 “P” molecules are in equilibrium with air at 7= 310 Kand
the partial pressure of O, in air is P,, = 0.2 bar. Assume that the “P” molecules are
independent of one another. How many “P” molecules have (a) zero O, molecules
attached; (b) one O, molecule attached; (c) two O, molecules attached?

Answer: The grand partition function for O, in contact with a single “P”
molecule is

Z, =1+ 26 BE1~1o,) 4 o=BEI~240,)

(note that there are two ways to attach one O, to the “P” molecule). For T =
310K, 17 = 0.175 X 107!° m and k3T = 0.0267 eV, the chemical potential of
0, is pg, = —0.468 eV. Therefore, e PEimHo) = 4,89 e PE2"20,) = 71 50, and
Z, =1+ 2(4.82) + 71.50 = 82.14. The probability to find a “P” molecule with »
O, boundtoit, forn=0,1,2is P, = %1 =0.012, P, =2¢ PE17#0,) /7 =0.117,and

P, = e PE2720,) /7 = 0.870. On the average, the numbers N, of “P” molecules
with #n = 0,1, 2 O, molecules attached are given by Ny = NP, =12, N, = NP, =
117, and N, = NP, = 870.

1 Myoglobin

Hemoglobin

P()Z (mmHg)
30 60 90

Figure 6.2 A comparison of the oxygen adsorption isotherms, at T = 310K, as a function of
the partial pressure of oxygen (based on [64]).
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6.4
Virial Expansion for Interacting Classical Fluids

The first step in obtaining tractable microscopic expressions for the thermody-
namic properties of interacting fluids is to find a small parameter that can be used
as an expansion parameter. For dilute or moderately dense gases, such a param-
eter is the density. In this section we shall first obtain a microscopic expression
for the virial (density) expansion of the equation of state for a classical fluid, and
then we compare the predictions of the microscopic theory to experimental re-
sults [84, 85, 130, 134, 201].

6.4.1
Virial Expansion and Cluster Functions

Let us consider a classical gas of identical particles of mass m that interact via two-
body short-ranged forces. We shall assume that the potential has a large repulsive
core and short-ranged attraction (cf. Figure 6.3). For a semiclassical fluid, we can
use the approximations in Section 5.4 and write the grand partition function in
the form

o 1 1
Z(T, V)= Z m/p—NeﬁN”QN(V’ T), (6.24)
N=0 T

where the momentum integrations have been performed and the configuration
integral, Qy(V, T'), is defined in Eq. (5.45).

If the interparticle potential V;; has an infinite hard core at short interparticle
separation, it can not be used as an expansion parameter. However, we can intro-
duce a function f;; that is not divergent,

fy=eP-1. (6.25)

The function f;; becomes zero outside the range of the interaction. Furthermore,
in the region of the hard core, where V;; ~ oo, the function f;; = —1 (cf. Figure 6.3).

3

of 1= BV(X)

o f(X)

1 1
05 )50, s
1 L

Figure 6.3 The dashed line is a plot of a typical interparticle potential, v(x) (Lennard-Jones
6-12), the solid line is a plot of f(x) = e #*® — 1, and o is a measure of the hard-core radius
(v(1) = 0). The plots are given for a fixed temperature.
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In terms of the function f;;, the configuration integral can be written as

QN(V,T)=J---Jdrl---drNWN(rl,...,rN), (6.26)
where
N(N-1)/2
Wy(ry,..or) =[] a+£) (6.27)

(U))
and the product is taken over all pairs of particles (ij). There are N(N — 1)/2
such pairs. The first few terms are given by W, = 1, W,(r,ry) = (1 + fi5),
Ws(ry, ry, r3) = (14 f1)(1 + fi3)(1 + f53) and so on.
It was shown by Ursell [203] that the grand partition function can be written in
terms of a cumulant expansion (see Appendix A), such that

o 11
Z(T, V)= ﬁﬁeﬁw J J dry - dry Wy(ry, ..., 7y)
N=0 VAT
11,
= exp Zﬁ?e ol dry e drUy(ry, ..o )|, (6.28)
=1 " AT
where U(ry, ..., r;) is called a cluster function or Ursell function.

When written in terms of cluster functions, the grand potential takes a simple
form:

QWV, T,p) =~k TIn Z,(T, V)

=—kgT lieﬁl/‘ ol dry e dr Uy, . 1) (6.29)
)3
=1 T
If we know the function Wy (r, ..., ry), then we can easily find the cluster func-
tions Uy (ry, ..., ry). We expand (6.28) in powers of/1}3 exp(Bu) and equate co-
efficients. We then obtain the following hierarchy of equations:

U, (ry) = Wi(ry),
Uy(ry,ry) = Wy(ry, ry) = Wi(r)Wi(ry) ,
Us(ry, 1y, 13) = Wa(ry, 1y, 13) = Wi(r)) Wy(ry, r3)
= Wi(r) Wy(ry, r3) = Wi(r3) Wy(ry, ry)
+2Wi(r) Wi (ry)) Wi (r3) (6.30)

and so on. From Egs. (6.27) and (6.30) we can find the first few cluster func-
tions. Theyare U, (r) =1, Uy(ry, ry) = flg,and Us(ry, 1y, 13) = f1o fis+ fio fos +
fi3fos + fi2f13 f>3 and so on. The function Uy/(ry, ..., ry) depends on all con-
nected clusters of N particles.

The integrals over cluster functions Uy (7, ..., ry) are always proportional to
the volume due to integration over the center-of-mass of each cluster. Therefore,
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we can introduce an intensive quantity

b(T) = %J---Jdrl---drlul(rl,...,rl), (6.31)
where b,(T') is called a cluster integral. When written in terms of b,(T), the ex-
pression for the grand potential, Q(V, T, u), in Eq. (6.29) is explicitly proportional
to the volume.

— b,(T )ePlk
OV, T,p) = =VkgT Y % (6.32)
=1 AT
The pressure takes the form
QWV, T, p) < b)(T)ef
=1 T
and the particle density is given by
Ny _ 1 (@) _i—lbl(ﬂeﬁw (6.34)
1% V\ou )y, & 2

The virial expansion of the equation of state is an expansion in powers of the
density,

PV ~ [+ <N> -1
ET - ;BZ(T) <7> ) (6.35)

If we combine Egs. (6.33), (6.34), and (6.35), we obtain

S b (& nby(THefm\ " & (& b (Teb e\
2w\ =2 B\ X
T T I'=1 T

=1 n=1 n'=1

(6.36)

If we now expand both sides of Eq. (6.36) and equate coefficients of equal pow-
ers of /1}3 exp(Bu), we obtain the following expressions for the first three virial
coefficients:

B(T)=b(T)=1,

By(T) =—by(T),

By(T) =4b3(T) - 2by(T), (6.37)

and so on. The higher order terms in the virial expansion are determined by larger
and larger clusters of particles.
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6.4.2
The Second Virial Coefficient, B,(T)

The second virial coefficient gives the correction to the ideal gas equation of state
due to two-body clustering [85]. For very dilute gases, two-body clusters give, by
far, the dominant contribution from interactions in the fluid and it is sufficient to
terminate the virial expansion at second order.

From Egs. (6.31), and (6.37), the second virial coefficient can be written

1 1 —BV(r
By(T) = - Jdrl dry f(ryy) = -3 Jdrlz(e BV _ 7y, (6.38)

where we have changed to center-of-mass (R = (r; + r,)/2) and relative (r;, =
r, — r,) coordinates and have integrated over the center-of-mass. The behavior of
the second virial coefficient has been studied for a variety of interparticle poten-
tials. For very simple potentials it can be computed analytically, and for realistic
potentials it must be computed numerically. We shall focus on three potentials
that historically have been important in understanding the behavior of the virial
coefficients. They are the hard-sphere potential (see Exercise 6.1), the square-well
potential, and the Lennard-Jones 6—12 potential (cf. Figure 6.4).

6.4.2.1 Square-Well Potential
The square-well potential (shown in Figure 6.4a) has the form

o if 0<g<o,
Vew(q) =4 —¢ if o0<qg<Ro, (6.39)
0 if Ro<gq.

This potential has a hard core of radius, ¢, and a square attractive region of depth
¢ and width (R — 1)o. The second virial coefficient can be computed analytically
and has the form

2mro?

By(T gy = [1-(R?=1)eP-1)]. (6.40)

Note that By (T )gy differs from By(T )y by a temperature-dependent term (see
Exercise 6.1). At low temperatures, B, (T )qy is negative and at high temperatures

A N

v(g) V(g)

o ?ﬂ q o ?Vq,

Figure 6.4 Sketch of (a) the square-well potential and (b) the Lennard-Jones 6-12 potential.
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it becomes positive. At low temperatures the attractive interaction energy due to
the square well can compete with the thermal energy, k; T, and causes a lowering
of the pressure relative to the ideal gas value. At high temperature the hard core
becomes dominant and the pressure increases relative to that of an ideal gas.

We can write By(T )gy in a reduced form if we let B*(T gy = B(T )gw/by»
where b, = 2r6% /3 and T* = kT /e. Then we find

By(T sy = [1— (R* = 1)(e/T" - 1)]. (6.41)

Equation (6.41) will be useful when we compare the square-well results to exper-
iment.

6.4.2.2 Lennard-Jones 6-12 Potential
A potential which gives a very good approximation to the interaction between
atoms is the Lennard-Jones 6—12 potential,

12 6
wao=s|(2)"-(3)]

(cf. Figure 6.4b). The Lennard-Jones potential has a gradually sloping hard core,
which takes account of the fact that particles with high energy can, to some extent,
penetrate the hard core. When g = o, we obtain V{;(¢) = 0. Thus, g = o is the
radius of the hard core because at g = ¢ the potential changes from repulsive to
attractive. The minimum of the Lennard-Jones potential occurs at ¢ = 2'/°¢. The
value of the potential at the minimum is VL](21/ g) = —¢, so ¢ is the depth of the
Lennard-Jones potential.

The second virial coefficient for the Lennard-Jones potential can be found an-
alytically in the form of a series expansion. If we integrate Eq. (6.38) by parts and
introduce the notation x = g /0, T* = kg T /¢, and B;(T )1; = By(T )15/ by, we find

BT = 1 [ a2 [ Elen {2 [(1)"- ()]} 6o
0

If we expand exp[4/T*(1/x)°] in an infinite series, each term of the series can be
computed analytically and we obtain the following expansion for B;(T );;:

O 2 . (2n—1) [ 1\@*/H
By ==X (F)(F) (6.4)

n=0

where I'(x) is the Gamma Function. The expansion for B;(T );; converges rapid-
ly for T* > 4, but more slowly for lower values of T*. Values of B}(T ) for T*
ranging from 0.3 to 400 are given in Table 6.1.

In Figure 6.5 we plot B3(T') versus T* for both the square-well potential and
the Lennard-Jones potential. We also give experimental values of B(T') for a va-
riety of substances. The Lennard-Jones potential gives values of B;(T') in good
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-1r oN,
oA
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T*

Figure 6.5 The reduced second virial coefficient. The solid line is the calculated curve for
the Lennard-Jones 6-12 potential. The dashed line is the calculated curve for the square-well
potential (for R = 1.6). The points are experimental values for the gases listed (based on [85]).

Table 6.1 Values of the Reduced Second Virial Coefficient versus the Reduced Temperature for
the Lennard-Jones Potential.

T B} T* B;

0.30 —27.8806 4.00 +0.1154
040 —13.7988 450 +0.1876

0.50 —8.7202 5.00 +0.2433
0.70 —4.7100 10.00  +0.4609
1.00 —2.5381 20.00  +0.5254
1.50 —1.2009 30.00  +0.5269
2.00 —0.6276 40.00 +0.5186
2.50 —0.3126 50.00  +0.5084
3.00 —0.1152  100.00  +0.4641

3.50 +0.0190  400.00  +0.3583

agreement with experimental results. At high temperatures, B}(7");; and the ex-
perimental points for He gas exhibit a maximum while B}(T )y does not. The
maximum in B} (T );; occurs because at high temperatures, particles can pene-
trate into the hard core and lower the amount of excluded volume. The square-
well potential has a hard core with infinite slope and cannot account for this ef-
fect. The data points for He deviate from the classical results at low temperature.
These deviations are due to quantum effects not included in the semiclassical ap-
proximation to the grand partition function. The second virial coefficients for all
classical gases, when plotted in terms of reduced quantities, are identical. This is
an example of the law of corresponding states.

The parameters €/kg and o can be obtained from experimental values for the
second virial coefficient for various substances. Thus, measurements of the virial
coefficients of real gases provide an extremely important source of information
about interparticle potential for various molecules. It is important to note that,
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although the Lennard-Jones 6—12 potential is perhaps the most widely used in-
terparticle potential, there are many other forms of potential that may be used to
compute the virial coefficients, and some of them give better agreement with ex-
perimental results over a wider range of temperature than does the Lennard-Jones
potential.

Computation of the third virial coefficient is more challenging but still can be
done for some simple potentials. However, new effects can enter [183], such as
three-body forces which are not included in the examples given here.

Exercise 6.2

Compute the second virial coefficient, B,(T"), for a hard-sphere gas of atoms of
radius, R, confined to a box of volume, V. Write the equation of state for this gas
as a virial expansion to first order in the density.

Answer: The second virial coefficient, B,(T), is defined as
ByT) =11 | dr, | drye Vo — 1)
M) =75 1 2 )

where ry, = r, — ry. For hard spheres V(ry;) = o for ry; < R and V(ry;) =0
for ry; > R. We can make a change of variables and let r = ry; = r, — r; and
R = (1/2)(r + ry). If we then integrate over R, we obtain

R

3
By(T) = —% J dr(e?V® —1) = +271Jdrr2 _ 2R

3

=b,.

The equation of state of a hard-sphere gas, to second order in the density, is

PV
NkyT

=1+b0%+---

6.5
Blackbody Radiation

All material bodies emit electromagnetic radiation. The emitted radiation is dis-
tributed over a range of frequencies and the peak of the distribution moves to
higher frequencies as the temperature of the material is increased. This is why
a piece of iron looks grey at room temperature but, as it is heated, it begins to
glow red through yellow to white with increasing temperature.

Let us now imagine a totally closed empty box whose walls are maintained at
temperature 7. The radiation emitted from the walls inside the box come to ther-
modynamic equilibrium with the walls and form a gas of noninteracting photons
with temperature 7. If a small hole (so small that it does not change the distri-
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bution of radiation inside the box) is cut into the wall of the box, radiation will
escape and have a frequency distribution equal to that of the photon gas in the
box. Any radiation that enters the hole from outside will be absorbed by the inte-
rior walls and will never escape. Thus, the hole is a perfect absorber of radiation
and appears black from the outside. The emitted equilibrium radiation is thus
called blackbody radiation.

We can compute the thermodynamic properties of blackbody radiation. Let us
assume that the box containing the blackbody radiation has volume V = L3. The
allowed photon energies, inside the box, are determined by the standing waves
formed by the electromagnetic field in the box. The photon energies are hw; =
hc|k;|, where k; is the wavevector of the ith standing wave. Since photons have
no mass, the gas will have chemical potential, y = 0.

Since there are an infinite number of standing waves allowed, the grand parti-
tion function is

[+
=1

Z,(T)= Z Z exp (—/3 Z nihwi) = H ﬁ . (6.45)
i=1

n,=0  n,=0 i

The grand potential is

Q(T)=-PV = kT Z In(1 — e Pheiy . (6.46)

i=1

Because the chemical potential is zero, the internal energy is simply given by U =
((BoQ(T ))/0B)y . Then

u= i hon(e;) = i _ e (6.47)

i=1 & (ror-1)

where n(w;) = (/"¢ — 1)7! gives the number of photons with frequency w; and
is called the Planck distribution.

We can change the summation to an integration in the following way. The
standing waves have wavevectors, k = (n,m/L)e, + (nyn/L)éy + (n,m/L)e,.
These correspond to allowed frequencies, w, such that

a=ew e () () e (5] (645)

If we imagine a lattice of allowed frequencies, w = ck, the spacing per point in @
space is c¢ir/L. The volume per point is (crr/L)?. The number of points per unit
volume is (L /c)®.

The number, v of allowed frequencies less than some value w is therefore

4 5L\ _ L
37 () =4 (649

1
V==
8
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For each allowed frequency of the electromagnetic field, there are two transverse
modes. Thus, > =2[dv = (L*/7°c®) [ @* dw. The pressure therefore be-
comes

kT [ .
P=_n2c3 szdwln(l—e £n ) . (6.50)
0

If we integrate by parts, we find
h J 34 1 ﬂzké T* 1

= = = =aT*, 6.51
3c3m2 we‘ﬁh‘*’ —1  45c3h3 34 (6:51)
0

where a = 7%k /(15¢*h?) is Stefan’s constant. Similarly, the internal energy takes
the form
3
u=-_L szdwﬁh—w —aVT*. (6.52)

m2c3 efho — 1
0

The energy density (energy per unit volume) in each frequency component of the
blackbody radiation is

w?* ho

—_——. 6.53
w23 (efho — 1) (6.52)

u(w) =
Equation (6.53) is called Planck’s law of radiation.

Exercise 6.3

Consider a noninteracting gas of two-level atoms immersed in, and in equilibrium
with, blackbody radiation at temperature T'. Each atom has ground state energy E;
and excited state energy E,, with N; (N,) atoms in the ground state (excited) state.
At equilibrium, the ratio N, /N, = e7#¢, where ¢ = E, — E,. For an excited atom
in a vacuum, the probability/time of spontaneous emission of a photon is py, =
A. In the presence of the radiation field, the probability/time to absorb a photon
with energy € = hw is p,,, = Bu(w) and the probability/time to emit (stimulated
emission) such a photon is p, = B'u(w), where u(w) = w?/(m*c®)hw /(e — 1)
is Planck’s radiation law. Compute A, B, and B’ when the atoms are in equilibrium
with the radiation field.

Answer: If the atoms are in equilibrium with the radiation field, there should be
no change in the average number of excited and ground state atoms, even though
individual atoms are continually emitting and absorbing photons. The time rate
of change of the number of atoms in the ground state can be written

dN; ,

T AN, + B'u(w)N, — Bu(w)N; =0.
Since N, = N e~#¢ = N,e#", this can be written A = (Bef"® — B')u(w). The
left-hand side does not depend on temperature and, therefore, the right-hand
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side must also be independent of temperature. This requires B = B’. Then B =
72 /(ho®)A and p,, = p = An(e) = A/(eP"® —1). The coefficients A and B
are called Einstein A and B coefficients [50].

6.6
Ideal Quantum Gases

When a collection of indistinguishable particles forms a gas at a temperature low
enough for the thermal wavelength to become larger than the average distance
between particles, the statistics of the particles starts to play a crucial role in de-
termining the thermodynamic behavior of the gas. All known particles obey ei-
ther Bose—Einstein or Fermi—Dirac statistics. At very low temperatures, Bose—
Einstein and Fermi-Dirac gases behave in completely different ways. At high tem-
peratures, all ideal gases, regardless of statistics become more alike in their ther-
modynamic behavior.

For an ideal gas of indistinguishable particles with mass m, the grand partition
function can be written

Z,(T, V) = Te(e Py (6.54)

where H, is the kinetic energy operator and N is the total particle number oper-
ator.

We shall assume that the gas is contained in a “box” with periodic boundary
conditions. We will let the volume of the “box"be V' =L,L L , whereL,, L ,and
L, are the lengths of the sides of the box in the x-, y-, and z-directions, respectively.
The momentum operator for a single particle can be written p; = hIA(l, where

27, 2l 27l,
k= e, +—e,+ e, |, (6.55)

L, L, L,
is the wavevector of the particle, /,, [, and /, are integers each ranging from —oo to
oo, and e,, e, and e, are unit vectors in the x-, y-, and z-directions, respectively.
Let us denote the set of integers, I = (l,,,, ;). The kinetic energy for a single
particle in the state I = (,, [, [,) is given by

272 272 272
g=h_2 4nlx+4ﬂly+4nlz
Tom\ L2 L 2 )

(6.56)

Because we need to keep the full effect of the quantum statistics, it is easiest to
evaluate the trace in Eq. (6.54) in the number representation (see Appendix D). In
the number representation, the Hamiltonian operator can be written

Hy= ) eja) oy, (6.57)
l
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where &;l and @, , respectively, create and annihilate a particle with wavevector k;.
As discussed in Appendix D, these operators act on the number basis states |7;)
such that &Zl|n,> = mm, +1)and a; |n;) = \/n_,|n, —1). The combination
= El;lizkl is just the number operator since El;:lilkl |n;) = \/n_liz;l |n;— 1) =n|n).
The operators &;{l and @, obeyboson or fermion commutation relations (see Ap-

pendix D) depending on the type of particle being considered.
The trace in Eq. (6.54) is taken with respect to a complete set of number ba-

sis states [{7;}) = [M_y _co,—cor -+ 1 1_1,0,00 M0,0,01 11,0,07 -+ » Moo,00,00 )+ LDUS We can
write
z, v =1] ( Z) (g} e PHomN) () (6.58)
l ny
where

H(Z>=n doxex 3Oy ZX“'XKZ , (6.59)

i ny —00,~00,—00 _1,0,0 70,00 1,0,0 00,00,00

Equation (6.58) can be rewritten in the form

z.r,v,w=]] { Y expl—pn(e; - u)]} . (6.60)

1 ny

The difference between Bose—Einstein and Fermi—Dirac particles lies in the num-
bers of particles that can occupy a given energy eigenstate. For a gas of identical
Bose—Einstein particles there is no restriction on the number of particles that can
have a given set of quantum numbers, /,, [, and [,. Therefore, the summation
over n; in Eq. (6.60), for Bose—Einstein particles, must include the possibility that
any number of particles, 7;, ranging from 0 to oo, can occupy the momentum
state, p,. This will be true for each different momentum state. Thus, for a Bose—
Einstein gas the grand partition function is

Zge (T, V) =[] { > expl—pn(e; - u)]} . (6.61)

l n;=0

In Eq. (6.61) we have not explicitly included the possibility that the particles have
(integer) spin or other internal degrees of freedom. However, it is straightforward
to include them.

For a gas of identical Fermi—Dirac particles, the Pauli exclusion principle re-
stricts the number of particles, n;, which can occupy a given state, [, to n; = 0 or
n; = 1. Thus, for a Fermi-Dirac gas the grand partition function becomes

1
Zep(T, V,p) = H { Z exp[—p,, (e, — /4)]} . (6.62)

1 n;=0
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In writing the grand partition function for the Fermi—Dirac gas, we have not ex-
plicitly included the (half-integer) spin or other internal degrees of the freedom
of the particles. We will do this in a later section, where we describe the behavior
of Fermi—Dirac gases in more detail.

6.7
Ideal Bose-Einstein Gas

The grand partition function for a Bose—Einstein ideal gas in Eq. (6.8) implicitly
assumes that the bosons have spin s = 0, so spin degrees of freedom do not have
to be taken into account. We can perform the summation inside the brackets in
Eq. (6.61), using the relation (1 — x)~! = Y>> x". We obtain

n=0
< 1
= —Bm(er—p) | =
S V(BT B V(=) B
l n;=0 l
The grand potential then can be written

Qpe(T, V, ) = —ky TIn Zge (T, V, ) = ky T )" In(1 = e ey . (6.64)
1

The average number of particles in the gas is
005 1
N = — -y_1 _ ) 6.65
(N < o )T,V Z,: Pl Zl:<”’> (6.65)
where (1) is the average number of particles in the state I and is defined

1 z
<nl> T eBlemm-1 T eBey — z (6.66)

The quantity z = ef# is called the fugacity.

At low temperature, an ideal Bose—Einstein gas can undergo a phase transition.
We get our first indication of this by looking at the distribution of particles among
the energy levels. Since the exponential e’ can only have values 1 < e#! < oo, the
fugacity must have values 0 < z < 1. Otherwise, (n;) could become negative, and
that is unphysical since (7,) is the average number of particles in energy level ¢;.
Thus, for a Bose—Einstein gas the chemical potential, 4 = ki T’ In(z), must be neg-
ative or zero. For the state with quantum numbers I = 0, the energy, ¢, = 0, and
the average particle number, (1), is given by

z

— (6.67)

(ng) =

Since lim,_,;(ny) = oo, the state with zero energy can become macroscopically
occupied as z — 1. This is precisely what happens at the phase transition.

Let us now compute some thermodynamic quantities for the Bose—Einstein

gas. We first compute the average particle number (N) = ) ,(n;), where ), =
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DI Z;’;z_w 2/~ It is useful to change the summation ¥, to an integra-
tion. However, from Eq. (6.66) we see that the term in the sum with [, =0,/ , =0,
and /, = 0 can become infinite as z — 1, so it must be removed from the sum
before we do this.

We can change the summation to an integration if we note the energy disper-
sion relation € = p?/(2m) and the relation between momentum and wave vec-
tor p = hk. Then we find )}, — [dl = (V/h?) [dp = [ deg(e) where g(e) =
(m3/? V\/E)/(2ﬂ2h3) is the density of statesand V = L, L L,.

Let us assume that L, > L, > L, so the lowest nonzero energy state is €; 5, =
4m°h* /(2mL2). If we remove the term in the sum with /, = 0,/, = 0,and [, =0,
the average particle number can be written

3/2
(N) = 7 z Y J 1/2(/3+ (6.68)
—Z ex —Z
\/§n2h3 E p(pe
2mL2
or
z 4V 9 z
N) = + d , 6.69
Ny =T+ Ganp J PP B em)] — 2 (6.69)
2mh/L,

where we have made the change of variables € = p?/(2m). Similarly, we can write
the grand potential in the form

4nVky T
Qge(T, V,p) = kgTIn(1 — 2) + “onhy
X J p*dpn{l - zexp[-Bp*/2m)]}, (6.70)
2nh/L,

where we again have separated out the point at the origin. Note that
2mh/L,
Llim J prdpln{l - zexp[-Bp*/(2m)]} =0, (6.71)
0

so the lower limits on the integration can be set to zero in Egs. (6.68)—(6.70).
It is useful to introduce dimensionless variables. If we let x2 = Bp?/(2m), and

note that Q = —PV, the pressure of the Bose—Einstein gas can be written,
Opp kg T kg T
P=—7 =—71n(1—z)+gg5/2(z), (672)

where A, = (2rh?/(mky T ))/? is the thermal wavelength and

[se]

85(2) = — sz dxIn(1 — ze‘xz) = Z ﬁ . (6.73)
0

a=1

=
VT
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In Eq. (6.73), the summation is obtained by expanding the integrand in powers of
z and integrating each term. The thermal wavelength A, is the deBroglie wave-
length of a quantum particle with kinetic energy kT, and it is a measure of the
spread of a wave function of the particles. When A, becomes of the same order
of, or greater than, the average interparticle spacing, quantum effects begin to
dominate.

Exercise 6.4

An ideal gas of bosons of mass m is confined to a harmonic potential (harmon-
ic trap) which gives each boson a potential energy V(r) = 1/2m(w7x* + 0} y* +
w3z%). (a) Compute the density of states. (b) Write an expression for the average
particle number.

Answer: The energy levels available to each boson can be written E; ; ; =
h(lyw, + 0, + l303) + Eg, where 0 < [, < oo (j=1,2,3) and Ey = h/2(w; + @, +
®3) is the zero point energy. Assume that a boson has energy E and lete = E — E
be the difference between that energy and the zero-point energy and lete; = hl;w;
(j=1,2,3). The states with energy ¢ lie in the plane ¢ = ¢; + ¢, + €;. The number of
states 77(¢) with energy e is 7(e) = [; de, [, " dey [y " dey = €3/(6h3w, w,w3).
The density of states is g(¢) = dy(e)/de = €2 /2N w; 0,03).

The average particle number can be written (N) = )", {z/[exp(BE) — z]}. When
u =Eyand [, =1, =[5 = 0, this can become infinite. Therefore, we must remove

the term with /; = [, = [; = 0. We then obtain

[oe]

z 1 5 z
N) = + d .
(N efEo — z 2h3w1w2w3J e (exp[ﬁ(e + Ey)] — z)
0

We also obtain an equation for the average particle density,

(N) 1 z 1
<y[> = = —— + —g3/2(Z) , (674)
14 V1i-z A3T
where
@ =23g = 2 [ 2 dn—Z —i z 6.75)
83/2(2) = 2~ 85/2(2) = N etz g :
0

The quantities gz /2(2) and g5 /2(2), which appear in Egs. (6.72) and (6.74), are well-
behaved functions of z. We plot them in Figure 6.6a. Both g5 ,(z) and g;,(2) re-
main bounded and approach finite values,

g5/2(1)=C<§)z1.34~2... and g3/2(1)=(<§>z2.612..., (6.76)

as z — 1, where {(5/2) and ((3/2) are Riemann zeta functions.
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Finally, let us examine the functions —(1/V)In(1 — z) and (1/V)[z/(1 — 2)]
which appear in Egs. (6.72) and (6.74). In Eq. (6.74), we fix (n) and T and let
V — o and z — 1. In the neighborhood of z = 1, we will write z = 1 — 1/(n, V),
where 7, is a constant, so z — 1 in a systematic manner as V' — oo. Then it is easy

to see that
m (1 ﬂ) =ny. (6.77)

1 i
Jim |- In@-2(V)] =0 and lim { 33—

Thus, in the limit V' — oo, we can neglect the contribution to pressure due to the
term —(1/V)In(1 — z), but we must retain the contribution to the average particle
density due to the term (1/V)[z/(1 — z)]. We next examine the behavior of the
function (1/V)[z/(1 — z)]. In Figure 6.6b, we plot (1/V)[z/(1 — z)], as a function
of z for increasing values of the volume, V. Note that for any given value V, it
always becomes infinite as z — 1. The larger the volume, the closer z must be to
z = 1 before the term (1/V)[z/(1 — z)] becomes significant.

Let us now take the thermodynamic limit in Egs. (6.72) and (6.74). We let V —
oo and (N) — oo so that (#) = (N)/V remains finite. The pressure then takes the
form

kT .
5 gp) if z<1,
T

P= 6.78
flg (1) if z=1. (6.78)
T
The average particle density takes the form
1 .
N ~583/2(2) if z<1,
() = % = (6.79)

n0+ﬁg3/2(1) if z=1.

A somewhat exaggerated plot of (1)1, nyA3, and g, /2(2) as a function of z is
shown in Figure 6.7a. The plot is actually done at large but finite volume, so the
growth of 7,13, can be seen more clearly. The main contribution to the growth

N

2.6124

1.342-

Figure 6.6 (a) Plots of gs/z(z) and 93/2(2) versus z. (b) Plots of 1/V[z/(1 — z)] versus z for (A)
V =10,(B) V =100, (C) V = 1000.
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Figure 6.7 (a) Plots of (n)A3, g3/,(2), and noA3 versus z. (The contribution of ngA3 for z < 1 has
been exaggerated by taking V = 100 rather than V = .) (b) A plot of the order parameter,
n= no/(n), versus temperature, T, for Bose-Einstein condensation.)

of the quantity (n)A}. comes from g3 /2(2) until z approaches z = 1. Then as
z = 1, g5)(2) approaches a constant and nyA’. determines the further growth of
(n)A3T. This is Bose—Einstein condensation. What we are seeing as z — 1 is the
macroscopic condensation of particles into lowest energy state of the gas. The
number density, 1, of particles in the zero energy state, &,, becomes macroscopic
in size.

The high-temperature behavior of the Bose—Einstein gas is readily obtained. At
high temperature, z — 0 and we only need to keep the first few terms in expansions
of g5/5(2), €3>(2), and g; /(2) in powers of z. From Eq. (6.79) we obtain the average
density,

(N) 1 1
(n)=7=g<z+ﬁzz+...> (6.80)

and from Eq. (6.78) the pressure is

P=kB—T(

IE Z+Lzz+...>. (6.81)
T

25/2

We can revert the series in Eq. (6.80), and write z as a function of (»). If we sub-
stitute this series into Eq. (6.81), we obtain the virial expansion for an ideal boson
gas. If we keep only the lowest-order term in z in Egs. (6.80) and (6.81), we obtain
the equation of state for an ideal classical gas, P = (n)ky T, and the specific heat
¢, = 3(n)kg/2. Thus, at high temperature the Bose—Einstein gas behaves like an
ideal classical gas.

6.7.1
Bose-Einstein Condensation

Bose—Einstein condensation begins to occur when the fugacity, z — 1 (the chem-
ical potential (T, (n)) = kg T In(z) — 0) so the temperature and average particle
number satisfy the condition

(M)A3. = g3,(1) = 2.612 (6.82)
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(@ T

Figure 6.8 (a) A plot of the coexistence curve  per unit volume for a Bose-Einstein ideal gas
(dashed line) and some isotherms in the P-v  as a function of the temperature. The tem-
plane for the phase transition in a Bose- perature, T, is the critical temperature for the
Einstein gas. (b) A plot of the heat capacity onset of Bose—Einstein condensation.

(cf. Eq. (6.79)). Equation (6.82) enables us to write the critical particle density, (n),
(the particle density at which condensation occurs), as a function of temperature:

1 &32(D)

<n>c = <V>C - /137:

ko T\ /?
): > (6.83)

= 2.612
< 2mh?

where (v), is the critical volume per particle. The critical temperature, T, (the
temperature at which condensation occurs), as a function of particle density is
given by

33 _ &p) or T — 27h? (n) 2/3~ 27h? (ny \**
o™ (n) < \mky ) \gsp(1))  ~\mky ) \2.612)

(6.84)

The order parameter, #, for Bose—Einstein condensation is the fraction of particles
in the condensed phase, 7 = n,/(n). From Egs. (6.79) and (6.84), we can write

(1) /13 3/2
,7=ﬂ=1_g_3/23=1_%=1_<1> . (6.85)
(n) (m)A3, A3 T

C

A plot of the order parameter as a function of temperature is given in Figure 6.7b.

Equation (6.82) also determines the shape of the coexistence curve between
the “normal” phase and the “condensed” phase of the gas. From Eq. (6.78), we
see that for particle densities, (n) > (n),, the pressure becomes independent of
particle density. If we now use Eq. (6.83), we can write the critical pressure, P, as
a function of the critical volume per particle, (v):

kg (D)
= m(gg/z(l))s/s <V>S/3 .

A plot of the coexistence curve, Eq. (6.86), together with some isotherms in the
P-v plane, is given in Figure 6.8a. In the region under the dashed curve, both
condensed particles and noncondensed particles can coexist.

Another quantity of great interest in the neighborhood of a phase transition is
the heat capacity. From Table 3.5, the entropy per unit volume is s = (dS/9V),, =

(6.86)
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(0P/0T)y,, (note that s = (0S/0V)y,, only if the gas is composed of a single type
of particle). Therefore, from (6.78) we can compute the entropy and we obtain

kg2 %gs0(2) — kg(n)lnz if z<1,
s=(ap) AP ’ (6.87)
Viu

oT kBgﬁgS/z(l) if z=1
(we have made use of Eq. (6.79)). The Bose—Einstein gas clearly obeys the third
law of thermodynamics. In the limit 7 — 0K, the entropy approaches zero with
temperature dependence, T%/2. We can also compute the heat capacity/volume,
¢, = T(0s/0T),.. Note that, when computing c,, we hold # fixed and not y. The
computation of ¢, requires the following quantity,

<0ﬂ> __ 3 &D
or ), 2T g1 5(2)

(6.88)

Equation (6.88) is obtained by differentiating (6.79) with respect to T holding (#)
fixed. The computation of ¢, is then straightforward. We find

282E e s o,
* @ (6.89)

( ds ) ks 3 85/0(2) = (M)
Cn = = .
" ksz—sﬁg;,/z(l)» if z=1.

oT

In Figure 6.8b, we plot ¢, for the Bose—Einstein gas. The location of the criti-
cal point is clear in the plot. In the high-temperature limit, the heat capacity ap-
proaches a constant value as we would expect for a classical ideal gas.

6.7.2
Experimental Observation of Bose-Einstein Condensation

The second-order phase transition in liquid *He,, from the normal state (Hel) to
the superfluid state (HelI), is thought to be related to Bose—Einstein condensation.
However, liquid helium is very dense and strongly interacting and therefore is very
different from an ideal gas. As a consequence, there has been no direct proof that
the superfuid transition in *He, is, indeed, a form of Bose—Einstein condensation.

However, true Bose—Einstein condensation was recently observed in dilute gas-
es of alkali atoms. It was first observed in a gas of rubidium atoms (¥’Rbg;) in
1995 [6] at a temperature of T = 1.7 X 10~7 K. A few months later, Bose—Einstein
condensation in a gas of sodium atoms (**Na,;) [37] at a temperature of T =
2 x 107° K was reported. In the rubidium experiment, at the lowest temperatures
achieved, about 2000 atoms formed the condensate. In the sodium experiment,
which used slightly different techniques for trapping and cooling the gas, about
x10° atoms remained in the condensate (a condensate with 2 x 10° 8 Rb,, atoms
was later obtained by a different group [80]). In 2001, the Nobel prize was award-
ed to Wieman and Cornell [6] for the rubidium experiment and Ketterle [37]
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for the sodium experiment (and for their subsequent studies of the properties of
these condensates). Since these early experiments, Bose—Einstein condensation
has been observed in ’Li; [20] and 'H; [62], and in a number of different labora-
tories around the world.

Neutral alkali atoms have equal numbers of electrons and protons (both spin-
1/2 particles), so their statistics is determined by the number of neutrons (a spin-
1/2 particle) in their nucleus. If an atom has an even (odd) number of neutrons, it
is a boson (fermion). The alkali atoms, 8’ Rb,, and 2*Na;;, have an odd number of
protons and an even number of neutrons, making them bosons. For alkali atoms,
all but one of the electrons occupy closed shells. The remaining electron is in an s-
orbital. For both 8 Rb,, and 23Na, ;, the interaction between the atoms is repulsive.
However, in these experiments the temperature is very low and the gas is dilute
so the thermal wavelength is greater than the average interparticle spacing, and
much greater than the range of the interaction. Thus, the atomic interactions play
a very small role in the condensation process.

In both of the experiments [6] and [37], the gas was confined in an MOT
(a magneto-optical trap), which is composed of a spatially varying magnetic field
and laser radiation. Such devices can both cool and trap the gas [166]. The optical
trap is formed with a magnetic field which interacts with the magnetic moment
of the atoms and effectively confines the gas in a three-dimensional harmonic
potential well. The critical temperature for Bose—Einstein condensation can be
estimated for such systems. From Exercise 6.3, the critical particle number for
Bose—Einstein condensation in a harmonic trap is

r BT3@3
(N, = 1 J ) 1 _ kgTCB3)

<7 op3
2P0, 0w, 0, )

= , 6.90
exp(fe) —1 hPw,w,w, (6.50)

where {(3) = 1.202 is the Riemann zeta function and w;, w,, w5 are the frequen-
cies of the harmonic trap (see Exercise 6.3). We can also write the critical temper-
ature T in terms of the number of particles in the harmonic trap,

T — <(N)w1w2w3>1/3 h

=, 91
1.202 Ky (691)

(In Exercise 6.4, we estimate the condensation temperature of sodium for the ex-
periment reported in [37].)

Exercise 6.5

Compute the Bose-Einstein condensation temperature for a gas of N = 2 x 10°
sodium atoms in an asymmetric harmonic trap with oscillation frequencies f; =
235, f, =410, and f, = 745 Hz.

Answer: The condensation temperature is given by T, = ((N)w,w,ws3)/
1.202)!/3n/ky, where w; = 27 f;. Plugging in h = 1.0546 X 10*]s, ky =
1.3807 X 10722 J /K, (N) = 2 X 10°%, w; = 27(235) rad/s, w, = 27m(410) rad/s, and
w3 = 27(745) rad /s, we obtain T, = 2.0 X 107° K [37].
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@ | (b)

Figure 6.9 Ballistic motion of rubidium atoms (T =169 nKand N = 9.2 X 10° condensed par-
after they have been released from a harmon- ticles). In (a) the cloud is thermal and in (b) the

ic trap for (a) temperature above condensa- cloud has the shape of the ground state of the
tion (T = 755nKand N = 1.1 x 107 parti- trap and shows little expansion (Figures from
cles); (b) temperature below condensation D.J. Heinzen).

Bose—Einstein condensation for atoms in harmonic traps is observed by perform-
ing the experiment several times, each at a different final temperature. In a giv-
en experiment, once the final temperature is reached, the trap magnetic field is
turned off and the subsequent ballistic motion of the atoms is observed. If the fi-
nal temperature is above the condensation temperature, the energy of the atoms
has a thermal distribution and the cloud of atoms expands in a thermal manner
(see Figure 6.9a). If the temperature is below the condensation temperature, most
atoms will be in the quantum ground state of the harmonic trap. They will hard-
ly move when the magnetic field is turned off and they will form an asymmetric
cloud (see Figure 6.9b), reflecting the fact that the ground state of a spatially asym-
metric harmonic potential is spatially asymmetric.

6.8
Bogoliubov Mean Field Theory

Bose-Einstein condensates created in the laboratory are not ideal gases. They are
gases of interacting bosons with very low temperature and density. A mean field
theory that accounts for the interactions between bosons, and describes many
properties of real BECs, was developed by Bogoliubov [17, 73, 167, 168]. As a first
step in deriving the Bogoliubov mean field theory, we must add an interaction
term to the kinetic energy in Eq. (6.57). Then the Hamiltonian, in the number
representation, takes the form (see Appendix D)

—q, a4 + —
2m kKT oy

A n v 1 N At oA a
H=Z i Z (kl,k2|V|k3,k4)aZIa;(2ak4ak3, (6.92)
k Ky ky ks kg

where V is the volume of the BEC, k; are the wavevectors of the particles, and
V = V(r) is the interaction potential energy between bosons (r is the relative dis-
placement). The operator &;( (ay) creates (annihilates) a particle with momentum
hk. The particle creation and annihilation operators satisfy the boson commuta-
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tion relations [&,T(l, &;2] = Ok, k,» where 8, ; is the product of three Kronecker
delta functions, one for each component of the momentum.

At very low temperatures, the particles have very little energy so collisions be-
tween particles can be described solely in terms of the scattering length a of the
collision process. It is therefore possible to replace the detailed potential ener-
gy between particles by the “contact” potential energy V(r) = gd(r), where g =
47rh*a/m (see Appendix E). Then the Hamiltonian takes the form

2
- Zh S il + 25;/ Y Sk, B g g (6.93)
Ky Ky ks Ky
The summations run over all single-particle states for both positive and negative
components of k;.

At very low temperature, a macroscopic number of particles N, will be con-
densed into the lowest energy state k = 0. However, since the particles can in-
teract, particles can enter and leave the condensate via interactions, so even at
T = 0K not all particles will have wavevector k = 0. If AN = N — N, is the num-
ber of excited particles, then typically AN/N ~ 0.01 at 7 = 0K. Since there are
a macroscopic number of particles in the ground state, we can approximate the

operators &, and &(T) by the number /N, and neglect their operator character.
T
0=
&, = ay for k # 0. Then, keeping terms to sec-

We now write the particle creation and annihilation operators in the form &
&y = /N, fork Oandd’ —ak,
ond order ina and ay (and requiring momentum conservation), the Bogoliubov
mean field Hamlltoman can be written the form
gN +1 S sttt A A

v 2k [(ek+v) (a ay +a_ka_k> +A (aka_k+a_kak)] ,
#0

H=
(6.94)

where €, = h?k*/(2m), v = 2gN,/V, and A = gN,;/ V. Note that A is the order
parameter for the condensed phase. The particle number operator can be written
N=Ny+3, 7&0&2& « The quantities v and A depend on temperature and density
of the gas. However, in the limit 7 — 0K, this dependence can be neglected, as
a first approximation. However, for higher temperatures, this dependence cannot
be neglected (we discuss this further below).

Let us now consider the thermodynamic properties of the gas. Using Bogoli-
ubov mean field theory, the grand potential can be written

0O =—-kgTln [Tr (e_ﬁ(KOJriO)] (6.95)
where K, = gN? /(2V) — uN, and

- N A (i A

K= Zk: [(ek +v—u) a,ay + 3 (a;aik + a_kak)] . (6.96)

We can “diagonalize” K using the Bogoliubov transformation

= (ukl;:( - VkZ)—k) and flk = (ngk - ngik) » (697)
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where 13;2 and b « are bogolon creation and annihilation operators, respectively (bo-
golons are collective excitations in the BEC). The bogolon creation and annihila-
tion operators satisfy the boson commutation relations [l;k, ZJ,T(] = 1, and this re-
quirement leads to the condition that u; — v; = 1. The Bogoliubov transformation

diagonalizes K, so that
. PO |
K=Y Ebib+ 52 [Ec = (e +v—u)] (6.98)
k#0 k#0

if u;, vi, and the bogolon excitation energy E, are defined

€ +v— €, +v—
Mk:L k—‘u+L v—L k—ﬂ_l (6.99)

V2 E, NG E,

and

E = \/(ek+v—;4)2—A2 (6.100)

(derivation of Ey, uy, v, is left as a homework problem).

A Bose—Einstein condensate has no gap in its energy spectrum. This differs
from a superconductor, which does have a gap due to the binding energy of the
bound electron pairs that must form in order for condensation to take place. As
was pointed out by Hugenholtz and Pines [86], the requirement for a gapless spec-
trum imposes a condition on the chemical potential, namely 4 = v — A. The bo-
golon excitation energy then takes the form

E =1/ (e +4)" - 42 (6.101)
and the parameters u; and v, are given by.

€+ A4 €+ A
=L ETT ) and v = /&2
V2V B V2V Bk
Note that the bogolon spectrum is phonon-like (E; ~ k) at very low energies and
particle-like (E, ~ k2) at higher energies.

The grand potential can now be written

0 ~1. (6.102)

Q= —kgTln [Tr (e_ﬁKo)] — kT In [Tr (e‘ﬁzk#oEkE;Lkﬂ

—kyTln [Tr (e—gzk#o[fk—(fk“‘))] )] (6.103)
or
gNg _ 1
Q=—2—v0+kBT21n(l—e ﬁEk)+§ZEk—(ek+A). (6.104)

k#0 k0
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The last term in Eq. (6.104), which contributes to the ground state energy, has an
ultra-violet divergence. However, the divergence is a consequence of the approx-
imations made in deriving the simple mean field Hamiltonian in Eq. (6.94). This
divergence can be removed by keeping additional contributions and then gives a
negligible contribution to the properties of the BEC (see [73] for further discus-
sion), so we neglect this term in the subsequent discussion.

We can now rewrite the thermodynamic expressions using these approxima-
tions. The average particle number takes the form

€k+A 1

(N) = N, + (6.105)
0 I(Z#) Ek ePEr — 1
and the entropy is given by
00 B 1
s=(5%) =-kpY In(l -+ Y X . 6.106
0T ) v ng) ( ) I;)Teﬁfk—l ( )
The pressure is given by P = —% so that
gN; kT
_2>0_2B7 — e PE
P= - D In(1-eFE) (6.107)

k#0

The heat capacity can be obtained from the expression for the entropy. We obtain

aS 1 ePEx
Cyn = (—) - £ . (6.108)
V,N oT VN kBT2]§) k (eﬁEk _ 1)2

Let us examine the behavior of these quantities at ultra-low temperature. We
first introduce dimensionless units. We write energy in units of E, = kT, =
h2/(2ma?), which is the energy of a particle with wavelength of order of the s-
wave scattering length. Ultra-low energy means that most particles have thermal
energy kg T much lower than E,. This requires temperatures 7' < T,. In terms of
dimensionless units, the bogolon energy is

212 2 2
Ek=¢(hk IO SO N e (6109
m ma

where k = ka is a dimensionless measure of the wavelength of the particles (rel-
ative to the scattering length), and d = 8a3N,,/V is a dimensionless measure of
the density of the particles. Both x and d are small for an ultra-low temperature
dilute gas. If we expand the bogolon energy for k < d, we obtain

3 3
Ek=kBTa(\/2dK+ K +...)=/<BTa\/2d<K+:—d+...> (6.110)

2v/2d

For Rubidium, some typical numbers are m = 87 u = 1.44 X 10~ kg, a = 1054, =
5.0 107 m, T =7.25 X 10~° K (from experiment), kg 7 =1.0 X 1073} ], d = 1.0 X
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107>, and kT, = 7% /(2ma?®) = 1.44 x 10739, Note that the temperature quoted
above for the experiment does not quite put us in the ultra-low temperature limit
in the sense that T < T,.

We now compute various thermodynamic quantities in the ultra-low tempera-
ture limit 7 < T,. First consider the heat capacity. Assuming a very large volume
for the gas, we can change the summation to an integration and write

[oe]

1 2 eﬁEk 1 |4 J 22 eﬁEk
Cyy= E = 47 dkkPE? ———— .
NV fey T2 Zg K(ePEx —1)2 — kyT?  (27)3 ) k (eBEx — 1)

(6.111)

For T' < T,, we make the approximation E; = k3 T, \/2dx. Then the heat capacity
takes the form

[se]

c AT Vv 2dk2B Ta? 4 eTa\/ﬂK/T
NV ke T2 Q) a3 J (eTaV2/T _ 1)2

| 7\’
k22— (=) . 6.112
’ \/51533d3/2<Ta> ©112

Thus, the heat capacity at ultra-low temperature goes to zero as T° when T — 0K,
which is the same as a gas of photons or phonons. The pressure can be written

No\> kT
P=‘g<—0> + =2 4—ﬂJdKKzln(l—e_Ta‘/EK/T)

2\ V (2m)® a3
N\’ kg > T*
_¢& <_0> S (6.113)
2\V 189+/2a3 T3d3/2

so at T = 0K there is a residual pressure proportional to the scattering length.

The Bogoliubov mean field theory, derived here, gives good agreement with ex-
periment for ultra-low temperature BECs. A generalization of the theory, called
the HFB-Popov approximation (HFB is Hartree—Fock Bogoliubov) [43, 73] al-
lows for the self-consistent variation of the mean fields v and A with tempera-
ture and density. Predictions of the HFB-Popov approximation have been shown
to describe well the results of experiment for the temperature range 0 < 7/7T, <
0.6 K [43, 78], where T, is the critical temperature of the BEC.

6.9
Ideal Fermi-Dirac Gas

We now examine the thermodynamic behavior of a gas of indistinguishable, non-
interacting, spin s = 1/2 fermions with mass m. For simplicity, we shall assume
the gas is in a cubic boxso L, = L, = L, = L. In order to include the effects of
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spin, we must generalize the expression for the grand partition function given in
Eq. (6.62). Spin 1/2 particles can exist in two spin states, s, = +//2. Therefore,
each energy level can be occupied with up to two particles (one particle for each
of the two spin states) and not violate the Pauli exclusion principle. We will let 7; ,
denote the number of particles with quantum numbers I = (,, /,, /,) and spin o,
where 0 =1 (]) fors, = +h/2(—n/2). The grand partition function takes the form

N 1 1
Zep(T, V, ) = H( Z e By e Z e—ﬁ"m(e:—ﬂ))

=0 \n,=0 ny =0

— H(l + e Pl=my2 (6.114)
l

The power of 2 is due to the fact that there are two possible spin states for each set
of quantum numbers, I. If we are dealing with a gas of spin-s fermions, then there
will be g = 2s + 1 spin states for each value of I and the grand partition function
takes the form

Zep(T, V, ) = [ + e Py (6.115)
l

The grand potential is then given by
Qpp(T, Vo) = —ky TIn Zg (T, V, ) = —ky Tg Z In(1 + e Py |
1
(6.116)

The average number of particles in the Fermi—Dirac gas is

— a()FD _
W =s < op >T,V a Z eBler~ m 1 Z<”z> (6.117)

where (n;) is the average number of particles with quantum numbers / and is
defined

(n

g gz

= = . 11
0 efler—m 41 ePa 4z (6.118)

The quantity z = ef# is the fugacity. For Fermi—Dirac particles, the fugacity can
take on the entire range of values 0 < z < oo, and the average particle number can
take on a range of value 0 < (n;) < g. In Figure 6.10a, we plot (#,) as a function
of g; at low temperature (solid line) and at 7' = 0K (dashed line). We see that
at low temperature the particles completely fill all the states with lowest energy.
Only those states at higher energy are partly occupied. At zero temperature, all
states below a cutoff energy, ; = p,, are occupied (¢ is called the Fermi energy).

The momentum, p; = 1/2me;, is called the Fermi momentum. The distribution of
particles in momentum space at low temperature is like a “sea” with all the lower
states filled with particles. Only particles in states near the “top” of the “sea” can
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Figure 6.10 (a) Plots of the average occupation number, (n;), as a function of energy, ¢;,
at very low temperature. The solid line is a plot for T > 0K, and the dashed line is a plot for
T = 0K. u is the chemical potential. (b) Plots of fs/z(z) and f3/2(z) Versus z.

change their state. For this reason this distribution of particles at low temperatures
is called the Fermi sea.

Let us now compute the thermodynamic properties of the Fermi—Dirac gas. For
large enough volume, V, we can change the summation, ), to an integration,

[Se]

4V 2
N — dp. 6.119
Z;, Gy J p’dp (6.119)
0
The grand potential then takes the form
Ak, TV [ .

Qup(T, Vi) = —PV = — 8~ 7 J p2dpln(l + zefP*/my - (6.120)

(27h)3

0

Similarly, the average particle number can be written

4mgV z
N) = 2dp | ——— ) . 6.121
(N) (2h)3 JP p <eﬁp2/(ZM) + z) ( )
0

Let us now make the change of variables, x>=p p?/(2m), in Egs. (6.120) and (6.121).
The pressure of the Fermi—Dirac gas takes the form

'QFD _ ng
V

P=- S fon@: (6.122)

where A is the thermal wavelength A = /1/y/2nmky T (see Eq. (5.25)) and the
function f;,(2) is defined as

fo(2@) = =N J dxln(l +ze™) = Y (-1)**! azs—jz . (6.123)

7'[ a=1

The average particle density can be written

(N)

() = 2

g
v /T%fs/z(z) ) (6.124)
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Figure 6.11 (a) Plots of the pressure of a Fer-  for each gas is shown. The temperatures of
mi-Dirac (FD), a Bose-Einstein (BE), and a clas- the three isotherms are the same. (b) Plots of
sical (Cl) ideal gas as a function of volume (n)}\i versus Bu for a Bose-Einstein (BE) and
per particle assuming the particles have the Fermi-Dirac (FD) gas.

same mass and neglecting spin. One isotherm

where

[oe]

x2d Z )“+l 2 (6.125)

e -1

d
S3pp(2) = Z&fs/z(z)

o%g

4
NG
In Figure 6.10b, we plot f; () and f3,(z) as a function of z.

It is interesting to compare the pressure of an ideal Fermi gas with that of an ide-
al classical gas and an ideal Bose—Einstein gas. In Figure 6.11a, we plot Pversus the
average volume per particle, v = (#n)~! and show one isotherm of the same tem-
perature for each gas. For the Fermi—Dirac gas we set g = 1 so we are comparing
only the effect of statistics. The pressure of the Bose—Einstein gas is dramatical-
ly lower than the classical or Fermi—Dirac gas for small v. This happens because
in a Bose—Einstein gas at low v (below the critical volume per particle) a macro-
scopic number of particles condense into the zero momentum state and can no
longer contribute to the pressure. Conversely, the pressure of the Fermi—Dirac gas
always lies a little above that of the classical gas, because the Fermi—Dirac gas will
contain more particles at higher momentum (due to the Pauli exclusion principle)
and will have a higher pressure than the classical gas.

It is useful to examine the behavior of the quantity, (1)1, as a function of the
chemical potential, . In Figure 6.11b, we plot (n)A3T versus the product, Sy, for
both a Fermi—Dirac and Bose—Einstein ideal gas. We see that the chemical poten-
tial of the Bose—Einstein gas remains negative and that the dominant growth in
(n)A3. occurs as 4 — 0. For the Fermi—Dirac gas the product, Sy, can be positive
or negative and the dominant growth in (#)A3. occurs when Sy is positive. The

chemical potential for a Fermi—Dirac gas approaches a positive finite constant as
T - 0K
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We can revert the series expansion of (n)A /g (see Egs. (6.124) and (6.125))
and obtain a series expansion for the fugacity z in terms of (n)A /g

23 1 (BN 1 1 (Y
== g”m( gT> He-me)l )+

(6.126)

The coefficients of various powers of the quantity, (n)xl /g, will always be pos-
itive. Thus, as T — o0, z — 0 and the product, Sy, must be large and negative.
At high temperature, where 5 — 0, the chemical potential 4 — —oo. For low tem-
peratures, z — oo and Sy — oo. Since § — oo, in the limit 7" — 0 the chemical
potential can remain finite and indeed it does.

Let us now compute the thermodynamic properties of the ideal Fermi—Dirac
gas at low temperatures. We first examine the behavior of f;/,(z), which we write
in the form

[oo]

4

Z) = — dx d
f3/2( ) T[J exz—v+1 ﬂJ yey V41
0 0

S J dyy?2— (6.127)
—v)2

3\/; ) 1 +er)

We have let y = x? and v = Bu in the second integral and we have integrated by
parts in the last integral. The function A(y, v) = e~ /(1 +e~")?, which appears in
the last integral, is essentially the derivative of the occupation number (7,;), and at
low temperature is sharply peaked about y = v = S where the strongest variation
in (n;) occurs (cf. Figure 6.12a). Thus, to perform the integration in Eq. (6.127),
we may expand y%/2 in a Taylor series about y = v. If we then let £ = (y — v), we
can write f3,(2) as

[se]

4 el 3 3
faa(2) = Jdt ( 32 4 2y12p 4 27122 4 ) . (6.128)
3/ (1 + et)? 2 8

The contribution from the lower limit in the integral will be of order e ##. At low
temperatures we can neglect it and extend the lower limit to —co so that

[oo]

__4 e 32,3 12, , 3 _1/2,2
S32(2) = Bﬁ J dt(1+et)2 ( + 3" t+ 3" t +> . (6.129)

To evaluate Eq. (6.129), we must evaluate integrals of the form

[oo]

o= [ qpte 6.130
n= tm. ( )

—00
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Figure 6.12 (a) A plot of A(y,v) = e~V /(1 +¢e7¥)? versus y. (b) A plot of the chemical potential
of a Fermi-Dirac gas as a function of temperature for fixed particle density.

Theresultis I, =0fornodd, I, =1,and I, = (n — 1)!(2n)(1 = 21="){(n) for n even,
where ((#) is a Riemann zeta function ({(2) = 77%/6, {(4) = */90, {(6) = 1° /945),
etc.

We can use the above results to obtain an expansion for the quantity (n>/13T /g
which is valid at low temperature. From Egs. (6.124), (6.129) and (6.130), we find

AS
W?T _ # [(ﬁ”)z/z_,_%z(ﬁﬂ)—lﬂ_,_...] , (6.131)
T

If we take the limit 7 — 0K in (6.131), we find the following density-dependent
expression for the chemical potential

) ) 2/3
ﬂ(T:O):ﬂOE$F=2h—m<6ﬂT<n>> . (6.132)
The chemical potential, s, = €, at T = 0K is also called the Fermi energy, be-
cause at 7' = 0K it is the maximum energy that a particle in the gas can have (cf.
Figures 6.10a and 6.12b). At very low temperatures, only particles within a dis-
tance, kz T, of the Fermi surface can participate in physical processes in the gas,
because they can change their momentum state. Particles lower down in the Fer-
mi sea have no empty momentum states available for them to jump to and do not
contribute to changes in the thermodynamic properties. Equation (6.131) may be
reverted to find the chemical potential a a function of temperature and density.
The result is

w2 (kg T 2
— 1— — o 6.133
#=ce l 12 ( Ep ) * ( )

Thus, the chemical potential approaches a finite constant as 7 — 0 K.
The internal energy, U = (H) = ), &;1;, can be computed in a similar manner.
At low temperature, it is given by

3 5772 kBT)2
U=2(N)e |1+ <— 4+ (6.134)
50 °F l 12 \ &

From Eq. (6.134) we obtain the heat capacity of the ideal Fermi—Dirac gas in the
limit 7' — 0 K. We find
aU) _ e kT

c =( — 6.135
V= \oT v 2 g ( )
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Thus, the heat capacity of an ideal Fermi—Dirac gas depends linearly on the tem-
perature at very low temperatures and goes to zero at 7 = 0 K in accordance with
the third law. It is important to note, however, that particles in an ideal Fermi—
Dirac gas can have a large zero-point momentum and, therefore, a large pressure
and energy even at 7' = 0 K. This is a result of the Pauli exclusion principle.

Exercise 6.6

The isotope 3He, is a fermion with spin s = 1/2. It remains a liquid over a wide
range of pressures down to 7 = 0 K. Consider one mole of liquid *He,. At very
low temperature its heat capacity has the same temperature dependence as that of
an ideal Fermi gas and can be written Cy, y, & (2.8 K" )N k3T = (23]/K)T. Find
the temperature at which the entropy associated with the spins becomes greater
than the entropy associated with the thermal properties of the gas.

Answer: The heat capacity associated with thermal motion can be written
Cyn =T (0S/0T)y 5 50 Sy, = (2.8 K'H)N, kg T. The entropy of N, spin 1/2 par-
ticlesis S, = kg N In 2. These entropies become equal when (2.8 K DN kT =
kgNIn2 so T = 0.24 K. At this temperature, the slope of the coexistence curve
changes sign.

It is a simple matter to show that at high temperatures, all quantities approach
values expected for an ideal classical gas. The procedure for deriving the clas-
sical ideal gas equation of state is the same as that for an ideal boson gas (see
Section 6.7).

6.10
Magnetic Susceptibility of an Ideal Fermi Gas

The magnetic susceptibility of matter is largely determined by its electron dy-
namics. When a magnetic field is applied to a molecule or to condensed matter,
the magnetic field inside the material is either enhanced (paramagnetic materi-
al) or reduced (diamagnetic material). Systems whose electron states have un-
paired spins are generally paramagnetic. Systems with paired electron spin states
are generally diamagnetic. The origins of these two types of magnetic response
are very different. In paramagnetic systems, electron states have a net magnetic
moment and this magnetic moment interacts with the magnetic field to create an
enhanced magnetization. When electron spins are paired, there is no net magnet-
ic moment and it is the orbital motion of the electrons, induced by the Lorentz
force, that gives rise to diamagnetic effects. The origins of paramagnetism and
diamagnetism can be demonstrated fairly easily for an ideal electron gas. Below
we consider these two effects separately.



6.10 Magnetic Susceptibility of an Ideal Fermi Gas

6.10.1
Paramagnetism

Let us consider an ideal electron gas in the presence of a magnetic flux density B.
The grand partition function can be written

Zep = [T [ In [t + exp(=Be, = ppo,B- )] (6.136)

£=00,=+1

where the Bohr magneton, y = el /(2m), is the magnetic moment of the electron.
The grand potential can be written

Qpp =~k TIn[Zgp] = kg T Y. Y In (142 e

1=00,=x1
= % (fs2E*) + f50z")) (6.137)
where z&D = ef#e*#s5, The average particle number is
== <%> s % (fa2E) + fop2™D) (6.138)
and the magnetization is’ |
(M) = - (%)wﬂ = % (f322D) = f3,(z7D)) . (6.139)

Thus, there will be a net magnetization if the occupation numbers of the “spin-up”
states differ from those of the “spin-down” states.

We can easily find the magnetization at high temperature where z = ef# — 0,
because we can expand both the average particle number and the magnetization
in powers of z. Furthermore, we will consider the case of a weak magnetic field
and expand in powers of B. We then obtain the particle density

(n)y = &N 2 epu(etbunt 4 o BBy = 2 b 4 O(B?) (6.140)
VoA A3
and the magnetization density
M) 2
@ _ #33 B+ OB, (6.141)
Vi kgTAS

where O(B") indicates terms of order B” and higher. If we now combine
Eqgs. (6.140) and (6.141), we obtain

(M) (muy

Vo kT
and we find that the magnetic susceptibility at high temperature and weak mag-
netic field is y = (n)u, /(kg T). Since it is positive, the system is paramagnetic. We
can also obtain the magnetic susceptibility in the limit 7 — 0, but this is left as a
homework problem.

B, (6.142)
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6.10.2
Diamagnetism

Diamagnetism results from the orbital motion of electrons in the presence of a
static magnetic field. The magnetic susceptibility, due to orbital motion, was first
computed for an ideal Fermi gas by Landau [114] and is called “Landau diamag-
netism” Diamagnetism is a quantum mechanical effect and does not occur in a
classical gas [122].

The Lorentz force on an electron with charge —e and mass m in the presence of
a magnetic flux density B is F = —ev X B, where v is the velocity of the electron.
Let us consider the static magnetic field along the z-axis, so that B = Be,. The
Lorentz force provides the centripetal force that allows the electron to maintain
a circular orbit with radius R and angular velocity . = v/R. Newton’s equation
for the centripetal motion is evB = mw?R, so the angular velocity is . = eB/m.

Let us now consider a degenerate electron gas in a cubic box with volume V=13
in the presence of the magnetic flux density B = Bé,. We introduce the magnetic
vector potential A whose curl is the magnetic flux density B = V X A. There is
some freedom in our choice of the vector potential. For example, A = —yBe, and
A =1/2(—yBe, + xBeé,) both give the same magnetic flux density B = Be,.

The Hamiltonian for an electron in the presence of the magnetic flux density
B can be written A = 1/2m)(p + eA)%, where p is the canonical momentum
operator and ¥ = (p + eA)/m is the velocity of the electrons. The Schrodinger
equation for the electron energy eigenfunctions y(r) and eigenvalues E is then
given by

Hy(r) = ﬁ(—ihv, + eA) Y (r) = Eyy(r) (6.143)

where p = —ihV, is the momentum operator in the position basis. Let us write the
vector potential as A = —yBé, and assume a solution to the Schrédinger equation
of the form y,(r) = e*+*e*:?¢ (). The Schrédinger equation then becomes

P90 1

2oy 30l (7= ) 90) = AEp(y) (6.144)

where y, = hk, /eB, o, = eB/m, AE = (E — h*k? /(2m) is the energy of the elec-
tron motion in the x—y plane and 7?k?/(2m) is the kinetic energy of the electron
due to its motion along the z-axis. Equation (6.144) is the eigenvalue equation for
a harmonic oscillator that oscillates about the point y = y, with oscillation fre-
quency .. The allowed energies of this harmonic motion are AE, = hw (n+1/2),
withn =0,1,2, .... The energy levels AE,, for elections in the x—y plane are called
Landau levels and describe the quantized motion of the electrons in the presence
of the external magnetic field. The wavevectors k, and k, are quantized and have
values k; = 2m¢;/L where j = x,zand ¢; = 0, +1, %2, ...

The electron motion in the x—y plane is highly degenerate because of the de-
pendence of the point y = y, on k. This dependence means that the origin of the
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oscillator can change its position in increments 8 y, = 27 /(eBL), without chang-
ing the energy of the oscillator. Since the length of the box in the x-direction is L,
the number of such positionsis N' = L /8y, = eBL? /(27rh), where BL? is the total
magnetic flux through the x—y-plane.

Having determined the energy levels of an electron in the presence of the mag-
netic field, we can now write the grand potential per unit volume in the form

> 1 o (ned)-
—Q(T’ Vi) =—kyTg eB dk In 1+e_ﬁ[ﬁ+h °< +2) M] )
4m2h ?

Vv
(6.145)

where g is the spin degeneracy of the electrons (we have not included the in-
teraction of the magnetic field with the electron spins in this expression). Equa-
tion (6.145) includes the degeneracy N = eBL?/(27h) of the Landau levels.

At high temperatures, we can use the approximation In(1 +x) ~ x — 1/2x% + ...
and approximate the grand potential by the first-order term in the logarithm. We
then have

T, V) eB [ . S b5 ero(ned)u]
—  ~ —kg Tg4n2h J dkznz::‘)e
_ eB 2mm _py, e Bhoc/2
= —kg Tg4n2h‘ / B2 e — T (6.146)

Since we are interested in the magnetic susceptibility, we only need contributions
to lowest order in B. Let us note thate™ /(1 —e™2*) ~ 1/(2x) —x/12+... forx < 1.
Remembering that . = eB/m, we obtain

O(T, V, p) eB [2mm 1 1
LT T LY - Lgho, + ...
% B 8 en\ pre < Bho. ~ 2alhe >

ethr 1/en\2( B\
= kgTes—(1-2 (=) (=) +...). (6147
Te5s (1 6<2m> (kBT> * ) (6.147)

T

The average particle density is

1 (00 ethu

so the grand potential density can be written

QT V,p) 1/en\2( B\
= = k() [“g(ﬁ) <—> +] : (6.149)
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The isothermal magnetic susceptibility is

1 (00 (mypy
A <_> ST (6150)
ov\eB )y, 3ksT

where up = eh/(2m) is the Bohr magneton. Thus, the magnetic susceptibility is
negative, indicating that the effect of the orbital motion of the electrons, in the
presence of a magnetic field is diamagnetic. However, if we combine the paramag-
netic and diamagnetic susceptibilities for the Fermi gas, we see that the combined
susceptibility is positive, indicating that the Fermi gas is paramagnetic.

6.11
Momentum Condensation in an Interacting Fermi Fluid

Electrons in a conducting solid are free to wander through the lattice and form
a Fermi fluid. At low temperatures the electrons form a Fermi sea and only those
near the Fermi surface affect the thermodynamic properties of the electron flu-
id. The electrons do experience a mutual Coulomb repulsion which is screened,
however, by lattice ions. As first noted by Frohlich [63], electrons in the neighbor-
hood of the Fermi surface can also experience a lattice-phonon-mediated effective
attraction (two electrons may in effect be attracted to one another because they
are both attracted to the same lattice ion). Cooper [32] showed that this effective
attraction at the Fermi surface could cause bound pairs of electrons to form, and
these pairs could then condense in momentum space, giving rise to a phase tran-
sition in the interacting Fermi fluid. Bardeen, Schrieffer, and Cooper (BCS) [12]
showed that this momentum space condensation of Cooper pairs is the origin of
superconductivity in materials. In 1972, they received the Nobel Prize for this
work.

We shall derive the thermodynamic properties of a condensed Fermi fluid using
mean field theory [197]. It is found experimentally that Cooper pairs have zero
total angular momentum and zero total spin. If the pairs are not undergoing a net
translation through the fluid (no supercurrent), then the paired electrons will have
equal and opposite momentum and opposite spin components. We shall assume
that all other electrons behave like an ideal gas. With these assumptions, we can
write the Hamiltonian of the electron fluid in the form

A=Y epag a g+ D, 2 Viwly 'y b iy, (6.151)
) k K

where g, = h2k? /(2m), and A denotes the z-component of spin of a given electron

and takes values A = 1 or A = | (spin component +1/2h or —1/2h, respectively).

The operators, 211, , and ay ), respectively create and annihilate an electron with

momentum 7k and spin component A (cf. Appendix D). They satisfy fermion an-

ticommutation relations,

[ak,zz;,L =S i), =0, [az,ﬁ,zzj(,L - 0. (6.152)
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The interaction term in Eq. (6.151) destroys a pair of electrons with momenta nk’
and —7k’ and opposite spin components, and it creates a pair of electrons with
momenta 7k and —hk and opposite spin components.

Since the electrons only experience an attraction at the Fermi surface, the in-
teraction energy, V; 1s, can be written

—V, f —el <Ae, |u—ep] <Ae,
v,(y,(,={ o for lu—glshe, |u-evl<ne (6.153)

0 otherwise ,

where Vj is a positive constant, 4 is the chemical potential of the Fermi fluid, and
Ac¢ is a small energy interval of order k7T

We now introduce the mean field approximation. We write the Hamiltonian in
the form

o At s v I
H ;= Z Exly gy + ZA a_p g+ Z Ady . ay (6.154)
kA k k

where

/

/
A=V Y (o i), and A'=-V, ) <&Z,T&ik,l> . (6.155)
k k

The prime on the summation, z;{, means that the summation is restricted to a dis-
tance, Ag, on either side of the Fermi surface. The average, (&@_; | @y ;) is defined
as

(g b)) =Tr(pa_ axy) (6.156)
and the density operator, p, is defined

. e~ BHme—pi)
p=—— (6.157)
Tr(e—ﬁ(Hmf—ﬂN))

The average, (&;{ T&T_k l>’ is similarly defined. The particle number operator, N, is
given by

N=3a) (6.158)
k,A

as we would expect. The quantity A is called the gap function and, in general, may
be real or complex. The gap function is real (A = A*) if no supercurrent is present
and that is the case we consider here (the dependence on k and —k indicates that
the total momentum of the pair is zero). The gap function A is the order parameter
for the phase transition and is a measure of the average binding energy of all the
Cooper pairs. If a macroscopic number of Cooper pairs form, then <&;,T&T—k¢> =

<&;( T&i X l> ~ n,, where n_ is the average number of Cooper pairs in the fluid.

The Hamiltonian, H,,;, does not commute with the number operator N if A # 0.
This means that the system does not conserve the particle (electron) number and
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the gauge symmetry is broken. If a macroscopic number of Cooper pairs form, the
total energy of the system is lowered. The phase transition occurs when the ther-
mal energy kg T, which tends to break Cooper pairs apart, becomes less important
than the phonon-mediated attraction between electrons.

It is useful to introduce an effective Hamiltonian

P st s A PO At st
K= Z & (a,mam ﬂ—k,lﬂ—k,L) + Z Ada_y apq + Z Aday a’y
k k k
(6.159)

where
n2k?

2m

Sk=e—u= -, (6.160)
and we have made use of the fermion anticommutation relations. The effective
Hamiltonian, K, differs from H,_; — 4N only by a constant term. Therefore, the
density operator can be written

R Bk
Tr(e=AK)
The effective Hamiltonian, K, can be written in matrix form:
K=Y aiKay, (6.162)
k

where

T =[5 4 Ay i _ (4
K R A =(& a ) 6.163
k (A _fk k ng k k,1 k.l ( )

—k,1

Bogoliubov [18] showed that the effective Hamiltonian, K, can be diagonalized by
means of a unitary transformation which preserves the fermion anticommutation
relations. In so doing, we obtain a Hamiltonian for uncoupled excitations (called
bogolons) of the system. To diagonalize the effective Hamiltonian, we introduce
a 2 X 2 unitary matrix,

U= " ). (6.164)
Vi Uk

Since U, U = U U, =1 (unitarity), we must have u; +v; = 1. Wealso introduce
the vectors

Vi, o o
Iy= (AT°>, r= (V,T(,Oyk,l) : (6.165)

which are related to the vectors, a;, via the unitary transformation

a, = U, T, . (6.166)
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The physical significance of the vectors, I'y, will become clear below. It is easy to
show that since &Z , and 4, obey fermion anticommutation relations, the oper-

ators, )A/,T”, and j ; (i = 0, 1), must also obey fermion anticommutation relations

[)A’k,i» )A’,T(r,irL =SS s [Tridwsl, = [)A’,T(,i» )A’L,,.,L =0. (6.167)

If we revert Eq. (6.166), we see that 7, , decreases the momentum of the system
by hk and lowers the spin by 7 (it destroys a particle with quantum numbers,
(k, 1), and creates one with quantum numbers, (—k, |), whereas j; , increases the
momentum of the system by 71k and raises the spin by 7.

We now require that the unitary matrix, Ek, diagonalize the effective Hamilto-
nian, K. That is,

—t— = = - (E 0
u,T(K,(U,( =E, with E =["%° . (6.168)
0 Ek,l

We find that Ey , = Ep and E, ; = —E; with

Ep=1[&+A2. (6.169)

With this transformation, we have succeeded in reducing the interacting Fermi
gas of electrons to an ideal Fermi gas of bogolons. In terms of bogolon operators,
the effective Hamiltonian takes the form

A ot — —i —
K=Y a0, KU U, =) yiEy,
k k
= Z (Ek,o)A’Z,O)A’k,o - Ek,l)A/Z,l)A/k,l + Ek,l) . (6.170)
k

The bogolons are collective modes and play a role analogous to that of phonons
in a Debye solid, although their dispersion relation is quite different.

We can now obtain a self-consistent equation for the gap function, A. First note
that

N 1 1 BEx,
<Y;£,0Vk,o> =— = [1 — tanh ( 2k0>] (6.171)

1 + eBEko 2

and

At A _ 1 _ l ﬁEk,l
<)’k,1)’k,1> = —1 P 1 + tanh < > . (6.172)
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Then

(o) <[ 74

(i1,
_[1- <AT 7 ) o |—
-7, AN 17
0 <yk,1yk,1>
- — [ E° — BE?
=11 10 k( k O) U,itanh(—k>
2 2E; 0 EY,
- 1 = BE}
= =1+ — K tanh <— . (6.173)
2 2E; 2
We can equate oftf-diagonal matrix elements and write
Ay BEy
_<£Z—k,l2lk,T> = — tanh <_> . (6.174‘)
2E 2

If we multiply (6.174) by V} 1s, integrate over k, we obtain
!

1 BE;
1= Vozﬁtanh <T> . (6.175)

k

Under the primed summation the bogolon energy can be written EY = /& + A2.
Equation (6.175) is the equation for the gap function A and is called the gap equa-
tion. Solutions of the gap equation correspond to extrema of the free energy. The
solution that minimizes the free energy corresponds to the stable thermodynamic
state.

Let us now determine some properties of the gap function from Eq. (6.175). For
large volume, V/, we can change the summation to an integration

4 m 2y

)~ o= J dkk? = ——— J A&V +u (6.176)
k d 0 \/§ﬂ2h3 S

The summation, Z;{ can be written

Ag Ae

! 3/21/
Y~ mo J Ve dé = N(0) J dé,, (6.177)
k \/5”2h3 —Ag —Ag

where we have set y ~ ¢ (g; is the Fermi energy) and N(0) = mV k; /(22 h?) is the
density of states at the Fermi surface for a single spin state (cf. Exercise 6.3). We
can now write (6.175) in the form

Ae  tanh [gw /€ +A(T)2]

1 = V,N(0) J dé&,

0 \ &+ AT

(6.178)
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Equation (6.178) determines the temperature dependence of the gap, A(T'), and
can be used to find the transition temperature.
The energy of bogolons (measured from the Fermi surface) with momentum nk

isE, =4/ 512( + A(T )?. It takes a finite amount of energy to excite them, regardless
of their momentum, because there is a gap in the energy spectrum. At the critical
temperature, 7', the gap goes to zero and the excitation spectrum reduces to that
of an ideal Fermi gas. The critical temperature can be obtained from Eq. (6.178).
It is the temperature at which the gap becomes zero. Thus, at the critical temper-
ature we have

Ae h BcAe/2
1=V,N(0) J dfkw = N()V, J dx_ta‘;hx
0 k 0
=NOVln (%ﬁCA‘g) ’ (6.179)

where . = (ks T,)™!, & = 2.267 73, and we have used the fact that

b
tanh x
x

dx = In(ab), (6.180)
0
for b > 100. Thus, Eq. (6.179) holds when B .Ae/2 > 100. This means that

N(0)V, < 0.184 and therefore use of Eq. (6.179) restricts us to fairly weakly
coupled systems. From Egs. (6.179) and (6.180) we obtain

_a —1/(N(0)Vy)
kgT. = EAse o, (6.181)

for 5. Ae/2 > 100. Thus, the critical temperature, T, varies exponentially with
the strength of the attractive interaction.

We can also use Eq. (6.178) to find the gap, 4(0) = 4,, at T = 0K. Since
tanh(co) = 1, we can write

Ag

1 . -1 As

1= V,N(0) J d§,———— = V,N(0)sinh (—) ) (6.182)
0 \ &+ 4y Ao

or

A

Ao B oA l/NOK) 6.183
0= Smh[1/(VN )] e (o159

The right-most expression for A, applies for weakly coupled systems when
N(0)V; < 0.184. Comparing Eqs. (6.181) and (6.183), we obtain the following
relation between the critical temperature and the zero temperature gap for weak-
ly coupled systems:

AO
kT,

C

=2 _ 1764, (6.184)
(04
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Figure 6.13 (a) A plot of the ratio A(T ) /4, ty in the absence of interaction (ideal Fermi
versus the reduced temperature, T/T, for gas). The solid line shows the jump in the heat
a weakly coupled system. (b) A sketch of capacity at the critical point and the exponen-
the heat capacity for a superconductor. The tial decay for temperatures below the critical
straight dashed line gives the heat capaci- point.

Equation (6.184) is in good agreement with experimental values of this ratio for
superconductors. Equation (6.178) may be solved numerically to obtain a plot
of the gap as a function of temperature. We show the behavior of A(T") in Fig-
ure 6.13a for weakly coupled systems.

Since bogolons form an ideal gas, the bogolon entropy can be written in the
form

S ==2ky ) [ng In(m) + (1 = ) In(1 = )], (6.185)
k

where 1; = (1 + efFx)1. The heat capacity, Cy n» is easy to find from Eq. (6.185).
Let us first note that for a Fermi gas at very low temperature we have y = ¢;, where
& is the Fermi energy, and (0u /9T )y, ~ 0. Thus,

CVN:T( )V(N) ﬁﬁZ_ln(l—@)

= —2Bkg Z 3E, Eg+ 3 7 |- (6.186)

‘We can now examine the heat capacity, both at the critical temperature and in the
limit 7 — 0K.

Let us first look at the neighborhood of the critical point. The first term in
Eq. (6.186) is continuous at T = T, but the second term is not since 9|4, |*/dp
has a finite value for 7' < T, but is zero for T > T,. Near T = T, we may let
E; — |&i|. Then the heat capacity just below the critical temperature is

oA 2
C\</,N R —2ﬁckB Z a{' k _ﬁc( 6/)’ ) ) (6187)

and just above the critical temperature it is

on
Cyn ™ 2Bk D a—gkei . (6.188)
k k
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Figure 6.14 Variation of A/kgT_ with reduced temperature, T/T, for tin. The data points are

obtained from ultrasonic acoustic attenuation measurements [18] for two different frequen-
cies. The solid line is BCS theory. Reprinted, by permission, from [144].

The discontinuity in the heat capacity at the critical temperature is

N (&)
=—kBﬁ2N(O)< /3> —N(O)<(2)AT > . (6.189)
=T

c

Thus, the heat capacity has a finite discontinuity at the critical temperature, as we
would expect for a mean field theory.

Mean field theory gives a surprisingly good description of the behavior of real
superconductors. In Figure 6.14 we show experimental measurements of the gap
function, 4, as a function of temperature for tin. The solid line is the mean field
theory of Bardeen, Cooper, and Schrieffer. The experimental points, which are
obtained from ultrasonic acoustic attenuation measurements [144], fitit very well.

6.12
Problems

Problem 6.1 A monatomic dilute gas, in a box of volume V, obeys the Dieterici
equation of state P = nRT /(V — nb) exp(—na /(VRT)), where n is mole number,
a and b are constants determined by the type of molecules in the gas. (a) Find the
second virial coefficient for this gas and express it in terms of  and b. (b) Com-
pute the constants a and b for a gas of particles that interacts via a two-body po-
tential V/(r) that has an infinite hard core and an attractive square-well potential
region such that V(r) = oo for r < g, V(r) = —e for 0 < r < Ao, and V(r) =0
for r > Ao, where r is the relative displacement of a pair of particles. (c) The
constants a and b for a gas of CO, molecules are a = 0.3658 Pam®/mol? and
b = 0.000 042 86 m*®/mol (see Table 3.6, Section 3.8). Assuming that A = 2 obtain
estimates for the radius ¢ and binding energy ¢ (in eVs) for CO,.
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Problem 6.2 Consider N = 1000 hypothetical molecules “M” each of which has
three heme sites that can bind an oxygen molecule O,. The binding energies E,
whenn O, arebound are E, =0, E; =—0.49¢eV,E, =—-1.02eV,and E; =—1.51€V.
Assume that the “M” molecules are in equilibrium with air at 7 = 310 K and the
partial pressure of O, in air is P, = 0.2 bar. Also assume that the “M” molecules
don't interact with each other and air can be treated as an ideal gas. Of the N =
1000 “PP” molecules present, how many will have (a) zero O, molecules bound to
them; (b) one O, molecule bound to them; (c) two O, molecules bound to them;
(d) three O, molecules bound to them?

Problem 6.3 Compute the second virial coefficient for a gas that interacts via the
potential

0 if g<R,
V(@) ={7i5@-AR) if R<q<IR,
0 if g>AR.

Problem 6.4 Consider a classical gas in a box of volume V. Compute the second
2

virial coefficient, By, for the Gaussian model, f(g,;) = ™%/, where a™/> < V1/2,

Sketch the effective potential, BV (g;)).

Problem 6.5 Compute the second coefficient for the weakly coupled particles
with potential V(q) = V,, forg < R and V(q) =0forg > R.

Problem 6.6 The density of states of an ideal Bose—Einstein gas in a cubic box of
volume V' is

(E) = aE3 if E>O0,
&9=Y0 i E<o,

where «a is a constant. Compute the critical temperature for Bose—Einstein con-
densation.

Problem 6.7 (a) Compute the Bose—Einstein condensation temperature for a gas
of N = 4 x 10* rubidium atoms in an asymmetric harmonic trap with oscillation
frequencies f; = 120Hz, f, = 120/\/§ Hz, and f; = 120/\/§ Hz. (b) If conden-
sation occurred at the same temperature in a cubic box, what is the volume of the
box?

Problem 6.8 Liquid helium (*He,) undergoes a superfluid transition at a temper-
ature of T = 2.16 K. At this temperature it has a mass density of p = 0.145 g/cm®.
Make the (rather drastic) assumption that liquid helium behaves like an ideal gas
and compute the critical temperature for Bose—Einstein condensation.

Problem 6.9 An ideal Bose—Einstein gas consists of noninteracting bosons of
mass m which have an internal degree of freedom which can be described by as-
suming that the bosons are two-level atoms. Bosons in the ground state have ener-
gy E, = p?/(2m), while bosons in the excited state have energy E; = p*/(2m) + 4,
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where p is the momentum and A is the excitation energy. Assume that A > kT
Compute the Bose—Einstein condensation temperature, T, for this gas of two-
level bosons. Does the existence of the internal degree of freedom raise or lower
the condensation temperature?

Problem 6.10 Compute the Clausius—Clapeyron equation for an ideal Bose—
Einstein gas and sketch the coexistence curve. Show that the line of transition
points in the P—v plane obeys the equation

pyol3 = 2rh? &1 .
m (8’3/2(1))5/3
Problem 6.11 Show that the pressure, P, of an ideal Bose—Einstein gas can be

written in the form P = au, where u is the internal energy per unit volume and a
is a constant. (a) What is #? (b) What is a?

Problem 6.12 (a) For a BEC, prove that
A 1
H= [em+ (a7 4} +a )]: Ebih + =Y (E -¢
Zkﬂﬂk a_ b, +a_ g ;kkk 22}(‘,(1( %)

using the Bogoliubov transformation aT

= uklAfr —vib_pand a;, = u, b, — vklAJT_k
(b) Using the requirement that [uka —a ak] =1 and [bkb - E}:l;k] =1, find

explicit expressions for Ey, u;, and v in terms of £, and A.

Problem6.13 Electrons in a piece of copper metal can be assumed to behave like
an ideal Fermi gas. Copper metal in the solid state has a mass density of 9 g/cm?.
Assume that each copper atom donates one electron to the Fermi gas. Assume
the system is at 7 = 0K. (a) Compute the Fermi energy, ¢, of the electron gas.
(b) Compute the Fermi “temperature’, Ty = ep/kg.

Problem 6.14 A two-dimensional electron gas can be formed at the inter-
face of GaAs/AlGaAs semiconductors. The effective mass of the electrons is
m = 0.067m,, where m, is the mass of the electron in free space. Treat the
electrons like an ideal Fermi gas of particles with spin-1/2 and mass m in a two-
dimensional box with area A = L2. (a) What is the density of states of the electron
gas? (b) If the electron density is N/A = 2.0 x 10! /cm?, what is the Fermi energy
of the two-dimensional electron gas?

Problem 6.15 The density of states of an ideal Fermi-Dirac gas is

D if E>O0,
E) =
&) {0 if E<O,

where D is a constant. (a) Compute the Fermi energy. (b) Compute the heat ca-
pacity at very low temperature.
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Problem 6.16 Compute the magnetization of an ideal gas of spin-1/2 fermions
in the presence of a magnetic field. Assume that the fermions each have magnetic
moment 4,. Find an expression for the magnetization in the limit of weak mag-
netic field and 7 — 0K.

Problem 6.17 Show that the entropy for an ideal Fermi—Dirac ideal gas (neglect-
ing spin) can be written in the form

S =—ky Y {(n) In[{m]+ (1 = () Inll = (m)1}
)

where (n,) = (ef@7#) + 1)71,

Problem 6.18 One mole of a dilute gas of He® atoms (which are spin-1/2
fermions) at temperature 7 = 140 K is contained in a box of volume V = 1.0 cm?.
(a) Compute the lowest order (in density) correction to the classical ideal gas
pressure. (b) What fraction of the total pressure is due to the Fermi statistics of
the atoms?

Problem 6.19 In the grand canonical ensemble, the variance in particle number
is (N2) — (N)* = 1/B(0(N)/op)r.. (a) Compute (N*) — (N)” for a classical ideal
gas. (b) Compute (N?) — (N')* for a Bose—Einstein ideal gas at fairly high temper-
ature (keep corrections to the classical result to first order in the particle density).
How and why is your result different from the classical ideal gas result? (c) Com-
pute (N2) — (N)? for a Fermi—Dirac ideal gas at a fairly high temperature (keep
corrections to the classical result to first order in the particle density). How and
why is your result different from the classical ideal gas result?

Problem 6.20 To lowest order in the density, find the difference in the pressure
and isothermal compressibility between an ideal boson and an ideal fermion gas.
Assume that the fermions and bosons have the same mass and both are spinless.
(Note: You are now considering fairly high temperature.)

Problem 6.21 Show that near the critical temperature the gap function, A(T"),
in a weakly coupled, condensed Fermi fluid (superconductor) in the mean field
approximation has temperature dependence

1/2
ATD) _ 1 74 (1 - 1) ,
A(0) T,

C

where T is the critical temperature and A(0) is the gap functionat 7= 0K.

— up v
Problem 6.22 The unitary matrix, U, = ( koK ), diagonalizes the effective
Vi Uk
g = g A
Hamiltonian K; = A . Compute v, and uy.
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Brownian Motion and Fluctuation-Dissipation

7.1
Introduction

We now begin to discuss the dynamics of many-body systems that are out of equi-
librium and we develop tools to describe the processes by which they decay back
to equilibrium. These systems generally have 10>? degrees of freedom that decay
rapidly (on the time scale of a few collision times). However, a few of these de-
grees of freedom decay very slowly due to conservation laws at the microscopic
level. It is these slowly decaying modes that we will be most concerned about. We
will find that these same decay processes also govern the dynamical behavior of
fluctuations in systems that are at equilibrium.

The dynamics of a Brownian particle provides a paradigm for describing equi-
librium and nonequilibrium processes. When a relatively massive particle (like
a grain of pollen) is immersed in a fluid, it is observed to undergo rapid, random
motion, even when it is in thermodynamic equilibrium with the fluid. The agi-
tated motion of the Brownian particle is a consequence of random “kicks” that
it receives from density fluctuations in the equilibrium fluid, and these density
fluctuations are a consequence of the discrete (atomic) nature of matter. Thus,
Brownian motion provides evidence on the macroscopic scale of the fluctuations
that are continually occurring in equilibrium systems.

A phenomenological theory of Brownian motion can be obtained by writing
Newton’s equation of motion for the massive particle and including in it a system-
atic friction force and a random force that mimics the effects of the many degrees
of freedom of the fluid in which the massive particle is immersed. The equation
of motion for the Brownian particle is called the Langevin equation. Given the
Langevin equation for a Brownian motion process, we can obtain an equation for
the time evolution of the probability distribution of the Brownian particle, called
the Fokker—Planck equation. We will derive the Fokker—Planck equation and we
will solve it for Brownian motion with one spatial degree of freedom in the pres-
ence of strong friction.

In 1932, Onsager showed that the time reversibility of Newtonian dynamics (or
quantum mechanics) imposes certain relations between decay (to equilibrium)
processes in a complex system. Onsager’s relations are important because they

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2016 by WILEY-VCH Verlag GmbH & Co. KGaA.
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provide a link between different types of decay processes and thereby reduce the
number of experiments that must be performed in order to measure decay prop-
erties of a system. In this chapter we will derive Onsager’s relations.

Fluctuations about the equilibrium state decay on the average according to the
same macroscopic laws that govern the decay of a nonequilibrium system to the
equilibrium state. If we can probe equilibrium fluctuations, we have a means of
probing the decay processes in a system. Linear response theory provides a tool
for probing equilibrium fluctuations by applying a weak external field which cou-
ples to the system. The system responds to the field in a manner that depends
entirely on the spectrum of the equilibrium fluctuations. The response to the dy-
namic field is measured by the susceptibility matrix. The fluctuation—dissipation
theorem links the susceptibility matrix to the correlation matrix for equilibrium
fluctuations. According to the fluctuation—dissipation theorem, the spectrum of
equilibrium fluctuations determines the rate of absorption of energy from the ex-
ternal field.

Our derivation of Onsager’s relations and of the fluctuation—dissipation theo-
rem in this chapter are very general. We do however illustrate the fluctuation—
dissipation theorem by applying it to classical Brownian motion. In Chapter 8, we
will discuss these theories again in the context of hydrodynamics.

In the last section of this chapter, we derive linear response theory for quantum
systems starting from microscopic theory. We then use this theory to obtain the
conductance of ballistic electrons in a one-dimensional wire connected to elec-
tron reservoirs. We show that this simple quantum system can absorb power from
an applied field.

7.2
Brownian Motion

Brownian motion provides evidence, on the “macroscopic” scale, for the atomic
nature of matter on the “microscopic” scale. The discreteness of matter causes
fluctuations in the matter density which, in turn, causes observable effects on the
motion of the Brownian particle. This can be seen if one immerses a large particle
(usually about one micron in diameter) in a fluid with the same density as the par-
ticle. When viewed under a microscope, the large particle (the Brownian particle)
appears to be in a state of agitation, undergoing rapid and random movements.
Early in the nineteenth century, the biologist Robert Brown wrote a paper on this
phenomenon [22] which received wide attention [49, 51, 164], and as a result it
was named after him.

In this section we derive the theory of Brownian motion starting from the
Langevin equations of motion for a Brownian particle. We focus on a large par-
ticle (the Brownian particle) immersed in a fluid of much smaller atoms. The
motion of the large particle is much slower than that of the atoms and is the result
of random and rapid kicks due to density fluctuations in the fluid. Since the time
scales of the Brownian motion and the atomic motions are vastly different, we
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can separate them and focus on the behavior of the Brownian particle. The effect
of the fluid on the Brownian particle can be reduced to that of a random force
and a systematic friction acting on the Brownian particle.

The theory of Brownian motion provides a paradigm for treating many-body
systems in which a separation of time scales can be identified between some of
the degrees of freedom. This is the reason we consider it in some detail here.

7.2.1
Langevin Equation

Consider a particle of mass m and radius a, immersed in a fluid of particles of mass
m; (my < m) and undergoing Brownian motion. The fluid gives rise to a retarding
force (friction) that is proportional to the velocity, and a random force, £(¢), due to
random density fluctuations in the fluid. The equation of motion for the Brownian
particle can be written

dv(t)
dt

where v(¢) is the velocity of the particle at time ¢ and y is the friction coefficient.
Equation (7.1) is called the Langevin equation.

We will assume that £(£) is a Gaussian white noise process with zero mean so
that ({(¢))¢ = 0. The noise is assumed to be Markovian and stationary and the
average, (), is an average with respect to the probability distribution of realiza-
tions of the stochastic variable £(¢). We will not write the probability distribution
explicitly. The assumption that the noise is white means that the noise is delta-
correlated,

<£(t1)£(t2)>£ =go(t, — 4y), (7.2)

and therefore it is not possible to represent a single realization of {(¢) in terms
of a continuously drawn line (although it is possible to do so with v(£)). The
weighting factor, g, is a measure of the strength of the noise. Because the noise
is Gaussian with zero mean, correlation functions with an odd number of terms,
&(t), are zero and correlation functions with an even number of terms, £(¢), can
be expressed in terms of sums of products of the pairwise correlation function,
((£))€(ty)) . For example,

(E(EDE(E)EE3)EED)e = (E(#)EE)) (€ (£3)E(EL))
+ (EEDE ) (EE)DE(E)) e + (EEDEEL)) (E(E)E(E3)) ¢ - (7.3)

This is a realization of Wick’s theorem in a classical system (see Exercise A.7).

Ly + Lew, (7.1)
m m

Assume that at time ¢ = 0, the velocity and displacement of the Brownian par-
ticle are v(0) = v, and x(0) = x,, respectively. Then its velocity and displacement
at time ¢ are

t

V(t) = voe U/l 4 1 ste_(y/m)(t_s)f(s) (7.4)
m

0
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and
L
x(t) = xg + %(1 —e /My + % J ds(1 — e 0/mE=yg(s) (7.5)
0
respectively. Equations (7.4) and (7.5) give v(¢) and x(¢) for a single realization

of £(¢). Since &(¢) is a stochastic variable, v(£) and x(¢) are also stochastic variables
whose properties are determined by £(%).

7.2.2
Correlation Function and Spectral Density

We can obtain the velocity autocorrelation function from Egs. (7.2) and (7.4). If
we make use of the fact that (v(¢(¢)), = 0, then we can write

(V(t)v(t))e = Vge_(}’/m)(t2+t1)
t, t
J ds, J ds; (s, — Sl)e()’/m)(sl—tl)e(y/m)(sz—tz) ) (7.6)
0 0

g
s

We can perform the integration in Eq. (7.6). For ¢, > t;, we obtain

(v(tz)v(tl))f - <Vé _ %y) e~ r/miatt) | %ye_(y/m)(tz_tl) . (7.7)
For ¢, > t,, we obtain a similar result but with the order of ¢, and ¢, interchanged
in the last exponent. Therefore, for arbitrary £, and £, we can write

(Wt)V(t)))e = <V§ _ L) e~ /miert) o 8 ~r/mit=tiD) (7.8)

2my 2my
Note the absolute value sign on the last exponent.
We can also obtain the variance in the displacement. If we use Egs. (7.2)
and (7.5) and the fact that (x,¢(#)), = 0, we can write

2 g o
(0= 507 = 25 (3= 35 ) @ - ey
+ % t— %(1 - e—(y/m)t)] . 7.9)

Thus, after a long time the variance goes as ((x(t,) — %))*)¢ = (¢/y*)t (neglecting
some constant terms).

We can determine the value of g for a Brownian particle in equilibrium with
a fluid. Take the “thermal” average () of Eq. (7.8). By the equipartition theorem,
(1/2)m(v3)r = (1/2)ky T, where ky is Boltzmann’s constant and T is the temper-
ature in kelvin. If the Brownian particle is in equilibrium, its velocity autocorrela-
tion function must be stationary and can only depend on time differences ¢, — ¢,.
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Therefore, we must have ¢ = 2myv; so the first term on the right in Eq. (7.8) is
removed. If we now take the thermal average of Eq. (7.8), we see that we must have
g = 2ykgT. The correlation function can then be written

((V(tZ)V(tl)>€>T = kB?Te_(Y/m)(Vz_tlD . (710)

The absolute value on the time difference ensures that correlations always decay
as the time difference increases. This means that information about the initial
velocity of the Brownian particle decays away exponentially.

Exercise 7.1

Electrons in an electrical circuit at temperature 7 undergo Brownian motion
(thermal agitation) which is a fundamental source of noise in such circuits. Con-
sider the simple circuit shown in the figure, which consists of a capacitor C in
parallel with a resistor R. Electrons in the resistor provide a fluctuating cur-
rent i(t), whose average is zero (i(¢£)) = 0 but whose fluctuations about the av-
erage are delta-correlated (i(t + 1)i(¢)); = gé(7), where g is the noise strength.
By the equipartition theorem, the average electrical energy in the capacitor is
(1/2)C{(V?); = (1/2)kz T. (a) Compute the noise strength g. (b) Compute the
voltage correlation function ((V(£,) V(£)));) 7.

i(t) C__tvo

Answer: The voltage across the capacitor is a solution of the circuit
equation i(t) = V(£)/R + CdV(¥)/dt and is given by V(¢) = V(0)e /RC +
(l/C)Iom dt,e~t/RCj(¢ ). Using the fact that (i(t + 7)i(¢)); = gd(7), the voltage
correlation function takes the form

= 28R\ —iyrepsre  8R je-i/re
(V) V(E)); <V(0) 2C> e +5ce .

If the system is assumed to be in thermal equilibrium and we take the thermal av-
erage of (V' (¢,)V(£,));, the thermal average can only depend on the time difference
|t, — t;|. Therefore, by the equipartition theorem, we can set (V(0)2); = ks T/C =
gR/(2C), and the noise strength is given by g = 2k; T /R = 2kz TG, where G=1/R
is the conductivity. Thus, the current correlation function and the voltage corre-
lation function take the forms

kg T
{it+1)i(0)) ;)7 =2kg TGS(r) and (V(E)V (D)) = BTe_ltZ_tll/RC ,
respectively. The electrical noise induced by the Brownian motion of electrons in

a circuit was measured by Johnson [92] and was used by him to determine the
value of Boltzmann’s constant k.
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For the case when the Brownian particle is in equilibrium with the fluid, the vari-
ance of the displacement becomes

2y T

(CORENSHIE t= A=), (7.11)
where we have assumed that (%) = (v,) = 0 and that x, and v, are statistical-
ly independent so that (xyv,) = 0. Thus, after a long time, (((x(t) — x¢)*)¢)7 =
(2kg T /y)t and the diffusion coefficient becomes D = kg T /y. The friction coefhi-
cient, y, can also be determined from properties of the fluid and hydrodynamics.
For large spherical Brownian particles, we can assume that the fluid sticks to the
surface. The friction coefficient is then the Stokes friction, y = 67ya, where  is
the shear viscosity of the fluid and a is the radius of the Brownian particle.

The spectral density is the Fourier transform of the correlation function (this is
the content of the Weiner—Khintchine Theorem which is discussed later in this
Chapter) and contains information about the frequency spectrum of fluctuations
about the equilibrium state. The spectral density is given by

S, (@) = J dre ™ (v(t, + DV(t))er = J dre™™'C, (7). (7.12)

For the case of simple Brownian motion with a velocity autocorrelation given
by (7.10), the spectral density is given by

2kg T y/m

Sw(@) = m 0%+ (y/m)?

(7.13)

and corresponds to a Lorentzian curve that is peaked at @ = 0 with a half-width
of y/m. White noise has a very different spectrum. Its spectral density is

See(w) = J dre T (€@t + DEWt)))e = g = 2ykg T, (7.14)

and contains all frequencies with equal weight.

7.3
The Fokker-Planck Equation

The Fokker—Planck equation [65, 185, 205] is the equation governing the time
evolution of the probability density for the Brownian particle. It is a second-order
differential equation and is exact for the case when the noise acting on the Browni-
an particle is Gaussian white noise. The derivation of the Fokker—Planck equation
is a two step process. We first derive the equation of motion for the probability
density, p(x, v, £), to find the Brownian particle in the interval, ¥ — x 4+ dx and
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v = v+ dv, at time, ¢, for one realization of the random force, {(¢). We then ob-
tain an equation for P(x, v, t) = (p(x, v, t)), the average of p(x, v, £) over many
realizations of the random force, (¢). The probability density, P(x, v, t), is the
macroscopically observed probability density for the Brownian particle. Its dy-
namical evolution is governed by the Fokker—Planck equation.

Exercise 7.2

Consider a Brownian particle of mass 7 which is attached to a harmonic spring
with force constant k and is constrained to move in one dimension. The Langevin
equations are

% = —%v—w§x+%5(t) and % =v,

where o, = \/k/m. Let x, and v, be the initial position and velocity, respectively,
of the Brownian particle and assume that it is initially in equilibrium with the
fluid. By the equipartition theorem, (1/2)W1(V(2))T =(1/2)kg T and (1/2)(‘)3 (xé)T =
(1/2)kgT. Assume that x, and v, are statistically independent so (x,v,); = 0.
(a) Show that a condition for the process to be stationary is that the noise strength
is g = 4yky T. (b) Compute the velocity correlation function, ((v(t,)v(¢;))¢) 7.

Answer: The Langevin equations can be solved and give the following expres-
sion for the velocity at time ¢:

t

J dt’ &)e T we -1y,

0

2

©
v(t) = voe Ttw(t) — Zoxoe_” sinh(Af) + 1

m

where w(t) = cosh(At) — (I'/A) sinh(Af), I = y/m,and A = {/I? — wg. If we use
the fact that (x,v, ) = 0 and assume that ¢, > ¢;, the velocity correlation function

can be written

(vt )v(t))e) 7 = e T Dt )w(t))(vi) ¢
4
w
+ A_g<xg>Te—F(t2+t1) Slnh(Atz) Slnh(Atl)
4y
Jdte—T(t2+tl—2t)W(t2 _ t)W(tl _ t) )
0

g

+ =
m2

If we choose g = 4y kg T then after some algebra we obtain a stationary correlation
function

kgT _po, I .
(EVE))e)y = e ) |coshl Aty = )] = T sinhlA( = £)]] -
A similar calculation for £; > ¢, yields the same answer but with ¢; < £,. Thus,

(vt + v(E))e)r = kB?Te_F'T' [COSh(AT) — gsinh(Alﬂ)] .
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7.3.1
Probability Flow in Phase Space

Let us obtain the probability to find the Brownian particle in the interval x —
x +dx and v - v + dv at time, t. We will consider the space of coordinates,
X = (x,v), (x and v being the displacement and velocity of the Brownian parti-
cle, respectively), where —oco < x < o0 and —oo < v < 0. The Brownian particle is
located in the infinitesimal area, dx dv, with probability, p(x, v, £) dx dv. We may
view the probability distribution as a fluid whose density at point, (x, v), is giv-
en by p(x, v, t) (cf. Appendix A). The speed of the fluid at point, (x, v), is given
by X = (&, ¥). Since the Brownian particle must lie somewhere in this space, we
have the condition

J dx J dvp(x,v,t)=1. (7.15)

-0

Let us now consider a fixed finite area, A, in (¥, v) space. The probability to find
the Brownian particle in this area is P(A,) = | 4, dx dvp(x, v). Since the Brownian
particle cannot be destroyed, any change in the probability contained in A, must
be due to a flow of probability through the sides of A,. Thus,

%P(AO) - % H dxedvp(x, v, ) = — <J; p(x, v, OX - dS,, (7.16)

Ao Lo

where dS, denotes a differential surface element along the edge of area A, pX is
the probability current through the edge, and L, is the line around the edge of area
element, A,. We can use Gauss’s theorem to change the surface integral into an
area integral, gSLO p(x, v, Hx - ds, = IAO dxdvVy - (Xp(x, v, t)), where V denotes
the gradient, Vy = (d/0x, d/0v). We find

9

3% H dxdvp(x, v, t) = — J dxdvVy - (Xp(x, v, b)) . (7.17)

Ao Ao

Since the area, A, does not change with time, we can take the time derivative
inside the integral. Since the area, A, is arbitrary, we can equate integrands of the
two integrals in Eq. (7.17). Then we find that

ap(t) _Gp(®) _ ()

o - VxKe@®) =——27 av

, (7.18)

where we have let p(t) = p(x, v, £).
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7.3.2
Probability Flow for Brownian Particle

Let us assume that the Brownian particle moves in the presence of a potential,
V(x). The Langevin equations are then

dv(t)

dt

dx(z

Lo+ Lrw+ Lewy and BE -y, (7.19)
m m m dt

where the force, F(x) = —dV(x)/dx. If we substitute these equations into

Eq. (7.18), we find

ap(t o ~
% = —Lop()—L,(0)p (7.20)

where the differential operators, L, and L, are defined

0= v% - % - %v;—v + %F(x)a—av and 1= %f(t)% . (@721
Since £(¢) is a stochastic variable, the time evolution of p(x, v, t) will be different
for each realization of £(¢).

When we observe an actual Brownian particle we are observing the average
effect of the random force on it. Therefore, we introduce an observable probability,
P(x, v, t)dx dv, to find the Brownian particle in the interval x - x + dx and v —
v + dv. We define this observable probability to be

~

P(x, v, t) = (p(x, v, 0))¢ . (7.22)

We now must find the equation of motion for P(x, v, t).

Since the random force, £(t), has zero mean and is a Gaussian white noise, the
derivation of P(x, v, t) is straightforward and very instructive. It only takes a bit
of algebra. We first introduce a new probability density, o(¢), such that

p(t) = e Loto(r) . (7.23)
Using (7.20), it is easy to show that () obeys the equation of motion

do(t) _
— = V@, (7.24)

where V(¢) = e+i0tﬁl(t)e‘i0‘. Equation (7.24) has the formal solution
t
o(t) = exp Jdt’ V(') 0(0). (7.25)
0

Let us now expand the exponential in Eq. (7.25) in a power series. Using the iden-
tity, e* = Y *° " /n!, we obtain

t n

o(t) = Z(_n—lv)n Jdt’f/(t’) a(0) . (7.26)
n=0 : 0
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We now can take the average, ()¢, of Eq. (7.26). Because the noise, {(¢), has zero
mean and is Gaussian, Wick’s theorem applies (see Exercise A.8). Only even values
of n will remain,

t 2n

(a(t))e = Z ﬁ< Jdt’ V() > a(0), (7.27)
0

n=0
¢

and the average, ((fot dt' V(¢'))>") ¢ will decompose into 2n!/(n!2") identical
terms, each containing a product of # pairwise averages, (Jot de, V(t;) fot dt; Vit e
Thus, Eq. (7.27) takes the form

o t t "
(a(t))e = Z() % % Jdtz J At (Vt)V(E)e| |000). (7.28)
0 0
We can now sum this series to obtain
t t
(o(t))e = exp % Jdtz J dt (V) V(ty))e | 0(0) . (7.29)
0 0

Let us compute the integral in Eq. (7.29),

t t
1 Yoy A
EJd’%J de (V(E)V(E)))e
0 0
t t
£ f 0 i 0
= 2m2Jdt2J dtlﬁ(tz — tl)e+Lot2£e Lo(ty tl)ae Loty
0 0
L
. 2 R
} 2512J dtle+L°t1:7€_L°tl : (7.30)
0

If we substitute Eq. (7.30) into Eq. (7.29) and take the derivative of Eq. (7.29) with
respect to time, £, we find the following equation of motion for (a(?)).,

NoD)e | & i1y 0

= 5 - e o o (t))e . (7.31)

With this result, we can obtain the equation of motion of P(x, v, £) = (p(x, v, £)).

Let us note that (p(?)), = e‘iﬂt(a(t»f and take the derivative of (p(¢)), with
respect to time, ¢£. We then obtain

Hp(t))¢
ot

Hp(t)¢
ov?

Lot a(“(t»f
ot

. " g
=—Lo(p()c +e = —Lo(p(®))¢ + ) , (7.32)
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where we have used Eq. (7.31). If we combine Egs. (7.21), (7.22), and (7.32), the
equation for the observable probability density, P(x, v, t), takes the form

oP _ ap 0 )4 g J*P
Equation (7.33) is the Fokker—Planck equation for the observable probability,
P(x,v,t) - dxdv, to find the Brownian particle in the interval x — x + dx and
v = v+dvattime, ¢.

It is important to note that the Fokker—Planck equation conserves probability.

We can write it in the form of a continuity equation

oP

—=-V.J, 7.34

= J (7.34)
where V=2, 0d/0x +&,0/0v is a gradient operator acting on the (x, v) phase space

and J is the probability current or flux,

]=éxvp—év(lvp— L F@p + %@> (7.35)
ov

in the (x, v) phase space. By the same arguments used in Egs. (7.16) and (7.17),

we see that any change in the probability contained in a given area of the (x, v)

phase space must be due to flow of probability through the sides of the area, and

therefore the probability is a conserved quantity. It cannot be created or destroyed

locally.

In this section we have derived the Fokker—Planck equation for a Brownian par-
ticle which is free to move in one spatial dimension. The Fokker—Planck equation
can be generalized easily to three spatial dimensions, although in three spatial
dimensions it generally cannot be solved analytically.

Below we consider Brownian motion in the limit of very large friction. For this
case, detailed balance holds and we can begin to understand some of the complex
phenomena governing the dynamics of the Fokker—Planck equation.

7.33
The Strong Friction Limit

Let us consider a Brownian particle moving in one dimension in a potential well,
V(x), and assume that the friction coefficient, y is very large so that the velocity
of the Brownian particle relaxes to its stationary state very rapidly. Then we can
neglect time variations in the velocity (set dv/d¢ ~ 0) in the equation for the re-
laxation of the spatial position of the Brownian particle. With this assumption,
the Langevin equation (7.19) reduces to

42O _ 1+ Ler (7.36)
dt y a

where F(x) = —d V(x)/dx. From Eq. (7.18), the equation of motion for the density,
p(x, t), is given by
op(t) __0Gip)
ot ox

= —Lop(t) —L,()p, (7.37)
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where differential operators, L, and L,, are defined

10F() 1

A d A 1 d
Ly= —F(x)— d L,==-¢&0)—. 7.38
0 y ox + Y (%) ox an 1 )/6( )ax ( )

If we now substitute these definitions for io and il into (7.29), take the derivative
with respect to time ¢, and note that P(x, ) = (p(t)), we obtain

opt) 10 (d—vp(x, p+ S 2LED ”) =9 (7.39)

ot y ox \ dx 2y ox ox’

where we have let F(x) = —d V(x)/dx. The quantity / = 1/y((dV /dx)P + g/y
(dP/dx)) is the probability current. Equation (7.39) is now a Fokker—Planck equa-
tion for the probability density, P(x, t), to find the Brownian particle in the inter-
val, x — x + dx, at time, ¢, for the case of strong friction. Because Eq. (7.39) has
the form of a continuity equation, the probability is conserved.

For the case of a “free” Brownian particle, one for which V(x) = 0, the Fokker—
Planck reduces to the diffusion equation

0P, ) _ g PP, 1) _ [ 0*P(x, 1)

= 7.40
ot 2y%  0x? ox? (7.40)

where D = g/2y? = k; T /y is the diffusion coefficient since g = 2yk; T. If we in-
troduce the Fourier transform of P(x, t),

P(x, ) = é J dke ** £ (k, 1), (7.41)

then the Fourier amplitude, f(k, t) satisfies the equation of motion

of g; D DR ik, b). (7.42)

This has a solution f(k,t) = e DK% and yields a probability density

[ 1 —x?

It is interesting to note that Einstein who, unaware of the phenomenon of Brow-
nian motion, was looking for a way to confirm the atomic nature of matter and
obtained a relation between the diffusion coefficient, D, and the atomic proper-
ties of matter. This relation is D = RT /(N 6mrna), where R is the gas constant,
N, =6.02 x 102> mol~! is Avogadro’s number, T is the temperature in kelvin, 7 is
the viscosity, and a is the radius of the Brownian particle [49, 51]. It has since been
confirmed by many experiments on Brownian motion [164].
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7.3.3.1 Spectral Decomposition of the Fokker-Planck Equation

For the case of strong friction, we can obtain a spectral decomposition of the prob-
ability density, P(x, £). Let us first introduce a rescaled time 7 = ¢/y, and write the
Fokker—Planck equation as

0P(x,7) d*V _ dVopr g &P
=— P+ —— 4 =222
ot dx? dx ox = 2y ox?

= —LppP(x, 7). (7.44)

The operator, L, , = d*V /dx? + d V /dxd/ox + g/(2y)9*/dx2, is a nonself-adjoint

operator because of its dependence on the first-order partial derivative. Howev-

er, it is possible to rewrite the Fokker—Planck equation in terms of a self-adjoint

operator via a simple transformation. Then the solutions become more intuitive.
Let us write the probability in the form

—yVi(x)

Px,r)=e ¢ Y¥Y(x,7), (7.45)

where ¥(x, 1) is a function to be determined. If we now substitute into (7.44), we
obtain the following equation for ¥(x, 1)

2
Y, )+ S 0¥

vy (dV PV _powe ).
ot dx 2y ox? w ¥, 7)

oV, ) |1V y (dv?
T l2dx? 2

(7.46)

The operator, Hpp = —(1/2(d*V/dx?) — y/2@)(dV /dx)?) — g/(2y)d?/dx2, is
a self-adjoint operator and we can use well-established techniques for dealing
with such operators.

We will let ¢, (x) and A, denote the nth eigenfunction and eigenvalue, respec-
tively, of Hyp so that Hpp¢,(x) = A, ¢,(x). The eigenfunctions form a complete
set and can be made orthonormal so that

J dxg, (X)¢,(x) =08,/ , . (7.47)
We can expand ¥(x, t) in terms of the eigenfunctions and eigenvalues of Hyp,
Y(x, 1) =) a,e™,®). (7.48)

n=0

The eigenvalues are real and must have zero or positive values in order that the
probability remains finite.

The operator Hp has at least one zero eigenvalue, which we denote 1, = 0, and
a corresponding eigenfunction, ¢,(x), which satisfies the equation

2 2 2
lld_‘/ _r (d_v> ] gl + L T0E (7.49)

2dx?*  2g \ dx 2y  ox?

247



248

7 Brownian Motion and Fluctuation-Dissipation

Equation (7.49) has the solution

—yV(x)

pox)=Ce ¢ , (7.50)

where C is a normalization constant. This is just the transformation used in
Eq. (7.45). Therefore we can now combine Egs. (7.45), (7.48), and (7.50) and write
the probability as

P(x,7) = p2(x) + Zane_’lnrcpo(x)cpn(x) . (7.51)
n=1

In this form, the probability is conserved due to the orthonormality of the eigen-
states. If we integrate Eq. (7.51) over x, we obtain

J dxP(x, 1) = J dxq)o(x)2 =1. (7.52)

The coefficients, a,,, can be determined from the initial conditions. Let us assume
that we are given P(x, 0). Then we write

P(x,0) = ¢3px) + ) @, po(%)p, () . (7.53)
n=1

If we now divide through by ¢,(x), multiply by ¢, (x), and integrate over x we
obtain

a,, = J dx(f;o(x)P(x,O). (7.54)

After a long time, the probability approaches the stationary state
P(x, ) = ¢2(x) . (7.55)

There are several examples of Fokker—Planck equations with one variable which
can be solved analytically. We will consider one of them in Exercise 7.3 and leave
the others as homework problems.

This method can also be extended to Fokker—Planck equations with two or
more spatial degrees of freedom when a transformation analogous to Eq. (7.50)
can be found that allows us to write the Fokker—Planck equation in terms of a self-
adjoint operator. For such cases, it is possible that the dynamics governed by the
self-adjoint operator can undergo a transition to chaos. Examples of such cases,
have been studied in [5, 105, 141].
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Exercise 7.3

Solve the Fokker—Planck equation for the probability distribution P(x,¢) of
a Brownian particle of mass m in a fluid with strong friction y in a harmonic po-
tential V(x) = (1/2)kx2, where k is the harmonic force constant. Assume that
P(x,0) = 6(x — x,).

Answer: From Eq. (7.44), the Fokker—Planck equation can be written

IP(x, 7) oP g 0°P
D _kp+kalE 4 222
o TRox Ty e

Now make the transformation P(x, 1) = e7&*)/20 y(x, 1) and substitute it into
the Fokker—Planck equation to get

10¥(x, 1) 1 «x? 4
SR (2o )+ AL
k ot <2 4A (%) ox?

where A = g/(2ky). The operator, Hpp = 1/2 — x%/(4A) + Ad? / 0x2, is self-adjoint
and has eigenfunctions ¢ ,(x) (n =0, 1,2, ..., o) of the form,

1 X ] e_"z/“,

H, [
2711\ 2A \/ﬂ

¢,(x) =

where H,(y) is the nth order Hermite polynomial and can be written H,(y) =
(—1)”ey2(d” / dy")e‘yz. The Hermite polynomial satisfies the eigenvalue equa-
tion Hypg, (x) = —n¢, (x) so the nth eigenvalue is 1, = —n. The spectral decom-
position of P(x, 7) is now given by

P(x, 1) = ) a,e"  po(x)p,, (%) .
n=0
For initial distribution P(x,0) = §(x — x,) we have a,, = ¢,(x,)/¢y(x,). Thus,

Py = Y e 2B o )

n=0 (Po(xo)
1 e Z nl e, Yo _py %
2A Az 2n! V2A W24
1 _(x _ xoe—kr)Z
= ex )
V2mA(1 — e2kT1) P 2A(1 — e~2kr1)

where in the last term we have used an identity for sums involving Hermite poly-
nomials [143].
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7.4
Dynamic Equilibrium Fluctuations

Systems in equilibrium undergo fluctuations about their equilibrium states. Infor-
mation about these fluctuations is contained in the dynamic correlation function
for the equilibrium system, and in the power spectrum of the equilibrium fluctu-
ations. The power spectrum is a quantity often measured in experiments.
Systems which are out of equilibrium generally return to the equilibrium state
through a variety of processes which may or may not be coupled to one another.
The time reversal invariance of the underlying Newtonian (or quantum) dynamics
of the various degrees of freedom puts constraints on the behavior of the dynamic
equilibrium fluctuations and the time-dependent correlation functions that char-
acterize these fluctuations. We will derive these constraints using the notation
for fluctuations from Section 3.7.4. We denote the macroscopic state variables as

Ay, A,, ..., A, and denote deviations from equilibrium values A7, A7, ..., A}, of
these quantities as @; = A; — A? for i = 1,2, ..., n. As before, the quantity a will
denote the 1 X # column matrix composed of elements a4, ..., «,,.

The time-reversal invariance of Newtonian dynamics requires that the dynamic
correlation functions for macroscopic fluctuations, @, about the equilibrium state,
obey the relations

(a;a (1)) = (a;(Da;) . (7.56)

Equation (7.56) tells us that the correlation between a fluctuation «; at time £ = 0
and a fluctuation a; at time ¢ = 7 is the same as that of a fluctuation «; at time
¢t =0and a fluctuation a; at time ¢ = 7. The quantities a; and a; can correspond to
fluctuations in the same state variables at different points in space. Thus, Eq. (7.56)
can also be turned into an equation relating correlations between space- and time-
dependent fluctuations.

To establish Eq. (7.56), we note that the correlation matrix {(@a(r)) can be writ-

ten
(aa(1)) = H dada’aa’P(a,0;a', 1) = J] dada’ad’ P(@)P(ala’, 1) (7.57)

where P(a, 0; a’, ) = P(a)P(a|a’, 7) is the joint probability to have a fluctuation «
at time ¢ = 0 and a fluctuation a’ at time ¢ = 7. The quantity P(a|a’, 1) is the
conditional probability that the fluctuation has value a’ at time ¢ = 7, given that it
had value a at time ¢ = 0, and P(a) is the probability distribution of fluctuations
about the equilibrium state. For a closed isolated system,

_ | Detlg] —gaa/Qky)
P(a) = V (2ﬂ/<B)”e ¢ ) (7.58)

and (aa) = kyg~! (see Section 3.7.4).
The change in entropy which results from these fluctuations about the equilib-
rium state is

AS = —%E taa (7.59)
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(see Section 3.7.4). It is useful to introduce a generalized force, §, for systems out
of equilibrium, which is defined as
- 0AS
=¢ga= ( oa ) ’

(note the analogy to the equilibrium force Y = —T(dS/0X),; 5) and a generalized
current, g, defined as

(7.60)

da
I=—. 7.61
3= (7.61)
Then the time rate of change of the entropy due to fluctuations is
dAS =-§'. g (7.62)

dt

(T denotes transpose). For a resistor held at constant temperature, where ¥ is
the electric current and § is an electric field, (7.62) is proportional to the rate
at which energy is dissipated through Joule heating. The quantity «, in that case,
could represent a fluctuation in the electron density away from the equilibrium
density. Such a fluctuation would induce to a fluctuating electric field .

We must now remember that & is a macroscopic variable. Thus, for each value
of a there are many possible microscopic states of the system. We can relate the
joint probability distribution P(a, 0; a’, 7) for fluctuations a at time ¢ = 0 and a’
at time ¢ = 7 to the microscopic joint probability density in the following way:

1
P(a,0;a', 7) = P(a)P(ala’, ) = J dg" dpV
Q,p(E)
(a—a+da)
(E=E+AE)
X J dg’™ dp™P(pN, " |p™N, gV, 7). (7.63)
(a'—a’+da’)

In Eq. (7.63) we have used the fact that the equilibrium probability density for
a closed isolated system, P(p~, g") = Q,(E)~}, where Q,¢(E) is the volume of
the energy shell (see Chapter 2). The phase space integrations are restricted to
the energy shell and to trajectories with values of @ and @’ appearing in the left-
hand side of Eq. (7.63); P(p~, gV |p'N, 'V, 1) is the conditional probability that
a system can be in a state (p'V, g’N) at time ¢ = 7, given that it was in the state
(pN, V) at time ¢ = 0. Since classical systems are completely deterministic, we
must have

P(pN, "1™, gV, 1) = 5lg"™ — 4" - Ag¥ (PN, ¥, D]
x3[p™ - p — ApN(p", 4", D1, (7.64)
where AgN and A p¥ are uniquely determined from Hamilton’s equations.
Because Hamilton’s equations are causal and time-reversal invariant, reversal of

all momenta in the system will cause the system to retrace its steps. This implies
that

P~ pNlgN, p’N, 1) = P(@'™N, -p™N gV, -p"N, 7). (7.65)
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We can now combine Egs. (7.63)—(7.65) to obtain a microscopic detailed balance
f(@)P(ala’, 1) = f(a')P(d|a,T). (7.66)
From Eq. (7.66), Eq. (7.56) follows easily.

741
Regression of Fluctuations

We can use Eq. (7.56) to find relations between the rates at which various fluc-
tuations «&; decay, on the average, back to the equilibrium state. These are called
Onsager relations [155]. Let us first introduce the conditional average (a(t))ao,
which is the average value of a at time ¢, given that the initial value of & was «a,.
We then can write

(a(t))ao = J daaP(ayla,t) (7.67)

for the conditional average.

Onsagar assumed that, on the average, the fluctuations decay according to the
same linear laws that govern the decay to equilibrium of systems which are driv-
en slightly out of equilibrium by external forces. Thus, the average fluctuation,
(a(2)),,, obeys an equation of the form

d —
E(a(t)>ao =-M- <a(t)>a0 ’ (768)

where M is an 7 X 7 matrix. Equation (7.68) has the solution
(@), = e ™M - ay. (7.69)

The time derivative in Eq. (7.68) must be used with caution. It is defined in the
following sense:

Ka(D)y, (a(t+ 1))y, — (@),

= ) 7.70
de T (7.70)

where 7 is a small time interval whose values are bounded by inequalities,
ToxtxT. (7.71)

The quantity T, is the time between collisions, and T is the time it takes the fluc-
tuation to decay to equilibrium. The limitation in Eq. (7.71) rules out fluctuations
which are too small — that is, fluctuations which decay to equilibrium in a few
collision times. Similarly, (7.71) is not valid when the fluctuation has just been
created. It takes a few collision times for it to settle down to a macroscopic decay.

Equation (7.56) imposes a condition on the matrix M. If we expand Eq. (7.69)
for short times,

((8))q, = a9 — tM - ay + O(t%) (7.72)
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and substitute it into Eq. (7.56), we obtain

(@M - ap) = (M - aya,) . (7.73)

— —T
If we now use the fact that M - & = a™ - M and use Eq. (3.91) for the variance in
the fluctuations, we obtain

g'M=M-g ", (7.74)
where T denotes the transpose. We can define a new matrix

L=M-g . (7.75)
Then Eq. (7.74) becomes

— T
L=L or Lj=Lj. (7.76)

Equations (7.76) are called Onsagar’s relations. Note that since the matrices g
and L are symmetric, the matrix M is symmetric.

If we make use of the generalized force § = g - a (cf. Eq. (7.60)), the time rate
of change of the fluctuation can be written

d _
9O, = L (), - (7.77)

Equation (7.76) is a generalized Ohm’s Law. It is so useful that Onsagar received
a Nobel prize for deriving it. The matrix L is a matrix of transport coefficients.
Equation (7.77) tells us that a force resulting from a fluctuation a; can cause a flux
of A}, and a force arising from a fluctuation a; can cause a flux of A;. Equa-
tion (7.76) tells us that the transport coefficients for the two processes are the
same. For example, a particle concentration gradient can drive a heat current, and
a temperature gradient can drive a particle current. The transport coefficients for
the two processes are the same although the processes physically appear to be
very different. For the case of a conductor, a could represent a fluctuation in the

electron density and L would be the conductance.

7.4.2
Wiener-Khintchine Theorem

The Wiener—Khintchine theorem [39, 103, 214] makes the connection between
the correlation matrix for time-dependent fluctuations about the equilibrium
state and the spectral density matrix for these fluctuations. Equilibrium sys-
tems are governed by stationary distribution functions and this imposes certain
conditions on correlation functions for fluctuations about the equilibrium state.
Below we first discuss the conditions stationarity imposes on the time-dependent
correlation matrices and then we derive the Wiener—Khintchine theorem.
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Let us consider the time-dependent correlation matrix, (a(7)a(0)), for a system
governed by a stationary distribution function (such as a system in equilibrium).
The correlation matrix has the property

Coo(D) = (a(Da(0)) = (a(t + Da(d)) = (a(-D)a)" = Coo(-1)", (7.78)

where we have let £ = —7 and T denotes the transpose of the correlation matrix.
From the condition of microscopic reversibility, we know that (a(7)a) = (@a(7))
and, therefore,

C,(1)=C,(D". (7.79)

Furthermore, from Section 3.7.4, we have C,,(0) = (aa) = kg ', whereg " de-
pends on the thermodynamic response functions. From Egs. (7.69) and (7.78) the
correlation matrix can be written

[RGE JdaoP(a())aow(r»% = kyg eI (7.80)

since M is a self-adjoint matrix (| 7| indicates the absolute value of 7).

We now introduce the spectral density matrix and show that it is the Fourier
transform of the correlation matrix. Let us first introduce a slight modification of
the time series a(t) as follows:

at) |t|I<T,
;T = 7.81
at;T) {o > T (7.81)

such that Tlim a(t; T) = a(t). We next introduce the Fourier transform of a(¢; 7):

o0 T
a(e;T) = J dta(t; T)elet = J dta(t; T)elet . (7.82)
—o0 -7

Since the fluctuations, a(t), are real, we find
a*(;T) = a(—w; T) (7.83)

(* denotes complex conjugate).
The spectral density matrix is defined as

Spa(@) = lim %a*(w; Ta(w;T). (7.84)

Combining Eqgs. (7.82) and (7.83) we can write

aa T T

—00

S ()= J dre®? lim 1 J dta(t; Da(t+ ;7). (7.85)
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If we now invoke the ergodic theorem (Appendix C), we can equate the time av-
erage in Eq. (7.85) to the phase average of the fluctuations:

(aa(r)) = Tlim % J at; Da(t+;T)de. (7.86)
Then Eqgs. (7.85) and (7.86) lead to the relation
§M(w) = J dre“ (aa(r)) = J drei‘”E‘m(T). (7.87)

Thus, the spectral density matrix is the Fourier transform of the correlation ma-
trix. Equation (7.87) is called the Wiener—Khintchine theorem.

7.5
Linear Response Theory and the Fluctuation-Dissipation Theorem

Fluctuations in an equilibrium system decay, on the average, according to the same
linear macroscopic laws that describe the decay of the system from a nonequilibri-
um state to the equilibrium state. If we can probe the equilibrium fluctuations, we
have a means of probing the transport processes in the system. The fluctuation—
dissipation theorem shows that it is possible to probe the equilibrium fluctuations
by applying a weak external field which couples to particles in the medium but yet
is too weak to affect the medium. The system will respond to the field and absorb
energy from the field in a manner which depends entirely on the spectrum of the
equilibrium fluctuations. According to the fluctuation—dissipation theorem, the
spectrum of the equilibrium fluctuations and the rate of absorption of energy from
the external field can be expressed in terms of a response matrix.

In this section we derive the fluctuation—dissipation theorem [39]. We first in-
troduce linear response theory and use the assumption of causality to obtain a re-
lation between the real and imaginary parts of the dynamic susceptibility matrix,
which is the Fourier transform of the response matrix. We then obtain a relation
between the dynamic susceptibility matrix and the correlation matrix, and we
obtain an expression for power absorption in terms of the dynamic susceptibility
matrix. This gives us a relation between the fluctuations in an equilibrium system
and energy absorbed by that system when an external field is applied.

7.5.1
The Response Matrix

Let us assume that weak external forces, F = (F}, F,, ..., F,)", are applied to a sys-
tem and that these forces couple to the state variables, (4, 4,, ..., A,), causing
them to deviate from their equilibrium values by the amounts, a; = A; — A?,
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i =1,...,n We shall assume also that the deviations from equilibrium of the
state variables depend linearly on the applied forces (linear response). Then we
can write

(a(t))p = J di'Kit—t)-F{') = J K(7)-F(t —1)dr. (7.88)

The matrix K(t — ¢') is real and is called the response matrix. Since the response
must be causal (the response cannot precede the force which causes it), K(t — t')
must satisfy the causality condition,

Kit-t¢)=0, t—t <0. (7.89)

We shall assume that the response matrix relaxes fast enough that the integral
JE(t) df < o (7.90)
0

is finite. Physically, this means that a finite force must give rise to a finite response.
Since Eq. (7.88) is linear in the force, its Fourier transform has a very simple form.
If we note that

(a(t))p = % J (a(w)pe ! dw (7.91)

and use similar expressions relating F(7) to F(w), we obtain
(@(@))f = x(0) - F(w) , (7.92)

where
Y(w) = J K()el“t d¢ (7.93)

is the dynamic susceptibility. We have also used the definition for the delta func-
tion, 8(¢) = (1/2m) I_oom dwe @, Thus, a frequency component F(w) of the force
can only excite a response with the same frequency. This will not be true if the
response function depends on the force (nonlinear response).
The fact that E(t) is causal (E(t) =0fort < 0and E(t) # 0 for t > 0) imposes

conditions on the structure of x(®). The inverse transform of (7.93) gives

7 1 = —iwt

K(t) = e J X(we " do. (7.94)

Generally such integrals can be solved by contour integration in the complex w-
plane. For ¢ < 0, the contour must be closed in the upper half complex w-plane
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so the contribution from the semicircle at infinity is zero. In order for E(t) =0
for t < 0, the dynamic susceptibility x(w) can have no poles in the upper half
complex w-plane. For ¢ > 0, x(@) can have any number of poles in the lower half
complex w-plane, depending on the detailed dynamics of the process. (Note: two
excellent references on contour integration are [132] and [192].)

Exercise 7.4

Compute the dynamic susceptibility for a Brownian particle of mass m2 in the pres-
ence of white noise &(¢) and fluid friction y.

Answer: The Langevin equation for the Brownian particle in the presence of
a driving force F(¢) is mdv(t)/dt + yv(¢) = £(¢) + F(¢). If we take the average
with respect to the noise, we obtain m(d(v(2))¢)/dt + y(v(£))¢ = F(¢). Assume the
Brownian particle receives a “kick” at time ¢ = 0 so F(¢) = F,d(¢). Then (v(?)), =
K(2)F,. The equation for the response function K(t) takes the form mdK(¢)/d¢ +
yK(t) = &(t). This equation has the solution K(¢) = (1/m)e™""/" @(t), where O(t)
is the Heaviside function (note that §(¢) = d®/d¢). The Fourier transform of K(¢)
gives the dynamic susceptibility y(w) = (—imw + y)~L. Note that y() has a pole
in the lower half complex w-plane, which is consistent with its causal response to
the force field.

7.5.2
Causality

Causality enables us to obtain a relation between the real and imaginary parts of
the dynamic susceptibility. We can show this relationship in the following way.
Define a matrix G(z) such that
Go= X9 (7.95)
zZ—u
where z = @ + ie and u is real. Causality requires that x(z) have no poles in the
upper half z-plane. Integrate G(z) over a contour C’ (cf. Figure 7.1) so that C’

Im(z) complex z-plane
c
/A
Z=U Re(z)

Figure 7.1 Integration contour used to obtain the Kramers—Kronig relations.
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encloses no poles of G(z2). Then
— X(z
(J; G(z)dz = + & dz=0. (7.96)
’ cZ—U

Since x(z) — 0 as ¢ — oo there will be no contribution from the semicircle at
infinity. Thus,

u-—-r [oe]

+ —X(Z) dz = J _)((w) do + J do X(©) +ir
cz—u w—U ©—u
—00 u+r
0 .
. X(u + rel?
X J dge'? M =0. (7.97)
u+re? —uy
It is useful to introduce the Cauchy principal part,
P J doX@ _ jim J do X | J do X | (7.98)
w—u =0 ©—U ©—U
—c0 —00 u+r
Equation (7.97) then gives
3] _ 0
P J dow x(©) =— lirr(} J idex(u + re'?) = iny(u) (7.99)
©—U r—
or
_ [ X@)d
X(u) = i.P J xw)do . (7.100)
i ®— U

Equation (7.100) is a consequence of causality and allows us to relate the real part,
Y (@), and the imaginary part, ¥ (w), of the dynamic susceptibility matrix. Let us

write
X(@) =X (@) +iX" () (7.101)
and make use of Eq. (7.100). We then obtain the following relations between)_(/(w)
and )_(N(w):
1 e —H(w)
X (w)==P J X do (7.102)
T ©w—u
and
*
7w =-Lp J X 4 (7.103)
T ©w—u

Equations (7.102) and (7.103) are called the Kramers—Kronig relations [112]. They
enable us to compute the real part of x(w) if we know the imaginary part and vice
versa. As we shall see, the imaginary part of y(w) often can be obtained from
experiment.
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Exercise 7.5

Verify the Kramers—Kronig relations for the dynamic susceptibility in Exer-
cise 7.4.

Answer: The dynamic susceptibility is y(w) = (=imw + y)~L. Its real part
is Y'(©) = (y/m)/(w? + y?) and its imaginary part is y"(0) = (o/m)/(©> + y?).
Using the Kramers—Kronig relations, we can write

o8 ” o8
X'(u)=lPJX(w)dw=llimJ o—u __o/m g, y/m
V3 w—u Te=0 ) (w—u)+e* w?+y? u? +y?

The integrand has poles at ® = u + ie and at w = +iy. A contour integration that
picks up one pole of each type gives the above result.

7.5.2.1 Piece-Wise Constant Force

Everything we have done to this point is completely general. Let us now obtain an
explicit expression of the response for the case of a constant force which acts for
an infinite length of time and then is abruptly shut off at time ¢ = 0. The force we
consider has the form

F, for t<0
F@) = (7.104)
0 for £>0.

The Fourier transform of the force is

0 0
F(w)=F, J et dt = lim F, J e“ dt
e—

® ie
+
02+e? W+l

N
= limF,— = (<) lim F, [ (7.105)

where z = o — ie. If we now use the following definitions for the Cauchy principal
part and the Dirac delta function, respectively,

P <l> =lim —2— and o(w) = 1 lim —&— , (7.106)
12 e=0 w2 + €2 7T e=0 2 + €2
we obtain
F@) =F, [P(2) +7m80)] . (7.107)
iw

From Egs. (7.88) and (7.92), the response can be written in the form

(a(t))p = % J dwe ™ Y(w) - F(0) . (7.108)
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It is useful to write the response in a slightly different form. In Eq. (7.100) we

replace x(u) by e¥*’y(u) and write

. P —iwty d
e—mt)—((u) — .ip J M ) t<0
17T w—Uu
and
. e iwt3, d
elutx(u)=;PJ m’ t>0.
17T W —U

Then, for ¢ < 0, Eq. (7.109) yields the expression

< —iwt3;
0 =Lp J dotX@)
17T @

and, for ¢ > 0, Eq. (7.110) yields the expression

— 1
x(©0)=—P .
i

J do eiwt}(w)
@)

For t < 0, the response takes the form

(a(t))p = % J dwe “5(w) - F, [P (%) + na(w)] = %(0)-F

For t > 0, the response can be written
=) F
(a()))p = ;P J dw& cos(wt) .
in

—00

If we combine Eqs. (7.113) and (7.114), the response is

(a0 = {X<°> F, for <0

,inoo dpt@f. cos(wt) for t>0.
i —o0 2]

(7.109)

(7.110)

(7.111)

(7.112)

(7.113)

(7.114)

(7.115)

Thus, while the force is turned on, the response is constant. When it is turned off,
the response becomes time-dependent. The variables A, ..., A, begin to decay

back to their equilibrium values.

7.5.3
The Fluctuation-Dissipation Theorem

The fluctuation—dissipation theorem relates the response matrix to the correla-
tion matrix for equilibrium fluctuations. As a result, a weak external field can be

used as a probe of equilibrium fluctuations.
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To derive the fluctuation—dissipation theorem, let us consider a system to which
a constant force F is applied from ¢ = —oo to ¢t = 0 and switched off at £ = 0.
We first write the response, (a()) , for times ¢ > 0 in terms of the conditional
average (a(t))q,,

(¢x(t))F0 = JdaOP(aO,FO)(a(t»“o for t>0, (7.116)

where P(a, F ) is the probability distribution for fluctuations a, at time £ = 0 in
the presence of a constant external field, F. For times ¢ > 0, the field is no longer
turned on and we can write

(a(®))g, = e Mt a, for t>0 (7.117)

(cf. Eq. (7.69)). Combining Eqs. (7.116) and (7.117), we obtain

(@), = - | dagPlay, Bty = ™ - (@O,

— oMt -x(0)-F, = %P J dw cos(wt)’% -F_, (7.118)

where we have used Eq. (7.115). Thus, we find

oMt - X(©0) = .iP J de COS((x)t)M . (7.119)
in 13
If we remember that
Coo(t) = (a(t)a) = e (aa), (7.120)

(cf. Eq. (7.80)) we may combine Eqs. (7.118) and (7.119) to obtain

C,.(t) = %P J do cos(wt)’% X 10) - (aa) (7.121)

for t > 0. Thus, we have obtained a relation between the dynamic susceptibility
matrix, y(w), and the equilibrium correlation function Eaa(t) for fluctuations.
Equation (7.121) is the famous fluctuation—dissipation theorem. It gives a relation
between the linear response function and the correlation function for equilibrium
fluctuations.

Exercise 7.6

Given the dynamic susceptibility y(w) = (—=imw + y)~! for simple Brownian mo-
tion (see Exercise 7.4) and the thermal average (v2); = kyT/m, use the fluctua-
tion—dissipation theorem to obtain the velocity autocorrelation function.
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Answer: The fluctuation—dissipation theorem Eq. (7.121) says the correlation
function is given by

ko T N kg T T
1 <B_P de_(w) COS(COt) = 1 B lim dw © X”(w) cos(wt)
m im ® m J >0 w? + ¢
_ kT o J do o't _ 5T yiim
mir e—0 (0% + e2)(w? + ()’/m)z) m

In the second term, the real part of y(®) does not contribute because it makes the
integrand an odd function of w.

Exercise 7.7

Prove that x(0) = g /T, where g is the matrix whose matrix element is gi; =
(0*S/0a;0a))y.

Answer: The external field, F , does work on the system and increases its in-
ternal energy by an amount dU = F_ - da. We can expand the differential of the
entropy d S and use internal energy and state variables a as independent variables,
dS=(S/ol),dU +(0S/0a), - da.But (dS/oU), =1/T and (aS/oa),; = —g - a.
Therefore, we can write dS = ((FO)/T -g- a) - da. For a constant force, (a) =
X(0) - F is the expectation value of (a) rather than zero, and the entropy will
have its maximum for @ = x(0) - F,,. Thus, we have 0S/da = (F,)/T — g - &, and
the condition that entropy be maximum at a = x(0) - F, yields (9S/ 0a) 4—50)- F,=

(1/T)Fy—g-X(0)- Fy =0orx(0) = (1/T) g .

754
Power Absorption

The work done on the medium by an external force F to change @ by an amount d &
is

dW = -F -da. (7.122)

The average rate at which work is done on the medium is just the power P(¢)
absorbed by the medium:

_dW — vy — 'im/__l' !
P(t)—<$>F— F(t) - (a(t))p = —F(t) dtJdtK(t t)-F(t).

(7.123)
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If we write the right-hand side in terms of Fourier transforms x(w) and F(w), we
obtain

2 (o] (o4}
P(@t) =i<$) J do J 4o’ o' F(@) - §(@') - F@@)e @ . (7.124)

We can now compute the power absorbed and the total energy absorbed for var-
ious types of external forces.

7.5.4.1 Delta Function Force
Let us assume that at time ¢ = 0 a delta function force is applied. Then,

F(t)=F,5(t) and F(w)=F,. (7.125)

Substituting into Eq. (7.124), we obtain

[Se] [Se]

2
P(o) =i<$) J dw J dw' &'X(@") : FoFoe @+ . (7.126)

—00 -0

(Note: F - x(w) - F = x(w) : FF.) We can find the total energy absorbed by inte-
grating over all times:

W, = J Py dt = — (%) J doox” (©): FoF,, (7.127)

where ¥’ () is the imaginary part of the dynamic susceptibility matrix. Since the
total energy absorbed must be a real quantity, only the imaginary part of x(w)
contributes.

Exercise 7.8

Find the total energy absorbed by the fluid when a simple Brownian particle (see
Exercise 7.3) is hit by a delta function force F(t) = F ().

Answer: The instantaneous absorbed power is P(t) = —F(¢){v(¢))¢. The total en-
ergy absorbed is

@ 2m

[~ o F2
W, = J P(t)ydt = —J dtF, 0K (OF, = —=—=
“e 0

where we have used the fact that K(¢) = 0 for £ < 0 and I;o dté(r) =1/2.

7.54.2 Oscillating Force
Now let us consider a monochromatic oscillating force of the form

F(t) = Fy cos(wg) = 2 Fy (€0 +¢70) (7.128)
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Then F(w) = nF((§(» + wy) + §(® — ©,)) and the power absorbed can be written

P(t) = —= [(—iwg)(e 2?0 + 1)X(wy) + (iwg)(e™“" + )x(-w,)| : FF .

(7.129)

1
4

As we can see, the instantaneous power absorption oscillates in time. We can find
the average power absorbed by taking the time average of Eq. (7.129) over one
period T of oscillation:

/W
) iwy — _ Wy
P, = — J deP(t) = e [x(wy) = X(~wy)| : FF = 5 X (wp): FF,
0

(7.130)

where ¥’ (,) is the imaginary part of x(w,). For this case we see that the average
power absorbed depends on the imaginary part of the response matrix. In prin-
ciple, the average power absorbed can be measured, and therefore ¥ () can be
measured for all ®,. The Kramers—Kronig relations allow us to obtain the real
part of x(w,) once we know )_(”(wo).

The fluctuation—dissipation theorem relates x(w) to the correlation matrix
Ew(r) for equilibrium fluctuations and therefore also relates x(w) to the spectral
density matrix, gaa(w), of equilibrium fluctuations. Thus, by applying a weak
external field to a system, we can probe the equilibrium fluctuations.

7.6
Microscopic Linear Response Theory

It is possible to derive the linear response matrix directly from microscopic the-
ory [113]. In this section, we show how to do that for one of the simplest electric
circuits, a ballistic electron waveguide. We first derive a general formula for the
change in the density operator when an external field is applied. We then use it to
derive the conductance of the electron waveguide.

7.6.1
Density Operator Perturbed by External Field

Let us consider a system to which we apply an external field that couples to mi-
croscopic densities in the system. We consider the case of an applied electric po-
tential that couples to electron densities in a conductor. The total Hamiltonian of
the system in the presence of the external field can be written

H(t)=Hy+ AH(1), (7.131)

where ]:IO is the Hamiltonian of the system in the absence of the field and AH ()
is the contribution to the Hamiltonian due to the external field. We assume that
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the external field is turned on at time ¢ = —oco0. The density operator, p(¢), in the
presence of the field, satisfies the equation of motion (see Appendix A)
PO .o
5 = H®,p®)]. (7.132)

Let us write the total density operator in the form
p(t) = peq + Ap(t), (7.133)

where Ap(¢) is the change in the state of the system due to the external field
and py = e ~BH, / Tr(e‘ﬁHﬂ) is the equilibrium density operator when no external

field is present. Since [H,, Peql = 0, we find

9%
i p(t)
ot

= [AH(E), peg] + [Ho, AP + [AH(@), AP(8)] - (7.134)

To obtain an expression for Ap(¢) linear in the applied field, we neglect the non-
linear term, [AH(2), Ap(t)], and write

LMD
1ha— = [AH(), peql + [Ho, AP(D)] - (7.135)
We can solve Eq. (7.135) for Ap(¢). First write
Ap(t) = e iHot/h A (£)eiflot/h (7.136)
and plug this expression into Eq. (7.135). Then the equation for Ap,(¢) is
OAp(¢t
in 2220
ot

- [e—iﬁof/"AH(t)eif’of/", peq] . (7.137)

We can integrate (7.137). If we assume that Ap;(—o0) = 0, we find

t

Apl(t) h J d¢ [ —Ll:lot’/hAI':[(tl)eif:lot’/h’[)eq:l (7138)
and
t
AP(D) = J dt [ 1Ho(t—t/)hA]:[(tl)e—il:lo(t—t’)/h’ﬁeq] ) (7.139)

We can use Egs. (7.133) and (7.139) to find the average value of any desired quan-
tity in the presence of a weak field.

7.6.2
The Electric Conductance

We compute the conductance of a ballistic electron waveguide. Electron waveg-
uides can be formed at the interface of semiconducting materials such as GaAs/
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AlGaAs. Electrons at the interface form a two-dimensional Fermi gas. One-
dimensional flow can be achieved by using gates (negatively charged structures)
on the outside of the materials to induce electrostatic walls at the interface. The
walls can be aligned so the electrons are forced to flow through one-dimensional
channels at the interface. In real ballistic electron waveguides, the two transverse
degrees of freedom are confined to small widths which only allow one or a few
transverse quantum states to be excited for the energies available to the electrons
in these systems [34]. The effect of these transverse degrees of freedom is to cause
the conductance of the wire to increase in discrete jumps (an effect called con-
ductance quantization) as the energy of the electrons is increased. These jumps
in conductance occur because with increasing energy more and more transverse
modes can be excited resulting in an increase in the number of conduction chan-
nels available to the electrons.

We consider a wire of length L that is attached to an electron reservoir on its
left and an electron reservoir on its right. We assume that electron energies are
low enough that only one state is excited in each of the two transverse directions.
The reservoirs are infinitely large and each contains an electron gas distributed
according to the Fermi distribution. Generally the reservoirs can have different
temperature T and chemical potential 4. We assume that the shape of the interface
between the reservoir and the wire is such that electrons from the reservoir can
enter the wire with minimal chance of reflecti