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Preface to the Fourth Edition

A Modern Course in Statistical Physics has gone through several editions. The
first edition was published in 1980 by University of Texas Press. It was well re-
ceived because it contained a presentation of statistical physics that synthesized
the best of the american and european “schools” of statistical physics at that time.
In 1997, the rights to A Modern Course in Statistical Physics were transferred to
JohnWiley & Sons and the second edition was published. The second edition was
amuch expanded version of the first edition, and as we subsequently realized, was
too long to be used easily as a textbook although it served as a great reference on
statistical physics. In 2004, Wiley-VCH Verlag assumed rights to the second edi-
tion, and in 2007 we decided to produce a shortened edition (the third) that was
explicitly written as a textbook. The third edition appeared in 2009.
Statistical physics is a fast moving subject and many new developments have

occurred in the last ten years. Therefore, in order to keep the book “modern”, we
decided that it was time to adjust the focus of the book to include more applica-
tions in biology, chemistry and condensed matter physics. The core material of
the book has not changed, so previous editions are still extremely useful. Howev-
er, the new fourth edition, which is slightly longer than the third edition, changes
some of its focus to resonate with modern research topics.
The first edition acknowledged the support and encouragement of Ilya Pri-

gogine, who directed the Center for Statistical Mechanics at the U.T. Austin from
1968 to 2003. He had an incredible depth of knowledge in many fields of science
and helpedmake U.T. Austin an exciting place to be. The second edition was ded-
icated to Ilya Prigogine “for his encouragement and support, and because he has
changed our view of the world.” The second edition also acknowledged another
great scientist, Nico van Kampen, whose beautiful lectures on stochastic process-
es, and critically humorous view of everything, were an inspiration and spurred
my interest statistical physics. Although both of these great people are now gone,
I thank them both.
The world exists and is stable because of a few symmetries at the microscopic

level. Statistical physics explains how thermodynamics, and the incredible com-
plexity of the world around us, emerges from those symmetries. This book at-
tempts to tell the story of how that happens.

Austin, Texas January 2016 L. E. Reichl
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1
Introduction

Thermodynamics, which is a macroscopic theory of matter, emerges from the
symmetries of nature at the microscopic level and provides a universal theory
of matter at the macroscopic level. Quantities that cannot be destroyed at themi-
croscopic level, due to symmetries and their resulting conservation laws, give rise
to the state variables upon which the theory of thermodynamics is built.
Statistical physics provides the microscopic foundations of thermodynamics.

At the microscopic level, many-body systems have a huge number of states avail-
able to them and are continually sampling large subsets of these states. The task
of statistical physics is to determine the macroscopic (measurable) behavior of
many-body systems, given some knowledge of properties of the underlying mi-
croscopic states, and to recover the thermodynamic behavior of such systems.
The field of statistical physics has expanded dramatically during the last half-

century. New results in quantum fluids, nonlinear chemical physics, critical phe-
nomena, transport theory, and biophysics have revolutionized the subject, and
yet these results are rarely presented in a form that students who have little back-
ground in statistical physics can appreciate or understand. This book attempts to
incorporate many of these subjects into a basic course on statistical physics. It in-
cludes, in a unified and integrated manner, the foundations of statistical physics
and develops from them most of the tools needed to understand the concepts
underlying modern research in the above fields.
There is a tendency in many books to focus on equilibrium statistical mechan-

ics and derive thermodynamics as a consequence. As a result, students do not get
the experience of traversing the vast world of thermodynamics and do not under-
stand how to apply it to systems which are too complicated to be analyzed using
the methods of statistical mechanics. We will begin in Chapter 2, by deriving the
equations of state for some simple systems starting from our knowledge of the
microscopic states of those systems (themicrocanonical ensemble). This will give
some intuition about the complexity of microscopic behavior underlying the very
simple equations of state that emerge in those systems.
In Chapter 3, we provide a thorough grounding in thermodynamics.We review

the foundations of thermodynamics and thermodynamic stability theory and de-
vote a large part of the chapter to a variety of applications which do not involve
phase transitions, such as heat engines, the cooling of gases, mixing, osmosis,

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.



2 1 Introduction

chemical thermodynamics, and batteries. Chapter 4 is devoted to the thermo-
dynamics of phase transitions and the use of thermodynamic stability theory in
analyzing these phase transitions. We discuss first-order phase transitions in liq-
uid–vapor–solid transitions, with particular emphasis on the liquid–vapor transi-
tion and its critical point and critical exponents.We also introduce theGinzburg–
Landau theory of continuous phase transitions and discuss a variety of transitions
which involve broken symmetries. And we introduce the critical exponents which
characterize the behavior of key thermodynamic quantities as a system approach-
es its critical point.
In Chapter 5, we derive the probability density operator for systems in thermal

contact with the outside world but isolated chemically (the canonical ensemble).
We use the canonical ensemble to derive the thermodynamic properties of a va-
riety of model systems, including semiclassical gases, harmonic lattices and spin
systems.We also introduce the concept of scaling of free energies as we approach
the critical point and we derive values for critical exponents using Wilson renor-
malization theory for some particular spin lattices.
In Chapter 6, we derive the probability density operator for open systems (the

grand canonical ensemble), and use it to discuss adsorption processes, properties
of interacting classical gases, ideal quantum gases, Bose–Einstein condensation,
Bogoliubov mean field theory, diamagnetism, and super-conductors.
The discrete nature of matter introduces fluctuations about the average (ther-

modynamic) behavior of systems. These fluctuations can be measured and give
valuable information about decay processes and the hydrodynamic behavior of
many-body systems. Therefore, in Chapter 7 we introduce the theory of Browni-
an motion which is the paradigm theory describing the effect of underlying fluc-
tuations on macroscopic quantities. The relation between fluctuations and decay
processes is the content of the so-called fluctuation–dissipation theorem which
is derived in this chapter. We also derive Onsager’s relations between transport
coefficients, and we introduce the mathematics needed to introduce the effect of
causality on correlation functions. We conclude this chapter with a discussion of
thermal noise and Landauer conductivity in ballistic electron waveguides.
Chapter 8 is devoted to hydrodynamic processes for systems near equilibrium.

Wederive theNavier–Stokesequations from the symmetry properties of a fluid of
point particles, and we use the derived expression for entropy production to ob-
tain the transport coefficients for the system.We also use the solutions of the lin-
earizedNavier–Stokesequations to predict the outcome of light-scattering exper-
iments. We next derive a general expression for the entropy production in binary
mixtures and use this theory to describe thermal and chemical transport process-
es in mixtures, and in electrical circuits. We conclude Chapter 8 with a derivation
of hydrodynamic equations for superfluids and consider the types of sound that
can exist in such fluids.
In Chapter 9, we derivemicroscopic expressions for the coefficients of diffusion,

shear viscosity, and thermal conductivity, starting both from mean free path ar-
guments and from the Boltzmann and Lorentz–Boltzmann equations. We obtain
explicit microscopic expressions for the transport coefficients of a hard-sphere
gas.
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Finally, in Chapter 10 we conclude with the fascinating subject of nonequilibri-
um phase transitions.We showhownonlinearities in the rate equations for chem-
ical reaction–diffusion systems lead to nonequilibrium phase transitions which
give rise to chemical clocks, nonlinear chemical waves, and spatially periodic
chemical structures, while nonlinearities in the Rayleigh–Bénard hydrodynamic
system lead to spatially periodic convection cells.
The book contains Appendices with background material on a variety of top-

ics. Appendix A, gives a review of basic concepts from probability theory and the
theory of stochastic processes. Appendix B reviews the theory of exact differen-
tials which is the mathematics underlying thermodynamics. In Appendix C, we
review ergodic theory. Ergodicity is a fundamental ingredient for the microscop-
ic foundations of thermodynamics. In Appendix D, we derive the second quan-
tized formalism of quantum mechanics and show how it can be used in statistical
mechanics. Appendix E reviews basic classical scattering theory. Finally, in Ap-
pendix F, we give some useful math formulas and data. Appendix F also contains
solutions to some of the problems that appear at the end of each chapter.
The material covered in this textbook is designed to provide a solid grounding

in the statistical physics underlying most modern physics research topics.
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2
Complexity and Entropy

2.1
Introduction

Thermodynamics and statistical physics describe the behavior of systems with
many interacting degrees of freedom. Such systems have a huge number of mi-
croscopic states available to them and they are continually passing between these
states. The reason that we can say anything about the behavior of such systems
is that symmetries (and conservation laws) exist that must be respected by the
microscopic dynamics of these systems.
If we have had a course in Newtonian mechanics or quantum mechanics, then

we are familiar with the effects of conservation laws on the dynamics of classical
or quantum systems. However, in such courses, we generally only deal with very
special systems (usually integrable systems) that have few degrees of freedom.
We seldom are taught the means to deal with the complexity that arises when in-
teracting systems have many degrees of freedom. Fortunately, nature has given
us a quantity, called entropy, that is a measure of complexity. Thermodynamics
shows us that entropy is one of the essential building blocks, together with con-
servation laws, for describing the macroscopic behavior of complex systems. The
tendency of systems to maximize their entropy gives rise to effective forces (en-
tropic forces). Two examples of entropic forces are the pressure of an ideal gas
and the tension in an elastic band.
In this chapter, we focus on tools for measuring the complexity of systems with

many degrees of freedom. We first describe methods for counting microscopic
states. Then we introduce the measure of complexity, the entropy, that will play
a fundamental role in everything we discuss in the remainder of the book.

2.2
CountingMicroscopic States

The first step in counting the number of microscopic states, for a given system,
is to identify what these states are. Once the states are identified, we can start
the counting process. It is useful to keep in mind two very important counting

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.



6 2 Complexity and Entropy

principles [125, 146, 183]:

1. Addition principle: If two operations are mutually exclusive and the first can
be done in m ways while the second can be done in n ways, then one or the
other can be done in m + n ways.

2. Multiplication principle: If an operation can be performed in n ways, and af-
ter it is performed in any one of these ways a second operation is performed
which can be performed in any one ofmways, then the two operations can be
performed in n ×m ways.

Let us consider some very simple exampleswhich illustrate the use of these count-
ing principles. As a first example (Exercise 2.1), we count the number of distinct
signals that a ship can send if it has one flagpole and four distinct (distinguish-
able) flags. The number of distinct signals depends on the rules for distinguishing
different signals.

Exercise 2.1

A ship has four distinct flags, W , X , Y , and Z , that it can run up its flagpole.
How many different signals can it send (assuming at least one flag must be on
the flagpole to create a signal)? Consider two different rules for defining a signal
(a state): (a) the order of the flags on the flagpole is important and (b) the order of
the flags is not important. (Note that the cases of one flag, two flags, three flags,
and four flags on the flag pole aremutually exclusive. Therefore, we must find the
number of signals for each case and add them.)
(a)Order of flags important.With one flag there are 4!∕(4 − 1)! = 4 signals, with

two flags 4!∕(4 − 2)! = 12 signals, with three flags 4!∕(4 − 3)! = 24 signals, with
four flags 4!∕(4 − 4)! = 24 signals, for a total of 4 + 12 + 24 + 24 = 64 signals.
(b)Order of flags not important. With one flag there are 4!∕((4 − 1)!1!) = 4 sig-

nals, with two flags 4!∕((4 − 2)!2!) = 6 signals, with three flags 4!∕((4 − 3)!3!) = 4
signals, with four flags 4!∕((4 − 4)!4!) = 1 signal, for a total of 4 + 6 + 4 + 1 = 15
signals.

In Exercise 2.1(a), the number of signals is given by the number of permutations
of the flags, while for Exercise 2.1(b) the number of signals corresponds to the
number of combinations of flags. Below we discuss these two quantities in more
detail.
A permutation is any arrangement of a set of N distinct objects in a definite

order.The number of different permutations of N distinct objects is N! To prove
this, assume that we have N ordered spaces and N distinct objects with which to
fill them. The first space can be filledN ways, and after it is filled, the second space
can be filled in (N −1)ways, etc. Thus, theN spaces can be filled in N(N −1)(N −
2) ×⋯ × 1 = N! ways.
The number of different permutations of N objects taken R at a time is N!∕

(N − R)!. To prove this, let us assume we have R ordered spaces to fill. Then
the first can be filled in N ways, the second in (N − 1) ways, . . . , and the Rth in
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(N − R+ 1)ways. The total number of ways PNR that R ordered spaces can be filled
using N distinct objects is PNR = N(N − 1) ×⋯ × (N − R + 1) = N!∕(N − R)!.
A combination is a selection of N distinct objects without regard to order.The

number of different combinations ofN objects takenRat a time is N!∕((N − R)!R!).
R distinct objects have R! permutations. If we let CNR denote the number of com-
binations of N distinct objects taken R at a time, then R!CNR = PNR and CNR =
N!∕((N − R)!R!).

Exercise 2.2

A bus has seven seats facing forward, F , and six seats facing backward, B, so that
F∕B→ (∩ ∩ ∩ ∩ ∩ ∩ ∩)∕(∪ ∪ ∪ ∪ ∪∪). Nine (distinct) students get on the bus, but
three of them refuse to sit facing backward. In how many different ways can the
nine students be distributed among the seats on the bus?

Answer: Three students must face forward. The number of ways to seat three
students in the seven forward facing seats is equal to the number of permu-
tations of seven objects taken three at a time or 7!∕(7 − 3)! = 210. After these
three students are seated, the number of ways to seat the remaining six students
among the remaining ten seats is equal to the number of permutations of ten ob-
jects taken six at a time or 10!∕(10 − 6)! = 151 200. Now using themultiplication
principle, we find that the total number of distinct ways to seat the students is
(210) × (151 200) = 31 752 000, which is an amazingly large number.

It is also useful to determine the number of distinct permutations of N objects
when some of them are identical and indistinguishable. The number of permu-
tations of a set of N objects which contains n1 identical elements of one kind,
n2 identical elements of another kind, . . . , and nk identical elements of a kth kind
is N!∕(n1!n2!⋯ nk !), where n1 + n2 +⋯ + nk = N . A simple example of this is
given in Exercise 2.3.

Exercise 2.3

(a) Find the number of permutations of the letters in the word, ENGINEERING.
(b) In how many ways are three E’s together?
(c) In howmany ways are (only) two E’s together.

Answer: (a) The number of permutations is (11!∕3!3!2!2!) = 277 200, since there
are 11 letters but two identical pairs (I and G) and two identical triplets (E and N).
(b) The number of permutations with three E’s together = the number of per-

mutations of ENGINRING = (9!∕3!2!2!) = 15 120.
(c) The number of ways that only two E’s are together = 8 × (15 120) = 120 960,

since there are eight ways to insert EE into ENGINRING and its permutations.

When we are considering a physical system with N particles, the number of mi-
croscopic states can be enormous for even moderate values ofN . In Exercise 2.4,
we count the number of different microscopic magnetic states available to a col-
lection of N spin-1∕2 particles.
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Exercise 2.4

Consider a system of N spin-1∕2 particles lined up in a row. Distinct states of
theN-particle system, have different spatial ordering of the spins-up ↑ and spins-
down ↓. ForN = 10, one such state might be ↑↓↓↑↓↑↑↑↓↑. Howmanymicroscopic
states (different configurations of the N particle spin system) does this system
have?

Answer: Use themultiplication principle. The first spin has two configurations,
↑ and ↓. After the configuration of the first spin is set, the second spin can exist in
one of these two configurations, and so on. Thus, the total number ofmicroscopic
states is 2× 2×⋯× 2= 2N . For N = 10, the number of microscopic states is 1024.
For N = 1000 the number of microscopic states is 1.071 51 × 10301. For a small
magnetic crystal with N = 1023 atoms, the number of microscopic spin states is
so large that it is beyond comprehension.

Exercise 2.5

Take a bag ofN distinct coins (each coin from a different country and each having
one side with the picture of a head on it) and dump them on the floor. Howmany
different ways can the coins have n heads facing up?

Answer: First ask a different question. How many different ways can N distinct
coins be assigned to n pots (one coin per pot)? There areN distinct ways to assign
a coin to the first pot and, after that is done, N − 1 distinct ways to assign the
remaining N − 1 coins to the second pot, . . . , and N − n + 1 ways to assign the
remaining coins to the nth pot. Thus, the total number of distinct ways to assign
theN coins to n pots is N × (N − 1) ×…× (N − n + 1) = N!∕(N − n)!. Now note
that permutation of the coins, among the pots, doesn’t give a different answer,
so we must divide by n!. Thus, the number of distinct ways to assign n heads to
N distinct coins is (n) = N!∕(n!(N − n)!).

As we will see, these counting rules are extremely important when we attempt to
count the different microscopic states available to a quantum system containing
N particles. The symmetry properties of the Liouville operator or Hamiltonian
operator, under interchange of the particles, determines whether the particles are
identical or distinct. The number of microscopic states available to the system,
and therefore its physical properties, are very different for these two cases. Con-
sider the example discussed in Exercise 2.5. If we have N distinct coins and drop
them on the floor, the number of distinct ways to assign n “heads” to the coins
(have n “heads” face up) is  (n) = N!∕(n!(N − n)!). However, if the coins are
identical (all US quarters) the number of distinct ways that n “heads” can face up
is (n) = 1.
The question of whether the particles comprising a system are distinct or iden-

tical has measurable physical consequences because the number of microscopic
states available to the system is very different for the two cases. As we have seen,
the number of microscopic states available to a collection of N particles is gener-
ally huge.
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2.3
Probability

Once we have identified themicroscopic states of a system, we can askwhatmight
be observed in an experiment. Because the number ofmicroscopic states associat-
ed with a macroscopic system is so large, the outcome of an experiment generally
will be different every time it is performed.However, if we performan experiment
many times, we can begin to assign quantitative weights (probabilities) to the var-
ious outcomes, consistent with the probabilities associated with the microscopic
states. This relation between the outcome of experiments and the probabilities
assigned to those outcomes is the content of the Central Limit Theorem (see Ap-
pendix A).
The simplest situation (and one very common in nature) is one in which the

microscopic states are all equally likely to occur. Then, if we have N microscopic
states, x j ( j = 1,… ,N), the probability that the state x j appears as a result of an
experiment is P(x j) = 1∕N . The entire collection of microscopic states, with
their assigned probabilities, forms a sample space  .
An event is the outcome of an experiment, and it can involve one ormoremicro-

scopic states. Let us consider two events, A and B, each of which involves several
microscopic states. Let P(A) (P(B)) denote the probability that event A (B) oc-
curs as the outcome of the experiment. The probability P(A) (P(B)) is the sum of
the probabilities of all the microscopic states that comprise the event A (B). If the
event includes the entire sample space then P() = 1 and, if the event includes no
elements of the sample space so A = ∅ (∅ denotes an empty set), then P(∅) = 0.
Theunion of eventsA andB (denotedA∪B) contains allmicroscopic states that

participate in both events. The intersection of eventsA andB (denotedA∩B) con-
tains all microscopic states shared by the two events. Therefore, the probability
that both events occur as a result of an experiment is the probability of the union,
which can be written

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) , (2.1)

where P(A ∩ B) is the probability associated with microscopic states in the inter-
section. When we add the probabilities P(A) and P(B), we count the states A ∩ B
twice, so we correct this mistake by subtracting off one factor of P(A ∩ B).
If the two eventsA and B aremutually exclusive, then they have nomicroscopic

states in common and

P(A ∪ B) = P(A) + P(B) . (2.2)

We can partition the sample space  into a complete set of mutually exclusive
events A1, A2 ,… , Am so that A1 ∪ A2 ∪⋯ ∪ Am = S. Then, the probabilities as-
sociated with them events satisfy the condition

P(A1) + P(A2) +⋯ + P(Am) = 1 . (2.3)

This partitioning of the sample space will prove extremely useful in subsequent
chapters.
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Exercise 2.6

Three distinguishable coins (labeled a, b, and c) are tossed. The coins are each fair
so “heads” (h) and “tails” (t) are equally likely. (a) Find the probability of getting no
heads. (b) Find the probability of getting at least two heads. (c) Show that the event
heads on coin a and the event tails on coins b and c are independent. (d) Show that
the event only two coins heads and the event three coins heads are dependent and
mutually exclusive. (e) Find the conditional probability that, given heads on coin
a, coin b will be tails.

Answer: Construct a sample space of the following equally probable events:
(a , b, c) = {(h, h, h), (h, h, t), (h, t, h), (h, t, t), (t, h, h), (t, h, t), (t, t, h), (t, t, t)}.
(a) The probability of no heads = 1∕8. (b) The probability of at least two heads
= 1∕2. (c) Define event A = “heads on the first coin.” Define event B = “tails
on the last two coins.” Then P(A) = 1∕2 and P(B) = 1∕4. The union, A ∪ B
has probability, P(A ∪ B) = 5∕8. Thus, the probability of the intersection is
P(A ∩ B) = P(A) + P(B) − P(A ∪ B) = 1∕8 = P(A) × P(B). Thus, the events,
A and B are independent. (d) Define event C = “only two coins heads.” Define
event D = “three coins heads.” Then P(C) = 3∕8 and P(D) = 1∕8. The union,
C ∪ D has probability, P(C ∪ D) = 1∕2. Thus, the probability of the intersection
is P(C ∩ D) = P(C) + P(D) − P(C ∪ D) = 0 ≠ P(C) × P(D). Thus, the events C
and D are dependent and are mutually exclusive. (e) Use as the sample space all
events with heads on coin a. This new sample space has four states. The condi-
tional probability that, given coin a is heads, then coin b will be tails is 1∕2.

The events A and B are independent if

P(A ∩ B) = P(A)P(B) . (2.4)

Note that independent events have some microscopic states in common because
P(A ∩ B) ≠ 0. It is important to note that independent events are not mutually
exclusive events.
Another important quantity is the conditional probability P(B|A), defined as

the probability of event A, using event B as the sample space (rather than S). The
conditional probability is defined by the equation

P(B|A) = P(A ∩ B)
P(B)

. (2.5)

Since P(A ∩ B) = P(B ∩ A), we find the useful relation

P(A)P(A|B) = P(B)P(B|A) . (2.6)

From Eqs. (2.4) and (2.5), we see that, if A and B are independent, then

P(B|A) = P(A) . (2.7)

In Exercise 2.6, we illustrate all these aspects of probability theory for a simple
coin-toss experiment.
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In the next sections, we consider several different physical systems and deter-
mine how the number of microscopic states, and their probability distributions,
depend on physical parameters of those systems.

2.4
Multiplicity and Entropy of Macroscopic Physical States

For a dynamical systemwithN interacting particles (3N degrees of freedom in 3D
space), there will be a very large multiplicity N (number) of microscopic states
available to the system. In addition, a few conservation laws will allow us to define
a set of macroscopic states that are parametrized by the values of the conserved
quantities. Two of the most important conserved quantities associated with an
interacting many-body system are the particle number (assuming no chemical
reactions occur) and the total energy of the system. However, there can be oth-
er conserved quantities. For example, for a lattice of spin-1∕2 particles, the spin
is a measure of a conserved internal angular momentum of each particle. Spin
cannot be destroyed by interactions between the particles or with external forces.
Therefore, the spin provides an additional parameter (along with particle number
and total energy) that can be used to specify the state of anN-particle spin lattice.
We can assign a macroscopic variable, the number n of “spins up,” to the system.
Each value of the macroscopic variable n has amultiplicity ofN (n)microscopic
states associated to it.
The total energy is generally proportional to the number of degrees of freedom

of the system. When we discuss thermodynamics we also need a measure of the
multiplicity of a system that is proportional to the number of degrees of freedom.
That quantity is the entropy, S. The entropy of anN-particle systemwith energy E
and macroscopic states characterized by a parameter n, is defined

S(N , E , n) = kB ln(N (E , n)) . (2.8)

The quantity kB = 1.38 × 10−23 J∕K is Boltzmann’s constant. This expression for
the entropy implicitly assumes that all microscopic states with the same values
of N , E, and n have the same weight. Another way to say this is that all such mi-
croscopic states are equally probable.
The fact that all microscopic states with the same energy are equally probable,

derives from the ergodic theorem, which has its origins in classical mechanics.
A classical mechanical system is ergodic if it spends equal times in equal areas
of the mechanical energy surface. All fully chaotic mechanical systems have this
property, and it is the foundation upon which statistical mechanics is built. It un-
derlies everything we talk about in this book.
In subsequent sections, wewill compute themultiplicity and entropy of the four

physical systems; a spin system, a polymer chain, an Einstein solid, and an ideal
gas.



12 2 Complexity and Entropy

2.5
Multiplicity and Entropy of a Spin System

Consider a collection ofN spin-1∕2 atoms arranged on a lattice. The spin is amea-
sure of quantized angular momentum internal to the atom. Spin-1∕2 atoms have
a magnetic moment and magnetic field associated with them due to the intrin-
sic charge currents that give rise to the spin. Generally when an array of spin-1∕2
atoms is arranged on a lattice, the various atoms will interact with one another via
their magnetic fields. These interactions give rise to many interesting properties
of such lattices, including phase transitions.Wewill discuss these in later sections
of the book.

2.5.1
Multiplicity of a Spin System

Since the atoms are fixed to their respective lattice sites, they can be distinguished
by their position on the lattice and therefore are distinct. Let n denote the number
of atoms with spin up (↑). Note that for this problem, the method of counting
microscopic states is the same as that for the bag of N coins in Exercise 2.5. The
number of distinctways to assignn spins “up” is the same as the number of distinct
ways that N distinct objects can be assigned to n pots, assuming their ordering
among the pots does not matter. Thus, the multiplicity of the macroscopic state
“n spins up” is

N (n) =
N!

n!(N − n)!
. (2.9)

This is the number of microscopic states available to the lattice for the given value
of n. As a check, let us sum over all possible values n = 0, 1,… ,N . If we make use
of the binomial theorem

(a + b)N =
N∑
n=0

N!
n!(N − n)!

aN−nbn , (2.10)

and set a = b = 1 we can use Eq. (2.9) to obtain the total number of microstates

N =
N∑
n=0

N (n) =
N∑
n=0

N!
n!(N − n)!

= 2N . (2.11)

Thus, the sum of all the microstates contained in the macrostates gives 2N , as it
should. Note that our ability to count the number of microscopic states is due to
the fact that the angular momentum intrinsic to the atoms is quantized and is
a consequence of the quantum nature of matter.
Let us now focus on the limit N →∞, and consider the behavior of the fraction

of microstates, N (n) = (N (n))∕(N ) with n spins “up,”

N (n) = N!
n!(N − n)!

1
2N

= N!
n!(N − n)!

(1
2

)n (1
2

)N−n
. (2.12)
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Figure 2.1 A plot of the fraction of microscopic states,
N(n) that belong to the macroscopic state “n spins
up,” plotted as a function of n. The macroscopic state
n = ⟨n⟩ = N∕2 contains the most microscopic states.
As N increases, the ratio σN∕⟨n⟩ decreases as 1∕√N,
and the macrostate n = ⟨n⟩ begins to dominate the
physical properties of the system.

If all microstates are equally probable, then N (n) is the probability of finding
the chain of N spin-1∕2 particles with n spins “up,” and is given by the binomial
distribution (see Appendix A). For large N , the binomial distribution can be ap-
proximated by a Gaussian distribution (this is derived in Appendix A) so we can
write

N (n) ≈ 1
σN

√
2π

exp

[
−
(n − ⟨n⟩)2

2σ2N

]
, (2.13)

where ⟨n⟩ = N∕2 is the peak of the distribution and σN =
√
N∕2 is a measure

of its width. Notice that limN→∞ σN∕⟨n⟩ = 0. Thus, for very large N , to good ap-
proximation, the macrostate with n = ⟨n⟩ governs the physical properties of the
system.
If we plot the fraction N (n) of microscopic states having n spins up (see Fig-

ure 2.1), we find that it is sharply peaked about the value n = ⟨n⟩. As the number of
degrees of freedom tend to infinity (N →∞), the physical properties of the system
becomedetermined by that one value of themacroscopic variable n = ⟨n⟩, and this
is called the equilibrium state of the system. The tendency of a macrostate to be
dominated by a single most-probable value of its parameter, in the limit of a large
number of degrees of freedom, is universal to all systems whose interactions have
short range. It is a manifestation of the Central Limit Theorem (Appendix A) and
is the basis for the universal behavior found in thermodynamic systems.

2.5.2
Entropy of Spin System

The entropy of a spin lattice (with N spin-1∕2 particles) that has n spins up is
given by Eqs. (2.8) and (2.9) and can be written

S(N , n) = kB ln
[

N!
n!(N − n)!

]
. (2.14)

For large N (N > 10), we can use Stirling’s approximations,

N! ≈
√
2πNNNe−N and ln(N!) ≈ N ln(N) − N , (2.15)

to simplify the factorials. The entropy then takes the form

S(N , n) ≈ kB ln
[

NN

nn(N − n)N−n

]
. (2.16)
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The form of the entropy in Eq. (2.16) is easier to deal with than Eq. (2.14) because
it does not depend on factorials.
In the limit N → ∞, the entropy is well approximated by the value

S(N , ⟨n⟩) ≈ kB ln [
NN⟨n⟩⟨n⟩(N − ⟨n⟩)N−⟨n⟩

]
, (2.17)

which is called the entropy of the equilibrium state of the system. If no external
magnetic fields are present, then ⟨n⟩ = N∕2, and we find

S(N , ⟨n⟩) ≈ NkB ln 2 . (2.18)

In this case, because the spins are independent of one another, the total entropy
of the system is just N times the entropy of a single spin. Note that the entropy is
additive because the entropy of the whole system is the sum of the entropies of
the independent parts of the system.

2.5.2.1 Entropy and Fluctuations About Equilibrium
In the limit N → ∞, the entropy is equal to S(N , ⟨n⟩), which is the equilibrium
value of the entropy. However, in the real world we never reach the limit N = ∞.
Any given system always has a finite number of particles and there will be macro-
scopic states with n ≠ ⟨n⟩. Therefore, there will be fluctuations in the entropy
about the equilibrium value S(N , ⟨n⟩). Since the multiplicity of the macroscopic
states with n ≠ ⟨n⟩ is always less than that of the state with n = ⟨n⟩, fluctuations
away from equilibriummust cause the value of the entropy to decrease. Thus, for
systems with fixed energy, the entropy takes its maximum value at equilibrium.
The spin system considered above has zero magnetic energy so we have sup-

pressed the energy dependence of the entropy. If all microscopic states with the
same energy, particle number, and number of spins-up are equally probable, then
the probability PN (n) of finding the system in the macrostate, (N , n) is simply the
fraction of microstates, N (n) = (N (n))∕N with parameters N , n. Therefore,
we can write

PN (n) = N (n) = N (n)
N

= 1
N

exp
(

1
kB
S(N , n)

)
. (2.19)

Thus, the entropy, written as a function of the macroscopic variable n, can be
used to determine the probability of fluctuations in the value of n away from the
equilibrium state n = ⟨n⟩.
2.5.2.2 Entropy and Temperature
In the absence of amagnetic field, the spin lattice has zeromagnetic energy. How-
ever, if a magnetic flux density is present and directed upward, then spin-up lat-
tice sites have energy−μ and spin-down lattice sites have energy+μ, where μ is
the magnetic moment of the atoms. In the limit of large N , we can make the re-
placement n → ⟨n⟩ and the energy becomes a thermodynamic energy. Then the
total magnetic energy takes the form⟨E⟩ = −μ⟨n⟩ + μ(N − ⟨n⟩) = μ(N − 2⟨n⟩) , (2.20)
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and the magnetization is

⟨M⟩ = μ (2⟨n⟩ − N) . (2.21)

The physical properties of the system are determined by the equilibrium value
n = ⟨n⟩. Note that, in the presence of a magnetic field, the average number of
spins-up ⟨n⟩ will be shifted away from its value for the field-free case but, using
Eq. (2.20), it can be written in terms of the magnetic energy

⟨n⟩ = N
2

−
⟨E⟩
2μ . (2.22)

The entropy can bewritten in terms of the average energy and number of atoms on
the lattice. If we combine Eqs. (2.14) and (2.22) and use Stirling’s approximation
in Eq. (2.15), the entropy takes the form

S(N , ⟨E⟩,) ≈ kBN lnN − kB
(
N
2

−
⟨E⟩
2μ

)
ln

(
N
2

−
⟨E⟩
2μ

)
− kB

(
N
2

+
⟨E⟩
2μ

)
ln

(
N
2

+
⟨E⟩
2μ

)
. (2.23)

Note that, both the average energy and entropy are proportional to the number
of degrees of freedom.
Let us now introduce a result from thermodynamics that we will justify in the

next chapter. The rate at which the entropy changes as we change the thermody-
namic energy is related to the temperature T of the system (in kelvin) so that(

𝜕S
𝜕⟨E⟩

)
,N

= 1
T

. (2.24)

At very low temperature (in kelvin), a small change in energy can cause a large
change in the entropy of the system.At high temperature, a small change in energy
causes a very small change in the entropy.
We can use Eq. (2.24) to determine how the thermodynamic energy of the sys-

tem varies with temperature. We need to take the derivative of S(N , ⟨E⟩) with
respect to ⟨E⟩ holdingN and  constant. Then with a bit of algebra, we obtain(

𝜕S
𝜕⟨E⟩

)
,N

=
kB
2μ ln

(
N − ⟨E⟩∕(μ)
N + ⟨E⟩∕(μ)

)
= 1
T

. (2.25)

Solving for ⟨E⟩, we finally obtain
⟨E⟩(N , T,) = −Nμ tanh

(
μ
kBT

)
≈ −

Nμ22

kBT
, (2.26)

to lowest order in . We have just demonstrated the power of thermodynamics
in allowing us to relate seemingly unrelated physical quantities. However, having
entered the realm of thermodynamics, the thermodynamic energy ⟨E⟩(N , T,),
now contains information about thermal properties of the system.
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We can also obtain the magnetization ⟨M⟩ of this system. We find

⟨M⟩ = Nμ2
kBT

, (2.27)

to lowest order in . Equation (2.27) is equation of state for the magnetic system.
The magnetization can also be found from the entropy, but we will need to de-
velop the full machinery of thermodynamics in order to see how this can be done
properly. The equation of state relates the mechanical and thermal properties of
a system, and generally can be determined frommeasurements in the laboratory
on the system in question. It is one of the most common and important relation-
ships that we can know about most physical systems.
The magnetic equation of state (2.28) is often written in terms of the number

of moles 𝔫 of atoms in the system. The total number of moles is related to the
total number of atoms on the lattice via Avogadro’s number NA = 6.022 × 1023.
Avogadro’s number is the number of atoms in one mole of atoms or N = 𝔫NA.
Then the magnetic equation of state takes the form

⟨M⟩ = 𝔫Dm
T

, (2.28)

where Dm = NAμ2∕kB is a parameter determined by fundamental constants and
the magnetic moment of the atoms in the particular system being considered.

2.6
Entropic Tension in a Polymer

Avery simplemodel of a polymer consists of a freely jointed chain (FJC) ofN non-
interacting directed links, each of length 𝓁. The links are numbered from 1 to N ,
and each link is equally probable to be either left pointing (←) or right pointing
(→). The net lengthX of the polymer chain is defined as the net displacement from
the unattached end of link 1 to the unattached end of link N so X = nR𝓁 − nL𝓁,
where nL (nR) is the number of left (right) pointing links, and N = nR + nL.
This system is mathematically analogous to the chain of spin-1/2 particles in

Section 2.5. The multiplicity of microscopic states with nR links to the right is

N (nR) =
N!

nR!(N − nR)!
. (2.29)

The total number ofmicroscopic states is 2N . Assuming that allmicroscopic states
are equally probable, the probability of finding a polymer that has a total ofN links
with nR right-directed links is

PN (nR) =
1
2N

N!
nR!(N − nR)!

= N!
nR!(N − nR)!

pnRqN−nR , (2.30)
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where p = q = 1∕2. This probability is a binomial distribution (see Appendix A).
The average number of right-pointing links nR is given by

⟨nR⟩ = N∑
nR=0

nRPN (nR) = pN = N
2

, (2.31)

so the average number of left pointing links is ⟨nL⟩ = N − ⟨nR⟩ = N∕2 and the
average net length of the polymer is ⟨X⟩ = 0. In the limit N → ∞ the proba-
bility distribution in Eq. (2.30) approaches a Gaussian narrowly peaked about
nR = ⟨nR⟩ = N∕2. Thus, most of the polymers are tightly and randomly coiled.
The entropy of the collection of polymers with nR right-pointing links is

S = kB ln
[

N!
nR!(N − nR)!

]
≈ kB[N lnN − nR ln nR − (N − nR) ln(N − nR) ],

(2.32)

where we have used Stirling’s approximation. If we plot the entropy as a function
of nR, the curve has an extremum whose location is given by the condition

dS
dnR

= kB ln
(N − nR

nR

)
= 0 . (2.33)

This has the solution nR = N∕2, so the state of maximum entropy (the peak of the
curve) occurs for nR = N∕2 and X = 0. Thus, the collection of the most tightly
curled-up polymers have the maximum entropy.
In the absence of interactions, all microscopic states have the same energy. The

tension J of the polymer can be related to the displacement X via the thermo-
dynamic relation J = −T(𝜕S∕𝜕X)E ,N . But we can write nR = X∕(2𝓁) + N∕2 so
J = −T∕(2𝓁)(𝜕S∕𝜕nR)U,N . We use the expression for the entropy to find the ten-
sion J in the chain, as a function of X. We obtain

J = −
kBT
2𝓁

ln
(
N − nR
nR

)
= −

kBT
2𝓁

ln
(
N − X∕𝓁
N + X∕𝓁

)
≈
kBT
N𝓁2 X +… (2.34)

In the last term, we have expanded J in powers of X∕N𝓁 (which is only valid if
X∕N𝓁 ≪ 1). For the case X∕N𝓁 ≪ 1, we have obtained J ≈ kBT∕(N𝓁2)X +…,
which is Hooke’s law for the elastic force needed to stretch the polymer. The force
constant is k = kBT∕(N𝓁2). The tension J is an entropic force (per unit length). If
the chain is stretched tomaximum length, it will have very fewmicroscopic states
available. On the average, it will contract back to a length where it maximizes the
entropy (multiplicity of states).
The theory described here is a random walk model for polymer coiling in one

space dimension. The resultswould be different if we considered the randomwalk
in three space dimensions. Nevertheless, this type of one-dimensional entrop-
ic elasticity has been observed in polymers. One example is the macromolecule
DNA, which is a very long molecule, with lengths on the order of tens of mil-
limeters (although it is generally coiled into a complex structure). There are short
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segments of themolecule (with lengths of order 50 nm) whose elasticity, for small
deviations from equilibrium, is well described by the FJC model described above.
For these short segments in DNA, the force constant associated with Hook’s law
is found to be k = 0.1 pN [11].

2.7
Multiplicity and Entropy of an Einstein Solid

Einstein developed a very simple model for mechanical vibrations on a lattice.
This model is called the Einstein solid and consists of a three dimensional lattice
which contains N∕3 lattice sites, with one atom attached to each lattice site. Each
atom can oscillate about its lattice site in three independent spatial directions,
(x , y, z). Thus, each lattice site contains three independent oscillators. The entire
lattice contains a total of N oscillators, which are assumed to be harmonic os-
cillators, all having the same radial frequency ω. The vibrations of the solid are
due to these N harmonic oscillators. A single harmonic oscillator has an ener-
gy E = (1∕2)ℏω + qℏω, where ℏ is Planck’s constant, (1∕2)ℏω is the zero-point
energy of the harmonic oscillator, and q = 0, 1, 2,… ,∞ is an integer. A harmon-
ic oscillator has zero point energy because of the Heisenberg uncertainty rela-
tion ΔpxΔx ≥ ℏ, which arises from the wave nature of particles. The oscillator
can never come to rest because that would cause Δx → 0 and Δpx → 0, which
can not be satisfied quantum mechanically.
For a lattice with N harmonic oscillators, the total vibrational energy can be

written

E(N , q) = 1
2
Nℏω + qℏω , (2.35)

where q = 0, 1, 2,… ,∞ is again an integer. The oscillators are independent of
one another and can be in different states of motion. If the lattice has a total en-
ergy E(N , q), the q quanta of energy can be distributed among the N harmonic
oscillators in many different ways.

2.7.1
Multiplicity of an Einstein Solid

Let us assume that “q quanta on the lattice” is amacroscopic state, and let us deter-
mine the multiplicity of this macroscopic state [190]. We need to determine how
many ways q quanta can be distributed amongN distinct pots. This is straightfor-
ward if we draw a picture. Represent a quantum of energy by an “x” andN pots by
N − 1 vertical lines. For example, if q = 9 and N = 6, then one way to distribute
the quanta is represented by the picture {xx|xxx||x|xx|x} . We can determine all
possibleways to distribute q = 9 quanta among N = 6 pots by finding the number
permutations of nine “x”s and five vertical lines. More generally, the number of
ways to distribute q quanta among N pots is the total number of permutations
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of q “x”s with N − 1 vertical lines. This number is the multiplicity  (q) of the
macrostate “q quanta on the lattice” and is given by

N (q) =
(N + q − 1)!
q!(N − 1)!

. (2.36)

If there is only one quantum of vibrational energy on the lattice and the lattice
has N = 12 oscillators (four lattice sites), then it can be placed in the N = 12 os-
cillators in 12(1) = 12 different ways. However, if there are q = 12 quanta on
the lattice of N = 12 oscillators, they can be distributed among the oscillators
in 12(12) = 1 352 078 different ways. Generally, we are interested in a piece of
a crystal which typically hasN = 1023 oscillators. Then, if there are enough quanta
on the lattice to excite even a small fraction of the oscillators, the number of mi-
croscopic states available is amazingly large. It is clear that we need a way tomake
contact with measurable quantities, and thermodynamics will give us that. Note
again that our ability to count the number of vibrational states available to the lat-
tice is a consequence of quantum mechanics and the quantization of vibrational
energy.

2.7.2
Entropy of the Einstein Solid

For the Einstein solid, we have one less macroscopic parameter than for the spin
system. In the spin system, in the absence of amagnetic field, all microscopic con-
figurations have the same energy. However, for the spin system we have another
parameter, n, (due to spin conservation) which is the number of spins-up on the
lattice and we can use it to construct different macroscopic states depending on
the value of n. For the Einstein solid, for a fixed number of harmonic oscillatorsN ,
we only have the parameter q which is the number of quanta of oscillation energy
and is proportional to the energy E. Therefore, for the Einstein solid, we have only
onemacroscopic state, determined by the value of q, andmanymicroscopic states
given by the number of ways to distribute the q quanta among the N harmonic
oscillators.
If we use Eqs. (2.8) and (2.36), the entropy of the Einstein solid is given by

S(N , q) = kB ln
[
(N + q − 1)!
q!(N − 1)!

]
≈ kB ln

[
(N + q)N+q

NN qq

]
, (2.37)

where we have assumed thatN and q are large and we have used Stirling’s approx-
imation Eq. (2.15). We can now use thermodynamics to relate the energy to the
temperature via the relation(

𝜕S
𝜕E

)
N
= 1

ℏω

(
𝜕S
𝜕q

)
N
= 1
T

, (2.38)

where, in the middle term, we have used the relation between E and q given in
Eq. (2.35). If we take the derivative of the entropy, as indicated in Eq. (2.38), and
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solve for the energy, we obtain

E(N , T ) = 1
2
Nℏω + Nℏωe−βℏω

(1 − e−βℏω)
, (2.39)

where β = 1∕(kBT). As we shall see in the chapter on thermodynamics, the heat
capacity of the Einstein solid can be written

CN =
(
𝜕E
𝜕T

)
N
= N(ℏω)2e−βℏω

kBT2(1 − e−βℏω)2
. (2.40)

In the limit T → 0, the heat capacity of the Einstein solid goes to zero exponen-
tially as a function of temperature T . This result provided an important break-
through in our understanding of the effect of quantum mechanics on the thermal
properties of solids at low temperature. Classical physics could not explain the ex-
perimentally observed fact that the heat capacity of solids do tend to zero as the
temperature tends to 0K. The heat capacity given by the Einstein solid is not quite
correct. The heat capacity of real solids goes to zero as T3, not exponentially. The
reason for this will become clear when we consider a Debye solid, which allows
lattice sites to be coupled.

2.8
Multiplicity and Entropy of an Ideal Gas

We now consider an ideal gas of N particles in a box of volume V = L3. State-
counting in this system is different from the spin system and Einstein solid be-
cause the particles in the gas move freely through the box. If the gas particles have
no distinguishing internal characteristics such as different mass or different spin,
they are indistinguishable. For the spin system and the Einstein solid, particles are
attached to specific lattice sites and remain there, so they are distinguishable and
distinct.

2.8.1
Multiplicity of an Ideal Gas

Wewant to determine the multiplicity of states available to an ideal gas ofN par-
ticles. By ideal gas we mean the real gas density is low enough that the energy of
interaction between the particles is negligible. The key to obtaining a countable
set of microscopic states is to remember that this system is intrinsically quantum
mechanical and that the quantum states available to each particle occupy a finite
size region of phase space whose size is determined by Planck’s constant, h. Since
the particles move in three dimensional configuration space, the number of de-
grees of freedom of the system is D = 3N and themomentum of each particle has
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three independent components. The total energy of the gas can be written

E =
3N∑
j=1

p2j
2m

, (2.41)

where the sum is over all 3N components ofmomentum, p j is one of the 3N com-
ponents of momentum, andm is the mass of each particle.
The volume of phase space available to a single quantum state of the gas is

Δp1Δx1 × ⋯ × Δp3NΔx3N = h3N , where h is Planck’s constant. The volume
of phase space Ω(D)(E) that has energy less than E can be written Ω(D)(E) =
VNΩ(D)

p (E), where we have explicitly separated the spatial volume V from the
volume of the momentum coordinates. This is possible because there are no
external fields present and interactions between the particles are neglected.
It is useful to begin with a very simple case. Let us first obtain the phase space

volume available to one particle (N = 1) in two dimensional configuration space
and D = 2 degrees of freedom. The energy of the particle is E = 1∕(2m)(p2x + p

2
y).

Therefore, we can write p2x + p
2
y = 2mE = R2, where R is the radius of the allowed

circle in momentum space. The area (volume) within the circle in momentum
space is Ω(2)

p (E) = π(
√
2mE)2 = π2mE. Thus, the volume of phase space with

energy less than or equal to E is Ω(2)(E) = L2π2mE.
In a similar manner, we can determine the volume of phase space Ω(D)(E) =

VNΩ(D)
p (E) that has energy less than or equal to E for the case of N particles in

a box of volumeV . ForD = 3N degrees of freedom, Eq. (2.41) can bewritten in the
form p21 +⋯+ p2D = 2mE = R2. The volume inmomentum space with energy less
than or equal to E can be written in the formΩD

p (E) = ADRD = AD(R2)D∕2, where
AD is an unknown constant. It is useful to write (dΩ(D)

p (E))∕(dR2) = ADD∕2RD−2
and, therefore,

∞

∫
0

dR2 dΩ
(D)
p (E)
dR2 e−R2 = AD

D
2
Γ
(D
2

)
, (2.42)

where Γ(x) is the Gamma function.
To determine the constant AD, compute ΩD

p (E) in another way. Note that

Ω(D)
p (E) =

∞

∫
−∞

d p1 ⋯

∞

∫
−∞

d pDΘ
(
R2 − p21 −⋯ − p2D

)
, (2.43)

where Θ(R2 − p21 −⋯− p2D) is the Heaviside function. (Heaviside functions have
the property that Θ(x) = 0 if x < 0, Θ(x) = 1 if x > 0, and Θ(x) = 1∕2 if x = 0.)
Because the derivative of a Heaviside function is a Dirac delta function, δ(x) =
dΘ(x)∕dx, we can write

dΩ(D)
p (E)
dR2 =

∞

∫
−∞

d p1 ⋯

∞

∫
−∞

d pDδ
(
R2 − p21 −⋯ − p2D

)
. (2.44)
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Now note that
∞

∫
0

dR2 dΩ
(D)
p (E)
dR2 e−R2 =

∞

∫
−∞

d p1 ⋯
∞

∫
−∞

d pDe−(p
2
1+p

2
2+⋯+p2D) = πD∕2 . (2.45)

If we equate Eqs. (2.42) and (2.45), we obtain AD = 2πD∕2∕(DΓ(D∕2)).
Using the above results we find that, for an ideal gas with D = 3N degrees of

freedom, the total volume of phase spacewith energy equal to or less than energyE
is

Ω(D)(E) = VNΩ(D)
p (E) = VNAD(R2)D∕2 = VN (2πmE)3N∕2

(3N∕2)!
, (2.46)

where we have assumed that 3N is an even integer and the Gamma function can
be written Γ(n + 1) = n!.
We now can determine themultiplicityN(E) of themicrostates of the ideal gas

with energy less than or equal to E. We divide the phase space volumeΩ(D)(E) by
the volume h3N of a single quantum state of theN particle gas. Since the particles
are indistinguishable, wemust also divide byN! to avoid over counting states.We
then obtain

N (E) =
VN (2πmE)3N∕2

N!h3N (3N∕2)!
. (2.47)

As we shall see later, the factor N! is essential to obtain the correct equation of
state for an ideal classical gas of indistinguishable particles.

2.8.2
Entropy of an Ideal Gas

The entropy of an ideal gas is determined by the number of microscopic states
with energy E and not the number of microscopic states with energy less than
or equal to E, which was obtained in Eq. (2.47). However, as we will now show,
in the limit N → ∞, these two numbers give values of the entropy that are the
same, to good approximation. Let us first divide phase space into a sequence of
energy shells, each of width ΔE. The phase space volume of the shell at energy E
isΩΔE(E). We can thenwrite a sequence of inequalities between the sizes of these
various volumes such that

ΩΔE(E) < Ω(D)(E) < (E∕ΔE)ΩΔE (E) . (2.48)

Next note that ln(ΩΔE(E)) ∼ D, ln(Ω(D)(E)) ∼ D and ln E ∼ lnD. Therefore, for
a very large number of degrees of freedom(1023), we can assume that ln(ΩΔE(E)) ≈
ln(Ω(D)(E)) and the multiplicity N (E), derived in Eq. (2.47), can be used to ob-
tain the entropy of an ideal gas.
The entropy of an ideal gas can now be written

S = kB ln(N (E)) = kB ln
[
VN (2πmE)3N∕2

N!h3N (3N∕2)!

]
. (2.49)
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This formula can be simplified if we use Stirling’s approximation. Then the en-
tropy takes the form

S = 5
2
NkB + NkB ln

[
V
N

(4πmE
3h2N

)3∕2]
. (2.50)

Equation (2.50) is called the Sackur–Tetrode equation and gives the entropy of an
ideal gas of indistinguishable particles.
We can obtain a relation between the energy and temperature of an ideal gas

from the Sackur–Tetrode equation using the thermodynamic equation

1
T

=
(
𝜕S
𝜕E

)
V,N

= 3
2
NkB
E

, (2.51)

where the last term was obtained by taking the derivative of Eq. (2.50). Therefore,
E = (3∕2)NkBT . The pressure of the ideal gas can be obtained from the entropy
using another thermodynamic relation

P
T

=
(
𝜕S
𝜕V

)
E ,N

=
NkB
V

, (2.52)

where, again, the last term was obtained by taking the derivative of Eq. (2.50).
Thus, we obtain PV = NkBT , which is the equation of state of an ideal gas.

2.9
Problems

Problem2.1 Abus has nine seats facing forward and eight seats facing backward.
In how many ways can seven passengers be seated if two refuse to ride facing
forward and three refuse to ride facing backward?

Problem 2.2 Find the number of ways in which eight persons can be assigned to
two rooms (A and B) if each roommust have at least three persons in it.

Problem 2.3 Find the number of permutations of the letters in the word,
MONOTONOUS. In how many ways are four O’s together? In how many ways
are (only) 3 O’s together?

Problem 2.4 In howmany ways can five red balls, four blue balls, and four white
balls be placed in a row so that the balls at the ends of the row are the same color?

Problem 2.5 Various six digit numbers can be formed by permuting the digits
666655. All arrangements are equally likely. Given that a number is even, what is
the probability that two fives are together?

Problem 2.6 Fifteen boys go hiking. Five get lost, eight get sunburned, and six
return home without problems. (a) What is the probability that a sunburned boy
got lost? (b) What is the probability that a lost boy got sunburned?
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Problem2.7 Adeck of cards contains 52 cards, divided equally among four suits,
Spades (S), Clubs (C), Diamonds (D), andHearts (H). Each suit has 13 cardswhich
are designated: (2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A). Assume that the deck is always
well shuffled so it is equally likely to receive any card in the deck, when a card is
dealt. (a) If a dealt hand consists of five cards, how many different hands can one
be dealt (assume the cards in the hand can be received in any order)? (b) If the
game is poker, what is the probability of being dealt a Royal Flush (10, J, Q, K, and
A all of one suit)? (c) If one is dealt a handwith seven cards, and the first four cards
are spades, what is the probability of receiving at least one additional spade?

Problem 2.8 A fair six-sided die is thrownN times and the result of each throw
is recorded. (a) If the die is thrown N = 12 times, what is the probability that odd
numbers occur three times? If it is thrown N = 120 times, what is the probability
that odd numbers occur 30 times? Use the binomial distribution. (b) Compute
the same quantities as in part (a) but use the Gaussian distribution. (Note: For
part (a) compute your answers to four places.) (c) Plot the binomial and Gaussian
distributions for N = 2 and N = 12.

Problem 2.9 A gas ofN identical particles is free to move amongM distinguish-
able lattice sites on a lattice with volume V , such that each lattice site can have at
most one particle at any time. The density of lattice sites is μ =M∕V . Assume that
N ≪ M and that all configurations of the lattice have the same energy. (a) Com-
pute the entropy of the gas. (b) Find the equation of state of the gas. (Note: the
pressure of an ideal gas is an example of an entropic force.)

Problem 2.10 An Einstein solid (in 3D space) has 100 lattice sites and 300
phonons, each with energy ℏω = 0.01 eV. (a) What is the entropy of the solid
(give a number)? (b) What is the temperature of the solid (give a number)?

Problem 2.11 A system consists of N noninteracting, distinguishable two-level
atoms. Each atom can exist in one of two energy states, E0 = 0 or E1 = ε. The
number of atoms in energy level, E0, is n0 and the number of atoms in energy lev-
el, E1, is n1. The internal energy of this system is U = n0E0 + n1E1. (a) Compute
the multiplicity of microscopic states. (b) Compute the entropy of this system as
a function of internal energy. (c) Compute the temperature of this system. Un-
der what conditions can it be negative? (d) Compute the heat capacity for a fixed
number of atoms, N .

Problem 2.12 A lattice contains N normal lattice sites and N interstitial lattice
sites. The lattice sites are all distinguishable.N identical atoms sit on the lattice,M
on the interstitial sites, and N −M on the normal sites (N ≫ M ≫ 1). If an atom
occupies a normal site, it has energy E = 0. If an atom occupies an interstitial site,
it has energy E = ε. Compute the internal energy and heat capacity as a function
of temperature for this lattice.

Problem 2.13 Consider a lattice with N spin-1 atoms with magnetic moment μ.
Each atom can be in one of three spin states, Sz = −1, 0,+1. Let n−1, n0, and
n1 denote the respective number of atoms in each of those spin states. Find the
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total entropy and the configuration which maximizes the total entropy. What is
the maximum entropy? (Assume that no magnetic field is present, so all atoms
have the same energy. Also assume that atoms on different lattice sites cannot be
exchanged, so they are distinguishable.)

Problem 2.14 A system consists of N = 3 particles, distributed among four en-
ergy levels, with energies E0 = 0, E1 = 1, E2 = 2, and E3 = 3. Assume that the
total energy of the system is E = 5. Answer questions (a), (b), and (c) below for
the following two cases: (I) The N particles and the four energy levels are distin-
guishable; and (II) the N particles are indistinguishable, but levels with different
energy are distinguishable. (a) Compute the multiplicity of microstates. (b)What
is the probability of finding two particles occupying energy levels E2? (c) Given
that one particle occupies energy level E3, what is the probability that one particle
occupies energy level E2?
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3
Thermodynamics

3.1
Introduction

The science of thermodynamics began with the observation that matter in the
aggregate can exist in macroscopic states which are stable and do not change in
time.Once a systemreaches its equilibriumstate, the systemwill remain forever in
that state unless some external influence acts to change it. This inherent stability
and reproducibility of the equilibrium states can be seen everywhere in the world
around us.
Thermodynamics has been able to describe, with remarkable accuracy, the

macroscopic behavior of a huge variety of systems over the entire range of ex-
perimentally accessible temperatures (10−9 to 106 K). It provides a truly universal
theory of matter in the aggregate. And yet, the entire subject is based on only four
laws [183, 220], which may be stated rather simply as follows:

Zeroth Law Two bodies, each in equilibrium with a third body, are in equilib-
rium with each other.

First Law Energy is conserved.
Second Law Heat flows spontaneously from high temperature to low tempera-

ture.
Third Law It is not possible to reach the coldest temperature using a finite set

of reversible steps.

Even though these laws sound rather simple, their implications are vast and give us
important tools for studying the behavior and stability of systems in equilibrium
and, in some cases, of systems far from equilibrium.
The state of thermodynamic equilibriumcan be specified completely in terms of

a few parameters – called state variables. State variables emerge from the conser-
vation laws governing the underlying dynamics of these systems. State variables
may be either extensive or intensive. Extensive variables always change in value
when the size (spatial extent and number of degrees of freedom) of the system is
changed, and intensive variables do not.
Certain pairs of intensive and extensive state variables occur together because

they correspond to generalized forces and displacements which appear in expres-
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sions for thermodynamic work. Examples of such extensive and intensive pairs
include, respectively, volume, V , and pressure, P; magnetization, M, and mag-
netic field, H ; length, L, and tension, J ; area, A, and surface tension, σ; electric
polarization, P, and electric field, E. The relation of these state variables to un-
derlying conservation laws is direct in some cases. For example, the existence
of magnetization is related to the conservation of the internal angular momen-
tum of atoms and electric polarization is related to the conservation of electric
charge.
The pair of state variables related to heat content of a thermodynamic system

are the temperature, T , which is intensive, and the entropy, S, which is extensive.
There is also a pair of state variables associatedwith “chemical” properties of a sys-
tem. They are the number of particlesN (number of moles 𝔫) which is extensive,
and the chemical potential per particle (permole), μ, which is intensive. If there is
more than one type of particle in the system, then there will be a particle number
or mole number and chemical potential associated with each type of particle.
Other state variables used to describe the thermodynamic behavior of a system

are the various response functions, such as heat capacity, C; compressibility, κ;
magnetic susceptibility, χ; and various thermodynamic potentials, such as the in-
ternal energy,U ; enthalpy,H; Helmholtz free energy, A; Gibbs free energy,G; and
the grand potential, Ω. We shall become acquainted with these state variables in
subsequent sections.
If we change the thermodynamic state of our system, the amount by which the

state variables change must be independent of the path taken. If this were not so,
the state variables would contain information about the history of the system. It is
precisely this property of state variables which makes them so useful in studying
changes in the equilibrium state of various systems. Mathematically, changes in
state variables correspond to exact differentials. The mathematics of exact differ-
entials is reviewed in Appendix B.
It is useful to distinguish between three types of thermodynamic systems. An

isolated system is one which is surrounded by an insulating wall, so that no heat
or matter can be exchanged with the surrounding medium. A closed system is
one which is surrounded by a conducting wall that allows heat to be exchanged
with the surrounding medium, but not matter. An open system is one which al-
lows both heat and matter exchange with the surroundingmedium. If the insulat-
ing/conducting wall can move, then mechanical work can be exchanged with the
surrounding medium.
It is possible to change fromone equilibrium state to another. Such changes can

occur reversibly or irreversibly. A reversible change is one for which the system
always remains infinitesimally close to the thermodynamic equilibrium – that is,
is performed quasi-statically. Such changes can always be reversed and the system
brought back to its original thermodynamic state without causing any changes in
the thermodynamic state of the universe. For each step of a reversible process, the
state variables have a well-defined meaning.
An irreversible or spontaneous change from one equilibrium state to another is

one in which the system does not stay infinitesimally close to equilibrium during
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each step. Such changes often occur rapidly and give rise to flows and “friction”
effects. After an irreversible change the system cannot be brought back to its orig-
inal thermodynamic state without causing a change in the thermodynamic state
of the universe.

3.2
Energy Conservation

There is a store of energy in a thermodynamic system, called the internal ener-
gy U . Infinitesimal changes dU in internal energy content can occur by causing
the system to do mechanical work, ∕dW or by adding heat, ∕dQ, to the system. The
internal energy can also be changed by adding particles of types j = 1, 2,… , ν
to the system causing infinitesimal changes in the internal energy equal to∑ν
j=1 μj dNj , where μj is the chemical potential of particles of type j and dNj is the

infinitesimal change in the number of type j particles.We use the notation, ∕dW , to
indicate that the differential ∕dW is not exact (see Appendix B). The quantities ∕dQ
and ∕dW are not exact differentials because they depend on the path taken (on
the way in which heat is added or work is done). The quantities dNj are exact
differentials.
The change in the internal energy that results from these thermal, mechanical,

and chemical processes is given by

dU = ∕dQ − ∕dW +
ν∑
j=1
μj dNj . (3.1)

The work, ∕dW , may be due to changes in any relevant extensive “mechanical”
variable. In general it can be written

∕dW = P dV − J dL − σ dA − E ⋅ dP − H ⋅ dM − φ de , (3.2)

where dU, dV, dL , dA , dP, dM, and de are exact differentials. Themagnetization
M and the magnetic field H are related to the magnetic flux density B by the
equation B = μ0H +M, where μ0 is the permeability of free space. The definition
of the first five terms in Eq. (3.2) was discussed in Section 3.1. The term, −φ de, is
the work the system does if it has an electric potential, φ, and increases its charge
by an amount, de. Wemay think of−P, J , σ , E ,H and φ as generalized forces, and
we may think of dV, dL , dA , dP, dM, and de as generalized displacements.
It is useful to introduce a generalizedmechanical force,Y , which denotes quan-

tities such as, −P, J , σ , E ,H , and φ, and a generalized displacement, X, which de-
notes the corresponding displacements, V, L , A , P ,M, and e, respectively. Then
∕dW = −Y dX and the first law of thermodynamics can be written in the form

dU = ∕dQ + Y dX +
ν∑
j=1
μj dNj . (3.3)
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Note that μj is a chemical force and dNj is a chemical displacement. Note also
that the pressure, P, has a different sign from the other generalized forces. If we
increase the pressure, the volume increases, whereas if we increase the force, Y ,
for all other cases, the extensive variable, X, decreases.

3.3
Entropy

The second law of thermodynamics is of immense importance for many rea-
sons [24, 47, 183]. We can use it to compute the maximum possible efficiency of
an engine that transforms heat into work. It also enables us to introduce a new
state variable, the entropy S, which is conjugate to the temperature. The entropy
gives us a measure of the degree of thermal disorder in a system and also gives us
ameans for determining the stability of equilibrium states. In addition, it provides
an important link between reversible and irreversible processes.

3.3.1
Carnot Engine

The second law is most easily discussed in terms of a universal heat engine first
introduced by Carnot. The construction of all heat engines is based on the obser-
vation that, if heat is allowed to flow from a high temperature to a lower tempera-
ture, part of the heat can be turned into work. Carnot observed that temperature
differences can disappear spontaneously without producing work. Therefore, the
most efficient heat engines must be those whose cycles consist only of reversible
steps, thereby eliminating wasteful heat flows. There are many ways to construct
reversible heat engines, and they generally have different levels of efficiency. How-
ever, Carnot found the most efficient of all possible heat engines.
TheCarnot heat engine is universal because, not only is it themost efficient of all

heat engines, but the efficiency of the Carnot engine is independent of thematerials
used to run it. The Carnot engine consists of the four steps shown in Figure 3.1.
These include:

1. Isothermal (constant temperature) absorption of heat ΔQ12 froma reservoir at
a high temperatureTh (we use Δ to indicate a finite rather than an infinitesimal
amount of heat) (the process 1 → 2).

2. Adiabatic (constant heat content) change in temperature from Th to the lower
value Tc (the process 2 → 3).

3. Isothermal expulsion of heat ΔQ43 into a reservoir at temperature Tc (the pro-
cess 3 → 4).

4. Adiabatic return of the state at temperature Tc to the state at temperature Th
(the process 4 → 1).

The work done by the engine during one complete cycle can be found by inte-
grating the differential element of work Y dX about the entire cycle and, there-
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Figure 3.1 (a) A Carnot engine which runs
on a substance with state variables, X and Y .
The heat absorbed is ΔQ12 and the heat eject-
ed is ΔQ43. The shaded area is equal to the
work done during the cycle. The whole pro-

cess takes place reversibly. (b) An arbitrary
reversible heat engine is composed of many
infinitesimal Carnot engines. The area en-
closed by the curve is equal to the work done
by the heat engine.

fore, the net work ΔWtot done by the engine is given by the shaded area in Fig-
ure 3.1a.
The efficiency η of any heat engine is given by the ratio of the net work done ΔWtot

to heat absorbed ΔQabs so, in general, the efficiency of a heat engine is given by
η = (ΔWtot)∕(ΔQabs).
For the Carnot engine, heat is only absorbed during the process 1 → 2, so the

efficiency of the Carnot engine (CE) can be written

ηCE =
ΔWtot

ΔQ12
. (3.4)

The internal energyU is a state variable and, therefore, the total change ΔUtot for
one complete cycle of the engine must be zero because completion of the cycle
returns the system to the thermodynamic state it started in. The first law then
enables us to write

ΔUtot = ΔQtot − ΔWtot = 0 (3.5)

and thus

ΔWtot = ΔQtot = ΔQ12 + ΔQ34 = ΔQ12 − ΔQ43 . (3.6)

If we combine Eqs. (3.4) and (3.6), we canwrite the efficiency of the Carnot engine
in the form

ηCE = 1 −
ΔQ43

ΔQ12
. (3.7)

A 100% efficient engine is one which converts all the heat it absorbs into work.
However, as we shall see, no such engine can exist in nature because real engines
do not operate in a completely reversible manner.
Carnot engines can operate using any of a variety of substances (examples are

left as problems). In Exercise 3.1, we compute the efficiency of a Carnot engine
which uses an ideal gas as an operating substance. However, regardless of the op-
erating substance, all Carnot engines have the same efficiency.
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The Kelvin temperature scale T was introduced by W. Thomson (Lord Kelvin)
and is a universal temperature scale because it is based on the universality of the
Carnot engine. It is defined as

ΔQ43

ΔQ12
=
Tc

Th
, (3.8)

where Th (Tc) is the hottest (coldest) temperature reached by the Carnot engine.
The units of degree Kelvin (K) are the same as degree Celsius (◦C). The ice point
and boiling points of water, at one atmosphere pressure are defined to be 0 ◦C and
100 ◦C, respectively. The triple point of water is 0.01 ◦C and occurs at a pressure
of 611.73 Pa. The relation between degree Celsius, tc, and degree Kelvin, T , is
T = (tc + 273.15). The triple point of water is fixed at T = 273.16K.
We can use the Carnot engine to define a new state variable called the entropy.

All Carnot engines have an efficiency

ηCE = 1 −
ΔQ43

ΔQ12
= 1 −

Tc

Th
(3.9)

regardless of operating substance. Using Eq. (3.9), we can write the following re-
lation for a Carnot cycle:

ΔQ12

Th
+

ΔQ34

Tc
= 0 (3.10)

(note that ΔQ34 = −ΔQ43).
Equation (3.10) can be generalized to the case of an arbitrary reversible heat

engine because we can consider such an engine as being composed of a sum of
many infinitesimal Carnot cycles (cf. Figure 3.1b). For an arbitrary reversible heat
engine we have

∮
∕dQ
T

= 0 , (3.11)

and, therefore,

dS ≡ ∕dQ
T

(3.12)

is an exact differential. The quantity S, is called the entropy and is a state variable
because the integral of dS about a closed path gives zero.

Exercise 3.1

Compute the efficiency of a Carnot cycle which uses a monatomic ideal gas as
an operating substance. Use the equation of state of a monatomic ideal gas PV =
𝔫RT and the internal energy U = (3∕2)𝔫RT .
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Answer: The Carnot cycle for an ideal gas is shown in the figure below.

(a) Let us first consider the isothermal paths 1→ 2 and 3→ 4. Since the tempera-
ture is constant along these paths, dT = 0 and dU = (3∕2)nR dT = 0. Thus, along
the path 1 → 2, ∕dQ = ∕dW = nRTh(dV∕V ). The heat absorbed/ejected along the
paths 1 → 2 and 3 → 4 are

ΔQ12 = nRTh

V2

∫
V1

dV
V

= nRTh ln
(
V2
V1

)
and ΔQ34 = nRTc ln

(
V4
V3

)
,

respectively. Since V2 > V1, ΔQ12 > 0 and heat is absorbed along the path 1 → 2.
Since V3 > V4, ΔQ34 < 0 and heat is ejected along the path 3 → 4.
(b) Let us next consider the adiabatic paths 2 → 3 and 4 → 1. Along the adi-

abatic path, ∕dQ = 0 = dU + P dV = (3∕2)nR dT + P dV . If we make use of
the equation of state, we find (3∕2)dT∕T = −dV∕V . We now integrate to find
T3∕2V = constant for an adiabatic process. Thus, along the paths 2 → 3 and
4 → 1, respectively, we have TcV

2∕3
3 = ThV

2∕3
2 and TcV

2∕3
4 = ThV

2∕3
1 which gives

V3∕V4 = V2∕V1. Because U is a state variable, for the entire cycle we can write
ΔUtot = ΔQtot − ΔWtot = 0. Thus ΔWtot = ΔQtot = ΔQ12 + ΔQ34. The efficiency
of the Carnot cycle is

η =
ΔWtot

ΔQ12
= 1 +

ΔQ34

ΔQ12
= 1 −

Tc

Th

ln(V3∕V4)
ln(V2∕V1)

= 1 −
Tc

Th
.

No heat engine, operating between the same high and low temperatures, can be
more efficient than aCarnot engine.Thus, an engine which runs between the same
two reservoirs but contains spontaneous or irreversible processes in some part of
the cycle will have a lower efficiency. Therefore, for an irreversible heat engine we
can write

ΔQ43

ΔQ12
>
Tc

Th
and

ΔQ12

Th
−

ΔQ43

Tc
< 0 . (3.13)
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For an arbitrary heat engine which contains an irreversible part, Eq. (3.13) gives
the very important relation

∮
∕dQ
T

< 0 : (3.14)

For an irreversible process, ∕dQ∕T can no longer be considered an exact differen-
tial.
A system may evolve between two thermodynamic states either by a reversible

path or by a spontaneous, irreversible path. For any process, reversible or irre-
versible, the entropy change depends only on the initial and final thermodynamic
equilibrium states of the system, since the entropy is a state variable. If the system
evolves between the initial and final states via a reversible path, we can compute
the entropy change along that path using thermodynamic relations. However, if
the system evolves via an irreversible path, then wemust construct a hypothetical
reversible path between the initial and final states in order to use the equations of
thermodynamics to compute the entropy changeduring the spontaneous process.
For an irreversible path between two thermodynamic states, the heat absorbed

by the system will be less than the heat absorbed along a reversible path between
the same two thermodynamic states. Therefore, ∫irrev ∕dQ∕T < ∫rev ∕dQ∕T . This
means that for an irreversible process, ∫irrev ∕dQ∕T does not contain all contribu-
tions to the entropy change. Some of it comes from the disorder created by spon-
taneity. This result is usually written in the form

dS =
∕dQ
T

+ d i S , (3.15)

where di S denotes the entropy production due to spontaneous processes. For a re-
versible process, d iS = 0 so the entropy change is entirely due to a flowof heat into
or out of the system. For a spontaneous (irreversible) process, di S > 0.
For an isolated system we have ∕dQ = 0, and we obtain the important relation

dS = d iS ≥ 0 , (3.16)

where the equality holds for a reversible process and the inequality holds for
a spontaneous or irreversible process. Since the equilibrium state is, by defini-
tion, a state which is stable against spontaneous changes, Eq. (3.16) tells us that,
for an isolated system, the equilibrium state is a state of maximum entropy. As
we shall see, this fact gives an important criterion for determining the stability of
the equilibrium state for an isolated system.

3.3.2
The Third Law

An alternative statement of the third law – It is impossible to reach absolute zero
in a finite number of steps if a reversible process is used – is easily demonstrated
by means of a plot in the S–T plane [24, 47, 196]. In Figure 3.2 we have plotted S
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Figure 3.2 The fact that curves Y = 0 and Y = Y1
must approach the same point (the third law) makes it
impossible to reach absolute zero by a finite number
of reversible steps.

versus T for two states whose generalized forces have values Y = 0 and Y = Y1.
(A specific example might be a paramagnetic salt with Y = H.) We can cool the
systemby alternating between the two states, adiabatically and isothermally. From
the identities in Appendix B, we write(

𝜕T
𝜕Y

)
S ,N

= −
(
𝜕T
𝜕S

)
Y,N

(
𝜕S
𝜕Y

)
T,N

. (3.17)

As we shall show in Section 3.7, thermal stability requires that CY,N∕T =
(𝜕S∕𝜕T )Y ≥ 0. Equation (3.17) tells us that if T decreases as Y increases adiabat-
ically, then S must decrease as Y decreases isothermally, as shown in Figure 3.2.
For the process 1 → 2 we change from state Y = Y1 to state Y = 0 isothermal-
ly, thus squeezing out heat, and the entropy decreases. For process 2 → 3, we
increase Y adiabatically from Y = 0 to Y = Y1 and thus decrease the tempera-
ture. We can repeat these processes as many times as we wish. However, as we
approach T = 0K, we know by the third law that the two curves must approach
the same point and must therefore begin to approach each other, thus making it
impossible to reach T = 0K in a finite number of steps.
Another consequence of the third law is that certain derivatives of the entropy

must approach zero as T → 0K. Let us consider a process at T = 0K such that
Y → Y + dY and X → X + dX. Then the change in entropy if Y , T , and N are
chosen as independent variables is (assume dN = 0) dS = (𝜕S∕𝜕Y )N ,T=0 dY or
if X,T , andN are chosen as independent we obtain dS = (𝜕S∕𝜕X)N ,T=0 dX. Thus,
if the states (Y, T = 0K) and (Y + dY, T = 0K) or the states (X , T = 0K) and
(X + dX , T = 0K) are connected by a reversible process, we must have dS = 0
(third law) and therefore(

𝜕S
𝜕Y

)
N ,T=0

= 0 and
(
𝜕S
𝜕X

)
N ,T=0

= 0 . (3.18)

Equation (3.18) appears to be satisfied by real substances.

3.4
Fundamental Equation of Thermodynamics

The entropy plays a central role in both equilibrium and nonequilibrium ther-
modynamics. It can be thought of as a measure of the disorder in a system. As
we have seen in Chapter 2, entropy is obtained microscopically by state counting.
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The entropy of an isolated system is proportional to the logarithm of the number
of microscopic states available to the system.
From Eqs. (3.3) and (3.12), the entropy must be an extensive, additive quantity

since dU has that property and T is intensive. If a system is composed of a num-
ber of independent subsystems, then the entropy of the whole system will be the
sum of the entropies of the subsystems. This additive property of the entropy is
expressed mathematically by the relation

S(λU, λX , {λNi}) = λS(U, X , {Ni}) . (3.19)

That is, the entropy is a first-order homogeneous function of the extensive state
variables of the system. If we increase all the extensive state variables by a fac-
tor λ, then the entropy must also increase by a factor λ. It is easy to check that
the Sackur–Tetrode equation in Eq. (2.50) (the entropy of an ideal gas) has this
property.
Differential changes in the entropy are related to differential changes in the ex-

tensive state variables through the combined first and second laws of thermody-
namics:

T dS ≥ ∕dQ = dU − Y dX −
ν∑
j=1
μj dNj . (3.20)

The equality (inequality) holds if changes in the thermodynamic state are re-
versible (irreversible). Equations (3.19) and (3.20) now enable us to define the
Fundamental Equation of thermodynamics. Let us take the derivative of λS with
respect to λ:

d
dλ

(λS) =
(

𝜕S
𝜕λU

)
X ,{Nj}

d
dλ

(λU) +
(

𝜕S
𝜕λX

)
U,{Nj}

d
dλ

(λX)

+
ν∑
j=1

(
𝜕S

𝜕λNj

)
U,X ,{Ni≠ j}

d(λNj)
dλ

. (3.21)

However, from (3.20) we see that

(
𝜕S
𝜕U

)
X ,{Nj}

= 1
T

,
(
𝜕S
𝜕X

)
U,{Nj}

= −Y
T

,

(
𝜕S
𝜕Nj

)
U,X ,{Ni≠ j}

= −
μj
T

.

(3.22)

The first, second, and third relations in Eq. (3.22) are called the thermal, mechan-
ical, and chemical equations of state, respectively. If we now combine Eqs. (3.21)
and (3.22), we obtain

TS = U − XY −
ν∑
j=1
μjN j . (3.23)
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Equation (3.23) is called the Fundamental Equation of thermodynamics (it is also
known as Euler’s equation).
If we take the differential of Eq. (3.23) and subtract Eq. (3.20) (we will take the

reversible case), we obtain another important equation,

S dT + X dY +
ν∑
j=1
Nj dμj = 0 , (3.24)

which is called the Gibbs–Duhem equation. The Gibbs–Duhem equation relates
differentials of intensive state variables.
For a monatomic system (ν = 1), these equations simplify if we work with den-

sities. Let us work with molar densities. For a single component system, the Fun-
damental Equation can be written TS = U − YX − μ𝔫 and the combined first and
second laws (for reversible processes) can be written T dS = dU − Y dX − μ d𝔫.
Let us now introduce themolar entropy, s = S∕𝔫, themolar density, x = X∕𝔫, and
the molar internal energy, u = U∕𝔫. Then the Gibbs–Duhem equation takes the
form dμ = −s dT − x dY and, therefore, the chemical potential is a function only
of intensive variables μ = μ(T, Y ). The fundamental equation is Ts = u − Yx − μ
and the combined first and second laws become (for reversible processes) T ds =
du − Y dx. Thus, (𝜕s∕𝜕u)x = 1∕T and (𝜕s∕𝜕x)u = −Y∕T .

Exercise 3.2

The entropy of 𝔫moles of a monatomic ideal gas is given by the Sackur–Tetrode
equation in Eq. (2.50). The mechanical equation of state is PV = 𝔫RT and the
internal energy is U = (3∕2)𝔫RT . Compute the chemical potential of the ideal
gas.

Answer: Starting from Eq. (2.50), molar entropy can be written in the form

s = 5
2
R + R ln

[
T5∕2

P

]
+ R ln

[(2πm
h2

)3∕2
k5∕2B

]
.

From the Gibbs–Duhem equation in Eq. (3.24), we have (𝜕μ∕𝜕T )P = −s and
(𝜕μ∕𝜕P)T = v = RT∕P. If we integrate these we obtain the following expression
for the molar chemical potential:

μ = −RT ln
[
(kBT )5∕2

P

(2πm
h2

)3∕2]
.

Exercise 3.3

Mixing of distinct molecules provides an example of a spontaneous process that
leads to entropy increase without heat exchange. Consider an isolated rigid con-
tainer of volume V which is divided into l compartments of equal volume V∕l.
The walls of the compartments are massless, rigid, and conduct heat so the tem-
perature T is the same in all compartments. Each compartment contains 𝔫moles
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of a different kind of molecule Aj ( j = 1,… , l) and the system is in equilibrium.
If the walls of the compartments are suddenly removed and the system is allowed
to come back to equilibrium, what is the change in the entropy of the system?

Answer: (a) Initially, the pressure is the same in each compartment and is given
by P(i)j = 𝔫RT∕(V∕l). Also, the internal energy is the same in each compartment
and isUj = (3∕2)𝔫RT . The entropy of the initial equilibrium state is the sumof the
entropies of the gases in each compartment. Using the Sackur–Tetrode equation,
it can be written as

Sinitial = l
5
2
𝔫R +

l∑
j=1

𝔫R ln
⎡⎢⎢⎣T

5∕2

P(i)j

⎤⎥⎥⎦ + 𝔫lR ln
[(2πm

h2
)3∕2

k5∕2B

]
.

(b) The pressure of the gas of each type ofmolecule, after the walls are removed, is
P(f)j =𝔫RT∕V , because each type of gas nowfills the entire volumeV . The internal
energy and temperature of the gases don’t change because, for an ideal gas, they
are independent of volume and the entire system is isolated. The total pressure of
the mixed gas is P =

∑l
j=1 P

(f)
j (P(f)j is called the partial pressure of molecules of

type j). The entropy of the mixed gas is

Sfinal = l
5
2
𝔫R +

l∑
j=1

𝔫R ln
⎡⎢⎢⎣T

5∕2

P(f)j

⎤⎥⎥⎦ + 𝔫lR ln
[(2πm

h2
)3∕2

k5∕2B

]
.

The change in the entropy is

ΔSmix = Sfinal − Sinitial =
l∑
j=1

𝔫R ln
⎡⎢⎢⎣
P(i)j
P(f)j

⎤⎥⎥⎦ = 𝔫lR ln l .

The quantity ΔSmix is called the entropy of mixing. If the particles were all identi-
cal, we would not have a summation in the expression for Sfinal, but a single term
involving final pressure P(f) = 𝔫lRT∕V and the entropy would not change. This
difference in behavior of identical and distinct particles is called the Gibbs para-
dox. The origin of this difference lies in quantum mechanics and the fact that the
number of microscopic states available to identical particles is different from the
number of microscopic states available to the same number of distinct particles.

3.5
Thermodynamic Potentials

In conservative mechanical systems, such as a spring or amass raised in a gravita-
tional field, work can be stored in the form of potential energy and subsequently
retrieved [24, 145, 183].Under certain circumstances the same is true for thermo-
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dynamic systems.We can store energy in a thermodynamic system by doing work
on it through a reversible process, and we can eventually retrieve that energy in
the form of work. The energy which is stored and retrievable in the form of work
is called the free energy. There are as many different forms of free energy in a ther-
modynamic system as there are combinations of constraints. In this section, we
shall discuss the five most common ones: internal energy, U ; the enthalpy,H; the
Helmholtz free energy, A; the Gibbs free energy, G; and the grand potential, Ω.
These quantities play a role analogous to that of the potential energy in a spring
when their respective dependent variables are held fixed and, for that reason, they
are also called the thermodynamic potentials.

3.5.1
Internal Energy

The combined first and second laws of thermodynamics (Eq. (3.20)) yield the fol-
lowing expression for the total differential of the internal energy U(S , X , {Nj}),

dU ≤ T dS + Y dX +
ν∑
j=1
μj dNj , (3.25)

where T , Y , and μj are considered to be functions of S, X, and {Nj} and can be
expressed as partial differentials of the internal energy (see Table 3.1). The equal-
ity holds for reversible changes, and the inequality holds for changes which are
spontaneous. The internal energy is a thermodynamic potential or free energy be-
cause for processes carried out reversibly in an isolated, closed system at fixed S,
X and {Nj}, the change in internal energy is equal to the maximum amount of
work that can be done on or by the system.

Table 3.1 The equations for internal energy changes in a closed, isolated system.

Internal energy U(S, X , {Nj})

Total Differential dU = T dS + Y dX +
∑ν
j=1 μ j dNj

Fundamental Equation U = TS + YX +
∑ν
j=1 μ jN j

Equations of State T =
(
𝜕U
𝜕S

)
X,{Nj}

Y =
(
𝜕U
𝜕X

)
S,{Nj}

μ j =

(
𝜕U
𝜕Nj

)
S,X,{Nl≠ j}

Maxwell Relations(
𝜕T
𝜕X

)
S,{Nj}

=
(
𝜕Y
𝜕S

)
X,{Nj}

(
𝜕T
𝜕Nj

)
S,X,{Nl≠ j}

=
(
𝜕μ j
𝜕S

)
X,{Nj}(

𝜕Y
𝜕Nj

)
S,X,{Nl≠ j}

=
(
𝜕μ j
𝜕X

)
S,{Nj}

(
𝜕μ j
𝜕Ni

)
S,X,{Nl≠i}

=

(
𝜕μi
𝜕Nj

)
S,X,{Nl≠ j}



40 3 Thermodynamics

For a substance with a single type of particle, the equations in Table 3.1 simplify
if weworkwith densities. Let u = U∕𝔫 denote themolar internal energy. Then the
Fundamental Equation can be written u = Ts + Yx + μ, where s is the molar en-
tropy and x is a molar density. The combined first and second laws (for reversible
processes) are du = T ds+Y dx. Therefore, we obtain the identities T = (𝜕u∕𝜕s)x
and Y = (𝜕u∕𝜕x)s , and the Maxwell relations reduce to (𝜕T∕𝜕x)s = (𝜕Y∕𝜕s)x .
If a process takes place in which no work is done on or by the system, no matter

is exchangedwith the outsideworld, and the entropy of the systemdoesn’t change,
then Eq. (3.25) becomes

(dU)S ,X ,{Nj} ≤ 0 (3.26)

and the internal energy either does not change (reversible process) or decreas-
es (spontaneous process). Since a system in equilibrium cannot change its state
spontaneously, we see that an equilibrium state at fixed S, X, and {Nj} is a state
of minimum internal energy.

3.5.2
Enthalpy

The enthalpy, H(S , Y, {Nj}), is a thermodynamic potential for systems which are
thermally isolated and closed but mechanically coupled to the outside world. It is
obtained from the fundamental equation for the internal energy by adding to the
internal energy an additional energy −XY due to the mechanical coupling:

H ≡ U − XY = ST +
∑
j
μ jN j . (3.27)

The addition of the term −XY has the effect of changing the independent vari-
ables from (S , X ,Nj) to (S , Y,Nj) and is called a Legendre transformation. If we
take the differential of Eq. (3.27) and combine it with Eq. (3.25), we obtain the
following equation for the exact differential of the enthalpy

dH ≤ T dS − X dY +
∑
j
μ j dNj . (3.28)

The quantities T , X and {μj} are functions of S, Y and {Nj} and can be expressed
in terms of partial derivatives of the enthalpy as shown in Table 3.2.
For a substance with a single type of molecule, the equations in Table 3.2 be-

come particularly simple if we work with densities. Let h = H∕𝔫 denote the mo-
lar enthalpy. Then the fundamental equation for the molar enthalpy can be writ-
ten h = u − xY = sT + μ. The exact differential of the molar enthalpy is dh =
T ds − x dY (for reversible processes), which yields the identities T = (𝜕h∕𝜕s)Y
and x = (𝜕h∕𝜕Y )s . Maxwell’s relations reduce to (𝜕T∕𝜕Y )s = −(𝜕x∕𝜕s)Y . In Exer-
cise 3.4, we compute the enthalpy for amonatomic ideal gas in terms of its natural
variables s and Y .
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Table 3.2 The equations for enthalpy changes in a systemmechanically coupled to the out-
side world but closed to thermal and material exchange.

Enthalpy H(S, Y, {Nj})

Total Differential dH = T dS − X dY +
∑ν
j=1 μ j dNj

Fundamental Equation H = U − XY = TS +
∑ν
j=1 μ jN j

Equations of State T =
(
𝜕H
𝜕S

)
Y,{Nj}

X = −
(
𝜕H
𝜕Y

)
S,{Nj}

μ j =

(
𝜕H
𝜕Nj

)
S,Y,{Nl≠ j}

Maxwell Relations(
𝜕T
𝜕Y

)
S,{Nj}

= −
(
𝜕X
𝜕S

)
Y,{Nj}

(
𝜕T
𝜕Nj

)
S,Y,{Nl≠ j}

=
(
𝜕μ j
𝜕S

)
Y,{Nj}(

𝜕X
𝜕Nj

)
S,Y,{Nl≠ j}

= −
(
𝜕μ j
𝜕Y

)
S,{Nj}

(
𝜕μ j
𝜕Ni

)
S,Y,{Nl≠i}

=

(
𝜕μi
𝜕Nj

)
S,Y,{Nl≠ j}

Exercise 3.4

Compute the enthalpy for nmoles of amonatomic ideal gas and express it in terms
of its natural variables. Assume the entropy is given by the Sackur–Tetrode equa-
tion S = (5∕2)𝔫R + nR ln[(V∕V0)(𝔫0∕𝔫)(T∕T0)3∕2] and the mechanical equation
of state is PV = 𝔫RT .

Answer: If we combine the Sackur–Tetrode equation and the equation of state,
we can write the molar entropy in terms of temperature and pressure so that s =
(5∕2)R + R ln[(P0∕P)(T∕T0)5∕2]. Now since dh = T ds + v dP we have(

𝜕h
𝜕P

)
s
= v = +RT

P
and

(
𝜕h
𝜕s

)
P
= T = T0

(
P
P0

)2∕5

e(s−s0)∕s0 .

If we integrate, we find h = (5∕2)RT0(P∕P0)2∕5e(s−s0)∕s0 = (5∕2)RT . In terms of
temperature, themolar enthalpy is h = (5∕2)RT . Note that there is an easierway to
obtain these results. The molar internal energy is u = (3∕2)RT . The fundamental
equation for the molar enthalpy is h = u + vP. Since v = RT∕P, we obtain h =
(5∕2)RT and H = (5∕2)𝔫RT .

If a process takes place at constant S, Y , and {Nj}, then

(dH)S ,Y,{Nj} ≤ 0 . (3.29)

Since the equilibrium state cannot change spontaneously, we find that the equi-
librium state at fixed S, Y , and {Nj} is a state of minimum enthalpy.
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3.5.3
Helmholtz Free Energy

For processes carried out at constant T , X, and {Nj}, the Helmholtz free energy
corresponds to a thermodynamic potential. The Helmholtz free energy, A, is use-
ful for systems which are closed and thermally coupled to the outside world but
are mechanically isolated (held at constant X). We obtain the Helmholtz free en-
ergy from the internal energy by adding a term −ST due to the thermal coupling:

A = U − ST = YX +
ν∑
j=1
μjN j . (3.30)

The addition of −ST is a Legendre transformation which changes the indepen-
dent variables from (S , X , {Nj}) to (T, X , {Nj}). If we take the differential of
Eq. (3.30) and use Eq. (3.25), we find

dA ≤ −S dT + Y dX +
ν∑
j=1
μj dNj . (3.31)

The equations of state and the Maxwell relations that result from Eq. (3.31) are
given in Table 3.3.
Let us consider a monatomic substance and let a = A∕𝔫 denote the molar

Helmholtz free energy. Then the fundamental equation for the molar Helmholtz
free energy is a = u − sT = xY + μ, where u = U∕𝔫, s = S∕𝔫 and x = X∕𝔫. The
combined first and second laws (for reversible processes) can be written da =
−s dT + Y dx so that s = −(𝜕a∕𝜕T )x and Y = (𝜕a∕𝜕x)T . Maxwell’s relations re-

Table 3.3 The equations for changes in the Helmholtz free energy in a system thermally cou-
pled to the outside world but closed to mechanical energy and chemical exchange.

Helmholtz free energy A(T, X , {Nj})

Total Differential dA = −S dT + Y dX +
∑ν
j=1 μ j dNj

Fundamental Equation A = U − ST = XY +
∑ν
j=1 μ jN j

Equations of State T = −
(
𝜕A
𝜕T

)
X,{Nj}

Y =
(
𝜕A
𝜕X

)
T,{Nj}

μ j =

(
𝜕A
𝜕Nj

)
T,X,{Nl≠ j}

Maxwell Relations(
𝜕S
𝜕X

)
T,{Nj}

= −
(
𝜕Y
𝜕T

)
X,{Nj}

(
𝜕S
𝜕Nj

)
T,X,{Nl≠ j}

= −
(
𝜕μ j
𝜕T

)
X,{Nj}(

𝜕Y
𝜕Nj

)
T,X,{Nl≠ j}

=
(
𝜕μ j
𝜕X

)
T,{Nj}

(
𝜕μ j
𝜕Ni

)
T,X,{Nl≠i}

=

(
𝜕μi
𝜕Nj

)
T,X,{Nl≠ j}
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duce to (𝜕s∕𝜕x)T = −(𝜕Y∕𝜕T )x . In Exercise 3.4, we compute that Helmholtz free
energy for a monatomic ideal gas in terms of its natural variables.
If no work is done for a process occurring at fixed T , X, and {Nj}, Eq. (3.31)

becomes

(dA)T,X ,{Nj} ≤ 0 . (3.32)

Thus, an equilibrium state at fixed T, X, and {Nj} is a state ofminimumHelmholtz
free energy.

Exercise 3.5

Compute the Helmholtz free energy for 𝔫 moles of a monatomic ideal gas and
express it in terms of its natural variables. The mechanical equation of state is
PV = 𝔫RT and the Sackur–Tetrode equation for the entropy can be written S =
(5∕2)𝔫R + 𝔫R ln[(V∕V0)(𝔫0∕𝔫)(T∕T0)3∕2].

Answer: Since da = −s dT − P dv we have(
𝜕a
𝜕T

)
v
= −s = −5

2
R − R ln

[
v
v0

(
T
T0

)3∕2
]

and (
𝜕a
𝜕v

)
T
= −P = −RT

v
.

If we integrate, we find a = −RT − RT ln
[
(v∕v0)(T∕T0)3∕2

]
and A = −𝔫RT −

𝔫RT ln
[
(V∕V0) ⋅ (𝔫0∕𝔫)(T∕T0)3∕2

]
.

3.5.4
Gibbs Free Energy

For processes carried out at constant T , Y and {Nj}, the Gibbs free energy cor-
responds to the thermodynamic potential. Such a process is coupled both ther-
mally and mechanically to the outside world. We obtain the Gibbs free energy,
G(T, Y, {Nj}), from the internal energy U by adding terms −ST and −XY due to
the thermal and mechanical coupling, respectively,

G = U − TS − XY =
ν∑
j=1
μjN j . (3.33)

In this way we change from the independent variables (S , X , {Ni}) for the internal
energy to the independent variables (T, Y, {Ni}) for the Gibbs free energy. If we
take the differential of Eq. (3.33) and use Eq. (3.25), we obtain

dG ≤ −S dT − X dY +
∑
j
μ j dNj . (3.34)
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Table 3.4 The equations for changes in the Gibbs free energy in a system thermally coupled
and mechanically coupled to the outside world but closed to chemical exchange.

Gibbs free energy G(T, Y, {Nj})

Total Differential dG = −S dT − X dY +
∑ν
j=1 μ j dNj

Fundamental Equation G = U − TS − YX =
∑ν
j=1 μ jN j

Equations of State S = −
(
𝜕G
𝜕T

)
Y,{Nj}

X = −
(
𝜕G
𝜕Y

)
T,{Nj}

μ j =

(
𝜕G
𝜕Nj

)
T,Y,{Nl≠ j}

Maxwell Relations(
𝜕S
𝜕Y

)
T,{Nj}

=
(
𝜕X
𝜕T

)
Y,{Nj}

(
𝜕S
𝜕Nj

)
T,Y,{Nl≠ j}

= −
(
𝜕μ j
𝜕T

)
Y,{Nj}(

𝜕X
𝜕Nj

)
T,Y,{Nl≠ j}

= −
(
𝜕μ j
𝜕Y

)
T,{Nj}

(
𝜕μ j
𝜕Ni

)
T,Y,{Nl≠i}

=

(
𝜕μi
𝜕Nj

)
T,Y,{Nl≠ j}

The equations of state and Maxwell equations for the Gibbs free energy are given
in Table 3.4.
Let us consider a monomolecular substance and let g = G∕𝔫 denote the molar

Gibbs free energy. Then the fundamental equation for the molar Gibbs free ener-
gy is g = u− sT − xY = μ and themolar Gibbs free energy is equal to the chemical
potential (for a monomolecular substance). The combined first and second laws
(for reversible processes) canbewritten dg =−s dT −x dY so that s=−(𝜕g∕𝜕T )Y
and x = −(𝜕g∕𝜕Y )T . Maxwell’s relations reduce to (𝜕s∕𝜕Y )T = +(𝜕x∕𝜕T )Y . For
a monatomic substance, the molar Gibbs free energy is equal to the chemical po-
tential.

Exercise 3.6

Consider a system which has the capacity to do work, ∕dW = −Y dX + ∕dW ′. As-
sume that processes take place spontaneously so that dS = 1∕T∕dQ + d iS, where
di S, is the entropy change due to the spontaneity of the process. Show that
−(dG)Y,T = ∕dW ′ + T d iS, so that, at fixed Y and T , all the Gibbs free energy is
available to do work for reversible processes but only part of it is available to do
work for spontaneous processes.

Answer: From the fundamental equation for theGibbs free energy, we know that
dG = dU − X dY − Y dX − T dS − S dT . Also we know that dU = ∕dQ + Y dX −
∕dW ′, so we can write dG = ∕dQ − ∕dW ′ − X dY − T dS − S dT . For fixed Y and T
we have (dG)Y,T = ∕dQ − ∕dW ′ − T dS. Now remember that dS = 1∕T∕dQ + d iS.
Then we find (dG)Y,T = −∕dW ′ − T d iS.
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For a process at fixed T , Y , and {Nj} we obtain

(dG)T,Y,{Nj} ≤ 0 , (3.35)

and we conclude that an equilibrium state at fixed T, Y , and {Nj} is a state of
minimum Gibbs free energy.

3.5.5
Grand Potential

The Grand Potential is a thermodynamic potential that is extremized for a sys-
tem in thermal and chemical equilibrium with the surrounding environment but
is mechanically isolated. It describes systems that are held at the same tempera-
ture and chemical potential as the environment. It is a thermodynamic potential
energy for processes carried out in open systems where particle number can vary
but T , X, and {μj} are kept fixed.
The grand potential, Ω, can be obtained from the internal energy U by adding

terms to U that are due to thermal and chemical coupling of the system to the
outside world:

Ω = U − TS −
ν∑
j=1
μjN j = XY . (3.36)

The Legendre transformation in Eq. (3.36) changes the independent variables
from (S , X , {Nt}) for the internal energy to (T, X , {μj}) for the grand potential.

Table 3.5 The equations for changes in the Grand Potential in a system thermally and chemi-
cally coupled to the outside world.

Grand potential Ω(T, X , {μj})

Total Differential dΩ = −S dT + Y dX −
∑ν
j=1 Nj dμ j

Fundamental Equation Ω = U − TS −
∑ν
j=1 μ jN j = XY

Equations of State S = −
(
𝜕Ω
𝜕T

)
X,{μj}

Y =
(
𝜕Ω
𝜕X

)
T,{μj}

Nj = −

(
𝜕Ω
𝜕μ j

)
T,X,{μl≠ j}

Maxwell Relations(
𝜕S
𝜕X

)
T,{μj}

= −
(
𝜕Y
𝜕T

)
X,{μj}

(
𝜕S
𝜕μ j

)
T,Y,{μl≠ j}

=
(
𝜕Nj
𝜕T

)
X,{μj}(

𝜕Y
𝜕μ j

)
T,X,{μl≠ j}

= −
(
𝜕Nj
𝜕X

)
T,{μj}

(
𝜕Nj
𝜕μi

)
T,X,{μl≠i}

=

(
𝜕Ni
𝜕μ j

)
T,X,{μl≠ j}
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If we take the differential of Eq. (3.36) and combine it with the differential dU
in Eq. (3.25), we obtain

dΩ ≤ −S dT + Y dX −
∑
j
N j dμj . (3.37)

The equations of state and Maxwell relations that result from the fact that dΩ is
an exact differential, are listed in Table 3.5.
For a process at fixed T , X, and {μj}, we obtain

(dΩ)T,X ,{μ j} ≤ 0 . (3.38)

Thus, an equilibrium state at fixed T, X, and {μj} is a state of minimum grand
potential.

3.6
Response Functions

The response functions are the thermodynamic quantities most accessible to ex-
periment. They give us information about how a specific state variable changes
as other independent state variables are changed under controlled conditions. As
we shall see in later chapters, they also provide a measure of the size of fluctu-
ations in a thermodynamic system. The response functions can be divided into
(a) thermal response functions, such as heat capacities, (b) mechanical response
functions, such as compressibility and susceptibility, and (c) chemical response
functions. We shall introduce some thermal and mechanical response functions
in this section.

3.6.1
Thermal Response Functions (Heat Capacity)

The heat capacity, C, is a measure of the amount of heat needed to raise the tem-
perature of a system by a given amount. In general, it is defined as the derivative,
C = (∕dQ∕dT ). When we measure the heat capacity, we try to fix all independent
variables except the temperature. Thus, there are as many different heat capac-
ities as there are combinations of independent variables, and they each contain
different information about the system. We shall derive the heat capacity at con-
stant X and {Nj}, CX ,{Nj}, and we shall derive the heat capacity at constant Y and
{Nj}, CY,{Nj}. We will derive these heat capacities in two different ways, first from
the first law and then from the definition of the entropy.
To obtain an expression of CX ,{Nj}, we shall assume that X, T , and {Nj} are

independent variables. Then the first law, ∕dQ = dU − Y dX −
∑
j μ j dNj , can be
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written

∕dQ =
(
𝜕U
𝜕T

)
X ,{Nj}

dT +
[(

𝜕U
𝜕X

)
T,{Nj}

− Y
]
dX

+
∑
j

⎡⎢⎢⎣
(

𝜕U
𝜕Nj

)
T,X ,{Ni≠ j}

− μj
⎤⎥⎥⎦ dNj . (3.39)

For constant X and {Nj}, we have [∕dQ]X ,{Nj} = CX ,{Nj} dT and we find

CX ,{Nj} =
(
𝜕U
𝜕T

)
X ,{Nj}

(3.40)

for the heat capacity at constant X and {Nj}.
To obtain an expression for CY,{Nj}, we shall assume that Y , T , and {Nj} are

independent variables. Then we can write

dX =
(
𝜕X
𝜕T

)
Y,{Nj}

dT+
(
𝜕X
𝜕Y

)
T,{Nj}

dY +
∑
j

(
𝜕X
𝜕Nj

)
T,Y,{Ni≠ j}

dNj . (3.41)

If we substitute the expression for dX into Eq. (3.39), and hold Y and {Nj} fixed
so that dY = 0 and {dNj = 0}, we obtain

[∕dQ]Y,{Nj} =
{
CX ,{Nj} +

[(
𝜕U
𝜕X

)
T,{Nj}

− Y
] (

𝜕X
𝜕T

)
Y,{Nj}

}
dT (3.42)

Since [∕dQ]Y,{Nj} = CY,{Nj} dT and we obtain

CY,{Nj} = CX ,{Nj} +
[(

𝜕U
𝜕X

)
T,{Nj}

− Y
] (

𝜕X
𝜕T

)
Y,{Nj}

(3.43)

for the heat capacity at constant Y and {Nj}.
For a monatomic substance, these equations simplify. Let us write them in

terms of molar quantities. We can write the heat capacity in the form CX ,𝔫 =
(𝜕U∕𝜕T )X ,𝔫 = 𝔫(𝜕u∕𝜕T )x , where u = U∕𝔫 is the molar internal energy and
x = X∕𝔫 is a molar density of the mechanical extensive variable. The molar heat
capacity is then cx = (𝜕u∕𝜕T )x so that CX ,𝔫 = 𝔫cx . Similarly, let us note that
(𝜕X∕𝜕T )Y,𝔫 = 𝔫(𝜕x∕𝜕T )Y and (𝜕U∕𝜕X)T,𝔫 = 𝔫(𝜕u∕𝜕x)T . Therefore, the molar
heat capacity at constant Y is cY = cx + [(𝜕u∕𝜕x)T − Y ](𝜕x∕𝜕T )Y .
It is useful to rederive expressions forCX ,{Nj} andCY,{Nj} from the entropy using

the definition ∕dQ = T dS. Let us first assume thatT ,X, and {Nj} are independent.
Then for a reversible process, we obtain

∕dQ = T
(
𝜕S
𝜕T

)
X ,{Nj}

dT +T
(
𝜕S
𝜕X

)
T,{Nj}

dX+
∑
j
T

(
𝜕S
𝜕Nj

)
T,X ,{Ni≠ j}

dNj .

(3.44)
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For a process which occurs at constant X and {Nj}, Eq. (3.44) becomes

[∕dQ]X ,{Nj} = T
(
𝜕S
𝜕T

)
X ,{Nj}

dT , (3.45)

and therefore

CX ,{Nj} = T
(
𝜕S
𝜕T

)
X ,{Nj}

= −T
(
𝜕2A
𝜕T2

)
X ,{Nj}

. (3.46)

The second term uses the fact that S = −T (𝜕A∕𝜕T)X ,{Nj} (see Table 3.3).
Let us now assume that T , Y , and {Nj} are independent. For a reversible pro-

cess, we can write

∕dQ = T
(
𝜕S
𝜕T

)
Y,{Nj}

dT +T
(
𝜕S
𝜕Y

)
T,{Nj}

dY +
∑
j
T

(
𝜕S
𝜕Nj

)
T,Y,{Ni≠ j}

dNj .

(3.47)

If we combine Eqs. (3.41) and (3.44), and hold Y and {Nj} fixed, we can write

[∕dQ]Y,{Nj} = T
[(

𝜕S
𝜕T

)
X ,{Nj}

+
(
𝜕S
𝜕X

)
T,{Nj}

(
𝜕X
𝜕T

)
Y,{Nj}

]
dT . (3.48)

If we now compare Eqs. (3.47) and (3.48), we find

CY,{Nj} = T
(
𝜕S
𝜕T

)
Y,{Nj}

= −T
(
𝜕2G
𝜕T2

)
Y,{Nj}

= CX ,{Nj} + T
(
𝜕S
𝜕X

)
T,{Nj}

(
𝜕X
𝜕T

)
Y,{Nj}

. (3.49)

The top line in Eq. (3.49) uses the relation S = −T (𝜕G∕𝜕T)Y,{Nj} (see Table 3.4).
We can obtain some additional useful identities from the above equations. If

we use the Maxwell relation (𝜕S∕𝜕X)T,{Nj} = − (𝜕Y∕𝜕T )X{Nj} (see Table 3.3) and
Eqs. (3.43), and (3.49), we obtain the identity(

𝜕S
𝜕X

)
T,{Nj}

= 1
T

[(
𝜕U
𝜕X

)
T,{Nj}

− Y
]
= −

(
𝜕Y
𝜕T

)
X ,{Nj}

. (3.50)

Therefore,(
𝜕2Y
𝜕T2

)
X ,{Nj}

= − 1
T

(
𝜕CX ,{Nj}

𝜕X

)
T,{Nj}

, (3.51)

where we have used identity
(
𝜕∕𝜕T (𝜕S∕𝜕X)T,𝔫

)
X ,𝔫 =

(
𝜕∕𝜕X (𝜕S∕𝜕T)X ,𝔫

)
T,𝔫 and

Eq. (3.50).
For a monatomic substance, it is fairly easy to show that the molar heat ca-

pacity at constant molar density, x, is cx = T(𝜕s∕𝜕T )x = −T(𝜕2a∕𝜕T2)x , and the
molar heat capacity at constant Y is cY = T(𝜕s∕𝜕T )Y = −T(𝜕2a∕𝜕T2)Y . We also
obtain the useful identities (𝜕s∕𝜕x)T = (1∕T)[(𝜕u∕𝜕x)T − Y ] = −(𝜕Y∕𝜕T )x and
(𝜕2Y∕𝜕T2)x = −(1∕T)(𝜕cx∕𝜕x)T .
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3.6.2
Mechanical Response Functions

There are three mechanical response functions which are commonly used. They
are the isothermal susceptibility,

χT,{Nj} =
(
𝜕X
𝜕Y

)
T,{Nj}

= −
(
𝜕2G
𝜕Y 2

)
T,{Nj}

, (3.52)

the adiabatic susceptibility,

χS ,{Nj} =
(
𝜕X
𝜕Y

)
S ,{Nj}

= −
(
𝜕2H
𝜕Y 2

)
S ,{Nj}

, (3.53)

and the thermal expansivity,

αY,{Nj} =
(
𝜕X
𝜕T

)
Y,{Nj}

. (3.54)

Using the identities in Section 3.5, the thermal andmechanical response functions
can be shown to satisfy the identities

χT,{Nj}(CY,{Nj} − CX ,{Nj}) = T(αY,{Nj})
2 , (3.55)

CY,{Nj}(χT,{Nj} − χS ,{Nj}) = T(αY,{Nj})
2 , (3.56)

and
CY,{Nj}
CX ,{Nj}

=
χT,{Nj}
χS ,{Nj}

. (3.57)

The derivation of these identities is left as a homework problem.
For PVT systems, the mechanical response functions have special names.

Quantities closely related to the isothermal and adiabatic susceptibilities are
the isothermal compressibility,

κT,{Nj} = − 1
V

(
𝜕V
𝜕P

)
T,{Nj}

= − 1
V

(
𝜕2G
𝜕P2

)
T,{Nj}

, (3.58)

and adiabatic compressibility,

κS ,{Nj} = − 1
V

(
𝜕V
𝜕P

)
S ,{Nj}

= − 1
V

(
𝜕2H
𝜕P2

)
S ,{Nj}

, (3.59)

respectively. The thermal expansivity for a PVT is defined slightly differently from
above. It is

αP,{Nj} =
1
V

(
𝜕V
𝜕T

)
P,{Nj}

. (3.60)

For a monatomic PVT system the mechanical response functions become even
simpler if written in terms of densities. The isothermal and adiabatic compress-
ibilities are κT = −(1∕v)(𝜕v∕𝜕P)T and κs = −(1∕v)(𝜕v∕𝜕P)s , respectively, where
v = V∕𝔫 and s = S∕𝔫 are the molar volume and molar entropy, respectively. The
thermal expansivity is αP = (1∕v)(𝜕v∕𝜕T )P .
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Exercise 3.7

Gases are composed of atoms or molecules that have a repulsive core and a weak
attractive region surrounding the repulsive core. The van der Waals equation of
state (

P + a𝔫2

V 2

)
(V − 𝔫b) = 𝔫RT

gives corrections to the ideal gas equation of state due to these interactions. The
parameter a accounts for a reduction in pressure due to the attractive interaction
and b reduces the volume available to the particles because of the repulsive core.
(a) Compute the molar heat capacity cP , (b) the adiabatic compressibility κS , and
(c) the thermal expansivity αP for a van der Waals gas. Assume a monatomic gas
so that cV,𝔫 = 3R∕2.

Answer: (a) First note that from Eq. (3.51) and the van der Waals equation, we
have the relation

(
𝜕CV,𝔫∕𝜕V

)
T,𝔫 = T

(
𝜕2P∕𝜕T2)

V,𝔫 = 0, which shows that CV,𝔫
is independent ofV . We can compute cP using Eq. (3.43). From the van derWaals
equation of state and Eq. (3.50), we find(

𝜕v
𝜕T

)
P
= R

[
RT
v − b

− 2α(v − b)
v3

]−1
and

(
𝜕u
𝜕v

)
T
= α
v2

,

where v = V∕n. If we combine Eq. (3.43) and the above equations, and use the
van der Waals equation of state, we obtain

cp =
3
2
R + R

[
1 − 2α(v − b)2

RTv3

]−1
.

(b) The derivation of the adiabatic compressibility, κs is more involved. We first
find the entropy. Note that (𝜕s∕𝜕T )v = 3R∕(2T ) and (𝜕s∕𝜕v)T = (𝜕P∕𝜕T )v =
R∕(v − b). If we integrate, we obtain the molar entropy s = R ln[(v − b)T3∕2] +
constant. Using the van der Waals equation, we obtain

s = 5
2
R + R ln

[
(v − b)5∕2

(
P + α

v2
)3∕2

]
+ constant .

If we now take the derivative of s with respect to P holding s fixed, we obtain

κs = −1
v

(
𝜕v
𝜕P

)
s
=

[
5
3

RTv
(v − b)2

− 2α
v2

]−1
.

(c) The thermal expansivity αP is easy to compute. If we take the derivative of the
van der Waals equation with respect to T holding P fixed, we find

αP = 1
v

(
𝜕v
𝜕T

)
P
= R

[
RT

(v − b)
− 2α(v − b)

v3

]−1
.



513.7 Stability of the EquilibriumState

3.7
Stability of the Equilibrium State

The entropy of an isolated system takes its maximum value at equilibrium. If the
system has a finite number of particles, the thermodynamic quantities describe
the average behavior of the system and there can be spontaneous fluctuations
away from this average behavior. Fluctuations away from equilibrium must cause
the entropy to decrease. If this were not the case, the system could spontaneously
move to a new equilibrium state with a higher entropy because of fluctuations.
For a system in a stable equilibrium state this, by definition, cannot happen.
We can use the fact that the entropy must be maximum for an isolated system

to obtain conditions for local equilibrium and for local stability of equilibrium
systems [67, 109, 183]. We will restrict ourselves to PVT systems. However, our
arguments also apply more generally to YXT systems.

3.7.1
Conditions for Local Equilibrium in a PVT System

Let us consider a mixture of l types of particles in an isolated box with total vol-
ume, VT, total internal energy UT, total entropy ST, and total number of parti-
cles Nj,T of type j. Assume that the box is divided into two parts, A and B, by
a conducting porous wall which is free to move and through which particles can
pass. With this type of dividing wall there is a free exchange of heat, mechanical
energy, and particles between A and B. One can think of A and B as two different
parts of a fluid (gas or liquid), or perhaps as a solid (part A) in contact with its
vapor (part B). We shall assume that no chemical reactions occur. Since the box
is closed and isolated, we can write

UT =
∑
α=A,B

Uα , VT =
∑
α=A,B

Vα , ST =
∑
α=A,B

Sα , Nj,T =
∑
α=A,B

Nj,α ,

(3.61)

where Uα , Vα , Sα , and Nj,α are the internal energy, volume, entropy, and total
number of particles of type j in compartment α, respectively.
Let us now assume that spontaneous fluctuations can occur in the energy, vol-

ume, and particle number of each cell subject to the constraints

ΔUT = ΔVT = ΔNj,T = 0 (3.62)

so that ΔUA = −ΔUB, ΔVA = −ΔVB, and ΔNj,A = −ΔNj,B. As long as the system
is not near a phase transition, the fluctuations will be small. Then changes in the
entropy, due to these fluctuations, can be expanded in a Taylor series to first order
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in the fluctuations and can be written

ΔST =
∑
α=A,B

[(
𝜕Sα
𝜕Uα

)0

Vα ,{Nj,α}
ΔUα +

(
𝜕Sα
𝜕Vα

)0

Uα ,{Nj,α}
ΔVα

+
l∑
j=1

(
𝜕Sα
𝜕Nj,α

)0

Uα ,Vα ,{Nk≠ j,α}
ΔNj,α

⎤⎥⎥⎦ +… (3.63)

where the superscript “0” denotes absolute equilibrium. From Eqs. (3.22) and
(3.62), we can write Eq. (3.63) in the form

ΔST =

(
1
T0
A

− 1
T0
B

)
ΔUA +

(
P0A
T0
A

−
P0B
T0
B

)
ΔVA

−
l∑
j=1

(
μ0j,A
T0
A

−
μ0j,B
T0
B

)
ΔNj,A +… , (3.64)

where T0
α and P

0
α are the equilibrium temperature and pressure, respectively, of

the material in compartment α, and μ0j,α is the equilibrium chemical potential of
particles of type j in compartment α.
For a system in equilibrium, the entropy is a maximum. Therefore, any spon-

taneous changes must cause the entropy to decrease. However, ΔUA, ΔVA, and
ΔNj,A can be positive or negative. Thus, in order to ensure that ΔST ≤ 0, we must
have

T0
A = T0

B , P0A = P0B , and μ0j,A = μ0j,B for j = 1,… , l . (3.65)

Equations (3.65) give the conditions for local equilibrium in a system in which
no chemical reactions occur. Thus, if the interface between A and B can transmit
heat, mechanical energy, and particles of all types, then the two systems must have
the same temperature, pressure, and chemical potential for each type of particle
in order to be in equilibrium. It is important to note that if the partition cannot
pass particles of type, i, then ΔNi,A = ΔNi,B = 0 and we can have μ0i,A ≠ μ0i,B. If
the partition is nonporous and fixed in position so no particles can pass and no
mechanical work can be transmitted, then we can have P0A ≠ P0B and μ0j,A ≠ μ0j,B
( j = 1,… , l) and still have equilibrium.

3.7.2
Conditions for Local Stability in a PVT System

Stability of the equilibrium state places certain conditions on the sign of the re-
sponse functions. To see this, let us again consider a closed isolated box with vol-
ume VT, total entropy ST, total internal energy UT, and a total number of par-
ticles Nj,T of type j, where j = 1,… , ν. We shall assume that the box is divided
into l cells which can exchange thermal energy, mechanical energy, and particles.
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We shall denote the equilibrium volume, entropy, internal energy, and number of
particles of type j for the αth cell by V 0

α , S
0
α , U

0
α , and N

0
j,α, respectively. The equi-

librium pressure, temperature, and chemical potentials of the various cells are P0,
T0, and μ0j , respectively (they must be the same for all the cells). As we have seen
in Section 3.7.1, when we expand the total entropy in terms of fluctuations ΔUα ,
ΔVα , and ΔNj,α, first-order terms are zero. Thus, the changes in the entropy, to
second order in fluctuations, can be written

ΔST = 1
2

l∑
α=1

[
Δ
( 1
T

)
α
ΔUα + Δ

( P
T

)
α
ΔVα −

ν∑
j=1

Δ
(μj
T

)
α
ΔNj,α

]
+… ,

(3.66)

which is a compact way to write the many terms that contribute to second order.
The fluctuations ΔUα , ΔVα , and ΔNj,α are defined as ΔUα = Uα − U0

α , ΔVα =
Vα − V 0

α , and ΔNj,α = Nj,α − N0
j,α and denote the deviation of the quantities Uα ,

Vα , andNj,α from their absolute equilibriumvalues,U0
α,V

0
α , andN

0
j,α, respectively.

For l = 1, there will be nine terms.

Exercise 3.8

A spherical droplet of liquid floats in equilibriumwith its gas phase (neglect grav-
ity) in a large room with volume Vtot = Vl + Vg, where Vl (Vg) is the volume
of the liquid (gas). The droplet has radius R and surface tension σ. (For water
σ = 0.072N∕m at T = 25 ◦C.) The gas and liquid are free to exchange heat and
molecules, so the temperature and chemical potential are uniform throughout the
system. Find the condition for mechanical equilibrium.

Answer: The condition for chemical equilibrium is μg(T, Pg) = μl(T, Pl),
where μl (μg) is the chemical potential of the liquid (gas) and Pl (Pg) is the pres-
sure of the liquid (gas). Since we are dealing with a system of fixed total volume,
temperature and chemical potential, it is convenient to use the grand potential.
The grand potential for the entire system can be written

Ω = −PgVg − PlVl + σA = −
(
Vtot −

4
3
πR3

)
Pg −

4
3
πR3Pl + σ4πR2 .

For a system at equilibrium with fixed temperature, total volume, and chemical
potential, the grand potential must be a minimum so the condition for thermody-
namic equilibrium is (dΩ∕dR)T,Vtot ,μ = 0. Therefore, when the interface between
two parts of a thermodynamic system has a surface tension and the surface has
curvature, the condition for mechanical equilibrium takes the form

Pl − Pg =
2σ
R

.

The pressures in the two parts of the system need not be equal.
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To obtain the full expansion of Eq. (3.66) in terms of fluctuations ΔUα , ΔVα ,
and ΔNj,α , note that

Δ
( 1
T

)
α
= Δ

(
𝜕Sα
𝜕Uα

)
Vα ,{Nj,α}

, Δ
( P
T

)
α
= Δ

(
𝜕Sα
𝜕Vα

)
Uα ,{Nj,α}

,

and Δ
(μj
T

)
α
= −Δ

(
𝜕Sα
𝜕Nj,α

)
Uα ,Vα ,{Ni≠ j,α}

. (3.67)

We can expand Δ
(
𝜕Sα∕𝜕Uα

)
Vα ,{Nj,α}

in terms of fluctuations ΔUα , ΔVα , and
ΔNj,α as follows:

Δ
(
𝜕Sα
𝜕Uα

)
Vα ,{Nj,α}

≡
(

𝜕2S
𝜕U2

)0

V,{Nj}
ΔUα +

[
𝜕

𝜕V

(
𝜕S
𝜕U

)
V,{Nj}

]0
U,{Nj}

ΔVα

+
ν∑
j=1

[
𝜕

𝜕Nj

(
𝜕S
𝜕U

)
V,{Nj}

]0

U,V,{Nk≠ j}
ΔNj,α . (3.68)

The quantities Δ(𝜕Sα∕𝜕Vα)Uα ,{Nj,α} and Δ(𝜕Sα∕𝜕Nj,α)Uα ,Vα ,{Nk≠ j,α} can be expand-
ed in a similar manner. In Eq. (3.68), the superscripts 0 on partial derivatives in-
dicate that they are evaluated at absolute equilibrium.
It is useful to write Eq. (3.66) in a slightly different form. If we use the com-

bined first and second laws to relate the fluctuations as T0ΔS = ΔU + P0ΔV −∑ν
j=1 μ

0
jΔNj , then we find

ΔST = − 1
2T0

l∑
α=1

(
ΔTαΔSα − ΔPαΔVα +

ν∑
j=1

Δμj,αΔNj,α

)
+⋯ , (3.69)

where T0 is the equilibrium temperature of the system. Equation (3.69) gives the
entropy change, due to spontaneous fluctuations, in a completely general form.
This expression for ΔST, can be expanded in terms of any set of independent vari-
ables we choose.
Let us now obtain stability conditions for the PVT system. For simplicity, we

will assume that only one kind of particle exists in the system and we will as-
sume that different parts of the system cannot exchange particles. Then ΔNα = 0.
Let us chooseT and V as the independent variables. With these assumptions, we
can write

[ΔSα]Nα =
(
𝜕S
𝜕T

)0

V,N
ΔTα +

(
𝜕S
𝜕V

)0

T,N
ΔVα , (3.70)

and

[ΔPα]Nα =
(
𝜕P
𝜕T

)0

V,N
ΔTα +

(
𝜕P
𝜕V

)0

T,N
ΔVα . (3.71)
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If we substitute Eqs. (3.70), (3.71), and the constraint ΔNα = 0 into Eq. (3.69), and
use theMaxwell relation (𝜕S∕𝜕V )T,N = (𝜕P∕𝜕T )V,N for theHelmholtz free energy
(see Table 3.3), the entropy change becomes

ΔST = − 1
2T0

l∑
α=1

[(
𝜕S
𝜕T

)0

V,N
(ΔTα)2 −

(
𝜕P
𝜕V

)0

T,N
(ΔVα)2

]
+⋯ (3.72)

Because the fluctuations ΔTα and ΔVα are independent, the requirement that
ΔST ≤ 0 for a stable equilibrium state leads to the requirements that

CV,N = T
(
𝜕S
𝜕T

)
V,N

≥ 0 and κT,N = − 1
V

(
𝜕V
𝜕P

)
T,N

≥ 0 . (3.73)

The constraints in Eq. (3.73) are a realization of Le Châteliers’s famous principle:
If a system is in stable equilibrium, then any spontaneous change in its parameters
must bring about processes which tend to restore the system to equilibrium.
The first constraint in Eq. (3.73),CV,N ≥ 0, is the condition for thermal stability.

It tells us that if a small excess of heat is added to a volume element of fluid, the
temperature of the volume element must increase relative to its surroundings so
that some of the heat will flow out again. This requires that the heat capacity be
positive. If the heat capacity were negative, the temperature would decrease and
even more heat would flow in, thus leading to an instability. A similar analysis
shows that CP,N ≥ 0. From Eq. (3.56), we obtain the condition

CP,N > CV,N ≥ 0 . (3.74)

The second constraint in Eq. (3.73), κT,N ≥ 0, is a condition formechanical stabil-
ity. If a small volume element of fluid spontaneously increases, the pressure of the
fluid inside the fluid elementmust decrease relative to its surroundings so that the
larger pressure of the surroundings will stop the growth of the volume element.
This requires that the compressibility be positive. A similar analysis shows that
κS ,N ≥ 0. From the analog of Eq. (3.56) for PVT systems, we can show that

κT,N > κS ,N ≥ 0 . (3.75)

We can also obtain conditions for chemical stability. If we expand Eq. (3.69) in
terms of fluctuations ΔT , ΔP and ΔNj , and hold P and T fixed, we obtain the
following condition for chemical stability

(ΔN)T ⋅ μ ⋅ (ΔN) =
ν∑
i=1

ν∑
j=1

(
𝜕μj
𝜕Ni

)0

T,P,{Nk≠i}
ΔNiΔNj ≥ 0 , (3.76)

where ΔNi and ΔNj are independent and arbitrary variations,

μ =

⎛⎜⎜⎜⎜⎝
μ1,1 μ1,2 ⋯ μ1,l
μ2,1 μ2,2 ⋯ μ2,l
⋮ ⋮ ⋱ ⋮

μl,1 μl,2 ⋯ μν,ν

⎞⎟⎟⎟⎟⎠
, (ΔN) =

⎛⎜⎜⎜⎜⎝
ΔN1

ΔN2

⋮

ΔNν

⎞⎟⎟⎟⎟⎠
(3.77)
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(ΔN)T denotes the transpose of (ΔN), and μj,i ≡ (𝜕μj∕𝜕Ni)0T,P,{Nk≠i}. Because of
the Maxwell relation μj,i = μi, j (see Table 3.4), the matrix μ is symmetric. In ad-
dition, in order to satisfy the condition for chemical stability, the matrix μ must
be a positive definite matrix. A symmetric matrix is positive definite if μii > 0
(i = 1,… , l) and if every principal minor is positive or zero.
It is important to note that a thermodynamically stable state may not be a state

of thermodynamic equilibrium unless the appropriate free energy is minimum.
A thermodynamically stable state which is not an equilibrium state is sometimes
called a metastable state. It can exist in nature but eventually will decay to an
absolute equilibrium state.

3.7.3
Implications of the Stability Requirements for the Free Energies

The stability conditions place restrictions on the derivatives of the thermodynam-
ic potentials. Before we show this, it is useful to introduce the concept of concave
and convex functions [193]:

1. A function f (x) is convex if d2 f (x)∕dx2 ≥ 0 for all x (cf. Figure 3.3). For
any x1 and x2 the chord joining the points f (x1) and f (x2) lies above or on the
curve f (x) for all x in the interval x1 < x < x2. If d f (x)∕dx exists at a given
point, the tangent at that point always lies below the function except at the
point of tangency.

2. A function f (x) is concave if the function − f (x) is convex.

From Table 3.3 and the stability conditions in Eqs. (3.74) and (3.75), we can write(
𝜕2A
𝜕T2

)
V,{Nj}

= −
(
𝜕S
𝜕T

)
V,{Nj}

= −
CV,{Nj}
T

< 0 , (3.78)

(
𝜕2A
𝜕V 2

)
T,{Nj}

= −
(
𝜕P
𝜕V

)
T,{Nj}

= 1
VκT,{Nj}

> 0 . (3.79)

TheHelmholtz free energy is a concave function of temperature and a convex func-
tion of volume.

Figure 3.3 The function f (x) is a convex function of x.
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FromTable 3.4 and the stability conditions in Eqs. (3.74) and (3.75), we canwrite(
𝜕2G
𝜕T2

)
P,{Nj}

= −
(
𝜕S
𝜕T

)
P,{Nj}

= −
CP,{Nj}
T

< 0 , (3.80)

(
𝜕2G
𝜕P2

)
T,{Nj}

=
(
𝜕V
𝜕P

)
T,{Nj}

= −VκT,{Nj} < 0 . (3.81)

Thus, the Gibbs free energy is a concave function of temperature and a concave
function of pressure.

Exercise 3.9

A mixture of particles, A and B, has a Gibbs free energy of the form

G = 𝔫Aμ0A(P, T ) + 𝔫Bμ0B(P, T ) + RT𝔫A ln xA + RT𝔫B ln xB + λ
𝔫A𝔫B

𝔫
,

where 𝔫 = 𝔫A + 𝔫B, xA = 𝔫A∕𝔫, and xB = 𝔫B∕𝔫 (𝔫 indicates mole number), μ0A
and μ0B are functions only ofP andT . Plot the region of thermodynamic instability
in the xA−T plane.

Answer: (a) For chemical stability, the matrix
(
μA,A μA,B
μB,A μB,B

)
must be symmetric

positive definite. This requires that (𝜕μA∕𝜕𝔫A)P,T,𝔫B
> 0, (𝜕μB∕𝜕𝔫B)P,T,𝔫A

> 0, and
(𝜕μA∕𝜕𝔫B)P,T,𝔫A

= (𝜕μB∕𝜕𝔫A)P,T,𝔫B
< 0. The chemical potential of the A-type par-

ticle is

μA =
(

𝜕G
𝜕𝔫A

)
P,T,𝔫B

= μ0A(P, T ) + RT ln xA + λ
𝔫B

𝔫
− λ

𝔫A𝔫B

𝔫2 .

A condition for thermodynamic stability is(
𝜕μA
𝜕𝔫A

)
P,T,𝔫B

= RT
xA

𝔫B

𝔫2 − 2
λ𝔫B

𝔫2 + 2
λ𝔫A𝔫B

𝔫3 > 0 ,

or x2A − xA + RT∕(2λ) > 0. For T > λ∕(2R), this is always satisfied. A plot of T =
(2λ∕R)(xA − x2A) is given below.

The shaded region corresponds to x2A − xA + RT∕(2λ) < 0 and is thermodynami-
cally unstable. The unshaded region is thermodynamically stable. For T < λ∕(2R),
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two values of xA satisfy the condition x2A − xA + RT∕(2λ) > 0 for each value of T .
These two values of xA lie outside and on either side of the shaded region and
are the mole fractions of two coexisting phases of the binary mixture, one rich
in A and the other rich in B. For T > λ∕(2R), only one value of xA satisfies the
condition x2A − xA + RT∕(2λ) > 0, so only one phase of the substance exists.

The formof theGibbs andHelmholtz free energies for amagnetic system is not so
easy to obtain. However, Griffiths [74] has shown that for a system of uncharged
particles with spin,G(T,H) is a concave function ofT andH andA(T,M) is a con-
cave function of T and convex function ofM.

3.7.4
Correlations Between Fluctuations

The probability distribution of fluctuations about absolute equilibrium can be
written in terms of the entropy function associated with those fluctuations (see
Eq. (2.19)). We can generalize Eq. (2.19) to include simultaneous fluctuations in
severalmacroscopic variables. Thenwe can use Eq. (3.69) to determine the proba-
bility density for fluctuations in thermodynamic quantities about the equilibrium
state.
Let us consider a closed isolated systemwith energy E. We shall assume that the

macroscopic state of the system is describable in terms of n independent macro-
scopic state variables Ai(i = 1, 2,… , n). Let Γ(E , A1 ,… , An) denote the number
ofmicrostates with energy E and parameters A1,… , An . Then the probability that
the system is in amacroscopic state described by parameters E , A1 ,… , An , is giv-
en by

P(E , A1 ,… , An) =
Γ(E , A1 ,… , An)

Γ(E)
, (3.82)

where Γ(E) is the total number of microscopic states with energy E. The entropy
of the system in a state with parameters (E , A1 ,… , An) is given by

S(E , A1 ,… , An) = kB ln[Γ(E , A1 ,… , An)] . (3.83)

Hence

P(E , A1 ,… , An) =
1
Γ(E)

exp
[
1
kB
S(E , A1 ,… , An)

]
. (3.84)

The entropy will be a maximum when the system is in an equilibrium state,
A0

1,… , A0
n . Any fluctuation about the equilibrium state must cause the entropy

to decrease. If we let αi denote the fluctuations

αi = Ai − A0
i , (3.85)

then we can expand the entropy about its equilibrium value to obtain

S(E , A1 ,… , An) = S
(
E , A0

1 ,… , A0
n
)
− 1

2

n∑
i=1

n∑
j=1
gi jαiα j +⋯ , (3.86)
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where

gi j ≡ −

(
𝜕2S

𝜕Ai𝜕Aj

)
Ai=A0

i ;A j=A
0
j

. (3.87)

We assume that the fluctuations about the equilibrium state are small so we can
terminate the expansion of the entropy at second order. This approximation is
not good near a phase transition where fluctuations can become very large. The
matrix gi j is positive definite since the entropy must decrease and it is symmet-
ric since the quantities, Ai , are state variables. Equation (3.86) contains no terms
which are first order in Ai to ensure that spontaneous fluctuations about the equi-
libriumdonot cause an increase in the entropy. Equilibrium is a state ofmaximum
entropy.
We can now substitute Eqs. (3.86) into Eqs. (3.84) and obtain the following

expression for the probability distribution of fluctuations about the equilibrium
state,

P(α) =

√
det |g|
(2πkB)n

exp

(
− 1
2kB

n∑
i=1

n∑
j=1
gi jαiα j

)
, (3.88)

where α denotes the 1× n columnmatrix composed of elements αj and g denotes
the n × n square symmetric matrix composed of matrix elements gi, j . The quan-
tity, det |g|, is the determinant of thematrix g. The probability P(α) is normalized
to one

∞

∫
−∞

dαP(α) ≡
∞

∫
−∞

dα1 ×⋯ ×
∞

∫
−∞

dαnP(α) = 1 (3.89)

(see Exercise A.7). Since only small fluctuations are assumed to be probable, there
is no difficulty in extending the limits of integration in Eq. (3.89) from−∞ to+∞.
We often want to find expectation values of various moments of the fluctua-

tions. To do this, it is convenient to introduce a more general integral,

I(β) ≡
√

det |g|
(2πkB)n

∞

∫
−∞

dα exp
(
− 1
2kB

αT ⋅ g ⋅ α + βT ⋅ α
)

= e
1
2 kBβ

T⋅g−1⋅β ,

(3.90)

where β is 1 × n column matrix and αT and βT denote the transpose of α and β,
respectively (see Exercise A.8). The moment, ⟨αiα j⟩, is defined as

⟨αiα j⟩ = lim
β→0

(
𝜕2

𝜕βi𝜕β j
I(β)

)
= kB( g

−1)i j . (3.91)

Since the probability density, P(α), is a multivariant Gaussian with zero mean, the
first moment, ⟨αi⟩ = 0, and all higher moments can be expressed in terms of the
moments ⟨α2i ⟩ and ⟨αiα j⟩ (see Exercise A.8).
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Let us now apply this formalism to a PVT system. We consider a monatomic
fluid in a closed isolated box with volume, VT, total entropy, ST, total energy, ET,
total number of particles, NT, and total mass, MT. We shall assume that the box
is divided into l cells of equal size and that at equilibrium the volume, entropy,
internal energy, and mass of particles in the ith cell are Vi = V0, Si ,Ui , and Mi ,
respectively. The total volume of the box is then VT = lV0. The equilibrium pres-
sure, temperature, and chemical potential of thewhole system are denoted P◦, T◦,
and μ◦, respectively.
From Eq. (3.69), the entropy change due to deviations in various thermodynam-

ic quantities from their equilibrium state can be written

ΔST = 1
2T0

l∑
i=1

(
−ΔTiΔSi + ΔPiΔVi − ΔμiΔMi

)
, (3.92)

where we now use the mass of particles in the ith cell as the extensive chemical
state variable (as opposed to particle number or mole number) and the chemical
potential has appropriate units for that choice.
We next obtain an expression for ΔST in terms of a set of independent vari-

ables. Let us first pull the volume dependence out of the expression for ΔST. We
will write S = V0s andM = V0ρ, where s is entropy/volume and ρ is mass/volume.
Let us next note that the Gibbs–Duhem equation, when written in terms of mass
density, ρ, takes the form ρ dμ =−s dT +dP so the fluctuations satisfy the relation
ρΔμ = −sΔT + ΔP. Therefore, ΔTΔS − ΔPΔV + Δμ̃ΔM = V0(ΔTΔs + ΔμΔρ).
The differential of the Helmholtz free energy/volume, a, satisfies the equation
da = −s dT + μ dρ, so (𝜕μ∕𝜕T )ρ = −(𝜕s∕𝜕ρ)T. If we now choose temperature
T and mass density ρ as independent variables, we obtain

ΔTΔS − ΔPΔV + ΔμΔM = V0

[
cρ
T◦

(ΔT )2 +
(
𝜕μ
𝜕ρ

)0

T
(Δρ)2

]
, (3.93)

where cρ is the equilibrium specific heat.
We can write the probability of a fluctuation αT = ({ΔTi}, {Δρi}) in the form

P({ΔTi , Δρi}) =

√√√√(
V0cρ∕T◦2

)l [(V0∕T◦)(𝜕μ∕𝜕ρ)0T
]l

(2πkB)2l

× exp

{
− 1
2kB

l∑
i=1

[
V0cρ
T◦2 (ΔTi)2 +

V0
T◦

(
𝜕μ
𝜕ρ

)0

T
(Δρi)2

]}
, (3.94)

(see Eq. (3.88)), where we have used the fact that gi, j = (V0cρ)∕T◦2 if i = j and
1 ≤ i ≤ l; gi, j = (V0∕To) (𝜕μ∕𝜕ρ)0T if i = j and l+ 1 ≤ i ≤ 2l; and gi, j = 0 otherwise,
and we have written the determinant of g under the square root. From Eq. (3.91),
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we obtain expressions for moments of the fluctuations inside various cells

⟨Δρ jΔTk⟩ = ∞

∫
−∞

⋯

∞

∫
−∞

d(Δρ1)⋯d(Δρl)d(ΔT1)… d(ΔTl)

× P({ΔTi , Δρi})Δρ jΔTk = 0 , (3.95)

⟨(Δρ j)2⟩ = kBT◦

V0

[(
𝜕μ
𝜕ρ

)0

T

]−1

, (3.96)

⟨(ΔTj)2⟩ = T◦2kB
V0cρ

, (3.97)

and

⟨Δρ j⟩ = ⟨ΔTj⟩ = 0 . (3.98)

Note that the variances in temperature and density fluctuations are inversely pro-
portional to response functions. We have found that fluctuations in temperature
and density are statistically independent. Pressure and entropy fluctuations are
also statistically independent, but fluctuations in most other pairs of thermody-
namic variables are not statistically independent.
It is important to note that, in Eqs. (3.95)–(3.98), we found no correlation be-

tween various cells. This result was built into the theory because Eq. (3.92) con-
tains no information about coupling between cells. In real systems, there is cou-
pling between cells. This can be included in the theory by expressing ΔSi and ΔPi
in terms of temperature and volume variations in other cells and not just those
of cell i. The more general expression will then contain coupling constants which
reflect the strength of the coupling between the cells.
In this section, we have analyzed fluid systems by dividing them into discrete

cells. This, of course, is a rather artificial way to proceed, but it is conceptually
very simple and gives us good intuition about which thermodynamic quantities
govern the behavior of fluctuations about the equilibrium state. It is a simplemat-
ter to change the summations over discrete cells to integrations over continuously
varying densities, provided that the spatial variations have sufficiently long wave-
lengths (vary slow enough).We shall look at the spatial dependence of fluctuations
in later chapters.

3.8
Cooling and Liquefaction of Gases

The molecules that compose neutral gases interact via a potential that has a hard
core and a short-ranged attractive region. If such a gas is allowed to expand freely,
it must do work against the attractive forces and its temperature will decrease.
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Figure 3.4 The Joule–Kelvin effect. Throttling of a gas through a porous plug can cause cool-
ing or heating.

This effect can be used to cool a gas, although the amount of cooling that occurs
via this mechanism alone is very small. (An ideal gas will have no temperature
change during free expansion.) Throttling of a gas through a porous plug or a small
constriction provides amuch more efficient means of cooling than free expansion
and is the basis of most liquification machines [220]. The throttling process in its
simplest form is depicted in Figure 3.4. A gas initially at a pressure, Pi , temper-
ature, Ti, and volume, Vi , is forced through a porous plug into another cham-
ber, maintained at pressure, Pf < Pi. All chambers and the plug are insulated so
ΔQ = 0 for the process. The gas inside the plug is forced through narrow twisting
chambers irreversibly.Workmust be done to force the gas through the plug. Even
though the entire process is irreversible, we can use thermodynamics to relate the
initial and final states.
The net work done by the gas is

ΔW =

Vf

∫
0

Pf dV +
0

∫
Vi

Pi dV = PfVf − PiVi . (3.99)

From the first law, ΔU = −ΔW since ΔQ ≡ 0. Thus,

Hi = Ui + PiVi = Uf + PfVf = Hf . (3.100)

Thus, the throttling process is one which takes place at constant enthalpy.
Let us now construct a hypothetical reversible path to describe the constant

enthalpy process. For each differential change along the reversible path, we have
(assuming the total particle number remains constant) [dH]𝔫 = 0 = T dS+V dP.
We see that the increase in entropy due to the throttling process is accompanied
by a decrease in pressure. It is convenient to use temperature and pressure as
independent variables rather than entropy and pressure.We therefore expand the
entropy [dS]𝔫 = (𝜕S∕𝜕T )P,𝔫 dT + (𝜕S∕𝜕P)T,𝔫 dP and obtain

[dH]𝔫 = 0 = CP,𝔫 dT +
[
V − T

(
𝜕V
𝜕T

)
P,𝔫

]
dP . (3.101)

In Eq. (3.101) we have used Eq. (3.50). Equation (3.101) can be rewritten in the
form dT = (𝜕T∕𝜕P)H ,𝔫 dP, where (𝜕T∕𝜕P)H ,𝔫 is the Joule–Kelvin coefficient and
is defined(

𝜕T
𝜕P

)
H ,𝔫

= −
(𝜕H∕𝜕P)T,𝔫
(𝜕H∕𝜕T)P,𝔫

= 1
CP,𝔫

[
T
(
𝜕V
𝜕T

)
P,𝔫

− V
]
. (3.102)
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Let us now compute the Joule–Kelvin coefficient for various gases. For an ideal
gas, (𝜕V∕𝜕T)P,𝔫 = V∕T and therefore the Joule–Kelvin coefficient, (𝜕T∕𝜕P)H ,𝔫 =
0. There will be no temperature change during the throttling process for an ideal
gas. Furthermore, since Ti = Tf for ideal gases, PfVf = PiVi and no net work will
be done (ΔW = 0).
For a van der Waals gas, assuming that CV,n = 3∕2nR, we find

(
𝜕T
𝜕P

)
H ,𝔫

= 1
R

[
2a
RT

(
v − b
v

)2

− b

]/[
5
2
− 3a
RTv

(
v − b
v

)2
]

,

(3.103)

where v = V∕𝔫 is themolar volume. Equation (3.103) is straightforward to obtain
from the right-hand term in Eq. (3.102) using the Maxwell relation (𝜕S∕𝜕X)T,N =
− (𝜕Y∕𝜕T )X ,N (see Table 3.3) and Eq. (3.49). For an interacting gas, such as the
van der Waals gas, the Joule–Kelvin coefficient can change sign. This is easiest to
see if we consider low densities so that RTv ≫ a and v ≫ b. Then(

𝜕T
𝜕P

)
H ,𝔫

≈ 2
5R

[ 2a
RT

− b
]
. (3.104)

For low temperatures (𝜕T∕𝜕P)H ,𝔫 > 0, and gases cool in the throttling process,
but at high temperatures, we have (𝜕T∕𝜕P)H ,𝔫 < 0, and they heat up. Two effects
determine the behavior of the Joule–Kelvin coefficient. On the one hand, the gas
expands, which gives rise to cooling. On the other hand, work can be done on or
by the gas. If PiVi > PfVf , then net work is done on the gas, which causes heating.
If PiVi < PfVf , then net work is done by the gas, which causes cooling.
The inversion temperature (the temperature at which the sign of μJK changes)

for the Joule–Kelvin coefficient will be a function of pressure. Since CP,n > 0, the
condition for inversion (from Eq. (3.102)) is (𝜕V∕𝜕T )P,𝔫 = V∕T or, for a van der
Waals gas (cf. Eq. (3.103)),

2a
RT

(
v − b
v

)2

= b . (3.105)

We can use the van der Waals equation of state to write Eq. (3.105) in terms of
pressure and temperature. First solve Eq. (3.105) for v as a function R, T , a, and b,

a (Pam6∕mol2) b (m3∕mol)

H2 0.024 53 0.000 026 51
He 0.003 456 0.000 023 70
CO2 0.3658 0.000 042 86
H2O 0.5537 0.000 030 49
O2 0.1382 0.000 031 86
N2 0.1370 0.000 038 7

Table 3.6 Van der Waals constants for some simple
fluids [124].
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Figure 3.5 A plot of the inversion temperature versus pressure for the Joule–Kelvin coefficient
of N2. The solid line is the experimental curve [220]. The dashed line is the curve predicted by
the van der Waals equation for a = 0.1408Pam6∕mol2 and b = 0.000039 13m3∕mol.

and substitute into the van der Waals equation. This gives

P = 2
b

√
2aRT
b

− 3RT
2b

− a
b2

. (3.106)

The inversion curve predicted by the van der Waals equation has the shape of
a parabola with a maximum at T VW

max = 8a∕9bR. For CO2, T VW
max = 911K while the

experimental value [24] is Tmax = 1500K. For H2, T VW
max = 99K while the exper-

imental value is Tmax = 202K. In Figure 3.5, we plot the van der Waals and the
experimental inversion curves for N2. The van derWaals equation predicts an in-
version curve which lies below the experimental curve but qualitatively has the
correct shape. For nitrogen at P = 105 Pa, μJK = 1.37 × 10−7 K∕Pa at T = 573K,
μJK = 1.27 × 10−6 K∕Pa at T = 373K, μJK = 6.40 × 10−6 K∕Pa at T = 173K, and
μJK = 2.36 × 10−5 K∕Pa at T = 93K. (For experimental value of the Joule–Kelvin
coefficient for other substances, see the International Critical Tables [207].) We
see that the cooling effect can be quite large for throttling.
At times the Joule–Kelvin effect can lead to serious difficulties. For example,

highly compressed H2, which has a low inversion temperature, can ignite sponta-
neouslywhen leaking froma damaged container, because of Joule–Kelvinheating.

3.9
Osmotic Pressure in Dilute Solutions

Each spring, when the weather begins to warm up, sap rises in trees and the yearly
cycle of life starts again. The rising of sap is one of many examples in biological
systems of the phenomenon called osmosis. One can easily demonstrate the ef-
fect in the laboratory. Take a beaker of water and partially immerse a long tube
(open at both ends) in it and let it stand vertically. The water levels of the tube
and of the beaker will be the same. Next, close off the bottom end of the tube with
a membrane which is permeable to water but not sugar. The water levels will still
be the same in the tube and the beaker. Now add a bit of sugar to the water in the
tube. Additional water will begin to enter the tube through the membrane, and
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Figure 3.6 A schematic representation of
osmosis.

the level of the sugar solution will rise a distance h above the level of the water
in the beaker. The excess pressure created in the tube, π = ρshg, is called the os-
motic pressure (ρs is the density of the sugar solution and g is the acceleration of
gravity). After equilibrium is reached, the pressure at the surface of the pure water
will be PA (atmospheric pressure) and the pressure in the sugar solution, at the
same level, will be PA + ρshg. The membrane must sustain the unbalanced force
between the pure water and the sugar solution.
We can show the same phenomenon in another way (cf. Figure 3.6). Consider

a system consisting of pure water, separated by a permeable (to water) membrane
from a solution of sugar and water. The entire system is kept at a fixed temper-
ature T , and the membrane is rigid and fixed in place. At equilibrium, there will
be an imbalance in the pressures of the two sides. If P0 is the pressure of the pure
water, than the sugar solution will have a pressure P = P0 + π, where π is the
osmotic pressure. This imbalance of pressures is possible because the membrane
is rigid and cannot transmit mechanical energy. Since the water is free to move
through themembrane, the chemical potential of the pure water must be equal to
the chemical potential of the water in the sugar solution.
Let us write the thermodynamic relations for this system. First consider the

sugar solution. A differential change in theGibbs free energy,G = G(P, T,𝔫w ,𝔫s),
of the sugar solution (with𝔫w moles of water and𝔫s moles of sugar) can bewritten

dG = −S dT + V dP + μw d𝔫w + μs d𝔫s , (3.107)

where S = −(𝜕G∕𝜕T )P,𝔫w,𝔫s
is the entropy of the solution, V = (𝜕G∕𝜕P)T,𝔫w ,𝔫s

is
the volume of the solution, and μw = (𝜕G∕𝜕𝔫w)P,T,𝔫s

and μs = (𝜕G∕𝜕𝔫s)P,T,𝔫w
are

the chemical potentials of the water and sugar, respectively, in the solution. The
chemical potentials are intensive and depend only on ratios 𝔫s∕𝔫w. It is conve-
nient to introduce mole fractions

xw =
𝔫w

𝔫w + 𝔫s
= 1

1 + 𝔫s∕𝔫w
and xs =

𝔫s

𝔫w + 𝔫s
=

𝔫s∕𝔫w

1 + 𝔫s∕𝔫w
. (3.108)

Since xw + xs = 1, the chemical potentials can be written as a function of mole
fraction, xs. Thus, μw = μw(P, T, xs) and μs = μs(P, T, xs).
At equilibrium, the chemical potentials of the pure water and the water in the

sugar solution will be equal. If we let μ(0)w (P0, T ) denote the chemical potential of
the pure water, we can write

μ(0)w (P0 , T ) = μw(P, T, xs) (3.109)

as the condition for thermodynamic equilibrium.
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We want to obtain an expression for the osmotic pressure in terms of measur-
able quantities. We will assume that the solution is dilute so that 𝔫s∕𝔫w ≪ 1 and
xs ≈ 𝔫s∕𝔫w ≪ 1. We can construct a fairly simple model to describe the solution.
We write the Gibbs free energy of the solution in the form

G(P, T,𝔫s ,𝔫w) = 𝔫wμ(0)w (P, T ) + 𝔫sμ(0)s (P, T ) − λ
𝔫s𝔫w

𝔫
+ 𝔫wRT ln xw + 𝔫sRT ln xs . (3.110)

The chemical potential μ(0)w (μ(0)s ) contains contributions to the Gibbs free energy
due to the presence of water (sugar) molecules and due to self-interactions. The
term −λ(𝔫s𝔫w∕𝔫) gives the contribution to the free energy due to interactions
between sugar and water molecules. The last two terms on the right give contri-
butions to the free energy due to mixing. The chemical potential of the water in
the solution can now be written (see Exercise 3.3).

μw(P, T, xs) =
(

𝜕G
𝜕𝔫w

)
P,T,𝔫s

= μ(0)w (P, T ) − λx2s + RT ln(1 − xs) , (3.111)

where μ(0)w (P, T ) is the chemical potential of pure water at pressureP and temper-
ature T . For a dilute solution, xs = 𝔫s∕𝔫 ≪ 1 and ln(1 − xs) = −xs − 1∕2x2s −⋯
Thus, to lowest order in xs = 𝔫s∕𝔫, we find

μw(P, T, xs) ≈ μ(0)w (P, T ) − xsRT (3.112)

for the chemical potential of water in a dilute sugar solution.
We now can find an expression for the osmotic pressure, π = P − P0. Let us

note that water, as well as most liquids, is very incompressible. The compress-
ibility, κT , of water at 0 ◦C is κT = 4.58 × 10−10 m2∕N. Therefore the quantity(
𝜕μ0w∕𝜕P

)
T,𝔫w

= (𝜕V 0∕𝜕𝔫w)T,P ≡ v0w (v0w is the partial molar volume ofwater in the
absence of solute and V 0 is the volume of water in the absence of solute) remains
approximately constant for small changes in pressure. With this observation we
can integrate

(
𝜕μ0w∕𝜕P

)
T,𝔫w

to find

μ0w(P, T ) − μ0w(P0, T ) ≈ v0w(P − P0) = v0wπ . (3.113)

The change in the volume of water as we increase the number of moles is propor-
tional to the number of moles so that V 0 = 𝔫wv0w. Also, for very small concentra-
tions of solute, we can assume that the change in the volume of water due to the
presence of the solute is negligible so that V 0 ≈ V , where V is the volume of the
mixture. Then we can combine Eqs. (3.109), (3.112), and (3.113) to obtain

π ≈
𝔫sRT
V

. (3.114)

Equation (3.114) is called van’t Hoff ’s law and, surprisingly, looks very much like
the ideal gas law, althoughwe are by nomeans dealing with amixture of ideal gas-
es. Equation (3.114) is well verified for all dilute neutral solvent–solute systems.
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Exercise 3.10

An experiment is performed in which the osmotic pressure of a solution, contain-
ing 𝔫suc moles of sucrose (C12H22O11) and 1 kg of water (H2O), is found to have
the following values [85]: (a) for 𝔫suc = 0.1, π = 2.53 × 105 Pa, (b) for 𝔫suc = 0.2,
π = 5.17 × 105 Pa, and (c) for𝔫suc = 0.3, π = 7.81 × 105 Pa. Compute the osmotic
pressure of this system using van’t Hoff’s law. How do the computed values com-
pare with the measured values?

Answer: The molecular weight of water (H2O) is MH2O = 18 g∕mol. Therefore,
1 kg of water contains 55.56mol of water. The molar volume of water is vH2O =
18 × 10−6 m3∕mol. The osmotic pressure of the solution, according to van’t Hoff’s
law, is

π =
𝔫suc

55.56
(8.317 J∕K)(303K)
18 × 10−6 m3∕mol

.

The computed values are as follows: (a) For 𝔫suc = 0.1, π = 2.52 × 105 Pa, (b) for
𝔫suc = 0.2, π = 5.04 × 105 Pa, and (c) for 𝔫suc = 0.3, π = 7.56 × 105 Pa. The pre-
dictions of van’t Hoff’s law are good for a dilute solution of sucrose in water, but
begin to deviate as the mole fraction of sucrose increases.

3.10
The Thermodynamics of Chemical Reactions

Chemical reactions involve the breaking and formation of electrical bonds be-
tween constituent atoms or parts of amolecule involved in the reaction. Theman-
ner in which atoms are joined together to form molecules is important for deter-
mining their thermodynamic properties. The two major types of chemical bonds
are covalent bonds and ionic bonds. The strongest bonds are the covalent bonds,
formed by the mutual sharing of electron pairs. In the molecule H2, for example,
the two hydrogen atoms are held together by a covalent bond. Ionic bonds involve
the transfer of electrons from one atom to another, thus leaving one atom posi-
tively charged and the other atom negatively charged. The molecule is then held
together by the electrostatic attraction of the two oppositely charged ions. In the
sodium chloride molecule NaCl, for example, Na loses an electron and Cl gains
an electron and the electrical attraction between Na+ and Cl− holds the molecule
together. There is a whole range of chemical bonds between the two extremes
of covalent and ionic bonds. For example, polar bonds involve the unequal shar-
ing of electrons between the atoms that comprise the molecule and this can give
rise to an electric dipole moment in the molecule. The water molecule H2O, is
held together by a covalent bond, but since the oxygenmolecule is larger than the
hydrogen atom the concentration of negative charge is greater around the oxygen
atom than around the hydrogen atoms. As a consequence, the water molecule has
a permanent electric dipole moment de = 6.2 × 10−30 C ⋅m.



68 3 Thermodynamics

When we deal with chemical reactions, we generally deal with large quantities
ofmolecules breaking and reforming their chemical bonds. Regardless of the type
of bonds involved, the macroscopic properties of all chemical reactions can be
described by thermodynamics. In this section, we will limit our considerations to
reactions involving electrically neutral species. The thermodynamics of ionic so-
lutions (the flow of charged ions in electrically neutral solutions) requires a slight
generalization of the discussion in this section [81, 95, 189].
Chemical reactions, in systems containing several species of molecules (which

we will call A1, A2, A3, and A4), change the identity of the molecules through
inelastic collisions. A typical casemight be onewheremolecules A1 andA2 collide
inelastically to form molecules A3 and A4. Conversely, molecules A3 and A4 can
collide inelastically to form molecules A1 and A2. Collisions between molecules
occur at random and can be either elastic or inelastic. For an inelastic collision to
occur, the two molecules must have sufficient energy to overcome any potential
barriers to the reaction which might exist. Chemical equilibrium [171, 172, 208]
occurs when the rate of production of each chemical species is equal to its rate of
depletion through chemical reactions. The chemical reactions themselves never
stop, even at equilibrium.
In the early part of this century a Belgium scientist, de Donder, found that it

was possible to characterize each chemical reaction by a single variable ξ, called
the degree of reaction. In terms of ξ, it is then possible to determine when the
Gibbs free energy has reached itsminimum value (chemical reactions usually take
place in systems with fixed temperature and pressure) and therefore when the
chemical system reaches chemical equilibrium. The concept of degree of reaction
assumes that we can generalize the concept of Gibbs free energy to systems out
of equilibrium.

3.10.1
The Affinity

Let us consider a chemical reaction of the form

−ν1A1 − ν2A2
k1
⇌
k2
ν3A3 + ν4A4 (3.115)

The quantities ν1, ν2, ν3, and ν4 are called stoichiometric coefficients; ν j is the num-
ber of molecules of type j needed for the reaction to take place. By convention, ν1
and ν2 are negative. The constant k1 is the rate constant for the forward reaction,
and k2 is the rate constant for the backward reaction.
Since we generally deal with large quantities of molecules undergoing chemical

reactions, it is convenient to describe changes in the amounts of each species of
molecule in terms of moles. Let d𝔫 j denote the change in the number of moles
of a molecule of type j. It is possible to characterize the changes d𝔫 j for a given
chemical reaction in terms of the single parameter, ξ, called the degree of reaction.
We will use the convention that dξ > 0 for reactions proceeding to the right and
dξ < 0 for reactions proceeding to the left. Any changes in the concentrations due
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to the reaction can therefore be written

d𝔫1 = ν1 dξ , d𝔫2 = ν2 dξ , d𝔫3 = ν3 dξ , d𝔫4 = ν4 dξ . (3.116)

These changes in the thermodynamic properties of a system, due to a given chem-
ical reaction, can be characterized by a single variable ξ.
From Table 3.4 and Eq. (3.116), differential changes in the Gibbs free energy

may be written

dG = −S dT + V dP +
m∑
j=1
μj d𝔫 j = −S dT + V dP +

m∑
j=1
μjν j dξ , (3.117)

where the sum is over the species which participate in the reaction and m is the
number of species that participate in the reaction (for the reaction in (3.115)m =
4). Therefore,(

𝜕G
𝜕ξ

)
P,T

=
m∑
j=1
μjν j ≡  . (3.118)

The quantity  ≡ ∑m
j=1 μjν j is called the affinity (in some books the affinity is

defined with an opposite sign). At chemical equilibrium, the Gibbs free energy
must be a minimum,(

𝜕G
𝜕ξ

)0

P,T
= 0 = 0 (3.119)

(the superscript 0 denotes equilibrium) and, therefore, at chemical equilibrium
the affinity must be zero.
At constant P and T , the Gibbs free energy,G, must always decrease as the sys-

temmoves toward chemical equilibrium (at equilibriumG is a minimum). There-
fore,

[dG]P,T =
(
𝜕G
𝜕ξ

)
P,T

dξ < 0 . (3.120)

If the reaction goes to the right, then dξ > 0 and  < 0. If the reaction goes to
the left, then dξ < 0 and > 0. This decrease in the Gibbs free energy is due to
spontaneous entropy production resulting from the chemical reactions.
If there are r chemical reactions in the system involving species, j, then there

will be r parameters, ξk , needed to describe the rate of change of the number of
moles, 𝔫 j :

d𝔫 j =
r∑
k=1
ν jk dξk . (3.121)

The sum over k is over all chemical reactions in which molecules of type j partic-
ipate.
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Molecule μ0 (kcal∕mol)

H2 0.00
HI 0.31
I2 4.63
N2 0.00
NO2 12.39
NH3 −3.98
N2O4 23.49

Table 3.7 Values of the chemical potential, μ0, for some
molecules in the gas phase at pressure P0 = 1 atm and tempera-
ture T0 = 298K [189].

Using ideal gas laws, some useful relations can be obtained for reactions in the
gas phase. Consider a gas composed of four different kinds of molecules which
undergo the reaction in Eq. (3.115). If the partial pressure of the ith constituent
is Pi, the chemical potential of the ith constituent can be written in the form

μj(P j , T ) = μ0j (P0, T0) − RT ln

(
P0T5∕2

P jT
5∕2
0

)
, (3.122)

where μ0j (P0, T0) is the chemical potential of the jth constituent at pressure P0
and temperature T0. Values of μ0i , with P0 = 1 atm and T0 = 298K, have been
tabulated formany kinds of molecules [189]. Some of these are listed in Table 3.7.
If we use Eq. (3.122), the Gibbs free energy can be written

G(T, P, ξ) =
∑
j
𝔫 jμ0j (P0, T0)

−
∑
j
𝔫 jRT ln

(
P0T5∕2

PT5∕2
0

)
+ RT ln

(
x𝔫1
1 x

𝔫2
2 x

𝔫3
3 x

𝔫4
4
)
, (3.123)

and the affinity can be written

(T, P, ξ) =
∑
j
ν jμ0j (P0, T0)−

∑
j
ν jRT ln

(
P0T5∕2

PT5∕2
0

)
+RT ln

(
xν33 x

ν4
4

x|ν1|1 x|ν2|2

)
,

(3.124)

where T and P =
∑
j P j are the temperature and pressure, respectively, at which

the reaction occurs and x j = P j∕P =𝔫 j∕𝔫 are themole fractions of the constituent
chemicals.
For “ideal gas reactions” the equilibrium concentrations of the reactants can

be deduced from the condition that at equilibrium the affinity is zero, A0 = 0.
From (3.124) this gives the equilibrium condition

ln

(
xν33 x

ν4
4

x|ν1|1 x|ν2|2

)
=

∑
i
νi ln

(
P0T5∕2

PT5∕2
0

)
− 1
RT

∑
i
νiμ0i (P0, T0) . (3.125)
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Equation (3.125) is called the law ofmass action. As we shall show in Exercise 3.11,
we can use it to compute the value of the degree of reaction, and therefore the
mole fractions, at which chemical equilibrium occurs as a function of pressure
and temperature.
We can deduce a number of useful results regarding the approach to chemical

equilibrium. First, let us note that(
𝜕2G
𝜕ξ2

)0

P,T
=

(
𝜕
𝜕ξ

)0

P,T
> 0 . (3.126)

Equation (3.126) is a statement of the fact that the Gibbs free energy, considered
as a function of P, T , and ξ, is minimum at equilibrium for fixed T and P.
From the fundamental equation, H = G + TS, we obtain several important re-

lations. First, let us note that at equilibrium, since (𝜕G∕𝜕ξ)0P,T = 0, we have(
𝜕H
𝜕ξ

)0

P,T
= T

(
𝜕S
𝜕ξ

)0

P,T
. (3.127)

Thus, changes in enthalpy are proportional to the changes in entropy. The left-
hand side of Eq. (3.127) is called the heat of reaction. It is the heat absorbed per
unit reaction in the neighborhood of equilibrium. For an exothermic reaction,
(𝜕H∕𝜕ξ)0P,T is negative. For an endothermic reaction, (𝜕H∕𝜕ξ)0P,T is positive. Equa-
tion (3.127) can also be written (see Table 3.4)(

𝜕H
𝜕ξ

)0

P,T
= −T

(
𝜕
𝜕T

)0

P,ξ
, (3.128)

where we have used the relation

−T
[
𝜕

𝜕ξ

(
𝜕G
𝜕T

)
P,ξ

]
P,T

= −T
[

𝜕

𝜕T

(
𝜕G
𝜕ξ

)
P,T

]
P,ξ

.

For an “ideal gas reaction,” we can use Eqs. (3.124) and (3.128) to obtain an explicit
expression for the heat of reaction. We find(

𝜕H
𝜕ξ

)0

P,T
= 5

2
∑
j
ν jRT +

∑
j
ν jRT ln

(
P0T5∕2

PT5∕2
0

)
− RT ln

(
xν33 x

ν4
4

x|ν1|1 x|ν2|2

)
.

(3.129)

If the total number of particles changes during the reaction (
∑
j ν j ≠ 0), there

will be contributions to the heat of reaction from two sources: (1) There will be
a change in the heat capacity of the gas due to the change in particle number, and
(2) there will be a change in the entropy due to the change in the mixture of the
particles. If the total number of particles remains unchanged (

∑
i νi = 0), the only

contribution to the heat of reaction will come from the change in the mixture of
particles (assuming we neglect changes to the heat capacity due to changes in the
internal structure of the molecules).
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Let us now obtain some other general properties of chemical reactions. From
the chain rule (see Appendix B), we can write(

𝜕ξ
𝜕T

)
P,

= −
(𝜕∕𝜕T )P,ξ
(𝜕∕𝜕ξ)P,T

= 1
T
(𝜕H∕𝜕ξ)P,T
(𝜕A∕𝜕ξ)P,T

. (3.130)

The denominator in Eq. (3.130) is always positive. Thus, at equilibrium any small
increase in temperature causes the reaction to shift in a direction in which heat is
absorbed.
Let us next note theMaxwell relation, (𝜕∕𝜕P)T,ξ = (𝜕V∕𝜕ξ)P,T , which enables

us to write(
𝜕ξ
𝜕P

)
T,

= −
(𝜕∕𝜕P)T,ξ
(𝜕∕𝜕ξ)P,T

= −
(𝜕V∕𝜕ξ)P,T
(𝜕∕𝜕ξ)P,T

(3.131)

(we have used identities fromAppendix B). At equilibrium an increase in pressure
at fixed temperature will cause the reaction to shift in a direction which decreases
the total volume.

Exercise 3.11

Consider the reactionN2O4 ⇌ 2NO2 which occurs in the gas phase. Start initially
with one mole of N2O4 and no NO2 and let nN2O4

= 1 − ξ and nNO2
= 2ξ. For

P0 = 1 atm and T0 = 298K, μ0N2O4
= 23.49 kcal∕mol and μ0NO2

= 12.39 kcal∕mol.
Assume that the reaction occurs at temperature T and pressure P. Use ideal gas
equations for the chemical potential. (a) Compute and plot the affinity, A(T, P, ξ),
as a function of the degree of reaction, ξ, for P = P0 and for T = T0 and T = 2T0.
(b) What is the degree of reaction, ξ, at chemical equilibrium for P = 1 atm and
temperature T = 298K and how many moles of N2O4 and NO2 are present at
equilibrium? (c) If initially the volume is V0, what is the volume at equilibrium
for P = 1 atm and T = 298K? (d) What is the heat of reaction for P = 1 atm and
T = 298K?

Answer: The mole fractions are xN2O4
= (1 − ξ)∕(1 + ξ) and xNO2

= 2ξ∕(1 + ξ).
(a) The affinity is

A(T, P) =
∑
i
νiμ0i (P0 , T0)−

∑
i
νiRT ln

(
P0T5∕2

PT5∕2
0

)
+RT ln

[
(2ξ)2

1 − ξ
(1 + ξ)

]
.

Plots of A(T, P) are given in the figure.
(b) Chemical equilibrium occurs for = 0. From the plot for T = T0, at equilib-

rium the degree of reaction is ξeq ≈ 0.166. Thus, at equilibrium𝔫N2O4
= 0.834 and

𝔫NO2
= 0.332. At equilibrium the mole fractions are xN2O4

= 0.834∕1.166 = 0.715
and xNO2

= 0.332∕1.166 = 0.285.
(c) Initially 𝔫N2O4

= 1mol and 𝔫NO2
= 0mol so one mol of gas is present. At

chemical equilibrium, 𝔫N2O4
= 0.834mol and 𝔫NO2

= 0.332mol so 1.166mol of
gas is present. The reaction occurs at temperature T0 and pressure P0. There-
fore, the initial volume is V0 = 1RT0∕P0 and the equilibrium volume is V =
1.166RT0∕P0 = 1.166V0.
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(d) If the reaction occurs at T = T0 and P = P0, the heat of reaction is(
𝜕H
𝜕ξ

)0

P,T
= 5

2
RT0 − RT0 ln

(
x2NO2

xN2O4

)
= 5

2
RT0 − RT0 ln

(
0.2852
0.715

)
= 4.68RT0 .

It is useful to note that much basic information about a given chemical reaction
can be obtained using the lists of “Standard Thermodynamic Properties of Chem-
ical Substances” found in [124]. These lists tabulate the standard molar Gibbs
free energy Δg◦, enthalpy Δh◦, entropy s◦, and heat capacity c◦P at T = 298.15K
and P = 1.0 bar. The standard molar Gibbs free energy Δg◦ (enthalpy Δh◦) is the
Gibbs free energy (enthalpy) of formation of one mole of a given substance at
T = 298.15K and P = 1.0 bar. By convention, elements in their most stable states
at T = 298.15K and P = 1.0 bar have zero Gibbs free energy (enthalpy). The stan-
dard molar entropy is defined relative to the entropy of a pure crystal of the given
substance at T = 0K. For a pure crystal, at T = 0K, s◦ = 0.
As an example of the use of these numbers, consider the chemical reaction

O2 + 2H2 → 2H2O at T = 298.15K and P = 1.0 bar. From the tables of “Standard
Thermodynamic Properties of Chemical Substances” in [124], the molar Gibbs
free energies of gaseous O2 and H2 and liquid H2O are Δg◦O2

= 0, Δg◦H2
= 0, and

Δg◦H2O
= −237.1 kJ∕mol, respectively. The change in molar Gibbs free energy is

Δg◦total = 2Δg◦H2O
− Δg◦H2

− Δg◦O2
= −474.2 J∕mol and it decreases. Therefore, this

reaction occurs spontaneously because it attempts tominimize theGibbs free en-
ergy (approach equilibrium).
Themolar enthalpies are Δh◦O2

= 0, Δh◦H2
= 0 and Δh◦H2O

= −285.8 kJ∕mol. The
change in enthalpy is Δh◦total = 2Δh◦H2O

− Δh◦H2
− Δh◦O2

= −571.6 J∕mol. Δh◦total
shows that a large amount of heat is released in this reaction, which explains why
this reaction is used to fuel rockets.
The molar entropies are s◦O2

= 205.2 kJ∕(molK), s◦H2
= 130.7 kJ∕(molK) and

s◦H2O
= 70 kJ∕(molK). The change in entropy is s◦total = 2s◦H2O

− s◦H2
− s◦O2

=
−195.9 kJ∕(molK). Entropy decreases because the reaction has gone from a mix-
ture to a pure substance and the H2O has condensed into a liquid.
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3.11
The Thermodynamics of Electrolytes

Electrolytes are substances that ionize when dissolved in certain solvents, such
as water. Once the substance dissociates into ions in the solution, it has the ca-
pacity to conduct electricity or to create an electric potential energy gradient in
the system [42, 81, 189]. When we consider a mixture of charged particles in the
presence of an electrostatic potential φ, the definition of the chemical potential
must be expanded to include the contribution to the energy required to add a par-
ticle with charge q to the mixture in the presence of the field. Let us assume there
areN different kinds of charged particle in the mixture. Particles j = 1,… ,m are
ions with charge q j = ez j , where z j is the valency or charge of the ion and e is the
charge of a proton. Particles j = m + 1,… ,N are neutral (uncharged). Then dif-
ferential changes in the internal energy density (internal energy per unit volume
u = U∕V ) can be written

du = T ds +
m∑
j=1
μej dc j +

N∑
j=m+1

μj dc j , (3.132)

where s = S∕V , c j = n j∕V is themolar concentration of type j particles, μej = μj +
z jφF is the electrochemical potential, and F is the amount of charge in one mole
of protons and is called a Faraday (1 F = 96.485C∕mol). For charged particles,
equilibrium occurs when the electrochemical potentials of each species are equal.
A particularly important type of charged mixture (the type considered in this

section) contains charged ions in an electrically neutral solution. Such systems are
common in biological systems and form the basis for the construction of batteries.
Let us consider the behavior of dilute solutions of a salt (the solute), such as NaCl,
CaCl2, AgNO3, or Cu(NO3)2 in water (the solvent). If we denote the negative ion
(the anion) as A− and the positive ion (the cation) as C+, the dissociation of the
salt into charged ions can be denoted

AνaCνc ⇌ νaA− + νcC+ (3.133)

(e. g., CaCl2 ⇌ 2Cl− + Ca2+), where νa and νc are the stoichiometric coefficients
for the dissociation. (We could also have Ag → Ag+ + e− in an aqueous solution.)
The condition for equilibrium is

μac = νaμea + νcμ
e
c , (3.134)

where μea(μ
e
c) is the electrochemical potential of ion, A−(C+) and μac is the chem-

ical potential of the undissociated salt. Electrical neutrality of the fluid requires
that νaza + νczc = 0, where zae(zce) is the charge of the ion, A−(C+), and e is the
proton charge.
The chemical potential of the salt in aqueous solution is extremely complicated,

but experiments show that it can be written in the form

μac(P, T, xac) = μ0ac(P, T) + RT ln αac , (3.135)
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where αac is called the activity and μ0ac(P, T) is the chemical potential of the salt in
aqueous solution at temperature T and pressure P in the limit of infinite dilution
(μ0ac(P, T) is proportional to the energy needed to add one salt molecule to pure
water).
We can relate the activity, αac, for the salt molecule to activities for the ions.We

define αac = α
νa
a α

νc
c . Then

ln(αac) = νa ln(αa) + νc ln(αc) . (3.136)

The quantities αa and αc are defined to be the activities of the anion and cation, re-
spectively. It is found experimentally that in the limit of infinite dilution, αa = faca
and αc = fccc, where ca and cc are the concentrations (mol/volume) of the anions
and cations, respectively. The quantities fc and fc are called activity coefficients.
In the limit ci → 0, f i → 1(i = a, c). Solutions for which fc = 1 and fa = 1 are said
to be ideal.
The condition for equilibrium, Eq. (3.134), for ideal solutions is satisfied if we

define the electrochemical potentials of the ions to be

μej = μ
0
j (P, T) + RT ln c j + z jFφ (3.137)

where j = {a, c}. Two important applications of the thermodynamics of elec-
trolytes concerns the functioning of batteries and biological cells. We first con-
sider batteries and then biological cells.

3.11.1
Batteries and the Nernst Equation

A simple battery consists of two “half-cells.” Each half-cell contains a pure metal
electrode immersed in a dilute aqueous solution of the corresponding salt (e. g.,
an Ag electrode with a dilute solution of AgNO3 or a Cu electrode with a dilute
solution of Cu(NO3)2).
For a half-cell with a silver (Ag) electrode, the salt dissociates into a dilute solu-

tion of Ag+ andNO3
− ions, and an equilibrium is set up between the silver ions on

the electrode and those in the solution. Either silver ions dissolve from the elec-
trode into the solution, leaving excess electrons on the electrode, or silver ions in
the solution can attach to the electrode leaving it with a net positive charge. In
either case, a charged bilayer is set up at the interface between the electrode and
the solution causing an electric potential energy difference between the solution
and the electrode.
For simplicity, consider two half-cells, with silver electrodes, which we label

 and  . When the whole system is at equilibrium, the chemical potential of
the silver ions in solution and silver ions on the electrode must be equal. The
chemical potential on the electrode in  can be written μAg+ (s) = μ

0,
Ag+ (s) + zFΦ ,

since it is pure solid silver. The chemical potential of ions in the solution in  is
μAg+ (𝓁) = μ

0,
Ag+ (𝓁)+RT ln[c ]+ zFφ . Similar expressions canbewritten for half-

cell  . The quantities μ0,Ag+ (s) and μ
0,
Ag+ (𝓁) are the energies required to add one
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silver ion to the silver electrode and an infinitely dilute solution, respectively, Φ
and φ are the electric potentials on the electrode and in the solution, respectively,
and c is the concentration of silver ions in the solution.
The conditions for equilibrium between the silver ions on the electrode and the

solution, in each of the half-cells, can be written

μ0,Ag+ (s) + zFΦ = μ0,Ag+ (𝓁) + RT ln c + zFφ , (3.138)

μ0,Ag+ (s) + zFΦ = μ0,Ag+ (𝓁) + RT ln c + zFφ . (3.139)

Now note that μ0,Ag+ (s) = μ0,Ag+ (s), since they both apply to pure silver, and
μ0,Ag+ (𝓁) = μ

0,
Ag+ (𝓁) since they both apply to infinitely dilute solutions. Assume

that electrical contact is made (via a salt-bridge for example) between the solu-
tions in the two half-cells so that the electric potential energies of the solutions is
the same. Then φ = φ , but the concentrations and temperatures need not be
the same. We can now subtract Eqs. (3.138) and (3.139) and obtain

Φ − Φ = RT
zF

ln
(
c
c

)
= (0.0257V) ln

(
c
c

)
. (3.140)

Equation (3.140) is the Nernst equation. It relates the difference in the electric
potential energy of the electrodes to the difference in the concentrations of silver
ions in the two solutions. This electric potential difference can bemeasuredwith a
voltmeter. For example, if c = 2c thenΦ −Φ = 0.0178V and a small voltage
difference has been created between the two electrodes when thermodynamic
equilibrium exists between the two half-cells. Thus, we have created a battery,
although a rather weak one.
There are a number of different metals that can be used for batteries. The ab-

solute potential on an electrode cannot bemeasured without changing the chem-
istry of the half-cell, so all voltages have been standardized relative to a standard
hydrogen half-cell. A standard hydrogen half-cell uses a porous platinum elec-
trode that serves as a catalyst for the reaction H2 → 2H+ + 2e−. The platinum
electrode is partially submerged in a dilute sulfuric acid (H2SO4) solution at a tem-
perature of T = 298K. Hydrogen gas (H2), at a pressure of P = 1.0 bar, flows over
the porous platinum (see Figure 3.7) catalyzing the reaction. The concentration
of hydrogen ions (H+) in the solution is maintained at cH = 1.0M = 1.0mol∕dm3.
This standard hydrogen half-cell is connected to a half-cell containing a solid
metal electrode and corresponding salt solution (e. g. Cu and Cu2SO4 or Zn and
Zn(NO3)2). The connection between the solutions is made via a “salt-bridge,” so
the potentials in the solutions can equilibrate. The concentration of themetal ion
(let us assume Cu2+) is also maintained at cCu = 1.0M = 1.0mol∕dm3. The po-
tential energy difference between the “hydrogen” (platinum) electrode and the
Cu electrode, ΔΦ0 = Φ0

Cu − Φ0
H, is measured. The potential Φ0

H ≡ 0, by con-
vention. In this way, the standard electrode potential Φ0 of various metal half-
cells can be determined and tabulated. Some standard electrode potentials in-
cludeΦ0

Li = −3.03V,Φ0
Zn = −0.76V,Φ0

Fe = −0.44V,Φ0
H = 0.0V,Φ0

Cu = +0.34V,
Φ0

Ag = +0.80V, and Φ0
Au = +1.50V.
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Figure 3.7 The standard hydrogen cell used to measure the standard electrode potential of
various metals (in this case Cu).

The Nernst equation can also be used to determine the variation of a metal
electrode potential from it’s standard value Φ0 by an analysis similar to that in
Eqs. (3.138)–(3.140). We compute equilibrium conditions between the standard
metal half-cell (metal ion concentration c = 1.0 M) and the standard hydrogen
half-cell, and then we compute equilibrium conditions between the metal half-
cell with metal ion concentration c and the standard hydrogen half-cell. If we then
eliminate the parameters related to the standard hydrogen half-cell, we obtain

Φ = Φ0 + RT
zF

ln[c] , (3.141)

whereΦ is the potential of themetal electrode, formetal ion concentration c, and
Φ0 is the standard electrode potential of the metal.
The standard electrode potentials can be used to determine the potential dif-

ference of two different metal half-cells. For example, a battery consisting of a Cu
half-cell connected to a Zn half-cell, under standard conditions, can generate a
voltage Φ0

Cu − Φ
0
Zn = +0.34V − (−0.76V) = 1.10V.

3.11.2
Cell Potentials and the Nernst Equation

Sports drinks contain electrolytes, such as potassium chloride KCl and sodium
chloride NaCl, to help maintain the balance of cations (K+ and Na+) and anions
(Cl−) needed for proper cell function. All animal cells are surrounded by a lipid
bilayer that is largely inert but contains embedded proteins that form selective ion
channels. For example, potassium channels allow passage of potassium ions but
effectively block passage of other types of ions. An aqueous solution of K+, Na+,
and Cl− ions outside a cell with potassium channels will allow the passage of 1000
potassium ions into the interior of the cell for every Na+ ion allowed passage. As a



78 3 Thermodynamics

consequence of this selective flow of potassium ions, an electric potential energy
difference is established across the cell wall. Lipid bilayers have a width of about
Δd = 8 nm and have a capacitance of about C = 2.0 μF∕cm3. They can sustain a
potential energy difference of up to about 0.2V before breaking down.
When the system is in equilibrium, the electrochemical potential of K+ inside,

μinK , and outside, μ
out
K , the cell must be equal. This equilibrium condition allows us

to derive a Nernst equation that relates the potassium concentrations inside and
outside the cell to the potential energy difference across the cell wall. The chemical
potential inside the cell is μinK = μ0,inK +RT ln cinK + zKFφin, where φin is the electric
potential inside the cell and zK = 1 is the charge of potassium ions.Outside the cell
the chemical potential is μoutK = μ0,outK + RT ln coutK + zKFφout. Since μ

0,out
K ≈ μ0,inK

is the energy needed to add one potassium ion to an infinitely dilute solution, we
can equate these equations and obtain

Δφ = φin − φout =
RT
zKF

ln

(
coutK

cinK

)
. (3.142)

The potential energy difference, Δφ, needed to maintain the potassium concen-
tration difference is called the Nernst potential or equilibrium potential. For a
body temperature of T = 98 ◦C = 295.6 K the potential difference across the walls
of a cell with only potassium channels is Δφ ≈ (0.0255V) ln

(
coutK ∕cinK

)
.

The potassium channel is only one of several types of channels that exist in
membranes. There are also sodium channels, calcium channels, and other types
of ion channels. In addition, there are ion pumps, which play an active role in
maintaining a potential difference across cell walls, and often these processes act
together. The Nernst equation only applies when equilibrium exists between the
intracellular and extracellular fluids.

3.12
Problems

Problem 3.1 Electromagnetic radiation in an evacuated vessel of volume V at
equilibrium with the walls at temperature T (blackbody radiation) behaves like
a gas of photons having internal energy U = aV T4 and pressure P = 1∕3aT4,
where a is Stefan’s constant. (a) Plot the closed curve in theP–V plane for aCarnot
cycle using blackbody radiation. (b) Derive explicitly the efficiency of a Carnot
engine which uses blackbody radiation as its working substance.

Problem3.2 ACarnot engine uses a paramagnetic substance as its working sub-
stance. The equation of state isM = 𝔫DH∕T , whereM is themagnetization, H is
the magnetic field, 𝔫 is the number of moles, D is a constant determined by the
type of substance, and T is the temperature. (a) Show that the internal energy U ,
and therefore the heat capacity CM , can only depend on the temperature and not
the magnetization. Let us assume that CM = C = constant. (b) Sketch a typical
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Carnot cycle in theM–H plane. (c) Compute the total heat absorbed and the to-
tal work done by the Carnot engine. (d) Compute the efficiency of the Carnot
engine.

Problem 3.3 Find the efficiency of the engine shown in Figure 3.8a. Assume that
the operating substance is an ideal monatomic gas. Express your answer in terms
of V1 and V2. (The processes 1 → 2 and 3 → 4 are adiabatic. The processes 4 → 1
and 2 → 3 occur at constant volume.)

Problem 3.4 One kilogram of water is compressed isothermally at 20 ◦C from 1
to 20 atm. (a) Howmuch work is required? (b)Howmuch heat is ejected? Assume
that the average isothermal compressibility of water during this process is κT =
0.5 × 10−4∕atm and the average thermal expansivity of water during this process
is αP = 2 × 10−4∕◦C.

Problem 3.5 Compute the efficiency of the heat engine shown in Figure 3.8b.
The engine uses a rubber band whose equation of state is J = αLT , where α is
a constant, J is the tension, L is the length, and T is the temperature in kelvins.
The heat capacity is a constant, CL ,M = C. Assume the massM is held fixed.

Problem 3.6 A heat engine uses blackbody radiation as its operating substance.
The equation of state for blackbody radiation is P = 1∕3aT4 and the internal en-
ergy is U = aV T4, where a = 7.566 × 10−16 J∕(m3 K4) is Stefan’s constant, P is
pressure, T is temperature, and V is volume. The engine cycle consists of three
steps. Process 1 → 2 is an expansion at constant pressure P1 = P2. Process 2 → 3
is a decrease in pressure from P2 to P3 at constant volume V2 = V3. Process 3→ 1
is an adiabatic contraction from volume V3 to V1. Assume that P1 = 3.375P3,
T1 = 2000K, and V1 = 10−3 m3. (a) Express V2 in terms of V1 and T1 = T2 in
terms of T3. (b) Compute the work done during each part of the cycle. (c) Com-
pute the heat absorbed during each part of the cycle. (d) What is the efficiency
of this heat engine (get a number)? (e) What is the efficiency of a Carnot engine
operating between the highest and lowest temperatures.

Figure 3.8 (a) Figure for P3.3.
(b) Figure for P3.5.
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Problem 3.7 Experimentally one finds that for a rubber band(
𝜕 J
𝜕L

)
T,M

= aT
L0

[
1 + 2

(
L0
L

)3
]

and

(
𝜕 J
𝜕T

)
L ,M

= aL
L0

[
1 −

(L0
L

)3
]

,

where J is the tension, a = 1.0 × 103 dyn∕K, and L0 = 0.5m is the length of the
band when no tension is applied. The mass M of the rubber band is held fixed.
(a) Compute (𝜕L∕𝜕T ) J ,M and discuss its physical meaning. (b) Find the equation
of state and show that d J is an exact differential. (c) Assume that the heat capacity
at constant length is CL = 1.0 J∕K. Find the work necessary to stretch the band
reversibly and adiabatically to a length of 1m. Assume that when no tension is
applied, the temperature of the band is T = 290K.What is the change in temper-
ature?

Problem 3.8 Blackbody radiation in a box of volume V and at temperature T
has internal energy U = aV T4 and pressure P = 1∕3aT4, where a is the Stefan–
Boltzmann constant. (a) What is the fundamental equation for blackbody radia-
tion (the entropy)? (b) Compute the chemical potential.

Problem 3.9 For a low-density gas the virial expansion can be terminated at first
order in the density and the equation of state is

P =
NkBT
V

[
1 + N

V
B2(T )

]
,

where B2(T ) is the second virial coefficient. The heat capacity will have correc-
tions to its ideal gas value. We can write it in the form

CV,N = 3
2
NkB −

N2kB
V

F(T ) .

(a) Find the form that F(T )must have in order for the two equations to be ther-
modynamically consistent. (b) Find CP,N . (c) Find the entropy and internal energy.

Problem 3.10 Prove that

CY,N =
(
𝜕H
𝜕T

)
Y,N

and
(
𝜕H
𝜕Y

)
T,N

= T
(
𝜕X
𝜕T

)
Y,N

− X .

Problem3.11 Compute the entropy, enthalpy, Helmholtz free energy, and Gibbs
free energy of a paramagnetic substance andwrite themexplicitly in terms of their
natural variables when possible. Assume that the mechanical equation of state is
m= (DH∕T ) and that themolar heat capacity at constantmagnetization is cm = c,
wherem is the molar magnetization, H is the magnetic field, D is a constant, c is
a constant, and T is the temperature.
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Problem 3.12 Prove that (a) κT (CP − CV ) = TVα2P and (b) (CP∕CV ) = (κT∕κS).

Problem 3.13 Show that T ds = cx(𝜕T∕𝜕Y )x dY + cY (𝜕T∕𝜕x)Y dx, where x =
X∕n is the amount of extensive variable, X, per mole, cx is the heat capacity per
mole at constant x, and cY is the heat capacity per mole at constant Y .

Problem 3.14 Compute the heat capacity at constant magnetic field CH ,𝔫, the
susceptibilities χT,𝔫 and χS ,𝔫, and the thermal expansivity αH,𝔫 for a magnetic sys-
tem, given that the mechanical equation of state is M = 𝔫DH∕T and the heat
capacity is CM,𝔫 = 𝔫c, whereM is the magnetization, H is the magnetic field, 𝔫 is
the number of moles, D is a constant, c is the molar heat capacity, and T is the
temperature.

Problem 3.15 A material is found to have a thermal expansivity αP = R∕Pv +
a∕RT2v and an isothermal compressibility κT = 1∕v(T f (P) + (b∕P)), where v =
V∕n is the molar volume. (a) Find f (P). (b) Find the equation of state. (c) Under
what conditions is this material mechanically stable?

Problem 3.16 Compute the efficiency of the two reversible heat engines in Fig-
ure 3.9a,b. Which engine is the most efficient? (Note that these are not Carnot
cycles. The efficiency of a heat engine is η = ΔWtotal∕ΔQabsorbed.)

Problem 3.17 It is found for a gas that κT = Tv f (P) and αP = Rv∕P + Av∕T2,
where T is the temperature, v is the molar volume, P is the pressure, A is a con-
stant, and f (P) is an unknown function of P. (a) What is f (P)? (b) Find v =
v(P, T ).

Problem 3.18 A boy blows a soap bubble of radius Rwhich floats in the air a few
moments before breaking. What is the difference in pressure between the air in-
side the bubble and the air outside the bubblewhen (a)R= 1 cmand (b)R= 1mm?
The surface tension of the soap solution is σ= 25 dyn∕cm. (Note that soap bubbles
have two surfaces.)

Problem3.19 Imagine a droplet of water, in equilibriumwith its vapor, placed on
a wire frame that can stretch the surface area of the droplet, keeping the temper-
ature fixed. Assume that the whole system, droplet, frame, and vapor is contained
in a fixed total volume V and kept at temperature T . The grand potential of the
system can bewrittenΩ =Ω0+Ωs, whereΩs = σA is the surface grand potential,
σ is the surface tension, A is the surface area of the liquid, andΩ0 is the grand po-
tential of the remainder of the system. Neglect contributions from the frame and

Figure 3.9 Figure for P3.16.
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changes in the volume of the water droplet as it is stretched. The surface tension
of water can be written

σ = σ0
(
1 − t

t′
)n

,

where σ0 = 75.5 dyn∕cm is the surface tension at temperature, t = 0 ◦C, n = 1.2,
and t′ = 368 ◦C. (a) Compute the internal energy per unit area of the surface as-
suming that the number of surface atoms, Ns = 0. (b) Plot the surface area and
the surface internal energy per unit area for the temperature interval t = 0 ◦C to
t = t′.

Problem3.20 A stochastic process, involving three fluctuating quantities, x1, x2,
and x3, has a probability distribution

P(x1 , x2 , x3) = C exp
[
−1
2
(
2x21 + 2x1x2 + 4x22 + 2x1x3 + 2x2x3 + 2x23

)]
,

where C is the normalization constant. (a) Write probability distribution in the
form P(x1 , x2 , x3) = C exp(−1∕2xT ⋅ g ⋅ x), where g is a 3 × 3 symmetric matrix,
x is a column matrix with matrix elements xi , i = 1, 2, 3, and xT is its transpose.
Obtain the matrix g and its inverse g−1. (b) Find the eigenvalues λi (i = 1, 2, 3)
and orthonormal eigenvectors of g and obtain the 3 × 3 orthogonal matrix O that
diagonalizes the matrix g (get numbers for all of them). Using this orthogonal
matrix, we can write xT ⋅ g ⋅ x = xT ⋅OT ⋅O ⋅ g ⋅OT ⋅O ⋅ x = aT ⋅ Λ̄ ⋅ a =

∑3
i=1λia

2
i ,

whereO ⋅ g ⋅OT = Λ̄ is a 3× 3 diagonal matrix withmatrix elements (Λ̄)i, j = λiδi, j
and O ⋅ x = a is a column matrix with elements ai (i = 1, 2, 3). (c) Compute the
normalization constant,C. (d) Compute themoments ⟨xi⟩ (i = 1, 2, 3), ⟨xix j⟩ (i =
1, 2, 3, j = 1, 2, 3), ⟨x21x2x3⟩ and ⟨x1x22x3⟩. (Note that Exercises A.7 and A.8 might
be helpful.)

Problem3.21 Amonatomic fluid in equilibrium is contained in a large insulated
box of volumeV . The fluid is divided (conceptually) intom cells, each of which has
an average number N0 of particles, where N0 is large (neglect coupling between
cells). Compute the variance of fluctuations of enthalpy per particle h = H∕N
fluctuations. ⟨(Δhi)2⟩, in the ith cell. (Hint: Use pressurePand entropy per particle
s = S∕N as independent variables.)

Problem3.22 Amonatomic fluid in equilibrium is contained in a large insulated
box of volumeV . The fluid is divided (conceptually) intom cells, each of which has
an average number of particles N0, where N0 is large (neglect coupling between
cells). Compute the variance in fluctuations of internal energy per particle u =
U∕N , ⟨(Δui)2⟩, in the ith cell. (Hint: Use temperature T and volume per particle
v = V∕N as independent variables.)

Problem3.23 Amonatomic fluid in equilibrium is contained in a large insulated
box of total volume V . The fluid is divided conceptually into m cells, each with
approximately the same average number of particles, N0, where N0 is large (ne-
glect coupling between cells). Compute the variance, ⟨(Δsi)2⟩ (s = S∕N is the en-
tropy per particle), the variance ⟨(Δvi)2⟩ (v = V∕N is the volume per particle),
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and the correlation between them ⟨(ΔsiΔvi)⟩ in the ith cell (neglect interaction
between neighboring cells). Where possible express your answers in terms of re-
sponse functions, equilibrium temperature T0, and equilibrium densities.

Problem 3.24 A van der Waals gas can be cooled by free expansion. Since no
work is done and no heat is added during free expansion, the internal energy re-
mains constant. An infinitesimal change in volume dV causes an infinitesimal
temperature change in dT , where

dT =
(
𝜕T
𝜕V

)
U,𝔫

dV .

(a) Compute the Joule coefficient (𝜕T∕𝜕V )U,𝔫 for a van der Waals gas (note that
the heat capacity CV,𝔫 is independent of volume and use CV,𝔫 = 3∕2𝔫R). (b) Com-
pute the change in temperature of onemole of oxygen (O2) andonemole of carbon
dioxide (CO2) if they each expand from an initial volume Vi = 10−3 m3 at temper-
ature Ti = 300K to a final volume Vf = ∞. (For O2 the van der Waals constant is
a = 0.1382 Pam6∕mol2 and for CO2 it is a = 0.3658 Pam6∕mol2.)

Problem 3.25 Consider a gas obeying the Dieterici equation of state,

P = nRT
(V − 𝔫b)

exp
(
− 𝔫a
VRT

)
,

where a and b are constants. (a) Compute the Joule coefficient (𝜕T∕𝜕V )U,𝔫.
(b) Compute the Joule–Kelvin coefficient (𝜕T∕𝜕P)H ,𝔫. (c) For the throttling pro-
cess, find an equation for the inversion curve and sketch it. What is themaximum
inversion temperature?

Problem 3.26 Two containers, each of volume V , contain ideal gas held at tem-
perature T and pressure P. The gas in chamber 1 consists of N1,a molecules
of type a and N1,b molecules of type b. The gas in chamber 2 consists of N2,a
molecules of type a and N2,b molecules of type b. Assume that N1,a + N1,b =
N2,a + N2,b . The gases are allowed to mix so the final temperature is T and the
final pressure is P. (a) Compute the entropy of mixing. (b) What is the entropy
of mixing if N1,a = N2,a and N1,b = N2,b . (c) What is the entropy of mixing if
N1,a = N2,b and N1,b = N2,a = 0. Discuss your results for (b) and (c).

Problem 3.27 An insulated box with fixed total volume V is partitioned into m
insulated compartments, each containing an ideal gas of a different molecular
species. Assume that each compartment has the same pressure but a different
number of moles, a different temperature, and a different volume. (The thermo-
dynamic variables for the ith compartment are (P,𝔫i , Ti , Vi).) If all partitions are
suddenly removed and the system is allowed to reach equilibrium: (a) Find the
final temperature and pressure, and the entropy of mixing. (Assume that the par-
ticles aremonatomic.) (b) For the special case ofm= 2 and parameters𝔫1 = 1mol,
T1 = 300K, V1 = 1 l, 𝔫2 = 3mol, and V2 = 2 l, obtain numerical values for all pa-
rameters in part (a).
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Problem 3.28 A tiny sack made of membrane permeable to water but not NaCl
(sodium chloride) is filled with a 1% solution (by weight) of NaCl and water and
is immersed in an open beaker of pure water at 38 ◦C at a depth of 1 ft. (a) What
osmotic pressure is experienced by the sack? (b) What is the total pressure of
the solution in the sack (neglect surface tension)? Assume that the sack is small
enough that the pressure of the surrounding water can be assumed constant. (An
example of such a sack is a human blood cell.)

Problem 3.29 Hemoglobin is a protein, carried by red blood cells, that trans-
ports oxygen from the lungs to tissue throughout the body. A m = 21.5 × 10−3 g
sample of hemoglobin protein is dissolved in water at a temperature of 5 °C
to form a 1.5ml solution. The osmotic pressure of the solution is found to be
π = 0.00475 atm. What is the molecular weight (in atomic mass units) of the
hemoglobin molecule? (Historically, the molecular weight of the hemoglobin
molecule was first determined by measuring osmotic pressure of such solutions.)

Problem 3.30 A biological molecule of unknown mass can be prepared in pure
powdered form. If 15 g of this powder is added to a container with 1 L of water at
T = 300K, which is initially at atmospheric pressure, the pressure inside the con-
tainer increases to P = 1.3atm. (a) What is the molecular weight of the biological
molecules? (b) What is the mass of each molecule expressed in atomic units?

Problem 3.31 A solution of particles A and B has a Gibbs free energy

G(P, T,𝔫A ,𝔫B) = 𝔫AgA(P, T ) + 𝔫BgB(P, T ) + 1
2
λAA

𝔫2
A

𝔫
+ 1

2
λBB

𝔫2
B

𝔫

+ λAB
𝔫A𝔫B

𝔫
+ 𝔫ART ln xA + 𝔫BRT ln xB . (3.143)

Initially, the solution has 𝔫A moles of A and 𝔫B moles of B. (a) If an amount, Δ𝔫B,
of B is added keeping the pressure and temperature fixed, what is the change in
the chemical potential of A? (b) For the case λAA = λBB = λAB, does the chemical
potential of A increase or decrease?

Problem 3.32 Consider the hypothetical reaction 2XY2 ⇌ 2XY + Y2, which
occurs in the gas phase. Start initially with two moles of XY2 and zero moles
each of XY and Y2. Assume the reaction occurs at temperature T and pres-
sure P. Use ideal gas equations for the chemical potential. The chemical poten-
tials for these molecules in the gas phase at T = 298.15K and P = 1 bar are
μXY2

= −394.37 J∕mol, μXY = −137.17 J∕mol, and μY2
= 0. (a) Compute and plot

the Gibbs free energy, G(T, P, ξ), as a function of the degree of reaction ξ for
(i) P = 1 bar and T = 298.15K and (ii) P = 1 bar and T = 398.15K. (b) Compute
and plot the affinity A(T, P, ξ), as a function of the degree of reaction ξ for (i) P = 1
bar and T = 298.15K and (ii) P = 1 bar and T = 398.15K. (c) What is the degree
of reaction ξ at chemical equilibrium for P = 1 bar and T = 298.15K? Howmany
moles of XY2, XY, and Y2 are present at equilibrium? (d) If initially the volume of
the gas was V0, what is the volume at equilibrium for P = 1 bar and T = 298.15K?
(e) What is the heat of reaction for P = 1 bar and T = 298.15K?
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Problem 3.33 Consider the reaction

2HI ⇌ H2 + I2

which occurs in the gas phase. Start initially with 2mol of HI and 0mol each of H2
and I2. Assume that the reaction occurs at temperature T and pressure P. Use
ideal gas equations for the chemical potential. (a) Compute and plot the Gibbs
free energy, G(T, P, ξ), as a function of the degree of reaction, ξ, for (i) P = 1 atm
and T = 298K and (ii) P = 1 atm and T = 596K. (b) Compute and plot the affinity,
A(T, P, ξ), as a function of the degree of reaction, ξ, for (i) P = 1 atm and T = 298K
and (ii) P = 1 atm and T = 596K. (c)What is the degree of reaction, ξ, at chemical
equilibrium for P = 1 atm and temperature T = 298K? How many moles of HI,
H2, and I2 are present at equilibrium? (d) If initially the volume is V0, what is
the volume at equilibrium for P = 1 atm and T = 298K? (e) What is the heat of
reaction for P = 1 atm and T = 298K?

Problem 3.34 Consider the reaction

2NH3 ⇌ N2 + 3H2

which occurs in the gas phase. Start initially with 2mol of NH3 and 0mol each
of H2 and N2. Assume that the reaction occurs at temperature T and pressure P.
Use ideal gas equations for the chemical potential. (a) Compute and plot theGibbs
free energy, G(T, P, ξ), as a function of the degree of reaction, ξ, for (i) P = 1 atm
and T = 298K and (ii) P = 1 atm and T = 894K. (b) Compute and plot the affinity,
A(T, P, ξ), as a function of the degree of reaction, ξ, for (i) P = 1 atm and T = 298K
and (ii) P = 1 atm and T = 894K. (c)What is the degree of reaction, ξ, at chemical
equilibrium for P = 1atm and temperature T = 894K? Howmany moles of NH3,
H2, and N2 are present at equilibrium? (d) If initially the volume is V0, what is
the volume at equilibrium for P = 1 atm and T = 894K? (e) What is the heat of
reaction for P = 1 atm and T = 894K?
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4
The Thermodynamics of Phase Transitions

4.1
Introduction

A thermodynamic systemcan exist in a number of different phases and themacro-
scopic behavior of these various phases can differ dramatically. Generally, systems
becomemore ordered as temperature is lowered because forces of cohesion begin
to overcome thermal motion and atoms can rearrange themselves into more or-
dered states. Phase changes occur abruptly at some critical temperature, although
evidence that a phase change will occur can be found on a macroscopic scale as
the critical temperature is approached. In this chapter we will be concerned with
the thermodynamics of phase transitions – that is, the description of phase tran-
sitions in terms of macroscopic variables. In later chapters we shall study them
from a microscopic point of view.
The first step in analyzing phase changes is tomap out the phase diagram for the

system. At a transition point, two (ormore) phases can coexist in equilibriumwith
each other. Since phases can exchange thermal andmechanical energy andmatter,
equilibrium occurs when the chemical potentials of the phases become equal for
given values of Y and T . From this equilibrium condition, we can determine the
maximum number of phases that can coexist and, in principle, find an equation
for the regions of coexistence (the Clausius–Clapeyron equation, for example).
Phase transitions can be divided into two classes according the behavior of the

Gibbs free energy. Phase transitions with discontinuous first derivatives of the
Gibbs free energy (taken with respect to T and Y ) are called first-order phase
transitions. Phase transitions with continuous first derivatives, but discontinuous
higher order derivatives, are called continuous phase transitions. We give exam-
ples of both in this chapter.
Classical fluids provide some of the most familiar examples of first-order phase

transitions. The vapor–liquid, vapor–solid, and liquid–solid transitions are all
first order. For these phase transitions, we can use the Clausius–Clapeyron equa-
tion to find explicit approximate equations for the coexistence curves. Since the
vapor–liquid transition terminates in a critical point, we will focus on this tran-
sition and compare the observed behavior of the vapor–liquid coexistence region
to that predicted by the van der Waals equation.

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.
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A binary mixture of molecules in the fluid state provides a different example
of a first-order phase transition. For such systems, below a certain critical tem-
perature we can have a physical separation of the mixture into two fluids, each of
which is rich in one of the types of molecules.
Superconductors and superfluids are especially interesting from the standpoint

of thermodynamics because they exhibit phase transitions that depend on the
quantum statistics of the particles. In the absence of a magnetic field, the transi-
tion of electrons in a metal, from a normal to a superconducting state, is a con-
tinuous phase transition. It is quantum mechanical in nature and results from
amacroscopic condensation of pairs of electrons into a single quantum state. The
superfluid transitions in liquid He3 and liquid He4 are of similar quantum ori-
gin. The superfluid transitions in liquid He3 involve pairs of “dressed” He3 atoms
which condense, on amacroscopic scale, into a single quantum state. In liquidHe4
a macroscopic number of “dressed” He4 atoms condense into the ground state.
When liquid He3 and liquid He4 are mixed together, they form a binary mixture
which can undergo both a continuous superfluid phase transition and a first-order
binary phase transition.
A continuous phase transition is accompanied by a change in the symmetry

properties of the two phases. Ginzburg and Landau developed a general theory of
continuous symmetry-breaking phase transitions which involves an analytic ex-
pansion of the free energy in terms of the order parameter. We shall discuss the
Ginzburg–Landau theory in this chapter and show how it can be applied to mag-
netic systems at the Curie point and to superfluid and superconducting systems.
The critical point plays a unique role in the theory of phase transitions. At a crit-

ical point, some thermodynamic variables can become infinite. Critical points oc-
cur in a huge variety of systems, but regardless of the particular substance or me-
chanical variable involved, there appears to be a universality in the behavior of all
systems as they approach their critical points.One of the bestways to characterize
the approach to a critical point is by means of critical exponents. We shall define
critical exponents in this chapter and give explicit examples of some of them for
the liquid–vapor transition in simple fluids and for the Curie point.

4.2
Coexistence of Phases: Gibbs Phase Rule

TheGibbs phase rule tells us howmany phases can coexist, for a system in thermo-
dynamic equilibrium. Generally, coexisting phases are in thermal andmechanical
equilibrium and can exchange matter. Under these conditions, the temperature
and chemical potentials of the phases must be equal (cf. Section 3.7) and there
will be a condition expressing mechanical equilibrium. For example, for a simple
PVT system, the pressures of the two phases will be equal (if surface tension can
be neglected).
For simplicity, let us first consider a YXT systemwhich is pure (composed of one

kind of particle). For a pure system, two phases, I and II, can coexist at a fixed value
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Figure 4.1 Coexistence curves for the solid
and liquid phases of water. In accordance
with the Gibbs phase rule, no more than three
phases can coexist [21] (based on [172]).

of Y and T if their respective chemical potentials are equal μI(Y, T ) = μII(Y, T ).
(The chemical potentials are functions only of intensive variables.) This gives us a
relation between the values ofY andT forwhich the phases can coexist, Y = Y (T )
and in the Y–T plane it defines a coexistence curve for the two phases.
If the pure system has three phases, I, II, and III, they can only coexist at a single

point in theY–T plane (the triple point). Three coexisting phasesmust satisfy the
equations μI(Y, T ) = μII(Y, T ) = μIII(Y, T ). Since we have two equations and two
unknowns, the triple point is uniquely determined. For a pure system, four phases
cannot coexist, because we would then have three equations and two unknowns
and there would be no solution. For a mixture of l different types of particles, at
most l + 2 phases can coexist.
As an example of the Gibbs phase rule for pure substances, we show the coexis-

tence curves for various solid phases of water (cf. Figure 4.1).We see that although
water can exist in many different solid phases, no more than three phases can co-
exist at a given temperature and pressure.

4.3
Classification of Phase Transitions

As we change the independent intensive variables (Y, T, x1 ,… , xl) of a system, we
reach values of the variables for which a phase change can occur. At such points
the chemical potentials of the phases must be equal and the phases can coexist.
The fundamental equation for theGibbs free energy, in a systemwith l different

kinds of molecules, is G =
∑l
j=1 𝔫 jμ j , where 𝔫 j is the number of moles of the

jth constituent and μj is its chemical potential (see Table 3.4). For processeswhich
occur at constant Y and T , changes in the Gibbs free energy can be written

[dG]Y,T =
l∑
j=1
μj d𝔫 j . (4.1)

Thus, at a phase transition, the derivatives μj =
(
𝜕G∕𝜕𝔫 j

)
Y,T,{𝔫i≠ j}

in the two
phases must be equal. However, no restriction is placed on the derivatives
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X = −(𝜕G∕𝜕Y )T,{𝔫 j } and S = −(𝜕G∕𝜕T )Y,{𝔫 j}. The behavior of these deriva-
tives is used to classify phase transitions. If the derivatives (𝜕G∕𝜕Y )T,{𝔫 j } and
(𝜕G∕𝜕T )Y,{𝔫 j} are discontinuous at the transition point (i. e., if the extensive vari-
able X and the entropy S have different values in the two phases), the transition
is called first order. If the derivatives (𝜕G∕𝜕T )Y,{𝔫 j} and (𝜕G∕𝜕Y )T,{𝔫 j } are con-
tinuous at the transition but higher order derivatives are discontinuous, then the
phase transition is continuous. (The terminology “nth-order phase transition” was
introduced by Ehrenfest to indicate a phase transition for which the nth derivative
of G was the first discontinuous derivative. However, for some systems, higher
order derivatives are infinite, and the theory proposed by Ehrenfest breaks down
for those cases.)
In Figure 4.2, we plot the Gibbs free energy for a first-order transition in a PVT

system. For such a system the Gibbs free energy must be a concave function of P
and T (cf. Section 3.7). A discontinuity in (𝜕G∕𝜕P)T,{𝔫 j} means that there is the
discontinuity in the volume of the two phases,

ΔV = V I − V II =
(
𝜕G
𝜕P

)I

T,{𝔫 j}
−
(
𝜕G
𝜕P

)II

T,{𝔫 j}
, (4.2)

and a discontinuity in (𝜕G∕𝜕T )P,{𝔫 j} means there is a discontinuity in the entropy
of the two phases,

ΔS = SI − SII =
(
𝜕G
𝜕T

)II

P,{𝔫 j}
−
(
𝜕G
𝜕T

)I

P,{𝔫 j}
. (4.3)

Since the Gibbs free energy is the same for both phases at the transition, the fun-
damental equation H = G + TS shows that the enthalpy of the two phases is dif-

Figure 4.2 Typical behavior for the Gibbs free energy at a first-order phase transition. Plots of
(a) G vs P and V versus P, and (b) G versus T and S versus T .
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ferent,

ΔH = HI − HII = TΔS , (4.4)

for a first-order phase transition. The enthalpy difference, ΔH, is also called the
latent heat.
For a continuous phase transition, the Gibbs free energy is continuous but its

slope changes rapidly. This in turn leads to a peaking in the heat capacity at the
transition point. For a continuous transition, there is no abrupt change in the en-
tropy or the extensive variable (as a function of Y and T) at the transition.
In the subsequent sections we shall give examples of first-order and continuous

phase transitions.

4.4
Classical Pure PVT Systems

A classical pure PVT system is a system composed of only one type of molecule
that can exist in solid, liquid, and/or vapor phases [116, 196, 220]. This class of
PVT system does not include the isotopes of helium, He3 or He4 at low tem-
perature where they have superfluid phases, but it is typical of most other pure
substances. Since we deal with pure substances in this section, it is convenient to
describe their phase transitions in terms of molar densities.

4.4.1
Phase Diagrams

A typical set of coexistence curves for pure substances is given in Figure 4.3a.
Point A on the diagram is the triple point, the point at which the gas, liquid, and
solid phases can coexist. Point C is the critical point, the point at which the va-
porization curve terminates. The fact that the vaporization curve has a critical
point means that we can go continuously from a gas to a liquid without ever going
through a phase transition, if we choose the right path. The fusion curve does not
have a critical point (none has ever been found).Wemust go through a phase tran-
sition in going from the liquid to the solid state. This difference between the gas–
liquid and liquid–solid transitions indicates that there is a fundamental difference
between liquid–solid transition and the liquid–gas transition. The difference lies
in their symmetry properties. Solids exhibit spatial ordering, while liquids and
gases do not. (We will use “vapor” and “gas” interchangeably.)
The transitions from gas to liquid phase, from liquid to solid phase, and from

gas to solid phase are all first-order transitions and are accompanied by a latent
heat and a change in volume. In Figure 4.3b, we have drawn the phase diagram in
the P–v plane. The dashed lines are lines of constant temperature. We notice that
the slope of the dashed lines is negative, (𝜕P∕𝜕v)T < 0. This is a statement of the
stability condition, κT > 0 (cf. Section 3.7). In the region of coexistence of phases,
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Figure 4.3 (a) Coexistence curves for a typical
pure PVT system. Point A is the triple point
and point C is the critical point. The dashed
line is an example of a fusion curve with neg-

ative slope. (b) A plot of the coexistence re-
gions for a typical PVT system. All the phase
transitions here are first order. The dashed
lines represent isotherms.

the isotherms (dashed lines) are always flat, indicating that in these regions the
change in volume occurs for constant P and T .

4.4.2
Coexistence Curves: Clausius–Clapeyron Equation

The molar Gibbs free energies (the chemical potentials), g = G∕𝔫, of two coex-
isting phases (which we call I and II) of a monatomic PVT system must be equal.
If we change the pressure and temperature at which the two phases coexist (i. e.,
if we move to a new point on the coexistence curve), the molar Gibbs free energy
of the two phases must change by equal amounts. Thus, [dgI]coexist = [dgII]coexist
and, using Table 3.4, we can write

vI dP − sI dT = vII dP − sII dT (4.5)

along the coexistence curve, where v is themolar volume and s is themolar entropy.
Thus, (

dP
dT

)
coex

= sI − sII
vI − vII

= Δs
Δv

= Δh
TΔv

(4.6)

along the coexistence curve, where Δs = sI − sII (Δv = vI − vII) is the difference
in the molar entropy (molar volume) of the two phases. In the right-most term
in Eq. (4.6), we have introduced the latent heat, Δh = TΔs (cf. Table 3.2). Equa-
tion (4.6) is called the Clausius–Clapeyron equation. The latent heat, Δh, is the
heat absorbed per mole in the transition from phase II to phase I.
It is useful to consider the Clausius–Clapeyron equation for each of the three

coexistence curves in Figure 4.3. We first consider the vaporization curve. If we
evacuate a chamber and partially fill it with a pure substance, then for the tem-
peratures and pressures along the coexistence curve (the vaporization curve) from
the triple point to the critical point (point A to point C in Figure 4.3a) the vapor
and liquid phases will coexist in the chamber. In the absence of gravity, droplets
of liquid will coexist with vapor. For a given temperature T , the pressure of the
vapor and liquid is called the saturated vapor pressure. The Clausius–Clapeyron
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equation tells us how the vapor pressure changes as a function of temperature
along the coexistence curve.
We can obtain a rather simple equation for the vaporization curve if we make

some approximations. Let us assume that changes in the molar volume of the
liquid may be neglected relative to changes in themolar volume of the vapor (gas)
as we move along the coexistence curve, and let us assume the vapor obeys the
ideal gas law. Then Δv ≈ RT∕P, and the Clausius–Clapeyron equation for the
vapor pressure curve takes the form(

dP
dT

)
coex

=
PΔhlg
RT2 , (4.7)

where Δhlg is the latent heat of vaporization. If we assume that the latent heat of
vaporization is roughly constant over the range of temperatures considered, we
can integrate Eq. (4.7) from (P0, T0) to (P, T) along the coexistence curve to obtain

P = P0 exp
[Δhlg(T − T0)

RTT0

]
. (4.8)

Thus, as the temperature is increased, the vapor pressure increases exponentially
along the vaporization curve. Conversely, if we increase the pressure, the temper-
ature of coexistence (boiling point) increases.

Exercise 4.1

Prove that the latent heat must always be positive (heat is absorbed) whenmaking
a transition from a low-temperature phase to a high-temperature phase.

Answer: Let us assume that phase I is the high-temperature phase and phase II is
the low-temperature phase. Since for fixed pressure and temperature the equilib-
rium state is a state of minimum Gibbs free energy, we must have GI < GII above
the transition temperature and GI > GII below the transition temperature. This
implies that (𝜕GI∕𝜕T )P,{n j} < (𝜕GII∕𝜕T )P,{n j} both above and below the transi-
tion temperature. Therefore SI = −(𝜕GI∕𝜕T )P,{n j} > SII = −(𝜕GII∕𝜕T )P,{n j} and
ΔS = TΔH is always positive in going from the low-temperature phase to the
high-temperature phase.

The fusion curve does not terminate at a critical point but can have either positive
or negative slope. The Clausius–Clapeyron equation for the liquid–solid transi-
tion is (

dP
dT

)
coex

=
Δhsl
TΔvsl

, (4.9)

where Δvsl is the change in molar volume in going from the solid to the liquid
phase and Δhsl is the latent heat of fusion. If the volume of the solid is greater
than that of the liquid, then Δvsl will be negative and the slope, (dP∕dT )coex, will
be negative (the dashed line in Figure 4.3a).
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For the case of a fusion curve with positive slope (the solid line in Figure 4.3a),
if we increase the pressure at a fixed temperature, we simply drive the system
deeper into the solid phase. However, if the fusion curve has a negative slope,
then increasing the pressure at fixed temperature can drive the system into the
liquid phase. Water is an example of a system whose fusion curve has negative
slope.

Exercise 4.2

Compute the molar heat capacity of a vapor along the vaporization curve.

Answer: Along the vaporization curve there is only one independent variable,
which we choose to be the temperature. In general, the entropy of the vapor is
a function of both the pressure and temperature, but along the vaporization curve
the pressure is related to the temperature by the Clausius–Clapeyron equation.
The molar heat capacity along the vaporization curve can be written

ccoex = T
(
𝜕s
𝜕T

)
coex

= cP − T
(
𝜕v
𝜕T

)
P

(
𝜕P
𝜕T

)
coex

,

where we have used identities in Appendix B and Table 3.4 ((𝜕s∕𝜕P)T =
− (𝜕v∕𝜕T )P). The molar heat capacity, cP , is the heat capacity of the vapor held
at constant pressure as we approach the coexistence curve. If we use the ideal gas
equation of state to describe the properties of the vapor phase and if we use the
Clausius–Clapeyron equation, we obtain the following expression for the molar
heat capacity along the coexistence curve, ccoex = cP − ((Δhlg)∕T).

If a solid is placed in an evacuated chamber and maintained at some pressure and
temperature along the sublimation curve, a vapor will coexist in equilibrium with
the solid phase. If we again assume that the gas phase obeys the ideal gas equation
of state, then the volume of the solid can be neglected and Δvsg = RT∕P, is the
change in molar volume in going from the solid to the gas phase. The Clausius–
Clapeyron equation for the sublimation curve can then be written(

dP
dT

)
coex

=
PΔhsg
RT2 , (4.10)

where Δhsg is the latent heat of sublimation. If the vapor pressure is known over
a small temperature interval, then the latent heat of sublimation can be obtained
from Eq. (4.10). We can rewrite Eq. (4.10) in the form

Δhsg = −R dln(P)
d(1∕T )

. (4.11)

Then Δhsg is proportional to the slope of the curve, ln P versus 1∕T .
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Exercise 4.3

Two crystalline forms of calcium carbonate, CaCO3, are called calcite and arago-
nite. At T0 = 298K and P0 = 1.0 bar, calcite and aragonite have molar Gibbs free
energy g◦c = −1128.8 kJ and g◦a = −1127.8 kJ, molar entropy s◦c = 92.9 J∕K and
s◦a = 88.7 J∕K, and molar volume v◦c = 36.93 × 10−6 m3 and v◦a = 34.15 × 10−6 m3,
respectively [190]. (a) AtT = T0 and P = P0, which form is stable? (b) Atwhat tem-
perature does a phase transition occur between the two substances when P = P0?
(c) At what pressure does the phase transition occur when T = T0?

Answer: (a) At T0 = 298K, calcite is stable because gc < ga.
(b) At fixed P = P0, [dg]P = −s dT so gc(T1 , P0) − gc(T0, P0) ≈ s◦c (T1 − T0) and

ga(T1 , P0) − ga(T1, P0) ≈ s◦a (T1 −T0) (assuming s is slowly varying). Let Δg = ga −
gc and Δs = sa − sc so Δg(T1 , P0) − Δg◦ ≈ Δs◦(T1 − T0). The phase transition
occurswhen Δg(T1 , P0) = 0 orT1≈T0+Δg◦∕Δs◦ = 298K+1000 kJ∕(−4.2 J∕K) =
59.9 K.
(c) TheClausius–Clapeyron equation for this transition is dP∕dT ≈ Δs◦∕Δv◦ =

15.1 bar∕K so dP ≈ (15.1 bar∕K) dT . If we integrate, with lower limit at the tran-
sition point (T1 = 59.9 K, P0 = 1.0 bar), we find P2 − P0 = (15.1 bar∕K)(T0 − T1).
At T = T0, the transition occurs at P2 = 3.6 kbar.

4.4.3
Liquid–Vapor Coexistence Region

The liquid–vapor coexistence region culminates in a critical point and will be of
special interest later. Therefore, it is useful at this point to examine this coexis-
tence region more closely [116, 196]. Let us redraw the coexistence curve (va-
porization curve) for the liquid–vapor transition in the P–v plane (cf. Figure 4.4).
The isotherms for stable thermodynamic states are indicated by the solid lines.
As we decrease the molar volume of the gas with temperature fixed at T0 < Tc,
the pressure increases until we reach the coexistence curve (point A). At point A,
the vapor starts to condense and the pressure remains fixed until all vapor has
changed to liquid (point B). Then the pressure begins to rise again.

Figure 4.4 The coexistence curve for the
vapor–liquid coexistence region for a pure
PVT system.
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4.4.3.1 Lever Rule
The amounts of liquid and vapor which coexist are given by the lever rule. Let
us consider a system with temperature T0 < Tc, pressure P0, total volume VD.
The liquid and vapor phases coexist. The total volume VD and total mole number
n can be written VD = ngvg + nlvl and n = ng + nl, respectively, where vg (vl)
is the molar volume of the gas (liquid) and ng (ng) is the number of moles of gas
(liquid). The total molar volume, vD = VD∕n, is given in terms of themolar volume
vl of the liquid at point B, and the molar volume vg of vapor (gas) at point A, by
vD = xlvl + xgvg, where xl is the mole fraction of liquid at point D and xg is the
mole fraction of gas at point D. If we multiply vD by xl + xg ≡ 1, we find

xl
xg

=
(vg − vD)
(vD − vl)

. (4.12)

Equation (4.12) is called the lever rule. It tells us that the ratio of themole fractions
of liquid to gas at point D is equal to the inverse ratio of the distance between
point D and points A and B.

Exercise 4.4

In the neighborhood of the triple point of ammonia (NH3), the equation for the
sublimation curve is ln(P) = 27.79 − 3726∕T and the equation for the vaporiza-
tion curve is ln(P) = 24.10 − 3005∕T , where P is measured in Pascals and T is
measured in Kelvin. (a) Compute the temperature and pressure of the triple point.
(b)What is the latent heat of sublimation?What is the latent heat of vaporization?

Answer: (a) At the triple point, the pressure and temperature of the vapor, liquid,
and solid are the same. Therefore, the equation for the triple point temperature,
Tt, is 27.79− 3726∕Tt = 24.10− 3005∕Tt or Tt = 195.4 K. The triple point pres-
sure, Pt, is Pt = 6.13 kPa.
(b) The slope of the sublimation curve is (𝜕P∕𝜕T )coex ≈ (PΔhsg)∕(RT2) =

(3726P)∕T2. Therefore, Δhsg = 3726R ≈ 31 kJ∕mol. The slope of the vaporization
curve is (𝜕P∕𝜕T )coex ≈ (PΔhlg)∕(RT2) = (3005P)∕T2. Therefore, Δhlg = 3005R ≈
25 kJ∕mol.

As long as (𝜕v∕𝜕P)T < 0, the system is mechanically stable (see Section 3.7). If we
continue the isotherm, T0, past the points A and B (the dashed line), we obtain
curves which are mechanically stable but no longer correspond to a minimum of
free energy. States along the dashed line at point A correspond to supercooled va-
por states, while those along the dashed line at point B correspond to superheated
liquid states. Such states are metastable and can be produced in the laboratory for
very pure samples.

4.4.3.2 Law of Corresponding States
The actual shape of the coexistence curve in theT–ρ plane (ρ is themass density)
has been given by Guggenheim [76] for a variety of classical pure substances and
is reproduced in Figure 4.5. Guggenheim plots the coexistence curve in terms of
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Figure 4.5 Experimental vapor–liquid coexistence curve for a variety of substances. The plot is
of the reduced temperature versus reduced density (based on [76]).

the reduced quantities T∕Tc and ρ∕ρc, where Tc and ρc are the critical tempera-
ture and mass density, respectively, of a given substance (Tc and ρc are different
for each substance). Most classical substances, when plotted in terms of reduced
temperature and density, lie in approximately the same curve. This is an exam-
ple of the so-called law of corresponding states, which says that all classical pure
fluids, when described in terms of reduced quantities, obey the same equation of
state.
It is found from experiment that the reduced densities of the liquid and gas

phases along the coexistence curves obey the following equations:

ρl + ρg
2ρc

= 1 + 3
4

(
1 − T

Tc

)
and

ρl − ρg
ρc

= 7
2

(
1 − T

Tc

)1∕3

. (4.13)

These equations will be useful later.

4.4.3.3 Response Functions in the Coexistence Region
It is possible to obtain expressions for response functions in the coexistence re-
gion. As an example, we will consider the molar heat capacity, cv , for a liquid and
vapor coexisting at a fixed molar volume, vD (cf. Figure 4.4). If we neglect any ef-
fects of gravity, then the system will consist of droplets of liquid in equilibrium
with and floating in vapor. The internal energy per mole of the liquid at point D
is ul(vB, T0) and that of the vapor at point D is ug(vA, T0) (the thermodynamic
properties of the liquid and the vapor at point D are the same as on their re-
spective sides of the coexistence curve). The total internal energy at point D is
Utot = ngu(vg, T0) + nlu(vl , T0) and the total internal energy per mole at point D
is

utot = xgu(vg , T0) + xlu(vl , T0) , (4.14)
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where vg = vA, vl = vB, and ng and nl are the number of moles of gas and liquid,
respectively, at point D.
Let us now look at the variation of the internal energy with temperature along

a line of fixed molar volume at point D (the molar heat capacity at point D),

cv =
(
𝜕utot
𝜕T

)
vD

= xg
(
𝜕ug
𝜕T

)
coex

+ xl
(
𝜕ul
𝜕T

)
coex

+ (ul − ug)
(
𝜕xl
𝜕T

)
coex

,

(4.15)

where we have used the fact that dxl = −dxg. Equation (4.15) can be expressed
in terms of directly measurable quantities. There are several steps involved which
we itemize below.

1. First consider the quantity (𝜕ul∕𝜕T )coex. Using identities from Appendix B,
we can write(

𝜕ul
𝜕T

)
coex

=
(
𝜕ul
𝜕T

)
vl

+
(
𝜕ul
𝜕vl

)
T

(
𝜕vl
𝜕T

)
coex

= cvl +
(
𝜕ul
𝜕vl

)
T

(
𝜕vl
𝜕T

)
coex

,

(4.16)

where cvl is the molar heat capacity of the liquid at point B. Similarly,(
𝜕ug
𝜕T

)
coex

= cvg +

(
𝜕ug
𝜕vg

)
T

(
𝜕vg
𝜕T

)
coex

, (4.17)

where cvg is the molar heat capacity of the vapor at point A.
2. Next consider the difference Δu = ug−ul between themolar internal energies

of the gas and liquid. From the Clausius–Clapeyron equation (4.6) and the
fundamental equation for the enthalpy (see Table 3.2), we can write(

dP
dT

)
coex

= Δh
TΔv

= Δu
TΔv

+ Δ(Pv)
TΔv

= Δu
TΔv

+ P
T

, (4.18)

where Δh = hg − hl and Δv = vg − vl (ΔP = 0 because the pressure of the two
coexisting phases are the same). Therefore,

Δu = ug − ul =
{[
T

(
dP
dT

)
coex

− P
]
(vg − vl)

}
coex

. (4.19)

3. Finally, let us consider the quantity (𝜕xl∕𝜕T )coex. Since the total molar volume
at point D can be written vD = xgvg + xlvl, we can write(

𝜕vD
𝜕T

)
vD

= 0 = (vl − vg)
(
𝜕xl
𝜕T

)
coex

+ xg
(
𝜕vg
𝜕T

)
coex

+ xl
(
𝜕vl
𝜕T

)
coex

.

(4.20)
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Here we have used the fact that as we vary the temperature along the line
vD = constant, the liquid and vapor vary along their respective sides of the
coexistence curve. We can rewrite Eq. (4.20) in the form(

𝜕xl
𝜕T

)
coex

= 1
(vg − vl)

[
xg

(
𝜕vg
𝜕T

)
coex

+ xl
(
𝜕vl
𝜕T

)
coex

]
. (4.21)

We can combine Eqs. (4.15), (4.17), (4.19), and (4.21) to obtain the following ex-
pression for the heat capacity along the line vD = constant;

cv = xgcvg + xlcvl + xg

(
𝜕ug
𝜕vg

)
T

(
𝜕vg
𝜕T

)
coex

+ xl
(
𝜕ul
𝜕vl

)
T

(
𝜕vl
𝜕T

)
coex

−
[
T
(
dP
dT

)
coex

− P
] [
xg

(
𝜕vg
𝜕T

)
coex

+ xl
(
𝜕vl
𝜕T

)
coex

]
.

(4.22)

We now can make two final changes to Eq. (4.22). We can use the identity(
𝜕ug
𝜕vg

)
T

= T
(
𝜕Pg
𝜕T

)
vg

− P (4.23)

and an analogous identity for (𝜕ul∕𝜕vl)T (cf. (3.50)). Also, we can write

(
𝜕P
𝜕T

)
vg
=

(
𝜕P
𝜕T

)
coex

−

(
𝜕P
𝜕vg

)
T

(
𝜕vg
𝜕T

)
coex

(4.24)

and an analogous expression for (𝜕P∕𝜕T )vl . If Eqs. (4.23) and (4.24) and the anal-
ogous expressions for the liquid are substituted into Eq. (4.22), we find

cv = xg

[
cvg − T

(
𝜕P
𝜕vg

)
T

(
𝜕vg
𝜕T

)2

coex

]
+xl

[
cvl − T

(
𝜕P
𝜕vl

)
T

(
𝜕vl
𝜕T

)2

coex

]
.

(4.25)

All quantities in Eq. (4.25) are measurable, and therefore a numerical value for
the heat capacity can be obtained without much difficulty. Equation (4.25) will be
useful later when we consider critical exponents.
The heat capacity at constant volume is finite in the coexistence region. How-

ever, the heat capacity at constant pressure is infinite in the coexistence region.
If we add heat to a system with coexisting liquid and vapor phases and keep the
pressure fixed, liquid will turn to vapor but the temperature will not change. Thus,
cP = ∞ in the coexistence region, while cv can remain finite.



100 4 The Thermodynamics of Phase Transitions

4.4.4
The van der Waals Equation

The van derWaals equation, P = (𝔫RT )∕(N − 𝔫b) − (a𝔫2)∕V 2, was first derived
by van derWaals in his doctoral dissertation in 1873. The parameters a and b ac-
count for attractive and repulsive forces, respectively, betweenmolecules in a fluid
(see Table 4.1 for values of a and b for some simple fluids). It is the simplest equa-
tion of state which exhibits many of the essential features of the liquid–vapor
phase transition. The van der Waals equation is cubic in the molar volume and
can be written in the form

v3 −
(
b + RT

P

)
v2 + a

P
v + ab

P
= 0 , (4.26)

where v = V∕𝔫. An isotherm of the van der Waals equation is plotted in Fig-
ure 4.6a. For small values of T and P, the cubic equation has three distinct real
roots (three values of v) for each value of P and T (this case is shown in Fig-
ure 4.6a). As T increases, the roots coalesce at a critical temperature, Tc, and
aboveTc two of the roots become imaginary and therefore unphysical. As T →∞,
(4.26) reduces to the ideal gas equation of state, v = RT∕P.
The critical point is the point at which the roots of Eq. (4.26) coalesce. It is

also the point at which the critical isotherm (T = Tc) has a vanishing slope
(𝜕P∕𝜕v)T=Tc

= 0 and an inflection point (𝜕2P∕𝜕v2)T=Tc
= 0, so the curve changes

from convex to concave and (𝜕2P∕𝜕v2)T changes sign. If we use the fact that(
𝜕P
𝜕v

)
T=Tc

= 0 and
(
𝜕2P
𝜕v2

)
T=Tc

= 0 (4.27)

Table 4.1 Values of specific enthalpy, specific entropy, and specific volume of H2O along the
liquid and gas coexistence curves from the triple point to the critical point [70]. (Note that
1 dm = 10−1 m.)

t P hl hg sl sg vl vg
(◦C) (bar) (kJ∕kg) (kJ∕kg) (kJ∕(kg K)) (kJ∕(kg K)) (dm3∕kg) (dm3∕kg)

0.01 0.006 0 2502 0 9.158 1.000 206163
25 0.0317 104.8 2547 0.3674 8.559 1.003 43402
50 0.123 209.3 2592 0.704 8.078 1.012 12046

100 1.013 419.1 2676 1.307 7.355 1.044 1673
150 4.760 632.2 2745 1.842 6.836 1.091 392.5
200 15.55 852.4 2791 2.331 6.428 1.157 127.2
250 39.78 1086 2800 2.793 6.071 1.251 50.04
300 85.93 1345 2751 3.255 5.708 1.404 21.65
350 165.4 1672 2568 3.780 5.218 1.741 8.798
374.15 221.2 2107 2107 4.443 4.443 3.170 3.170
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Figure 4.6 (a) A sketch of a typical van der
Waals isotherm for T < Tc. The line from D
to F corresponds to mechanically unstable
states. The area, CDE, is labeled 2, and the area
EFG is labeled 1. (b) A plot of the molar Gibbs
free energy as a function of pressure for the
isotherm in Figure 4.6a.

at the critical point, then we obtain the following values for the temperature Tc,
pressure Pc, and molar volume vc, at the critical point:

Pc =
a

27b2
, vc = 3b , Tc =

8a
27bR

. (4.28)

If we introduce reduced variables P = P∕Pc, T = T∕Tc, and v = v∕vc, then we
may write the van der Waals equation in the form(

P + 3
v2

)
(3v − 1) = 8T . (4.29)

It is important to note that Eq. (4.29) is independent of a and b. We are nowmea-
suring pressure, volume, and temperature in terms of their fractional distance
from the critical point. The values of vc, Tc, and Pc will differ for different gases,
but all gases obey the same equation if they are the same fractional distance from
their respective critical points – that is, if they have the same values of P = P∕Pc,
T = T∕Tc, and v = v∕vc. Thus, we see again the law of corresponding states.
An unphysical aspect of the van derWaals equation is its prediction of positive

slope, (𝜕P∕𝜕v)T , for certain segments of the isotherms below Tc (the segment be-
tween D and F in Figure 4.6a). This region corresponds to mechanically unstable
thermodynamic states. However, the unphysical parts of the P–V curve can be
removed by use of theMaxwell construction, which we will now describe.
We can write the equation for infinitesimal changes in the molar Gibbs free

energy in the formdg =−s dT + v dP. If we followone of the isotherms so dT = 0,
we can determine how g varies with pressure along that isotherm. In Figure 4.6a,
we plot the molar volume as a function of pressure along a typical van der Waals
isotherm, and in Figure 4.6b, we plot the molar Gibbs free energy as a function
of pressure for the isotherm in Figure 4.6a. Along the isotherm the difference in
molar Gibbs free energy between any two points is equal to the area under the
curve, v = v(P), between those two points:

g2 − g1 =

P2

∫
P1

v(P)dP . (4.30)

The Gibbs free energy increases and is concave between A and D. Between D
and F it decreases and is convex. Then between F and I it becomes concave again
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and increases. Between D and F the states are mechanically unstable since me-
chanical stability requires that g be concave (see Section 3.7). The regions fromA
toD and fromF to I are bothmechanically stable since g is concave.However, only
the curve ACI in Figure 4.6b corresponds to states in thermodynamic equilibrium
because for these states the Gibbs free energy is a minimum. The states FCD are
metastable. The equilibrium states thus correspond to those states whose Gibbs
free energy has values lying along the curve ACI. To obtain the equilibrium states
on the isotherm between C and G we must draw a straight line (line of constant
pressure) between them, since this is the only way the Gibbs free energy will re-
main constant in going from C to G. The physical isotherm (isotherm containing
equilibrium states) is the line BCEGH in Figure 4.6a.
Beforewe can complete our construction of isotherms, wemust decide whereC

and G lie. For the points C and G, the molar Gibbs free energies are equal. Thus,
gG − gC = ∫ PGPC v(P)dP = 0 so

0 =

PD

∫
PC

v(P)dP +

PE

∫
PD

v(P)dP +

PF

∫
PE

v(P)dP +

PG

∫
PF

v(P)dP (4.31)

or, after rearranging,

PD

∫
PC

v(P)dP −

PD

∫
PE

v(P)dP =

PE

∫
PF

v(P)dP −

PG

∫
PF

v(P)dP . (4.32)

The left-hand side is equal to Area 2 in Figure 4.6a and the right-hand side is equal
to Area 1. Thus, the line from C to G must be drawn so that Area 1 = Area 2. If
this is done, the curve BCEGH gives the equilibrium states of the system. This
requirement of equal areas is called theMaxwell construction. Using theMaxwell
construction, we obtain the equilibrium isotherms from the van der Waals equa-
tion and the curves for metastable states.

4.4.5
Steam Engines – The Rankine Cycle

The steam engines historically have provided much of the power that has driven
the growth of modern civilization. They continue to be one of our most impor-
tant sources of power because coal-based power plants or modern nuclear power
plants use steam engines to change heat into electrical power. Water is plentiful,
chemically stable and poses no health risks. Water and steam have relatively large
heat capacities and latent heat, making them good heat sponges. The steam en-
gine cycle runs through the liquid–vapor coexistence region of the water phase
diagram. Water is converted to steam which then drives a turbine or piston.
A basic steam engine generally consists of a boiler, a condenser, a pump, and

a turbine or piston. A reversible version of the steam engine, called the Rankine
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Figure 4.7 (a) The basic elements of a steam engine. (b) The Rankine cycle.

cycle, is shown in Figure 4.7a and b [220]. The Rankine cycle runs through the
closed cycle a → b → c → d → a in Figure 4.7b as follows

a → b: Cold water is pumped adiabatically from low temperature Ta and pres-
sure Pa to slightly higher temperature Tb and much higher pressure Pb (Ta <
Tb , Pa ≪ Pb).

b → c: Water at high pressure Pb and cold temperature Tb is heated at constant
pressure Pb to the boiling point Tb′ , then turned into steam at constant pres-
sure Pb and temperature Tb′ and then further heated to a superheated (dry
steam) state at pressure Pb and temperature Tc (Tb ≪ Tb′ ≪ Tc).

c → d: Superheated steam at pressure Pb and temperature Tc flows into a com-
partmentwhere it expands approximately adiabatically against a piston or tur-
bine blades until its pressure and temperature drop to approximately Pa and
temperature Td (Td ≪ Tc) forming wet steam.

d → a: Wet steam at pressure Pa and temperature Td condenses into water at
pressure Pa and temperature Ta , and the cycle is complete.

For the Rankine cycle, an amount of heat/mass ΔQbc is absorbed, but over a range
of temperatures, and an amount of heat/mass ΔQda is ejected. For the part of the
process a → b, there is only a slight decrease Δvab = vb − va in the volume/mass
of the water since water is very incompressible. Because the processes b → c and
d → a occur at constant pressure, the heat/mass absorbed and ejected can be
expressed in terms of the change in enthalpy/mass h of the water. (Note that dh =
T ds + v dP, where s is the entropy/mass. If dP = 0 we have dh = T ds = dq.)
Thus, ΔQbc = hc − hb and ΔQda = ha − hd .
Since the Rankine cycle is reversible, the change in the internal energy for the

complete cycle is ΔUtot = ΔQtot − ΔWtot = 0. Thus, the work/mass done by the
engine is ΔWtot = ΔQtot = ΔQbc + ΔQda = ΔQbc − ΔQad . The efficiency of the
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Table 4.2 Truncated Steam Table – Values
of specific enthalpy (kJ∕kg), specific entropy
(kJ∕kgK), and specific volume (dm3∕kg) of
H2O as functions of pressure (bar) and tem-
perature (◦C) for subsaturated water and

super-heated steam (separated by dots) [70].
(Note that 1 dm = 10−1 m. The dots sepa-
rate data for subsaturated water from data for
super-heated steam.)

P ↓ ⧵t → 100 200 250 300 350 400 450 500

20 h 420 853 . . . 2902 3025 3139 3249 3358 3467
20 s 1.31 2.33 . . . 6.55 6.77 6.960 7.13 7.286 7.432
20 v 1.04 1.16 . . . 111 126 138.6 151 163.4 175.6

50 h 423 854 1086 . . . 2926 3072 3194 3318 3434
50 s 1.30 2.33 2.79 . . . 6.21 6.455 6.65 6.822 6.977
50 v 1.04 1.15 1.25 . . . 45.3 51.94 57.8 63.25 68.49

100 h 427 856 1086 1343 . . . 2926 3100 3244 3375
100 s 1.30 2.32 2.78 3.25 . . . 5.949 6.22 6.424 6.576
100 v 1.04 1.15 1.24 1.40 . . . 22.42 26.4 29.74 32.76

Rankine cycle can be written

η =
ΔWtot

ΔQbc
=

ΔQbc − ΔQad
ΔQbc

=
hc − hb − hd + ha

hc − hb
. (4.33)

The process a → b is reversible and adiabatic so dh = v dP and hb − ha =
∫ PbPa v dP ≈ vw(Pb − Pa), where vw is the approximately constant volume/mass
of water during the transition a → b. The quantity vw(Pb − Pa) is called the feed-
pump contribution. Thus, the efficiency of the Rankine engine can be written

η =
hc − hd − vw(Pb − Pa)
hc − ha − vw(Pb − Pa)

. (4.34)

The quantity hd is the enthalpy of water in the coexistence region. It can be found
as follows. The point e in Figure 4.7b is on the vapor side of the coexistence curve
at temperature Ta and pressure Pa . TheGibbs free energy per unit mass at point d
is gd = hd − Tasd and at point e it is ge = he − Tase . Because the process c → d
is reversible and adiabatic we have sc = sd . If we use the fact that ge = gd we can
write hd = he − Ta(se − sc). All these quantities can be found in steam tables [70]
(see Tables 4.1 and 4.2).

Exercise 4.5

A steam engine outputs superheated steam at a temperature of T = 250 ◦C and
pressure P = 20 bar. After the steam has driven engine turbines, it is liquified in
a condenser at a temperature ofT = 25 ◦C. (a) Compute the efficiency of the steam
engine assuming that it operates on a Rankine cycle. (b) Compute the efficiency
of a Carnot engine operating between the same high and low temperatures.
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Answer: (a) Referring to the Rankine cycle in Figure 4.7b, assume that the tem-
perature at points a and e is Ta = Te = 25 ◦C = 298K, since both points lie on
(opposite sides of ) the coexistence curve. From Table 4.1, the pressure at points
a and e is Pa = Pe = 0.0317 bar = 3.17 × 103 Pa. The specific volume of water at
point a is va = 1.003 dm3∕kg = 1.003 × 10−3 m3∕kg. Assume that the pressure at
points b and c is Pb = Pc = 20 bar = 2.0 × 106 Pa, and the temperature at point c
is Tc = 250 ◦C = 523K. The efficiency of the Rankine cycle is

η =
hc − hd − va(Pb − Pa)
hc − ha − va(Pb − Pa)

with hd = he − Ta(se − sc) .

From Table 4.1, the specific enthalpy and entropy at point e are he = 2547 kJ∕kg
and se = 8.56 kJ∕(kgK), respectively. From Table 4.2, the specific enthalpy and
entropy at point c are hc = 2902 kJ∕kg and sc = 6.55 kJ∕(kgK), respectively. Thus,
the feed-pump term gives va(Pb − Pa) = 1.97 kJ∕kg. The enthalpy at point d is
hd = he − Ta(se − sc) = 1948 kJ∕kg. The efficiency of the Rankine cycle (using
the above formula) is η = 0.34. (b) The efficiency of a Carnot engine operating
between Tcold = 298K and Thot = 523K is ηCarnot = 0.43.

4.5
Binary Mixtures

If we consider a fluid which is a mixture of several different types of interacting
particles, a phase transition can occur in which there is a physical separation of
the fluid into regions containing different concentrations of the various types of
particles [83, 106, 172, 188]. The simplest example of this type of phase transition
occurs for binary mixtures.
The Gibbs free energy for a binary mixture composed of 𝔫1 moles of type 1

particles and 𝔫2 moles of type 2 particles is G(T, P,𝔫1 ,𝔫2) = 𝔫1μ1 + 𝔫2μ2 and
differential changes in theGibbs free energy can bewritten dG =−S dT +V dP+
μ1 d𝔫1 + μ2 d𝔫2 (see Table 3.4). Themolar Gibbs free energy is g = G∕𝔫 = x1μ1 +
x2μ2, where 𝔫 = 𝔫1 + 𝔫2 and x1 and x2 are the mole fractions of particles of type
1 and 2, respectively. It is straightforward to show that

dg = −s dT + v dP + (μ1 − μ2)dx1 , (4.35)

so that g = g(T, P, x1).
The chemical potential of type 1 particles is

μ1 =
(
𝜕G
𝜕𝔫1

)
P,T,𝔫2

= g + (1 − x1)
(

𝜕g
𝜕x1

)
P,T

(4.36)

and the chemical potential of type 2 particles is

μ2 =
(
𝜕G
𝜕𝔫2

)
P,T,𝔫1

= g − x1
(

𝜕g
𝜕x1

)
P,T

, (4.37)
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where we have used the fact that
(
𝜕x1∕𝜕𝔫1

)
𝔫2

= x2∕𝔫 and
(
𝜕x1∕𝜕𝔫2

)
𝔫1

= −x1∕𝔫.
From Eqs. (4.35)–(4.37), we see that the chemical potential depends on the mole
numbers 𝔫1 and 𝔫2, only through its dependence on the mole fraction, x1.
We can also show that(

𝜕μ1
𝜕x1

)
P,T

= (1 − x1)

(
𝜕2g
𝜕x21

)
P,T

and
(
𝜕μ2
𝜕x1

)
P,T

= −x1

(
𝜕2g
𝜕x21

)
P,T

(4.38)

FromEq. (4.38) and the stability conditions in Section 3.7, namely
(
𝜕μ1∕𝜕𝔫1

)
P,T,𝔫2

> 0 we find that the molar Gibbs free energy must satisfy the conditions(
𝜕2g
𝜕x21

)
P,T

> 0 and
(
𝜕μ2
𝜕x1

)
P,T

< 0 . (4.39)

Thus, for chemical stability, the molar Gibbs free energy must be a convex function
of the mole fraction.

4.5.1
Equilibrium Conditions

For a binarymixture to be in equilibrium, the chemical potentials of the two types
of particle must be equal. This equality of chemical potentials of the two types
of particle gives us a condition for locating the coexistence curve when a phase
separation occurs. For type 1 particles we have μI1 = μ

II
1 or

gI +
(
1 − xI1

)( 𝜕g
𝜕x1

)I

P,T
= gII +

(
1 − xII1

)( 𝜕g
𝜕x1

)II

P,T
, (4.40)

and for type 2 particles we have μI2 = μ
II
2 or

gI − xI1

(
𝜕g
𝜕x1

)I

P,T
= gII − xII1

(
𝜕g
𝜕x1

)II

P,T
, (4.41)

where I and II denote the two phases. If we combine Eqs. (4.40) and (4.41), we can
write the conditions for equilibrium in the form(

𝜕g
𝜕x1

)I

P,T
=

(
𝜕g
𝜕x1

)II

P,T
and gI − gII =

(
xI1 − x

II
1
)( 𝜕g

𝜕x1

)I

P,T
. (4.42)

Equations (4.42) tell us that the equilibrium points in the (g , x1) plane have equal
slopes, and they have a common tangent. These two conditions enable us to locate
the coexistence curve.
In Figure 4.8a, we show a sketch of the molar Gibbs free energy which illus-

trates these various properties. It shows a region where two phases can coexist.
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Figure 4.8 (a) A sketch of the molar Gibbs free energy of a phase-separated binary mixture.
The two points with common tangent are equilibrium states. (b) The phase diagram for a bina-
ry mixture. Point C is the critical point.

The points that have a common tangent are the equilibrium points. The concave
region in the middle is unstable. In a test tube, the heavier phase will sink to the
bottom and the lighter one will float to the top.
As long as (𝜕μ2∕𝜕x1)P,T < 0, the binary mixture will be chemically stable and

exist in one phase. However, if (𝜕μ2∕𝜕x1)P,T > 0 the system has an unstable re-
gion and phase separation occurs. The critical point for this phase separation is
given by (𝜕μ2∕𝜕x1)cP,T = 0. The critical point is the point where the x1 first be-
comes a double-valued function of μ1 or μ2 as the temperature is changed. That
is, two different values of x1 give the same value of the chemical potential. Thus,
in analogy to the liquid–vapor critical point (with P→ μ2 and v→ x1), the critical
point is a point of inflection of the curve μ2 = μ2(T, P, x1) for T and P constant.
Therefore, we have the additional condition that (𝜕2μ2∕𝜕x21)

c
P,T = 0 at the critical

point.
A sketch of the coexistence curve, and the curve separating stable from unsta-

ble states is given in Figure 4.8b. The region outside and above the coexistence
curve corresponds to allowed single-phase equilibrium states. Below the coexis-
tence curve is a coexistence region in which two equilibrium states with different
concentrations of type 1 particles can coexist at the same temperature. The shad-
ed region corresponds to metastable states. These are single-phase states which
are not in thermodynamic equilibrium but are chemically stable. All single-phase
states below the dashed line are unstable and cannot be realized in nature. Let
us follow the horizontal line at temperature, T ′ < Tc, in Figure 4.8b. At x1 = 0,
we have a system consisting only of type 2 particles. As we start adding type 1
particles, the concentration of type 1 particles increases until we reach the coex-
istence curve at point I. At this point, the system separates into two phases, one
in which type 1 particles have concentration xI1 and another in which type 1 parti-
cles have concentration xII1 . As we increase the number of type 1 particles relative
to type 2 particles, the amount of phase II increases and the amount of phase I
decreases until we reach the coexistence curve at point II. At point II, phase I has
disappeared and we again have a single-phase equilibrium state of concentration,
xII1 .
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Figure 4.9 The phase diagram for a mixture of n-
hexane and nitrobenzene (C6H5NO2) at atmospheric
pressure. The solid line is the coexistence curve (based
on [172]).

Exercise 4.6

Consider a binary mixture of particles of types 1 and 2, whose molar Gibbs free
energy is given by

g = x1μ01 + x2μ
0
2 + RTx1 ln x1 + RTx2 ln x2 + λx1x2

where x1 and x2 are the mole fractions of particles of types 1 and 2, respectively.
(a) For the casewhen μ01 = 1.0, μ02 = 1.05, RT = 0.39, and λ= 1, what are xI1 and x

II
1 ?

(b) Use conditions (𝜕μ1∕𝜕x1)cP,T = (𝜕2μ1∕𝜕x21)
c
P,T = 0 to locate the critical point.

Answer: (a) In the expression for themolar Gibbs free energy let x2 = 1− x1 and
find points with equal slope dg∕dx1 and a common tangent. This can be done
graphically and gives equilibrium concentrations xI1 = 0.13 and xII1 = 0.87.
(b) The chemical potential, μ2, is μ2 = μ02(P, T ) + RT ln(1 − x1) + λx21. There-

fore, at the critical point we have (𝜕μ2∕𝜕x1)cP,T = −RT∕(1 − x1) + 2λx1 = 0 and
(𝜕2μ2∕𝜕x21)

c
P,T = −RT∕(1 − x1)2 + 2λ = 0. If we solve these two equations for T

and x1, we find that the critical point is located at x1 = 1∕2 and T = λ∕2R.

We see that there many analogies between the liquid–gas transition and the sep-
aration of a binary mixture into two phases. An example of a system exhibiting
this type of behavior is a mixture of n-hexane and nitrobenzene at atmospheric
pressure. The phase diagram for this system is given in Figure 4.9.

4.6
The Helium Liquids

Helium atoms, because of their small mass and weak attraction, remain in the
liquid state for a wide range of pressures and temperatures down to the lowest
measured values. The helium atom occurs in nature in two stable isotopic forms,
He3 and He4. He3, with nuclear spin (1/2), obeys Fermi–Dirac statistics; while
He4, with nuclear spin 0, obeys Bose–Einstein statistics. At very low temperatures,
where quantum effects become important, He3 and He4 provide two of the few
examples in nature of quantum liquids.
Chemically, He3 andHe4 are virtually identical. The primary difference between

them is a difference inmass.However, at low temperatures the two systems exhibit
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very different behavior due to the difference in their statistics. LiquidHe4, which is
a boson liquid, exhibits a rather straightforward transition to a superfluid state at
2.19K. Liquid He3 also undergoes a transition to a superfluid state, but at a much
lower temperature (2.7 × 10−3 K). The mechanism for the superfluid transition in
liquid He3 is quite different from that of liquid He4.
WhenHe3 andHe4 are combined to form a binary mixture, a new type of phase

point occurs (called a tricritical point) in which a λ-line connects to the critical
point of a binary phase transition.

4.6.1
Liquid He4

He4 was first liquefied in 1908 by Kamerlingh Onnes at a temperature of 4.215K
at a pressure of 1 atm [101, 127, 218]. Unlike the classical liquids we described
in Section 4.4, it has two triple points. The coexistence curves for liquid He4 are
shown in Figure 4.10a (compare them with the coexistence curve for a classical
liquid in Figure 4.5). He4 at low temperature has four phases. The solid phase
only appears for pressures above 25 atm, and the transition between the liquid
and solid phases is first order. The liquid phase continues down to temperatures
approaching T = 0K. However, there are in fact two liquid phases. As the normal
liquid [liquid He(I)] is cooled, a line of λ-points occurs at about T = 2K (the exact
temperature depends on the pressure), indicating that a continuous symmetry-
breaking phase transition occurs at this line. There is a triple point at each end
of the λ-line. The symmetry that is broken is gauge symmetry. The specific heat
of liquid He4 along the λ-line is shown in Figure 4.10b. We can see that it has the
lambda shape characteristic of a continuous phase transition.
The phase diagram ofHe4 provides a good example of the third law. The vapor–

liquid and solid–liquid coexistence curves approach the P-axis with zero slope.
This is a consequence of the third law.
Below the λ-line, the liquid phase (which was called liquid He(II) by Keesom

and Wolfke [99]) begins to exhibit very strange properties. In 1938, Kapitza [94]

Figure 4.10 (a) The coexistence curves for He4. (b) The specific heat of He4 at vapor pressure at
the λ-point [127].
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and Allen andMisener [3] simultaneously published data that showed abnormal-
ly low viscosity in HeII (Kapitza called it a “superfluid”). Indeed, the first experi-
menters whoworkedwith HeII, found that it was able to leak out of their contain-
ers through cracks so tiny that even He4 gas could not leak through them. This
apparently frictionless flow is a consequence of the fact that the condensed phase
is a highly coherent macroscopic quantum state. The thermodynamic behavior of
the liquid involves an unusual coupling of thermal andmechanical effects that are
described below.

4.6.1.1 Thermomechanical Effect
The thermodynamic behavior of liquid He4 below the λ-line can be modeled in
terms of two interpenetrating fluids. One fluid (superfluid) can flow through tiny
cracks and carries no entropy. The other fluid (normal fluid) behaves normally.
The fact that the superfluid carries no entropy leads to interesting behavior that
can be described with classical thermodynamics.
Let us consider two vessels A and B, insulated from the outside world and filled

with liquid He4 at a temperature below 2.19K. We assume that A and B are con-
nected by a capillary so thin that only the superfluid can pass through it (cf. Fig-
ure 4.11a). This means that the total entropy must remain constant if no irre-
versible processes take place.We also assume that the total mass and total volume
of the system remain constant. Under these conditions, the equilibrium state is
a state of minimum internal energy.
We can obtain the condition for equilibrium between the vessels if we assume

that matter can flow between them but entropy cannot. The total internal energy
will be denotedUT, and ul will denote internal energy per kilogram (specific inter-
nal energy) in vessel l. The total internal energy is then given byUT =

∑
l=A,BMlul ,

where Ml is the total mass of liquid He4 in vessel l. At equilibrium, the total in-
ternal energy must be a minimum. Thus,

δUT = 0 =
∑
l=A,B

(ulδMl +Mlδul) . (4.43)

Let us now assume that the total volume, Vl , and the total entropy, Sl , of liquid
He4 in vessel l (for l = A, B) are constant (this is possible because only superfluid
can flow between the vessels and superfluid carries no entropy). The entropy of
liquid He4 in vessel l can be written Sl =Mlsl , whereMl and sl are the total mass
and specific entropy of liquid He4 in vessel l. Similarly, Vl = Mlvl, where vl is the
specific volume of liquid He4 in vessel l. Since Sl and Vl are constants, we can

Figure 4.11 (a) Two vessels containing liquid
He4 below 2.19 K and connected by a very
fine capillary. Only superfluid can pass be-
tween the two vessels. (b) The fountain effect.



1114.6 The Helium Liquids

write δSl = Mlδsl + sl δMl = 0 and δVl = Mlδvl + vlδMl = 0. Therefore,

δsl = −sl
δMl

Ml
and δvl = −vl

δMl

Ml
. (4.44)

Let us now expand the differential, δul , in (4.43) in terms of specific entropy and
specific volume. Equation (4.43) then takes the form

∑
l=A,B

{
ulδMl +Ml

[(
𝜕ul
𝜕sl

)
vl

δsl +
(
𝜕ul
𝜕vl

)
sl

δvl

]}
= 0 . (4.45)

If we note that (𝜕u∕𝜕s)v = T and (𝜕u∕𝜕v)s = −P and make use of Eq. (4.44), we
obtain ∑

l=A,B
(ul − slTl + vlPl)δMl =

∑
l=A,B

μlδMl = 0 , (4.46)

where μl is the chemical potential of liquid He4 in vessel l. Since the total mass is
conserved, we can write δMA = −δMB and we obtain the equilibrium condition

μA(TA, PA) = μB(TB, PB) . (4.47)

Since matter can flow between the two vessels, the chemical potentials in the two
vesselsmust be equal. However, heat cannot be exchanged and the volume cannot
change (no mechanical energy transfer), so the pressure and temperature of the
two vessels need not be the same.
We can now vary the temperature and pressure in one of the vessels (vessel A,

for example) in such a way that the two vessels remain in equilibrium. The change
in chemical potential in vessel A is

ΔμA = −sΔTA + vΔPA , (4.48)

where s = −(𝜕μ∕𝜕T )P and v = (𝜕μ∕𝜕P)T . But to maintain equilibrium, we must
have ΔμA = 0 so the chemical potentials of the two vessels remain equal. There-
fore,

ΔPA = s
v
ΔTA . (4.49)

Thus, a change in temperature of vessel A must be accompanied by a change in
pressure of vessel A. If the temperature increases, the pressure will increase. This
is called the thermomechanical effect.
The thermomechanical effect is most dramatically demonstrated in terms of

the fountain effect. Imagine a small elbow tube filled with very fine powder, with
cotton stuffed in each end. Assume that a long, thin capillary tube is put in one
end and the elbow tube is immersed in liquid He4 at a temperature below 2.19K.
If we now irradiate the elbow tube with a burst of light, the pressure of helium
in the elbow tube will increase and helium will spurt out of the capillary tube (cf.
Figure 4.11b). This is called the fountain effect and is a consequence of Eq. (4.49).
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When helium in the elbow tube is heated by radiation, superfluid will flow into
the elbow tube to equalize the chemical potentials and increase the pressure in
the elbow tube. It is interesting that in the fountain effect there is a spontaneous
flow of matter from a cooler to hotter vessel. However, since the superfluid does
not carry entropy, this does not violate the second law.

4.6.2
Liquid He3

The He3 atom is the rarer of the two helium isotopes [123, 137, 211]. Its rela-
tive abundance in natural helium gas is one part in a million. Therefore, in order
to obtain it in large quantities, it must be “grown” artificially from tritium solu-
tions through β-decay of the tritium atom. Thus, He3 was not obtainable in large
enough quantities to study until the late 1940s and it was first liquefied in 1948 by
Sydoriack, Grilly, and Hammel [195]. Since the He3 atom has only 3∕4 the mass
of a He4 atom, it has a larger zero point energy than the He4 atom. As a result,
He3 boils at a temperature about 25% lower than He4, and it requires a pressure
about 25% greater than that of He4 to solidify.
The phase diagram for He3 (on the same scale as that for He4) is given in Fig-

ure 4.12a. On this scale there appears to be no transition to a superfluid state.
There is, however, a minimum in the liquid–solid coexistence curve. This is at-
tributed to the spin of theHe3 atom. At low temperature the spin lattice of theHe3
solid has a higher entropy than the liquid. The entropy difference, ΔS = Sliquid −
Ssolid, is positive at high temperature, vanishes at about T = 0.3 K and becomes
negative below 0.3K. Since volume differences remain virtually unchanged, the
Clausius–Clapeyron equation dP∕dT = ΔS∕ΔV leads to a positive slope at high
temperature and a negative slope at low temperature. At low temperature, if the
third law is to be satisfied, the slope of the liquid–solid coexistence curve must
become flat as T → 0K.

Figure 4.12 (a) Coexistence curves for He3. (b) Coexistence curves for superfluid phases of He3

when no magnetic field is applied [99].
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Superfluidity was first observed in liquid He3 in 1971 by Osheroff, Richardson,
and Lee [159]. In 1997, they received the Nobel prize for this work. The transition
occurs at 2.7 × 10−3 K at a pressure of about 34 atm. The phase diagram for a small
temperature interval is shown in Figure 4.12b. There are, in fact, several superfluid
phases in liquid He3, depending on how the bound pairs orient themselves. The
so-called A-phase is an anisotropic phase. The He3 atoms (more accurately He3
atoms “dressed” by interactions with the surrounding medium) form bound pairs
with a spin s = 1 and relative angular momentum, l = 1, which means the spatial
distribution of the pairs is flattened and have structure. The fact that the bound
pairs in the A-phase have structure leads tomany fascinating effects. The B-phase
is a more isotropic phase. The bound pairs have spin s = 0 and relative angular
momentum, l = 0, so the spatial distribution of the pairs is spherical. This phase
has many features in common with the superfluid phase of a superconductor. If
we apply a magnetic field to liquid He3, a third superfluid phase appears. The
transition between the normal and superfluid phases appears to be continuous,
while that between the A and B superfluid phases appears to be first order.

4.6.3
Liquid He3-He4 Mixtures

When He3 and He4 are mixed together and condensed to the liquid state, some
interesting phenomena occur. We will let x3 denote the mole fraction of He3. In
1949, Abraham, Weinstock, and Osborne [1] showed that He3-He4 mixtures can
undergo a transition to a superfluid state. In this early experiment, they found
that the λ-line extended from T = 2.19K for x3 = 0 to about T = 1.56K for x3 =
0.282. Later experiments extended the λ-line down to T = 0.87K for x3 = 0.67
(cf. Figure 4.13).
In 1954, Prigogine, Bingen, and Bellemans [171] predicted the existence of

a phase separation of liquid He3-He4 mixtures into an He3-rich phase and an
He4-rich phase. This phase separation was found in 1956 by Walters and Fair-

Figure 4.13 The phase diagram for a liquid
He3-He4 mixture plotted as a function of tem-
perature T and mole fraction x3 of He

3.
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bank [206], using nuclear magnetic resonance techniques. The critical point for
this binary phase transition lies at the end of the λ-line atT = 0.87K and x3 = 0.67.
The phase transition along the λ-line is second order. The binary phase separation
is a first-order phase transition. In 1982, the region of metastable states for this
first-order phase transition was measured by Alpern, Benda, and Leiderer [4].
The end point of the λ-line is the critical point of the first-order binary phase
transition. It was first called a tricritical point by Griffiths [75]. In a suitable space,
it is the meeting point of three lines of second-order phase transitions. One line
is the λ-line and the other two are lines of critical points associated with the
first-order phase transition. Thus, the tricritical point is different from the triple
points we have seen in classical fluids.

4.7
Superconductors

Superconductivity was first observed in 1911 by Kamerlingh Onnes [126, 154,
197]. He found that the resistance to current flow in mercury drops to zero at
about 4.2 K (cf. Figure 4.14). At first this was interpreted as a transition to a state
with infinite conductivity. However, infinite conductivity imposes conditions on
the magnetic field which were not subsequently observed. The relation between
the electric current J and the applied electric field E in a metal is given by Ohm’s
law J = σE, where σ is the conductivity. The electric field E is related to the mag-
netic field B by Faraday’s law, ∇r × E = −𝜕B∕𝜕t. If we combine these two laws
we get ∇r × J∕σ = −𝜕B∕𝜕t. Therefore, infinite conductivity, σ → ∞, implies that
𝜕B∕𝜕t = 0. This in turn implies that the state of the system depends on its histo-
ry. If we first cool the sample below the transition temperature and then apply an
external magnetic field,H , surface currents must be created in the sample to keep
any field from entering the sample, since B must remain zero inside. However, if
we place the sample in theH-field before cooling, aB-field is created inside. Then,
if we cool the sample, the B-field must stay inside. Thus, the final states depend
on how we prepare the sample. With the hypothesis of infinite conductivity, the
state below the transition temperature cannot be a thermodynamic state since it
depends on history.
In 1933, Meissner and Ochsenfeld [135] cooled a monocrystal of tin in a mag-

netic field and found that the field inside the sample was expelled below the tran-
sition point for tin indicating a transition to a state of perfect diamagnetism, B = 0
inside the sample. It is now known that superconductors are perfect diamagnets.

Figure 4.14 The resistance of mercury drops to zero at about
4.2 K (based on [154]).
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When superconductingmetals are cooled below their transition point in the pres-
ence of a magnetic field, currents are set up on the surface of the sample in such
a way that the magnetic fields created by the currents cancel any magnetic fields
initially inside the medium. Thus, B = 0 inside a superconducting sample regard-
less of the history of its preparation.
No electric field is necessary to cause a current to flow in a superconductor.

A magnetic field is sufficient. In a normal conductor, an electric field causes elec-
trons to move at a constant average velocity because interaction with lattice im-
purities acts as a friction which removes energy from the electron current. In
a superconductor, an electric field accelerates part of the electrons in the metal
because no significant frictional effects act to slow them down. This behavior is
reminiscent of the frictionless superflow observed in liquid He4 below 2.19K. In-
deed, the superfluid flow in He4 and the supercurrents in superconductors are
related phenomena. The origin of the apparently frictionless flow in both cases
lies in quantum mechanics. Electrons in a superconducting metal can experience
an effective attractive interaction due to interaction with lattice phonons. Because
of this attraction, a fraction of the electrons (we never knowwhich ones) can form
“bound pairs.” The state of minimum free energy is the one in which the bound
pairs all have the same quantum numbers. Thus, the bound pairs form a single
macroscopically occupied quantum state which acts coherently and forms the
condensed phase. Any friction effects due to lattice impurities must act on the
entire phase (which will contain many pairs and have a large mass) and not on
a single pair. Thus, when an electric field is applied, the condensed phase moves
as a whole and is not slowed significantly by frictional effects.
If a superconductor is placed in a large enough external magnetic field, the su-

perconducting state can be destroyed. A plot of magnetic induction, B, versus
applied field, H, appears as in Figure 4.15a. For applied field, H, with a value less
than some temperature-dependent critical value, Hcoex(T ), the system is a per-
fect diamagnet. That is, the permeability μ = 0 and therefore B = 0. However,
for H > Hcoex(T ) the system becomes normal and B = μH. (For normal metals
μ ≈ μ0, where μ0 is the permeability of the vacuum.) Thus, inside the sample B = 0
if H < Hcoex(T ) and B = μ0H if H > Hcoex(T ).
The field,Hcoex(T ) lies on the coexistence curve for the two phases. It has been

measured as a function of the temperature and has roughly the same behavior for
most metals (cf. Figure 4.15b). The coexistence curve for the normal and super-
conducting phases is well approximated by the equation

Hcoex(T ) = H0

(
1 − T2

T2
c

)
, (4.50)

Figure 4.15 (a) A plot of the magnetic induc-
tion, B, versus the applied magnetic field, H,
in a superconductor (b) The coexistence curve
for normal and superconducting states.
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where Tc is the critical temperature when no external fields are present. The slope
(dH∕dT )coex = 0 at T = 0K and is negative at T = Tc. The phase diagram for
a superconducting metal has analogies to the vapor–liquid transition in a PVT
system, if we let Hcoex replace the specific volume. Inside the coexistence curve,
condensate begins to appear.
Along the coexistence curve, the chemical potentials of the superconducting

and normal phases must be equal and, therefore, any changes in the chemical
potentials must be equal. Thus, along the coexistence curve −sn dT − Bn dH =
−ss dT − Bs dH and

sn − ss = −μ0Hcoex(T )
(
dH
dT

)
coex

, (4.51)

where we have used the fact that Bs = 0 and Bn = μ0Hcoex(T ) on the coexistence
curve. Equation (4.51) is the Clausius–Clapeyron equation for superconductors.
Here sn(s) is the entropy per unit volume of the normal (superconducting) phase.
We see that the transition has a latent heat (is first order) for all temperatures
except T = Tc where Hcoex = 0. When no external magnetic fields are present,
the transition is continuous.
The change in the heat capacity per unit volume at the transition is

(cn − cs)coex =
[
T
𝜕(sn − ss)

𝜕T

]
coex

= 2μ0
H2

0

Tc

(
T
Tc

− 3T3

T3
c

)
. (4.52)

We have used Eq. (4.50) to evaluate the derivatives (dH∕dT )coex. At low tem-
peratures the heat capacity of the normal phase is higher than that of the super-
conducting phase. At T = Tc (the critical point) the heat capacity is higher in the
superconductor and has a finite jump, (cs − cn)T=Tc

= (4μ0∕Tc)H2
0 . It is worth-

while nothing that as T → 0, (ss − sn)→ 0 since (dH∕dT )coex → 0 as T → 0. This
is in agreement with the third law of thermodynamics.

4.8
Ginzburg–Landau Theory

In the late 1930s, Ginzburg and Landau proposed a mean field theory of contin-
uous phase transitions which relates the order parameter to the underlying sym-
metries of the system. First-order phase transitions may or may not involve the
breaking of a symmetry of the system. For example, in the liquid–solid and va-
por–solid transitions, the translational symmetry of the high-temperature phase
(liquid or vapor) is broken, but for the vapor–liquid transition no symmetry of the
system is broken. Solids may also exhibit first-order phase transitions in which
the lattice structure undergoes a sudden rearrangement from one symmetry to
another and the state of the solid changes discontinuously.
At a continuous phase transition, the slope of the free energy curve changes

continuously and a symmetry is always broken. In such transitions, a newmacro-
scopic parameter (the order parameter) appears in the less symmetric phase. The
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order parameter may be a scalar, a vector, a tensor, a complex number or some
other quantity. The formof the order parameter is determined by the type of sym-
metry that is broken [118]. For example, in the transition from a paramagnetic to
a ferromagnetic system, rotational symmetry is broken because a spontaneous
magnetization occurs which defines a unique direction in space. The order pa-
rameter is a vector. In the transition from normal liquid He4 to superfluid liquid
He4, gauge symmetry is broken. The order parameter is a complex scalar. In a sol-
id, the lattice might begin to undergo a gradual reorientation as the temperature is
lowered. The order parameter is the change in the spatially varying number den-
sity. In continuous transitions, one phase will always have a lower symmetry than
the other. Usually the lower temperature phase is less symmetric, but this need
not always be the case.
All transitionswhich involve a broken symmetry and a continuous change in the

slope of the free energy curve can be described within the framework of a mean
field theory due to Ginzburg and Landau [118]. Ginzburg–Landau theory does
not describe all features of continuous phase transitions correctly, but it does give
us a good starting point for understanding such transitions.

4.8.1
Continuous Phase Transitions

We will let η denote the order parameter and let φ denote the free energy and
write

φ(T, Y, f ) = φ0(T, Y ) + α2(T, Y )η2 + α3(T, Y )η3 + α4(T, Y )η4 +⋯− f η ,
(4.53)

where f is the force conjugate to the order parameter and coefficients αi(Y, T )
depend on the details of the transition. There is no term in Eq. (4.53) which is
first order in η because that would ensure a nonzero value for the order param-
eter above the transition point. The molar free energy, φ0(T, Y ), describes the
thermodynamic quantities not directly involved in the transition and generally
will depend on other state variables. The value of the order parameter, η, that is
realized in nature, is the one that gives a minimum of the free energy.
A continuous phase transition can occur if the cubic term in Eq. (4.53) cannot

appear and if no external field is present. The free energy then takes the form

φ(T, Y, η) = φ0(T, Y ) + α2(T, Y )η2 + α4(T, Y )η4 +⋯ (4.54)

The dependence of α2(T, Y ) on temperature is chosen so that for temperatures
above and at the critical temperature, the free energy will only be minimized for
η = 0, while below the critical temperature it will be minimized for |η| > 0.
In general, the free energy will be minimum if(

𝜕φ
𝜕η

)
T,Y

= 0 and
(
𝜕2φ
𝜕η2

)
T,Y

≥ 0 . (4.55)
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Figure 4.16 The behavior of the free
energy for α4 = 4.0. (a) The free energy
𝜙 = α2η

2 + α4η
4. For the curves (A) α2 = 0.6,

(B) α2 = 0.0, and (C) α2 = −0.6. In the fig-
ure, the nonzero equilibrium order param-

eter is ηC = 2.7386. (b) The free energy,
𝜙 = α2η

2 + α4η
4 − f η for f = 0.06, and

(A) α2 = 0.6, (B) α2 = 0.0, and (C) α2 = −0.6.
ηA = 0.0485, ηB = 0.1554, and ηC = 0.2961
give the location of the minima of the curves.

Equations (4.55) give us conditions that must be satisfied for equilibrium states.
Global stability requires that α4(T, Y ) > 0 and ensures that, as we increase η to
very large values, the free energy will continue to increase.
The critical point occurs when α2(T, Y ) = 0. This happens at a temperature

T = Tc(Y ). If the critical temperature is a function of another variable, Y , then
there will be a line of critical points in the (T, Y ) plane. If we choose α2(T, Y ) > 0
for T > Tc(Y ) and α2(T, Y ) < 0 for T < Tc(Y ), then the free energy, Φ, will have
its minimum value at η = 0 when T > Tc(Y ) and will have its minimum value for
η ≠ 0 when T < Tc(Y ). Since the free energy must vary continuously through the
transition point, at T = Tc(Y ) we must have α2(Tc, Y ) = 0. We can combine all
this information if we write α2(T, Y ), in the neighborhood of the transition point,
in the form

α2(T, Y ) = α0(T, Y )(T − Tc(Y )) , (4.56)

where α0 is a slowly varying function of T and Y .
In Figure 4.16a, we sketch the free energy for three values of α2. In curve (A),

the free energy has a minimum for η = 0. Curve (B) shows the critical point. The
free energy becomes flattened in the neighborhood of η = 0. In curve (C), the free
energy has minima at η = ±η0 ≠ 0. The system will randomly select one of these
two nonzero values of the order parameter, η, below the critical point. The re-
gion on curve (C) for which (𝜕2φ∕𝜕η2)T,Y < 0 corresponds to a region of unstable
states. The free energy has extrema when(

𝜕φ
𝜕η

)
T,Y

= 2α2η + 4α4η3 = 0 (4.57)

and therefore when

η = 0 or η = ±
√−α2

2α4
= ±

√ α0
2α4

(Tc − T ) . (4.58)

WhenT > Tc, theminimum occurs for η = 0.WhenT < Tc, theminimum occurs
for η = ±

√
(α0∕2α4)(Tc − T ). Thus, below the critical temperature, the order pa-

rameter is nonzero and increases as
√
Tc − T . From the above discussion, the free
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Figure 4.17 (a) The jump in the heat capacity at the critical point (lambda point) as predicted
by Ginzburg–Landau theory. (b) The specific heat of nickel in the neighborhood of the Curie
point. The dashed line gives the Curie point (based on [120].).

energy takes the following form:

φ(T, Y, η) =
⎧⎪⎨⎪⎩
φ0(T, Y ) for T > Tc

φ0(T, Y ) −
α20(Tc−T )2

4α4
for T < Tc

, (4.59)

where we have suppressed the dependence of Tc on Y and the dependence of α0
and α4 on T and Y .
The molar heat capacity is cY = −T

(
𝜕2φ∕𝜕T2)

Y . If we neglect derivatives of
α0 and α4 (we assume that they vary slowly with temperature), we find that the
molar heat capacity has a finite jump at the critical point:

cY
(
T−
c
)
− cY

(
T+
c
)
=
Tcα20
2α4

. (4.60)

The jump in the heat capacity has the shape of a λ, as shown in Figure 4.17a, and
therefore the critical point for a continuous phase transition is sometimes called
a λ-point.
If we turn on an external force, f , which couples to the order parameter, then

the continuous phase transition is destroyed. In the presence of an external force,
the free energy has the form

φ′(T, Y, f ) = φ(T, Y, η) − f η = φ0(T, Y ) + α2η2 + α4η4 +⋯− f η , (4.61)

where α2 = α2(T, Y ) and α4 = α4(T, Y ). The order parameter is nonzero for all
temperatures. A plot of the free energy in the presence of a force is shown in
Figure 4.16b for the same parameters as Figure 4.16a.
From Eq. (4.61), we can obtain the susceptibility,

χ =
(
𝜕η
𝜕 f

)
T,Y

= −
(
𝜕2φ′

𝜕 f 2

)
T,Y

. (4.62)

The equilibrium state is a solution of the equation(
𝜕φ′

𝜕η

)
T,Y

= 2α2η + 4α4η3 − f = 0 . (4.63)
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If we take the derivative of Eq. (4.63) with respect to f and solve for (𝜕η∕𝜕 f )T,Y ,
we obtain

χ( f ) =
(
𝜕η
𝜕 f

)
T,Y

= 1
2α2 + 12α4η2

. (4.64)

In the limit, f → 0, η = 0 for T > Tc and η =
√
−α2∕2α4 for T < Tc. Therefore,

in the limit f → 0 the susceptibility will be different above and below the critical
point. We find

χ = lim
f→0

(
𝜕η
𝜕 f

)
T,Y

=
⎧⎪⎨⎪⎩

1
2α0(T−Tc )

for T > Tc ,
1

4α0(Tc−T )
for T < Tc .

(4.65)

Note that the susceptibility diverges at the critical point.

4.8.2
First-Order Transitions

If the order parameter is a scalar, then there is no reason to exclude a third-order
term in the molar free energy, φ. Also, if the order parameter is a second-order
tensor, there are ways to contract a product of three such tensors to yield a scalar
and again the free energy can have a third-order term. Such systems cannot exhibit
a continuous transition. To see why, let us write the free energy in the form

φ(T, Y, η) = φ0(T, Y ) + α2η2 + α3η3 + α4η4 +⋯ , (4.66)

where α2 = α2(T, Y ), α3 = α3(T, Y ), and α4 = α4(T, Y ).
The extrema of the free energy are given by the equation (𝜕φ∕𝜕η)T,Y = 0, which

has solutions η = 0 and η = (−3α3 ±
√
9α23 − 32α2α4)∕8α4. As long as 9α23 −

32α2α4 < 0, the only minimum of the free energy occurs at η = 0 because oth-
er values of η will be complex and therefore unphysical. When 9α23 − 32α2α4 > 0,

Figure 4.18 The behavior of the free energy, 𝜙 = α2η
2 + α3η

3 + α4η
4, for α2 = 2.0, α4 = 4.0,

and (A) α3 = −4.5, (B) α3 = −5.333, (C) α3 = −5.5, (D) α3 = −5.6568, and (E) α3 = −5.85. In the
figure, ηE = 0.7738.
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two minima and one maximum can exist. A plot of the free energy for α2 > 0,
α4 > 0, and a range of values of α3 is given in Figure 4.18. For curves A, B, and C
the state of minimum free energy (the equilibrium state) occurs for η = 0. Curve
D shows the behavior of the free energy at the critical temperature for this system.
At this point the equilibrium state shifts from one with order parameter η = 0 to
one with order parameter η = ηD. Therefore, this is a discontinuous transition
and is of the type one expects for a first-order transition. The transition point
for the first-order transition (curve D in Figure 4.18) is easily found. It must sat-
isfy the conditions φ − φ0 = 0 and (𝜕φ∕𝜕η)T,Y = 0. These two conditions give
η = −α3∕2α4 and α2 = α23∕4α4. Therefore, the first-order transition occurs when
α2 > 0, and therefore it occurs before any continuous transition as the tempera-
ture is lowered. If α3 < 0, then it occurs for a positive value of the order parameter.
If α3 > 0, then it occurs for a negative value of the order parameter.

4.8.3
Some Applications of Ginzburg–Landau Theory

In this section, we discuss three applications of Ginzburg–Landau theory: super-
fluids, magnetic systems, and superconductors.

4.8.3.1 Superfluids
The phase transition from normal to superfluid phase is a transition in which
gauge symmetry is broken. A gauge transformation is a transformation that
changes the phase of all wave functions in the system. It is generated by the
number operator. The transition from normal to superfluid in liquid He4 is an
example of a continuous phase transition which involves broken gauge symmetry.
The order parameter, η, is the macroscopic wave function, Ψ , for the condensed
phase. The free energy can be written

φ(T, P,Ψ) = φ0(T, P) + α2|Ψ |2 + α4|Ψ |4 +⋯ , (4.67)

where α2(T, P) = α0(T, P)(T − Tc) and α0(T, P) and α4(T, P) are slowly varying
functions of T and P. The order parameter, Ψ = 0, above the critical temperature,
and Ψ = eiθ

√
(α0∕2α4)(Tc − T ) below the critical temperature. The phase factor,

θ, can be chosen to be zero as long as no currents flow in the system. For liquid
He4 (see Figure 4.10a), there is a line of continuous transition points in the (P, T )
plane. In Figure 4.10b, the heat capacity has a finite lambda-shaped jump as we
pass through the line of critical points.

4.8.3.2 The Curie Point
The transition froma paramagnetic to ferromagnetic system is one of the simplest
examples of a continuous phase transition. A systemwhich exhibits this behavior
is a magnetic solid, such as nickel, whose lattice sites contain atoms with a mag-
netic moment. The critical temperature is called the Curie temperature. Above
the Curie temperature, the magnetic moments are oriented at random and there
is no net magnetization. However, as the temperature is lowered, magnetic inter-
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action energy between lattice sites becomes more important than randomizing
thermal energy. Below the Curie temperature, themagnetic moments became or-
dered on the average and a spontaneous magnetization appears. The symmetry
that is broken at the Curie point is rotation symmetry. Above the Curie point,
the paramagnetic system is rotationally invariant, while below it the spontaneous
magnetization selects a preferred direction in space. The order parameter for this
continuous phase transition is the magnetization, M. The magnetization is a vec-
tor and changes sign under time reversal. The free energy is a scalar and does not
change sign under time reversal. If a magnetic field, H , is applied to the system,
the Ginzburg–Landau free energy can be written in the form

φ(T,H) = φ0(T ) −M ⋅ H + α2M ⋅ M + α4(M ⋅M)2 +⋯ , (4.68)

where the coefficients α2 and α4 have the same properties as described above.
For the case when the applied field H equals 0, the magnetization M equals 0
above the Curie temperature and M = ±

√
(α0∕2α4)(Tc − T )êM below the Curie

temperature, where êM is a unit vector which gives the direction of the magneti-
zation vector. The actual direction of the magnetization vector, if H = 0, will be
determined by randomfluctuations or outside influences. The heat capacity at the
Curie point exhibits the characteristic λ-shaped peak. As an example, the λ-point
in nickel is shown in Figure 4.17b.

4.8.3.3 Superconductors
The condensed phase in a superconductor corresponds to a macroscopically oc-
cupied quantum state and therefore the order parameter is a complex scalar func-
tion (a macroscopic “wave function”) which we denote as Ψ . Gauge symmetry is
broken in the transition to the superconducting phase. We can use Ginzburg–
Landau theory to determine the shape and width of the interface between normal
and condensed phases.
Under a gauge transformation, the order parameter Ψ changes its phase. How-

ever, the free energy must remain invariant under the gauge transformation.
Therefore, if no magnetic fields are present, the Ginzburg–Landau expression for
the free energy per unit volume has the form

φ(r, T ) = φn(T ) + α2(T )|Ψ(r)|2 + α4(T )|Ψ(r)|4 + 1
2m

||iℏ∇rΨ(r)||2 ,

(4.69)

where ℏ is Planck’s constant, |Ψ |2 = Ψ∗Ψ , andm is themass of the superconduct-
ing electron pairs.
The total free energy,Φ(T ), can be found by integrating φ(r, T ) over the entire

volume so that

Φ(T )

= ∫ dr
[
φn(T ) + α2(T )|Ψ(r)|2 + α4(T )|Ψ(r)|4 + 1

2m
||iℏ∇rΨ(r)||2] .

(4.70)
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We now extremize the total free energy with respect to variations inΨ∗ by setting
δΦ = ∫ δφ∕δΨ∗δΨ∗ = 0. This gives

α2Ψ + 2α4Ψ |Ψ |2 − ℏ2

2m
∇2

rΨ(r) = 0 , (4.71)

where we have performed an integration by parts and have assumed that both Ψ
and the normal component of ∇rΨ are zero at the surface of the volume of inte-
gration. Current flow involving condensed electron pairs in the superconductor
is given by J(r) = eℏ∕(2mi)(Ψ∗∇rΨ − Ψ∇rΨ∗). In the absence of a magnetic or
electric field J(r) = 0 and we can assume that the order parameter Ψ is real.
We can now determine how the order parameter Ψ(r) varies in space at the

interface between a normal region and a condensed region. For simplicity, assume
that the spatial variation of Ψ(r) is along the z-direction so that Ψ = Ψ(z). We
introduce the dimensionless function f (z) = Ψ

√
α4∕2|α2|. Then Eq. (4.71) takes

the form

−ξ2(T )
d2 f
dz2

− f + f 3 = 0 , (4.72)

where ξ(T ) =
√
ℏ2∕2m|α2| is theGinzburg–Landau coherence length. Let us as-

sume that the sample extends from z =−∞ to z =+∞ and the region from z =−∞
to z = 0 is normal (contains no condensate) so f (z = 0) = 0. We further assume
that deep inside the condensed phase the order parameter takes its maximum
value Ψ(z → ∞) =

√|α2|2α4 so f (z → ∞) = 1.
We can now solve Eq. (4.72). First multiply by d f ∕dz, rearrange terms and

integrate to obtain

−ξ2(T )
(
d f
dz

)2

= f 2 − 1
2
f 4 + C , (4.73)

where C is an integration constant. Next require that d f ∕dx = 0 and f = 1 at
z = ∞. This gives C = −1∕2 and Eq. (4.73) takes the form

−ξ2(T )
(
d f
dz

)2

= 1
2
(1 − f 2)2 . (4.74)

We can solve Eq. (4.74) to obtain f (z) = tanh(z∕
√
2ξ) for z ≥ 0 and f (z) = 0

for z < 0. Thus, most of the spatial variation of the order parameter occurs within
a distance z = 2ξ(T ) of the boundary between the normal and condensed phases.
Near a critical point ξ(T ) becomes very large.

4.9
Critical Exponents

The critical point is the point at which the order parameter of a new phase be-
gins to grow continuously from zero [58, 82, 193]. As we approach the critical
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point from above (higher temperature), microscopic regions become ordered and
fluctuate, although the order parameter on the average remains zero. These mi-
croscopic ordered regions grow and become very large as the critical point is ap-
proached. Just below the critical point, the order parameter of the new phase as-
sumes a nonzero average value.

4.9.1
Definition of Critical Exponents

The behavior of thermodynamic systems, as they approach their critical point, ap-
pears to be universal. This can best be seen in terms of their critical exponents. As
one approaches the critical point, various thermodynamic functions may diverge
or go to zero or even remain finite. We therefore introduce an expansion parame-
ter ε = (T − Tc)∕Tc that is a measure of the distance from the critical point. Near
the critical point all thermodynamic functions can be written in the form

f (ε) = Aελ(1 + Bεy +⋯) (4.75)

where y > 0. The critical exponent for the function f (ε) is defined

λ = lim
ε→0

ln f (ε)
ln ε

. (4.76)

If λ is negative, f (ε) diverges at the critical point. If λ is positive, f (ε) goes to zero
at the critical point.
The case where λ = 0 may correspond to several different possibilities; for ex-

ample, it may correspond to a logarithmic divergence f (ε) = A| ln ε| + B or to
a dependence on ε of the form f (ε) = A + Bε1∕2. For such cases a modified ex-
ponent is introduced. If j is the smallest integer for which d j f (ε)∕dε j = f ( j)(ε)
diverges, then

λ′ = j + lim
ε→0

ln | f ( j)(ε)|
ln ε

. (4.77)

Althoughwe have chosen towrite ε in terms of temperature, we can also introduce
critical exponents for quantities such as pressure, density, magnetic field, and so
on. Thus, there are a number of different critical exponents that can be defined
for a system, depending on how the critical point is approached. We give some
examples below.

4.9.2
The Critical Exponents for Pure PVT Systems

There are four critical exponents that are commonly used to describe the bulk
thermodynamic properties of PVT systems. Below, we define them and give their
experimental values.
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1. Degree of the Critical Isotherm, δ. The deviation of the pressure (P − Pc) from
its critical value varies at least as the fourth power of (V − Vc) as the critical
point is approached along the critical isotherm. It is convenient to express this
fact by introducing a critical exponent, δ, such that

P − Pc
P0c

≡ Aδ ||||ρ − ρcρc

||||δ sign(ρ − ρc) , T = Tc , (4.78)

where Pc is the critical pressure, ρc is the critical density, Aδ is a constant,
and P0c is the pressure of an ideal gas at the critical density and temperature.
Experimentally it is found that 6> δexp ≥ 4. The exponent δ is called the degree
of the critical isotherm.

2. Degree of the Coexistence Curve, β. Guggenheim [76] has shown that the de-
viation (T − Tc) varies approximately as the third power of (V − Vc) as the
critical point is approached along either side of the coexistence curve. One
quantifies this by introducing a critical exponent β, such that

ρl − ρg
ρc

= Aβ(−ε)β , (4.79)

where ρl is the density of liquid at temperature T < Tc, ρg is the density of
gas at temperature T < Tc, each evaluated on the coexistence curve, and Aβ is
a constant. The quantity ρl − ρg is the order parameter of the system. It is zero
above the critical point and nonzero below it. The exponent β is called the
degree of the coexistence curve and is found from experiment to have values
βexp ≈ 0.34.

3. Heat Capacity, α. The heat capacity at constant volume appears to have a loga-
rithmic divergence forT → Tc along the critical isochore (V =Vc). The critical
exponent for heat capacity is denoted α and is defined as follows:

CV =

{
A′
α(−ε)

−α′ , T < Tc , ρ = ρc
Aα(+ε)−α , T > Tc , ρ = ρc ,

(4.80)

whereA′
α and Aα are constants. The exponents α and α

′ are found experimen-
tally to have values αexp ∼ 0.1 and α′exp ∼ 0.1.

4. Isothermal Compressibility, γ. The isothermal compressibility diverges ap-
proximately as a simple pole:

κT
κ0T

=

{
A′
γ(−ε)

−γ′ , T < Tc , ρ = ρl(T ) or ρg(T )
Aγ(+ε)−γ , T > Tc , ρ = ρc ,

(4.81)

where A′
γ and Aγ are constants. For T < Tc one approaches the critical point

along the coexistence curve; for T > Tc one approaches it along the critical
isochore. Typical experimental values are γ′exp ∼ 1.2 and γexp ∼ 1.3.

It is possible to obtain inequalities between the critical exponents using thermo-
dynamic arguments.We shall give an example here. Equation (4.25) can be rewrit-
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ten in terms of the mass density as

cv = xgcvg + xlcvl +
xgT

ρ3gκ
g
T

(
𝜕ρg
𝜕T

)2

coex
+
xlT
ρ3l κ

l
T

(
𝜕ρl
𝜕T

)2

coex
, (4.82)

where cv , cvg and cvl are now specific heats (heat capacity per kilogram), and κT is
the isothermal compressibility. All terms on the right-hand side of Eq. (4.82) are
positive. Thus, we can write

cv ≥ xgT

ρ3gκ
g
T

(
𝜕ρg
𝜕T

)2

coex
. (4.83)

As the critical point is approached for fixed volume, xg → (1∕2), ρg → ρc (ρc is
the critical density), κT diverges as (Tc − T )−γ′ (cf. Eq. (4.81)), and (𝜕ρg∕𝜕T )coex
diverges as (Tc − T )β−1 if we assume that [(1∕2)(ρl + ρg) − ρc] goes to zero more
slowly than (ρl − ρg) (cf. Eq. (4.13)). Thus,

cv ≥ 1
2
TcB(Tc − T )γ′+2β−2

ρ3c
, (4.84)

where B is a constant, so that ln cv ≥ (2 − γ′ − 2β)| ln(−ε)|. If we next divide by| ln(−ε)| and take the limit T → T−
c , we find

α′ + 2β + γ′ ≥ 2 . (4.85)

The inequality in Eq. (4.85) is roughly satisfied by real fluids. If we choose α′ =
0.1, β = 1∕3, and γ′ = 1.3, then α′ + 2β + γ′ ≈ 2. Equation (4.85) is called the
Rushbrook inequality.

4.9.3
The Critical Exponents for the Curie Point

For magnetic systems, exponents α, β, γ, and δ can be defined in analogy with
pure fluids. The coexistence curve for a ferromagnetic system is given in Fig-
ure 4.19a. Below some critical temperature the spins begin to order spontaneous-
ly. The coexistence curve separates the two directions of magnetization. In Fig-
ure 4.19b, we plot some isotherms of the magnetic system. It is helpful to refer to
these curves when defining the various exponents.

1. Degree of the Critical Isotherm, δ. The exponent δ describes the variation of
magnetization with magnetic field along the critical isotherm

H
H0

c
= Bδ

||||MH (Tc)
M0(0)

||||
δ

, (4.86)

where H0
c = kBT∕m0,M0(0) is the magnetization in zero field at zero tem-

perature, m0 is the magnetic moment per spin, and Bδ is a proportionality
constant. Experimentally, 4 ≤ δexp ≤ 6, in agreement with the values of δexp
for pure fluids.
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Figure 4.19 (a) Coexistence curve for a typical magnetic system. Below the Curie point the
magnetization occurs spontaneously. The curve H = 0 separates the two possible orientations
of the magnetization. (b) A sketch of the isotherms for a ferromagnetic system.

2. Magnetization Exponent, β. In a magnetic system, the exponent β describes
how the magnetization approaches its value at the critical point when no ex-
ternal field is present. It is defined as follows:

M0(T )
M0(0)

= Bβ(−𝜖)β , (4.87)

where Bβ is a constant. For magnetic systems, βexp ≈ 1∕3 as it is for fluids.
3. The Heat Capacity, α. For magnetic systems, the coefficients α and α′ are de-

fined as follows:

CH (H = 0) =

{
B′
α (−𝜖)

−α′ , T < Tc ,
Bα𝜖−α , T > Tc ,

(4.88)

where Bα and B′
α are constants. Experimentally, one finds αexp ∼ α′exp ∼ 0.

4. The Magnetic Susceptibility, γ. The magnetic susceptibility in the vicinity of
the critical point can be written

χT
χ0T

=

{
B′
γ (−𝜖)

−γ′ , T < Tc , H = 0 ,
Bγ𝜖−γ , T > Tc , H = 0 ,

(4.89)

where B′
γ and Bγ are constants and χ

0
T is the susceptibility of a noninteracting

system at the critical temperature. From experiment γexp ∼ 1.3.

The striking feature about the critical exponents for fluids and for magnetic sys-
tems is that the values are roughly the same. Indeed, there appears to be a great
similarity in the way in which many systems approach their critical points.
The critical exponents can be computed fairly easily starting from mean field

theories such as the van derWaals equation of state or Ginzburg–Landau theory.
All mean field theories give similar results. The common feature of these theo-
ries is that they assume that the particles move in a mean field due to all other
particles. The mean field theories do not properly take into account the effects of
short-ranged correlations at the critical point and do not give the correct results
for the critical exponents. We shall return to this point when we discuss Wilson
renormalization theory of critical points.
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4.9.4
The Critical Exponents for Mean Field Theories

In this section, we compute the critical exponents, α, β, δ, and γ for a gas whose
equation of state is given by the van der Waals equation.
The van derWaals equation, in terms of reduced variables, is (P + (3∕v2))(3v −

1) = 8T . In order to examine the neighborhood of the critical point, we introduce
expansion parameters ε = (T∕Tc)−1, ω = (v∕vc)−1, and π = (P∕Pc)−1. In terms
of these parameters, the van der Waals equation can be written[

(1 + π) + 3
(1 + ω)2

]
[3(ω + 1) − 1] = 8(1 + ε) . (4.90)

If we solve for π, we find

π = 8ε + 16εω + 8εω2 − 3ω3

2 + 7ω + 8ω2 + 3ω3 . (4.91)

We can use this expression to obtain the critical exponents.

1. The degree of the critical isotherm, δ. Let ε = 0 in Eq. (4.91) and expand π in
powers of ω. This gives

π = −3
2
ω3 +⋯ (4.92)

The degree of the critical isotherm is δ = 3.
2. The isothermal compressibility exponent, γ. Let us compute (𝜕π∕𝜕ω)ε and then

set ω = 0. We obtain(
𝜕π
𝜕ω

)
ε
= −6ε (4.93)

for ω = 0. The critical exponent, γ, is γ = 1.
3. Thedegree of the coexistence curve, β. In the neighborhoodof the critical point,

the van der Waals equation can be written

π = 4ε − 6εω + 9εω2 − 3
2
ω3 +⋯ (4.94)

The values of ω on either side of the coexistence curve can be found from two
conditions along the isotherm:
(i) The condition that the pressure and temperature of the liquid and gas in
the coexistence region be equal (P(vl) = P(vg)) yields

−3
2
ω3
l − 6εωl + 9εω2

l = −3
2
ω3
g − 6εωg + 9εω2

g , (4.95)

where ωł = (vł∕vc) − 1 and ωg = (vg∕vc) − 1. If we note that ωl is negative and
write ωl = −ω̃l and ωg = +ω̃g, then Eq. (4.95) gives

4ε
(
ω̃l + ω̃g

)
+ 6ε

(
ω̃2
l − ω̃

2
g

)
+ ω̃3

l + ω̃
3
g = 0 ; (4.96)
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(ii) The molar Gibbs free energy of the liquid and gas phases are equal so that
∫ vlvg v dP = 0, which can also be written

ωl

∫
ωg

dω(1 + ω)
(
−6ε + 18ωε − 9

2
ω2 +⋯

)
≈ −6ε(ωl − ωg) + 6ε

(
ω2
l − ω

2
g

)
− 3

2

(
ω3
l − ω

3
g

)
+⋯ = 0 (4.97)

so that

4ε(ω̃l + ω̃g) + 4ε
(
ω̃2
l − ω̃

2
g

)
+ ω̃3

l + ω̃
3
g = 0 . (4.98)

In order for Eqs. (4.96) and (4.98) to be consistent, wemust have ω̃g = ω̃l . If we
plug this into Eqs. (4.96) or (4.98), and let ω̃l = ω̃g = ω̃, then ω̃2 ≈ −4ε. Note
that ε is negative. Thus,

ω̃g ≈ ω̃l = 2|ε|1∕2 (4.99)

and the degree of the coexistence curve is β = 1∕2.
4. The heat capacity exponent, α. The jump in the heat capacity can be obtained

from Eq. (4.25). Let us approach the critical point along the critical isochore,
v = vc. Then as T → Tc , xl ≈ xg → 1∕2 and cvg → cvl . Thus, the jump in the
heat capacity is given by

cvc
(
T−
c
)
− cvc

(
T+
c
)

= lim
T→Tc

{
−T
2

[(
𝜕Pg
𝜕vg

)
T

(
𝜕vg
𝜕T

)2

coex
+

(
𝜕Pl
𝜕vl

)
T

(
𝜕vl
𝜕T

)2

coex

]}
.

(4.100)

Along the coexistence curve (𝜕v∕𝜕T)coex = ±|ε|−1∕2, where the minus sign
applies to the liquid and the plus sign applies to the gas. From Eqs. (4.94)
and (4.99) we find(

𝜕Pl
𝜕v̄l

)
T

≡
(
𝜕Pg
𝜕vg

)
T

= 6|ε|− 9
2
ω2 − 18ω|ε|+⋯ = −12|ε|±O(|ε|3∕2) .

(4.101)

If we note that (Pcvc∕RTc) = (3∕8), we find

cvc
(
T−
c
)
− cvc

(
T+
c
)
= 9

2
R + O(ε) . (4.102)

Thus, the van der Waals equation predicts a finite jump in the heat capacity
at the critical point and therefore it predicts α′ = α = 0.
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4.10
Problems

Problem 4.1 A condensible vapor has a molar entropy s = s0 + R ln[C(v −
b)(u + (a∕v))5∕2], where C and s0 are constants. (a) Compute the equation of
state. (b) Compute the molar heat capacities, cv and cP . (c) Compute the latent
heat between liquid and vapor phases at temperature T in terms of the tempera-
ture T , the gas constant R, and the liquid and gas molar volumes vl and vg. How
can you find explicit values of vl and vg if you need to?

Problem 4.2 Find the coefficient of thermal expansion, αcoex = 1∕v(𝜕v∕𝜕T )coex,
for a gas maintained in equilibrium with its liquid phase. Find an approximate
explicit expression for αcoex, using the ideal gas equation of state. Discuss its be-
havior.

Problem 4.3 Prove that the slope of the sublimation curve of a pure substance at
the triple point must be greater than that of the vaporization curve at the triple
point.

Problem 4.4 Approximately, how much pressure must be applied to an ice cube
to make it melt at temperature T = −1.5 ◦C? (Note that the latent heat of fusion
of H2O is Lf = 3.33 × 105 J∕kg, the density of water is ρw = 1.0 × 103 kg∕m3, and
the density of ice is ρI = 0.917 × 103 kg∕m3.)

Problem4.5 Consider the vaporization curve for liquidmercury. The latent heat
of vaporization, L (in J/mol) varies slowly with pressure, but has significant varia-
tion with temperature and can be written L = (7724− 0.9768T)R, where R is the
gas constant and T is measured in kelvin. It is known that at atmospheric pres-
sure (Patm = 1.013×105 Pa)mercury begins to vaporize at temperature T = 630K.
(a) Plot the vaporization curve for mercury between temperatures T = 500K and
T = 650K. (b) At what pressure doesmercury begin to vaporize when T = 530K?
(Hint: The volume of the liquid mercury can be neglected relative to that of the
vapor and the vapor can be treated as an ideal gas.)

Problem 4.6 Two phases of solid carbon are called graphite and diamond. At
standard temperature (T0 = 298K) and standard pressure (P0 = 1.0 bar), the dif-
ference in the molar Gibbs free energy for these two phases is Δg = gG − gD =
−2.9 kJ∕mol, so graphine is the stable phase at standard temperature and pressure
(STP). At STP, the difference inmolar volume is Δv= vG− vD = 1.9×10−6m3∕mol,
and the difference in molar entropy is Δs = sG − sD = 3.4 J∕(Kmol). (a) If tem-
perature is held fixed at T = T0 = 298K, estimate the pressure at which a phase
transition occurs and diamond becomes themost stable formof the crystal. (b) At
temperature T = 398K, at approximately what pressure does the phase transition
from graphine to diamond occur?

Problem 4.7 One kilogram of superheated steam, at temperature t = 350◦C,
pressure P = 100 bar, and specific entropy s = 5.949 kJ∕(kgK), is expanded re-
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versibly and adiabatically to form wet steam at t = 200 ◦C and pressure P =
15.55 bar. The specific entropy of water vapor and liquid water on the coexistence
curve at t = 200 ◦C are sg = 6.428 kJ∕(kgK) and sl = 2.331 kJ∕(kgK), respectively.
The specific enthalpy of water vapor (gas) and liquid water on the coexistence
curve at t = 200 ◦C are hg = 2791 kJ∕kg and hl = 852.4 kJ∕kg. (a) What is the
specific enthalpy of the wet steam at t = 200 ◦C? (b) What fraction of the wet
steam is liquid water?

Problem 4.8 Consider a monatomic fluid along its liquid–gas coexistence curve.
Compute the rate of change of chemical potential along the coexistence curve,
(dμ∕dT )coex, where μ is the chemical potential andT is the temperature. Express
your answer in terms of sl, vl and sg, vg, which are the molar entropy and molar
volume of the liquid and gas, respectively.

Problem 4.9 A system in its solid phase has a Helmholtz free energy per mole,
as = B∕Tv3, and in its liquid phase it has a Helmholtz free energy per mole,
al = A∕Tv2, where A and B are constants, v is the volume per mole, and T is
the temperature. (a) Compute the molar Gibbs free energy density of the liquid
and solid phases. (b) How are the molar volumes, v, of the liquid and solid related
at the liquid–solid phase transition? (c)What is the slope of the coexistence curve
in the P–T plane?

Problem 4.10 Deduce theMaxwell construction using stability properties of the
Helmholtz free energy rather than the Gibbs free energy.

Problem 4.11 For a van der Waals gas, plot the isotherms in the P–V plane (P
and V are the reduced pressure and volume) for reduced temperatures T = 0.5,
T = 1.0, and T = 1.5. For T = 0.5, is P = 0.1 the equilibrium pressure of the
liquid–gas coexistence region?

Problem 4.12 Medium size steam-based power stations in theMiddle East typi-
cally output superheated steam at a temperature of t = 496 ◦C and condense it at
a temperature of t = 38 ◦C. (a) Compute the efficiency of these power stations
assuming that they operate on a Rankine cycle. (b) Compute the efficiency of
a Carnot engine operating between the same high and low temperatures. (Hint:
you will need to estimate values for specific enthalpy, entropy and volume by ex-
trapolating between data points in the steam tables.)

Problem 4.13 Consider a binary mixture composed of two types of particles,
A and B. For this system the fundamental equation for the Gibbs free energy is
G = 𝔫AμA +𝔫BμB, the combined first and second laws are dG = −S dT +V dP+
μA d𝔫A + μB d𝔫B (S is the total entropy and V is the total volume of the system),
and the chemical potentials μA and μB are intensive so that μA = μA(P, T, xA) and
μB = μB(P, T, xA), where xA is themole fraction of A. Use these facts to derive the
relations

s dT − v dP +
∑
α=A,B

xα dμα = 0
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and ∑
α=A ,B

xα(dμα + sα dT − vα dP) = 0 ,

where s = S∕𝔫, v = V∕𝔫, 𝔫 = 𝔫A + 𝔫B, sα = (𝜕S∕𝜕𝔫α)P,T,𝔫β≠α , and vα = (𝜕V∕
𝜕𝔫α)P,T,𝔫β≠α with α = A , B and β = A , B.

Problem4.14 Consider liquidmixture (l) of particles A and B coexisting in equi-
librium with vapor mixture (g) of particles A and B. Show that the generalization
of the Clausius–Clapeyron equation for the coexistence curve between the liquid
and vapor phases when the mole fraction of A in the liquid phase is held fixed is
given by(

dP
dT

)
xlA

=
xgA

(
sgA − slA

)
+ xgB

(
sgB − s

l
B
)

xgA
(
vgA − vlA

)
+ xgB

(
vgB − v

l
B
) ,

where sα = (𝜕S∕𝜕𝔫α)P,T,nβ≠α and vα = (𝜕V∕𝜕𝔫α)P,T,𝔫β≠α with α =A, B and β =A, B.
(Hint: Equations from Problem 4.13 are useful.)

Problem4.15 APVT systemhas a line of continuous phase transitions (a lambda
line) separating two phases, I and II, of the system. Themolar heat capacity cP and
the thermal expansivity αP are different in the two phases. Compute the slope
(dP∕dT )coex of the λ line in terms of the temperature T , the molar volume v,
ΔcP = cIP − c

II
P , and ΔαP = αIP − α

II
P .

Problem4.16 Assume that two vessels of liquid He4, connected by a very narrow
capillary, are maintained at constant temperature; that is, vessel A is held at tem-
perature TA, and vessel B is held at temperature TB. If an amount of mass, ΔM, is
transferred reversibly from vessel A to vessel B, how much heat must flow out of
(into) each vessel? Assume that TA > TB.

Problem4.17 Water has a latent heat of vaporization, Δh = 540 cal∕g. One mole
of steam is kept at its condensation point under pressure at T = 373K. The tem-
perature is then lowered to T = 336K, keeping the volume fixed. What fraction
of the steam condenses into water? (Treat the steam as an ideal gas and neglect
the volume of the water.)

Problem 4.18 The molar free energy of a spin system can be written

φ(T,H) = φ0(T) −
1
2
Jm2

+ 1
2
kBT[(1 + m) ln(1 + m) + (1 − m) ln(1 − m)] − mH

where J is the interaction strength, m is the net magnetization per mole, φ0(T)
is the molar free energy in the absence of a net magnetization, H is an applied
magnetic field, kB is Boltzmann’s constant, and T is the temperature. (a) Compute
the critical temperature (called the Curie temperature). (b) Compute the linear
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magnetic susceptibility of this system. (Hint: Only consider temperatures in the
neighborhood of the critical point wherem is small.)

Problem 4.19 A liquid crystal is composed of molecules which are elongated
(and often have flat segments). It behaves like a liquid because the locations of the
center-of-mass of themolecules have no long-range order. It behaves like a crystal
because the orientation of the molecules does have long-range order. The order
parameter for a liquid crystal is given by the dyatic S = η(nn − 1∕3I), where n is
a unit vector (called the director) which gives the average direction of alignment
of the molecules. The free energy of the liquid crystal can be written

φ = φ0 +
1
2
ASi jSi j −

1
3
BSi jS jkSki +

1
4
CSi jSi jSklSkl

whereA = A0(T −T∗), A0 , B andC are constants, I is the unit tensor so x̂i ⋅ I ⋅ x̂ j =
δi j , Si j = x̂i ⋅ S ⋅ x̂ j , and the summation is over repeated indices. The quantities
x̂i are the unit vectors x̂1 = x̂, x̂2 = ŷ, and x̂3 = ẑ. (a) Perform the summations
in the expression for Φ and write Φ in terms of η, A , B, C. (b) Compute the crit-
ical temperature Tc at which the transition from isotropic liquid to liquid crystal
takes place, and compute the magnitude of the order parameter η at the critical
temperature. (c) Compute the difference in entropy between the isotropic liquid
(η = 0) and the liquid crystal at the critical temperature.

Problem 4.20 The equation of state of a gas is given by the Berthelot equation
(P+ a∕Tv2)(v− b) = RT . (a) Find values of the critical temperature Tc, the critical
molar volume vc, and the critical pressure Pc, in terms of a, b, and R. (b) Does the
Berthelot equation satisfy the law of corresponding states? (c) Find the critical
exponents β, δ, and γ from the Berthelot equation.

Problem 4.21 A mixture of particles A and B have a molar Gibbs free energy of
the form

g = xAμ◦A(P, T ) + xBμ◦B(P, T ) + RTxA ln xA + RTxB ln xB + λxAxB ,

where μ◦A(P, T ) and μ◦B(P, T ) are the chemical potentials of pure A and pure B,
respectively, at pressure P and temperature T , R is the gas constant, xA and xB are
the mole fractions of A and B, respectively, and λ measures the strength of cou-
pling betweenA andB. In terms of dimensionless parameters, g = g∕λ, μ◦A(P, T ) =
μ◦A(P, T )∕λ, μ◦B(P, T ) = μ◦B(P, T )∕λ, and τ = RT∕λ, the molar Gibbs free energy
takes the form

g = xAμ
◦
A(P, T ) + xBμ

◦
B(P, T ) + τxA ln xA + τxB ln xB + xAxB .

Assume that μ◦B = 0.45 and μ◦A = 0.40.
(a) Find the critical temperature τc at which phase separation occurs and plot the
curve separating the chemically stable from unstable regions in the τ–xA plane.
(b) For τ = 1∕2.6, find equilibrium values of xA on the coexistence curve.
(c) For τ = 1∕3.6, find equilibrium values of xA on the coexistence curve.
(d) On the same plot as in (a), plot (sketch) the coexistence curve. You can esti-

mate its location based on your results in (b) and (c).
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Problem 4.22 For a binary mixture of particles of type 1 and 2, the Gibbs free
energy is G = 𝔫1μ1 + 𝔫2μ2 and differential changes in the Gibbs free energy are
dG = −S dT + V dP + μ1 d𝔫1 + μ2 d𝔫2. The Gibbs free energy of the mixture is
assumed to be

G = 𝔫1μ01(P, T ) + 𝔫2μ02(P, T ) + RT𝔫1 ln x1 + RT𝔫2 ln x2 + λ𝔫x1x2 ,

where μ01 = μ
0
2 are the chemical potentials of the pure substances. In the region in

which the binary mixture separates into two phases, I and II with concentrations
xI1 and xII1 , find the equation, (𝜕xI1∕𝜕T )P for the coexistence curve. Write your
answer in terms of xI1 and τ = T∕Tc where Tc = λ∕2R.

Problem 4.23 Consider a mixture of molecules of type A and B to which a small
amount of type C molecules is added. Assume that the Gibbs free energy of the
resulting tertiary system is given by

G(P, T,𝔫A ,𝔫B,𝔫C ) = 𝔫Aμ0A + 𝔫Bμ0B + 𝔫Cμ0C
+ RT𝔫A ln xA + RT𝔫B ln xB + RT𝔫C ln xC
+ λ𝔫A𝔫B∕𝔫 + λ1𝔫A𝔫C∕𝔫 + λ1𝔫B𝔫C∕𝔫 ,

where 𝔫 = 𝔫A + 𝔫B + 𝔫C, 𝔫C ≪ 𝔫A, and 𝔫C ≪ 𝔫B. The quantities μ0A = μ0A(P, T ),
μ0B = μ0B(P, T ), and μ0c = μ

0
C(P, T ) are the chemical potentials of pure A, B, and

C, respectively, at pressure P and temperature T . For simplicity, assume that μ0A =
μ0B = μ0C. To lowest order in the mole fraction xC, compute the shift in the critical
temperature and critical mole fraction of A due to the presence of C.

Problem 4.24 Compute the equilibrium vapor pressure of a monomolecular gas
in equilibrium with a spherical droplet of liquid of the same substance, as a func-
tion of the radiusR of the droplet and for fixed temperature. Assume the gas phase
is well described by the ideal gas equation of state and the liquid can be assumed
to be incompressible.Use the fact that formechanical equilibrium Pl−Pg = 2σ∕R,
where Pl (Pg) is the pressure of the liquid (gas) and σ is the surface tension.
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5
Equilibrium Statistical Mechanics I – Canonical Ensemble

5.1
Introduction

The entropy ofweakly interacting systems can be obtained by counting themicro-
scopic states available to those systems at a given energy. Then, assuming that all
microscopic states have equal weight (are equally probable), we can assign proba-
bility distributions tomacroscopic states that emerge due to underlying conserva-
tion laws, and we can compute average properties of these macroscopic quanti-
ties. In Chapter 2, the thermodynamic properties of noninteracting spin lattices,
polymers, the Einstein solid and a classical ideal gas were derived in this manner.
The assumption that allmicroscopic states with the same energy are equally prob-
able can be justified in terms of the underlying Newtonian dynamics governing
the system, provided that the dynamics is ergodic (see Appendix C). Hard-sphere
gases have been rigorously proven to be ergodic. Chaotic dynamical systems are
ergodic. Ergodicity forms the dynamical basis of statistical mechanics.
For a closed isolated system, such as those considered in Chapter 2, the entropy

is determined by the number of microscopic states available to the system, and is
defined S = kB ln[𝔑(E)], where kB = 1.38 × 10−23 J∕K is the Boltzmann constant
and𝔑(E) is the number of microscopic states with energy E. The entropymust be
an additive function of extensive variables, it must be positive, and it must have
a maximum value at equilibrium. We can also write the entropy in terms of the
probability density operator ρ̂ (see Appendix A) and, in this form, it is called the
Gibbs entropy and is given by

S = −kBTr(ρ̂ ln ρ̂) . (5.1)

The trace, Tr, is taken over any complete orthonormal set of basis states.
For closed, isolated systems, the equilibriumprobability density,must be a func-

tion of the Hamiltonian, ρ̂ = ρ̂(Ĥ) so it commutes with the Hamiltonian Ĥ and
therefore does not vary in time. Let |E , n⟩ denote a set of states of energy E with
respect to which the density operator is diagonal. The integer, n, takes values
n = 1,… ,N(E), whereN(E) is the total number of states with energy E. The prob-
ability to find the system in state |E , n⟩ is Pn = ⟨E , n|ρ̂|E , n⟩, and the entropy can

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
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be written

S = −kBTr(ρ̂ ln ρ̂) = −kB
N(E)∑
n=1

Pn ln Pn . (5.2)

We can determine the set of probabilities, {Pn}, which extremize the entropy sub-
ject to the constraint, Tr(ρ̂) =

∑N(E)
n=1 Pn = 1. The simplest way to do this is to use

Lagrange multipliers. Since we have one constraint, we need one Lagrange mul-
tiplier, which we call α0. We then require the following variation to be zero:

δ

[N(E)∑
n=1

(α0Pn − kBPn ln Pn)

]
=
N(E)∑
n=1

(α0 − kB − kB ln Pn)δPn = 0 . (5.3)

Since the variation, δPn , is arbitrary we must have α0 − kB − kB ln Pn = 0 or Pn =
exp(α0∕kB −1) = constant. The Lagrangemultiplier, α0, is determined by the nor-
malization condition, Tr(ρ̂) =

∑N(E)
n=1 Pn = 1. We find that the probability, Pn , is

given by

Pn =
1

N(E)
. (5.4)

Thus, the probability distribution which extremizes the Gibbs entropy is the one
for which all states of the same energy are equally probable. This is called the
microcanonical ensemble. If we substitute Eq. (5.4) into Eq. (5.2), we find that the
entropy is given by

S = kB lnN(E) , (5.5)

as we expect.
If we wish to derive thermodynamic quantities under a variety of different ex-

ternal constraints, we must have the ability to describe the microscopic behavior
of systems under those constraints. Isolated closed systems have fixed total energy
and fixed particle number. Closed systems have fixed particle number but vary-
ing energy so only the average energy is specified.Open systems can have varying
particle number and energy. The probability density for closed systems (called the
canonical ensemble) will be determined below. The probability density for open
systems will be derived in Chapter 6. Once the equilibrium probability density
for a system is known, the problem of computing thermodynamic quantities is
straightforward.
We begin by computing the partition function and the probability density oper-

ator for closed systems. We then use them to obtain the thermodynamic proper-
ties of semiclassical gases, and we obtain the thermodynamic properties of solids
using approximations developed byDebye to account for the interactions between
atoms in the solid. The Debye model of a solid uses phonon collective modes as a
basis for counting microscopic states and obtains results that are in good agree-
ment with experiment at low temperatures.
We next compute the thermodynamic properties of an Ising spin lattice. We can

obtain exact expressions for the thermodynamic properties of one-dimensional
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spin lattices, and we use a mean field model to obtain approximate expressions
for the thermodynamic properties of higher dimensional spin lattices. We show
that, near critical points, fluctuations become correlated over a wide region of
space, indicating that long-range order has set in.
As thermodynamic systems approach a critical point, we must have a system-

atic way of treating thermodynamic functions in the neighborhood of the critical
point. Such a method exists and is called scaling. The idea of scaling can be ex-
pressedmathematically by saying that the thermodynamic functions are homoge-
neous functions of their distance from the critical point. As we shall see, scaling
underlies all theories of critical phenomena and enables us to compute micro-
scopic expressions for critical exponents. The scaling behavior of thermodynamic
functions near a critical point has been verified experimentally.

5.2
Probability Density Operator – Canonical Ensemble

A closed nonisolated system can exchange heat with its surroundings and as
a consequence will have a fluctuating total energy. We therefore need to find
a probability density which corresponds to an extremum of the entropy for such
systems.
In order to obtain the probability density operator for a closed nonisolated sys-

tem we extremize the Gibbs entropy subject to two constraints. We require that
the probability density operator, ρ̂, be normalized to one, and we require that the
average energy be fixed to some value ⟨E⟩, so that

TrN (ρ̂) = 1 and TrN (ĤN ρ̂) = ⟨E⟩ . (5.6)

If we introduce the Lagrange multipliers, α0 and αE , we can find the probability
density operator, ρ̂, which extremizes the entropy subject to the constraints in
Eq. (5.6). The extremization condition is

δ[TrN (α0 ρ̂ + αEĤN ρ̂ − kB ρ̂ ln ρ̂)]

= TrN{[(α0 − kB)Î + αEĤN − kB ln ρ̂]δρ̂} = 0 , (5.7)

where Î is the unit operator. Since δρ̂ is arbitrary, we must have

(α0 − kB)Î + αEĤN − kB ln ρ̂ = 0 , (5.8)

and therefore

ρ̂ = exp
[(α0
kB

− 1
)
Î +

αE
kB
ĤN

]
. (5.9)

The two Lagrangemultipliers, α0 and αE , can be determined from the constraints
in Eqs. (5.6). From Eqs. (5.6) and (5.9) we find

ZN (αE) ≡ exp
(
1 −

α0
kB

)
= Tr

(
eαE ĤN∕kB

)
. (5.10)

The quantity ZN (T ) is called the partition function.



138 5 Equilibrium StatisticalMechanics I – Canonical Ensemble

We next determine the Lagrange multiplier, αE . Let us multiply Eq. (5.8) by ρ̂
and take the trace. We obtain

TrN [(α0 − kB)ρ̂ + αEĤN ρ̂ − kBρ̂ ln ρ̂] = −kB ln[ZN (αE)] + αE⟨E⟩ + S = 0 ,
(5.11)

where we have made use of the constraints in Eq. (5.6), and the definitions of the
partition function in Eq. (5.10) and the Gibbs entropy Eq. (5.1). From Table 3.3,
the fundamental equation for the Helmholtz free energy can be written A − U +
ST = 0. If we note that the internal energy is U = ⟨E⟩, then we can make the
identification αE = −1∕T and we find that the Helmholtz free energy is

A = −kBT ln[ZN (T )] . (5.12)

The partition function, ZN (T ), takes the form

ZN (T ) = e−βA = TrN (e−βĤN ) , (5.13)

where β = 1∕(kBT). The probability density operator can be written

ρ̂ = e−β(ĤN−A) = e−βĤN
TrN (e−βĤN )

. (5.14)

Equation (5.14) is the probability density for the canonical ensemble. The trace
is evaluated using any convenient complete orthonormal set of N-particle basis
states.
Equation (5.12) is the fundamental equation for a closed system. From it we

can obtain all thermodynamic quantities. For example, the entropy is given by
S = −(𝜕A∕𝜕T )X ,N . The generalized force is given by Y = (𝜕A∕𝜕X)T,N . The chem-
ical potential is given by μ = (𝜕A∕𝜕N)T,X . Another useful relation for the internal
energy is U = (𝜕βA∕𝜕β)X ,N .

5.2.1
Energy Fluctuations

In the canonical ensemble the temperature T is fixed and the average energy, U =⟨E⟩, is fixed. However, because there can be a flow of energy in and out of this
system, it is important to know how large fluctuations in the energy (about the
average energy, ⟨E⟩) will be. Let us therefore compute the variance of the energy
fluctuations. We first write the normalization condition

TrN (eβ[A(T,X ,N)−ĤN ]) = 1 . (5.15)

If we differentiate Eq. (5.15) twice with respect to β, we find

0 = TrN

{[(
𝜕2βA
𝜕β2

)
X ,N

+
(
−ĤN +

(
𝜕βA
𝜕β

)
X ,N

)2
]
eβ[A(T,X ,N)−ĤN ]

}
.

(5.16)
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This gives

⟨E2⟩ − ⟨E⟩2 = −
(
𝜕2βA
𝜕β2

)
X ,N

= kBT2CX ,N , (5.17)

where CX ,N is the heat capacity at constant X andN . The heat capacity CX ,N and
average energy ⟨E⟩ are each proportional toN . Therefore, the fractional deviation
behaves as√⟨E2⟩ − ⟨E⟩2⟨E⟩ ∼ N−1∕2 (5.18)

and goes to zero as the number of degrees of freedom becomes infinite. This
means that the fluctuations in energy become very small relative to the magni-
tude of the energy itself. In the thermodynamic limit, most microstates will have
an energy approximately equal to the average energy, U = ⟨E⟩, and the canonical
ensemble becomes equivalent to the microcanonical ensemble.
In evaluating the trace in Eq. (5.13) we must distinguish between systems of

indistinguishable particles and systems of distinguishable particles. A system of
N indistinguishable particles, by definition, has the property that the Hamiltoni-
an and all other physical observables remain invariant under permutation of the
particles. We will consider both cases below.

5.3
Semiclassical Ideal Gas of Indistinguishable Particles

For systems of identical particles, we must evaluate the trace in Eq. (5.13) either
in terms of complete sets of symmetrized or antisymmetrized N-body position
or momentum eigenstates, or in terms of the “number” representation. The fact
that, in the canonical ensemble, the number of particles is restricted to N makes
the particle number representation unwieldy when using the canonical ensemble.
For a semiclassical gas, some of the quantum effects contained in the symmetrized
and antisymmetrized states are negligible and expressions for the partition func-
tion can be simplified considerably.

5.3.1
Approximations to the Partition Function for Semiclassical Ideal Gases

The trace of the probability density for a set ofN identical particlesmay bewritten
(see Appendix D)

TrN (ρ̂) = ℭα
∑

k1 ,…,kN

(α)⟨k1, k2 ,… , kN |ρ̂|k1 , k2 ,… , kN ⟩(α)
= 1
N!

∑
k1 ,…,kN

⟨k1,… , kN |ρ̂|k1,… , kN ⟩(±) = 1 , (5.19)
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where k j = (k j , σ j) denotes the momentum and spin of a particle, α = A , S, and
ℭα is a counting factor the prevents the summation from overcounting states.
The symmetrized and antisymmetrized states |k1 , k2 ,… , kN ⟩(α) form a complete
orthonormal set, and|k1 ,… , kN ⟩(±) = ∑

P
(±1)P|k1 ,… , kN ⟩ (5.20)

where
∑
P denotes the sum over all N! permutations of the moment/spin vari-

ables k j .
It is instructive to evaluate the partition function ZN (T ) for the (unrealistic)

case of N = 3 noninteracting identical particles in a box of volume V = L3. For
simplicity, we neglect any spin or other internal degrees of freedom.TheHamilto-
nian for this three-body ideal gas is Ĥ3 = p̂21∕(2m) + p̂22∕(2m) + p̂23∕(2m), where
p̂ j = ℏk̂ j is the momentum operator for the jth particle and k̂ j is the wavevector
of the jth particle.
The partition function for a single particle is Z1(T ) = Tr1{exp[−β p̂2∕(2m)]} =∑
k⟨k| exp[−βℏ2 k̂2∕(2m)]|k⟩. The particle is confined to a cubic box of volume

V = L3. We can use the momentum eigenstates, which have periodic boundary
conditions, to evaluate the trace. The allowed wavevectors are

k =
2πnx
L

êx +
2πny
L

ê y +
2πnz
L

êz , (5.21)

where nx , ny , and nz are integers −∞ ≤ nx ≤∞, etc. Themomentum eigenstates,
in the position basis, are

ψnx ,ny ,nz (x , y, z) =
1
L3∕2

e
π2πnx x

L e
π2πny y

L e
π2πnz z
L . (5.22)

The single particle partition function can then be written

Z1(T ) =
∞∑

nx=−∞

∞∑
ny=−∞

∞∑
nz=−∞

exp
[
−β 4π

2ℏ2

2mL2
(
n2x + n

2
y + n

2
z

)]
. (5.23)

If the volume, V , is very large compared to microscopic length scales, we can
change the summation to an integration in Eq. (5.23). We write

∑∞
nx=−∞

=
∫∞−∞ dnx , andmake a change of variables, px = 2πnxℏ∕L. The quantity, 2πℏ∕L ≈ 0
is very small so an integer change in nx gives a very small change in px , and we
find

Z1(T ) = L3
8π3ℏ3

∞

∫
−∞

d px

∞

∫
∞

d py

∞

∫
−∞

d pzexp
[
−
β
2m

(
p2x + p

2
y + p

2
z

)]
= V
λ3T

, (5.24)

where

λT = h√
2πmkBT

(5.25)
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is the thermal wavelength and has units of length. The thermal wavelength is
a measure of the distance over which the particles maintain phase coherence in
the gas.
A straightforward calculation shows that a three-body partition function can

be written

Z3(T ) = Tr3(e−βĤ ) =
1
3!

∑
k1 ,k2 ,k3

⟨k1, k2, k3, |ρ̂|k1, k2, k3⟩(±)
= 1

3!

(
V
λ3T

)3 ⎡⎢⎢⎣1 ± 3
23∕2

(
λ3T
V

)
+ 2

33∕2

(
λ3T
V

)2⎤⎥⎥⎦ . (5.26)

The semiclassical limit corresponds to high temperatures and/or low densities
(large V ). In that case, we can neglect terms proportional to λ3T∕V and we obtain
the semiclassical partition function for a gas of three identical particles:

Z3(T ) ≈ 1
3!

(
V
λ3T

)3

. (5.27)

This is equivalent to neglecting the permuted terms in Eq. (5.26) and writing

Z3(T ) = 1
3!

∑
k1 ,…,k3

⟨k1, k2, k3|e−βĤ |k1, k2, k3⟩ (5.28)

for the three-body partition function.
Symmetrized and antisymmetrized states must be used when computing the

partition function for systems of identical particles at low temperatures and/or
high densities where quantum effects strongly influence the translational degrees
of freedom. However, for moderately high temperatures and/or moderate densi-
ties, for a gas ofN identical particles, the partition function takes the approximate
form

ZN (T ) ≈ 1
N!

∑
k1 ,…,kN

⟨k1,… , kN |e−βĤ |k1 ,… , kN ⟩ , (5.29)

where we now neglect the contributions from permuted states. In doing so, we
are neglecting terms of order, (N∕V )λ3T . Thus, the semiclassical limit gives an
approximate partition function:

ZN (T ) ≈ 1
N!

(
V
λ3T

)N

. (5.30)

The factor N! in Eq. (5.30) is exactly the counting factor used in the microcanon-
ical ensemble for indistinguishable particles. It resolves the Gibbs paradox. Equa-
tion (5.30) gives a good description of a semiclassical gas of N identical particles.
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For a semiclassical ideal gas with no internal degrees of freedom, the partition
function is

ZN (T, V ) = 1
N!

(
V
λ3T

)N

≈

(
eV
Nλ3T

)N

, (5.31)

wherewe havemade use of Stirling’s approximation,N! ≈ (N∕e)N . TheHelmholtz
free energy is

A = −kBT lnZN = −NkBT − NkBT ln

[
V
N

(
h2

2πmkBT

)−3∕2
]

. (5.32)

The entropy is

S = −
(
𝜕A
𝜕T

)
V,N

= 5
2
NkB + nkB ln

[
V
N

(
ℏ2

2πmkBT

)−3∕2
]

, (5.33)

which is just the Sackur–Tetrode equation.
Let us now consider a gas of noninteracting molecules which have internal

degrees of freedom which can absorb energy. Such internal degrees of free-
dom might include the rotational and vibrational motions of the molecule and
electronic or nuclear excitations. For such a system, the Hamiltonian of the ith
molecule can be written Ĥ j = p̂2j∕(2m)+ Ĥ j(rot) + Ĥ j(vib) + Ĥ j(elec) + Ĥ j(nuc), where
Ĥ j(rot), Ĥ j(vib), Ĥ j(elec), and Ĥ j(nuc) denote the rotational, vibrational, electronic,
and nuclear internal degrees of freedom, respectively. We have assumed that
these various internal degrees of freedom are uncoupled from one another. For
a gas ofN noninteracting particles in a box of volume V , in the semiclassical limit
the partition function can be written

ZN (V, T ) = 1
N!

TrN

(
e
−β

∑N
i=1

(
p̂2i
2m+Ĥi(rot)+Ĥi(vib)+Ĥi(el)+Ĥi(nuc)

))
. (5.34)

The partition function takes a particularly simple form for this system if the
Hamiltonians in Eq. (5.34) commute with one another. Then we find

ZN (T, V ) = 1
N!

(Z1(tr)Z1(rot)Z1(vib)Z1(elec)Z1(nuc))N , (5.35)

where Z1(tr) = Tr1(e−β p̂
2∕(2m)), Z1(rot) = Tr1(e−βĤ1 (rot)), and so on. The trace, Tr1 is

taken over a complete set of single particle states appropriate for the Hamiltonian
appearing under it.
In Exercise 5.1, we compute the thermodynamic properties for a semiclassical

gas of N identical spin-1∕2 particles in a magnetic field. In Exercise 5.2, we con-
sider the effect of rotational degrees of freedomon the thermodynamic properties
of a gas.
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Exercise 5.1

A box of volume, V = L3, contains an ideal gas ofN identical atoms, each of which
has spin, s = 1∕2, and magnetic moment, μ. A magnetic field, B, is applied to
the system. (a) Compute the partition function for this system. (b) Compute the
internal energy and the heat capacity. (c) What is the magnetization?

Answer: (a) The partition function takes the form ZN = (1∕N!)(Z1(tr))N ⋅
(Z1(mag))N , where Z1(tr) = V∕λ3T . Each atom has magnetic energy E(s) =
−(1∕2)sμB, where s = ±1. The magnetic partition function for a single atom is
Z1(mag) =

∑
s=±1 e−sβμB∕2 = 2 cosh

[
(βμB)∕2

]
. The partition function for the gas is

ZN = (1∕N!)
(
2V∕λ3T

)N coshN
[
(βμB)∕2

]
.

(b) The internal energy is given by

U = −
(
𝜕 lnZN∕𝜕β

)
= 3∕2NkBT − 1∕2NμB tanh

[
(βμB)∕2

]
.

The heat capacity is

CV,N =
(
𝜕U
𝜕T

)
V,N ,B

= 3
2
NkB + NkB (βμB∕2)

2 sech2
[
(βμB)∕2

]
.

(c) The magnetization is given byM = −(𝜕Φ∕𝜕B)T,N , where Φ is the free energy
this system (the translational part is like a Helmholtz free energy, a function of
T, V , and N , and the magnetic part is like a Gibbs free energy, a function of T , B,
and N). The free energy of the combined system doesn’t have a name so we call
it Φ. Then Φ = −kBT lnZN andM = − (𝜕Φ∕𝜕B)T,N = (1∕2)Nμ tanh

[
(βμB)∕2

]
.

5.3.2
Maxwell–Boltzmann Distribution

We consider a dilute semiclassical gas of N particles contained in a volume V .
We assume that the gas is in equilibrium and that the interaction energy between
particles is negligible compared to the kinetic energy of the particles. The particle
number density n(k) is defined (see Appendix D)

n(k1) = ⟨k1|ρ̂|k1⟩ = 1
(N − 1)!

(±)∑
k2 ,…,kN

⟨k1, k2,… , kN |ρ̂|k1, k2,… , k ,N ⟩
(5.36)

and the density operator ρ̂ is defined ρ̂ = exp(
∑N
j p̂

2
j∕(2m))∕Tr[exp(

∑N
j p̂

2
j∕

(2m))]. With some algebra we can write

n(k) = N
λ3T
V

exp
(
− ℏ2k2
2mkBT

)
. (5.37)

Note that n(k) is normalized to the number of particles so that
∑

k n(k) = N .
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Exercise 5.2

A single molecule has rotational kinetic energy Ĥrot = L̂2∕(2I), where L̂ is the
angular momentum operator and I is the moment of inertia of the molecule. The
rotational partition function, for a single particle, is given by Zrot

1 =
∑∞
l=0(2l +

1) exp[−βkBθl(l + 1)], where l is the angular momentum quantum number, 2l +
1 is the multiplicity of states with angular momentum l, and θR = ℏ2∕(2IkB) is
the rotational temperature. The COmolecule has a rotational temperature θCO =
2.8 K and atomic mass of MCO = 28. A semiclassical ideal gas, consisting of one
mole of CO molecules, is contained in a box of volume V = 1.0m3 and cooled
to a temperature of T = 3.0 K (assume the molecules remain in the gas phase
under these conditions). What fraction of the internal energy is associated with
the rotational degrees of freedom (a) at T = 3.0 K (b) at T = 300K?

Answer: The partition function for this gas is Z = (1∕N!)
(
V∕λ3T

)N (Zrot
1 )N . The

thermal wavelength is λT = h∕
√
2πmCOkBT , where mCO is the mass of a single

CO molecule. The Helmholtz free energy is A = −kBT lnZ = Atrans + Arot with
Atrans = −NkBT − NkBT ln

[
V∕(Nλ3T )

]
and Arot = −kBTN lnZrot

1 . The internal
energy is U = (𝜕βA∕𝜕β)V,N . The internal energy associated with translational de-
grees of freedom is Utrans = (3∕2)NkBT . The internal energy associated with ro-
tational degrees of freedom is Urot = (N∕Zrot

1 )
∑∞
l=0(2l + 1)kBθl(l + 1)e−βkBθl(l+1).

(a) For temperature T = 3.0 K, only the first few terms in the summations give
nonnegligible contributions, and we obtain Urot = 1.95NkB. The fraction of in-
ternal energy that is rotational is Urot∕(Urot + Utrans) = 0.30.
(b) For temperature T = 300K, Urot ≈ NkBT so Urot∕(Urot + Utrans) = 2∕3.

TheMaxwell Boltzmann distribution F(v) is the probability density to find a par-
ticle in the velocity interval v→ v+dv. We can obtain F(v) from n(k) by a change
of variables

∑
k
n(k) = V

(2π)3 ∫ dkn(k) = N
(2πmkBT )3∕2 ∫ d p exp

(
−

p2

2mkBT

)
= N

(
m

2πkBT

)3∕2

∫ dv exp
(
− mv2
2kBT

)
≡ N ∫ dvF(v) .

(5.38)

The Maxwell–Boltzmann distribution

F(v) =
(

m
2πkBT

)3∕2

∫ dv exp
(
− mv2
2kBT

)
(5.39)

is normalized to one so that ∫ dvF(v) = 1.
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5.4
Interacting Classical Fluids

For fluids at high enough temperature that quantum statistics do not play an im-
portant role, expressions for and calculation of the partition function can be sim-
plified, considerably [27, 61, 85, 134]. Let us assume that we have a classical fluid
consisting ofN particles with massm whose dynamics is determined by a Hamil-
tonian of the form Ĥ = T̂N + V̂ N , where

T̂N ({ p̂N}) =
N∑
i=1

p̂2i
2m

and V̂ N ({r̂N}) =
N(N−1)∕2∑
(i j)=1

V (r̂i j) , (5.40)

are the kinetic and potential energy operators, respectively, and r̂i j = r̂i − r̂ j is the
relative displacement operator of particles, i and j.
The partition function can be written

ZN (T ) = Tr(e−β(T̂N+V̂ N )) = Tr(e−βT̂N e−βV̂ N ) +O{β2[T̂N , V̂ N ]} , (5.41)

where O{…} denotes terms depending on the commutator

[T̂N , V̂ N ] = −iℏ∕(2m)
N∑
j=1

[p j ⋅ (∇r j V̂
N ) + (∇r j V̂

N ) ⋅ p j]

and on β2. If we neglect contributions from these terms in Eq. (5.41), the partition
function takes the form

ZN (T ) = Tr(e−β(T̂N+V̂ N )) ≈ Tr(e−βT̂N e−βV̂ N ) . (5.42)

By neglecting the commutator in Eq. (5.41), we neglect contributions due to the
noncommutivity of p̂ j and r̂ j and β2. Such terms, at high enough temperature,
can be neglected.
We can now compute the partition function. In the position basis it is

ZN (T ) = 1
N! ∫ dr1 … ∫ drN⟨r1,… , rN |e−βT̂N e−βV̂ N |r1,… , rN⟩

= 1
N! ∫ dr1 … ∫ drN⟨r1,… , rN |e−βT̂N |r1,… rN⟩e−βVN ({rN }) .

(5.43)

Next insert a complete set ofmomentum eigenstates and perform themomentum
integration. This gives

ZN (T ) = 1
N! ∫ dr1 … ∫ drN

∑
k1 ,…,kN

e−βT̂N ({k
N})e−βVN ({rN})

× |⟨r1,… , rN |k1,… , kN⟩|2 = 1
N!

1
λ3NT

QN (T, V ) , (5.44)
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where we have used the fact that |⟨r1,… , rN |k1,… , kN⟩|2 = V−N (see Ap-
pendix D) and

QN (T, V ) = ∫ dr1 … , ∫ drNe−βV
N ({rN}) (5.45)

is called the configuration integral.

5.4.1
Density Correlations and the Radial Distribution Function

One of the simplest quantities to compute is the internal energy, U(T, V,N). The
internal energy is just the average value of the Hamiltonian and can be written

U(T, V,N) = ⟨Ĥ⟩ = 3
2
NkBT + 1

2 ∫ dr1 dr2V (r12)nN2 (r1, r2) , (5.46)

where nN(2)(r1, r2) is the reduced two-body density matrix (see Appendix D). The
term (3∕2)NkBT is the kinetic contribution to the internal energy, and the re-
maining term is the contribution due to the interaction between the particles.
The expression for the internal energy simplifies considerably for systems

whose particles interact via spherically symmetric potentials, V (ri j) = V (ri j),
where ri j = |ri − r j| is the magnitude of the relative displacement. Then the two-
particle reduced density matrix takes the form nN2 (r1, r2) = n

N
2 (r12). If we change

the integration variables to relative, ri j , and center-of-mass, Ri j = (ri + r j)∕2,
coordinates and let nN2 (r12) = (N∕V )2gN2 (ri j), then we can integrate over the
center-of-mass coordinates and find

U(T, V,N) = 3
2
NkBT + 1

2
N2

V ∫ 4πr2 drV (r)gN2 (r) , (5.47)

where r = r12. The function gN2 (r) is called the radial distribution function. The
radial distribution function completely characterizes the behavior of a classical
fluid of spherically symmetric particles. It also has a direct physical interpretation.
The quantity (N∕V )g(r)4πr2 dr is the average number of particles in a spherical
shell of width r → r + dr at a distance r from any particle in the fluid.
The radial distribution function gN2 (r) is closely related to the density correla-

tion function Cnn(r) for the fluid, which is defined

Cnn(r) =
1
N ∫ dr′⟨n̂(r′ + r)n̂(r′)⟩ , (5.48)

where the density phase function is defined n̂(r) =
∑N
i=1 δ(r̂ i − r). In order to veri-

fy this relationship, it is useful to compute the Fourier transform Snn(k) of Cnn(r),
which is called the structure function. The structure function Snn(k) can be deter-
mined from neutron scattering experiments in which slow neutrons scatter from
atomic nuclei in a liquid. The angular dependence of the scattered neutrons is
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measured, and this information can be used to construct the structure function
of the liquid.
The structure function Snn(k) can be expressed in terms of the radial distribu-

tion function. First note that

Snn(k) =
1
N ∫ dreik⋅r ∫ dr′⟨n̂(r′ + r)n̂(r′)⟩ = 1

N

N∑
i=1

N∑
j=1

⟨eik⋅(r̂ i−r̂ j)⟩ , (5.49)

where we have made use of Eq. (5.48) and, in the last term, we have integrated
over r and r′. If we evaluate the average ⟨eik⋅(r̂i−r̂ j )⟩ in the canonical ensemble, we
find

Snn(k) =
1
N

1
QN (V, T )

N∑
i=1

N∑
j=1

∫ dr1 ⋯ ∫ drNeik⋅(r i−r j )e−βV (rN )

= 1
N

(
N + 1

QN (V, T )

N(N−1)∑
(i≠ j) ∫ dr1 ⋯ ∫ drNeik⋅(ri−r j )e−βV (rN )

)
= 1 + 1

N ∫ dr1 ∫ dr2eik⋅ri j nN2 (r1, r2) = 1 + N
V ∫ dr12eik⋅r12 gN2 (r12) .

(5.50)

The minimum value of the wavevector, k, is determined by the size of the box.
In the limit N → ∞ and V → ∞ with n = N∕V = constant, the length of the
wavevector can be zero.We can separate this contribution from the remainder of
the integral. We find

Snn(k) = 1 + nδ(k) + n ∫ dr12eik⋅r12 (gN2 (r12) − 1) . (5.51)

The integration over angles in Eq. (5.51) can be performed to finally give

Snn(k) = 1 + nδ(k) + 4πn
k ∫ r dr sin(kr)(gN2 (r) − 1) . (5.52)

The structure function can be measured in neutron scattering experiments, and
the term nδ(k) is the contribution due to coherent forward scattering.
In Figure 5.1 we show the structure function and the radial distribution func-

tion obtained from neutron scattering experiments on liquid 36Ar at 85K. The
radial distribution function goes to zero at about the hard-core radius of 36Ar, in-
dicating that no particles can penetrate the hard core. It has a maximum at about
the distance of theminimum of the attractive potential between nearest-neighbor
argon atoms in the liquid. The next peak is due to the high probability of finding
next nearest neighbors at that position, and so on.
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Figure 5.1 (a) The structure function,
S(k) = Snn(k), versus k (inÅ−1) for liquid
36Ar at 85\,K obtained from neutron scattering
experiments. The dots are data points. The

solid line is a best fit to the data. (b) The radi-
al distribution function, g(r), versus r (inÅ)
obtained from the data in (a). Reprinted, by
permission, from [219].

5.4.2
Magnetization Density Correlations

For the case of a fluid whose particles have spin and amagnetic moment, themag-
netization density operator m̂(r) and total magnetization operator M̂ are defined

m̂(r) = μ
N∑
j=1
ŝ j δ(r̂ j − r) , and M̂ = ∫ drm̂(r) = μ

N∑
j=1
ŝ j , (5.53)

respectively, where N is the number of particles, μ is the magnetic moment, ŝ j is
the spin operator for the jth particle, and r̂ j is the position operator for the jth
particle. If a magnetic induction field, B(r), is present, the total Hamiltonian can
be written

Ĥ =
N∑
i=1

p̂2i
2m

+
N(N−1)∕2∑
(i j)=1

V(r̂i j ; ŝi , ŝ j) − ∫ drm̂(r) ⋅ B(r) . (5.54)

The average magnetization, in the presence of the magnetic induction field is

⟨M⟩B = Tr(M̂e−βĤ )∕Tr(e−βĤ ) . (5.55)

If we let M̂α (α = x , y, z) denote the αth component of the magnetization oper-
ator M̂, then the (α, α′ ) component of the magnetic susceptibility matrix can be
written

χα,α′ =
(
𝜕⟨Mα⟩B
𝜕Bα′

)
T,N ,B=0

= β⟨(M̂α − ⟨M̂α⟩)(M̂α′ − ⟨M̂α′⟩)⟩ . (5.56)

Note that the susceptibility χα,α′ , as we have defined it, is a linear susceptibility
and is independent of the applied magnetic field. It contains information about
magnetic properties of the unperturbed equilibrium system.
Let us now introduce magnetization density fluctuations δm̂α(r) = m̂α(r) −⟨m̂α(r)⟩. Then the correlation function Cα,α′ (r1, r2) for magnetization density
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fluctuations at points r1 and r2 in the fluid can be written

Cα,α′ (r1, r2) = ⟨δm̂α(r1)δm̂α′ (r2)⟩ = ⟨δm̂α(r1 − r2)δm̂α′ (0)⟩
≡ Cα,α′ (r1 − r2) , (5.57)

where we have made use of the fact that the equilibrium correlation function, in
the absence of spatially varying external fields, will depend on the relative dis-
placement of two points in the fluid and not on their absolute position.
It is useful to introduce the Fourier transform of the correlation function, the

magnetic structure function Gα,α′ (k),

Gα,α′ (k) = ∫ dreik⋅rCα,α′ (r) =
1
V ∫ dr1 ∫ dr2eik⋅(r1−r2)⟨δm̂α(r1)δm̂α′ (r2)⟩

= 1
V

⟨δm̂α(k)δm̂α′ (−k)⟩ ,
(5.58)

where we have made use of the Fourier decomposition of spatially varying mag-
netic fluctuations δm̂α (r) = (1∕V )

∑
k e−ik⋅rδm̂α(k). From these results we see that

themagnetic susceptibility can bewritten in terms of the infinitewavelength com-
ponent of themagnetic structure factor χα,α′ = βVGα,α′ (k = 0) = βV ∫ drCα,α′ (r).
In Chapter 4, we found that the magnetic susceptibility becomes infinite as we

approach the critical point of a magnetic phase transition. Thus, near the criti-
cal point, the correlation function will have a large long-wavelength component,
indicating that long-range order has begun to occur.

5.5
Heat Capacity of a Debye Solid

In simple atomic crystals, the long-range attractive forces between atoms hold the
atoms of the crystal in place at some fixed lattice spacing, although the atoms can
undergo oscillations (vibrations) about their lattice positions. The short-range
repulsive forces between atoms make crystals virtually incompressible. While
the potential which governs the oscillations is anharmonic, to lowest approxima-
tion, in deriving the heat capacity, we can treat it as harmonic. If the crystal has
N atoms, it will have 3N degrees of freedom and the Hamiltonian can be written
in the form

Ĥ =
3N∑
i=1

p̂2i
2m

+
N(N−1)∕2∑

(i, j)
κi, j q̂i q̂ j , (5.59)

where pi and qi are the momentum and the displacement from the lattice site,
respectively, of the ith degree of freedom, m is the mass of the atom, and κi, j
contains information about interaction between neighboring atoms. Hamiltoni-
ans like the one in Eq. (5.59), can be transformed to normal mode coordinates
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(P̂1,… , P̂3N , Q̂1 ,… , Q̂3n ) via a canonical transformation and written in the form

Ĥ =
3N∑
α=1

P̂2α
2m

+
3N∑
α=1

mω2
α

2
Q̂2
α . (5.60)

The lattice now consists of a collection of independent harmonic oscillators that
correspond to sound waves or phonons on the lattice. The thermodynamic prop-
erties of such a lattice can be computed exactly [183]. However, Debye proposed
a very simple continuum approximation to the lattice that well describes the low-
temperature thermodynamic behavior of the lattice.
In this section we shall compute the heat capacity for a three-dimensional har-

monically coupled lattice using the continuum approximation first proposed by
Debye [10, 38, 40]. Consider a rectangular lattice with sides of lengths Lx , Ly,
and Lz . We will assume that the sound waves form standing waves with wave-
lengths 2Lx∕lx , 2Ly∕l y , and 2Lz∕lz in the x-, y-, and z-directions, respectively,
where lx , l y , and lz are integers (lx = 1, 2,… ,∞, etc.). The αth sound mode will
have a dispersion relation of the form

ω2
α = c

2
⎡⎢⎢⎣
(πlxα
Lx

)2

+

(
πlyα
L y

)2

+
(πlzα
Lz

)2⎤⎥⎥⎦ , (5.61)

where c is the speed of sound. The Hamiltonian operator takes the form

Ĥ =
3N∑
α=1

ℏωα
(
n̂α +

1
2
1̂
)

, (5.62)

where n̂α is the number operator for energy quanta (phonons) in the αth normal
mode. Let |nα⟩ be the eigenvector of the number operator, n̂α . Then n̂α |nα⟩ =
nα|nα⟩, where nα = 0, 1,… ,∞.
The partition function can be written

ZN (T ) = TrN (e−βĤ ) =
∞∑
n1=0

…
∞∑

n3N=0
e−β

∑3N
α=1 ℏωα(n̂α+

1
2 ) =

3N∏
α=1

e−βℏωα∕2

1 − e−βℏωα
.

(5.63)

The average energy is

⟨E⟩ = −
𝜕 lnZN
𝜕β

=
3N∑
α=1

ℏωα
2

+
3N∑
α=1

ℏωα
eβℏωα − 1

. (5.64)

Since the average energy can also bewritten ⟨E⟩= ⟨∑3N
α=1 ℏωα(n̂α+1∕2)⟩, compar-

ison with Eq. (5.64) shows that the average number of quanta in the αth phonon
mode is

⟨n̂α⟩ = 1
eβℏωα − 1

, (5.65)

which is Planck’s formula.
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The allowed values of ωα in Eq. (5.61) consist of discrete points in a three-
dimensional frequency space. The distance between points in the x-direction is
πc∕Lx , in the y-direction it is πc∕Ly , and in the z-direction it is πc∕Lz . The vol-
ume per point in frequency space is therefore (πc)3∕V , where V = LxLyLz is the
volume of the crystal. The number points per unit volume in frequency space
is V∕(πc)3 . The total number of allowed values of ωα less than some value ω is
given by (1∕8)(4πω3∕3)(V∕(πc)3), where (1∕8)(4πω3∕3) is the volume of 1∕8 of
a sphere of radius ω (the phonon frequency is positive). Thus, the number of al-
lowed frequencies in the range ω → ω + dω is given by

dν = V
2π2c3

ω3 dω . (5.66)

In general, there will be two transverse sound modes and one longitudinal sound
mode since crystals can sustain both longitudinal and transverse sound modes
(a fluid can only sustain longitudinal sound modes). The transverse and longitu-
dinal sound modes in a crystal propagate at different velocities, which we shall
denote as ct and cl , respectively. If the three different sound modes are taken into
account, the number of allowed frequencies dν in the interval, ω → ω + dω, is

dν = V
2π2

(
2
c3t

+ 1
c3l

)
ω2 dω . (5.67)

Since there is a minimum wavelength allowed on the lattice due to the finite spac-
ing of the atoms, there will be a cutoff frequency, ωD (the Debye frequency). We
can then determine the Debye frequency by relating it to the total number of
sound modes,

3N =
3N

∫
1

dν = V
2π2

(
2
c3t

+ 1
c3l

) ωD

∫
0

ω2 dω = V
2π2

(
2
c3t

+ 1
c3l

)
ω3
D

3
. (5.68)

If we solve for ω3
D, we find that the Debye frequency is given by

ω3
D = 18Nπ2

V

(
2
c3t

+ 1
c3l

)−1

. (5.69)

The density of states can be written

g(ω) = dν
dω

= Vω2

2π2

(
2
c3t

+ 1
c3l

)
= 9Nω2

ω3
D

. (5.70)

Once we are given the density of states, g(ω), the average energy is given by

⟨E⟩ = 1
2

ωD

∫
0

ℏωg(ω)dω +

ωD

∫
0

ℏωn(ω)g(ω)dω . (5.71)
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Figure 5.2 The solid line is the heat capacity curve
predicted by Debye theory. The dashed line is that
predicted for an Einstein solid. The circles and trian-
gles are experimental values for the heat capacity
of Al (TD = 390 K) and Cu (TD = 315K), respectively
(based on [38]).

We then find

⟨E⟩ = 9NℏωD

8
+ 9N
ω3
D

ωD

∫
0

ℏω3 dω
eβℏω − 1

. (5.72)

The heat capacity is

CN =
9NkB
ℏ2β2ω3

D

ωD

∫
0

dω
(βℏω)4eβℏω

(eβℏω − 1)2
=

9NkB
(ℏβωD)3

TD∕T

∫
0

dx x4ex
(ex − 1)2

, (5.73)

where the Debye temperature, TD, is defined TD = ℏωD∕kB. In the limit T → 0,
the heat capacity becomes approximately

CN ≈
9NkB

(ℏβωD)3

∞

∫
0

dx x4ex
(ex − 1)2

=
12NkBπ4T3

5T3
D

. (5.74)

These results are in good qualitative agreement with the experimentally observed
heat capacity of many solids at low temperature. We give two examples in Fig-
ure 5.2 where we have plotted the prediction of Debye theory and have compared
it to experimental results for aluminum and copper (using the appropriate Debye
temperatures for those substances). Experimentally, one finds that at high temper-
atures the heat capacity, CN , is roughly constant with CN ≈ 3NkB = 3𝔫R, where
𝔫 is the number of moles and R is the gas constant. However, as the temperature
approaches T = 0K, the heat capacity goes to zero as T3.
It is interesting to compare the density of states for an Einstein solid, a Debye

solid, and the density of states obtained from experiment on real solids. For the
Einstein solid, all phonon modes have a single frequency and therefore the den-
sity of states is g(ω) = 3Nδ(ω − ω0), where ω0 is the frequency of all the phonon
modes. In real solids, the phonon modes have a distribution of frequencies, and
this is more accurately taken into account by the Debye (continuum) theory. In
Figure 5.3a, we compare the density of states for the Einstein solid and the Debye
solid.
The density of states of solids can be measured using neutron scattering tech-

niques.Neutrons interact with the nuclei of atoms in the solid and are scattered by
phonons,which are the normalmodes of the atomic oscillations. In Figure 5.3bwe
show the density of states for aluminum. The low-frequency contribution looks
like the Debye result, but at high frequencies the Debye density of states is com-
pletely inadequate.
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Figure 5.3 (a) Plots of the density of states of Einstein and Debye solids. (b) The density of
states for aluminum, obtained from neutron scattering experiments. Reprinted, by permission,
from [194].

5.6
Order–Disorder Transitions on Spin Lattices

One of the simplest systems that exhibits a phase transition is the Ising system [89]
which consists of a lattice of N spin-1∕2 objects with magnetic moment μ. Each
lattice site can interact with the magnetic fields of their nearest neighbors and
with any external appliedmagnetic fields that might be present. The Hamiltonian
for an Ising lattice can be written

H =
∑
{i j}

𝜖i j si s j − μB
N∑
i=1
si , (5.75)

where
∑
i j denotes the sum over nearest-neighbor pairs i j (onemust be careful to

count each pair only once), 𝜖i j is the magnetic interaction energy between near-
est neighbors i and j, si is the z-component of spin at the ith lattice site, and B is
the external magnetic field. For spin-1∕2 objects, si = +1 (−1) if the spin of site
i is oriented in the positive (negative) z-direction. There is no kinetic energy in
Eq. (5.75).TheHamiltonian only contains information about spin orientation and
the spatial distribution of lattice sites. If 𝜖i j < 0, then for B = 0 the lattice will
have its lowest energy when all the lattice sites have spin up or all the lattice sites
have spin down (ferromagnetic), both cases being equally probable. If B ≠ 0, then
the configuration in which all lattice sites are oriented with spin up will be ener-
getically favored. Similarly, if 𝜖i j > 0, then for B = 0 the configuration in which
neighboring spins are oriented opposite to one another will be favored (antiferro-
magnetic).
The partition function for this spin lattice can be written

ZN (T ) =
∑

all config
exp

(
−β

∑
{i j}

𝜖i j si s j + βμB
N∑
i=1
si

)
, (5.76)

where
∑

all config denotes the sum over all 2N possible different configurations of
spin on the lattice. The partition function introduces an additional influence, that
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of thermal energy, kBT .While themagnetic interaction energywill cause the spins
on the lattice to become ordered, the thermal energy, kBT , will tend to randomize
the spins on the lattice. It is these two competing influences that lead to an order–
disorder phase transition on the spin lattice. At low temperature, the lattice will
be ordered. As we raise the temperature, at some point the order disappears and
the spins become randomly oriented.
The system described by the partition function (5.76) was originally used by

Ising [89] as amodel for ferromagnetism, but it also has been used to describe lat-
tice gases and binary alloys. The model also has applications outside of physics. It
has been used to model learning [36] and information storage [29] in neural net-
works. Inmolecular biology, it has been used tomodel cooperative conformation-
al changes due to ligand binding in macromolecules [72], and heat denaturation
of DNA [35]. It has been used in biology to model cultural isolation [91].
The Ising model can be solved exactly for the case of lattices with one or two

space dimensions, and analytic expressions for its thermodynamic properties can
be found for those cases. However, no one has ever succeeded in solving it analyt-
ically in three dimensions. In one dimension it does not exhibit a phase transition
at finite temperature, but in two dimensions it does. In one dimension the lattice
does not have enough nearest neighbors for the ordering effects of the interaction
energy to compete effectively with the disordering thermal energy. However, for
two or more spatial dimensions it does. The Ising model was first solved in two
dimensions by Onsager [96, 97, 156]. It is one of the few exactly soluble models
which exhibit a phase transition.
In this section, we will first obtain exact expressions for the thermodynamic

properties of a one-dimensional Ising lattice. The one-dimensional lattice does
not exhibit a phase transition at finite temperature. However, the method of so-
lution contains some ideas that are used to solve the much more difficult case of
a two-dimensional lattice. Because of space constraints, we will not attempt to
solve the two-dimensional case but we will give the exact expression for the spe-
cific heat for a two-dimensional square lattice and show how the phase transition
occurs for this system. In this section, we will also compute the thermodynamic
properties of an Ising lattice with d-dimensions in the mean field approximation.
Themean field approximation of the d-dimensional lattice does have a phase tran-
sition at finite temperature.

5.6.1
Exact Solution for a One-Dimensional Lattice

Let us consider a one-dimensional periodic lattice that consists of N lattice sites
evenly spaced.Wewill assume that all nearest neighbors have the same interaction
energy, 𝜖i j = −𝜖, so that the configuration with lowest energy is one in which the
spins are totally aligned. The periodicity of the lattice is imposed by assuming that
si+N = si . The total energy for a given configuration, {si}, is

E{si} = −𝜖
N∑
i=1
si si+1 − μB

N∑
i=1
si . (5.77)
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The partition function can be written

ZN (T, B) =
∑
s1=±1

⋯
∑
sN=±1

exp

{
β

N∑
i=1

[
𝜖si si+1 +

1
2
μB(si + si+1)

]}
, (5.78)

wherewe have used the fact that
∑N
i=1 si = 1∕2

∑N
i=1(si + si+1) for a periodic lattice.

It is now convenient to introduce a 2 × 2 matrix,

P =

(
eβ(𝜖+μB) e−β𝜖

e−β𝜖 eβ(𝜖−μB)

)
, (5.79)

whose matrix elements are defined as⟨si|P|si+1⟩ = eβ[𝜖si si+1+
1
2 μB(si+si+1)] . (5.80)

The partition function may then be written

ZN (T, B) =
∑
s1=±1

⋯
∑
sN=±1

⟨s1|P|s2⟩⟨s2|P|s3⟩⋯ ⟨sN |P|s1⟩
=

∑
s1=±1

⟨s1|PN |s1⟩ = Tr(P
N
) = λN+ + λN− = λN+

[
1 +

(
λ−
λ+

)N
]

,

(5.81)

where λ± are the eigenvalues of thematrix P.We shall use the convention λ+ > λ−.
The eigenvalues of P are easily found to be

λ± = eβ𝜖
[
cosh(βμB) ±

√
cosh2(βμB) − 2e−2β𝜖 sinh(2β𝜖)

]
. (5.82)

In the limit N →∞, only the largest eigenvalue, λ+, contributes to the thermody-
namic quantities. This is easily seen if we note that the Gibbs free energy per site
is

g(T, B) = lim
N→∞

1
N
GN (T, B) = −kBT lim

N→∞

1
N

lnZn(T, B) = −kBT ln λ+ .

(5.83)

In Eq. (5.83), we have used the fact that limN→∞(λ−∕λ+)N = 0. Thus, the Gibbs
free energy per site is

g(T, B) = −𝜖 − kB ln
[
cosh(βμB) +

√
cosh2(βμB) − 2e−2β𝜖 sinh(2β𝜖)

]
.

(5.84)

The order parameter is given by

⟨s⟩ = −
(

𝜕g
𝜕μB

)
T
=

sinh(βμB)√
cosh2(βμB) − 2e−2β𝜖 sinh(2β𝜖)

. (5.85)

From Eq. (5.85) we see that the one-dimensional Ising model cannot exhibit
a phase transition because when B → 0 the order parameter also goes to zero.
Hence, no spontaneous nonzero value of the order parameter is possible.
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5.6.2
Mean Field Theory for a d-Dimensional Lattice

We can obtain analytic expressions for the thermodynamic properties of a d-
dimensional Ising lattice using the mean field approximation first introduced by
Weiss [209]. In themean field approximation, theHamiltonian of a d-dimensional
spin lattice with N lattice sites can be written

Ĥ = −1
2

N∑
i=1
ν𝜖⟨s⟩si − μB N∑

i=1
si = −

N∑
i=1
E(𝜖, B)si , (5.86)

where 𝜖 is the coupling constant, ν is the number of nearest-neighbor spins, and
E(𝜖, B) = (1∕2)ν𝜖⟨s⟩+ μB. The factor of 1∕2 ensures that we don’t count the same
pair of spins twice. The quantity ⟨s⟩≡ ⟨si⟩ is the average spin per site. The quantity
ν𝜖⟨s⟩si is an average magnetic interaction energy between site i and its nearest
neighbors, assuming that the neighbors all have spin ⟨s⟩. As we shall show below,
the average spin per site, ⟨s⟩, must be determined in a self-consistent manner.
The partition function can be written

ZN =

( ∑
si=±1

eβEsi
)N

= (2 cosh(βE))N . (5.87)

The Gibbs free energy per site is

g(𝜖, B) = −kBT lim
N→∞

( 1
N

lnZN
)
= −kBT ln[2 cosh(βE)] . (5.88)

The probability P(si) that site i has spin si is

P(si) =
eβEsi∑

si=±1 e
βEsi

= eβEsi
2 cosh(βE)

. (5.89)

Note that the probability P(si ) depends on ⟨s⟩, which must be determined self-
consistently.
The average magnetization of the lattice is given by

⟨M⟩ = Nμ⟨s⟩ , (5.90)

where

⟨s⟩ = ∑
si=±1 sie

βEsi∑
s j=±1 e

βEs j
= tanh(βE) = tanh

[
β
(1
2
ν𝜖⟨s⟩ + μB)] . (5.91)

The magnetization is the order parameter for the spin lattice. If B = 0, the mag-
netization will be zero for the high-temperature paramagnetic phase of the lattice
(randomly ordered spins) and it will be nonzero at lower temperatures where the
spins have spontaneously aligned.
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We can determine the critical temperature, Tc, at which the lattice starts to
become ordered as temperature is lowered (the Curie point) from the expression
for the average spin per site, ⟨s⟩. Let us write ⟨s⟩ for the case B = 0;

⟨s⟩ = tanh
(1
2
βν𝜖⟨s⟩) = tanh

(
ν𝜖⟨s⟩
2kBT

)
. (5.92)

We must solve Eq. (5.92) for ⟨s⟩. This can be done graphically by plotting f1 ≡⟨s⟩ versus ⟨s⟩ and f2 ≡ tanh(α⟨s⟩) versus ⟨s⟩ on the same graph. The solution to
Eq. (5.92) is given by those points where the two curves cross – that is, where
f1 = f2. In Figures 5.4a and 5.4b, we plot f1 and f2 versus ⟨s⟩ for α < 1 and α > 1,
respectively. For the case α < 1, there is only one crossing point and it is at ⟨s⟩ = 0.
For α > 1, there are three crossing points, at ⟨s⟩ = 0 and at ⟨s⟩ = ±s0. The free
energy per site for these various cases is

g(𝜖, 0) =

{
−kBT ln 2 if ⟨s⟩ = 0 ,
−kBT ln

[
2 cosh

(
1
2
βν𝜖s0

)]
if ⟨s⟩ = ±s0 .

(5.93)

Thus, the values, ⟨s⟩=±s0 (when they are solutions to Eq. (5.92)) describe possible
states of thermodynamic equilibrium since they minimize the free energy. The
transition point (critical point) occurs at α = 1 in Figure 5.4 and therefore when
ν𝜖∕(2kBT) = 1. Thus, the critical temperature in the mean field approximation is
T = Tc = ν𝜖∕(2kB). In Figure 5.5a, we plot the order parameter ⟨s⟩, versus T∕Tc.
We see that mean field theory predicts a phase transition at a finite temperature

for a d-dimensional lattice. This does not agree with our exact result for the case
d = 1 (cf. Section 5.6.1) where we found no phase transition at finite temperature.
Mean field theory gives too high an estimate of the critical temperature for spatial
dimensions, d≤ 3. It gives good estimates for d≥ 4which is not of physical interest
but is of mathematical interest.
Let us next examine the behavior of the heat capacity in the neighborhood of

the critical temperature. The internal energy for B = 0 is

U = − 1
ZN

𝜕ZN
𝜕β

= −1
2
Nν𝜖⟨s⟩2 . (5.94)

The heat capacity is

CN =
(
𝜕U
𝜕T

)
N
= −kBβ2

(
𝜕U
𝜕β

)
N
= NkBν𝜖β2⟨s⟩(𝜕⟨s⟩

𝜕β

)
N

. (5.95)

Figure 5.4 Plots of f1 ≡ ⟨s⟩ versus ⟨s⟩ and f2 ≡ tanh(α⟨s⟩) versus ⟨s⟩. (a) α < 1. (b) α > 1.
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Figure 5.5 (a) A plot of the order parameter, ⟨s⟩, versus the reduced temperature, T∕Tc.
(b) A plot of the heat capacity, CN , as a function of temperature in the neighborhood of the
critical point.

But (
𝜕⟨s⟩
𝜕β

)
N
= sech2

(
β ν𝜖
2
⟨s⟩) [

ν𝜖
2
⟨s⟩ + β ν𝜖

2

(
𝜕⟨s⟩
𝜕β

)
N

]
(5.96)

so (
𝜕⟨s⟩
𝜕β

)
N
=

ν𝜖⟨s⟩
3 cosh2

(
β ν𝜖

2
⟨s⟩) − βν𝜖

. (5.97)

The heat capacity finally takes the form

CN =
NkBβ2ν2𝜖2⟨s⟩2

2 cosh2
(
β ν𝜖

2

)
− βν𝜖

=
2NkB⟨s⟩2(Tc∕T )2(

cosh2(⟨s⟩Tc∕T ) − Tc∕T
) . (5.98)

In Figure 5.5b, we plot the heat capacity as a function of temperature. We see that
the heat capacity has a finite jump at the critical temperature. It reaches a maxi-
mum value of 3NkB at T = Tc.
The final quantity we wish to compute is the magnetic susceptibility, χT,N (B).

The magnetic susceptibility is defined as

χT,N (B) =
(
𝜕⟨M⟩
𝜕B

)
T,N

= Nμ
(
𝜕⟨s⟩
𝜕B

)
T,N

. (5.99)

From (5.91) we can write(
𝜕⟨s⟩
𝜕B

)
T,N

= sech2
(
β ν𝜖
2
⟨s⟩ + βμB) [

β ν𝜖
2

(
𝜕⟨s⟩
𝜕B

)
T,N

+ βμ
]

(5.100)

or (
𝜕⟨s⟩
𝜕B

)
T,N

=
2βμ

2 cosh2
(
β ν𝜖

2
⟨s⟩ + βμB) − βν𝜖

. (5.101)

The magnetic susceptibility, χT,N (B), is then given by

χT,N (B) =
2βNμ2

2 cosh2
(
β ν𝜖

2
⟨s⟩ + βμB) − βν𝜖

. (5.102)
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The magnetic susceptibility in the limit B = 0 is

χT,N (0) =
2βNμ2

2 cosh2
(
β ν𝜖

2
⟨s⟩) − βν𝜖

=
2Nμ2

ν𝜖
(Tc∕T )

cosh2(⟨s⟩Tc∕T ) − Tc∕T
,

(5.103)

with ⟨s⟩ given by Eq. (5.92). Examination of Eq. (5.103) shows that the magnetic
susceptibility has an infinite jump at the critical point.
The results we have obtained in this section for the thermodynamic properties

of a spin lattice in the neighborhood of the phase transition are qualitatively simi-
lar to the results we obtained in Chapter 4 using mean field theories. Using statis-
ticalmechanics to obtain these results allows us to compute various constants that
appear in the thermodynamic expressions in terms ofmicroscopic interaction en-
ergies and magnetic moments. As we shall see in subsequent sections, where we
give some exact results for the two-dimensional spin lattice and use renormal-
ization theory, mean field theory gives a rough qualitative picture of the phase
transition, but it is not quantitatively correct.

5.6.3
Mean Field Theory of Spatial Correlation Functions

Let us now use a version of Ginzburg–Landau mean field theory to write a phe-
nomenological expression for the partition function of a spin lattice

ZN (T ) =
∑
{ml}

e−VΦ(ml) , (5.104)

where Φ(ml) is the free energy density of the system, e−VΦ(ml) is proportional to
the probability to find the lattice in configuration {ml}, and the summation is over
all possible configurations of the lattice. We assume that, at temperature T > Tc,⟨ml⟩ = 0 and Φ(ml)must be an even function of ml.
If the lattice is very large, we can let the discrete spatial variation of the local

magnetization density become continuous so mα → m(r). For small fluctuations
away from equilibrium we can write

Φ{δm(r)} = φ(T ) + 1
2
C1(T ) ∫

V

dr(δm(r))2

+ 1
2
C2(T ) ∫

V

dr(∇δm(r)) ⋅ (∇δm(r)) +… , (5.105)

where φ(T ) is the nonmagnetic free energy density. Let us next note that

∫
V

dr(δm(r))2 = 1
V

∑
k
δm(k)δm(−k) , (5.106)
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where δm(−k) = δm∗(k) and

∫
V

dr(∇δm(r)) ⋅ (∇δm(r)) = 1
V

∑
k
k2δm(k)δm(−k) . (5.107)

The free energy can then be written

Φ{δm(k)} = φ(T ) + 1
V

∑
k
(C1(T ) + k2C2(T ))δm(k)δm(−k) . (5.108)

We can use this free energy to obtain the probability for a fluctuation δm(k) to
occur. It is

P(δm(k)) = C exp
[
−1
2
(
C1(T ) + k2C2(T )

) |δm(k)|2] , (5.109)

where C is a normalization constant. Given the probability density in Eq. (5.109),
we can compute the static structure function. We obtain

G(k) =
∞

∫
∞

d|δm(k)||δm(k)|2P(δm(k)) = 1
C1 + C2k2

. (5.110)

The static susceptibility is given by

χ = βVG(k = 0) =
βV
C1

. (5.111)

Near a phase transition, the susceptibility behaves as χ ≈ (T − Tc)−1. Therefore,
C1 ≈ (T − Tc).
The static correlation function is given by

C(r) = 1
V

∑
k
G(k)e−ik⋅r = ∫

dk
(2π)3

e−ik⋅r(
C1 + C2k2

) = 1
4πC2r

e−r
√
C1∕C2 .

(5.112)

The correlation function has a correlation length ξ ≈
√
C2∕C1. Since C1 ∼ (T −

Tc) near a critical point, the correlation length ξ ≈
√
C2∕(T − Tc) goes to infinity

as (T − Tc)−1∕2 as we approach a critical point. Therefore, at the critical point the
spatial correlations between fluctuations extend across the entire system.

5.6.4
Exact Solution to Ising Lattice for d = 2

The two-dimensional Ising model is one of the simplest systems that exhibit
a phase transition and one of the few for which the thermodynamic properties
can be obtained exactly [156, 183, 186]. Although we will not derive the exact
solution here, we will write the partition function and then give the exact result
for the heat capacity.
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We consider a planar lattice of N spin-1∕2 objects with magnetic moment μ.
A planar lattice is one that can be laid out flat in a two-dimensional plane without
any bonds intersecting (a lattice with periodic boundary conditions is not planar).
Each lattice site can interact with themagnetic fields of its nearest neighbors. The
Hamiltonian for a two dimensional planar lattice can be written

H = −
∑
{i, j}

J(si s j − 1) , (5.113)

where {i, j} denotes the sum over nearest neighbors, i and j, J is the magnetic in-
teraction energy between nearest neighbors, and s j is the z-component of spin at
the jth lattice site. The factor,−1, merely shifts the zero point of energy. The quan-
tity s j = +1(−1) if the spin of site j is oriented in the positive (negative) direction.
The partition function can be written

ZN (T ) =
∑
a.c .

exp

(∑
(i, j)
K(si s j − 1)

)
= e−NnnK

∑
s1=±1

…
∑
sN=±1

∏
(i, j)

eKsis j

(5.114)

where K = β J ,
∑
a.c . denotes the sum over all 2N possible configurations of spin

on the lattice, and Nnn is the number of nearest neighbor pairs. The sum
∑

(i, j)
and product

∏
(i, j) are taken only over nearest neighbor pairs. The mathematics

involved in obtaining expressions for thermodynamic properties of the planar lat-
tice is challenging. We only give the results here.
For an infinite square 2D planar lattice, the specific heat (heat capacity per lat-

tice site) is

c(T ) = 2
π
kBK2 coth2(2K)

{
2K (κ) − 2E(κ)

−2sech2(2K)
[π
2
+ (2 tanh(2K) − 1)K (κ)

]}
(5.115)

where κ = 2 sinh(2K)∕ cosh2(2K) and K (κ) (E(κ)) is the complete elliptic integral
of the first kind (second kind) [23]. The complete elliptic integral of the first kind
has a singularity at κ = 1 and the phase transition occurs at this point. The tem-
perature at which the phase transition occurs is therefore given by the condition

κc =
2 sinh(2Kc)
cosh2(2Kc)

= 1 . (5.116)

This gives a critical temperatureTc= 2.269 J∕kB. In Figure 5.6a, we plot the specif-
ic heat as a function ofK (note that K is proportional to the inverse temperature).
Ising-like transitions have been measured in the two-dimensional Ising-like

anti-ferromagnets, K2CoF4 and Rb2CoF4. These substances behave like two-
dimensional spin systems because they consist of strongly coupled antiferromag-
netic CoF2 planes separated by weakly coupled planes containing the remaining
molecules. In Figure 5.6b, we show two measurements of the heat capacity of
Rb2CoF4. We see the characteristic Ising-like singularity in the heat capacity.
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Figure 5.6 (a) The specific heat for the 2D pla-
nar Ising lattice, as a function of K . The phase
transition occurs at Kc = 1∕2.269 = 0.4407.
(b) The heat capacity of Rb2CoF4 (given in ar-

bitrary units) as a function of temperature T
(measured in kelvin). Two sets of experimen-
tal data are shown. Reprinted, by permission,
from [88].

5.7
Scaling

As we approach the critical point, the distance over which fluctuations are corre-
lated approaches infinity and all effects of the finite lattice spacing are wiped out.
There are no natural length scales left. Thus we might expect that, as we change
the distance from the critical point (e. g., by changing the temperature), we do not
change the form of the free energy but only its scale. The idea of scaling underlies
all critical exponent calculations [179, 193]. To understand scaling, we must first
introduce the concept of a homogeneous function.

5.7.1
Homogeneous Functions

A function F(λx) is homogeneous if, for all values of λ, we obtain

F(λx) = g(λ)F(x) . (5.117)

The general form of the function g(λ) can be found easily. We first note that

F(λμx) = g(λμ)F(x) = g(λ)g(μ)F(x) (5.118)

so that

g(λμ) = g(λ)g(μ) . (5.119)

If we take the derivative with respect to μ, we find

𝜕

𝜕μ
g(λμ) = λg′(λμ) = g(λ)g′ (μ) , (5.120)

where g′(μ) ≡ dg(μ)∕dμ. We next set μ = 1 and g′(1) = p. Then

λg′(λ) = pg(λ) . (5.121)
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If we integrate from 1 to λ and note that g(1) = 1, we find g(λ) = λp . Thus,

F(λx) = λpF(x) (5.122)

and F(x) is said to be a homogeneous function of degree p. In Eq. (5.122), if we let
λ = x−1, we obtain

F(x) = F(1)xp . (5.123)

Thus, the homogeneous function F(x) has power-law dependence on its argu-
ments.
Let us now consider a homogeneous function of two variables f (x , y). Such

a function can be written in the form

f (λpx , λq y) = λ f (x , y) (5.124)

and is characterized by two parameters, p and q. It is convenient to write f (x , y)
in another form. We will let λ = y−1∕q . Then

f (x , y) = y1∕q f
(

x
yp∕q

, 1
)

, (5.125)

and we see that the homogeneous function, f (x , y), depends on x and y only
through the ratio x∕yp∕q aside from a multiplicative factor. We can now apply
these ideas to thermodynamic quantities near the critical point.

5.7.2
Widom Scaling

When a phase transition occurs in a thermodynamic system, singular behavior
occurs in some thermodynamic response functions, and the nature of the singu-
larity can be quantified in terms of the critical exponents. Widom [212] obtained
relations between different critical exponents by assuming that the “singular” part
of the free energy scales.Wewill usemagnetic systems to illustrateWidomscaling
and we will assume that a magnetic induction field, B, is present.
Let us write the free energy per lattice site of a magnetic system in terms of

a regular part, gr(T, B), that does not change in any significantway as we approach
the critical point, and a singular part, gs(ε, B), that contains the important singular
behavior of the system in the neighborhood of the critical point. Then

g(T, B) = gr(T, B) + gs(ε, B) , (5.126)

where ε = (T − Tc)∕Tc and Tc is the critical temperature.
We shall assume that the singular part of the free energy is a generalized homo-

geneous function of its parameters,

gs(λpε, λqB) = λgs(ε, B) . (5.127)
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We now write the free energy as a function of the magnitude of B. For the sys-
tems considered here, its direction does not play an important role. The critical
exponents can be expressed in terms of p and q.
Let us first find an expression for the critical exponent β, which quantifies the

behavior of the order parameter in the neighborhood of the critical point, and is
defined (see Eq. (4.87))

M(ε, B = 0) ∼ (−ε)β . (5.128)

If we differentiate Eq. (5.127) with respect to B, we obtain

λqM(λpε, λqB) = λM(ε, B) . (5.129)

If we next let λ = (−ε)−1∕p and set B = 0, we obtain

M(ε, 0) = (−ε)(1−q)∕pM(−1, 0) . (5.130)

Thus,

β =
1 − q
p

(5.131)

and we have obtained a relation between the critical exponent β andWidom scal-
ing exponents p and q.
Let us next determine the exponent δ (the degree of the critical isotherm),

which is defined (see Eq. (4.86)) as

M(0, B) = |B|1∕δsignB . (5.132)

If we set ε = 0 and λ = B−1∕q in Eq. (5.129), we obtain

M(0, B) = B(1−q)∕qM(0, 1) . (5.133)

Thus,

δ =
q

1 − q
(5.134)

and we related the critical exponent δ to the Widom scaling exponent q.
The magnetic susceptibility is obtained from the thermodynamic relation (see

Eq. (4.89))

χ = −
(
𝜕2g
𝜕B2

)
T
∼

{
(−ε)−γ′ , T < Tc ,
(ε)−γ , T > Tc .

(5.135)

By differentiating Eq. (5.129) twice with respect to B, we can write

λ2qχ(λpε, λqB) = λχ(ε, B) . (5.136)

If we now set B = 0 and let λ = (ε)−1∕p , we find

χ(ε, 0) = ε(1−2q)∕pχ(1, 0) . (5.137)
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Thus, the critical exponent for the susceptibility is

γ =
2q − 1
p

, (5.138)

and we have related the critical exponent γ to theWidom scaling exponents p and
q. By a similar calculation, we find that γ = γ′.
The heat capacity at constant B is given by (see Eq. (4.88))

CB = −T
(

𝜕2g
𝜕T2

)
B
∼ (ε)−α . (5.139)

From Eq. (5.127), we obtain

λ2pCB(λpε, λqB) = λCB(ε, B) . (5.140)

If we set B = 0 and λ = (ε)−1∕p , we find

CB(ε, 0) = ε(1−2p)∕pCB(1, 0) , (5.141)

and therefore

α = 2 − 1
p

(5.142)

and the critical exponent α is related to theWidomscaling exponent p. By a similar
calculation we find α = α′.
In Eqs. (5.131), (5.134), (5.138), and (5.142), we have obtained the four critical

exponents, α, β, γ, and δ, in terms of the two Widom scaling exponents p and q.
If we combine Eqs. (5.131), (5.134), and (5.138), we find

γ′ = γ = β(δ − 1) . (5.143)

From Eqs. (5.131), (5.134), and (5.142) we find

α + β(δ + 1) = 2 . (5.144)

Thus, theWidom scaling assumption allows us to obtain exact relations between
the critical exponents. These relations agree with mean field theory (α = 0, β =
1∕2, δ = 3, γ = 1) as one can easily check. They also agree with experimentally
obtained values of the critical exponents which generally differ from mean field
results (cf. Table 5.1).
For later reference, it is useful to express p and q in terms of the critical expo-

nents. We find

p = 1
β

1
(δ + 1)

(5.145)

and

q = δ 1
(δ + 1)

. (5.146)

The scaling property for systems near the critical point has been verified experi-
mentally for fluids [152] and magnetic systems [193].
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5.7.3
Kadanoff Scaling

Kadanoff [93] showed how to use the idea of scaling to obtain important infor-
mation about the Ising model. Let us consider a d-dimensional Ising system with
nearest-neighbor coupling (Γ nearest neighbors). The Hamiltonian is

H{S} = −K
ΓN∕2∑
(i j)

SiS j − B
N∑
i=1
Si , (5.147)

where N is the number of lattice sites and Si = ±1 is the spin on lattice site i.
We will divide the lattice into blocks of lattice sites with block edges of length
La, where a is the distance between lattice sites (cf. Figure 5.7a). We choose L so
that La ≪ ξ where ξ is the correlation length of spin fluctuations on the lattice
(cf. (5.112)). The total number of spins in each block is Ld . The total number of
blocks is NL−d . The total spin in block I is

S′I =
∑
i∈I
Si . (5.148)

Since L is chosen so that La≪ ξ, the spins in each block will be highly correlated
and it is likely that they will be aligned to some extent. In view of this, it is useful
to define a new spin variable, SI, through the relation

S′I = ZSI , (5.149)

where SI = ±1, Z = Ly and y is a parameter to be determined.
Spins interact with nearest-neighbor spins, so blocks should also interact with

nearest-neighbor blocks. Thus, the block Hamiltonian will be of the form

H{SL} = −KL

ΓNL−d∕2∑
(IJ)

SISJ − BL

NL−d∑
I=1

SI , (5.150)

where KL is the new effective interaction between nearest-neighbor blocks. The
blockHamiltonian looks exactly like the siteHamiltonian except that all quantities

Figure 5.7 (a) Decomposition of a square lattice into square blocks whose sides have length
La = 4a. (b) A hyperbolic fixed point with its eigencurves and the flow of points in the neigh-
borhood of the fixed point.
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are rescaled. Therefore, we expect the free energy per block, g(εL , BL), to have the
same functional form as the free energy per site, g(ε, B). Since there are Ld sites
per block, we have

g(εL, BL) = Ldg(ε, B) . (5.151)

If we rescale our system and describe it in terms of blocks rather than sites, we
reduce the effective correlation length (measured in units of La) and thereforewe
move farther away from the critical point. Thus, the correlation lengthwill behave
as

ξL(εL, BL) = L−1ξ(ε, B) . (5.152)

Since rescalingmoves us away from the critical point, the temperature ε andmag-
netic field Bmust also rescale. We assume that

εL = εLx , (5.153)

where x is a positive parameter. Similarly,

B
N∑
i=1
Si = B

NL−d∑
I=1

∑
i∈I
Si = B

NL−d∑
I=1

S′I = BZ
NL−d∑
I=1

SI , (5.154)

so that

BL = BZ = LyB . (5.155)

Equation (5.150) now becomes

g(Lxε, LyB) = Ldg(ε, B) . (5.156)

If we compare Eqs. (5.156) and (5.127), we find x = pd and y = qd. Thus,

q < 1 (5.157)

in agreement with experiment.
The Kadanoff view of scaling allows us to introduce two new critical exponents

which are associated with the spatial correlations of spin fluctuations in the sys-
tem. The block correlation function is defined

C(rL, εL) = ⟨SISJ⟩ − ⟨SI⟩⟨SJ⟩ , (5.158)

where rL is the distance between blocks I and J in units of La. We can write
Eq. (5.158) as

C(rL, εL) = Z−2[⟨S′IS′J⟩ − ⟨S′I⟩⟨S′J⟩] (5.159)

= Z−2
∑
i∈I

∑
j∈J

[⟨SiS j⟩ − ⟨Si⟩⟨S j⟩] (5.160)

= Z−2(Ld)2[⟨SiS j⟩ − ⟨Si⟩⟨S j⟩] = Z−2(Ld)2C(r, ε) , (5.161)
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where r is the distance between sites i and j on different blocks. The distances rL
and r are related by the expression

rL = L−1r , (5.162)

and we write

C(L−1r, εLx) = L2(d−y)C(r, ε) . (5.163)

If we choose L = r∕a, the correlation function takes the form

C(r, ε) =
( r
a

)2(y−d)
C
[
a , ε

( r
a

)x]
. (5.164)

We can now introduce two new exponents for the correlation function. We first
define a critical exponent, ν, for the correlation length as

ξ ∼ (T − Tc)−ν . (5.165)

Formean field theories ν = 1∕2. From Eq. (5.112) we see that the correlation func-
tion away from the critical point depends on r and ε in the combination r∕ξ = rεν .
In Eq. (5.164) the correlation function depends on r and ε in the combination εrx .
Thus,

x = pd = ν−1 . (5.166)

At the critical point, ε = 0 and the correlation function varies as

C(r, 0) ∼ (r)2(y−d) . (5.167)

In three dimensions, we expect the correlation function at the critical point to
behave as

C(r, 0) ∼
(1
r

)1+η
, (5.168)

where η is another new exponent. Formean field theories, η = 0. In d-dimensions,
C(r, 0) varies as

C(r, 0) =
(1
r

)(d−2+η)
(5.169)

and we can make the identification

(d − 2 + η) = 2(d − y) = 2d(1 − q) . (5.170)

Thus, the exponents for the correlation function can be written in terms of the
exponents for the thermodynamic quantities we have already considered. From
Eqs. (5.142) and (5.166) we find

ν = 2 − α
d

(5.171)

and from Eqs. (5.146) and (5.170) we find,

η = 2 − d
(
δ − 1
δ + 1

)
= 2 −

dγ
2β + γ

. (5.172)

Thus, Kadanoff scaling allows us to obtain two new critical exponents and new
identities between all the exponents.
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5.8
Microscopic Calculation of Critical Exponents

The Kadanoff picture of scaling was given firmmathematical foundation byWil-
son [215], who developed a technique for computing the critical exponentsmicro-
scopically.We shall outlineWilson’s procedure for the case of spin systems whose
spatial lattice structure is self-similar, and then we apply it to a self-similar trian-
gular planar lattice (see also [13, 59, 128, 179, 216, 217]). The use of self-similar
lattices provides the simplest way to illustrate the techniques used in renormal-
ization theory. For most systems found in nature, the lattice structure is not self-
similar and a different method can be used to obtain critical exponents using
self-similar spin blocks based on wavelength components of the thermodynamic
quantities. At the end of this section, we shall briefly describe the scaling approach
based on wavelengths and then give results.

5.8.1
General Theory

Let us consider a system described by the partition function

Z(K ,N) =
∑
{Si}

exp[−(K , {Si},N)] . (5.173)

The effective Hamiltonian, (K , {Si},N) (which includes temperature), can be
written in the form

(K , {Si},N) = K0 + K1
∑
i
Si + K2

[1]∑
(i, j)
SiS j + K3

[2]∑
(i, j)
SiS j

+ K4

[1]∑
(i, j,k)

SiS jSk +⋯ , (5.174)

where K is an infinite-dimensional vector containing all coupling constants,
and the summation

∑[i] means that only (ith) nearest neighbors are includ-
ed. The coupling constants, Ki , contain the temperature. For the Ising model,
K1 = −βB, K2 = −β J where J is the strength of the coupling between spins, and
K3 = K4 = ⋯ = 0.
We can introduce blocks and let SI denote the total spin of the Ith block and σI

denote the spins internal to block I. Thus, we can write

Z(K ,N) =
∑

{SI ,σI}
exp[−(K , {SI , σI},N)] (5.175)

=
∑
{SI}

exp[−(KL, {SI},NL−d)] = Z(K L,NL−d) , (5.176)

where we have summed over spins interior to each block. Since the new partition
function has the same functional form as the old one, we can write the following
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expression for the free energy density per site:

g(K ) = lim
N→∞

1
N

lnZ(K ,N) = lim
N→∞

1
N

lnZ(K L,NL−d) = L−dg(K L) . (5.177)

The coupling constant vectors, K and KL, of the site spin and block spin systems,
respectively, will be related by a transformation,

KL = T(K ) , (5.178)

where KL will be a vector whose elements are nonlinear functions of the compo-
nents of K . Since our new Hamiltonian is identical in form to the old one, we can
repeat the process and transform to larger blocks nL. After n transformations, we
find

K nL = T(K (n−1)L) . (5.179)

If the system is not critical, there will be a finite correlation range. Thus, when we
transform to larger blocks the effective correlation range appears to shrink and
we move away from the critical point. However, when the system is critical, the
correlation range is infinite and we reach a fixed point of the transformation. At
the fixed point, the transformation T can no longer change the vector K . Thus,
the critical point occurs for values of the coupling constant vectors, K ∗, which
satisfy the condition

K ∗ = T(K ∗) . (5.180)

The sequence of transformations T is called the renormalization group (although
T only has properties of a semigroup).
It is useful to illustrate the behavior of K for the case of a two-dimensional

vector, K = (K1 , K2). Equation (5.179) can be thought to describe the motion of
K in K space (the space of components of K ) as we change block size. To locate
a critical point in K space, wemust locate the fixed points of Eq. (5.179). Let us as-
sume that a fixed point of the transformation KL = T(K ) occurs at K ∗ = (K∗

1 , K
∗
2 ).

We will want to know how the vector K moves in the neighborhood of the point
K ∗. We must linearize Eq. (5.179) about K ∗. We will let δKL = (KL − K ∗) and
δK = (K − K ∗). Then for small δK L and δK we get a linearized transformation

δK L = A ⋅ δK , (5.181)

where

A =
⎛⎜⎜⎜⎝
𝜕K1L

𝜕K1

𝜕K1L

𝜕K2
𝜕K2L

𝜕K1

𝜕K2L

𝜕K2

⎞⎟⎟⎟⎠(K∗
1 ,K

∗
2 )

. (5.182)
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We next find the eigenvalues and eigenvectors of the matrix A. Since A, in gen-
eral, will be nonsymmetric, its left and right eigenvectors will be different. The
right eigenvectors can be mapped

δuL =
==
Λδu , (5.183)

where
=
Λ (the matrix of eigenvalues) and δu (the right eigenvector) can be written

Λ =

(
λ1 0
0 λ2

)
and δu =

(
δu1
δu2

)
, (5.184)

respectively.
The eigenvalues λ1 and λ2 of thematrixA determine the behavior of trajectories

in the neighborhood of the fixed point. In Figure 5.7b, we have drawn the case of
a hyperbolic fixed point and its eigencurves. Points along the eigencurves move
as

δunL ,1 = (λ1)nδu1 , (5.185)
δunL ,2 = (λ2)nδu2 . (5.186)

Thus, for λ > 1 the point moves away from the fixed point under the transforma-
tion, and for λ < 1 it moves toward the fixed point. The dashed lines represent
the trajectories of points which do not lie on the eigencurves. For a hyperbolic
fixed point, they will always move away from the fixed point after many transfor-
mations. All systems with vectors K lying on an eigencurve with eigenvalue λ < 1
are critical, since with enough transformations they will come arbitrarily close
to the fixed point. Such systems are said to exhibit “universality.” The behavior
of a point along an eigencurve with λ > 1 is reminiscent of the actual behavior of
noncritical systems. As we increase the block size, wemove away from the critical
point. Thus, an eigenvalue λ > 1 is called relevant and its eigenvector is identified
as one of the physical quantities (ε or B, for example) which measure the distance
of the system from the critical point.
In general, we write the singular part of the free energy density in terms of the

eigenvectors δui and eigenvalues λi as follows:

gs(δu1 , δu2 , δu3 ,…) = L−dgs(λ1δu1 , λ2δu2 , λ3δu3 ,…) (5.187)

(cf. Eq. (5.177)). This looks very much like Widom scaling. Indeed, for the case
of an Ising system for which there are two relevant physical parameters which
measure the distance of the system from the critical point, we expect that two
of the eigenvalues will be relevant, let us say λ1 > 1 and λ2 > 1. If we compare
Eq. (5.187) withWidom scaling of the Ising model in Eq. (5.127), we canmake the
identification δu1 = ε and δu2 = B. Thus, λ = Ld (Kadanoff scaling),

λ1 = (Ld)p ⇒ p =
ln λ1
dln L

and λ2 = (Ld)q ⇒ q =
ln λ2
dln L

. (5.188)

If we now use Eqs. (5.145) and (5.146), we have expressed the critical exponents
in terms of the relevant eigenvalues.
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5.8.2
Application to Triangular Lattice

Let us now compute the critical exponents for 3-spin blocks on the triangular
planar lattice for the two-dimensional nearest-neighbor Ising model (see Fig-
ure 5.8a) [151]. We will retain terms to lowest order in ⟨V ⟩. The Hamiltonian can
be written

H = −K
∑
i j
si s j − B

∑
i
si . (5.189)

We assign to a single block (block I in Figure 5.8b) a spin given by SI = sign(sI1 +
sI2 + s

I
3). Therefore, SI = +1 for the following configurations:

(α = 1; ↓↑↑)(α = 2; ↑↓↑)(α = 3; ↑↑↓)(α = 4; ↑↑↑) . (5.190)

The internal spin degrees of freedom are defined, σαI = |sI1 + sI2 + sI3|α . For config-
urations defined above we have: σ1I = σ2I = σ3I = 1, and σ4I = 3.
The partition function can be written

Z(KL ,N) =
∑
{SI}

exp[−H(K L, {SI})] =
∑
{SI}

∑
{σI}

exp[−H(K , {SI , σI})] . (5.191)

Now define

H(K , {SI , σI}) = H0(K , {SI , σI}) + V (K , {SI , σI}) , (5.192)

where

H0(K , {SI , σI}) = −K
∑
I

∑
i∈I

∑
j∈I
si s j (5.193)

and

V (K , {SI , σI}) = −K
∑
I≠J

∑
i∈I

∑
j∈J
si s j − B

∑
I

∑
i∈I
si . (5.194)

We next define the expectation value

⟨A({SI})⟩ = ∑
σI
A({SI , σI}) exp[−H0(K , {SI , σI})]∑

σI
exp[−H0(K , {SI , σI})]

. (5.195)

Figure 5.8 (a) The planar triangle lattice. (b) Coupling
between neighboring blocks.
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Note that

∑
SI ,σI

e−(H0+V ) =
∑
SI

⎡⎢⎢⎢⎣
(∑

σI

e−H0

)∑
σI

e−H0(∑
σI
e−H0

)e−V ⎤⎥⎥⎥⎦ . (5.196)

If we now perform the summation over σI in the left-hand term, we can equate
arguments under the summation

∑
SI
and write

exp[−H(K L, {SI})] =

(∑
σI

exp[−H0(K , {SI , σI})]

)⟨e−V ⟩ (5.197)

≈

(∑
σI

e−H0

)(
e⟨V ⟩+ 1

2 [⟨V 2⟩−⟨V ⟩2] +⋯
)

, (5.198)

where we have expanded ⟨e−V ⟩ in a cumulant expansion (see Appendix A). We
can perform the summations in the unperturbed part to get

[Z0(K )]M =
∑
σI

exp[−H0(K , {SI , σI})] , (5.199)

whereM is the number of blocks and Z0(K ) is the partition function of a single
block and can be computed explicitly to obtain

Z0(K ) =
∑
σI

exp
[
K

(
sI1s

I
2 + s

I
1s

I
3 + s

I
2s

I
3
)]

= e3K + 3e−K , (5.200)

for SI = +1 and SI = −1. The interaction is VIJ = −K(sI1s
J
3 + s

I
2s

J
3) (see Figure 5.8).

The average value of a single spin index is

⟨sJ3⟩ = Z0(K)−1
∑
σI

sJ3 exp
[
K

(
sJ1s

J
2 + s

J
2s

J
3 + s

J
3s

J
1

)]
= Z0(K)−1SJ(e3K + e−K ) . (5.201)

In order to obtain the result in Eq. (5.201), construct diagrams of the eight spin
configurations of block I and separate them according to their total spin SI. When
configurations with the same total spin SI are added, several terms cancel.
If we take the logarithm of Eq. (5.197), we obtain

H(KL , BL{SI}) = M ln(Z0(K)) + ⟨V ⟩ + 1
2
[⟨V 2⟩ − ⟨V 2⟩]⋯

= M ln(Z0(K)) − 2K
∑
I≠ J

(
e3K + e−K
e3K + 3e−K

)2

SISJ

− 3
∑
I

(
e3K + e−K
e3K + 3e−K

)
SIB +⋯ , (5.202)
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where we have retained terms up to ⟨V ⟩. Thus, the Hamiltonian for the blocks
has been written in the form

H(KL , BL, {SI}) = −KL
∑
IJ
SISJ − BL

∑
I
SI . (5.203)

If we now compare Eqs. (5.202) and (5.203), we find

KL = 2K
(

e3K + e−K
e3K + 3e−K

)2

(5.204)

and

BL = 3B
(

e3K + e−K
e3K + 3e−K

)
. (5.205)

Fixed points occur for (K∗ = 0, B∗ = 0) and for (K∗ = Kf , B∗ = 0), where Kf is the
solution to the equation

1
2
=

(
e3Kf + e−Kf

e3Kf + 3e−Kf

)2

. (5.206)

Equation (5.206) has eight solutions, only one of which is real and positive. This
solution givesKf =

1
4
ln(1+2

√
2) ≈ 0.3356. Thus, the fixed points occur for (K∗ =

0, B∗ = 0) and for (K∗ = 0.3356, B∗ = 0). The (K∗ = 0, B∗ = 0) fixed point corre-
sponds to infinite temperature since K is proportional to β = (kBT )−1.
Let us next consider the fixed point, (K∗ = 0.3356, B∗ = 0). If we letK = 0.3356+

δK and B = δB and linearize Eqs. (5.204) and (5.205) in δK and δB, we obtain

δKL = 1.623δK and δBL = 2.121δB , (5.207)

so the eigenvalues are λK = 1.623 and λB = 2.121. TheWidom scaling exponents
become

p =
ln(λK )

2 ln(
√
3)

= 0.441 and q =
ln(λB)

2 ln(
√
3)

= 0.684 . (5.208)

The critical exponents are

α = 2 − 1
p
= −0.27 , β =

1 − q
p

= 0.72 ,

γ =
2q − 1
p

= 0.83 , and δ =
q

1 − q
= 2.2 . (5.209)

The exact solution of this two-dimensional Ising model yields (λK )exact = 1.73
and (λB)exact = 2.80. Thus, we are close for λK but our calculation of λB is not
very good. It is possible to carry the calculation to higher orders in ⟨Vn⟩. In so
doing, more elements of the vector, K , are introduced and better agreement with
the exact results is obtained.
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5.8.3
The S4 Model

Most spin lattices do not have spatial self-similar structure so a more general
method of scaling was developed that focuses on wavelength components of spa-
tial correlation functions. A widely used model for wavelength-based scaling is
the S4-model. We derive the S4-model here, and we give results of the scaling
process, but we do not explicitly discuss how the scaling process unfolds. More
discussion can be found in [128, 179, 183, 216].
Let us consider a d-dimensional cubic Ising lattice withN lattice sites. The par-

tition function can be written in the form

Z(K) =
∑
{sn}

exp

(
K

∑
n

∑
e
SnSn+e

)
, (5.210)

where K = β J is the effective interaction and e is the vector indicating the posi-
tions of various nearest neighbors of the site, n. The summation is over all possible
configurations of the lattice. We can change the summation to an integration if we
introduce a weighting factorW (Sn) = δ(S2n − 1). Then Eq. (5.210) can be written

Z(K) =
⎡⎢⎢⎣
∏
m

∞

∫
−∞

dSmW (Sm)
⎤⎥⎥⎦ exp

(
K

∑
n

∑
e
SnSn+e

)
, (5.211)

where the product is taken over all lattice sites. The partition function is now in
a form that allows some generalization.
Let us choose the weighting factor in a slightly different form,

W (Sn) = e−(b∕2)S2n−uS4n . (5.212)

Note that if we choose b = −4u, then W (Sn) = e−u(S2n−1)2 , which is a softened
version of the exact weighting function, W (Sn) = δ(S2n − 1). With the weighting
factor in Eq. (5.212), the partition function takes the form

Z(K) =
⎡⎢⎢⎣
∏
m

∞

∫
−∞

dSm
⎤⎥⎥⎦ exp [] , (5.213)

where the effective Hamiltonian can be written

 = K
∑
n

∑
e
SnSn+e −

∑
n

b
2
S2n + uS

4
n

= 1
2
K
∑
n

[ ′∑
e
(Sn+e − Sn)2 +

(
b
K

− 2d
)
S2n

]
+ u

∑
n
S4n (5.214)

and the sum
∑′

e is restricted to positive values of e. Note that
∑′

e = d for a cubic
lattice.
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We next rewrite the effective Hamiltonian in terms of wavelength components
of the spin field Sn , where Sn denotes the spin at point x = na on the lattice (we
will now assume an infinitely large cubic lattice with spacing a between lattice
sites). The Fourier amplitude S(k) of the spin field is defined

S(k) = ad
∑
n
Sneik⋅na . (5.215)

The components ki (i = 1,… , d) of the wavevectors k can only take on values in
the range−π∕a < ki < π∕a since wavelengths smaller than the lattice spacing are
not allowed. It is useful to note the identities

( a
2π

)d π∕a

∫
−π∕a

dk1 …
π∕a

∫
−π∕a

dkdeik⋅na = δn ,0 and ad
∑
n
eik⋅na = δ(k) .

(5.216)

When written in terms of the Fourier amplitudes, the effective Hamiltonian 
takes the form

 = K
2

( 1
2πa

)d
∫ dk

′∑
e
|S(k)|2|eik⋅na − 1|2

+ K
2

(
b
K

− 2d
)( 1

2πa

)d
∫ dk|S(k)|2

+ u
ad

( 1
2π

)4d

∫ dk1 ∫ dk2 ∫ dk3 ∫ dk4

× S(k1)S(k2)S(k3)S(k4)δ(k1 + k2 + k3 + k4) . (5.217)

Near the critical point spin fluctuations begin to exhibit long-range order and only
long wavelength (small wavevector) contributions to  are important. With this
in mind, the expression for can be simplified to some extent. Note that

∑′
e |k ⋅

e|2 = k2 so that |eik⋅na − 1|2 ≈ k2a2 for small k. Then the effective Hamiltonian
can be written in the form

(r, u′ , {S′}) = 1
2

( 1
2π

)d
∫ dk(r + k2)|S′(k)|2

+ u′
( 1
2π

)4d

∫ dk1 ∫ dk2 ∫ dk3 ∫ dk4

× S′(k1)S′(k2)S′(k3)S′(k4)δ(k1 + k2 + k3 + k4) , (5.218)

where S′(k) = S(k)(Ka2−d)1∕2, r = (b∕K − 2d)a−2 and u′ = (Ka2−d)−2. The par-
tition function takes the form

Z(r, u′ , {S′}) = ∫ DS′e(r,u′ ,{S′}) , (5.219)

where DS′ denotes a function integral over all values of spin variables S′(k).
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Equations (5.218) and (5.219) are called the S4 model because of the quartic
dependence on the spin variables. They form the starting point for the renor-
malization theory based on the S4 model. When u′ = 0, the model is called the
Gaussian model. The renormalization procedure is the same as that used in pre-
vious sections for the self-similar lattices, except that now the blockHamiltonians
are formed in terms of their dependence on intervals of values of wavevectors ki .
A renormalization map is constructed for the variables r and u′.
In Table 5.1, we compare results for values of the critical exponents obtained

from experiment, frommean field theory, the exact Ising model (with results ob-
tained numerically), and the S4 model. For d = 3 the S4 model gives very good
agreementwith experiment andwith exact Ising values of the exponents. For d= 4
(not listed in Table 5.1),mean field theories and the S4 model give the same results
(d = 4 is unphysical but mathematically interesting).

5.9
Problems

Problem 5.1 The magnetization operator for the ith atom in a lattice contain-
ing N atoms is M̂i = μŜi,z , where μ is the magnetic moment and Ŝi,z is the spin
of the ith atom. Neglecting interactions between the particles, the Hamiltonian
(energy) of the lattice is Ĥ = −M̂TB, where B is an applied magnetic field and
M̂T =

∑N
i=1M̂i is the total magnetization of the lattice. Derive an expression for

the variance ⟨M2
T ⟩eq in terms of a thermodynamic response function. Which re-

sponse function is it?

Problem 5.2 Use the canonical ensemble to compute the entropy, internal ener-
gy, and heat capacity of the Einstein solid.

Problem 5.3 Two distinguishable three-level atoms on a lattice can each have
energies 0, 𝜖, 2𝜖. Thus, the two-atom system can exist in nine different states with
energies Ej( j = 1,… , 9), where E1 = 0, E2 = E3 = 𝜖, and E4 = E5 = E6 = 2𝜖,
E7 = E8 = 3𝜖 and E9 = 4𝜖. Find the probabilities f j of the nine configurations

Table 5.1 Values of critical exponents from experiment and various theories.

Critical
Exponent

Experimental
Value

Exact Ising
(d = 3)

Mean
Field
Theory

S4 Model
(d = 3)

α 0–0.2 0.12 0 0.17
β 0.3–0.4 0.31 1∕2 0.33
δ 4–5 5.2 3 4
γ 1.2–1.4 1.25 1 1.17
ν 0.6–0.7 0.64 1∕2 0.58
η 0.1 0.056 0 0
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( j = 1,… , 9), assuming that they extremize the entropy S = −kB
∑9
j=1 f j ln f j sub-

ject to the conditions that the probability be normalized
∑9
j=1 f j = 1 and the av-

erage energy be
∑9
j=1Ej f j =

3
2
𝜖.

Problem 5.4 A system has three distinguishable molecules at rest, each with
a quantized magnetic moment which can have z-components +1∕2μ or −1∕2μ.
Find an expression for the distribution function, f i (i denotes the ith config-
uration), which maximizes entropy subject to the conditions

∑
i f i = 1 and∑

i Mi,z f i = γμ, where Mi,z is the magnetic moment of the system in the ith
configuration. For the case γ = 1∕2, compute the entropy and compute f i .

Problem5.5 What is the partition function for a van derWaals gas withN parti-
cles? Note that the result is phenomenological and might involve some guessing.
It is useful to compare it to the partition function for an ideal gas. Remember
that the particles are indistinguishable, so when using the partition function one
must insert a counting factor. Use this partition function to compute the internal
energy, U(N , T, V ), the pressure, P(N , T, V ), and the entropy, S(U, V,N).

Problem 5.6 Consider a solid surface to be a two-dimensional lattice with Ns
sites. Assume that Na atoms (Na ≪ Ns) are adsorbed on the surface, so that each
lattice site has either zero or one adsorbed atom. An adsorbed atom has energy
E = −ε, where ε > 0. Assume the atoms on the surface do not interact with one
another. If the surface is at temperature T , compute the chemical potential of the
adsorbed atoms as a function of T , ε, and Na∕Ns (use the canonical ensemble).

Problem 5.7 Consider a two-dimensional lattice in the x–y plane with sides of
length Lx and Ly which contains N atoms (N very large) coupled by nearest-
neighbor harmonic forces. (a) Compute theDebye frequency for this lattice. (b) In
the limit T → 0, what is the heat capacity?

Problem 5.8 The CO molecule has a rotational temperature θ = ℏ2∕(2IkB) =
2.8 K, where I is the moment of inertia of the CO molecule. The rotational parti-
tion function for one molecule is Zrot

1 =
∑∞
l=0(2l + 1)e−l(l+1)θ∕T . (a) If one mole of

COmolecules could freely rotate at temperature T = 3.2 K, what is their total ro-
tational entropy? (b)What is the rotational entropy of one mole of COmolecules
at temperature T = 320K? (Hint: At high temperature, where many angular mo-
menta contribute, Zrot

1 ≈ ∫∞0 dl(2l+ 1)e−l(l+1)θ∕T .) (c)What is the translational en-
tropy of one mole of COmolecules in a box of volume V = 1.0m3 at temperature
T = 320K?

Problem 5.9 The ClF molecule has a rotational temperature θR = ℏ2∕(2IkB) =
0.737K, where I is the moment of inertia of the molecule. A gas consisting of
one mole of ClF molecules is contained in a box of volume V = 10−3 m3 and is
cooled to a temperature of T = 2K (assume themolecules remain in the gas phase
under these conditions). (a) At T = 2K, what fraction of the internal energy of the
gas is associated with the rotational degrees of freedom? (b) At T = 250K, what
fraction of the internal energy of the gas is associated with the rotational degrees
of freedom?
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Problem5.10 The vibrational frequency of the I2 molecule is f = 6.42×1012 s−1.
The vibrational temperature is θvibI2

= h f
kB

= 308K. The rotational temperature
is θrotI2

= 0.0538K. Consider a gas of N I2 molecules at temperature T = 300K.
(a) What fraction of the molecules is in the vibrational ground state and what
fraction have one vibrational quantum of energy? (b) What percentage of the to-
tal internal energy of the gas is: (1) translational?; (2) vibrational?; (3) rotational?.

Problem 5.11 A dilute gas, composed of a mixture of NI iodine atoms I and NI2
iodinemolecules I2, is confined to a box of volume V = 1.0m3 at temperature T =
300K. The rotational temperature of the iodine molecules is θrot = 0.0537K (for
simplicity we neglect vibrational modes). (a) Compute the chemical potentials, μI
and μI2 , of the iodine atoms and molecules, respectively. (b) The numbers of the
iodine atoms and molecules can change via chemical reactions with one another.
The condition for chemical equilibrium is μI2 = 2μI. Use this condition to find
the ratio N2

I ∕NI2 when the gas is in equilibrium. (c) Does the inclusion of the
rotational degree of freedom increase or decrease the number of I2 molecules at
chemical equilibrium.

Problem 5.12 A cubic box (with infinitely hard walls) of volume V = L3 contains
an ideal gas ofN rigid HCl molecules (assume that the effective distance between
the H atom and the Cl atom is d = 1.3Å. (a) If L = 1.0 cm, what is the spacing
between translational energy levels? (b) Write the partition function for this sys-
tem (include both translation and rotational contributions). At what temperature
do rotational degrees of freedom become important? (c) Write expressions for
the Helmholtz free energy, the entropy, and the heat capacity of this system for
temperatures where the rotational degrees of freedom make a significant contri-
bution.

Problem 5.13 An ideal gas is composed of N “red” atoms of mass m, N “blue”
atoms of mass m, and N “green” atoms of mass m. Atoms of the same color are
indistinguishable. Atoms of different color are distinguishable. (a) Use the canon-
ical ensemble to compute the entropy of this gas. (b) Compute the entropy of an
ideal gas of 3N “red” atoms of mass m. Does it differ from that of the mixture? If
so, by how much?

Problem 5.14 An ideal gas, in a box of volume V , consists of a mixture of Nr
“red” andNg “green” atoms, bothwithmassm. Red atoms are distinguishable from
green atoms. The green atoms have an internal degree of freedom that allows the
atom to exist in two energy states, Eg,1 = p2∕(2m) and Eg,2 = p2∕(2m) + Δ. The
red atoms have no internal degrees of freedom. Compute the chemical potential
of the “green” atoms.
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Problem5.15 Consider a one-dimensional lattice withN lattice sites and assume
that the ith lattice site has spin si = ±1. The Hamiltonian describing this lattice is
H =−ε

∑N
i=1 si si+1. Assume periodic boundary conditions, so sN+1 ≡ s1. Compute

the correlation function, ⟨s1s2⟩. How does it behave at very high temperature and
at very low temperature?

Problem 5.16 In the mean field approximation to the Ising lattice, the order
parameter, ⟨s⟩, satisfies the equation ⟨s⟩ = tanh(⟨s⟩Tc∕T), where Tc = νε∕2kB
with ε the strength of the coupling between lattice sites and ν the number of
nearest neighbors. (a) Show that ⟨s⟩ has the following temperature dependence:
(i) ⟨s⟩≈ 1−2e−2Tc∕T if T ∼ 0K, and (ii) ⟨s⟩≈√

3(1 − T∕Tc) if T ∼ Tc. (b) Compute
the jump in the heat capacity at T = Tc. (c) Compute the magnetic susceptibility,
χT,N (B = 0), in the neighborhood of T = Tc for both T > Tc and T < Tc. What
is the critical exponent for both cases?

Problem 5.17 Consider a magnetic system whose free energy, near the critical
point, scales as λ5g(𝜖, B) = g(λ2𝜖, λ3B). Compute (a) the degree of the coexis-
tence curve, (b) the degree of the critical isotherm, (c) the critical exponent for
the magnetic susceptibility, and (d) the critical exponent for the heat capacity. Do
your results agree with values of the critical exponents found in experiments?

Problem 5.18 A one-dimensional lattice of spin-1∕2 lattice sites can be decom-
posed into blocks of three spins each. Use renormalization theory to determine
whether or not a phase transition can occur on this lattice. If a phase transition
does occur, what are its critical exponents? Retain terms in the blockHamiltonian
to order ⟨V⟩, where V is the coupling between blocks.

Problem 5.19 Find the critical exponents for five spin blocks on a square lattice
for the two-dimensional nearest-neighbor Isingmodel. Retain terms to lowest or-
der in ⟨V ⟩, where V is the interaction energy between blocks (cf. Figure 5.9).

Figure 5.9 Problem 5.19.

Problem 5.20 The order-disorder phase transition on a two-dimensional trian-
gular lattice can be analyzed in terms of a two-dimensional Isingmodel with seven
spins as shown in Figure 5.10. In all calculations, only retain terms to lowest order
in ⟨V ⟩. Assume the nearest-neighbor spacing between lattice sites is a. (a) Com-
pute Z0. (b) Compute ⟨s1⟩ (the central spin in the block in Figure 5.10 and ⟨s4⟩ (an
outer spin in the block shown in Figure 5.10). (c) Construct the renormalization
map and find its relevant fixed point. (d) Linearize the renormalizationmap about
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its relevant fixed point and find its eigenvalues. (e) Compute the Widom scaling
exponents p and q. (f ) Compute the critical exponents α, β, γ, δ. (Note: Each block
has 27 = 128 spin configurations. Blockswith SI = +1 have 64 configurations. The
various SI = +1 configurations can be grouped so that each group gives a term in
Z0. These groupings also make the derivation of ⟨s1⟩ and ⟨s1⟩ straightforward.)

Figure 5.10 Problem 5.20.
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6
Equilibrium Statistical Mechanics II – Grand Canonical Ensemble

6.1
Introduction

When a system is open to the surrounding environment, both the energy and
particle number of the system can fluctuate. In that case, the system will be in
equilibrium with the environment if the temperature and chemical potential (of
each kind of particle) are the same in the system and the environment. The proba-
bility distribution and the thermodynamic properties of particles in open systems
are given by the grand canonical ensemble, which we derive and discuss in this
chapter.
The process of adsorption provides an important classical example of a ther-

modynamic process in an open system and is easily analyzed in the grand canon-
ical ensemble. Adsorption occurs when a fluid mixture (gas or liquid) is in con-
tact with a solid surface that can selectively bind (at multiple sites) one type of
molecule in the fluid. For adsorption, the system consists of the binding sites and
the fluid is the environment. We will use the grand canonical ensemble to derive
adsorption isotherms.
The theory of interacting semiclassical fluids (composed of neutral particles) is

also easily described in the grand canonical ensemble. For such systems, the in-
terparticle potential has a hard core and a weak attractive region so perturbation
expansions in terms of the potential are not convergent. For the case of dilute or
moderately dense fluids, the only small parameter is the density and, therefore it
is useful to express thermodynamic quantities in terms of density (virial) expan-
sions. We shall use the grand canonical ensemble to derive microscopic expres-
sions for the virial coefficients in the density expansion of the equation of state of
interacting classical fluids. We shall apply these results to fluids whose particles
interact via hard-core potentials, square-well potentials, and the Lennard-Jones
6–12 potential, and we will compare them with experiment.
The grand canonical ensemble is especially suitable for describing systems with

broken gauge symmetry because particle number can fluctuate. We will use the
grand canonical ensemble to compute the thermodynamic properties of ideal
quantum gases, bothBose–Einstein and Fermi–Dirac. An ideal Bose–Einstein gas
is composed of indistinguishable bosons. At very low temperatures, it can exhibit

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.
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a phase transition (even though the particles do not interact) in which a macro-
scopic number of particles condense into the lowest energy state. For the case of
interacting bosons, Bogoliubovmean field theory can be used to obtain equilibri-
um properties of the condensate at very low temperatures. An ideal Fermi–Dirac
gas does not exhibit a phase transition because no two fermions can have the
same set of quantum numbers (the Pauli exclusion principle). Therefore, at low
temperature the fermions fill all the low energy states and even at T = 0K some
particles can have a very high energy. If coulomb interactions are neglected, an
ideal Fermi–Dirac gas of electrons provides a simple model that can explain both
the paramagnetic and diamagnetic properties ofmany condensedmatter systems.
If we allow an attraction between fermions, then they can formbound pairs that

can condense in momentum space. This is what happens to electrons in a super-
conductor. In a superconducting solid, electrons interact with lattice phonons and
with one another through a phonon-mediated interaction which is attractive in
the neighborhood of the Fermi surface. The fermion pairs condense in momen-
tum space and act coherently, thus giving rise to the unusual superconducting
properties observed in such systems. We derive microscopic expressions for the
energy gap and the heat capacity of such systems at the end of this chapter.

6.2
The Grand Canonical Ensemble

Anopen systemcan exchange both heat andmatterwith its surroundings, causing
both energy and particle number to fluctuate. To obtain the equilibrium proba-
bility density in such a fluctuating environment, we use the method of Lagrange
multipliers to extremize the Gibbs entropy subject to the following three con-
straints. We require that the normalization take the form

Tr(ρ̂) = 1 . (6.1)

We require that the average energy have a fixed value, ⟨E⟩, so that

Tr(Ĥ ρ̂) = ⟨E⟩ . (6.2)

And finally, we require that the average particle number have a fixed value, ⟨N⟩,
so that

Tr(N̂ ρ̂) = ⟨N⟩ , (6.3)

where N̂ is the total particle number operator.
We can find the probability density operator, ρ̂, that extremizes the Gibbs en-

tropy subject to the constraints in Eqs. (6.1)–(6.3). The extremization condition is

δ[Tr(α0 ρ̂ + αEĤρ̂ + αN N̂ ρ̂ − kB ρ̂ ln ρ̂)]

= Tr{[(α0 − kB)Î + αEĤ + αN N̂ − kB ln(ρ̂)]δρ̂} = 0 , (6.4)
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where α0 , αE , and αN are Lagrange multipliers. Since δρ̂ is arbitrary, we have

(α0 − kB)Î + αEĤ + αN N̂ − kB ln ρ̂ = 0 . (6.5)

We can now use Eq. (6.5) and the three constraints, Eqs. (6.1)–(6.3) to determine
the Lagrange multipliers. The normalization condition, Eq. (6.1), allows us to in-
troduce the grand partition function. If we take the trace of Eq. (6.4), we can write

Z(αE , αN ) ≡ exp
(α0
kB

− 1
)

= Tr
[
exp

(αE
kB
Ĥ +

αN
kB
N̂
)]

, (6.6)

which relates α0 to αE and αN . To determine αE and αN , let us multiply Eq. (6.5)
by ρ̂ and take the trace. We find

−kB ln[Z(αE , αN )] + αE⟨E⟩ + αN ⟨N⟩ + S = 0 . (6.7)

If we compare Eq. (6.7) to the fundamental equation for the grand potential,Ω =
U − TS − μN (cf. Table 3.5), we can make the identifications, αE = −1∕T and
αN = μ∕T , and

Ω(T, μ) = −kBT lnZμ(T ) . (6.8)

The grand partition function can now be written

Zμ(T ) = e−βΩ(T,μ) = Tr
(
e−β(Ĥ−μN̂ )

)
, (6.9)

with β = 1∕kBT , and the probability density operator can be written

ρ̂ = e−β(Ĥ−μN̂−Ω) = e−β(Ĥ−μN̂)

Tr
(
e−β(Ĥ−μN̂ )

) . (6.10)

Equation (6.10) is the probability density operator for the grand canonical ensem-
ble.
Although we have not written it explicitly, the grand potential will generally

depend on a generalized displacement, X, whose form is determined by the me-
chanical properties of the systembeing considered. For a gas, X = V is the volume
and, for amagnetic system, X =M is themagnetization. Once we know the grand
partition function, we can compute the grand potential, and from it we can ob-
tain all thermodynamic quantities. The entropy is given by S = −(𝜕Ω∕𝜕T )X ,μ .
The generalized force is given by Y = (𝜕Ω∕𝜕X)T,μ . The average particle number
is given by ⟨N⟩ = −(𝜕Ω∕𝜕μ)T,X .

6.2.1
Particle Number Fluctuations

In the grand canonical ensemble, the temperature T and chemical potential μ are
fixed and the average energy ⟨E⟩ and average particle number ⟨N⟩ are fixed. How-
ever, because there can be a flow of energy and particles in and out of the system,
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it is important to determine the size of energy and particle number fluctuations.
The derivation of the variance in energy fluctuations is similar to the derivation
given in Section 5.2, so here we only derive the variance in particle number fluc-
tuations. We first write the normalization condition in the form

Tr
(
eβ[Ω(T,μ)−Ĥ+μN̂]

)
= 1 . (6.11)

If we differentiate Eq. (6.11) twice with respect to μ, we can obtain

⟨N2⟩ − ⟨N⟩2 = −kBT
(
𝜕2Ω
𝜕μ2

)
T,X

= kBT
(
𝜕⟨N⟩
𝜕μ

)
T,X

. (6.12)

Thus, the fractional deviation behaves as√⟨N2⟩ − ⟨N⟩2⟨N⟩ ∼ N−1∕2 . (6.13)

As the average number of particles increases, the size of the fluctuations in particle
number becomes small compared to the size of the average particle number. For
very large ⟨N⟩, most microstates will have a particle number approximately equal
to ⟨N⟩ and we retrieve the canonical ensemble.
It is useful to write Eq. (6.12) in terms of the isothermal compressibility.

From the chain rule in Appendix B, (𝜕N∕𝜕μ)T,V = − (𝜕N∕𝜕V )T,μ (𝜕V∕𝜕μ)T,N .
From Table 3.5, (𝜕μ∕𝜕V )T,N = − (𝜕P∕𝜕N )T,V . Also, (𝜕P∕𝜕N )T,V = − (𝜕P∕𝜕V )T,N
(𝜕V∕𝜕N )T,P . If we now combine these equations and note that (𝜕N∕𝜕V )T,μ =
(𝜕N∕𝜕V )T,P = ⟨N⟩∕V since μ = μ(T, P), we find

⟨N2⟩−⟨N⟩2 = kBT (
𝜕⟨N⟩
𝜕μ

)
T,X

=−kBT
⟨N⟩2
V 2

(
𝜕⟨V ⟩
𝜕P

)
T,N

=
kBT⟨N⟩2

V
κT .

(6.14)

Thus, the variance in particle number fluctuations is proportional to the isother-
mal compressibility. Near a critical point, the compressibility can become infinite
and, therefore, fluctuations in the particle number (or density) become very large.

6.2.2
Ideal Classical Gas

The equation of state for an ideal classical gas of indistinguishable particles,
of mass m, can be computed starting from the grand canonical ensemble. The
Hamiltonian of an ideal gas, in the absence of external fields, consists only of
kinetic energy Ĥ0 =

∑N
j=1ℏ

2k̂2j ∕(2m). In general, when evaluating the trace for
a fluid of indistinguishable particles, we can ether use a complete set of sym-
metrized or antisymmetrized N-body momentum/energy eigenstates or we can
use the number representation (see Appendix D). Since we are interested in the
classical limit, it is most convenient to use the momentum/energy eigenstates.
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In general, the grand partition function can be written

Zμ(T, V ) =
∞∑
N=0

ℭα,N
∑

k1 ,…,kN

(α)⟨k1 , k2 ,… , kN |e−β(Ĥ0−μN̂ )|k1 , k2 ,… , kN ⟩(α) ,
(6.15)

where α = A , S, ℭα,N is a counting factor the prevents the summation from
overcounting states, and |k1 , k2 ,… , kN ⟩(α) are symmetrized (α = S) or antisym-
metrized (α = A) states (see Appendix D).
As discussed in Section 5.3, in the classical limit contributions due to the sym-

metrization or antisymmetrization can be neglected and the grand partition func-
tion takes the form

Zμ(T, V ) =
∞∑
N=0

1
N!

∑
k1 ,…,kN

⟨k1, k2 ,… , kN |e−β(Ĥ0−μN̂ )|k1 , k2 ,… , kN ⟩
=

∞∑
N=0

eβμN
N!

VN

λ3NT
= exp

(
eβμ V

λ3T

)
. (6.16)

The pressure is

P = −Ω
V

=
kBT
V

lnZμ(T, V ) = kBT
eβμ

λ3T
. (6.17)

The average particle number is

⟨N⟩ = −
(
𝜕Ω
𝜕μ

)
T,V

= Ve−βμ

λ3T
. (6.18)

If we combine Eqs. (6.17) and (6.18), we obtain the classical equation of state PV =⟨N⟩kBT for an ideal gas of indistinguishable particles.

6.3
Adsorption Isotherms

The adsorption of atoms and molecules from a gas or liquid onto a surface is a
process of great importance for biological function and for processes that involve
the storage of molecules or the removal of contaminants from a gas or liquid. The
adsorption process can be classified as physisorption (from van derWaals forces)
or chemisorption (characteristic of covalent bonding).
One material commonly used for storage or cleaning of gases and liquids is

activated carbon, which is a form of carbon processed to have small pores that
significantly increase its surface area. Activated carbon is widely used to remove
pollutants from air or water or store gases, such as natural gas or hydrogen. The
pollutants or gases adhere to the surface and then can be retrieved by raising the
temperature of the carbon surface.
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The adsorption of oxygenmolecules, O2, by myoglobin or hemoglobin is an ex-
ample of a biologically important adsorption process. Myoglobin is a protein that
is found in muscles and hemoglobin is a protein found in the blood. Hemoglobin
is responsible for transporting oxygen from the lungs to the muscles. Both myo-
globin and hemoglobin contain a complex organic group of molecules called
the heme that contains an iron ion. Myoglobin contains one heme group and
hemoglobin contains four heme groups. Oxygen in the lungs is adsorbed onto the
heme groups in hemoglobin and then is transported to the myoglobin molecules.
The adsorption of oxygen on myoglobin takes place in solution, but one can ob-
tain a rough estimate of the chemical potential of oxygen in solution from its
chemical potential in the atmosphere, which is in equilibrium with the oxygen in
solution. The atmosphere is approximately 21% oxygen so at one atmosphere the
partial pressure of oxygen is PO2

= 0.21 bar. Given PO2
, we can use the ideal gas

expression to obtain the chemical potential of O2 in the atmosphere.
Let us now obtain an expression for the fraction of surface sites that have ad-

sorbed molecules. We consider an adsorbing surface (the adsorbent), with N ad-
sorbing sites, in contactwith a gaseousmixture containing an adsorbatemolecule,
“M” at partial pressure PM. Let us assume that the adsorption sites are distinguish-
able and don’t interact with each other, and let us assume that each site can only
adsorb one molecule. The adsorption occurs because the “M” molecule can be-
come bound to the sitewith a binding energy,−𝜖.The systemwill be in equilibrium
when the chemical potential of themolecules “M” in the gas is equal to the chemical
potential of the adsorbed molecules “M” at the sites.
The grand partition function, for the case when there are N binding sites and

any number 0 ≤ n ≤ N of “M” molecules bound to the sites, is given by

(T, μ) =
N∑
n=0

N!
(N − n)!n!

e−β(−n𝜖−nμ) = (1 + eβ(𝜖+μ))N , (6.19)

where N!
(N−n)!n!

is the number of different ways that n identical “M” molecules can
be attached to N distinct sites and E(n) = −n𝜖 is the total binding energy when
molecules are attached to n of the N sites. The fact that the molecules don’t in-
teract allows the grand partition function to factor into a product of single-site
grand partition functions,

1(T, μ) = 1 + eβ(𝜖+μ) . (6.20)

The probabilities that a given site is empty, f0, or occupied, f1, are given by

f0 =
1

1 + eβ(𝜖+μ)
and f1 =

eβ(𝜖+μ)

1 + eβ(𝜖+μ)
, (6.21)

respectively.
Let us now assume that the gas mixture is well described by the ideal gas equa-

tion of state and that the adsorbatemolecules “M” in the gasmixture have a partial
pressure PM and mass m. The chemical potential of the adsorbate molecules in
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the gas is

μ = −kBT ln

(
kBT
PMλ3T

)
, (6.22)

where λ3T =
(

h2

2mπkBT

)3∕2
. If we now combine Eqs. (6.21) and (6.22), we can

write the following expression for the fraction of surface sites with adsorbed “M”
molecules

fM =
PM

kBT
λ3T

e−β𝜖 + PM
. (6.23)

Equation (6.23) is called the Langmuir adsorption isotherm and gives the fraction
of occupied sites as a function of the partial pressure of the adsorbate molecules
for a fixed temperature.
In Figure 6.1, we have plotted the fraction of myoglobin molecules with ad-

sorbed O2, as a function of partial pressure of O2 for several different tempera-
tures. The partial pressure ofO2 in the atmosphere, atT = 0 ◦C, is PO2

= 0.21 bar=
159Torr. The data fits the Langmuir adsorption isotherm very well and indicates
that most myoglobin molecules contain adsorbed oxygen.
When the adsorption sites can adsorb more than one molecule, the Langmuir

adsorption isotherm is no longer adequate to describe the fraction of adsorbed
molecules, and other adsorption isotherms have been developed to describe these
more complex situations. It is interesting to compare theO2 adsorption isotherms
for myoglobin and hemoglobin, which can adsorb as many as four O2 molecules.
In Figure 6.2, we show the isotherms for myoglobin and hemoglobin at temper-
ature T = 310K as a function of the partial pressure of oxygen. The adsorption
isotherm for hemoglobin is significantly different from that ofmyoglobin because

Figure 6.1 The fraction fO2
of myoglobin molecules with adsorbed oxygen, as a function of

partial pressure PO2
of oxygen, for several different temperatures (based on [187]).
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the binding energy of the heme sites, on a given hemoglobin molecule, is a func-
tion of the number of oxygen molecules already adsorbed on that hemoglobin
molecule.We can still use the grand canonical ensemble to determine the fraction
of adsorbed molecules, as long as the adsorption sites on different hemoglobin
molecules remain independent. An example of this more general use of the grand
canonical ensemble is given in Exercise 6.1.

Exercise 6.1

Consider a hypothetical molecule “P” that has two heme sites that can bind an
oxygen molecule O2. The binding energies En when zero, one, and two O2 are
bound to the molecule are E0 = 0, E1 = −0.51, and E2 = −1.05 eV, respectively.
Assume that N = 1000 “P” molecules are in equilibriumwith air at T = 310K and
the partial pressure of O2 in air is PO2

= 0.2 bar. Assume that the “P”molecules are
independent of one another. Howmany “P” molecules have (a) zero O2 molecules
attached; (b) one O2 molecule attached; (c) two O2 molecules attached?

Answer: The grand partition function for O2 in contact with a single “P”
molecule is

1 = 1 + 2e−β(E1−μO2 ) + e−β(E2−2μO2 )

(note that there are two ways to attach one O2 to the “P” molecule). For T =
310K, λT = 0.175 × 10−10 m and kBT = 0.0267 eV, the chemical potential of
O2 is μO2

= −0.468 eV. Therefore, e−β(E1−μO2 ) = 4.82, e−β(E2−2μO2 ) = 71.50, and
1 = 1 + 2(4.82) + 71.50 = 82.14. The probability to find a “P” molecule with n
O2 bound to it, for n= 0, 1, 2 is P0 =

1
 1

= 0.012, P1 = 2e−β(E1−μO2 )∕1 = 0.117, and
P2 = e−β(E2−2μO2 )∕1 = 0.870. On the average, the numbers Nn of “P” molecules
with n = 0, 1, 2 O2 molecules attached are given by N0 = NP0 = 12, N1 = NP1 =
117, and N2 = NP2 = 870.

Figure 6.2 A comparison of the oxygen adsorption isotherms, at T = 310K, as a function of
the partial pressure of oxygen (based on [64]).
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6.4
Virial Expansion for Interacting Classical Fluids

The first step in obtaining tractable microscopic expressions for the thermody-
namic properties of interacting fluids is to find a small parameter that can be used
as an expansion parameter. For dilute or moderately dense gases, such a param-
eter is the density. In this section we shall first obtain a microscopic expression
for the virial (density) expansion of the equation of state for a classical fluid, and
then we compare the predictions of the microscopic theory to experimental re-
sults [84, 85, 130, 134, 201].

6.4.1
Virial Expansion and Cluster Functions

Let us consider a classical gas of identical particles ofmassm that interact via two-
body short-ranged forces.We shall assume that the potential has a large repulsive
core and short-ranged attraction (cf. Figure 6.3). For a semiclassical fluid, we can
use the approximations in Section 5.4 and write the grand partition function in
the form

Zμ(T, V ) =
∞∑
N=0

1
N!

1
λ3NT

eβNμQN (V, T ) , (6.24)

where the momentum integrations have been performed and the configuration
integral, QN (V, T ), is defined in Eq. (5.45).
If the interparticle potential Vi j has an infinite hard core at short interparticle

separation, it can not be used as an expansion parameter. However, we can intro-
duce a function f i j that is not divergent,

f i j = e−βVi j − 1 . (6.25)

The function f i j becomes zero outside the range of the interaction. Furthermore,
in the region of the hard core, whereVi j ≈∞, the function f i j =−1 (cf. Figure 6.3).

Figure 6.3 The dashed line is a plot of a typical interparticle potential, v(x) (Lennard-Jones
6–12), the solid line is a plot of f (x) = e−βv(x) − 1, and σ is a measure of the hard-core radius
(v(1) = 0). The plots are given for a fixed temperature.



192 6 Equilibrium StatisticalMechanics II – Grand Canonical Ensemble

In terms of the function f i j , the configuration integral can be written as

QN (V, T ) = ∫ ⋯ ∫ dr1 ⋯drNWN (r1,… , rN ) , (6.26)

where

WN (r1,… , rN ) =
N(N−1)∕2∏

(i j)
(1 + f i j) (6.27)

and the product is taken over all pairs of particles (i j). There are N(N − 1)∕2
such pairs. The first few terms are given by W1 = 1, W2(r1, r2) = (1 + f12),
W3(r1, r2, r3) = (1 + f12)(1 + f13)(1 + f23) and so on.
It was shown by Ursell [203] that the grand partition function can be written in

terms of a cumulant expansion (see Appendix A), such that

Zμ(T, V ) =
∞∑
N=0

1
N!

1
λ3NT

eβNμ ∫ ⋯ ∫ dr1 ⋯drNWN (r1,… , rN )

= exp

[ ∞∑
l=1

1
l!

1
λ3lT

eβlμ ∫ ⋯ ∫ dr1 ⋯drlUl(r1,… , r l)

]
, (6.28)

where Ul(r1,… , r l) is called a cluster function or Ursell function.
When written in terms of cluster functions, the grand potential takes a simple

form:

Ω(V, T, μ) = −kBT lnZμ(T, V )

= −kBT
∞∑
l=1

1
l!

1
λ3lT

eβlμ ∫ ⋯ ∫ dr1 ⋯drlUl(r1,… , r l) . (6.29)

If we know the function WN (r,… , rN ), then we can easily find the cluster func-
tions UN (r1,… , rN ). We expand (6.28) in powers of λ−3T exp(βμ) and equate co-
efficients. We then obtain the following hierarchy of equations:

U1(r1) = W1(r1) ,
U2(r1, r2) = W2(r1, r2) −W1(r1)W1(r2) ,

U3(r1, r2, r3) = W3(r1, r2, r3) −W1(r1)W2(r2, r3)
−W1(r2)W2(r1, r3) −W1(r3)W2(r1, r2)
+ 2W1(r1)W1(r2)W1(r3) , (6.30)

and so on. From Eqs. (6.27) and (6.30) we can find the first few cluster func-
tions. They areU1(r1) = 1,U2(r1, r2) = f12, andU3(r1, r2, r3) = f12 f13+ f12 f23+
f13 f23 + f12 f13 f23 and so on. The function UN (r1,… , rN ) depends on all con-
nected clusters ofN particles.
The integrals over cluster functions UN (r1,… , rN ) are always proportional to

the volume due to integration over the center-of-mass of each cluster. Therefore,
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we can introduce an intensive quantity

bl(T ) = 1
V l! ∫ ⋯ ∫ dr1 ⋯drlUl(r1,… , r l) , (6.31)

where bl(T ) is called a cluster integral. When written in terms of bl(T ), the ex-
pression for the grand potential,Ω(V, T, μ), in Eq. (6.29) is explicitly proportional
to the volume.

Ω(V, T, μ) = −VkBT
∞∑
l=1

bl(T )eβlμ

λ3lT
. (6.32)

The pressure takes the form

P = −
Ω(V, T, μ)

V
= kBT

∞∑
l=1

bl(T )eβlμ

λ3lT
(6.33)

and the particle density is given by

⟨N⟩
V

= − 1
V

(
𝜕Ω
𝜕μ

)
V,T

=
∞∑
l=1

lbl(T )eβlμ

λ3lT
. (6.34)

The virial expansion of the equation of state is an expansion in powers of the
density,

PV⟨N⟩kBT =
∞∑
l=1
Bl(T )

(⟨N⟩
V

)l−1

. (6.35)

If we combine Eqs. (6.33), (6.34), and (6.35), we obtain

∞∑
l=1

bl(T )eβlμ

λ3lT

( ∞∑
n=1

nbn(T )eβnμ

λ3nT

)−1

=
∞∑
l′=1

Bl′

( ∞∑
n′=1

n′bn′ (T )eβn′μ

λ3n′T

)l′−1

.

(6.36)

If we now expand both sides of Eq. (6.36) and equate coefficients of equal pow-
ers of λ−3T exp(βμ), we obtain the following expressions for the first three virial
coefficients:

B1(T ) = b1(T ) = 1 ,
B2(T ) = −b2(T ) ,
B3(T ) = 4b22(T ) − 2b3(T ) , (6.37)

and so on. The higher order terms in the virial expansion are determined by larger
and larger clusters of particles.
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6.4.2
The Second Virial Coefficient, B2(T)

The second virial coefficient gives the correction to the ideal gas equation of state
due to two-body clustering [85]. For very dilute gases, two-body clusters give, by
far, the dominant contribution from interactions in the fluid and it is sufficient to
terminate the virial expansion at second order.
From Eqs. (6.31), and (6.37), the second virial coefficient can be written

B2(T ) = − 1
2V ∫ dr1 dr2 f (r12) = −1

2 ∫ dr12(e−βV (r12) − 1) , (6.38)

where we have changed to center-of-mass (R = (r1 + r2)∕2) and relative (r12 =
r1 − r2) coordinates and have integrated over the center-of-mass. The behavior of
the second virial coefficient has been studied for a variety of interparticle poten-
tials. For very simple potentials it can be computed analytically, and for realistic
potentials it must be computed numerically. We shall focus on three potentials
that historically have been important in understanding the behavior of the virial
coefficients. They are the hard-sphere potential (see Exercise 6.1), the square-well
potential, and the Lennard-Jones 6–12 potential (cf. Figure 6.4).

6.4.2.1 Square-Well Potential
The square-well potential (shown in Figure 6.4a) has the form

VSW(q) =
⎧⎪⎨⎪⎩

∞ if 0 < q < σ ,
−ε if σ < q < Rσ ,
0 if Rσ < q .

(6.39)

This potential has a hard core of radius, σ, and a square attractive region of depth
ε and width (R − 1)σ. The second virial coefficient can be computed analytically
and has the form

B2(T )SW = 2πσ3
3

[1 − (R3 − 1)(eβε − 1)] . (6.40)

Note that B2(T )SW differs from B2(T )HC by a temperature-dependent term (see
Exercise 6.1). At low temperatures, B2(T )SW is negative and at high temperatures

Figure 6.4 Sketch of (a) the square-well potential and (b) the Lennard-Jones 6–12 potential.
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it becomes positive. At low temperatures the attractive interaction energy due to
the square well can compete with the thermal energy, kBT , and causes a lowering
of the pressure relative to the ideal gas value. At high temperature the hard core
becomes dominant and the pressure increases relative to that of an ideal gas.
We can write B2(T )SW in a reduced form if we let B∗(T )SW = B(T )SW∕b0,

where b0 = 2πσ3∕3 and T∗ = kBT∕ε. Then we find

B∗
2(T )SW = [1 − (R3 − 1)(e1∕T∗ − 1)] . (6.41)

Equation (6.41) will be useful when we compare the square-well results to exper-
iment.

6.4.2.2 Lennard-Jones 6–12 Potential
A potential which gives a very good approximation to the interaction between
atoms is the Lennard-Jones 6–12 potential,

VLJ(q) = 4ε

[(
σ
q

)12

−
(
σ
q

)6
]

(6.42)

(cf. Figure 6.4b). The Lennard-Jones potential has a gradually sloping hard core,
which takes account of the fact that particles with high energy can, to some extent,
penetrate the hard core. When q = σ, we obtain VLJ(σ) = 0. Thus, q = σ is the
radius of the hard core because at q = σ the potential changes from repulsive to
attractive. The minimum of the Lennard-Jones potential occurs at q = 21∕6σ. The
value of the potential at the minimum is VLJ(21∕6σ) = −ε, so ε is the depth of the
Lennard-Jones potential.
The second virial coefficient for the Lennard-Jones potential can be found an-

alytically in the form of a series expansion. If we integrate Eq. (6.38) by parts and
introduce the notation x = q∕σ, T∗ = kBT∕ε, and B∗

2(T )LJ = B2(T )LJ∕b0, we find

B∗
2(T )LJ =

4
T∗

∞

∫
0

dxx2
[ 12
x12

− 6
x6

]
exp

{
− 4
T∗

[(1
x

)12
−

(1
x

)6]}
. (6.43)

If we expand exp[4∕T∗(1∕x)6] in an infinite series, each term of the series can be
computed analytically and we obtain the following expansion for B∗

2(T )LJ:

B∗
2(T )LJ = −

∞∑
n=0

2
4n!

Γ
(2n − 1

4

)( 1
T∗

)((2n+1)∕4)
, (6.44)

where Γ(x) is the Gamma Function. The expansion for B∗
2(T )LJ converges rapid-

ly for T∗ > 4, but more slowly for lower values of T∗. Values of B∗
2(T )LJ for T∗

ranging from 0.3 to 400 are given in Table 6.1.
In Figure 6.5 we plot B∗

2(T ) versus T∗ for both the square-well potential and
the Lennard-Jones potential. We also give experimental values of B∗

2(T ) for a va-
riety of substances. The Lennard-Jones potential gives values of B∗

2(T ) in good



196 6 Equilibrium StatisticalMechanics II – Grand Canonical Ensemble

Figure 6.5 The reduced second virial coefficient. The solid line is the calculated curve for
the Lennard-Jones 6–12 potential. The dashed line is the calculated curve for the square-well
potential (for R = 1.6). The points are experimental values for the gases listed (based on [85]).

Table 6.1 Values of the Reduced Second Virial Coefficient versus the Reduced Temperature for
the Lennard-Jones Potential.

T∗ B∗
2

T∗ B∗
2

0.30 −27.8806 4.00 +0.1154
0.40 −13.7988 4.50 +0.1876
0.50 −8.7202 5.00 +0.2433
0.70 −4.7100 10.00 +0.4609
1.00 −2.5381 20.00 +0.5254
1.50 −1.2009 30.00 +0.5269
2.00 −0.6276 40.00 +0.5186
2.50 −0.3126 50.00 +0.5084
3.00 −0.1152 100.00 +0.4641
3.50 +0.0190 400.00 +0.3583

agreement with experimental results. At high temperatures, B∗
2(T )LJ and the ex-

perimental points for He gas exhibit a maximum while B∗
2(T )SW does not. The

maximum in B∗
2(T )LJ occurs because at high temperatures, particles can pene-

trate into the hard core and lower the amount of excluded volume. The square-
well potential has a hard core with infinite slope and cannot account for this ef-
fect. The data points for He deviate from the classical results at low temperature.
These deviations are due to quantum effects not included in the semiclassical ap-
proximation to the grand partition function. The second virial coefficients for all
classical gases, when plotted in terms of reduced quantities, are identical. This is
an example of the law of corresponding states.
The parameters ε∕kB and σ can be obtained from experimental values for the

second virial coefficient for various substances. Thus, measurements of the virial
coefficients of real gases provide an extremely important source of information
about interparticle potential for various molecules. It is important to note that,
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although the Lennard-Jones 6–12 potential is perhaps the most widely used in-
terparticle potential, there are many other forms of potential that may be used to
compute the virial coefficients, and some of them give better agreement with ex-
perimental results over a wider range of temperature than does the Lennard-Jones
potential.
Computation of the third virial coefficient is more challenging but still can be

done for some simple potentials. However, new effects can enter [183], such as
three-body forces which are not included in the examples given here.

Exercise 6.2

Compute the second virial coefficient, B2(T ), for a hard-sphere gas of atoms of
radius, R, confined to a box of volume, V . Write the equation of state for this gas
as a virial expansion to first order in the density.

Answer: The second virial coefficient, B2(T ), is defined as

B2(T ) = − 1
V

1
2! ∫ dr1 ∫ dr2(e−βV (r21) − 1) ,

where r21 = r2 − r1. For hard spheres V (r21) = ∞ for r21 < R and V (r21) = 0
for r21 > R. We can make a change of variables and let r = r21 = r2 − r1 and
R = (1∕2)(r1 + r2). If we then integrate over R, we obtain

B2(T ) = −1
2 ∫ dr(e−βV (r) − 1) = +2π

R

∫
0

drr2 = 2πR3

3
≡ b0 .

The equation of state of a hard-sphere gas, to second order in the density, is

PV
NkBT

= 1 + b0
N
V

+⋯

6.5
Blackbody Radiation

All material bodies emit electromagnetic radiation. The emitted radiation is dis-
tributed over a range of frequencies and the peak of the distribution moves to
higher frequencies as the temperature of the material is increased. This is why
a piece of iron looks grey at room temperature but, as it is heated, it begins to
glow red through yellow to white with increasing temperature.
Let us now imagine a totally closed empty box whose walls are maintained at

temperature T . The radiation emitted from the walls inside the box come to ther-
modynamic equilibrium with the walls and form a gas of noninteracting photons
with temperature T . If a small hole (so small that it does not change the distri-
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bution of radiation inside the box) is cut into the wall of the box, radiation will
escape and have a frequency distribution equal to that of the photon gas in the
box. Any radiation that enters the hole from outside will be absorbed by the inte-
rior walls and will never escape. Thus, the hole is a perfect absorber of radiation
and appears black from the outside. The emitted equilibrium radiation is thus
called blackbody radiation.
We can compute the thermodynamic properties of blackbody radiation. Let us

assume that the box containing the blackbody radiation has volume V = L3. The
allowed photon energies, inside the box, are determined by the standing waves
formed by the electromagnetic field in the box. The photon energies are ℏωi =
ℏc|k i|, where ki is the wavevector of the ith standing wave. Since photons have
no mass, the gas will have chemical potential, μ = 0.
Since there are an infinite number of standing waves allowed, the grand parti-

tion function is

Zμ(T ) =
∞∑
n1=0

⋯
∞∑

n∞=0
exp

(
−β

∞∑
i=1
niℏωi

)
=

∞∏
i=1

1
1 − e−βℏωi

. (6.45)

The grand potential is

Ω(T ) = −PV = kBT
∞∑
i=1

ln(1 − e−βℏωi ) . (6.46)

Because the chemical potential is zero, the internal energy is simply given by U =
((β𝜕Ω(T ))∕𝜕β)V . Then

U =
∞∑
i=1

ℏωin(ωi ) =
∞∑
i=1

ℏωi
(eβℏωi − 1)

, (6.47)

where n(ωi ) = (eβℏωi − 1)−1 gives the number of photons with frequency ωi and
is called the Planck distribution.
We can change the summation to an integration in the following way. The

standing waves have wavevectors, k = (nxπ∕L)êx + (nyπ∕L)ê y + (nzπ∕L)êz .
These correspond to allowed frequencies, ω, such that

ω2 = c2k2 = c2
[(nxπ

L

)2
+

(nyπ
L

)2

+
(nzπ
L

)2
]

. (6.48)

If we imagine a lattice of allowed frequencies, ω = ck, the spacing per point in ω
space is cπ∕L. The volume per point is (cπ∕L)3. The number of points per unit
volume is (L∕cπ)3.
The number, ν of allowed frequencies less than some value ω is therefore

ν = 1
8
4
3
πω3

( L
cπ

)3
= L3ω3

6c3π2
. (6.49)
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For each allowed frequency of the electromagnetic field, there are two transverse
modes. Thus,

∑∞
i=1 = 2 ∫ dν = (L3∕π2c3) ∫∞0 ω2 dω. The pressure therefore be-

comes

P = −
kBT
π2c3

∞

∫
0

ω2 dω ln
(
1 − e−βℏω

)
. (6.50)

If we integrate by parts, we find

P = ℏ

3c3π2

∞

∫
0

ω3 dω 1
e−βℏω − 1

=
π2k4BT

4

45c3ℏ3 = 1
3
aT4 , (6.51)

where a = π2k4B∕(15c
3ℏ3) is Stefan’s constant. Similarly, the internal energy takes

the form

U = L3
π2c3

∞

∫
0

ω2 dω ℏω
eβℏω − 1

= aV T4 . (6.52)

The energy density (energy per unit volume) in each frequency component of the
blackbody radiation is

u(ω) = ω2

π2c3
ℏω

(eβℏω − 1)
. (6.53)

Equation (6.53) is called Planck’s law of radiation.

Exercise 6.3

Consider a noninteracting gas of two-level atoms immersed in, and in equilibrium
with, blackbody radiation at temperatureT . Each atomhas ground state energy E1
and excited state energy E2, withN1 (N2) atoms in the ground state (excited) state.
At equilibrium, the ratio N2∕N1 = e−β𝜖 , where 𝜖 = E2 − E1. For an excited atom
in a vacuum, the probability/time of spontaneous emission of a photon is ṗsp =
A. In the presence of the radiation field, the probability/time to absorb a photon
with energy 𝜖 = ℏω is ṗabs = Bu(ω) and the probability/time to emit (stimulated
emission) such a photon is ṗst = B′u(ω), where u(ω) = ω2∕(π2c3)ℏω∕(eβℏω − 1)
is Planck’s radiation law. Compute A, B, and B′ when the atoms are in equilibrium
with the radiation field.

Answer: If the atoms are in equilibrium with the radiation field, there should be
no change in the average number of excited and ground state atoms, even though
individual atoms are continually emitting and absorbing photons. The time rate
of change of the number of atoms in the ground state can be written

dN1

dt
= AN2 + B′u(ω)N2 − Bu(ω)N1 = 0 .

Since N2 = N1e−β𝜖 = N1e−βℏω , this can be written A = (Beβℏω − B′)u(ω). The
left-hand side does not depend on temperature and, therefore, the right-hand
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side must also be independent of temperature. This requires B = B′. Then B =
π2c3∕(ℏω3)A and ṗabs = ṗst = An(ω) = A∕(eβℏω − 1). The coefficients A and B
are called Einstein A and B coefficients [50].

6.6
Ideal QuantumGases

When a collection of indistinguishable particles forms a gas at a temperature low
enough for the thermal wavelength to become larger than the average distance
between particles, the statistics of the particles starts to play a crucial role in de-
termining the thermodynamic behavior of the gas. All known particles obey ei-
ther Bose–Einstein or Fermi–Dirac statistics. At very low temperatures, Bose–
Einstein and Fermi–Dirac gases behave in completely different ways. At high tem-
peratures, all ideal gases, regardless of statistics become more alike in their ther-
modynamic behavior.
For an ideal gas of indistinguishable particles with massm, the grand partition

function can be written

Zμ(T, V ) = Tr(e−β(Ĥ0−μN̂)) , (6.54)

where Ĥ0 is the kinetic energy operator and N̂ is the total particle number oper-
ator.
We shall assume that the gas is contained in a “box” with periodic boundary

conditions.We will let the volume of the “box” be V = LxLyLz , where Lx , Ly , and
Lz are the lengths of the sides of the box in the x-, y-, and z-directions, respectively.
The momentum operator for a single particle can be written p̂l = ℏk̂l , where

kl =

(
2πlx
Lx

ex +
2πly
L y

ey +
2πlz
Lz

ez

)
, (6.55)

is thewavevector of the particle, lx, l y , and lz are integers each ranging from−∞ to
∞, and ex , ey , and ez are unit vectors in the x-, y-, and z-directions, respectively.
Let us denote the set of integers, l = (lx , l y , lz). The kinetic energy for a single
particle in the state l = (lx , l y , lz) is given by

εl =
ℏ2

2m

(
4π2 l2x
L2x

+
4π2l2y
L2y

+
4π2l2z
L2z

)
. (6.56)

Because we need to keep the full effect of the quantum statistics, it is easiest to
evaluate the trace in Eq. (6.54) in the number representation (see Appendix D). In
the number representation, the Hamiltonian operator can be written

Ĥ0 =
∑
l
εl â

†
kl
âkl , (6.57)
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where â†kl
and âkl

, respectively, create and annihilate a particlewithwavevector k l .
As discussed in Appendix D, these operators act on the number basis states |nl⟩
such that â†kl

|nl⟩ = √
nl + 1|nl + 1⟩ and âkl

|nl⟩ =√
nl|nl − 1⟩. The combination

n̂l = â
†
kl
âkl is just the number operator since â†kl âkl |nl⟩=√

nl â
†
kl
|nl −1⟩= nl|nl⟩.

The operators â†kl
and âkl obey boson or fermion commutation relations (see Ap-

pendix D) depending on the type of particle being considered.
The trace in Eq. (6.54) is taken with respect to a complete set of number ba-

sis states |{nl}⟩ ≡ |n−∞,−∞,−∞ ,… , n−1,0,0 , n0,0,0 , n1,0,0 ,… , n∞,∞,∞⟩. Thus we can
write

Zμ(T, V ) =
∏
l

(∑
nl

)⟨{nl}|e−β(Ĥ0−μN̂){nl}⟩ (6.58)

where

∏
l

(∑
nl

)
=

∑
n−∞,−∞,−∞

×⋯ ×
∑
n−1,0,0

∑
n0,0,0

∑
n1,0,0

×⋯ ×
∑
n∞,∞,∞

. (6.59)

Equation (6.58) can be rewritten in the form

Zμ(T, V, μ) =
∏
l

{∑
nl

exp[−βnl(εl − μ)]

}
. (6.60)

The difference between Bose–Einstein and Fermi–Dirac particles lies in the num-
bers of particles that can occupy a given energy eigenstate. For a gas of identical
Bose–Einstein particles there is no restriction on the number of particles that can
have a given set of quantum numbers, lx , l y , and lz . Therefore, the summation
over nl in Eq. (6.60), for Bose–Einstein particles, must include the possibility that
any number of particles, nl , ranging from 0 to ∞, can occupy the momentum
state, pl . This will be true for each different momentum state. Thus, for a Bose–
Einstein gas the grand partition function is

ZBE(T, V, μ) =
∏
l

{ ∞∑
nl=0

exp[−βnl(εl − μ)]

}
. (6.61)

In Eq. (6.61) we have not explicitly included the possibility that the particles have
(integer) spin or other internal degrees of freedom. However, it is straightforward
to include them.
For a gas of identical Fermi–Dirac particles, the Pauli exclusion principle re-

stricts the number of particles, nl , which can occupy a given state, l, to nl = 0 or
nl = 1. Thus, for a Fermi–Dirac gas the grand partition function becomes

ZFD(T, V, μ) =
∏
l

{ 1∑
nl=0

exp[−βnl (εl − μ)]

}
. (6.62)
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In writing the grand partition function for the Fermi–Dirac gas, we have not ex-
plicitly included the (half-integer) spin or other internal degrees of the freedom
of the particles. We will do this in a later section, where we describe the behavior
of Fermi–Dirac gases in more detail.

6.7
Ideal Bose–Einstein Gas

The grand partition function for a Bose–Einstein ideal gas in Eq. (6.8) implicitly
assumes that the bosons have spin s = 0, so spin degrees of freedom do not have
to be taken into account. We can perform the summation inside the brackets in
Eq. (6.61), using the relation (1 − x)−1 =

∑∞
n=0x

n . We obtain

ZBE(T, V, μ) =
∏
l

( ∞∑
nl=0

e−βnl (εl−μ)
)

=
∏
l

(
1

1 − e−β(εl−μ)

)
. (6.63)

The grand potential then can be written

ΩBE(T, V, μ) = −kBT lnZBE(T, V, μ) = kBT
∑
l
ln(1 − e−β(εl−μ)) . (6.64)

The average number of particles in the gas is

⟨N⟩ = −
(
𝜕ΩBE

𝜕μ

)
T,V

=
∑
l

1
eβ(εl−μ)−1

=
∑
l
⟨nl⟩ , (6.65)

where ⟨nl⟩ is the average number of particles in the state l and is defined

⟨nl⟩ = 1
eβ(εl−μ)−1

= z
eβεl − z

. (6.66)

The quantity z = eβμ is called the fugacity.
At low temperature, an ideal Bose–Einstein gas can undergo a phase transition.

We get our first indication of this by looking at the distribution of particles among
the energy levels. Since the exponential eβεl can only have values 1 ≤ eβεl ≤∞, the
fugacity must have values 0 ≤ z ≤ 1. Otherwise, ⟨nl⟩ could become negative, and
that is unphysical since ⟨nl⟩ is the average number of particles in energy level εl .
Thus, for a Bose–Einstein gas the chemical potential, μ = kBT ln(z), must be neg-
ative or zero. For the state with quantum numbers l = 0, the energy, ε0 = 0, and
the average particle number, ⟨n0⟩, is given by

⟨n0⟩ = z
1 − z

. (6.67)

Since limz→1⟨n0⟩ = ∞, the state with zero energy can become macroscopically
occupied as z → 1. This is precisely what happens at the phase transition.
Let us now compute some thermodynamic quantities for the Bose–Einstein

gas. We first compute the average particle number ⟨N⟩ = ∑
l⟨nl⟩, where ∑

l =
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lx=−∞

∑∞
l y=−∞

∑∞
lz=−∞

. It is useful to change the summation
∑

l to an integra-
tion. However, from Eq. (6.66) we see that the term in the sum with lx = 0, l y = 0,
and lz = 0 can become infinite as z → 1, so it must be removed from the sum
before we do this.
We can change the summation to an integration if we note the energy disper-

sion relation 𝜖 = p2∕(2m) and the relation between momentum and wave vec-
tor p = ℏk. Then we find

∑
l → ∫ dl = (V∕h3) ∫ d p = ∫ d𝜖g(𝜖) where g(𝜖) =

(m3∕2V
√
𝜖)∕(2π2ℏ3) is the density of states and V = LxLyLz.

Let us assume that Lx > Ly > Lz so the lowest nonzero energy state is 𝜖1,0,0 =
4π2ℏ2∕(2mL2x). If we remove the term in the sum with lx = 0, l y = 0, and lz = 0,
the average particle number can be written

⟨N⟩ = z
1 − z

+ Vm3∕2√
2π2ℏ3

∞

∫
4π2ℏ2

2mL2x

d𝜖𝜖1∕2 z
exp(β𝜖) − z

(6.68)

or

⟨N⟩ = z
1 − z

+ 4πV
(2πℏ)3

∞

∫
2πℏ∕Lx

p2 d p z
exp[βp2∕(2m)] − z

, (6.69)

where we have made the change of variables 𝜖 = p2∕(2m). Similarly, we can write
the grand potential in the form

ΩBE(T, V, μ) = kBT ln(1 − z) +
4πVkBT
(2πℏ)3

×
∞

∫
2πℏ∕Lx

p2 d p ln{1 − z exp[−βp2∕(2m)]} , (6.70)

where we again have separated out the point at the origin. Note that

lim
L→∞

2πℏ∕Lx

∫
0

p2 d p ln{1 − z exp[−βp2∕(2m)]} = 0 , (6.71)

so the lower limits on the integration can be set to zero in Eqs. (6.68)–(6.70).
It is useful to introduce dimensionless variables. If we let x2 = βp2∕(2m), and

note that Ω = −PV , the pressure of the Bose–Einstein gas can be written,

P = −
ΩBE

V
= −

kBT
V

ln(1 − z) +
kBT
λ3T

g5∕2(z) , (6.72)

where λT = (2πℏ2∕(mkBT ))1∕2 is the thermal wavelength and

g5∕2(z) = − 4√
π

∞

∫
0

x2 dx ln(1 − ze−x2 ) =
∞∑
α=1

zα

α5∕2
. (6.73)
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In Eq. (6.73), the summation is obtained by expanding the integrand in powers of
z and integrating each term. The thermal wavelength λT is the deBroglie wave-
length of a quantum particle with kinetic energy kBT , and it is a measure of the
spread of a wave function of the particles. When λT becomes of the same order
of, or greater than, the average interparticle spacing, quantum effects begin to
dominate.

Exercise 6.4

An ideal gas of bosons of mass m is confined to a harmonic potential (harmon-
ic trap) which gives each boson a potential energy V (r) = 1∕2m(ω2

1x
2 + ω2

2 y
2 +

ω2
3z

2). (a) Compute the density of states. (b) Write an expression for the average
particle number.

Answer: The energy levels available to each boson can be written El1 ,l2 ,l3 =
ℏ(l1ω1 + l2ω2 + l3ω3) + E0, where 0 ≤ l j ≤∞ ( j = 1, 2, 3) and E0 = ℏ∕2(ω1 + ω2 +
ω3) is the zero point energy. Assume that a boson has energy E and let 𝜖 = E − E0
be the difference between that energy and the zero-point energy and let 𝜖 j = ℏl jω j
( j= 1, 2, 3). The states with energy 𝜖 lie in the plane 𝜖 = 𝜖1+𝜖2+𝜖3. The number of
states η(𝜖) with energy 𝜖 is η(𝜖) = ∫ 𝜖0 d𝜖1∫ 𝜖−𝜖10 d𝜖2∫ 𝜖−𝜖1−𝜖20 d𝜖3 = 𝜖3∕(6ℏ3ω1ω2ω3).
The density of states is g(𝜖) = dη(𝜖)∕d𝜖 = 𝜖2∕(2ℏ3ω1ω2ω3).
The average particle number can bewritten ⟨N⟩=∑

l{z∕[exp(βE) − z]}.When
μ = E0 and l1 = l2 = l3 = 0, this can become infinite. Therefore, we must remove
the term with l1 = l2 = l3 = 0. We then obtain

⟨N⟩ = z
eβE0 − z

+ 1
2ℏ3ω1ω2ω3

∞

∫
0

d𝜖𝜖2
(

z
exp[β(𝜖 + E0)] − z

)
.

We also obtain an equation for the average particle density,

⟨n⟩ = ⟨N⟩
V

= 1
V

z
1 − z

+ 1
λ3T
g3∕2(z) , (6.74)

where

g3∕2(z) = z
d
dz
g5∕2(z) =

4√
π

∞

∫
0

x2 dx z
ex2 − z

=
∞∑
α=1

zα

α3∕2
. (6.75)

The quantities g5∕2(z) and g3∕2(z), which appear in Eqs. (6.72) and (6.74), are well-
behaved functions of z. We plot them in Figure 6.6a. Both g5∕2(z) and g3∕2(z) re-
main bounded and approach finite values,

g5∕2(1) = ζ
(5
2

)
≈ 1.342… and g3∕2(1) = ζ

(3
2

)
≈ 2.612… , (6.76)

as z → 1, where ζ(5∕2) and ζ(3∕2) are Riemann zeta functions.
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Finally, let us examine the functions −(1∕V ) ln(1 − z) and (1∕V )[z∕(1 − z)]
which appear in Eqs. (6.72) and (6.74). In Eq. (6.74), we fix ⟨n⟩ and T and let
V → ∞ and z → 1. In the neighborhood of z = 1, we will write z = 1 − 1∕(n0V ),
where n0 is a constant, so z→ 1 in a systematic manner as V →∞. Then it is easy
to see that

lim
V→∞

[
− 1
V

ln(1 − z(V ))
]
= 0 and lim

V→∞

(
1
V

z(V )
1 − z(V )

)
= n0 . (6.77)

Thus, in the limit V → ∞, we can neglect the contribution to pressure due to the
term−(1∕V ) ln(1− z), but we must retain the contribution to the average particle
density due to the term (1∕V )[z∕(1 − z)]. We next examine the behavior of the
function (1∕V )[z∕(1 − z)]. In Figure 6.6b, we plot (1∕V )[z∕(1 − z)], as a function
of z for increasing values of the volume, V . Note that for any given value V , it
always becomes infinite as z → 1. The larger the volume, the closer z must be to
z = 1 before the term (1∕V )[z∕(1 − z)] becomes significant.
Let us now take the thermodynamic limit in Eqs. (6.72) and (6.74). We let V →

∞ and ⟨N⟩ →∞ so that ⟨n⟩ = ⟨N⟩∕V remains finite. The pressure then takes the
form

P =
⎧⎪⎨⎪⎩
kBT
λ3T
g5∕2(z) if z < 1 ,

kBT
λ3T
g5∕2(1) if z = 1 .

(6.78)

The average particle density takes the form

⟨n⟩ = ⟨N⟩
V

=
⎧⎪⎨⎪⎩

1
λ3T
g3∕2(z) if z < 1 ,

n0 +
1
λ3T
g3∕2(1) if z = 1 .

(6.79)

A somewhat exaggerated plot of ⟨n⟩λ3T , n0λ3T , and g3∕2(z) as a function of z is
shown in Figure 6.7a. The plot is actually done at large but finite volume, so the
growth of n0λ3T can be seen more clearly. The main contribution to the growth

Figure 6.6 (a) Plots of g5∕2(z) and g3∕2(z) versus z. (b) Plots of 1∕V[z∕(1 − z)] versus z for (A)
V = 10, (B) V = 100, (C) V = 1000.
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Figure 6.7 (a) Plots of ⟨n⟩λ3T , g3∕2(z), and n0λ
3
T versus z. (The contribution of n0λ

3
T for z < 1 has

been exaggerated by taking V = 100 rather than V = ∞.) (b) A plot of the order parameter,
η = n0∕⟨n⟩, versus temperature, T , for Bose–Einstein condensation.)

of the quantity ⟨n⟩λ3T comes from g3∕2(z) until z approaches z = 1. Then as
z → 1, g3∕2(z) approaches a constant and n0λ3T determines the further growth of⟨n⟩λ3T . This is Bose–Einstein condensation. What we are seeing as z → 1 is the
macroscopic condensation of particles into lowest energy state of the gas. The
number density, n0, of particles in the zero energy state, ε0, becomesmacroscopic
in size.
The high-temperature behavior of the Bose–Einstein gas is readily obtained. At

high temperature, z→ 0 andwe only need to keep the first few terms in expansions
of g5∕2(z), g3∕2(z), and g1∕2(z) in powers of z. FromEq. (6.79) we obtain the average
density,

⟨n⟩ = ⟨N⟩
V

= 1
λ3T

(
z + 1

23∕2
z2 +…

)
(6.80)

and from Eq. (6.78) the pressure is

P =
kBT
λ3T

(
z + 1

25∕2
z2 +…

)
. (6.81)

We can revert the series in Eq. (6.80), and write z as a function of ⟨n⟩. If we sub-
stitute this series into Eq. (6.81), we obtain the virial expansion for an ideal boson
gas. If we keep only the lowest-order term in z in Eqs. (6.80) and (6.81), we obtain
the equation of state for an ideal classical gas, P = ⟨n⟩kBT , and the specific heat
c𝔫 = 3⟨n⟩kB∕2. Thus, at high temperature the Bose–Einstein gas behaves like an
ideal classical gas.

6.7.1
Bose–Einstein Condensation

Bose–Einstein condensation begins to occur when the fugacity, z → 1 (the chem-
ical potential μ(T, ⟨n⟩) = kBT ln(z) → 0) so the temperature and average particle
number satisfy the condition

⟨n⟩λ3T = g3∕2(1) ≈ 2.612 (6.82)
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Figure 6.8 (a) A plot of the coexistence curve
(dashed line) and some isotherms in the P–v
plane for the phase transition in a Bose–
Einstein gas. (b) A plot of the heat capacity

per unit volume for a Bose–Einstein ideal gas
as a function of the temperature. The tem-
perature, Tc, is the critical temperature for the
onset of Bose–Einstein condensation.

(cf. Eq. (6.79)). Equation (6.82) enables us towrite the critical particle density, ⟨n⟩c
(the particle density at which condensation occurs), as a function of temperature:

⟨n⟩c = 1⟨v⟩c =
g3∕2(1)

λ3T
≈ 2.612

(
mkBT
2πℏ2

)3∕2

, (6.83)

where ⟨v⟩c is the critical volume per particle. The critical temperature, Tc (the
temperature at which condensation occurs), as a function of particle density is
given by

λ3Tc
=
g3∕2(1)⟨n⟩ or Tc =

(
2πℏ2

mkB

)( ⟨n⟩
g3∕2(1)

)2∕3

≈
(
2πℏ2

mkB

)( ⟨n⟩
2.612

)2∕3

.

(6.84)

The order parameter, η, for Bose–Einstein condensation is the fraction of particles
in the condensed phase, η = n0∕⟨n⟩. From Eqs. (6.79) and (6.84), we can write

η =
n0⟨n⟩ = 1 −

g3∕2(1)⟨n⟩λ3T = 1 −
λ3Tc

λ3T
= 1 −

(
T
Tc

)3∕2

. (6.85)

A plot of the order parameter as a function of temperature is given in Figure 6.7b.
Equation (6.82) also determines the shape of the coexistence curve between

the “normal” phase and the “condensed” phase of the gas. From Eq. (6.78), we
see that for particle densities, ⟨n⟩ > ⟨n⟩c, the pressure becomes independent of
particle density. If we now use Eq. (6.83), we can write the critical pressure, Pc, as
a function of the critical volume per particle, ⟨v⟩c:

Pc =
2πℏ2g5∕2(1)
m(g3∕2(1))5∕3

1⟨v⟩5∕3c

. (6.86)

A plot of the coexistence curve, Eq. (6.86), together with some isotherms in the
P–v plane, is given in Figure 6.8a. In the region under the dashed curve, both
condensed particles and noncondensed particles can coexist.
Another quantity of great interest in the neighborhood of a phase transition is

the heat capacity. FromTable 3.5, the entropy per unit volume is s = (𝜕S∕𝜕V )T,μ =
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(𝜕P∕𝜕T )V,μ (note that s = (𝜕S∕𝜕V )T,μ only if the gas is composed of a single type
of particle). Therefore, from (6.78) we can compute the entropy and we obtain

s =
(
𝜕P
𝜕T

)
V,μ

=
⎧⎪⎨⎪⎩
kB

5
2

1
λ3T
g5∕2(z) − kB⟨n⟩ ln z if z < 1 ,

kB
5
2

1
λ3T
g5∕2(1) if z = 1

(6.87)

(we have made use of Eq. (6.79)). The Bose–Einstein gas clearly obeys the third
law of thermodynamics. In the limit T → 0K, the entropy approaches zero with
temperature dependence, T3∕2. We can also compute the heat capacity/volume,
cn = T(𝜕s∕𝜕T )n . Note that, when computing cn , we hold n fixed and not μ. The
computation of cn requires the following quantity,(

𝜕βμ
𝜕T

)
n
= − 3

2T
g3∕2(z)
g1∕2(z)

. (6.88)

Equation (6.88) is obtained by differentiating (6.79) with respect to T holding ⟨n⟩
fixed. The computation of cn is then straightforward. We find

cn = T
(
𝜕s
𝜕T

)
n
=

⎧⎪⎨⎪⎩
kB

15
4

1
λ3T
g5∕2(z) − ⟨n⟩kB 9

4
g3∕2(z)
g1∕2(z)

if z < 1 ,

kB
15
4

1
λ3T
g5∕2(1) , if z = 1 .

(6.89)

In Figure 6.8b, we plot cn for the Bose–Einstein gas. The location of the criti-
cal point is clear in the plot. In the high-temperature limit, the heat capacity ap-
proaches a constant value as we would expect for a classical ideal gas.

6.7.2
Experimental Observation of Bose–Einstein Condensation

The second-order phase transition in liquid 4He2, from the normal state (HeI) to
the superfluid state (HeII), is thought to be related to Bose–Einstein condensation.
However, liquid helium is very dense and strongly interacting and therefore is very
different from an ideal gas. As a consequence, there has been no direct proof that
the superfuid transition in 4He2 is, indeed, a formof Bose–Einstein condensation.
However, true Bose–Einstein condensationwas recently observed in dilute gas-

es of alkali atoms. It was first observed in a gas of rubidium atoms (87Rb37) in
1995 [6] at a temperature of T = 1.7 × 10−7 K. A fewmonths later, Bose–Einstein
condensation in a gas of sodium atoms (23Na11) [37] at a temperature of T =
2 × 10−6 K was reported. In the rubidium experiment, at the lowest temperatures
achieved, about 2000 atoms formed the condensate. In the sodium experiment,
which used slightly different techniques for trapping and cooling the gas, about
×105 atoms remained in the condensate (a condensate with 2 × 105 87Rb37 atoms
was later obtained by a different group [80]). In 2001, the Nobel prize was award-
ed to Wieman and Cornell [6] for the rubidium experiment and Ketterle [37]
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for the sodium experiment (and for their subsequent studies of the properties of
these condensates). Since these early experiments, Bose–Einstein condensation
has been observed in 7Li3 [20] and 1H1 [62], and in a number of different labora-
tories around the world.
Neutral alkali atoms have equal numbers of electrons and protons (both spin-

1∕2 particles), so their statistics is determined by the number of neutrons (a spin-
1∕2 particle) in their nucleus. If an atom has an even (odd) number of neutrons, it
is a boson (fermion). The alkali atoms, 87Rb37 and 23Na11, have an odd number of
protons and an even number of neutrons, making them bosons. For alkali atoms,
all but one of the electrons occupy closed shells. The remaining electron is in an s-
orbital. For both 87Rb37 and 23Na11, the interaction between the atoms is repulsive.
However, in these experiments the temperature is very low and the gas is dilute
so the thermal wavelength is greater than the average interparticle spacing, and
much greater than the range of the interaction. Thus, the atomic interactions play
a very small role in the condensation process.
In both of the experiments [6] and [37], the gas was confined in an MOT

(a magneto-optical trap), which is composed of a spatially varying magnetic field
and laser radiation. Such devices can both cool and trap the gas [166]. The optical
trap is formed with a magnetic field which interacts with the magnetic moment
of the atoms and effectively confines the gas in a three-dimensional harmonic
potential well. The critical temperature for Bose–Einstein condensation can be
estimated for such systems. From Exercise 6.3, the critical particle number for
Bose–Einstein condensation in a harmonic trap is

⟨N⟩c = 1
2ℏ3ω1ω2ω3

∞

∫
0

d𝜖𝜖2 1
exp(β𝜖) − 1

=
k3BT

3ζ(3)
ℏ3ω1ω2ω3

, (6.90)

where ζ(3) = 1.202 is the Riemann zeta function and ω1, ω2, ω3 are the frequen-
cies of the harmonic trap (see Exercise 6.3).We can also write the critical temper-
ature Tc in terms of the number of particles in the harmonic trap,

Tc =
(⟨N⟩ω1ω2ω3

1.202

)1∕3
ℏ

kB
. (6.91)

(In Exercise 6.4, we estimate the condensation temperature of sodium for the ex-
periment reported in [37].)

Exercise 6.5

Compute the Bose–Einstein condensation temperature for a gas of N = 2 × 106
sodium atoms in an asymmetric harmonic trap with oscillation frequencies f1 =
235, f2 = 410, and f3 = 745Hz.

Answer: The condensation temperature is given by Tc = ((⟨N⟩ω1ω2ω3)∕
1.202)1∕3ℏ∕kB, where ωj = 2π f j . Plugging in ℏ = 1.0546 × 10−34 J s, kB =
1.3807 × 10−23 J∕K, ⟨N⟩ = 2 × 106, ω1 = 2π(235) rad∕s, ω2 = 2π(410) rad∕s, and
ω3 = 2π(745) rad∕s, we obtain Tc = 2.0 × 10−6 K [37].
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Figure 6.9 Ballistic motion of rubidium atoms
after they have been released from a harmon-
ic trap for (a) temperature above condensa-
tion (T = 755 nK and N = 1.1 × 107 parti-
cles); (b) temperature below condensation

(T = 169 nK and N = 9.2× 105 condensed par-
ticles). In (a) the cloud is thermal and in (b) the
cloud has the shape of the ground state of the
trap and shows little expansion (Figures from
D.J. Heinzen).

Bose–Einstein condensation for atoms in harmonic traps is observed by perform-
ing the experiment several times, each at a different final temperature. In a giv-
en experiment, once the final temperature is reached, the trap magnetic field is
turned off and the subsequent ballistic motion of the atoms is observed. If the fi-
nal temperature is above the condensation temperature, the energy of the atoms
has a thermal distribution and the cloud of atoms expands in a thermal manner
(see Figure 6.9a). If the temperature is below the condensation temperature, most
atoms will be in the quantum ground state of the harmonic trap. They will hard-
ly move when the magnetic field is turned off and they will form an asymmetric
cloud (see Figure 6.9b), reflecting the fact that the ground state of a spatially asym-
metric harmonic potential is spatially asymmetric.

6.8
Bogoliubov Mean Field Theory

Bose-Einstein condensates created in the laboratory are not ideal gases. They are
gases of interacting bosons with very low temperature and density. A mean field
theory that accounts for the interactions between bosons, and describes many
properties of real BECs, was developed by Bogoliubov [17, 73, 167, 168]. As a first
step in deriving the Bogoliubov mean field theory, we must add an interaction
term to the kinetic energy in Eq. (6.57). Then the Hamiltonian, in the number
representation, takes the form (see Appendix D)

Ĥ =
∑
k

ℏ2k2
2m

α̂†k α̂k +
1
2V

∑
k1 ,k2 ,k3 ,k4

⟨k1, k2|V̂ |k3, k4⟩α̂†k1 α̂†k2 α̂k4 α̂k3 , (6.92)

where V is the volume of the BEC, k i are the wavevectors of the particles, and
V̂ = V̂ (r) is the interaction potential energy between bosons (r is the relative dis-
placement). The operator α̂†k (α̂k) creates (annihilates) a particle withmomentum
ℏk. The particle creation and annihilation operators satisfy the boson commuta-
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tion relations [α̂†k1 , α̂
†
k2
] = δk1 ,k2 , where δk1 ,k2 is the product of three Kronecker

delta functions, one for each component of the momentum.
At very low temperatures, the particles have very little energy so collisions be-

tween particles can be described solely in terms of the scattering length a of the
collision process. It is therefore possible to replace the detailed potential ener-
gy between particles by the “contact” potential energy V(r) = gδ(r), where g =
4πℏ2a∕m (see Appendix E). Then the Hamiltonian takes the form

Ĥ =
∑
k

ℏ2k2
2m

α̂†k α̂k +
g
2V

∑
k1 ,k2 ,k3 ,k4

δk1+k2−k3−k4 α̂
†
k1
α̂†k2 α̂k4 α̂k3 . (6.93)

The summations run over all single-particle states for both positive and negative
components of k i .
At very low temperature, a macroscopic number of particles N0 will be con-

densed into the lowest energy state k = 0. However, since the particles can in-
teract, particles can enter and leave the condensate via interactions, so even at
T = 0K not all particles will have wavevector k = 0. If ΔN = N − N0 is the num-
ber of excited particles, then typically ΔN∕N ∼ 0.01 at T = 0K. Since there are
a macroscopic number of particles in the ground state, we can approximate the
operators α̂0 and α̂

†
0 by the number

√
N0, and neglect their operator character.

We now write the particle creation and annihilation operators in the form α̂†0 =
α̂0 =

√
N0 for k = 0 and α̂†k = â†k , α̂k = âk for k ≠ 0. Then, keeping terms to sec-

ond order in â†k and âk (and requiring momentum conservation), the Bogoliubov
mean field Hamiltonian can be written the form

Ĥ =
gN2

0

2V
+ 1

2
∑
k≠0

[
(𝜖k + ν)

(
â†k âk + â

†
−k â−k

)
+ Δ

(
â†k â

†
−k + â−k âk

)]
,

(6.94)

where 𝜖k = ℏ2k2∕(2m), ν = 2gN0∕V , and Δ = gN0∕V . Note that Δ is the order
parameter for the condensed phase. The particle number operator can be written
N̂ = N0 +

∑
k≠0â†k âk . The quantities ν and Δ depend on temperature and density

of the gas. However, in the limit T → 0K, this dependence can be neglected, as
a first approximation. However, for higher temperatures, this dependence cannot
be neglected (we discuss this further below).
Let us now consider the thermodynamic properties of the gas. Using Bogoli-

ubov mean field theory, the grand potential can be written

Ω = −kBT ln
[
Tr

(
e−β(K0+K̂)

)]
(6.95)

where K0 = gN2
0∕(2V ) − μN0 and

K̂ =
∑
k

[(
𝜖k + ν − μ

)
â†k âk +

Δ
2

(
â†k â

†
−k + â−k âk

)]
. (6.96)

We can “diagonalize” K̂ using the Bogoliubov transformation

â†k = (uk b̂
†
k − vk b̂−k) and âk = (uk b̂k − vk b̂

†
−k) , (6.97)
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where b̂†k and b̂k are bogolon creation and annihilation operators, respectively (bo-
golons are collective excitations in the BEC). The bogolon creation and annihila-
tion operators satisfy the boson commutation relations [b̂k , b̂

†
k] = 1, and this re-

quirement leads to the condition that u2k − v
2
k = 1. The Bogoliubov transformation

diagonalizes K̂ , so that

K̂ =
∑
k≠0
Ek b̂

†
k b̂k +

1
2
∑
k≠0

[
Ek −

(
𝜖k + ν − μ

)]
, (6.98)

if uk , vk , and the bogolon excitation energy Ek are defined

uk =
1√
2

√
𝜖k + ν − μ

Ek
+ 1, vk =

1√
2

√
𝜖k + ν − μ

Ek
− 1 (6.99)

and

Ek =
√(

𝜖k + ν − μ
)2 − Δ2 (6.100)

(derivation of Ek , uk , vk is left as a homework problem).
A Bose–Einstein condensate has no gap in its energy spectrum. This differs

from a superconductor, which does have a gap due to the binding energy of the
bound electron pairs that must form in order for condensation to take place. As
was pointed out byHugenholtz and Pines [86], the requirement for a gapless spec-
trum imposes a condition on the chemical potential, namely μ = ν − Δ. The bo-
golon excitation energy then takes the form

Ek =
√(

𝜖k + Δ
)2 − Δ2 (6.101)

and the parameters uk and vk are given by.

uk =
1√
2

√
𝜖k + Δ
Ek

+ 1 and vk =
1√
2

√
𝜖k + Δ
Ek

− 1 . (6.102)

Note that the bogolon spectrum is phonon-like (Ek ∼ k) at very low energies and
particle-like (Ek ∼ k2) at higher energies.
The grand potential can now be written

Ω = −kBT ln
[
Tr

(
e−βK0

)]
− kBT ln

[
Tr

(
e−β

∑
k≠0Ek b̂†k b̂k

)]
− kBT ln

[
Tr

(
e−

β
2
∑

k≠0[Ek−(𝜖k+Δ))]
)]

(6.103)

or

Ω = −
gN2

0

2V
+ kBT

∑
k≠0

ln
(
1 − e−βEk

)
+ 1

2
∑
k≠0
Ek − (𝜖k + Δ) . (6.104)
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The last term in Eq. (6.104), which contributes to the ground state energy, has an
ultra-violet divergence. However, the divergence is a consequence of the approx-
imations made in deriving the simple mean field Hamiltonian in Eq. (6.94). This
divergence can be removed by keeping additional contributions and then gives a
negligible contribution to the properties of the BEC (see [73] for further discus-
sion), so we neglect this term in the subsequent discussion.
We can now rewrite the thermodynamic expressions using these approxima-

tions. The average particle number takes the form

⟨N⟩ = N0 +
∑
k≠0

𝜖k + Δ
Ek

1
eβEk − 1

(6.105)

and the entropy is given by

S =
(
𝜕Ω
𝜕T

)
V,μ

= −kB
∑
k≠0

ln(1 − eβEk ) +
∑
k≠0
Ek
T

1
eβEk − 1

. (6.106)

The pressure is given by P = −Ω
V
so that

P =
gN2

0

2V 2 −
kBT
V

∑
k≠0

ln
(
1 − e−βEk

)
. (6.107)

The heat capacity can be obtained from the expression for the entropy.We obtain

CV,N =
(
𝜕S
𝜕T

)
V,N

= 1
kBT2

∑
k≠0
E2k

eβEk(
eβEk − 1

)2 . (6.108)

Let us examine the behavior of these quantities at ultra-low temperature. We
first introduce dimensionless units. We write energy in units of Ea = kBTa ≡
ℏ2∕(2ma2), which is the energy of a particle with wavelength of order of the s-
wave scattering length. Ultra-low energy means that most particles have thermal
energy kBT much lower than Ea. This requires temperatures T ≪ Ta. In terms of
dimensionless units, the bogolon energy is

Ek =

√(
ℏ2k2
2m

+ Δ
)2

− Δ2 = ℏ2

2ma2

√(
κ2 + d

)2 − d2 (6.109)

where κ = ka is a dimensionless measure of the wavelength of the particles (rel-
ative to the scattering length), and d = 8πa3N0∕V is a dimensionless measure of
the density of the particles. Both κ and d are small for an ultra-low temperature
dilute gas. If we expand the bogolon energy for κ ≪ d, we obtain

Ek = kBTa

(√
2dκ + κ3

2
√
2d

+…

)
= kBTa

√
2d

(
κ + κ3

4d
+…

)
(6.110)

For Rubidium, some typical numbers arem = 87 u = 1.44 × 10−25 kg, a = 105a0 =
5.0 × 10−9 m, T = 7.25 × 10−9 K (from experiment), kBT = 1.0 × 10−31 J, d = 1.0×
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10−5, and kBTa = ℏ2∕(2ma2) = 1.44 × 10−30 J. Note that the temperature quoted
above for the experiment does not quite put us in the ultra-low temperature limit
in the sense that T ≪ Ta.
We now compute various thermodynamic quantities in the ultra-low tempera-

ture limit T ≪ Ta. First consider the heat capacity. Assuming a very large volume
for the gas, we can change the summation to an integration and write

CN ,V = 1
kBT2

∑
k≠0
E2k

eβEk
(eβEk − 1)2

= 1
kBT2 4π

V
(2π)3

∞

∫
0

dkk2E2k
eβEk

(eβEk − 1)2
.

(6.111)

For T ≪ Ta, we make the approximation Ek = kBTa

√
2dκ. Then the heat capacity

takes the form

CN ,V ≈ 4π
kBT2

V
(2π)3

2dk2BT
2
a

a3

∞

∫
0

dκκ4 eTa

√
2dκ∕T

(eTa

√
2dκ∕T − 1)2

= kBV
π2√
215

1
a3d3∕2

(
T
Ta

)3

. (6.112)

Thus, the heat capacity at ultra-low temperature goes to zero asT3 when T → 0K,
which is the same as a gas of photons or phonons. The pressure can be written

P =
g
2

(N0

V

)2

+
kBT
(2π)3

4π
a3 ∫ dκκ2 ln

(
1 − e−Ta

√
2dκ∕T

)
=
g
2

(
N0

V

)2

−
kBπ2T4

189
√
2a3T3

a d
3∕2

(6.113)

so at T = 0K there is a residual pressure proportional to the scattering length.
The Bogoliubovmean field theory, derived here, gives good agreement with ex-

periment for ultra-low temperature BECs. A generalization of the theory, called
the HFB-Popov approximation (HFB is Hartree–Fock Bogoliubov) [43, 73] al-
lows for the self-consistent variation of the mean fields ν and Δ with tempera-
ture and density. Predictions of the HFB-Popov approximation have been shown
to describe well the results of experiment for the temperature range 0 ≤ T∕Tc ≤
0.6 K [43, 78], where Tc is the critical temperature of the BEC.

6.9
Ideal Fermi–Dirac Gas

We now examine the thermodynamic behavior of a gas of indistinguishable, non-
interacting, spin s = 1∕2 fermions with mass m. For simplicity, we shall assume
the gas is in a cubic box so Lx = Ly = Lz = L. In order to include the effects of
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spin, we must generalize the expression for the grand partition function given in
Eq. (6.62). Spin 1∕2 particles can exist in two spin states, sz = ±ℏ∕2. Therefore,
each energy level can be occupied with up to two particles (one particle for each
of the two spin states) and not violate the Pauli exclusion principle.Wewill let nl,σ
denote the number of particles with quantum numbers l = (lx , l y , lz) and spin σ,
where σ = ↑ (↓) for sz = +ℏ∕2(−ℏ∕2). The grand partition function takes the form

ZFD(T, V, μ) =
∞∏
l=0

( 1∑
nl↑=0

e−βnl ,↑ (ε1−μ)
1∑

nl ,↓=0
e−βnl ,↓(εl−μ)

)
=

∏
l
(1 + e−β(εl−μ))2 . (6.114)

The power of 2 is due to the fact that there are two possible spin states for each set
of quantum numbers, l. If we are dealing with a gas of spin-s fermions, then there
will be g = 2s + 1 spin states for each value of l and the grand partition function
takes the form

ZFD(T, V, μ) =
∏
l
(1 + e−β(εl−μ))g . (6.115)

The grand potential is then given by

ΩFD(T, V, μ) = −kBT lnZFD(T, V, μ) = −kBTg
∑
l
ln(1 + e−β(εl−μ)) .

(6.116)

The average number of particles in the Fermi–Dirac gas is

⟨N⟩ = −
(
𝜕ΩFD

𝜕μ

)
T,V

=
∑
l

g
eβ(εl−μ) + 1

=
∑
l
⟨nl⟩ , (6.117)

where ⟨nl⟩ is the average number of particles with quantum numbers l and is
defined

⟨nl⟩ = g
eβ(εl−μ) + 1

=
gz

eβεl + z
. (6.118)

The quantity z = eβμ is the fugacity. For Fermi–Dirac particles, the fugacity can
take on the entire range of values 0 ≤ z ≤∞, and the average particle number can
take on a range of value 0 ≤ ⟨nl⟩ ≤ g. In Figure 6.10a, we plot ⟨nl⟩ as a function
of εl at low temperature (solid line) and at T = 0K (dashed line). We see that
at low temperature the particles completely fill all the states with lowest energy.
Only those states at higher energy are partly occupied. At zero temperature, all
states below a cutoff energy, εf = μ0 are occupied (εf is called the Fermi energy).
Themomentum, pf =

√
2mεf , is called the Fermi momentum. The distribution of

particles in momentum space at low temperature is like a “sea” with all the lower
states filled with particles. Only particles in states near the “top” of the “sea” can
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Figure 6.10 (a) Plots of the average occupation number, ⟨nl⟩, as a function of energy, εl ,
at very low temperature. The solid line is a plot for T > 0 K, and the dashed line is a plot for
T = 0 K. μ is the chemical potential. (b) Plots of f5∕2(z) and f3∕2(z) versus z.

change their state. For this reason this distribution of particles at low temperatures
is called the Fermi sea.
Let us now compute the thermodynamic properties of the Fermi–Dirac gas. For

large enough volume, V , we can change the summation,
∑

l , to an integration,

∑
l

≈ 4πV
(2πℏ)3

∞

∫
0

p2 d p . (6.119)

The grand potential then takes the form

ΩFD(T, V, μ) = −PV = −
4πkBTV
(2πℏ)3

∞

∫
0

p2 d p ln(1 + zeβp2∕(2m)) . (6.120)

Similarly, the average particle number can be written

⟨N⟩ = 4πgV
(2πℏ)3

∞

∫
0

p2 d p
(

z
eβp2∕(2m) + z

)
. (6.121)

Let us nowmake the change of variables, x2=βp2∕(2m), in Eqs. (6.120) and (6.121).
The pressure of the Fermi–Dirac gas takes the form

P = −
ΩFD

V
=
gkBT
λ3T

f5∕2(z) , (6.122)

where λT is the thermal wavelength λT = h∕
√
2πmkBT (see Eq. (5.25)) and the

function f5∕2(z) is defined as

f5∕2(z) =
4√
π

∞

∫
0

x2 dx ln(1 + ze−x2 ) =
∞∑
α=1

(−1)α+1 z
α

α5∕2
. (6.123)

The average particle density can be written

⟨n⟩ = ⟨N⟩
V

=
g
λ3T

f3∕2(z) , (6.124)
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Figure 6.11 (a) Plots of the pressure of a Fer-
mi–Dirac (FD), a Bose–Einstein (BE), and a clas-
sical (CI) ideal gas as a function of volume
per particle assuming the particles have the
same mass and neglecting spin. One isotherm

for each gas is shown. The temperatures of
the three isotherms are the same. (b) Plots of⟨n⟩λ3T versus βμ for a Bose–Einstein (BE) and
Fermi–Dirac (FD) gas.

where

f3∕2(z) = z
d
dz
f5∕2(z) =

4√
π

∞

∫
0

x2 dx z
ex2 + z

=
∞∑
α=1

(−1)α+1 z
α

α3∕2
. (6.125)

In Figure 6.10b, we plot f5∕2(z) and f3∕2(z) as a function of z.
It is interesting to compare the pressure of an ideal Fermi gas with that of an ide-

al classical gas and an ideal Bose–Einstein gas. In Figure 6.11a, we plotP versus the
average volume per particle, v = ⟨n⟩−1 and show one isotherm of the same tem-
perature for each gas. For the Fermi–Dirac gas we set g = 1 so we are comparing
only the effect of statistics. The pressure of the Bose–Einstein gas is dramatical-
ly lower than the classical or Fermi–Dirac gas for small v. This happens because
in a Bose–Einstein gas at low v (below the critical volume per particle) a macro-
scopic number of particles condense into the zero momentum state and can no
longer contribute to the pressure. Conversely, the pressure of the Fermi–Dirac gas
always lies a little above that of the classical gas, because the Fermi–Dirac gas will
contain more particles at highermomentum (due to the Pauli exclusion principle)
and will have a higher pressure than the classical gas.
It is useful to examine the behavior of the quantity, ⟨n⟩λ3T , as a function of the

chemical potential, μ. In Figure 6.11b, we plot ⟨n⟩λ3T versus the product, βμ, for
both a Fermi–Dirac and Bose–Einstein ideal gas. We see that the chemical poten-
tial of the Bose–Einstein gas remains negative and that the dominant growth in⟨n⟩λ3T occurs as μ → 0. For the Fermi–Dirac gas the product, βμ, can be positive
or negative and the dominant growth in ⟨n⟩λ3T occurs when βμ is positive. The
chemical potential for a Fermi–Dirac gas approaches a positive finite constant as
T → 0K.



218 6 Equilibrium StatisticalMechanics II – Grand Canonical Ensemble

We can revert the series expansion of ⟨n⟩λ3T∕g (see Eqs. (6.124) and (6.125))
and obtain a series expansion for the fugacity z in terms of ⟨n⟩λ3T∕g,

z = eβμ =
⟨n⟩λ3T
g

+ 1
23∕2

(⟨n⟩λ3T
g

)2

+
( 1
22

− 1
33∕2

)(⟨n⟩λ3T
g

)3

+⋯

(6.126)

The coefficients of various powers of the quantity, ⟨n⟩λ3T∕g, will always be pos-
itive. Thus, as T → ∞, z → 0 and the product, βμ, must be large and negative.
At high temperature, where β → 0, the chemical potential μ→ −∞. For low tem-
peratures, z → ∞ and βμ → ∞. Since β → ∞, in the limit T → 0 the chemical
potential can remain finite and indeed it does.
Let us now compute the thermodynamic properties of the ideal Fermi–Dirac

gas at low temperatures. We first examine the behavior of f3∕2(z), which we write
in the form

f3∕2(z) =
4√
π

∞

∫
0

dx x2

ex2−ν + 1
= 2√

π

∞

∫
0

dy
√
y

ey−ν + 1

= 4
3
√
π

∞

∫
0

dy y3∕2 ey−ν
(1 + ey−ν)2

. (6.127)

We have let y = x2 and ν = βμ in the second integral and we have integrated by
parts in the last integral. The function Δ(y, ν)≡ ey−ν∕(1+ey−ν)2, which appears in
the last integral, is essentially the derivative of the occupation number ⟨nl⟩, and at
low temperature is sharply peaked about y = ν = βμ where the strongest variation
in ⟨nl⟩ occurs (cf. Figure 6.12a). Thus, to perform the integration in Eq. (6.127),
we may expand y3∕2 in a Taylor series about y = ν. If we then let t = (y − ν), we
can write f3∕2(z) as

f3∕2(z) =
4

3
√
π

∞

∫
−ν

dt et
(1 + et)2

(
ν3∕2 + 3

2
ν1∕2t + 3

8
ν−1∕2t2 +⋯

)
. (6.128)

The contribution from the lower limit in the integral will be of order e−βμ . At low
temperatures we can neglect it and extend the lower limit to −∞ so that

f3∕2(z) =
4

3
√
π

∞

∫
−∞

dt et
(1 + et)2

(
ν3∕2 + 3

2
ν1∕2t + 3

8
ν−1∕2t2 +⋯

)
. (6.129)

To evaluate Eq. (6.129), we must evaluate integrals of the form

In =
∞

∫
−∞

dt tnet
(1 + et)2

. (6.130)
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Figure 6.12 (a) A plot of Δ(y, ν)≡ ey−ν∕(1+ ey−ν)2 versus y. (b) A plot of the chemical potential
of a Fermi–Dirac gas as a function of temperature for fixed particle density.

The result is In = 0 forn odd, I0 = 1, and In = (n−1)!(2n)(1−21−n )ζ(n) forn even,
where ζ(n) is a Riemann zeta function (ζ(2) = π2∕6, ζ(4) = π4∕90, ζ(6) = π6∕945),
etc.
We can use the above results to obtain an expansion for the quantity ⟨n⟩λ3T∕g

which is valid at low temperature. From Eqs. (6.124), (6.129) and (6.130), we find

⟨n⟩ λ3T
g

= 4
3
√
π

[
(βμ)3∕2 + π2

8
(βμ)−1∕2 +⋯

]
. (6.131)

If we take the limit T → 0K in (6.131), we find the following density-dependent
expression for the chemical potential

μ(T = 0) = μ0 ≡ εF = ℏ2

2m

(
6π2⟨n⟩
g

)2∕3

. (6.132)

The chemical potential, μ0 ≡ εF, at T = 0K is also called the Fermi energy, be-
cause at T = 0K it is the maximum energy that a particle in the gas can have (cf.
Figures 6.10a and 6.12b). At very low temperatures, only particles within a dis-
tance, kBT , of the Fermi surface can participate in physical processes in the gas,
because they can change their momentum state. Particles lower down in the Fer-
mi sea have no empty momentum states available for them to jump to and do not
contribute to changes in the thermodynamic properties. Equation (6.131) may be
reverted to find the chemical potential a a function of temperature and density.
The result is

μ = εF

[
1 − π2

12

(
kBT
εF

)2

+⋯

]
. (6.133)

Thus, the chemical potential approaches a finite constant as T → 0K.
The internal energy, U = ⟨Ĥ⟩ = ∑

l εlnl , can be computed in a similar manner.
At low temperature, it is given by

U = 3
5
⟨N⟩εF [1 + 5π2

12

(
kBT
εF

)2

+⋯

]
. (6.134)

From Eq. (6.134) we obtain the heat capacity of the ideal Fermi–Dirac gas in the
limit T → 0K. We find

CV =
(
𝜕U
𝜕T

)
V,⟨N⟩ =

⟨N⟩π2
2

k2BT
εF

+⋯ . (6.135)
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Thus, the heat capacity of an ideal Fermi–Dirac gas depends linearly on the tem-
perature at very low temperatures and goes to zero at T = 0K in accordance with
the third law. It is important to note, however, that particles in an ideal Fermi–
Dirac gas can have a large zero-point momentum and, therefore, a large pressure
and energy even at T = 0K. This is a result of the Pauli exclusion principle.

Exercise 6.6

The isotope 3He2 is a fermion with spin s = 1∕2. It remains a liquid over a wide
range of pressures down to T = 0K. Consider one mole of liquid 3He2. At very
low temperature its heat capacity has the same temperature dependence as that of
an ideal Fermi gas and can be written CV,N ≈ (2.8 K−1)NAkBT = (23 J∕K)T . Find
the temperature at which the entropy associated with the spins becomes greater
than the entropy associated with the thermal properties of the gas.

Answer: The heat capacity associated with thermal motion can be written
CV,N = T (𝜕S∕𝜕T )V,N so Sth = (2.8 K−1)NAkBT . The entropy of NA spin 1∕2 par-
ticles is Sspin = kBNA ln 2. These entropies become equal when (2.8 K−1)NAkBT =
kBNA ln 2 so T = 0.24K. At this temperature, the slope of the coexistence curve
changes sign.

It is a simple matter to show that at high temperatures, all quantities approach
values expected for an ideal classical gas. The procedure for deriving the clas-
sical ideal gas equation of state is the same as that for an ideal boson gas (see
Section 6.7).

6.10
Magnetic Susceptibility of an Ideal Fermi Gas

The magnetic susceptibility of matter is largely determined by its electron dy-
namics. When a magnetic field is applied to a molecule or to condensed matter,
the magnetic field inside the material is either enhanced (paramagnetic materi-
al) or reduced (diamagnetic material). Systems whose electron states have un-
paired spins are generally paramagnetic. Systems with paired electron spin states
are generally diamagnetic. The origins of these two types of magnetic response
are very different. In paramagnetic systems, electron states have a net magnetic
moment and this magnetic moment interacts with the magnetic field to create an
enhancedmagnetization. When electron spins are paired, there is no net magnet-
ic moment and it is the orbital motion of the electrons, induced by the Lorentz
force, that gives rise to diamagnetic effects. The origins of paramagnetism and
diamagnetism can be demonstrated fairly easily for an ideal electron gas. Below
we consider these two effects separately.
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6.10.1
Paramagnetism

Let us consider an ideal electron gas in the presence of a magnetic flux density B.
The grand partition function can be written

ZFD =
∞∏
𝓁=0

∏
σ𝓁=±1

ln
[
1 + exp(−β(𝜖𝓁 − μBσ𝓁B − μ)

]
, (6.136)

where the Bohrmagneton, μB = eℏ∕(2m), is themagnetic moment of the electron.
The grand potential can be written

ΩFD = −kBT ln[ZFD] = −kBT
∞∑
l=0

∑
σl=±1

ln
(
1 + z(σ𝓁 )e−β𝜖𝓁

)
=
VkBT
λ3T

(
f5∕2(z(+1)) + f5∕2(z(−1))

)
, (6.137)

where z(±1) = eβμe±μBB . The average particle number is

⟨N⟩ = −
(
𝜕Ω
𝜕μ

)
T,V,B

= V
λ3T

(
f3∕2(z(+1)) + f3∕2(z(−1))

)
(6.138)

and the magnetization is

⟨M⟩ = −
(
𝜕Ω
𝜕B

)
T,V,μ

=
μBV
λ3T

(
f3∕2(z(+1)) − f3∕2(z(−1))

)
. (6.139)

Thus, therewill be a netmagnetization if the occupation numbers of the “spin-up”
states differ from those of the “spin-down” states.
We can easily find the magnetization at high temperature where z = eβμ → 0,

because we can expand both the average particle number and the magnetization
in powers of z. Furthermore, we will consider the case of a weak magnetic field
and expand in powers of B. We then obtain the particle density

⟨n⟩ = ⟨N⟩
V

= 2
λ3T

eβμ(e+βμBB + e−βμBB) = 2
λ3T

eβμ + (B2) (6.140)

and the magnetization density⟨M⟩
V

=
2μ2B
kBTλ3T

eβμB + (B3) , (6.141)

where (Bn) indicates terms of order Bn and higher. If we now combine
Eqs. (6.140) and (6.141), we obtain⟨M⟩

V
=

⟨n⟩μ2B
kBT

B , (6.142)

and we find that the magnetic susceptibility at high temperature and weak mag-
netic field is χ = ⟨n⟩μ2B∕(kBT). Since it is positive, the system is paramagnetic. We
can also obtain the magnetic susceptibility in the limit T → 0, but this is left as a
homework problem.
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6.10.2
Diamagnetism

Diamagnetism results from the orbital motion of electrons in the presence of a
static magnetic field. The magnetic susceptibility, due to orbital motion, was first
computed for an ideal Fermi gas by Landau [114] and is called “Landau diamag-
netism.” Diamagnetism is a quantum mechanical effect and does not occur in a
classical gas [122].
The Lorentz force on an electron with charge−e and massm in the presence of

a magnetic flux density B is F = −ev × B, where v is the velocity of the electron.
Let us consider the static magnetic field along the z-axis, so that B = Bêz . The
Lorentz force provides the centripetal force that allows the electron to maintain
a circular orbit with radius R and angular velocity ωc = v∕R. Newton’s equation
for the centripetal motion is evB = mω2

cR, so the angular velocity is ωc = eB∕m.
Let us now consider a degenerate electron gas in a cubic boxwith volumeV = L3

in the presence of the magnetic flux density B = Bêz . We introduce the magnetic
vector potential A whose curl is the magnetic flux density B = ∇ × A. There is
some freedom in our choice of the vector potential. For example, A = −yBêx and
A = 1∕2(−yBêx + xBê y) both give the same magnetic flux density B = Bêz .
The Hamiltonian for an electron in the presence of the magnetic flux density

B can be written Ĥ = 1∕(2m)( p̂ + eA)2, where p̂ is the canonical momentum
operator and v̂ = ( p̂ + eA)∕m is the velocity of the electrons. The Schrödinger
equation for the electron energy eigenfunctions ψE(r) and eigenvalues E is then
given by

ĤψE(r) =
1
2m

(−iℏ∇r + eA)2ψE(r) = EψE(r) (6.143)

where p̂ =−iℏ∇r is themomentum operator in the position basis. Let us write the
vector potential as A = −yBêx and assume a solution to the Schrödinger equation
of the form ψE(r) = eikxxeikzzφ(y). The Schrödinger equation then becomes

− ℏ2

2m
𝜕2φ(y)
𝜕 y2

+ 1
2
mω2

c
(
y − y0

)2 φ(y) = ΔEφ(y) (6.144)

where y0 = ℏkx∕eB, ωc = eB∕m, ΔE = (E − ℏ2k2z∕(2m) is the energy of the elec-
tron motion in the x–y plane and ℏ2k2z∕(2m) is the kinetic energy of the electron
due to its motion along the z-axis. Equation (6.144) is the eigenvalue equation for
a harmonic oscillator that oscillates about the point y = y0 with oscillation fre-
quencyωc. The allowed energies of this harmonicmotion are ΔEn= ℏωc(n+1∕2),
with n = 0, 1, 2,…. The energy levels ΔEn for elections in the x–y plane are called
Landau levels and describe the quantized motion of the electrons in the presence
of the external magnetic field. The wavevectors kx and kz are quantized and have
values k j = 2π𝓁 j∕L where j = x , z and 𝓁 j = 0,±1,±2,….
The electron motion in the x–y plane is highly degenerate because of the de-

pendence of the point y = y0 on kx . This dependencemeans that the origin of the
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oscillator can change its position in increments δ y0 = ℏ2π∕(eBL), without chang-
ing the energy of the oscillator. Since the length of the box in the x-direction is L,
the number of such positions is = L∕δ y0 = eBL2∕(2πℏ), where BL2 is the total
magnetic flux through the x–y-plane.
Having determined the energy levels of an electron in the presence of the mag-

netic field, we can now write the grand potential per unit volume in the form

Ω(T, V, μ)
V

= −kBTg
eB

4π2ℏ

∞

∫
−∞

dkz
∞∑
n=0

ln

{
1 + e

−β
[
ℏ2k2z
2m +ℏωc

(
n+ 1

2

)
−μ

]}
,

(6.145)

where g is the spin degeneracy of the electrons (we have not included the in-
teraction of the magnetic field with the electron spins in this expression). Equa-
tion (6.145) includes the degeneracy = eBL2∕(2πℏ) of the Landau levels.
At high temperatures, we can use the approximation ln(1+ x) ≈ x− 1∕2x2 +…

and approximate the grand potential by the first-order term in the logarithm. We
then have

Ω(T, V, μ)
V

≈ −kBTg
eB

4π2ℏ

∞

∫
−∞

dkz
∞∑
n=0

e
−β

[
ℏ2 k2z
2m +ℏωc

(
n+ 1

2

)
−μ

]

= −kBTg
eB

4π2ℏ

√
2πm
βℏ2 e+βμ e−βℏωc∕2

1 − e−βℏωc
. (6.146)

Since we are interested in themagnetic susceptibility, we only need contributions
to lowest order inB. Let us note that e−x∕(1−e−2x) ≈ 1∕(2x)− x∕12+… for x≪ 1.
Remembering that ωc = eB∕m, we obtain

Ω(T, V, μ)
V

= −kBTg
eB

4π2ℏ

√
2πm
βℏ2 e+βμ

(
1

βℏωc
− 1

24
βℏωc +…

)
= −kBTg

e+βμ

λ3T

(
1 − 1

6

( eℏ
2m

)2 ( B
kBT

)2

+…

)
. (6.147)

The average particle density is

⟨n⟩ = − 1
V

(
𝜕Ω
𝜕μ

)
T,V

= g e
+βμ

λ3T
(1 −…) (6.148)

so the grand potential density can be written

Ω(T, V, μ)
V

= −kBT⟨n⟩ [1 − 1
6

( eℏ
2m

)2 ( B
kBT

)2

+…

]
. (6.149)
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The isothermal magnetic susceptibility is

χT = − 1
V

(
𝜕2Ω
𝜕B2

)
T,⟨n⟩ = −

⟨n⟩μ2B
3kBT

+… (6.150)

where μB = eℏ∕(2m) is the Bohr magneton. Thus, the magnetic susceptibility is
negative, indicating that the effect of the orbital motion of the electrons, in the
presence of amagnetic field is diamagnetic. However, if we combine the paramag-
netic and diamagnetic susceptibilities for the Fermi gas, we see that the combined
susceptibility is positive, indicating that the Fermi gas is paramagnetic.

6.11
MomentumCondensation in an Interacting Fermi Fluid

Electrons in a conducting solid are free to wander through the lattice and form
a Fermi fluid. At low temperatures the electrons form a Fermi sea and only those
near the Fermi surface affect the thermodynamic properties of the electron flu-
id. The electrons do experience a mutual Coulomb repulsion which is screened,
however, by lattice ions. As first noted by Frohlich [63], electrons in the neighbor-
hoodof the Fermi surface can also experience a lattice-phonon-mediated effective
attraction (two electrons may in effect be attracted to one another because they
are both attracted to the same lattice ion). Cooper [32] showed that this effective
attraction at the Fermi surface could cause bound pairs of electrons to form, and
these pairs could then condense in momentum space, giving rise to a phase tran-
sition in the interacting Fermi fluid. Bardeen, Schrieffer, and Cooper (BCS) [12]
showed that this momentum space condensation of Cooper pairs is the origin of
superconductivity in materials. In 1972, they received the Nobel Prize for this
work.
We shall derive the thermodynamic properties of a condensed Fermi fluid using

mean field theory [197]. It is found experimentally that Cooper pairs have zero
total angular momentum and zero total spin. If the pairs are not undergoing a net
translation through the fluid (no supercurrent), then the paired electronswill have
equal and opposite momentum and opposite spin components. We shall assume
that all other electrons behave like an ideal gas. With these assumptions, we can
write the Hamiltonian of the electron fluid in the form

Ĥ =
∑
k ,λ
εk â

†
k ,λ â−k ,λ +

∑
k

∑
k′
Vk ,k′ â

†
k ,↑ â

†
−k ,↓â−k′ ,↓âk′ ,↑ , (6.151)

where εk = ℏ2k2∕(2m), and λ denotes the z-component of spin of a given electron
and takes values λ = ↑ or λ = ↓ (spin component +1∕2ℏ or −1∕2ℏ, respectively).
The operators, â†k ,λ and âk ,λ, respectively create and annihilate an electron with
momentum ℏk and spin component λ (cf. Appendix D). They satisfy fermion an-
ticommutation relations,[

âk , â
†
k′

]
+
= δk ,k′ ,

[
âk , âk′

]
+ = 0 ,

[
â†k , â

†
k′

]
+
= 0 . (6.152)



2256.11 Momentum Condensation in an Interacting Fermi Fluid

The interaction term in Eq. (6.151) destroys a pair of electrons withmomenta ℏk′
and −ℏk′ and opposite spin components, and it creates a pair of electrons with
momenta ℏk and −ℏk and opposite spin components.
Since the electrons only experience an attraction at the Fermi surface, the in-

teraction energy, Vk ,k′ , can be written

Vk ,k′ =

{
−V0 for |μ − εk| ≤ Δε , |μ − εk′ | ≤ Δε ,
0 otherwise ,

(6.153)

where V0 is a positive constant, μ is the chemical potential of the Fermi fluid, and
Δε is a small energy interval of order kBT .
We now introduce the mean field approximation. We write the Hamiltonian in

the form

Ĥmf =
∑
k ,λ
εk â

†
k ,λâk ,λ +

∑
k
Δ∗ â−k ,↓âk ,↑ +

∑
k
Δâ†k ,↑â

†
−k ,↓ , (6.154)

where

Δ ≡ −V0
′∑
k

⟨
â−k ,↓âk ,↓

⟩
, and Δ∗ ≡ −V0

′∑
k

⟨
â†k ,↑â

†
−k ,↓

⟩
. (6.155)

The prime on the summation,
∑′

k , means that the summation is restricted to a dis-
tance, Δε, on either side of the Fermi surface. The average, ⟨â−k ,↓âk ,↑⟩, is defined
as

⟨â−k ,↓âk ,↑⟩ = Tr(ρ̂â−k ,↓âk ,↑) , (6.156)

and the density operator, ρ̂, is defined

ρ̂ = e−β(Ĥmf−μN̂)

Tr(e−β(Ĥmf−μN̂))
. (6.157)

The average, ⟨â†k ,↑â†−k ,↓⟩, is similarly defined. The particle number operator, N̂ , is
given by

N̂ =
∑
k ,λ
â†k ,λ âk ,λ , (6.158)

as we would expect. The quantity Δ is called the gap function and, in general, may
be real or complex. The gap function is real (Δ = Δ∗) if no supercurrent is present
and that is the case we consider here (the dependence on k and −k indicates that
the totalmomentumof the pair is zero). The gap functionΔ is the order parameter
for the phase transition and is a measure of the average binding energy of all the
Cooper pairs. If a macroscopic number of Cooper pairs form, then ⟨â†k ,↑â†−k ,↓⟩ =⟨â†k ,↑â†−k ,↓⟩ ≈ nc, where nc is the average number of Cooper pairs in the fluid.
TheHamiltonian, Ĥmf, does not commute with the number operator N̂ if Δ ≠ 0.

This means that the system does not conserve the particle (electron) number and
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the gauge symmetry is broken. If amacroscopic number of Cooper pairs form, the
total energy of the system is lowered. The phase transition occurs when the ther-
mal energy kBT , which tends to breakCooper pairs apart, becomes less important
than the phonon-mediated attraction between electrons.
It is useful to introduce an effective Hamiltonian

K̂ =
∑
k
ξk

(
â†k ,↑ âk ,↑ − â−k ,↓â

†
−k ,↓

)
+
∑
k
Δâ−k ,↓ âk ,↑ +

∑
k
Δâ†k ,↑â

†
−k ,↓ ,

(6.159)

where

ξk = εk − μ = ℏ2k2
2m

− μ , (6.160)

and we have made use of the fermion anticommutation relations. The effective
Hamiltonian, K̂ , differs from Ĥmf − μN̂ only by a constant term. Therefore, the
density operator can be written

ρ̂ = eβK̂

Tr(e−βK̂ )
. (6.161)

The effective Hamiltonian, K̂ , can be written in matrix form:

K̂ =
∑
k

α†
kKkαk , (6.162)

where

Kk ≡
(
ξk Δ
Δ −ξk

)
, αk =

(
âk ,↑
â†−k ,↑

)
, α†

k =
(
â†k ,↑ â−k ,↓

)
. (6.163)

Bogoliubov [18] showed that the effective Hamiltonian, K̂ , can be diagonalized by
means of a unitary transformation which preserves the fermion anticommutation
relations. In so doing, we obtain a Hamiltonian for uncoupled excitations (called
bogolons) of the system. To diagonalize the effective Hamiltonian, we introduce
a 2 × 2 unitary matrix,

Uk ≡
(
uk νk
−νk uk

)
. (6.164)

SinceU
†
kUk =UkU

†
k = 1 (unitarity), wemust have u2k + ν

2
k = 1.We also introduce

the vectors

Γk =

(
γ̂k ,0
γ̂†k ,1

)
, Γ†

k =
(
γ̂†k ,0γ̂k ,1

)
, (6.165)

which are related to the vectors, αk , via the unitary transformation

αk = UkΓk . (6.166)



2276.11 Momentum Condensation in an Interacting Fermi Fluid

The physical significance of the vectors, Γk , will become clear below. It is easy to
show that since â†k ,λ and âk ,λ obey fermion anticommutation relations, the oper-
ators, γ̂†k ,i and γ̂k ,i (i = 0, 1), must also obey fermion anticommutation relations[

γ̂k ,i , γ̂
†
k′ ,i′

]
+
= δk ,k′δi,i′ ,

[
γ̂k ,i γ̂k′ ,i′

]
+ =

[
γ̂†k ,i , γ̂

†
k′ ,i′

]
+
= 0 . (6.167)

If we revert Eq. (6.166), we see that γ̂k ,0 decreases the momentum of the system
by ℏk and lowers the spin by ℏ (it destroys a particle with quantum numbers,
(k , ↑), and creates one with quantum numbers, (−k, ↓), whereas γ̂k ,1 increases the
momentum of the system by ℏk and raises the spin by ℏ.
We now require that the unitary matrix, Uk , diagonalize the effective Hamilto-

nian, K̂ . That is,

U
†
kKkUk = Ek with Ek =

(
Ek ,0 0
0 Ek ,1

)
. (6.168)

We find that Ek ,0 = E o
k and Ek ,1 = −E o

k with

E o
k =

√
ξxk + Δ2 . (6.169)

With this transformation, we have succeeded in reducing the interacting Fermi
gas of electrons to an ideal Fermi gas of bogolons. In terms of bogolon operators,
the effective Hamiltonian takes the form

K̂ =
∑
k

α†
k ŪkU

†
kKkUkU

†
kαk =

∑
k

γ†
kEkγk

=
∑
k

(
Ek ,0 γ̂

†
k ,0γ̂k ,0 − Ek ,1 γ̂

†
k ,1γ̂k ,1 + Ek ,1

)
. (6.170)

The bogolons are collective modes and play a role analogous to that of phonons
in a Debye solid, although their dispersion relation is quite different.
We can now obtain a self-consistent equation for the gap function, Δ. First note

that ⟨
γ̂†k ,0 γ̂k ,0

⟩
= 1

1 + eβEk ,0
= 1

2

[
1 − tanh

(βEk ,0
2

)]
(6.171)

and ⟨
γ̂†k ,1 γ̂k ,1

⟩
= 1

1 + e−βEk ,1
= 1

2

[
1 + tanh

(βEk ,1
2

)]
. (6.172)
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Then ⟨
αkα

†
k

⟩
=

⎛⎜⎜⎝
1 −

⟨
â†k ,↑âk ,↑

⟩
−
⟨
â−k ,↓âk ,↑

⟩
−
⟨
â†k ,↑â

†
−k ,↓

⟩ ⟨
â†−k ,↓ â−k ,↓

⟩⎞⎟⎟⎠
= Uk

⎛⎜⎜⎝
1 −

⟨
γ̂†k ,0 γ̂k ,0

⟩
0

0
⟨
γ̂†k ,1γ̂k ,1

⟩⎞⎟⎟⎠U
†
k

= 1
2
1 + 1

2E o
k
Uk

(
Eok 0
0 −Eok

)
U

†
k tanh

( βEok
2

)
= 1

2
1 + 1

2Eok
Kk tanh

(βEok
2

)
. (6.173)

We can equate off-diagonal matrix elements and write

−⟨â−k ,↓ âk ,↑⟩ = Δk

2Eok
tanh

( βEok
2

)
. (6.174)

If we multiply (6.174) by Vk ,k′ , integrate over k, we obtain

1 = V0
′∑
k

1
2Eok

tanh
(βEok

2

)
. (6.175)

Under the primed summation the bogolon energy can be written Eok =
√
ξ2k + Δ2.

Equation (6.175) is the equation for the gap function Δ and is called the gap equa-
tion. Solutions of the gap equation correspond to extrema of the free energy. The
solution thatminimizes the free energy corresponds to the stable thermodynamic
state.
Let us now determine some properties of the gap function from Eq. (6.175). For

large volume, V , we can change the summation to an integration

∑
k

≈ V
2π2

∞

∫
0

dkk2 = m3∕2V√
2π2ℏ3

∞

∫
−μ

dξk
√
ξk + μ . (6.176)

The summation,
∑′

k can be written

′∑
k

≈ m3∕2V√
2π2ℏ3

Δε

∫
−Δε

√
εf dξk ≈ N(0)

Δε

∫
−Δε

dξk , (6.177)

where we have set μ ≈ εf (εf is the Fermi energy) and N(0) = mVkf∕(2π2ℏ2) is the
density of states at the Fermi surface for a single spin state (cf. Exercise 6.3). We
can now write (6.175) in the form

1 = V0N(0)
Δε

∫
0

dξk

tanh
[
β
2

√
ξ2k + Δ(T )2

]
√
ξ2k + Δ(T )2

. (6.178)
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Equation (6.178) determines the temperature dependence of the gap, Δ(T ), and
can be used to find the transition temperature.
The energy of bogolons (measured from the Fermi surface) withmomentum ℏk

is Ek =
√
ξ2k + Δ(T )2. It takes a finite amount of energy to excite them, regardless

of their momentum, because there is a gap in the energy spectrum. At the critical
temperature, Tc, the gap goes to zero and the excitation spectrum reduces to that
of an ideal Fermi gas. The critical temperature can be obtained from Eq. (6.178).
It is the temperature at which the gap becomes zero. Thus, at the critical temper-
ature we have

1 = V0N(0)
Δε

∫
0

dξk
tanh(βξk∕2)

ξk
= N(0)V0

βcΔε∕2

∫
0

dx tanh x
x

= N(0)V0 ln
(α
2
βcΔε

)
, (6.179)

where βc = (kBTc)−1, α = 2.267 73, and we have used the fact that

b

∫
0

tanh x
x

dx = ln(αb) , (6.180)

for b > 100. Thus, Eq. (6.179) holds when βcΔε∕2 > 100. This means that
N(0)V0 < 0.184 and therefore use of Eq. (6.179) restricts us to fairly weakly
coupled systems. From Eqs. (6.179) and (6.180) we obtain

kBTc =
α
2
Δεe−1∕(N(0)V0) , (6.181)

for βcΔε∕2 > 100. Thus, the critical temperature, Tc, varies exponentially with
the strength of the attractive interaction.
We can also use Eq. (6.178) to find the gap, Δ(0) ≡ Δ0, at T = 0K. Since

tanh(∞) = 1, we can write

1 = V0N(0)
Δε

∫
0

dξk
1√

ξ2k + Δ
2
0

= V0N(0) sinh−1
(Δε
Δ0

)
, (6.182)

or

Δ0 =
Δε

sinh[1∕(V0N(0))]
≈ 2Δεe−1∕(N(0)V0 ) . (6.183)

The right-most expression for Δ0 applies for weakly coupled systems when
N(0)V0 < 0.184. Comparing Eqs. (6.181) and (6.183), we obtain the following
relation between the critical temperature and the zero temperature gap for weak-
ly coupled systems:

Δ0

kBTc
= 4
α
= 1.764 . (6.184)
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Figure 6.13 (a) A plot of the ratio Δ(T )∕Δ0
versus the reduced temperature, T∕Tc, for
a weakly coupled system. (b) A sketch of
the heat capacity for a superconductor. The
straight dashed line gives the heat capaci-

ty in the absence of interaction (ideal Fermi
gas). The solid line shows the jump in the heat
capacity at the critical point and the exponen-
tial decay for temperatures below the critical
point.

Equation (6.184) is in good agreement with experimental values of this ratio for
superconductors. Equation (6.178) may be solved numerically to obtain a plot
of the gap as a function of temperature. We show the behavior of Δ(T ) in Fig-
ure 6.13a for weakly coupled systems.
Since bogolons form an ideal gas, the bogolon entropy can be written in the

form

S = −2kB
∑
k
[nk ln(nk) + (1 − nk) ln(1 − nk)] , (6.185)

where nk = (1 + eβEk )−1. The heat capacity, CV,N , is easy to find from Eq. (6.185).
Let us first note that for a Fermi gas at very low temperature we have μ ≈ εf , where
εf is the Fermi energy, and (𝜕μ∕𝜕T )V,⟨N⟩ ≈ 0. Thus,

CV,N = T
(
𝜕S
𝜕T

)
V,⟨N⟩ ≈ 2βkβ

∑
k

𝜕nk
𝜕β

ln
( nk
1 − nk

)
= −2βkB

∑
k

𝜕nk
𝜕Ek

(
E2k +

1
2
β
𝜕Δ2

k

𝜕β

)
. (6.186)

We can now examine the heat capacity, both at the critical temperature and in the
limit T → 0K.
Let us first look at the neighborhood of the critical point. The first term in

Eq. (6.186) is continuous at T = Tc, but the second term is not since 𝜕|Δk |2∕𝜕β
has a finite value for T < Tc but is zero for T > Tc. Near T = Tc, we may let
Ek → |ξk|. Then the heat capacity just below the critical temperature is

C<

V,N ≈ −2βckB
∑
k

𝜕nk
𝜕ξk

⎡⎢⎢⎣ξ2k + 1
2
βc

(
𝜕Δ2

k

𝜕β

)
T=Tc

⎤⎥⎥⎦ , (6.187)

and just above the critical temperature it is

C>
V,N ≈ −2βckB

∑
k

𝜕nk
𝜕ξk

ξ2k . (6.188)
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Figure 6.14 Variation of Δ∕kBTc with reduced temperature, T∕Tc, for tin. The data points are
obtained from ultrasonic acoustic attenuation measurements [18] for two different frequen-
cies. The solid line is BCS theory. Reprinted, by permission, from [144].

The discontinuity in the heat capacity at the critical temperature is

ΔCV,N = C<

V,⟨N⟩ − C>

V,⟨N⟩ = −β2ckB
′∑
k

(
𝜕Δ2

𝜕β

)
T=Tc

𝜕nk (ξk)
𝜕ξk

= −kBβ2cN(0)
(
𝜕Δ2

𝜕β

)
T=Tc

= N(0)
(
𝜕Δ2

𝜕T

)
T=Tc

. (6.189)

Thus, the heat capacity has a finite discontinuity at the critical temperature, as we
would expect for a mean field theory.
Mean field theory gives a surprisingly good description of the behavior of real

superconductors. In Figure 6.14 we show experimental measurements of the gap
function, Δ, as a function of temperature for tin. The solid line is the mean field
theory of Bardeen, Cooper, and Schrieffer. The experimental points, which are
obtained fromultrasonic acoustic attenuationmeasurements [144], fit it verywell.

6.12
Problems

Problem 6.1 A monatomic dilute gas, in a box of volume V , obeys the Dieterici
equation of state P = nRT∕(V − nb) exp(−na∕(VRT)), where n is mole number,
a and b are constants determined by the type of molecules in the gas. (a) Find the
second virial coefficient for this gas and express it in terms of a and b. (b) Com-
pute the constants a and b for a gas of particles that interacts via a two-body po-
tential V (r) that has an infinite hard core and an attractive square-well potential
region such that V (r) = ∞ for r < σ, V (r) = −𝜖 for σ ≤ r ≤ λσ, and V (r) = 0
for r > λσ, where r is the relative displacement of a pair of particles. (c) The
constants a and b for a gas of CO2 molecules are a = 0.3658 Pam6∕mol2 and
b = 0.000 042 86m3∕mol (see Table 3.6, Section 3.8). Assuming that λ = 2 obtain
estimates for the radius σ and binding energy 𝜖 (in eVs) for CO2.
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Problem 6.2 Consider N = 1000 hypothetical molecules “M” each of which has
three heme sites that can bind an oxygen molecule O2. The binding energies En
whennO2 are bound are E0 = 0, E1 =−0.49 eV, E2 =−1.02 eV, and E3 =−1.51 eV.
Assume that the “M” molecules are in equilibrium with air at T = 310K and the
partial pressure of O2 in air is PO2

= 0.2 bar. Also assume that the “M” molecules
don’t interact with each other and air can be treated as an ideal gas. Of the N =
1000 “PP” molecules present, howmany will have (a) zero O2 molecules bound to
them; (b) one O2 molecule bound to them; (c) two O2 molecules bound to them;
(d) three O2 molecules bound to them?

Problem6.3 Compute the second virial coefficient for a gas that interacts via the
potential

V(q) =
⎧⎪⎨⎪⎩
∞ if q < R ,

ε
R(λ−1)

(q − λR) if R ≤ q ≤ λR ,
0 if q > λR .

Problem 6.4 Consider a classical gas in a box of volume V . Compute the second
virial coefficient, B2, for the Gaussian model, f (qi j) = e−aq

2
i j , where a−1∕2 ≪ V 1∕2.

Sketch the effective potential, βV (qi j).

Problem 6.5 Compute the second coefficient for the weakly coupled particles
with potential V (q) = V0 for q ≤ R and V (q) = 0 for q > R.

Problem 6.6 The density of states of an ideal Bose–Einstein gas in a cubic box of
volume V is

g(E) =

{
αE3 if E > 0 ,
0 if E < 0 ,

where α is a constant. Compute the critical temperature for Bose–Einstein con-
densation.

Problem6.7 (a) Compute the Bose–Einstein condensation temperature for a gas
of N = 4 × 104 rubidium atoms in an asymmetric harmonic trap with oscillation
frequencies f1 = 120Hz, f2 = 120∕

√
8Hz, and f3 = 120∕

√
8Hz. (b) If conden-

sation occurred at the same temperature in a cubic box, what is the volume of the
box?

Problem6.8 Liquid helium (4He2) undergoes a superfluid transition at a temper-
ature of T = 2.16K. At this temperature it has a mass density of ρ = 0.145 g∕cm3.
Make the (rather drastic) assumption that liquid helium behaves like an ideal gas
and compute the critical temperature for Bose–Einstein condensation.

Problem 6.9 An ideal Bose–Einstein gas consists of noninteracting bosons of
massm which have an internal degree of freedom which can be described by as-
suming that the bosons are two-level atoms. Bosons in the ground state have ener-
gy E0 = p2∕(2m), while bosons in the excited state have energy E1 = p2∕(2m)+Δ,
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where p is the momentum and Δ is the excitation energy. Assume that Δ ≫ kBT .
Compute the Bose–Einstein condensation temperature, Tc, for this gas of two-
level bosons. Does the existence of the internal degree of freedom raise or lower
the condensation temperature?

Problem 6.10 Compute the Clausius–Clapeyron equation for an ideal Bose–
Einstein gas and sketch the coexistence curve. Show that the line of transition
points in the P–ν plane obeys the equation

Pv5∕3 = 2πℏ2

m
g5∕2(1)

(g3∕2(1))5∕3
.

Problem 6.11 Show that the pressure, P, of an ideal Bose–Einstein gas can be
written in the form P = αu, where u is the internal energy per unit volume and α
is a constant. (a) What is u? (b) What is α?

Problem 6.12 (a) For a BEC, prove that

H =
∑
k

[k â†k âk + Δ
2

(
â†−k â

†
k + â−k âk

)]
=

∑
k
Ek b̂

†
k b̂k +

1
2
∑
k
(Ek − k)

using the Bogoliubov transformation â†k = uk b̂
†
k − vk b̂−k and âk = uk b̂k − vk b̂

†
−k .

(b) Using the requirement that [âk â
†
k − â

†
k âk] = 1 and [b̂k b̂

†
k − b̂

†
k b̂k] = 1, find

explicit expressions for Ek , uk , and vk in terms of k and Δ.
Problem6.13 Electrons in a piece of coppermetal can be assumed to behave like
an ideal Fermi gas. Copper metal in the solid state has a mass density of 9 g∕cm3.
Assume that each copper atom donates one electron to the Fermi gas. Assume
the system is at T = 0K. (a) Compute the Fermi energy, εF, of the electron gas.
(b) Compute the Fermi “temperature”, TF = εF∕kB.

Problem 6.14 A two-dimensional electron gas can be formed at the inter-
face of GaAs/AlGaAs semiconductors. The effective mass of the electrons is
m = 0.067me, where me is the mass of the electron in free space. Treat the
electrons like an ideal Fermi gas of particles with spin-1∕2 and mass m in a two-
dimensional box with area A = L2. (a)What is the density of states of the electron
gas? (b) If the electron density is N∕A = 2.0× 1013∕cm2, what is the Fermi energy
of the two-dimensional electron gas?

Problem 6.15 The density of states of an ideal Fermi–Dirac gas is

g(E) =

{
D if E > 0 ,
0 if E < 0 ,

where D is a constant. (a) Compute the Fermi energy. (b) Compute the heat ca-
pacity at very low temperature.
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Problem 6.16 Compute the magnetization of an ideal gas of spin-1∕2 fermions
in the presence of a magnetic field. Assume that the fermions each have magnetic
moment μe. Find an expression for the magnetization in the limit of weak mag-
netic field and T → 0K.

Problem6.17 Show that the entropy for an ideal Fermi–Dirac ideal gas (neglect-
ing spin) can be written in the form

S = −kB
∑
l

{⟨nl⟩ ln[⟨nl] + (1 − ⟨nl⟩) ln[1 − ⟨nl⟩]} ,

where ⟨n1⟩ = (eβ(ε1−μ) + 1)−1.

Problem 6.18 One mole of a dilute gas of He3 atoms (which are spin-1∕2
fermions) at temperature T = 140K is contained in a box of volume V = 1.0 cm3.
(a) Compute the lowest order (in density) correction to the classical ideal gas
pressure. (b) What fraction of the total pressure is due to the Fermi statistics of
the atoms?

Problem 6.19 In the grand canonical ensemble, the variance in particle number
is ⟨N2⟩ − ⟨N⟩2 = 1∕β(𝜕⟨N⟩∕𝜕μ)T, . (a) Compute ⟨N2⟩ − ⟨N⟩2 for a classical ideal
gas. (b) Compute ⟨N2⟩− ⟨N⟩2 for a Bose–Einstein ideal gas at fairly high temper-
ature (keep corrections to the classical result to first order in the particle density).
How and why is your result different from the classical ideal gas result? (c) Com-
pute ⟨N2⟩ − ⟨N⟩2 for a Fermi–Dirac ideal gas at a fairly high temperature (keep
corrections to the classical result to first order in the particle density). How and
why is your result different from the classical ideal gas result?

Problem 6.20 To lowest order in the density, find the difference in the pressure
and isothermal compressibility between an ideal boson and an ideal fermion gas.
Assume that the fermions and bosons have the same mass and both are spinless.
(Note: You are now considering fairly high temperature.)

Problem 6.21 Show that near the critical temperature the gap function, Δ(T ),
in a weakly coupled, condensed Fermi fluid (superconductor) in the mean field
approximation has temperature dependence

Δ(T )
Δ(0)

= 1.74
(
1 − T

Tc

)1∕2

,

where Tc is the critical temperature and Δ(0) is the gap function at T = 0K.

Problem 6.22 The unitary matrix, Uk ≡
(
uk νk
−νk uk

)
, diagonalizes the effective

Hamiltonian Kk ≡
(
εk Δ
Δ −εk

)
. Compute νk and uk .
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7
Brownian Motion and Fluctuation–Dissipation

7.1
Introduction

Wenow begin to discuss the dynamics ofmany-body systems that are out of equi-
librium and we develop tools to describe the processes by which they decay back
to equilibrium. These systems generally have 1023 degrees of freedom that decay
rapidly (on the time scale of a few collision times). However, a few of these de-
grees of freedom decay very slowly due to conservation laws at the microscopic
level. It is these slowly decaying modes that we will be most concerned about.We
will find that these same decay processes also govern the dynamical behavior of
fluctuations in systems that are at equilibrium.
The dynamics of a Brownian particle provides a paradigm for describing equi-

librium and nonequilibrium processes. When a relatively massive particle (like
a grain of pollen) is immersed in a fluid, it is observed to undergo rapid, random
motion, even when it is in thermodynamic equilibrium with the fluid. The agi-
tated motion of the Brownian particle is a consequence of random “kicks” that
it receives from density fluctuations in the equilibrium fluid, and these density
fluctuations are a consequence of the discrete (atomic) nature of matter. Thus,
Brownian motion provides evidence on the macroscopic scale of the fluctuations
that are continually occurring in equilibrium systems.
A phenomenological theory of Brownian motion can be obtained by writing

Newton’s equation ofmotion for themassive particle and including in it a system-
atic friction force and a random force that mimics the effects of the many degrees
of freedom of the fluid in which the massive particle is immersed. The equation
of motion for the Brownian particle is called the Langevin equation. Given the
Langevin equation for a Brownian motion process, we can obtain an equation for
the time evolution of the probability distribution of the Brownian particle, called
the Fokker–Planck equation. We will derive the Fokker–Planck equation and we
will solve it for Brownian motion with one spatial degree of freedom in the pres-
ence of strong friction.
In 1932, Onsager showed that the time reversibility of Newtonian dynamics (or

quantum mechanics) imposes certain relations between decay (to equilibrium)
processes in a complex system. Onsager’s relations are important because they

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.
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provide a link between different types of decay processes and thereby reduce the
number of experiments that must be performed in order to measure decay prop-
erties of a system. In this chapter we will derive Onsager’s relations.
Fluctuations about the equilibrium state decay on the average according to the

same macroscopic laws that govern the decay of a nonequilibrium system to the
equilibrium state. If we can probe equilibrium fluctuations, we have a means of
probing the decay processes in a system. Linear response theory provides a tool
for probing equilibrium fluctuations by applying a weak external field which cou-
ples to the system. The system responds to the field in a manner that depends
entirely on the spectrum of the equilibrium fluctuations. The response to the dy-
namic field is measured by the susceptibility matrix. The fluctuation–dissipation
theorem links the susceptibility matrix to the correlation matrix for equilibrium
fluctuations. According to the fluctuation–dissipation theorem, the spectrum of
equilibrium fluctuations determines the rate of absorption of energy from the ex-
ternal field.
Our derivation of Onsager’s relations and of the fluctuation–dissipation theo-

rem in this chapter are very general. We do however illustrate the fluctuation–
dissipation theorem by applying it to classical Brownian motion. In Chapter 8, we
will discuss these theories again in the context of hydrodynamics.
In the last section of this chapter, we derive linear response theory for quantum

systems starting from microscopic theory. We then use this theory to obtain the
conductance of ballistic electrons in a one-dimensional wire connected to elec-
tron reservoirs.We show that this simple quantum system can absorb power from
an applied field.

7.2
Brownian Motion

Brownian motion provides evidence, on the “macroscopic” scale, for the atomic
nature of matter on the “microscopic” scale. The discreteness of matter causes
fluctuations in the matter density which, in turn, causes observable effects on the
motion of the Brownian particle. This can be seen if one immerses a large particle
(usually about onemicron in diameter) in a fluid with the same density as the par-
ticle.When viewed under a microscope, the large particle (the Brownian particle)
appears to be in a state of agitation, undergoing rapid and random movements.
Early in the nineteenth century, the biologist Robert Brown wrote a paper on this
phenomenon [22] which received wide attention [49, 51, 164], and as a result it
was named after him.
In this section we derive the theory of Brownian motion starting from the

Langevin equations of motion for a Brownian particle. We focus on a large par-
ticle (the Brownian particle) immersed in a fluid of much smaller atoms. The
motion of the large particle is much slower than that of the atoms and is the result
of random and rapid kicks due to density fluctuations in the fluid. Since the time
scales of the Brownian motion and the atomic motions are vastly different, we
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can separate them and focus on the behavior of the Brownian particle. The effect
of the fluid on the Brownian particle can be reduced to that of a random force
and a systematic friction acting on the Brownian particle.
The theory of Brownian motion provides a paradigm for treating many-body

systems in which a separation of time scales can be identified between some of
the degrees of freedom. This is the reason we consider it in some detail here.

7.2.1
Langevin Equation

Consider a particle ofmassm and radius a, immersed in a fluid of particles ofmass
mf (mf ≪m) and undergoing Brownianmotion. The fluid gives rise to a retarding
force (friction) that is proportional to the velocity, and a random force, ξ(t), due to
randomdensity fluctuations in the fluid. The equation ofmotion for the Brownian
particle can be written

dv(t)
dt

= −
γ
m
v(t) + 1

m
ξ(t) , (7.1)

where v(t) is the velocity of the particle at time t and γ is the friction coefficient.
Equation (7.1) is called the Langevin equation.
We will assume that ξ(t) is a Gaussian white noise process with zero mean so

that ⟨ξ(t)⟩ξ = 0. The noise is assumed to be Markovian and stationary and the
average, ⟨⟩ξ , is an average with respect to the probability distribution of realiza-
tions of the stochastic variable ξ(t). We will not write the probability distribution
explicitly. The assumption that the noise is white means that the noise is delta-
correlated,⟨ξ(t1)ξ(t2)⟩ξ = gδ(t2 − t1) , (7.2)

and therefore it is not possible to represent a single realization of ξ(t) in terms
of a continuously drawn line (although it is possible to do so with v(t)). The
weighting factor, g, is a measure of the strength of the noise. Because the noise
is Gaussian with zero mean, correlation functions with an odd number of terms,
ξ(t), are zero and correlation functions with an even number of terms, ξ(t), can
be expressed in terms of sums of products of the pairwise correlation function,⟨ξ(t1)ξ(t2)⟩ξ . For example,⟨ξ(t1)ξ(t2)ξ(t3)ξ(t4)⟩ξ = ⟨ξ(t1)ξ(t2)⟩ξ⟨ξ(t3)ξ(t4)⟩ξ

+ ⟨ξ(t1)ξ(t3)⟩ξ⟨ξ(t2)ξ(t4)⟩ξ + ⟨ξ(t1)ξ(t4)⟩ξ⟨ξ(t2)ξ(t3)⟩ξ . (7.3)

This is a realization of Wick’s theorem in a classical system (see Exercise A.7).
Assume that at time t = 0, the velocity and displacement of the Brownian par-

ticle are v(0) = v0 and x(0) = x0, respectively. Then its velocity and displacement
at time t are

v(t) = v0e−(γ∕m)t + 1
m

t

∫
0

dse−(γ∕m)(t−s)ξ(s) (7.4)



238 7 BrownianMotion and Fluctuation–Dissipation

and

x(t) = x0 +
m
γ
(1 − e−(γ∕m)t )v0 +

1
γ

t

∫
0

ds(1 − e−(γ∕m)(t−s))ξ(s) , (7.5)

respectively. Equations (7.4) and (7.5) give v(t) and x(t) for a single realization
of ξ(t). Since ξ(t) is a stochastic variable, v(t) and x(t) are also stochastic variables
whose properties are determined by ξ(t).

7.2.2
Correlation Function and Spectral Density

We can obtain the velocity autocorrelation function from Eqs. (7.2) and (7.4). If
we make use of the fact that ⟨v0ξ(t)⟩ξ = 0, then we can write

⟨v(t2)v(t1)⟩ξ = v20e−(γ∕m)(t2+t1)

+
g
m2

t2

∫
0

ds2

t1

∫
0

ds1δ(s2 − s1)e(γ∕m)(s1−t1)e(γ∕m)(s2−t2) . (7.6)

We can perform the integration in Eq. (7.6). For t2 > t1, we obtain

⟨v(t2)v(t1)⟩ξ = (
v20 −

g
2mγ

)
e−(γ∕m)(t2+t1) +

g
2mγ

e−(γ∕m)(t2−t1) . (7.7)

For t1 > t2, we obtain a similar result but with the order of t1 and t2 interchanged
in the last exponent. Therefore, for arbitrary t1 and t2 we can write

⟨v(t2)v(t1)⟩ξ = (
v20 −

g
2mγ

)
e−(γ∕m)(t2+t1) +

g
2mγ

e−(γ∕m)(|t2−t1|) . (7.8)

Note the absolute value sign on the last exponent.
We can also obtain the variance in the displacement. If we use Eqs. (7.2)

and (7.5) and the fact that ⟨x0ξ(t)⟩ξ = 0, we can write

⟨(x(t) − x0)2⟩ξ = m2

γ2

(
v20 −

g
2mγ

)
(1 − e−(γ∕m)t)2

+
g
γ2

[
t − m

γ
(1 − e−(γ∕m)t )

]
. (7.9)

Thus, after a long time the variance goes as ⟨(x(t2) − x0)2⟩ξ = (g∕γ2)t (neglecting
some constant terms).
We can determine the value of g for a Brownian particle in equilibrium with

a fluid. Take the “thermal” average ⟨⟩T of Eq. (7.8). By the equipartition theorem,
(1∕2)m⟨v20⟩T = (1∕2)kBT , where kB is Boltzmann’s constant and T is the temper-
ature in kelvin. If the Brownian particle is in equilibrium, its velocity autocorrela-
tion function must be stationary and can only depend on time differences t1 − t2.
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Therefore, we must have g = 2mγv20 so the first term on the right in Eq. (7.8) is
removed. If we now take the thermal average of Eq. (7.8), we see that wemust have
g = 2γkBT . The correlation function can then be written

⟨⟨v(t2)v(t1)⟩ξ⟩T =
kBT
m

e−(γ∕m)(|t2−t1|) . (7.10)

The absolute value on the time difference ensures that correlations always decay
as the time difference increases. This means that information about the initial
velocity of the Brownian particle decays away exponentially.

Exercise 7.1

Electrons in an electrical circuit at temperature T undergo Brownian motion
(thermal agitation) which is a fundamental source of noise in such circuits. Con-
sider the simple circuit shown in the figure, which consists of a capacitor C in
parallel with a resistor R. Electrons in the resistor provide a fluctuating cur-
rent i(t), whose average is zero ⟨i(t)⟩ = 0 but whose fluctuations about the av-
erage are delta-correlated ⟨i(t + τ)i(t)⟩i = gδ(τ), where g is the noise strength.
By the equipartition theorem, the average electrical energy in the capacitor is
(1∕2)C⟨V 2⟩T = (1∕2)kBT . (a) Compute the noise strength g. (b) Compute the
voltage correlation function ⟨⟨V (t2)V (t1)⟩i⟩T .

Answer: The voltage across the capacitor is a solution of the circuit
equation i(t) = V (t)∕R + CdV (t)∕dt and is given by V (t) = V (0)e−t∕RC +
(1∕C)∫∞0 dt1e−(t−t1)∕RC i(t1). Using the fact that ⟨i(t + τ)i(t)⟩i = gδ(τ), the voltage
correlation function takes the form

⟨V (t2)V (t1)⟩i = (
V (0)2 −

gR
2C

)
e−(t2+t1)∕RC +

gR
2C

e−|t2−t1|∕RC .

If the system is assumed to be in thermal equilibrium and we take the thermal av-
erage of ⟨V (t2)V (t1)⟩i , the thermal average can only depend on the time difference|t2− t1|. Therefore, by the equipartition theorem,we can set ⟨V (0)2⟩T = kBT∕C =
gR∕(2C), and the noise strength is given by g = 2kBT∕R = 2kBTG, whereG = 1∕R
is the conductivity. Thus, the current correlation function and the voltage corre-
lation function take the forms

⟨⟨i(t+τ)i(t)⟩i⟩T = 2kBTGδ(τ) and ⟨⟨V (t2)V (t1)⟩i⟩T =
kBT
C

e−|t2−t1|∕RC ,
respectively. The electrical noise induced by the Brownian motion of electrons in
a circuit was measured by Johnson [92] and was used by him to determine the
value of Boltzmann’s constant kB.
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For the case when the Brownian particle is in equilibrium with the fluid, the vari-
ance of the displacement becomes

⟨⟨(x(t) − x0)2⟩ξ⟩T =
2kBT
γ

[
t − m

γ
(1 − e−(γ∕m)t )

]
, (7.11)

where we have assumed that ⟨x0⟩T = ⟨v0⟩T = 0 and that x0 and v0 are statistical-
ly independent so that ⟨x0v0⟩ = 0. Thus, after a long time, ⟨⟨(x(t) − x0)2⟩ξ⟩T =
(2kBT∕γ)t and the diffusion coefficient becomes D = kBT∕γ. The friction coeffi-
cient, γ, can also be determined from properties of the fluid and hydrodynamics.
For large spherical Brownian particles, we can assume that the fluid sticks to the
surface. The friction coefficient is then the Stokes friction, γ = 6πηa, where η is
the shear viscosity of the fluid and a is the radius of the Brownian particle.
The spectral density is the Fourier transform of the correlation function (this is

the content of the Weiner–Khintchine Theorem which is discussed later in this
Chapter) and contains information about the frequency spectrum of fluctuations
about the equilibrium state. The spectral density is given by

Sv,v(ω) =
∞

∫
−∞

dτe−iωτ⟨v(t1 + τ)v(t1)⟩ξ ,T =
∞

∫
−∞

dτe−iωτCv,v(τ) . (7.12)

For the case of simple Brownian motion with a velocity autocorrelation given
by (7.10), the spectral density is given by

Svv(ω) =
2kBT
m

γ∕m
ω2 + (γ∕m)2

(7.13)

and corresponds to a Lorentzian curve that is peaked at ω = 0 with a half-width
of γ∕m. White noise has a very different spectrum. Its spectral density is

Sξ ,ξ(ω) =
∞

∫
−∞

dτe−iωτ⟨ξ(t1 + τ)ξ(t1)⟩ξ = g = 2γkBT , (7.14)

and contains all frequencies with equal weight.

7.3
The Fokker–Planck Equation

The Fokker–Planck equation [65, 185, 205] is the equation governing the time
evolution of the probability density for the Brownian particle. It is a second-order
differential equation and is exact for the casewhen the noise acting on the Browni-
an particle is Gaussian white noise. The derivation of the Fokker–Planck equation
is a two step process. We first derive the equation of motion for the probability
density, ρ(x , v, t), to find the Brownian particle in the interval, x → x + dx and
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v → v + dv, at time, t, for one realization of the random force, ξ(t). We then ob-
tain an equation for P(x , v, t) = ⟨ρ(x , v, t)⟩ξ , the average of ρ(x , v, t) over many
realizations of the random force, ξ(t). The probability density, P(x , v, t), is the
macroscopically observed probability density for the Brownian particle. Its dy-
namical evolution is governed by the Fokker–Planck equation.

Exercise 7.2

Consider a Brownian particle of mass m which is attached to a harmonic spring
with force constant k and is constrained tomove in one dimension. The Langevin
equations are

dv
dt

= −
γ
m
v − ω2

0x +
1
m
ξ(t) and dx

dt
= v ,

where ω0 =
√
k∕m. Let x0 and v0 be the initial position and velocity, respectively,

of the Brownian particle and assume that it is initially in equilibrium with the
fluid. By the equipartition theorem, (1∕2)m⟨v20⟩T = (1∕2)kBT and (1∕2)ω2

0⟨x20⟩T =
(1∕2)kBT . Assume that x0 and v0 are statistically independent so ⟨x0v0⟩T = 0.
(a) Show that a condition for the process to be stationary is that the noise strength
is g = 4γkBT . (b) Compute the velocity correlation function, ⟨⟨v(t2)v(t1)⟩ξ⟩T .
Answer: The Langevin equations can be solved and give the following expres-
sion for the velocity at time t:

v(t) = v0e−Γtw(t) −
ω2
0

Δ
x0e−Γt sinh(Δt) +

1
m

t

∫
0

dt′ξ(t′)e−Γ(t−t′ )w(t − t′) ,

where w(t) = cosh(Δt) − (Γ∕Δ) sinh(Δt), Γ = γ∕m, and Δ =
√
Γ2 − ω2

0. If we use
the fact that ⟨x0v0⟩T = 0 and assume that t2 > t1, the velocity correlation function
can be written⟨⟨v(t2)v(t1)⟩ξ⟩T = e−Γ(t2+t1)w(t2)w(t1)⟨v20⟩T

+
ω4
0

Δ2 ⟨x20⟩Te−Γ(t2+t1) sinh(Δt2) sinh(Δt1)
+
g
m2

t1

∫
0

dte−Γ(t2+t1−2t)w(t2 − t)w(t1 − t) .

If we choose g = 4γkBT then after some algebra we obtain a stationary correlation
function

⟨⟨v(t2)v(t1)⟩ξ⟩T =
kBT
m

e−Γ(t2−t1)
[
cosh[Δ(t2 − t1)] −

Γ
Δ
sinh[Δ(t2 − t1)]

]
.

A similar calculation for t1 > t2 yields the same answer but with t1 ↔ t2. Thus,

⟨⟨v(t1 + τ)v(t1)⟩ξ⟩T =
kBT
m

e−Γ|τ| [cosh(Δτ) − Γ
Δ
sinh(Δ|τ|)] .
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7.3.1
Probability Flow in Phase Space

Let us obtain the probability to find the Brownian particle in the interval x →
x + dx and v → v + dv at time, t. We will consider the space of coordinates,
X = (x , v), (x and v being the displacement and velocity of the Brownian parti-
cle, respectively), where−∞ < x <∞ and −∞ < v <∞. The Brownian particle is
located in the infinitesimal area, dx dv, with probability, ρ(x , v, t)dx dv. We may
view the probability distribution as a fluid whose density at point, (x , v), is giv-
en by ρ(x , v, t) (cf. Appendix A). The speed of the fluid at point, (x , v), is given
by Ẋ = (ẋ, v̇). Since the Brownian particle must lie somewhere in this space, we
have the condition

∞

∫
−∞

dx

∞

∫
−∞

dvρ(x , v, t) = 1 . (7.15)

Let us now consider a fixed finite area, A0, in (x , v) space. The probability to find
the Brownian particle in this area is P(A0) = ∫A0

dx dvρ(x , v). Since the Brownian
particle cannot be destroyed, any change in the probability contained in A0 must
be due to a flow of probability through the sides of A0. Thus,

𝜕

𝜕t
P(A0) =

𝜕

𝜕t ∬
A0

dx dvρ(x , v, t) = −∮
L0

ρ(x , v, t)Ẋ ⋅ dS0 , (7.16)

where dS0 denotes a differential surface element along the edge of area A0, ρẊ is
the probability current through the edge, and L0 is the line around the edge of area
element, A0. We can use Gauss’s theorem to change the surface integral into an
area integral, ∮L0 ρ(x , v, t)Ẋ ⋅ dS0 = ∫A0

dx dv𝛁X ⋅ (Ẋρ(x , v, t)), where 𝛁X denotes
the gradient, 𝛁X = (𝜕∕𝜕x , 𝜕∕𝜕v). We find

𝜕

𝜕t ∬
A0

dx dvρ(x , v, t) = − ∫
A0

dx dv𝛁X ⋅ (Ẋρ(x , v, t)) . (7.17)

Since the area, A0, does not change with time, we can take the time derivative
inside the integral. Since the area, A0, is arbitrary, we can equate integrands of the
two integrals in Eq. (7.17). Then we find that

𝜕ρ(t)
𝜕t

= −𝛁X ⋅ (Ẋρ(t)) = −
𝜕(ẋρ(t))

𝜕x
−

𝜕(v̇ρ(t))
𝜕v

, (7.18)

where we have let ρ(t) = ρ(x , v, t).
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7.3.2
Probability Flow for Brownian Particle

Let us assume that the Brownian particle moves in the presence of a potential,
V (x). The Langevin equations are then

dv(t)
dt

= −
γ
m
v(t) + 1

m
F(x) + 1

m
ξ(t) and dx(t)

dt
= v(t) , (7.19)

where the force, F(x) = −dV (x)∕dx. If we substitute these equations into
Eq. (7.18), we find

𝜕ρ(t)
𝜕t

= −L̂0ρ(t) − L̂1(t)ρ , (7.20)

where the differential operators, L̂0 and L̂1 are defined

L̂0 = v
𝜕

𝜕x
−
γ
m

−
γ
m
v 𝜕

𝜕v
+ 1
m
F(x) 𝜕

𝜕v
and L̂1 =

1
m
ξ(t) 𝜕

𝜕v
. (7.21)

Since ξ(t) is a stochastic variable, the time evolution of ρ(x , v, t) will be different
for each realization of ξ(t).
When we observe an actual Brownian particle we are observing the average

effect of the random force on it. Therefore, we introduce an observable probability,
P(x , v, t)dx dv, to find the Brownian particle in the interval x → x + dx and v →
v + dv. We define this observable probability to be

P(x , v, t) = ⟨ρ(x , v, t)⟩ξ . (7.22)

We now must find the equation of motion for P(x , v, t).
Since the random force, ξ(t), has zero mean and is a Gaussian white noise, the

derivation of P(x , v, t) is straightforward and very instructive. It only takes a bit
of algebra. We first introduce a new probability density, σ(t), such that

ρ(t) = e−L̂0t σ(t) . (7.23)

Using (7.20), it is easy to show that σ(t) obeys the equation of motion

𝜕σ(t)
𝜕t

= −V̂ (t)σ(t) , (7.24)

where V̂ (t) = e+L̂0t L̂1(t)e−L̂0t . Equation (7.24) has the formal solution

σ(t) = exp
⎛⎜⎜⎝
t

∫
0

dt′V̂ (t′)
⎞⎟⎟⎠ σ(0) . (7.25)

Let us now expand the exponential in Eq. (7.25) in a power series. Using the iden-
tity, ex =

∑∞
n=0 x

n∕n!, we obtain

σ(t) =
⎡⎢⎢⎣

∞∑
n=0

(−1)n

n!

⎛⎜⎜⎝
t

∫
0

dt′V̂ (t′)
⎞⎟⎟⎠
n⎤⎥⎥⎦ σ(0) . (7.26)
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We now can take the average, ⟨⟩ξ , of Eq. (7.26). Because the noise, ξ(t), has zero
mean and isGaussian,Wick’s theoremapplies (see ExerciseA.8).Only even values
of n will remain,

⟨σ(t)⟩ξ = ⎡⎢⎢⎢⎣
∞∑
n=0

1
2n!

⟨⎛⎜⎜⎝
t

∫
0

dt′V̂ (t′)
⎞⎟⎟⎠
2n⟩

ξ

⎤⎥⎥⎥⎦ σ(0) , (7.27)

and the average, ⟨(∫ t0 dt′V̂ (t′))2n⟩ξ will decompose into 2n!∕(n!2n ) identical
terms, each containing a product ofnpairwise averages, ⟨∫ t0 dti V̂ (ti) ∫ t0 dt j V̂ (t j)⟩ξ .
Thus, Eq. (7.27) takes the form

⟨σ(t)⟩ξ = ⎡⎢⎢⎣
∞∑
n=0

1
n!

⎛⎜⎜⎝12
t

∫
0

dt2

t

∫
0

dt1⟨V̂ (t2)V̂ (t1)⟩ξ⎞⎟⎟⎠
n⎤⎥⎥⎦ σ(0) . (7.28)

We can now sum this series to obtain

⟨σ(t)⟩ξ = exp
⎛⎜⎜⎝12

t

∫
0

dt2

t

∫
0

dt1⟨V̂ (t2)V̂ (t1)⟩ξ⎞⎟⎟⎠ σ(0) . (7.29)

Let us compute the integral in Eq. (7.29),

1
2

t

∫
0

dt2

t

∫
0

dt1⟨V̂ (t2)V̂ (t1)⟩ξ
=

g
2m2

t

∫
0

dt2

t

∫
0

dt1δ(t2 − t1)e+L̂0t2
𝜕

𝜕v
e−L̂0(t2−t1) 𝜕

𝜕v
e−L̂0t1

=
g

2m2

t

∫
0

dt1e+L̂0t1
𝜕2

𝜕v2
e−L̂0t1 . (7.30)

If we substitute Eq. (7.30) into Eq. (7.29) and take the derivative of Eq. (7.29) with
respect to time, t, we find the following equation of motion for ⟨σ(t)⟩ξ ,

𝜕⟨σ(t)⟩ξ
𝜕t

=
g

2m2 e
+L̂0t 𝜕

2

𝜕v2
e−L̂0t⟨σ(t)⟩ξ . (7.31)

With this result, we can obtain the equation of motion of P(x , v, t) = ⟨ρ(x , v, t)⟩ξ .
Let us note that ⟨ρ(t)⟩ξ = e−L̂0t⟨σ(t)⟩ξ and take the derivative of ⟨ρ(t)⟩ξ with

respect to time, t. We then obtain

𝜕⟨ρ(t)⟩ξ
𝜕t

= −L̂0⟨ρ(t)⟩ξ + e−L̂0t
𝜕⟨σ(t)⟩ξ

𝜕t
= −L̂0⟨ρ(t)⟩ξ + g

2m2

𝜕⟨ρ(t)⟩ξ
𝜕v2

, (7.32)
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where we have used Eq. (7.31). If we combine Eqs. (7.21), (7.22), and (7.32), the
equation for the observable probability density, P(x , v, t), takes the form

𝜕P
𝜕t

= −v 𝜕P
𝜕x

+ 𝜕

𝜕v

[( γ
m
v − 1

m
F(x)

)
P
]
+
g
m2

𝜕2P
𝜕v2

. (7.33)

Equation (7.33) is the Fokker–Planck equation for the observable probability,
P(x , v, t) ⋅ dx dv, to find the Brownian particle in the interval x → x + dx and
v → v + dv at time, t.
It is important to note that the Fokker–Planck equation conserves probability.

We can write it in the form of a continuity equation
𝜕P
𝜕t

= −𝛁 ⋅ J , (7.34)

where𝛁 = êx𝜕∕𝜕x+ êv𝜕∕𝜕v is a gradient operator acting on the (x , v) phase space
and J is the probability current or flux,

J = êxvP − êv
( γ
m
vP − 1

m
F(x)P +

g
m2

𝜕P
𝜕v

)
, (7.35)

in the (x , v) phase space. By the same arguments used in Eqs. (7.16) and (7.17),
we see that any change in the probability contained in a given area of the (x , v)
phase space must be due to flow of probability through the sides of the area, and
therefore the probability is a conserved quantity. It cannot be created or destroyed
locally.
In this section we have derived the Fokker–Planck equation for a Brownian par-

ticle which is free to move in one spatial dimension. The Fokker–Planck equation
can be generalized easily to three spatial dimensions, although in three spatial
dimensions it generally cannot be solved analytically.
Below we consider Brownian motion in the limit of very large friction. For this

case, detailed balance holds and we can begin to understand some of the complex
phenomena governing the dynamics of the Fokker–Planck equation.

7.3.3
The Strong Friction Limit

Let us consider a Brownian particle moving in one dimension in a potential well,
V (x), and assume that the friction coefficient, γ is very large so that the velocity
of the Brownian particle relaxes to its stationary state very rapidly. Then we can
neglect time variations in the velocity (set dv∕dt ≈ 0) in the equation for the re-
laxation of the spatial position of the Brownian particle. With this assumption,
the Langevin equation (7.19) reduces to

dx(t)
dt

= 1
γ
F(x) + 1

γ
ξ(t) , (7.36)

where F(x) = −dV (x)∕dx. FromEq. (7.18), the equation ofmotion for the density,
ρ(x , t), is given by

𝜕ρ(t)
𝜕t

= −
𝜕(ẋρ)
𝜕x

= −L0ρ(t) − L1(t)ρ , (7.37)
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where differential operators, L0 and L1, are defined

L̂0 =
1
γ
𝜕F(x)
𝜕x

+ 1
γ
F(x) 𝜕

𝜕x
and L̂1 =

1
γ
ξ(t) 𝜕

𝜕x
. (7.38)

If we now substitute these definitions for L̂0 and L̂1 into (7.29), take the derivative
with respect to time t, and note that P(x , t) = ⟨ρ(t)⟩ξ , we obtain

𝜕P(x , t)
𝜕t

= 1
γ

𝜕

𝜕x

(
dV
dx
P(x , t) +

g
2γ

𝜕P(x , t)
𝜕x

)
= −𝜕 J

𝜕x
, (7.39)

where we have let F(x) = −dV (x)∕dx. The quantity J = 1∕γ((dV∕dx)P + g∕γ
(dP∕dx)) is the probability current. Equation (7.39) is now a Fokker–Planck equa-
tion for the probability density, P(x , t), to find the Brownian particle in the inter-
val, x → x + dx, at time, t, for the case of strong friction. Because Eq. (7.39) has
the form of a continuity equation, the probability is conserved.
For the case of a “free” Brownian particle, one for which V (x) = 0, the Fokker–

Planck reduces to the diffusion equation

𝜕P(x , t)
𝜕t

=
g

2γ2
𝜕2P(x , t)

𝜕x2
= D 𝜕2P(x , t)

𝜕x2
, (7.40)

where D = g∕2γ2 = kBT∕γ is the diffusion coefficient since g = 2γkBT . If we in-
troduce the Fourier transform of P(x , t),

P(x , t) = 1
2π

∞

∫
−∞

dke−ikx f (k , t) , (7.41)

then the Fourier amplitude, f (k , t) satisfies the equation of motion

𝜕 f (k , t)
𝜕t

= −Dk2 f (k , t) . (7.42)

This has a solution f (k , t) = e−Dk2t and yields a probability density

P(x , t) =
√

1
4πDt

exp
(
−x2
4Dt

)
. (7.43)

It is interesting to note that Einstein who, unaware of the phenomenon of Brow-
nian motion, was looking for a way to confirm the atomic nature of matter and
obtained a relation between the diffusion coefficient, D, and the atomic proper-
ties of matter. This relation is D = RT∕(NA6πηa), where R is the gas constant,
NA = 6.02 × 1023 mol−1 is Avogadro’s number, T is the temperature in kelvin, η is
the viscosity, and a is the radius of the Brownian particle [49, 51]. It has since been
confirmed by many experiments on Brownian motion [164].
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7.3.3.1 Spectral Decomposition of the Fokker–Planck Equation
For the case of strong friction, we can obtain a spectral decomposition of the prob-
ability density, P(x , t). Let us first introduce a rescaled time τ = t∕γ, and write the
Fokker–Planck equation as

𝜕P(x , τ)
𝜕τ

= d2V
dx2

P + dV
dx

𝜕P
𝜕x

+
g
2γ

𝜕2P
𝜕x2

= −L̂FPP(x , τ) . (7.44)

The operator, L̂LP = d2V∕dx2 + dV∕dx𝜕∕𝜕x + g∕(2γ)𝜕2∕𝜕x2, is a nonself-adjoint
operator because of its dependence on the first-order partial derivative. Howev-
er, it is possible to rewrite the Fokker–Planck equation in terms of a self-adjoint
operator via a simple transformation. Then the solutions become more intuitive.
Let us write the probability in the form

P(x , τ) = e
−γV (x)
g Ψ(x , τ) , (7.45)

where Ψ(x , τ) is a function to be determined. If we now substitute into (7.44), we
obtain the following equation for Ψ(x , τ)

𝜕Ψ(x , τ)
𝜕τ

=

[
1
2
d2V
dx2

−
γ
2g

(
dV
dx

)2
]
Ψ(x , τ) +

g
2γ

𝜕2Ψ
𝜕x2

= −ĤFPΨ(x , τ) .

(7.46)

The operator, ĤFP = −(1∕2(d2V∕dx2) − γ∕(2g)(dV∕dx)2) − g∕(2γ)𝜕2∕𝜕x2, is
a self-adjoint operator and we can use well-established techniques for dealing
with such operators.
We will let φn(x) and λn denote the nth eigenfunction and eigenvalue, respec-

tively, of HFP so that HFPφn(x) = λnφn(x). The eigenfunctions form a complete
set and can be made orthonormal so that

∞

∫
−∞

dxφn′ (x)φn(x) = δn′ ,n . (7.47)

We can expand Ψ(x , t) in terms of the eigenfunctions and eigenvalues of ĤFP ,

Ψ(x , τ) =
∞∑
n=0
ane−λnτφn(x) . (7.48)

The eigenvalues are real and must have zero or positive values in order that the
probability remains finite.
The operator ĤFP has at least one zero eigenvalue, which we denote λ0 = 0, and

a corresponding eigenfunction, φ0(x), which satisfies the equation[
1
2
d2V
dx2

−
γ
2g

(
dV
dx

)2
]
φ0(x) +

g
2γ

𝜕2φ0(x)
𝜕x2

= 0 . (7.49)
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Equation (7.49) has the solution

φ0(x) = Ce
−γV(x)
g , (7.50)

where C is a normalization constant. This is just the transformation used in
Eq. (7.45). Therefore we can now combine Eqs. (7.45), (7.48), and (7.50) and write
the probability as

P(x , τ) = φ2
0(x) +

∞∑
n=1
ane−λnτφ0(x)φn(x) . (7.51)

In this form, the probability is conserved due to the orthonormality of the eigen-
states. If we integrate Eq. (7.51) over x, we obtain

∞

∫
−∞

dxP(x , τ) =
∞

∫
−∞

dxφ0(x)2 = 1 . (7.52)

The coefficients, an , can be determined from the initial conditions. Let us assume
that we are given P(x , 0). Then we write

P(x , 0) = φ2
0(x) +

∞∑
n=1
anφ0(x)φn(x) . (7.53)

If we now divide through by φ0(x), multiply by φn0 (x), and integrate over x we
obtain

an0 =
∞

∫
−∞

dx
φn0 (x)
φ0(x)

P(x , 0) . (7.54)

After a long time, the probability approaches the stationary state

P(x ,∞) = φ2
0(x) . (7.55)

There are several examples of Fokker–Planck equations with one variable which
can be solved analytically. We will consider one of them in Exercise 7.3 and leave
the others as homework problems.
This method can also be extended to Fokker–Planck equations with two or

more spatial degrees of freedom when a transformation analogous to Eq. (7.50)
can be found that allows us to write the Fokker–Planck equation in terms of a self-
adjoint operator. For such cases, it is possible that the dynamics governed by the
self-adjoint operator can undergo a transition to chaos. Examples of such cases,
have been studied in [5, 105, 141].
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Exercise 7.3

Solve the Fokker–Planck equation for the probability distribution P(x , t) of
a Brownian particle of massm in a fluid with strong friction γ in a harmonic po-
tential V (x) = (1∕2)kx2, where k is the harmonic force constant. Assume that
P(x , 0) = δ(x − xo).

Answer: From Eq. (7.44), the Fokker–Planck equation can be written

𝜕P(x , τ)
𝜕τ

= kP + kx 𝜕P
𝜕x

+
g
2γ

𝜕2P
𝜕x2

.

Now make the transformation P(x , τ) = e(−γkx2)∕(2g)Ψ(x , τ) and substitute it into
the Fokker–Planck equation to get

1
k
𝜕Ψ(x , τ)

𝜕τ
=

(
1
2
− x2

4A

)
Ψ(x , τ) + A 𝜕2Ψ

𝜕x2

where A = g∕(2kγ). The operator, ĤFP = 1∕2− x2∕(4A) +A𝜕2∕𝜕x2, is self-adjoint
and has eigenfunctions φn(x) (n = 0, 1, 2,… ,∞) of the form,

φn(x) =
1√

2nn!
√
2πA

Hn

[
x√
2A

]
e−x2∕4A ,

where Hn(y) is the nth order Hermite polynomial and can be written Hn(y) =
(−1)ney2(dn∕dyn)e−y2 . The Hermite polynomial satisfies the eigenvalue equa-
tion ĤFPφn(x) = −nφn(x) so the nth eigenvalue is λn = −n. The spectral decom-
position of P(x , τ) is now given by

P(x , τ) =
∞∑
n=0
ane−nkτφ0(x)φn(x) .

For initial distribution P(x , 0) = δ(x − xo) we have an = φn(xo)∕φ0(xo). Thus,

P(x , τ) =
∞∑
n=0

e−nkτ
φ0(x)
φ0(xo)

φn(x)φn(xo)

= 1√
2πA

e−x2∕(2A)
∞∑
n=0

1
2nn!

e−nkτHn
xo√
2A
Hn

x√
2A

= 1√
2πA(1 − e−2kτ)

exp
[−(x − xoe−kτ)2
2A(1 − e−2kτ)

]
,

where in the last term we have used an identity for sums involving Hermite poly-
nomials [143].
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7.4
Dynamic Equilibrium Fluctuations

Systems in equilibrium undergo fluctuations about their equilibrium states. Infor-
mation about these fluctuations is contained in the dynamic correlation function
for the equilibrium system, and in the power spectrum of the equilibrium fluctu-
ations. The power spectrum is a quantity often measured in experiments.
Systems which are out of equilibrium generally return to the equilibrium state

through a variety of processes which may or may not be coupled to one another.
The time reversal invariance of the underlyingNewtonian (or quantum) dynamics
of the various degrees of freedomputs constraints on the behavior of the dynamic
equilibrium fluctuations and the time-dependent correlation functions that char-
acterize these fluctuations. We will derive these constraints using the notation
for fluctuations from Section 3.7.4. We denote the macroscopic state variables as
A1, A2,… , An and denote deviations from equilibrium values Ao

1 , A
o
2 ,… , Ao

n of
these quantities as αi = Ai − Ao

i for i = 1, 2,… , n. As before, the quantity α will
denote the 1 × n column matrix composed of elements α1 ,… , αn .
The time-reversal invariance ofNewtonian dynamics requires that the dynamic

correlation functions formacroscopic fluctuations, α, about the equilibrium state,
obey the relations⟨αiα j(τ)⟩ = ⟨αi(τ)αj⟩ . (7.56)

Equation (7.56) tells us that the correlation between a fluctuation αi at time t = 0
and a fluctuation αj at time t = τ is the same as that of a fluctuation αj at time
t = 0 and a fluctuation αi at time t = τ. The quantities αi and αj can correspond to
fluctuations in the same state variables at different points in space. Thus, Eq. (7.56)
can also be turned into an equation relating correlations between space- and time-
dependent fluctuations.
To establish Eq. (7.56), we note that the correlation matrix ⟨αα(τ)⟩ can be writ-

ten

⟨αα(τ)⟩ ≡∬ dα dα′αα′P(α, 0; α′ , τ) =∬ dα dα′αα′P(α)P(α|α′ , τ) (7.57)

where P(α, 0; α′ , τ) ≡ P(α)P(α|α′ , τ) is the joint probability to have a fluctuation α
at time t = 0 and a fluctuation α′ at time t = τ. The quantity P(α|α′ , τ) is the
conditional probability that the fluctuation has value α′ at time t = τ, given that it
had value α at time t = 0, and P(α) is the probability distribution of fluctuations
about the equilibrium state. For a closed isolated system,

P(α) =

√
Det[g]
(2πkB)n

e−g⋅αα∕(2kB) , (7.58)

and ⟨αα⟩ = kBg−1 (see Section 3.7.4).
The change in entropy which results from these fluctuations about the equilib-

rium state is

ΔS = −1
2
g : αα (7.59)
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(see Section 3.7.4). It is useful to introduce a generalized force,𝕱, for systems out
of equilibrium, which is defined as

𝕱 = g ⋅ α = −
(
𝜕ΔS
𝜕α

)
, (7.60)

(note the analogy to the equilibrium force Y = −T(𝜕S∕𝜕X)U,N ) and a generalized
current,𝕵, defined as

𝕵 = dα
dt

. (7.61)

Then the time rate of change of the entropy due to fluctuations is
dΔS
dt

= −𝕵T ⋅𝕱 (7.62)

(T denotes transpose). For a resistor held at constant temperature, where 𝔍 is
the electric current and 𝔉 is an electric field, (7.62) is proportional to the rate
at which energy is dissipated through Joule heating. The quantity α, in that case,
could represent a fluctuation in the electron density away from the equilibrium
density. Such a fluctuation would induce to a fluctuating electric field 𝔉.
We must now remember that α is a macroscopic variable. Thus, for each value

of α there are many possible microscopic states of the system. We can relate the
joint probability distribution P(α, 0; α′ , τ) for fluctuations α at time t = 0 and α′

at time t = τ to the microscopic joint probability density in the following way:

P(α, 0; α′ , τ) = P(α)P(α|α′ , τ) = 1
ΩΔE(E) ∫

(α→α+dα)
(E→E+ΔE)

dqN d pN

× ∫
(α′→α′+dα′)

dq′N d p′NP(pN , qN |p′N , q′N , τ) . (7.63)

In Eq. (7.63) we have used the fact that the equilibrium probability density for
a closed isolated system, P(pN , qN ) = ΩΔE(E)−1, where ΩΔE(E) is the volume of
the energy shell (see Chapter 2). The phase space integrations are restricted to
the energy shell and to trajectories with values of α and α′ appearing in the left-
hand side of Eq. (7.63); P(pN , qN |p′N , q′N , τ) is the conditional probability that
a system can be in a state (p′N , q′N ) at time t = τ, given that it was in the state
(pN , qN ) at time t = 0. Since classical systems are completely deterministic, we
must have

P(pN , qN |p′N , q′N , τ) = δ[q′N − qN − ΔqN (pN , qN , τ)]
× δ[p′N − pN − ΔpN (pN , qN , τ)] , (7.64)

where ΔqN and ΔpN are uniquely determined from Hamilton’s equations.
BecauseHamilton’s equations are causal and time-reversal invariant, reversal of

all momenta in the system will cause the system to retrace its steps. This implies
that

P(qN , pN |q′N , p′N , τ) = P(q′N ,−p′N |qN ,−pN , τ) . (7.65)
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We can now combine Eqs. (7.63)–(7.65) to obtain a microscopic detailed balance

f (α)P(α|α′ , τ) = f (α′)P(α′|α, τ) . (7.66)

From Eq. (7.66), Eq. (7.56) follows easily.

7.4.1
Regression of Fluctuations

We can use Eq. (7.56) to find relations between the rates at which various fluc-
tuations αi decay, on the average, back to the equilibrium state. These are called
Onsager relations [155]. Let us first introduce the conditional average ⟨α(t)⟩α0

,
which is the average value of α at time t, given that the initial value of α was α0.
We then can write

⟨α(t)⟩α0
≡ ∫ dααP(α0|α, t) (7.67)

for the conditional average.
Onsagar assumed that, on the average, the fluctuations decay according to the

same linear laws that govern the decay to equilibrium of systems which are driv-
en slightly out of equilibrium by external forces. Thus, the average fluctuation,⟨α(t)⟩α0

, obeys an equation of the form

d
dt

⟨α(t)⟩α0
= −M ⋅ ⟨α(t)⟩α0

, (7.68)

where M is an n × n matrix. Equation (7.68) has the solution

⟨α(t)⟩α0
= e−Mt ⋅ α0 . (7.69)

The time derivative in Eq. (7.68) must be used with caution. It is defined in the
following sense:

d⟨α(t)⟩α0

dt
≡ ⟨α(t + τ)⟩α0

− ⟨α(t)⟩α0

τ
, (7.70)

where τ is a small time interval whose values are bounded by inequalities,

T0 ≪ τ ≪ T . (7.71)

The quantity T0 is the time between collisions, and T is the time it takes the fluc-
tuation to decay to equilibrium. The limitation in Eq. (7.71) rules out fluctuations
which are too small – that is, fluctuations which decay to equilibrium in a few
collision times. Similarly, (7.71) is not valid when the fluctuation has just been
created. It takes a few collision times for it to settle down to a macroscopic decay.
Equation (7.56) imposes a condition on the matrix M. If we expand Eq. (7.69)

for short times,

⟨α(t)⟩α0
= α0 − tM ⋅ α0 + O(t2) , (7.72)
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and substitute it into Eq. (7.56), we obtain

⟨α0M ⋅ α0⟩ = ⟨M ⋅ α0α0⟩ . (7.73)

If we now use the fact thatM ⋅ α = αT ⋅M
T
and use Eq. (3.91) for the variance in

the fluctuations, we obtain

g−1 ⋅M
T
= M ⋅ g−1 , (7.74)

where T denotes the transpose. We can define a new matrix

L ≡ M ⋅ g−1 . (7.75)

Then Eq. (7.74) becomes

L = L
T

or Li j = L ji . (7.76)

Equations (7.76) are called Onsagar’s relations. Note that since the matrices g
and L are symmetric, the matrix M is symmetric.
If we make use of the generalized force𝕱 = g ⋅ α (cf. Eq. (7.60)), the time rate

of change of the fluctuation can be written

d
dt

⟨α(t)⟩α0
= −L ⋅ ⟨𝕱(t)⟩α0

. (7.77)

Equation (7.76) is a generalized Ohm’s Law. It is so useful that Onsagar received
a Nobel prize for deriving it. The matrix L is a matrix of transport coefficients.
Equation (7.77) tells us that a force resulting from a fluctuation αi can cause a flux
of Aj , and a force arising from a fluctuation αj can cause a flux of Ai . Equa-
tion (7.76) tells us that the transport coefficients for the two processes are the
same. For example, a particle concentration gradient can drive a heat current, and
a temperature gradient can drive a particle current. The transport coefficients for
the two processes are the same although the processes physically appear to be
very different. For the case of a conductor, α could represent a fluctuation in the
electron density and L would be the conductance.

7.4.2
Wiener–Khintchine Theorem

The Wiener–Khintchine theorem [39, 103, 214] makes the connection between
the correlation matrix for time-dependent fluctuations about the equilibrium
state and the spectral density matrix for these fluctuations. Equilibrium sys-
tems are governed by stationary distribution functions and this imposes certain
conditions on correlation functions for fluctuations about the equilibrium state.
Belowwe first discuss the conditions stationarity imposes on the time-dependent
correlation matrices and then we derive the Wiener–Khintchine theorem.
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Let us consider the time-dependent correlation matrix, ⟨α(τ)α(0)⟩, for a system
governed by a stationary distribution function (such as a system in equilibrium).
The correlation matrix has the property

Cαα(τ) ≡ ⟨α(τ)α(0)⟩ = ⟨α(t + τ)α(t)⟩ = ⟨α(−τ)α⟩T = Cαα(−τ)T , (7.78)

where we have let t = −τ and T denotes the transpose of the correlation matrix.
From the condition of microscopic reversibility, we know that ⟨α(τ)α⟩ = ⟨αα(τ)⟩
and, therefore,

Cαα(τ) = Cαα(τ)T . (7.79)

Furthermore, from Section 3.7.4, we have Cαα(0) = ⟨αα⟩ = kBg−1, where g−1 de-
pends on the thermodynamic response functions. From Eqs. (7.69) and (7.78) the
correlation matrix can be written

Cαα(τ) = ∫ dα0P(α0)α0⟨α(τ)⟩α0
= kBg

−1 ⋅ e−M|τ| (7.80)

since M is a self-adjoint matrix (|τ| indicates the absolute value of τ).
We now introduce the spectral density matrix and show that it is the Fourier

transform of the correlation matrix. Let us first introduce a slight modification of
the time series α(t) as follows:

α(t;  ) ≡
{

α(t) |t| <  ,
0 |t| >  (7.81)

such that lim →∞
α(t;  ) = α(t). We next introduce the Fourier transform of α(t;  ):

α(ω;  ) =
∞

∫
−∞

dtα(t;  )eiωt =


∫
−

dtα(t;  )eiωt . (7.82)

Since the fluctuations, α(t), are real, we find

α∗(ω;  ) = α(−ω;  ) (7.83)

(∗ denotes complex conjugate).
The spectral density matrix is defined as

Sαα(ω) = lim →∞

1
 α∗(ω;  )α(ω;T ) . (7.84)

Combining Eqs. (7.82) and (7.83) we can write

Sαα(ω) =
∞

∫
−∞

dτeiωτ lim →∞

1


∞

∫
−∞

dtα(t;  )α(t + τ;  ) . (7.85)
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If we now invoke the ergodic theorem (Appendix C), we can equate the time av-
erage in Eq. (7.85) to the phase average of the fluctuations:

⟨αα(τ)⟩ = lim →∞

1


∞

∫
−∞

α(t;  )α(t + τ;  )dt . (7.86)

Then Eqs. (7.85) and (7.86) lead to the relation

Sαα(ω) =
∞

∫
−∞

dτeiωτ⟨αα(τ)⟩ = ∞

∫
−∞

dτeiωτCαα(τ) . (7.87)

Thus, the spectral density matrix is the Fourier transform of the correlation ma-
trix. Equation (7.87) is called theWiener–Khintchine theorem.

7.5
Linear Response Theory and the Fluctuation–Dissipation Theorem

Fluctuations in an equilibrium systemdecay, on the average, according to the same
linearmacroscopic laws that describe the decay of the system fromanonequilibri-
um state to the equilibrium state. If we can probe the equilibrium fluctuations, we
have a means of probing the transport processes in the system. The fluctuation–
dissipation theorem shows that it is possible to probe the equilibrium fluctuations
by applying a weak external field which couples to particles in themedium but yet
is too weak to affect the medium. The system will respond to the field and absorb
energy from the field in a manner which depends entirely on the spectrum of the
equilibrium fluctuations. According to the fluctuation–dissipation theorem, the
spectrumof the equilibriumfluctuations and the rate of absorption of energy from
the external field can be expressed in terms of a response matrix.
In this section we derive the fluctuation–dissipation theorem [39]. We first in-

troduce linear response theory and use the assumption of causality to obtain a re-
lation between the real and imaginary parts of the dynamic susceptibility matrix,
which is the Fourier transform of the response matrix. We then obtain a relation
between the dynamic susceptibility matrix and the correlation matrix, and we
obtain an expression for power absorption in terms of the dynamic susceptibility
matrix. This gives us a relation between the fluctuations in an equilibrium system
and energy absorbed by that system when an external field is applied.

7.5.1
The ResponseMatrix

Let us assume that weak external forces, F = (F1, F2 ,… , Fn )T, are applied to a sys-
tem and that these forces couple to the state variables, (A1, A2,… , An), causing
them to deviate from their equilibrium values by the amounts, αi = Ai − A◦

i ,
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i = 1,… , n. We shall assume also that the deviations from equilibrium of the
state variables depend linearly on the applied forces (linear response). Then we
can write

⟨α(t)⟩F =
∞

∫
−∞

dt′K (t − t′) ⋅ F(t′) =
∞

∫
−∞

K (τ) ⋅ F(t − τ)dτ . (7.88)

The matrix K (t − t′) is real and is called the response matrix. Since the response
must be causal (the response cannot precede the force which causes it), K (t − t′)
must satisfy the causality condition,

K (t − t′) = 0 , t − t′ < 0 . (7.89)

We shall assume that the response matrix relaxes fast enough that the integral
∞

∫
0

K(t)dt < ∞ (7.90)

is finite. Physically, thismeans that a finite forcemust give rise to a finite response.
Since Eq. (7.88) is linear in the force, its Fourier transform has a very simple form.
If we note that

⟨α(t)⟩F = 1
2π

∞

∫
−∞

⟨α(ω)⟩Fe−iωt dω (7.91)

and use similar expressions relating F(τ) to F(ω), we obtain

⟨α(ω)⟩F = χ(ω) ⋅ F(ω) , (7.92)

where

χ(ω) =
∞

∫
−∞

K (t)eiωt dt (7.93)

is the dynamic susceptibility. We have also used the definition for the delta func-
tion, δ(t) = (1∕2π) ∫∞−∞ dωe−iωt . Thus, a frequency component F(ω) of the force
can only excite a response with the same frequency. This will not be true if the
response function depends on the force (nonlinear response).
The fact that K (t) is causal (K(t) = 0 for t < 0 and K (t) ≠ 0 for t > 0) imposes

conditions on the structure of χ(ω). The inverse transform of (7.93) gives

K (t) = 1
2π

∞

∫
−∞

χ(ω)e−iωt dω . (7.94)

Generally such integrals can be solved by contour integration in the complex ω-
plane. For t < 0, the contour must be closed in the upper half complex ω-plane
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so the contribution from the semicircle at infinity is zero. In order for K (t) = 0
for t < 0, the dynamic susceptibility χ(ω) can have no poles in the upper half
complex ω-plane. For t > 0, χ(ω) can have any number of poles in the lower half
complex ω-plane, depending on the detailed dynamics of the process. (Note: two
excellent references on contour integration are [132] and [192].)

Exercise 7.4

Compute the dynamic susceptibility for a Brownian particle ofmassm in the pres-
ence of white noise ξ(t) and fluid friction γ.

Answer: The Langevin equation for the Brownian particle in the presence of
a driving force F(t) is mdv(t)∕dt + γv(t) = ξ(t) + F(t). If we take the average
with respect to the noise, we obtainm(d⟨v(t)⟩ξ)∕dt+ γ⟨v(t)⟩ξ = F(t). Assume the
Brownian particle receives a “kick” at time t = 0 so F(t) = Foδ(t). Then ⟨v(t)⟩ξ =
K(t)Fo. The equation for the response function K(t) takes the formmdK(t)∕dt +
γK(t) = δ(t). This equation has the solution K(t) = (1∕m)e−γt∕mΘ(t), where Θ(t)
is the Heaviside function (note that δ(t) = dΘ∕dt). The Fourier transform of K(t)
gives the dynamic susceptibility χ(ω) = (−imω + γ)−1. Note that χ(ω) has a pole
in the lower half complex ω-plane, which is consistent with its causal response to
the force field.

7.5.2
Causality

Causality enables us to obtain a relation between the real and imaginary parts of
the dynamic susceptibility. We can show this relationship in the following way.
Define a matrix G(z) such that

G(z) ≡ χ(z)
z − u

, (7.95)

where z = ω + i𝜖 and u is real. Causality requires that χ(z) have no poles in the
upper half z-plane. Integrate G(z) over a contour C′ (cf. Figure 7.1) so that C′

Figure 7.1 Integration contour used to obtain the Kramers–Kronig relations.
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encloses no poles of G(z). Then

∮C′
G(z)dz = ∮C′

χ(z)
z − u

dz = 0 . (7.96)

Since χ(z) → 0 as ε → ∞ there will be no contribution from the semicircle at
infinity. Thus,

∮C′

χ(z)
z − u

dz =
u−r

∫
−∞

χ(ω)
ω − u

dω +
∞

∫
u+r

dω
χ(ω)
ω − u

+ ir

×
0

∫
π

dφeiφ
χ(u + reiφ)
u + reiφ − u

= 0 . (7.97)

It is useful to introduce the Cauchy principal part,

P

∞

∫
−∞

dω
χ̄(ω)
ω − u

≡ lim
r→0

⎡⎢⎢⎣
u−r

∫
−∞

dω
χ̄(ω)
ω − u

+
∞

∫
u+r

dω
χ(ω)
ω − u

⎤⎥⎥⎦ . (7.98)

Equation (7.97) then gives

P

∞

∫
−∞

dω
χ(ω)
ω − u

= − lim
r→0

0

∫
π

i dφχ(u + reiφ) = iπχ(u) (7.99)

or

χ(u) = 1
πi
P

∞

∫
−∞

χ(ω)dω
ω − u

. (7.100)

Equation (7.100) is a consequence of causality and allows us to relate the real part,
χ′(ω), and the imaginary part, χ′′(ω), of the dynamic susceptibility matrix. Let us
write

χ(ω) = χ′(ω) + iχ′′(ω) (7.101)

andmake use of Eq. (7.100).We then obtain the following relations between χ′(ω)
and χ′′(ω):

χ′(u) = 1
π
P

∞

∫
−∞

χ′′(ω)
ω − u

dω (7.102)

and

χ′′(u) = − 1
π
P

∞

∫
−∞

χ′(ω)
ω − u

dω . (7.103)

Equations (7.102) and (7.103) are called theKramers–Kronig relations [112]. They
enable us to compute the real part of χ(ω) if we know the imaginary part and vice
versa. As we shall see, the imaginary part of χ(ω) often can be obtained from
experiment.
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Exercise 7.5

Verify the Kramers–Kronig relations for the dynamic susceptibility in Exer-
cise 7.4.

Answer: The dynamic susceptibility is χ(ω) = (−imω + γ)−1. Its real part
is χ′(ω) = (γ∕m)∕(ω2 + γ2) and its imaginary part is χ′′(ω) = (ω∕m)∕(ω2 + γ2).
Using the Kramers–Kronig relations, we can write

χ′(u) = 1
π
P

∞

∫
−∞

χ′′(ω)
ω − u

dω = 1
π
lim
𝜖→0

∞

∫
−∞

ω − u
(ω − u)2 + 𝜖2

ω∕m
ω2 + γ2

dω =
γ∕m
u2 + γ2

.

The integrand has poles at ω = u ± i𝜖 and at ω = ±iγ. A contour integration that
picks up one pole of each type gives the above result.

7.5.2.1 Piece-Wise Constant Force
Everything we have done to this point is completely general. Let us now obtain an
explicit expression of the response for the case of a constant force which acts for
an infinite length of time and then is abruptly shut off at time t = 0. The force we
consider has the form

F(t) =

{
Fo for t < 0
0 for t > 0 .

(7.104)

The Fourier transform of the force is

F(ω) = Fo

0

∫
−∞

eiωt dt = lim
ε→0

Fo

0

∫
−∞

eizt dt

= lim
ε→0

Fo
1
iz

= (−i) lim
ε→0

Fo

[ ω
ω2 + ε2

+ iε
ω2 + ε2

]
, (7.105)

where z = ω − i𝜖. If we now use the following definitions for the Cauchy principal
part and the Dirac delta function, respectively,

P
( 1
ω

)
= lim
ε→0

ω
ω2 + ε2

and δ(ω) = 1
π
lim
ε→0

ε
ω2 + ε2

, (7.106)

we obtain

F(ω) = Fo

[
P
( 1
iω

)
+ πδ(ω)

]
. (7.107)

From Eqs. (7.88) and (7.92), the response can be written in the form

⟨α(t)⟩F = 1
2π

∞

∫
−∞

dωe−iωtχ(ω) ⋅ F̃(ω) . (7.108)
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It is useful to write the response in a slightly different form. In Eq. (7.100) we
replace χ(u) by e±iutχ(u) and write

e−iutχ(u) = 1
iπ
P

∞

∫
−∞

e−iωtχ(ω)dω
ω − u

, t < 0 (7.109)

and

eiutχ(u) = 1
iπ
P

∞

∫
−∞

eiωtχ(ω)dω
ω − u

, t > 0 . (7.110)

Then, for t < 0, Eq. (7.109) yields the expression

χ(0) = 1
iπ
P

∞

∫
−∞

dω
e−iωtχ(ω)

ω
, (7.111)

and, for t > 0, Eq. (7.110) yields the expression

χ(0) = 1
iπ
P

∞

∫
−∞

dω
eiωtχ(ω)
ω

. (7.112)

For t < 0, the response takes the form

⟨α(t)⟩F = 1
2π

∞

∫
−∞

dωe−iωtχ(ω) ⋅ Fo

[
P
( 1
iω

)
+ πδ(ω)

]
= χ(0) ⋅ Fo . (7.113)

For t > 0, the response can be written

⟨α(t)⟩F = 1
iπ
P

∞

∫
−∞

dω
χ(ω) ⋅ Fo

ω
cos(ωt) . (7.114)

If we combine Eqs. (7.113) and (7.114), the response is

⟨α(t)⟩F =

{
χ(0) ⋅ Fo for t < 0
1
iπ
P ∫∞−∞ dω χ(ω)⋅Fo

ω
cos(ωt) for t > 0 .

(7.115)

Thus, while the force is turned on, the response is constant. When it is turned off,
the response becomes time-dependent. The variables A1,… , An begin to decay
back to their equilibrium values.

7.5.3
The Fluctuation–Dissipation Theorem

The fluctuation–dissipation theorem relates the response matrix to the correla-
tion matrix for equilibrium fluctuations. As a result, a weak external field can be
used as a probe of equilibrium fluctuations.
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Toderive the fluctuation–dissipation theorem, let us consider a system towhich
a constant force Fo is applied from t = −∞ to t = 0 and switched off at t = 0.
We first write the response, ⟨α(t)⟩Fo

, for times t ≥ 0 in terms of the conditional
average ⟨α(t)⟩α0

,

⟨α(t)⟩Fo
= ∫ dα0P(α0, Fo)⟨α(t)⟩α0

for t ≥ 0 , (7.116)

where P(α0, Fo) is the probability distribution for fluctuations α0 at time t = 0 in
the presence of a constant external field, Fo. For times t > 0, the field is no longer
turned on and we can write

⟨α(t)⟩α0
= e−Mt ⋅ α0 for t ≥ 0 (7.117)

(cf. Eq. (7.69)). Combining Eqs. (7.116) and (7.117), we obtain

⟨α(t)⟩Fo
= e−Mt ⋅ ∫ dα0P(α0, Fo)α0 = e−Mt ⋅ ⟨α(0)⟩Fo

= e−Mt ⋅ χ(0) ⋅ Fo =
1
iπ
P

∞

∫
−∞

dω cos(ωt)
χ(ω)
ω

⋅ Fo , (7.118)

where we have used Eq. (7.115). Thus, we find

e−Mt ⋅ χ(0) = 1
iπ
P

∞

∫
−∞

dω cos(ωt)
χ(ω)
ω

. (7.119)

If we remember that

Cαα(t) = ⟨α(t)α⟩ = e−M|t| ⋅ ⟨αα⟩ , (7.120)

(cf. Eq. (7.80)) we may combine Eqs. (7.118) and (7.119) to obtain

Cαα(t) =
1
iπ
P

∞

∫
−∞

dω cos(ωt)
χ(ω)
ω

⋅ χ−1(0) ⋅ ⟨αα⟩ (7.121)

for t > 0. Thus, we have obtained a relation between the dynamic susceptibility
matrix, χ(ω), and the equilibrium correlation function Cαα(t) for fluctuations.
Equation (7.121) is the famous fluctuation–dissipation theorem. It gives a relation
between the linear response function and the correlation function for equilibrium
fluctuations.

Exercise 7.6

Given the dynamic susceptibility χ(ω) = (−imω + γ)−1 for simple Brownian mo-
tion (see Exercise 7.4) and the thermal average ⟨v2o⟩T = kBT∕m, use the fluctua-
tion–dissipation theorem to obtain the velocity autocorrelation function.
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Answer: The fluctuation–dissipation theorem Eq. (7.121) says the correlation
function is given by

γ
m
kBT
iπ

P

∞

∫
−∞

dω
χ(ω)
ω

cos(ωt) =
γ
m
kBT
π

lim
𝜖→0

∞

∫
−∞

dω ω
ω2 + 𝜖2

χ′′(ω) cos(ωt)

=
γkBT
mπ

lim
𝜖→0

∞

∫
−∞

dω ω2eiωt
(ω2 + 𝜖2)(ω2 + (γ∕m)2)

=
kBT
m

e−γt∕m .

In the second term, the real part of χ(ω) does not contribute because it makes the
integrand an odd function of ω.

Exercise 7.7

Prove that χ(0) = g−1∕T , where g is the matrix whose matrix element is gi j =
(𝜕2S∕𝜕αi𝜕αj)U .

Answer: The external field, Fo, does work on the system and increases its in-
ternal energy by an amount dU = Fo ⋅ dα. We can expand the differential of the
entropy dS and use internal energy and state variables α as independent variables,
dS = (𝜕S∕𝜕U)α dU +(𝜕S∕𝜕α)U ⋅dα. But (𝜕S∕𝜕U)α = 1∕T and (𝜕S∕𝜕α)U =−g ⋅α.
Therefore, we can write dS =

(
(Fo)∕T − g ⋅ α

)
⋅ dα. For a constant force, ⟨α⟩ =

χ(0) ⋅ Fo is the expectation value of ⟨α⟩ rather than zero, and the entropy will
have its maximum for α = χ(0) ⋅ Fo. Thus, we have 𝜕S∕𝜕α = (Fo)∕T − g ⋅ α, and
the condition that entropy be maximum at α = χ(0) ⋅ Fo yields (𝜕S∕𝜕α)α=χ(0)⋅Fo

=
(1∕T) Fo − g ⋅ χ(0) ⋅ Fo = 0 or χ(0) = (1∕T) g−1.

7.5.4
Power Absorption

Thework doneon themediumby an external force F to change α by an amount dα
is

∕dW = −F ⋅ dα . (7.122)

The average rate at which work is done on the medium is just the power P(t)
absorbed by the medium:

P(t) =
⟨
∕dW
dt

⟩
F
= −F(t) ⋅ ⟨α̇(t)⟩F = −F(t) ⋅ d

dt

∞

∫
−∞

dt′K (t − t′) ⋅ F(t′) .

(7.123)
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If we write the right-hand side in terms of Fourier transforms χ(ω) and F(ω), we
obtain

P(t) = i
( 1
2π

)2
∞

∫
−∞

dω

∞

∫
−∞

dω′ω′F(ω) ⋅ χ(ω′) ⋅ F(ω′)e−i(ω+ω′)t . (7.124)

We can now compute the power absorbed and the total energy absorbed for var-
ious types of external forces.

7.5.4.1 Delta Function Force
Let us assume that at time t = 0 a delta function force is applied. Then,

F(t) = F0δ(t) and F(ω) = F0 . (7.125)

Substituting into Eq. (7.124), we obtain

P(t) = i
( 1
2π

)2
∞

∫
−∞

dω

∞

∫
−∞

dω′ω′χ(ω′) : F0F0e−i(ω+ω
′)t . (7.126)

(Note: F ⋅ χ(ω) ⋅ F ≡ χ(ω) : FF .) We can find the total energy absorbed by inte-
grating over all times:

Wabs =
∞

∫
−∞

P(t)dt = −
( 1
2π

) ∞

∫
−∞

dωωχ′′(ω) : F0F0 , (7.127)

where χ′′(ω) is the imaginary part of the dynamic susceptibility matrix. Since the
total energy absorbed must be a real quantity, only the imaginary part of χ(ω)
contributes.

Exercise 7.8

Find the total energy absorbed by the fluid when a simple Brownian particle (see
Exercise 7.3) is hit by a delta function force F(t) = Foδ(t).

Answer: The instantaneous absorbed power is P(t) = −F(t)⟨v(t)⟩F. The total en-
ergy absorbed is

Wabs =
∞

∫
−∞

P(t)dt = −
∞

∫
0

dtFoδ(t)K(t)Fo = −
F2o
2m

where we have used the fact that K(t) = 0 for t < 0 and ∫∞0 dtδ(t) = 1∕2.

7.5.4.2 Oscillating Force
Now let us consider a monochromatic oscillating force of the form

F(t) = F0 cos(ω0t) =
1
2
F0

(
eiω0t + e−iω0t

)
. (7.128)
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Then F(ω) = πF0(δ(ω + ω0) + δ(ω − ω0)) and the power absorbed can be written

P(t) = −1
4
[
(−iω0)(e−i2ω0t + 1)χ(ω0) + (iω0)(eπ2ω0 t + 1)χ(−ω0)

]
: FF .

(7.129)

As we can see, the instantaneous power absorption oscillates in time.We can find
the average power absorbed by taking the time average of Eq. (7.129) over one
period T of oscillation:

PT =
ω0

π

π∕ω0

∫
0

dtP(t) =
iω0

4
[
χ(ω0) − χ(−ω0)

]
: FF =

ω0

2
χ′′(ω0) : FF ,

(7.130)

where χ′′(ω0) is the imaginary part of χ(ω0). For this case we see that the average
power absorbed depends on the imaginary part of the response matrix. In prin-
ciple, the average power absorbed can be measured, and therefore χ′′(ω0) can be
measured for all ω0. The Kramers–Kronig relations allow us to obtain the real
part of χ(ω0) once we know χ′′(ω0).
The fluctuation–dissipation theorem relates χ(ω) to the correlation matrix

Cαα(τ) for equilibrium fluctuations and therefore also relates χ(ω) to the spectral
density matrix, Sαα(ω), of equilibrium fluctuations. Thus, by applying a weak
external field to a system, we can probe the equilibrium fluctuations.

7.6
Microscopic Linear Response Theory

It is possible to derive the linear response matrix directly from microscopic the-
ory [113]. In this section, we show how to do that for one of the simplest electric
circuits, a ballistic electron waveguide. We first derive a general formula for the
change in the density operator when an external field is applied.We then use it to
derive the conductance of the electron waveguide.

7.6.1
Density Operator Perturbed by External Field

Let us consider a system to which we apply an external field that couples to mi-
croscopic densities in the system. We consider the case of an applied electric po-
tential that couples to electron densities in a conductor. The total Hamiltonian of
the system in the presence of the external field can be written

Ĥ(t) = Ĥ0 + ΔĤ(t) , (7.131)

where Ĥ0 is the Hamiltonian of the system in the absence of the field and ΔĤ(t)
is the contribution to the Hamiltonian due to the external field. We assume that
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the external field is turned on at time t = −∞. The density operator, ρ̂(t), in the
presence of the field, satisfies the equation of motion (see Appendix A)

iℏ
𝜕ρ̂(t)
𝜕t

= [Ĥ(t), ρ̂(t)] . (7.132)

Let us write the total density operator in the form

ρ̂(t) = ρ̂eq + Δρ̂(t) , (7.133)

where Δρ̂(t) is the change in the state of the system due to the external field
and ρ̂eq = e−βĤ0∕Tr(e−βĤ0 ) is the equilibrium density operator when no external
field is present. Since [Ĥ0, ρ̂eq] = 0, we find

iℏ
𝜕ρ̂(t)
𝜕t

= [ΔĤ(t), ρ̂eq] + [Ĥ0 , Δρ̂(t)] + [ΔĤ(t), Δρ̂(t)] . (7.134)

To obtain an expression for Δρ̂(t) linear in the applied field, we neglect the non-
linear term, [ΔĤ(t), Δρ̂(t)], and write

iℏ
𝜕Δρ̂(t)
𝜕t

= [ΔĤ(t), ρ̂eq] + [Ĥ0 , Δρ̂(t)] . (7.135)

We can solve Eq. (7.135) for Δρ̂(t). First write

Δρ̂(t) = e−iĤ0t∕ℏΔρ̂I(t)eiĤ0 t∕ℏ (7.136)

and plug this expression into Eq. (7.135). Then the equation for Δρ̂I(t) is

iℏ
𝜕Δρ̂I(t)

𝜕t
=

[
e−iĤ0t∕ℏΔĤ(t)eiĤ0 t∕ℏ , ρ̂eq

]
. (7.137)

We can integrate (7.137). If we assume that Δρ̂I(−∞) = 0, we find

Δρ̂I(t) =
1
iℏ

t

∫
−∞

dt′
[
e−iĤ0t′∕ℏΔĤ(t′)eiĤ0 t′∕ℏ , ρ̂eq

]
(7.138)

and

Δρ̂(t) = 1
iℏ

t

∫
−∞

dt′
[
eiĤ0(t−t′ )ℏΔĤ(t′)e−iĤ0(t−t′)∕ℏ , ρ̂eq

]
. (7.139)

We can use Eqs. (7.133) and (7.139) to find the average value of any desired quan-
tity in the presence of a weak field.

7.6.2
The Electric Conductance

We compute the conductance of a ballistic electron waveguide. Electron waveg-
uides can be formed at the interface of semiconducting materials such as GaAs/



266 7 BrownianMotion and Fluctuation–Dissipation

AlGaAs. Electrons at the interface form a two-dimensional Fermi gas. One-
dimensional flow can be achieved by using gates (negatively charged structures)
on the outside of the materials to induce electrostatic walls at the interface. The
walls can be aligned so the electrons are forced to flow through one-dimensional
channels at the interface. In real ballistic electron waveguides, the two transverse
degrees of freedom are confined to small widths which only allow one or a few
transverse quantum states to be excited for the energies available to the electrons
in these systems [34]. The effect of these transverse degrees of freedom is to cause
the conductance of the wire to increase in discrete jumps (an effect called con-
ductance quantization) as the energy of the electrons is increased. These jumps
in conductance occur because with increasing energy more and more transverse
modes can be excited resulting in an increase in the number of conduction chan-
nels available to the electrons.
We consider a wire of length L that is attached to an electron reservoir on its

left and an electron reservoir on its right. We assume that electron energies are
low enough that only one state is excited in each of the two transverse directions.
The reservoirs are infinitely large and each contains an electron gas distributed
according to the Fermi distribution. Generally the reservoirs can have different
temperatureT and chemical potential μ.We assume that the shape of the interface
between the reservoir and the wire is such that electrons from the reservoir can
enter the wire with minimal chance of reflection back into the reservoir [119].
Electrons flowing in a one-dimensional wire between the two reservoirs pro-

duce a current in the wire. The allowed momentum states in the wire are kn =
(2πn)∕L, where n is an integer that can take values n = ±1,±2,… ,±∞. We will
use creation and annihilation operators to describe electrons that enter the wire
from the two reservoirs. We let â†L,n (âL,n) create (annihilate) electrons entering
the wire from the left reservoir [16]. Similarly, we let â†R,n (âR,n) create (annihilate)
electrons entering thewire from the right reservoir. The creation and annihilation
operators satisfy the Fermi anti-commutation relation

â†α,n âα′ ,n′ + âα′ ,n′ â
†
α,n = δα,α′ δn,n′ , (7.140)

where α = L, R. The operator that annihilates electrons at point x and time t (the
field operator) in the wire can be written

ψ̂(x , t) = 1√
L

∞∑
n=1

e−iEnt∕ℏ
(
âL,neiknx + âR,ne−iknx

)
, (7.141)

where En = ℏ2k2n∕(2m) = (2π)2ℏ2n2∕(2mL2) is the energy of an electron with
wavevector kn .
In terms of the field operators, the electron current operator at point x and

time t is given by

Ĵ(x , t) = eℏ
2mi

(
ψ̂†(x , t)

d ψ̂(x , t)
dx

−
dψ̂†(x , t)

dx
ψ̂(x , t)

)
. (7.142)



2677.6 Microscopic Linear Response Theory

If we substitute the field operator into the expression for the current, we can write
(after some algebra)

Ĵ(x , t) =
∞∑
n′=1

∞∑
n=1

ei(En′ −En)t∕ℏ Ĵn′ ,n(x) , (7.143)

where

Ĵn′ ,n(x) =
eℏ
2mL

[
(kn′ + kn)â

†
L,n′ âL,ne

−i(kn′ −kn)x

+ (kn′ − kn)â
†
L,n′ âR,ne

−i(kn′ +kn)x − (kn′ − kn)â
†
R,n′ âL,ne

i(kn′ +kn)x

−(kn′ + kn)â
†
R,n′ âR,ne

i(kn′ −kn)x
]
.

(7.144)

Let us now assume that a weak localized electric potential pulse is applied to the
center of the wire such that

ΔĤ(t) = e

∞

∫
−∞

dxV (x , t)ψ̂(x)ψ̂(x) , (7.145)

where V (x , t) = V (x) cos(ω0t). We assume that V (x) → 0 rapidly as |x| →∞ and
that time variations in V (x , t) are slow enough (ω0 is small enough) that any in-
duced magnetic fields can be neglected. The potential pulse will induce a current
in the wire. The average value of this current is given by⟨ J(x , t)⟩ = Tr( Ĵ(x)ρ̂(t)) = Tr( Ĵ(x)ρ̂eq) + Tr( Ĵ(x)Δρ̂(t)) . (7.146)

The equilibrium probability density operator for electrons in reservoir α, where
α = L, R, is ρ̂α = eβK̂α∕Tr(eβK̂α ) where K̂α = Ĥα − μN̂ =

∑
n(En − μ)â†α,n âα,n . The

reservoirs are independent of each other. Therefore, the total equilibrium distri-
bution of the system can be written ρ̂eq = ρ̂Lρ̂R.

Exercise 7.9

Compute the average current in the wire for the case when no pulse is applied but
the temperature and chemical potential of the two reservoirs are different.

Answer: If we use the definitions of the current in Eqs. (7.143) and (7.144), and
use Wick’s theorem (see Appendix D) to compute the average of products of cre-
ation and annihilation operators, we find

Tr
(
ρ̂α â

†
α′ ,n′ âα′′ ,n

)
= δα,α′ δα′ ,α′′δn,n′ fα(En) , (7.147)

where fα(En) = (1+ eβα (En−μα ))−1 is the Fermi distribution of electrons in the αth
reservoir. It is now straightforward to show that the average current is

⟨ J(x , t)⟩ = Tr
(
ρ̂L ρ̂R Ĵ(x , t)

)
= eℏ
mL

∞∑
n=1
kn( fL(En) − fR(En)) .
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For the case when the reservoirs have the same temperature and chemical poten-
tial, fL(En) = fR(En) and ⟨ J(x , t)⟩ = 0 because electrons flow to the left and to the
right at the same rate. (Note that Tr(ρ̂α âα,n) = Tr(ρ̂α â†α,n) = 0.)

When the temperature and chemical potential of the left and right reservoirs are
the same, the average current is zero Tr(ρ̂eq Ĵ(x , t)) = 0 (see Exercise (7.147)).
Therefore, ⟨ J(x , t)⟩ = Tr( Ĵ(x)Δρ̂(t)) and

Tr( Ĵ(x)Δρ̂(t)) = 1
iℏ

t

∫
−∞

dt′Tr
(
Ĵ(x)

[
eiĤ0(t−t′ )ℏΔĤ(t′)e−iĤ0(t−t′ )∕ℏ , ρ̂eq

])

= 1
iℏ

t

∫
−∞

dt′Tr
(
ρ̂eq

[
Ĵ(x , t), Δℌ̂(t′)

])
(7.148)

where

Δℌ̂(t) = eiĤ0t∕ℏΔĤ(t)e−iĤ0t∕ℏ = e
∞

∫
−∞

dxV (x , t)ψ̂†(x , t)ψ̂(x , t) , (7.149)

ψ̂(x , t) = eiĤ0 t∕ℏψ̂(x)e−iĤ0 t∕ℏ and Ĵ(x , t) = eiĤ0t∕ℏ Ĵ(x)e−iĤ0 t∕ℏ . (7.150)

To obtain the last term in Eq. (7.148), we have cyclically permuted operators under
the trace and we have used the fact that Ĥ0 commutes with ρ̂eq.
Let us now consider Δℌ̂(t). We can write

ψ̂†(x , t)ψ̂(x , t) =
∞∑
n1=1

∞∑
n2=1

ei(E1−E2)t∕ℏ 2m
ieℏ

1
(k21 − k

2
2)

d Ĵn1 ,n2
dx

, (7.151)

where Ĵn1 ,n2 is defined in Eq. (7.144). It is then straightforward to show, after a bit
of algebra, that

Δℌ̂(t′) = ℏ

ie

∞∑
n1=1

∞∑
n2=1

ei(E1−E2)t′∕ℏ
E1 − E2

∞

∫
−∞

dxV (x , t′)
d Ĵn1 ,n2 (x)

dx
. (7.152)

If we integrate Eq. (7.152) by parts over x, and use the fact that V (x , t) → 0 as|x| → ∞, we obtain

Δℌ̂(t′) = ℏ

ie

∞∑
n1=1

∞∑
n2=1

ei(E1−E2)t′∕ℏ
E1 − E2

∞

∫
−∞

dx(x , t′) Ĵn1 ,n2 (x) , (7.153)

where (x , t) = −dV (x , t)∕dx is the electric field associated with the potential
pulse. We can combine these results and write the average current in the form

⟨ J(x , t)⟩ = eTr( Ĵ(x)Δρ̂(t)) =
t

∫
−∞

dt′
∞

∫
−∞

dx′σ(x , x′ ; t − t′)(x′ , t′) , (7.154)
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where σ(x , x′ ; t − t′) is the conductivity and is defined

σ(x , x′ ; t − t′) = − 1
e2

∞∑
n1=1

∞∑
n2=1

∞∑
n3=1

∞∑
n4=1

ei(E1−E2)t∕ℏei(E3−E4)t′∕ℏ

× 1
E3 − E4

Tr
(
ρ̂eq

[
Ĵn1 ,n2 (x), Ĵn3 ,n4 (x

′)
])
Θ(t − t′) .

(7.155)

We have used the notation k1 ≡ kn1 and E1 ≡ En1 .The conductivity is determined
by the equilibrium correlation function for charge currents. Note that causality re-
quires that σ(x , x′ ; t − t′) = 0 for t < t′, and we have explicitly included this
causality requirement by inserting a Heaviside function Θ(t − t′) into the expres-
sion for σ(x , x′ ; t − t′) in (7.155). The conductivity must also satisfy the condition

∞

∫
0

dtσ(x , x′ ; t) < ∞ (7.156)

so a finite force induces a finite response in the system.
We can use Eq. (7.144) and Wick’s theorem to compute the current autocorre-

lation function,

Tr
[
ρ̂eq

(
Ĵn1 ,n2 (x), Ĵn3 ,n4 (x

′)
)]

= 2
( eℏ
2mL

)2
cos[(k1 − k2)(x − x′)]

× δn1 ,n4δn2 ,n3 (k1 + k2)
2( f1 − f2) , (7.157)

where f1 = f (E1). If we substitute Eq. (7.157) into Eq. (7.155), we obtain

σ(x , x′ ; t − t′) = −2
(

ℏ

2mL

)2 ∞∑
n1=1

∞∑
n2=1

ei(E1−E2)(t−t′ )∕ℏΘ(t − t′)

× cos
[
(k1 − k2)(x − x′)

] ( f1 − f2
E1 − E2

)
(k1 + k2)2 . (7.158)

Note that the conductivity depends only on x−x′ and t− t′ as is expected for a cor-
relation function averaged over the stationary equilibrium distribution function.
Because we are dealing with linear response, each frequency component of the

driving field excites only that same frequency component of the current. There-
fore, it is particularly useful to compute the Fourier transform of σ(x , x′ ; t). Be-
cause the conductivity in Eq. (7.155) is oscillatory, in order to satisfy Eq. (7.156)
we must insert a convergence factor into the Fourier transform. Then the Fourier
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transform of the conductivity is given by

σ(x , x′ ;ω) = lim
δ→0

∞

∫
0

dtei(ω+iδ)tσ(x , x′ ; t)

= lim
δ→0

[
−2i

( eℏ
2mL

)2 ∞∑
n1=1

∞∑
n2=1

(k1 + k2)2

×
( f1 − f2
E1 − E2

) cos[(k1 − k2)(x − x′)]
(ω + E2∕ℏ − E1∕ℏ + iδ)

]
. (7.159)

The average current can now be written

⟨ J(x , t)⟩ = 1
2π

∞

∫
−∞

dωe−iωt
∞

∫
−∞

dx′σ(x , x′;ω)̃ (x′ , ω) , (7.160)

where ̃(x′ , ω) is the Fourier transform of (x , t). The quantity J(x , ω) = ∫∞−∞ dx′
σ(x , x′ ;ω)̃ (x′ , ω) is the component of the current with frequency ω, and is the
microscopic expression for Ohm’s Law for this system.

7.6.3
Power Absorption

Let us assume that the applied electric field is oscillatory so that (x , t) =
(x) cos(ω0t). We can compute the average power PT absorbed by the system
over one period T = 2π∕ω0 of the applied pulse. The average power absorbed is
just the Joule heating of the wire during one period and is given by

PT = 1
T

T

∫
0

dt

∞

∫
−∞

dx(x , t)⟨ J(x , t)⟩ . (7.161)

If we substitute Eqs. (7.159) and (7.160) into Eq. (7.161) and perform the integra-
tions over x, x′, ω and t, we obtain

PT = −i
2

( eℏ
2mL

)2
lim
δ→0

[ ∞∑
n1=1

∞∑
n2=1

(k1 + k2)2
f1 − f2
E1 − E2

|̃ (k1 − k2)|2
×
{

1
−ω0 + E2∕ℏ − E1∕ℏ + iδ

+ 1
ω0 + E2∕ℏ − E1∕ℏ + iδ

}]
,

(7.162)

where |̃(k1 − k2)|2 = ∫ dx ∫ dx′(x)(x′) cos[(k1 − k2)(x − x′)]. If the wire
is sufficiently long, we can change the summation over momentum states to an
integration over energy of the electrons so that

∑∞
n=1 → L∕(2π) ∫∞0 dk, where

k = 2πn∕L. In this limit the spectrum becomes continuous. (As pointed out by
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Datta [34], the spectrum can be continuous for one of two reasons. If the wire is
infinitely long (L→∞) the spectrum is, by definition, continuous. However, cou-
pling of the finite wire to the reservoirs will give the energies of electrons in the
wire a width because electrons placed in the wire can only live there for a finite
time.) We can then use the definition

lim
δ→0

(
1

ℏω0 + E2 − E1 + iℏδ

)
= P

(
1

ℏω0 + E2 − E1

)
− iπδ(ℏω0 +E2−E1) .

(7.163)

If we now interchange the dummy variables k1 and k2, the principal parts in
Eq. (7.162) cancel and we find

PT = −πℏ
2

( eℏ
4mπ

)2
∞

∫
0

dk1

∞

∫
0

dk2(k1 + k2)2
f1 − f2
E1 − E2

|̃(k1 − k2)|2
× [δ(−ℏω0 + E2 − E1) + δ(ℏω0 + E2 − E1)] . (7.164)

Finally, interchange k1 and k2 in the second delta function to obtain

PT = −πℏ
( eℏ
4mπ

)2
∞

∫
0

dk1

∞

∫
0

dk2(k1 + k2)2
( f1 − f2
E1 − E2

)|̃(k1 − k2)|2
× δ(E2 − E1 − ℏω0) . (7.165)

We can now rewrite this as

PT = −πℏ
( eℏ
4mπ

)2
∞

∫
0

dE
∞

∫
0

dk1

∞

∫
0

dk2
(
f (E ) − f (E − ℏω0)

ℏω0

)
× (k1 + k2)2|̃(k1 − k2)|2δ(E − E2)δ(E − E1 − ℏω0) . (7.166)

For ℏω0 ≪ Ef and T → 0,
(
( f (E ) − f (E − ℏ∕ω0))(ℏω0)

)
→ −δ(E − Ef ). Also,

δ(E − Ef ) =
2m
ℏ2 δ

(
k2 − k2f

)
= 2m

ℏ2
1
2
kf [δ(k − kf ) + δ(k + kf )] . (7.167)

Using these relations, the average power takes the form

PT = e2
16πℏ

(
kf +

√
k2f − 2mω0∕ℏ

)
kf
√
k2f − 2mω0∕ℏ

||||||̃
(√

k2f −
2mω0

ℏ
− kf

)||||||
2

.

(7.168)

For (mω0)∕ℏ ≪ kf , this becomes

PT ≈ e2
8πℏkf

|||||̃
(
2mω0

ℏkf

)|||||
2

. (7.169)
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Thus, the system does absorb power from the applied pulse. This power absorp-
tion comes from the fact that the spectrum is continuous. Any energy that is ab-
sorbed from the applied field to form a current in the wire will be carried down
the infinite wire (or into the reservoirs) and can never return.

7.7
Thermal Noise in the Electron Current

If we apply a voltage differenceV between the two reservoirs, but keep the temper-
ature of the reservoirs the same, there will be a nonzero average current ⟨ J⟩ = GV
between the two reservoirs, where G = e2∕h is the Landauer conductivity of the
quantum wire (see Problem 7.8).
The thermal noise in the electron current is measured by the correlation func-

tion for current fluctuations in the wire. Current fluctuations occur because the
electrons come out of the reservoirs in discrete units and therefore the current,
at any given instant, may be greater or less than the average. To determine the
thermal noise, we must compute the correlation function for fluctuations of the
current about its average value, CJ , J(x , x′ ; t− t′) = ⟨( Ĵ(x , t)− ⟨ J⟩)( Ĵ (x′ , t′) − ⟨ J⟩)⟩.
For the case where the reservoirs have the same temperature and chemical poten-
tial, the wire will have zero average current and the correlation function takes the
form

CJ , J (x , x′; t − t′) = ⟨ Ĵ(x , t) Ĵ (x′ , t′)⟩ = Tr
[
ρ̂L ρ̂R Ĵ(x , t) Ĵ (x′ , t)

]
. (7.170)

Ifwe substitute the expression for the current operator Ĵ(x , t), given inEqs. (7.143)
and (7.144), into Eq. (7.170) and use Wick’s theorem to evaluate the trace (see
Appendix D), we obtain

CJ , J (x , x′; t − t′) =
( eℏ
2mL

)2 ∞∑
n1=1

∞∑
n2=1

ei(E1−E2)(t−t′ )∕ℏCn1 ,n2 (x − x
′) (7.171)

where

Cn1 ,n2 (x − x
′) = 2(k1 + k2)2 f1(1 − f2) cos

[
(k1 − k2)(x − x′)

]
+ (k1 − k2)2

×
[
(1 − f1)(1 − f2)e−i(k1+k2)(x−x

′) + f1 f2e+i(k1+k2)(x−x
′)
]
.

(7.172)

Let us now compute the power spectrum of these fluctuations,

S J , J(x , x′ ;ω) =
∞

∫
−∞

dτe−iωτC J , J(x , x′ ; t − t′)

= 2π
( eℏ
2mL

)2 ∞∑
n1=1

∞∑
n2=1

δ
(
ω −

E1
ℏ

+
E2
ℏ

)
Cn1 ,n2 (x − x

′) . (7.173)
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If we look at the continuum limit L → ∞ and low frequency limit ω → 0 of the
power spectrum, and remember that

∞∑
n=1

→
L
2π

∞

∫
0

dk = L
2π

√
m

ℏ
√
2

∞

∫
0

dE√
E

(7.174)

and (since k > 0) δ
(
(E1 − E2)∕ℏ

)
= m∕(ℏk)δ(k1 − k2), we obtain

lim
ω→0

S J , J(x , x′ ;ω) =
2e2kBT
h

= 2GkBT , (7.175)

where G = e2∕h is the Landauer conductance. Thus, in this limit we obtain the
same noise spectrum as for the classical circuit in Exercise 7.1, except that the
classical conductance G = 1∕R, where R is the resistance, is replaced by the Lan-
dauer conductance.

7.8
Problems

Problem 7.1 Compute the spectral density, Sv,v(ω), for the harmonically bound
Brownian particle considered in Exercise 7.2. Plot the velocity correlation func-
tion, Cv,v(τ), and spectral density Sv,v(ω) for the case ω0 > Γ (this corresponds to
an underdamped Brownian particle).

Problem 7.2 A Brownian particle of mass m is attached to a harmonic spring
with force constant, k, and is driven by an external force, F(t). The particle is
constrained to move in one dimension. The Langevin equation is

md2x(t)
dt2

+ γ dx(t)
dt

+mω2
0x(t) = ξ(t) + F(t) ,

where ω0 = k∕m, γ is the friction constant, and ξ(t) is a Gaussian white noise
with zero mean, ⟨ξ(t)⟩ξ = 0. Here ⟨⟩ξ denotes the average over values of the ran-
dom force. Consider the overdamped case. (a) Compute the equilibrium corre-
lation function, ⟨⟨x(t)x(0)⟩ξ⟩T , starting from the Langevin equation above with
F(t) = 0. Let ⟨⟩T denote the thermal average over the initial position and velocity
of the Brownian particle. Assume that ⟨x(0)v(0)⟩T = 0 and ⟨x(0)2⟩T = kBT∕(mω2

0).
(b) Show that the dynamic susceptibility for the Brownian oscillator is χ(ω) =
(−mω2 + mω2

0 − iγω)−1. Use the fluctuation–dissipation theorem,

⟨x(t)x(0)⟩ = kBT
iπ

P

∞

∫
−∞

1
ω
χ(ω) cos(ωt) ,

to compute the equilibrium correlation function. Do your results in (a) and (b)
agree?
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Problem 7.3 Consider the “short time” relaxation of a free Brownian particle.
The Langevin equation for the velocity is mdv∕dt = −γv + ξ(t). (a) Find the
Fokker–Planck equation for the probability, P(v, t)dv, to find the Brownian par-
ticle with velocity, v → v + dv, at time t. (b) Solve the Fokker–Planck equation,
assuming that at time, t = 0, the velocity is v = v0. (Hint: Use the transform in
Section 7.3.3.1 to write the Fokker–Planck in terms of a Hermitian operator. The
eigenfunctions of that operator will be Hermite polynomials.)

Problem 7.4 The magnetizationM(t) of a spin system is driven out of equilibri-
um by a magnetic field H(t) and obeys the Langevin equation of motion

dM(t)
dt

+ ΓM(t) = ξ(t) − Γχ0H(t) ,

where ξ(t) is a delta-correlated white noise with zero mean that is due to back-
ground magnetic field fluctuations and Γ is a positive constant. (a) Compute the
linear response function, K(t), which is defined through the equation ⟨M(t)⟩ξ =∫∞−∞ dt′K(t − t′)H(t′). (b) Compute the equilibrium dynamic correlation func-
tion ⟨M(t)M(0)⟩eq . (c) What is χ0?

Problem 7.5 A Brownian particle of mass m is attached to a harmonic spring
with force constant, k, and is driven by an external force, F(t). The particle is
constrained to move in one dimension. The Langevin equation is

md2x(t)
dt2

+ γ dx(t)
dt

+ mω2
0x(t) = ξ(t) + F(t) ,

where ω2
0 = k∕m, γ is the friction constant, and ξ(t) is a Gaussian white noise

with zero mean. The equation of motion of the average position, ⟨x(t)⟩F, in the
presence of the external force, F(t), is

m
d2⟨x(t)⟩F

dt2
+ γ

d⟨x(t)⟩F
dt

+ mω2
0⟨x(t)⟩F = F(t) .

(a)Compute andplot the linear response function,K(t), where ⟨x(t)⟩F = ∫∞−∞ K(t−
t′)F(t′)dt′. (b) Compute the total energy absorbed for the case of a driving force,
F(t) = F0δ(t).

Problem 7.6 Consider a dilute solution composed of a polar molecule solute
in a nonpolar solvent (polar molecules are molecules with a permanent electric
dipole). The electric polarization P(t) of this fluid is driven out of equilibrium by
an electric field E(t) and obeys the Langevin equation of motion

dP(t)
dt

+ 5P(t) = ξ(t) + 5aE(t) ,

where ξ(t) is a delta-correlated white noise (due to background magnetic fluc-
tuations) with zero mean ⟨ξ(t)⟩ = 0, and a is a constant. (a) Compute the linear
response function K(t). (b) Compute the dynamic susceptibility χ(ω) and find its
limit as ω → 0, where 1∕2C⟨Q(0)2⟩T = 1

2
kBT from the equipartition theorem.
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Problem7.7 The equation for the potential drop around anRCcircuit connected
in series is

RI(t) + 1
C
Q(t) = V (t) + ξ(t) ,

where I(t) = dQ(t)∕dt is the current,Q(t) is the charge,R is the resistance,C is the
capacitance, V (t) is a potential drop induced in the circuit, and ξ(t) is a random
potential (noise) drop due to the Brownianmotion of electrons in the resistor. The
random potential is “delta” correlated so ⟨ξ(t)ξ(t′)⟩ = gδ(t − t′) and it has zero av-
erage ⟨ξ(t)⟩ = 0, where g is the strength of the randomnoise. (a) For the case when
V (t) = 0, the potential across the capacitor is the random potential generated by
thermalmotion of electrons in the resistor. Compute the strength g of the random
noise. (Note that the average energy of the capacitor is 1∕2C⟨Q(0)2⟩T = 1∕2kBT ,
due to the equipartition theorem. (b) Compute the linear response function K(t),
where K(t) is defined from the equation ⟨Q(t)⟩ = ∫∞∞ dt′K(t − t′)V (t′), and com-
pute the dynamic susceptibility χ(ω), where χ(ω) = ∫∞−∞ dtK(t)eiωt . (c) Compute
the equilibrium correlation function ⟨Q(t)Q(0)⟩T for the charge on the capacitor,
starting from the fluctuation-dissipation theorem which can be written

CQ,Q(t) =
1
iπ

∞

∫
−∞

dωP
( 1
ω

)
cos(ωt)χ(ω)χ−1(0)⟨Q(0)2⟩T ,

where 1∕(2C)⟨Q(0)2⟩T = 1∕2kBT from the equipartition theorem.

Problem 7.8 The Langevin equation for the angular velocity Ω(t) of a large
Brownian particle, with moment of inertia I = 3, in equilibrium with a fluid, is
given by

3dΩ(t)
dt

+ 7Ω(t) = ξ(t) + τ(t) ,

where ξ(t) is a Gaussian white noise torque and τ(t) is an external torque. Use the
Fluctuation–Dissipation Theorem

CΩΩ(t) =
1
iπ
P

∞

∫
−∞

dω cos(ωt)
χ(ω)
ω
χ−1(0)⟨Ω2⟩T ,

where ⟨Ω2⟩T = kBT∕I, to compute the angular velocity autocorrelation function
CΩΩ(t) (no other method will be accepted).

Problem 7.9 A paramagnetic system sits in a constant external field, H0 ẑ, and
therefore has constant magnetization, M0 ẑ. Assume that this is the equilibrium
configuration of the system and that a small uniform time-dependent magnet-
ic field, H1(t) = H1 cos(ω0t)x̂ is applied to the system. The magnetization then
becomes time-dependent. Its equation of motion can be written

d⟨M⟩
dt

= −γ⟨M⟩ × H(t) − D(⟨M⟩)
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(these are called Bloch equations), where ⟨M⟩ = Tr(ρ̂M) =Mx(t)êx +My(t)ê y +
(M0 −Mz(t))êz ,H(t) = H0 êz +H1(t)êx , and D(⟨M⟩) is a damping term due to in-
teractions between particles in themedium. The constant γ equals gμ∕ℏ, where g
is the Lande g-factor and μ is the magnetic moment of particles in the system.
(a) Write the equations of motion for Mx(t), My(t), and Mz(t), assuming Dx =
Mx∕T2, Dy = My∕T2, and Dz = Mz∕T1. The equations you derive will be non-
linear functions ofH1,Mx ,My , andMz . (b) Assume thatH1,Mx ,My , andMz are
small, so the equations can be linearized. If we define the response matrix, K (t),
from the equation ⟨M(t)⟩ = ∫∞−∞ dt′K (t − t′) ⋅H(t′), find χxx(ω) and Kxx(t). Write
the expression for χxx(ω) in the limits 1∕T1 → 0 and 1∕T2 → 0. (c) Compute the
average power absorbed during the period T = 2π∕ω0. (Note that êx ê y, and êz
are unit vectors in the x-, y-, and z-directions, respectively.)

Problem 7.10 Consider a casual function, g(t), such that g(t) = 0 for t < 0 and
g(t) ≠ 0 for t > 0. Let g̃L(z) = ∫∞0 dt ⋅ e−ztg(t) be the Laplace transform. Let g̃F(ω) =∫∞−∞ dt eiωtg(t) be the Fourier transform. Show that

g̃L(z) =
∞

∫
∞

dω
2π

g̃F(ω)
z + iω

= g̃F(iz) ,

and show that the inverse transforms give the correct behavior for g(t).

Problem 7.11 Prove that

⟨α(t)⟩ = 2i

t

∫
−∞

dt′K
′′
(t − t′) ⋅ F(t′)

where K
′′
(t) is the Fourier transform of χ′′(ω). This form of the linear response is

commonly seen in the literature. [Note that the identity

lim
η→0

1
ω′ − ω ∓ iη

= P 1
ω′ − ω

± iπδ(ω′ − ω) ,

and the spectral representation of the Heaviside function

θ(t − t′) = − lim
η→0

∞

∫
−∞

dω
(2πi)

e−iω(t−t′ )
ω + iη

are useful.]

Problem 7.12 Consider a 1D ballistic waveguide which is coupled to low-
temperature electron reservoirs with Fermi distributions fL(En) and fR(En) on
the left and right ends, respectively. Assume that the temperatures of the reser-
voirs are the same but that the left reservoir has an electric potential energy bias
−eV , where e is the electron charge. Assume the waveguide has a length L that
is very large so you can take the limit L → ∞, and keep only the lowest-order
term in V . Compute the average current in the waveguide and show that the
conductivity of the waveguide is given by G = e2∕h, where h is Planck’s constant.
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8
Hydrodynamics

8.1
Introduction

When a fluid is disturbed from its equilibrium state, quantities that are not con-
served at the microscopic level (and are not order parameters) decay rapidly to
their equilibrium values. After a very short time (a few collision times in a gas)
only microscopically conserved quantities and order parameters, remain out of
equilibrium. Therefore, densities of conserved quantities and order parameters
entirely characterize the nonequilibrium behavior of the fluid after long times.
The equations of motion for these long-lived quantities are called the hydrody-
namic equations. Some examples of conserved quantities are the particle number,
momentum, and energy. Examples of order parameters may include spontaneous
average magnetization, or a complex function characterizing a superfluid state. If
there are inhomogeneities in the densities of conserved quantities, then particles,
momentum, and kinetic energy must be transported from one part of the fluid
to another to achieve equilibrium. Therefore, very-long-wavelength disturbances
will take a long time to relax, whereas short-wavelength disturbances relax more
quickly. This dependence of relaxation time on wavelength is a characteristic of
hydrodynamic processes.
Hydrodynamic equations describe long-wavelength, low-frequency phenome-

na in a large variety of systems, including dilute gases, liquids, liquid crystals, su-
perfluids, and chemically reacting systems. For complex systems, transport pro-
cesses are often coupled. For example, in amixture, it is possible to have a temper-
ature gradient drive a particle current and a concentration gradient drive a heat
current. Some systems can have as many as 10 or 20 (or more) transport coeffi-
cients to describe the decay to equilibrium from the hydrodynamic regime. On-
sager showed that some of these transport processes can be linked due to the
time-reversal invariance of dynamics at the microscopic level. In this chapter, we
will show how the hydrodynamic equations can be derived from a knowledge of
the thermodynamics and symmetry properties of a system.
The hydrodynamic equations for a fluid can explain the spectral properties of

light scattered from the fluid. Incident light waves polarize particles in the flu-
id and they re-emit the light. Density fluctuations cause the emitted light to be

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
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scattered. By measuring the spectrum of the scattered light we can measure the
spectrum of density fluctuations. We will find that density fluctuations are of two
types: thermal density fluctuations due to fluctuations in the local entropy and
mechanical density fluctuations due to damped sound waves. For low-frequency
and long-wavelength fluctuations, the spectrum of scattered light can be obtained
from the linearized hydrodynamic equations, and, therefore, light scattering ex-
periments give us a means of measuring transport coefficients in the fluid.
In this chapter, we also develop the hydrodynamic theory of mixtures and apply

it to Brownian motion and to systems with thermally induced particle diffusion.
The hydrodynamics ofmixtures also gives us insight regarding transport process-
es that occur when temperature and potential differences are maintained across
electrical circuits composed of different metals coupled together.
Finally, in the last section of this chapter, we derive the hydrodynamic equations

for superfluids which contain an additional degree of freedom due to the complex
order parameter that emerges when the superfluid phase transition takes place.
The appearance of the order parameter enables a thermal “sound”mode to emerge
called second sound. The emergence of second sound is related to the fact that the
condensed phase of a superfluid does not carry entropy.

8.2
Navier–Stokes Hydrodynamic Equations

The Navier–Stokes equations describe the macroscopic behavior of an isotrop-
ic fluid of point particles out of equilibrium [8, 39, 115]. They include balance
equations for densities of quantities that are conserved during collision processes
(particle number, momentum, energy) and the balance equation for the entropy
density. Entropy is not a conserved quantity. For a fluid in which irreversible pro-
cesses can occur, there will be an entropy source term. The entropy source term
in a fluid is the hydrodynamic equivalent of the Joule heating which occurs in an
electric circuit. The entropy source term enables us to identify generalized forces
and currents in the fluid. The conductance in a fluid (the proportionality constant
between force and resulting current) is called a transport coefficient. Once the
transport coefficients for the fluid have been identified, we can write the Navier–
Stokes equations.

8.2.1
Balance Equations

Balance equations govern the flow of various densities in a fluid. In our discussion
of hydrodynamic flow, we will be particularly interested in balance equations for
mass density, momentum density, energy density, and entropy density. However,
balance equations can also describe the flow of probability density in phase space.
Let us consider a continuous medium which moves with velocity v(r, t) at

point r and time t. The displacement r = (x1 , x2 , x3) is measured with respect to
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a reference frame Or fixed in space. A second frame of reference frame Oz moves
with the fluid. At time t = 0, the two frames coincide. We select a “fluid particle,”
which at time t = 0 is located at point r(0) in frame Or and at point z = (z1, z2 , z3)
in frame Oz . Because the frames coincide at time t = 0, r(0) = z. Assume that
frame Oz moves freely with the fluid and the fluid particle always has displace-
ment z with respect to Oz . The position of the fluid particle at time t in frame Or
is r(t) = r(z, t), where z = r(0) is the initial position of the fluid particle (see
Figure 8.1).
Nowassume thefluid carries somequantityD, which could bemass, probability,

entropy or some other quantity. At time t, observerOz sees density𝔇′(z, t) in the
neighborhood of the fluid particle and observer Or sees density 𝔇(r(t), t) in the
neighborhood of the fluid particle, such that 𝔇(r(t), t) = 𝔇′(z, t). The time rate
of change of the density in the neighborhood of the fluid particle can be written(

𝜕𝔇′

𝜕t

)
z
=

(
𝜕𝔇
𝜕t

)
r
+

(
𝜕𝔇
𝜕r

)
t

(
𝜕r
𝜕t

)
z
, (8.1)

where v = (𝜕r∕𝜕t)z is the velocity of the fluid particle. Here
(
𝜕𝔇′∕𝜕t

)
z is the time

rate of change of the density as seen by an observermoving with the fluid particle
and is denoted d∕dt. The quantity (𝜕𝔇)∕𝜕t)r is the time rate of change of the
density as seen by an observer fixed in space and is denoted 𝜕∕𝜕t. The relation
between these two time derivatives is written

d
dt

= 𝜕

𝜕t
+ v ⋅∇r . (8.2)

The derivative d∕dt is called the convective time derivative.
If the fluid is compressible, the volume of the fluid particle can change with

the flow. Consider a volume element dV0 = dz = dr(0) at time t = 0. At time t
it can be written dVt = dr(t) = 𝔍(r(t); z)dz, where 𝔍(r(t); z) is the Jacobian of
the transformation from time t = 0 to time t, and is the determinant of the 3 ×
3 matrix formed from the derivatives 𝜕xi(t)∕𝜕z j . Using properties of derivatives
of determinants, we can show that the Jacobian evolves in time according to the

Figure 8.1 Coordinates of a fluid particle at time t.
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equation

d𝔍
dt

= 𝔍∇r ⋅ v . (8.3)

If the fluid is incompressible, then ∇r ⋅ v = 0 and the volume element remains
constant in time.
These properties of fluid flow will be useful below where we derive the balance

equations for the mass, momentum, energy, and entropy densities for an isotopic
fluid of point particles.

8.2.1.1 Mass Density Equations
In the absence of chemical reactions, the number of particles in the fluid is con-
served. For nonrelativistic processes, the total mass of the particles is also con-
served. If we consider a volume element of the fluid, V (t) (with a given set of fluid
particles), which moves with the fluid, the amount of mass inside this volume el-
ement must remain constant. Let ρ = ρ(r, t) denote the mass density (mass per
unit volume) and letM denote the total mass in the volume, V (t). Then

dM
dt

= d
dt ∫

V (t)

ρ dVt =
d
dt ∫

V0

ρ𝔍 dV0 , (8.4)

where, in the last term, we have written the integral in terms of coordinates at
time t = 0 and 𝔍 is the Jacobian of the transformation from coordinates at time
t = 0 to time t. We can now take the time derivative inside the integral and write

dM
dt

= ∫
V0

(
dρ
dt

𝔍 + ρ∇r ⋅ v𝔍
)
dV0 = ∫

V (t)

(
dρ
dt

+ ρ∇r ⋅ v
)
dVt = 0 , (8.5)

where we have used Eq. (8.3) and v = v(r, t) is the average velocity of the fluid
at point r and time t. Since the volume element, V (t), is arbitrary, the integrand
must be zero and we find

dρ
dt

+ ρ∇r ⋅ v = 0 . (8.6)

If we use Eq. (8.2) for the “convective” derivative d∕dt, we can also write

𝜕ρ
𝜕t

+ ∇r ⋅ (ρv) = 0 . (8.7)

The quantity, J ≡ ρv is the mass current or mass flux and has units mass/area ⋅
time. It is also a momentum density. The derivative, dρ∕dt, gives the time rate
of change of the mass density for an observer moving with the fluid. The deriva-
tive, 𝜕ρ∕𝜕t, gives the time rate of change of the mass density for an observer at
a fixed point in space. Equation (8.7) is sometimes called the continuity equation
and sometimes called themass balance equation for the fluid. It is a direct conse-
quence of the conservation of mass in the fluid.



2818.2 Navier–Stokes Hydrodynamic Equations

8.2.1.2 Momentum Balance Equation
The total momentum, P(t) = ∫V (t) ρv dVt of the volume V (t), evolves according
to Newton’s law. The time rate of change of the momentum, P(t), must be equal
to the sum of the forces acting on the volume element, V (t). Therefore, we can
write the equation of motion of the fluid element in the form

dP(t)
dt

= d
dt ∫

V (t)

ρv dVt = ∫
V (t)

ρF dVt + ∫
S(t)

f dSt , (8.8)

where F is an external force per unit mass which couples to the particles inside
the volume element (an electric or magnetic field for example), f is a force per
unit area acting on the walls of the volume element, and S(t) denotes the surface
of the volume element, V (t). The surface force, f , is due to the fluid surrounding
the volume element. It will always have a component perpendicular to the surface
of V (t), and for a nonideal fluid (a fluid with dissipation) it will have a component
tangent to the surface.
If we write a differential surface area element as a vector, dS, directed outward

perpendicular to the surface, then we can write f dS = dS ⋅ P, where P is the
pressure tensor, f = n̂ ⋅P, and n̂ is a unit vector directed outward perpendicular to
the surface so dS = dSn̂. The pressure tensor has nine components. In Cartesian
coordinates it can be written P = Pxx êx êx + Px y êx ê y +⋯+ Pzz êz êz, where êx , ê y,
and êz are unit vectors in the x-, y-, and z-directions, respectively. The unit vector,
n̂, can be written n̂ = nx êx + ny ê y + nz êz , where nx , ny , and nz are components
of n̂ in the x-, y-, and z-directions, respectively. Note that the ith component of
the vector, f , can be written f i =

∑
j n jP ji, where i = x , y, z and j = x , y, z. If we

use Gauss’s theorem, we can write

∫
S(t)

dSt ⋅ P = ∫
V (t)

dVt∇r ⋅ P . (8.9)

Here ∇r ⋅ P is a vector whose ith component is (∇r ⋅ P)i =
∑
j 𝜕 jP ji, where 𝜕x =

𝜕∕𝜕x, 𝜕y = 𝜕∕𝜕 y, and 𝜕z = 𝜕∕𝜕z. The argument of Eq. (8.8) must satisfy the equa-
tion

dρv
dt

+ ρv(∇r ⋅ v) = ρF + ∇r ⋅ P . (8.10)

For an ideal fluid (no dissipation) the only force on the walls of V (t) is due to the
hydrostatic pressure, P = P(r, t), which is always perpendicular to the walls and
pointed inward. Thus, for an ideal fluid we have f = −Pn̂ and P = −PU (U is the
unit tensor,U = êx êx + ê y ê y + êz êz). For a nonideal fluid, there is also a dissipative
contribution, Π , to the pressure tensor and Eq. (8.10) takes the form

dρv
dt

+ ρv(∇r ⋅ v) = ρF − ∇rP − ∇r ⋅ Π (8.11)

since ∇r ⋅ PU = ∇rP. The tensor Π is called the stress tensor. If we make use of
the convective time derivative, d∕dt = 𝜕∕𝜕t + v ⋅ ∇, we can also write Eq. (8.11)
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in the form

𝜕ρv
𝜕t

+ ∇r ⋅ (PU + ρvv + Π) = ρF . (8.12)

The term ρvv is themomentum flux and is a nine-component dyatic tensor, ρvv =
ρvxvx êx êx + ρvxv y êx ê y +⋯+ ρvzvz êz êz . Equations (8.11) and (8.12) are alterna-
tive versions of the momentum balance equation for an isotropic fluid of point
particles. Equation (8.11) describes the time rate of change of momentum density
as seen by an observer moving with the fluid, and Eq. (8.12) describes the time
rate of change of momentum density as seen by an observer at a fixed point in
space.

Exercise 8.1

Show that an arbitrary tensor, T , can be decomposed into three orthogonal com-
ponents.

Answer: In cartesian coordinates we can write the nine component tensor in
the form T = Txx êx êx + Txy êx ê y + ⋯ + Tzz êz êz . The nine terms in T̄ can be
regrouped into three orthogonal quantities

T = 1
3
Tr(T̂)U + T

s
+ T

a
,

whereU = êx êx + ê y ê y + êz êz is the unit tensor and Tr(T) = Txx + Ty y + Tzz. T
s

is a symmetric tensor with zero trace and is defined as

T
s
= 1

2
(T + T

T
) − 1

3
Tr(T)U ,

where T
T
is the transpose of T , Tsxx = 2∕3Txx − 1∕3Ty y − 1∕3Tzz, and Tsx y =

1∕2(Txy + Tyx). T
a
is an antisymmetric tensor with zero trace and is defined as

T
a
= 1

2
(T − T

T
) ,

where Taxx = 0 and Tax y = 1∕2(Txy −Tyx). If we introduce a second tensor, V , then
it also can be decomposed in the manner described above. The scalar product of
the two tensors can be written

T : V = 1
3
[Tr(T)][Tr(V )] + T̄ s : V

s
+ T

a
: V̄ a .

One can also show that U : T
s
= U : T̄a = T

s
: V

a
= 0. Thus, the tensor, T , has

been decomposed into three independent orthogonal components.
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8.2.1.3 Energy and Entropy Balance Equations
The energy and entropy balance equations are easy to write down.We let 𝜖 denote
the energy per unit mass, and let ρe denote the energy per unit volume of the fluid.
For the case when the external force has the form F = −∇rφ (φ is a potential
energy per unit mass), the energy density can be written ρe = ρu + 1∕2ρv2 +
ρφ, where u is the internal energy per unit mass. Thus, the energy density has
contributions from thermodynamic processes in the fluid, the kinetic energy of
the fluid, and the external potential energy.
Since the energy inside the volume element cannot be created or destroyed by

collisions (for a fluid of point particles), the only way the energy inside the volume
element can change is by flow through the walls of V (t). The balance equation for
the total energy can be written

𝜕ρe
𝜕t

+ ∇r ⋅
(
JRe + JDe

)
= 0 , (8.13)

where JRe is the reactive (nondissipative) energy current and JDe is the dissipative
energy current. Both JRe and JDe have yet to be determined.
The entropy balance equation can bewritten in an analogous fashion.However,

now we must take account of the fact that entropy can be created inside the vol-
ume V (t) due to spontaneous processes. Let s denote the entropy per unit mass
(the specific entropy) and ρs denote the entropy per unit volume. The entropy
balance equation then becomes

𝜕ρs
𝜕t

+ ∇r ⋅
(
JRs + JDs

)
= σs , (8.14)

where JRs is the reactive entropy current, JDs is the dissipative entropy current,
and σs is an entropy source term due to dissipative processes inside of V (t). The
explicit forms of JRs , J

D
s , and σs will be determined in the next section.

8.2.2
Entropy Source and Entropy Current

Let us assume that deviations from thermodynamic equilibrium occur on very
large length scales compared to microscopic distances. Then locally the system
will be in equilibrium, but the actual values of thermodynamic quantities vary
slowly in space and time. The fundamental equation for the internal energy is ρu=
Tρs − P + ρμ, where μ is the chemical potential. If we take the differential of
this equation and use the Gibbs–Duhem equation, ρ dμ + ρs dT − dP = 0, we
find d(ρu) = T d(ρs) + μ dρ. Therefore, we can write

dρu
dt

− T
dρs
dt

− μ
dρ
dt

=
𝜕ρu
𝜕t

− T
𝜕ρs
𝜕t

− μ
𝜕ρ
𝜕t

+ v ⋅∇r(ρu) − Tv ⋅ ∇r(ρs) − μv ⋅ ∇r(ρ) = 0 , (8.15)
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where we have made use of the convective time derivative. Let us next note that

v ⋅∇r(ρu) − Tv ⋅∇r(ρs) − μv ⋅∇rρ
= ∇r ⋅ [(ρu − Tρs − ρμ)v] + ρsv ⋅∇rT + ρv ⋅∇rμ + P∇r ⋅ v
= v ⋅ (ρs∇rT + ρ∇rμ − ∇rP) = 0 , (8.16)

where we have used the fundamental equation, ρu = Tρs− P+ ρμ. The last term
is zero because of theGibbs–Duhem equation, ρ dμ+ ρs dT −dP = 0. Therefore,

dρu
dt

− T
dρs
dt

− μ
dρ
dt

=
𝜕ρu
𝜕t

− T
𝜕ρs
𝜕t

− μ
𝜕ρ
𝜕t

= 0 . (8.17)

Let us now assume, for simplicity, that all external forces are zero so that F = 0.
Then the total energy per unit volume is ρe = ρu + 1∕2ρv2, and we can write

𝜕ρe
𝜕t

=
𝜕ρu
𝜕t

+ v ⋅
𝜕ρv
𝜕t

− 1
2
v2

𝜕ρ
𝜕t

. (8.18)

If we combine Eqs. (8.17) and (8.18), we find

T
𝜕ρs
𝜕t

=
𝜕ρe
𝜕t

− v ⋅
𝜕ρv
𝜕t

+
(1
2
v2 − μ

) 𝜕ρ
𝜕t

. (8.19)

We can now obtain an expression for the entropy current and source. If we com-
bine Eqs. (8.7), (8.12), (8.13), and (8.19), we obtain

T
𝜕ρs
𝜕t

= −∇r ⋅
(
JRe + JDe

)
+ v[∇r ⋅ (PU + ρvv +Π)] −

(1
2
v2 − μ

)
∇r ⋅ (ρv) .

(8.20)

This equation can be simplified further. Note that

v ⋅ [∇r ⋅ (ρvv)] =
∑
i

∑
j
vi∇ j(ρv jvi) =

∑
i

∑
j

[
ρviv j(∇ jvi) + ν2i∇ j(ρv j)

]
.

(8.21)

Note also that

∇ j

(
ρv j

1
2
v2i
)
= 1

2
v2i∇ j(ρv j) + ρv jvi∇ jvi . (8.22)

If we combine Eqs. (8.21) and (8.22), we find

v ⋅
[
∇r ⋅ (ρvv)

]
= 1

2
v2∇r ⋅ (ρv) +

1
2
∇r ⋅ (ρv2v) . (8.23)

We now substitute Eq. (8.23) into Eq. (8.20), make use of the Gibbs–Duhem rela-
tion, ρs∇rT + ρ∇rμ − ∇rP = 0, and rearrange terms. We then obtain

T
𝜕ρs
𝜕t

= −∇r ⋅
(
JRe + JDe − ρμ′′v − Π ⋅ v

)
+ ρsv ⋅∇rT − Π : ∇r v , (8.24)
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where Π : ∇rv ≡ ∑
i
∑
j Πi j∇i v j and μ′′ = μ + 1∕2v2. We can write Eq. (8.24) in

the form of a balance equation. If we divide through by the temperature, we can
rearrange terms to obtain

𝜕ρs
𝜕t

= −∇r ⋅

(
JRe + JDe − ρμ′′v − Π ⋅ v

T

)
+

(
JRe + JDe − ρμ′′v − ρsTv − Π ⋅ v

)
⋅∇r

( 1
T

)
− 1
T
Π : ∇rv .

(8.25)

We can simplify Eq. (8.25) still further if we consider its form for a nondissipative
fluid.

Exercise 8.2

In orthogonal curvilinear coordinates the gradient is

∇ =
ê1
h1

𝜕

𝜕u1
+

ê2
h2

𝜕

𝜕u2
+

ê3
h3

𝜕

𝜕u3
,

where the coordinates are u1 , u2, and u3, the scale factors are h1 , h2, and h3, and
the unit vectors are ê1, ê2, and ê3. In terms of these coordinates, the velocity can
be written v = v1 ê1 + v2 ê2 + v3 ê3. The unit vectors êi are related to the Cartesian
unit vectors êα (α = x , y, z) as êi =

∑
α Ri,α(u1 , u2 , u3)êα . The dyatic tensor, ∇rv

then takes the form

∇rv =
∑
i

∑
j

êi ê j
hi

𝜕v j
𝜕ui

+
∑
i

∑
j

∑
k

∑
α

êi êk
hi
v j
𝜕R j,α
𝜕ui

R−1
α,k .

Write the dyatic tensor ∇r v for the special case of cylindrical coordinates u1 =
r, u2 = φ, and u3 = z with scale factors h1 = 1, h2 = r, and h3 = 1 and unit vectors
ê1 = êr, ê2 = êφ , and ê3 = êz .

Answer: In cylindrical coordinates we have

⎛⎜⎜⎜⎝
êr
êφ
êz

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
êx
ê y
êz

⎞⎟⎟⎟⎠ .

Therefore, we find

∇rv = êr êr
𝜕vr
𝜕r

+ êr êφ
𝜕vφ
𝜕r

+ êr êz
𝜕vz
𝜕r

+ êφ êr
(
1
r
𝜕vr
𝜕φ

−
vφ
r

)
+ êφ êφ

(
1
r
𝜕vφ
𝜕φ

+
vr
r

)
+ êφ êz

1
r
𝜕vz
𝜕φ

+ êz êr
𝜕vr
𝜕z

+ êz êφ
𝜕vφ
𝜕z

+ êz êz
𝜕vz
𝜕z

.
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Consider a fluid in which no dissipative processes occur. By definition, the stress
tensorΠ = 0 and the dissipative energy current JDe = 0 for such a fluid. Also there
will be no entropy source term. Therefore, from Eq. (8.25) the reactive energy
current must be given by

JRe ≡ ρμ′′v + ρsTv = ρ
(
h + 1

2
v2
)
v = ρ

(
u + P + 1

2
v2
)
v , (8.26)

where h is the enthalpy per unit mass. If we substitute Eq. (8.26) into Eq. (8.25) and
set Π = 0 and JD

𝜖
= 0, we obtain the entropy balance equation for a nondissipative

fluid,
𝜕ρs
𝜕t

= −∇r ⋅ (ρsv) . (8.27)

The entropy current in a nondissipative fluid is ρsv.
If we substitute the definition of the reactive energy current, JRe , into Eq. (8.24),

we obtain the final form of the entropy balance equation for a dissipative fluid:
𝜕ρs
𝜕t

= −∇r ⋅
(
ρsv + JDs

)
− 1
T
JDs ⋅ ∇rT − 1

T
Π : ∇rv , (8.28)

where the dissipative entropy current, JDs , is

JDs = 1
T

(
JDe − Π ⋅ v

)
. (8.29)

The entropy source in a dissipative fluid is

σs = − 1
T
JDs ⋅∇rT − 1

T
Π : ∇rv . (8.30)

One can easily check that the quantity JDs ⋅ ∇rT + Π : ∇rv has units (ener-
gy/(volume ⋅ time)). It is the hydrodynamic version of Joule heating. In an electric
circuit, Joule heating is given by J ⋅ E, where E is the electric field and J is the
electric current, and is the (energy/(volume ⋅ time)) dissipated in the electric cir-
cuit. We see that the hydrodynamic entropy production has the same form if we
identify JDs andΠ as the generalized currents and∇rT and∇rv as the generalized
forces driving those currents.
In an electric circuit the electric current and the electric field (driving force)

are related by Ohm’s law, J = σE, where σ is the conductivity of the medium.
Hydrodynamicmedia also have a version of Ohm’s law in which the driving forces
are linearly related to the currents. In hydrodynamic systems the “conductivities”
are called “transport coefficients.” In the next section we will obtain the transport
coefficients for an isotropic fluid of point particles, and in so doing we will be able
to write the Navier–Stokes equations for the fluid.

8.2.3
Transport Coefficients

Transport coefficients are the generalized conductivities of a hydrodynamic sys-
tem. Beforewe can determine howmany transport coefficients are needed for our
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isotropic fluid of point particles, wemust determine howmany independent driv-
ing forces and currents there are in the fluid. In the last section, we found that the
generalized driving forces are ∇rT and ∇rv and the generalized currents are JDs
and Π . Both ∇rv and Π are nine-component tensors, and each can be decom-
posed into three orthogonal parts. For example, we can write the dyatic, ∇rv, in
the form (see Exercise 8.1)

∇rv = 1
3
(∇r ⋅ v)U + [∇rv]s + [∇rv]a . (8.31)

In Cartesian coordinates, we have

[∇rv]si j =
1
2
(𝜕 j vi + 𝜕i v j) −

1
3
δi j∇r ⋅ v and [∇rv]ai j =

1
2
(𝜕 j vi − 𝜕i v j) .

(8.32)

Similarly, we can write the stress tensor as

Π = 1
3
[Tr(Π)]U + Π

s
+ Π

a
. (8.33)

For an isotropic fluid of point particles (or particles which interact via a spherical-
ly symmetric potential), the antisymmetric part of the stress tensor is identically
zero. The antisymmetric “force,” [∇rv]a = ∇r × v, is the curl of the velocity and
is the contribution from vortex motion in the fluid. For a fluid of particles cou-
pled by spherically symmetric forces, there is no coupling of rotational motion of
the particles to vortex motion of the fluid. Energy from the fluid can’t be dissi-
pated by transforming angular momentum of the fluid into angular momentum
of the particles so Π

a ≡ 0. For a fluid of particles which interact via nonspheri-
cally symmetric forces, there will be coupling between angular momentum and
translational flow [183].
In order to write “Ohm’s law” for the fluid, we shall make use of Curie’s prin-

ciple, which states that, in an isotropic fluid, a given force cannot drive a current
of a different tensor character. Let us note that there are four independent gen-
eralized forces in the fluid, each with a different tensor character. They are ∇rT ,
a polar vector; [∇rv]s , a symmetric tensor; ∇r ⋅ v, a scalar: and [∇rv]a = ∇r × v,
an axial vector. (Polar vectors and axial vectors behave differently under inversion
through the origin of coordinates. Polar vectors change their sign. Axial vectors
do not.) Since the antisymmetric part of the stress tensor is zero for a fluid of point
particles, the axial vector cannot drive a current. Thus, an isotropic fluid of point
particles has three generalized forces. They are ∇rT,∇r ⋅ v, and [∇rv]s and they
drive the generalized currents, JDs ,Π ≡ (1∕3)Tr(Π), and Π

s
, respectively. Since

these forces all have different tensor character, we find the following generaliza-
tion of Ohm’s law for the fluid:

JDs = −K
T
∇rT , (8.34)

where K is the coefficient of thermal conductivity,

Π
s
= −2η[∇rv]s , (8.35)
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where η is the coefficient of shear viscosity, and

Π = −ζ∇r ⋅ v , (8.36)

where ζ is the coefficient of bulk viscosity.

Exercise 8.3

Write the pressure tensor P =
∑
i, j Pi, j êi ê j for an incompressible fluid in: (a) cylin-

drical coordinates where i = r, φ, z and j = r, φ, z; (b) spherical coordinates where
i = r, θ, φ and j = r, θ, φ.

Answer: (a) In cylindrical coordinates

Pr,r = −P + 2η
𝜕vr
𝜕r

, Pφ,φ = −P + 2η
(
1
r
𝜕vφ
𝜕φ

+
vr
r

)
,

Pz ,z = −P + 2η
𝜕vz
𝜕z

, Pr,φ = η
(
1
r
𝜕vr
𝜕φ

+
𝜕vφ
𝜕r

−
vφ
r

)
,

Pz ,φ = η
(
𝜕vφ
𝜕z

+ 1
r
𝜕vz
𝜕φ

)
, Pr,z = η

(
𝜕vz
𝜕r

+
𝜕vr
𝜕z

)
.

(b) In spherical coordinates

Pr,r = −P + 2η
𝜕vr
𝜕r

, Pφ,φ = −P + 2η
(

1
r sin(θ)

𝜕vφ
𝜕φ

+
vr
r
+
vθcot(θ)

r

)
,

Pθ,θ = −P + 2η
(
1
r
𝜕vθ
𝜕θ

+
vr
r

)
, Pθ,φ = η

(
1

r sin(θ)
𝜕vθ
𝜕φ

+ 1
r
𝜕vφ
𝜕θ

−
vφcot(θ)

r

)
,

Pr,θ = η
(
1
r
𝜕vr
𝜕θ

+
𝜕vθ
𝜕r

−
vθ
r

)
, Pφ,r = η

(
𝜕vφ
𝜕r

+ 1
r sin(θ)

𝜕vr
𝜕φ

−
vφ
r

)
.

If we use Eqs. (8.34)–(8.36), the entropy source term takes the form

σs =
K
T2 |∇rT|2 + 2

η
T
|[∇rv]s|2 + ζ

T
|∇r ⋅ v|2 , (8.37)

where |∇rT|2 = (∇rT ) ⋅ (∇rT ) and |[∇rv]s|2 = [∇rv]s : [∇rv]s . Themass balance,
momentum balance, and entropy balance equations take the form

𝜕ρ
𝜕t

+ ∇r ⋅ (ρv) = 0 , (8.38)

𝜕ρv
𝜕t

+ ∇r ⋅ (ρvv) = −∇rP + η∇2
r v +

(
ζ + 1

3
η
)
∇r(∇r ⋅ v) , (8.39)

and

𝜕ρs
𝜕t

+ ∇r ⋅
(
ρsv + JDs

)
= K
T2 |∇rT|2 + 2

η
T
|[∇r , v]s|2 + ζ

T
(∇r ⋅ v)2 , (8.40)
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respectively, where we have used the fact that

∇r ⋅ Π = −η∇2
r v −

(
ζ + 1

3
η
)
∇r(∇r ⋅ v) . (8.41)

The derivation of the specific form of Eq. (8.39) is given in Exercise 8.3. Equa-
tions (8.38)–(8.40) collectively are called the Navier–Stokes equations or hydro-
dynamic equations. They describe the hydrodynamic behavior of an isotropic flu-
id of point particles. In the next section we describe how to solve the linearized
version of these equations.

8.3
Linearized Hydrodynamic Equations

The hydrodynamic equations, (8.38)–(8.40), depend nonlinearly on the thermo-
dynamic variables and the average velocity. Thismakes themvery difficult to solve
and one generally must resort to numerical methods to solve them. However, if
we restrict ourselves to the neighborhood of absolute equilibrium, then we can
look at the behavior of small deviations from the equilibrium state, and it is pos-
sible to linearize the hydrodynamic equations [60]. The linearized hydrodynamic
equations describe the behavior of the fluid if it is only slightly displaced from ab-
solute equilibrium. They are also useful in describing the behavior of fluctuations
for a fluid in equilibrium.

8.3.1
Linearization of the Hydrodynamic Equations

Let ρ0, T0 , s0, and P0, denote the equilibrium mass density, temperature, specific
entropy, and pressure, respectively. Close to the equilibrium state, we can write
ρ(r, t) = ρ0 +Δρ(r, t), T = T0 +ΔT(r, t), s(r , t) = s0 +Δs(r, t), and P(r, t) = P0 +
ΔP(r, t), respectively. The quantities Δρ, ΔT , Δs and ΔP, denote deviations from
equilibrium.The average velocity, v(r, t), is zero at equilibrium, so it is already first
order in deviation from equilibrium. If we now substitute these expansions into
the hydrodynamic equations (8.38)–(8.40), and only retain terms to first order in
deviations from equilibrium, we find

𝜕Δρ
𝜕t

+ ρ0∇r ⋅ v = 0 , (8.42)

ρ0
𝜕v
𝜕t

= −∇rΔP + η∇2
r v +

(
ζ + 1

3
η
)
∇r(∇r ⋅ v) , (8.43)

and

ρ0
𝜕Δs
𝜕t

= K
T0

∇2
rΔT . (8.44)

To obtain the final form of Eq. (8.44), we have used Eq. (8.38) to eliminate two
terms and we have used Eq. (8.40).



290 8 Hydrodynamics

The momentum balance equation, (8.43), is actually three equations since the
velocity has three components. Thus, we have five equations but we have seven
unknowns, Δρ, Δs , ΔT, ΔP, vx , v y , and vz .We can use thermodynamics to reduce
the number of unknowns to five since the quantities Δρ, Δs , ΔT , and ΔP are relat-
ed by thermodynamic equations. We can choose two of them to be independent
and expand the other two in terms of them. The choice of the two independent
variables depends on the problem of interest.
Let us choose Δρ and ΔT to be independent. Then we can write

Δs(r, t) =
(
𝜕s
𝜕ρ

)0

T
Δρ(r, t) +

(
𝜕s
𝜕T

)0

ρ
ΔT(r, t) (8.45)

and

ΔP(r, t) =
(
𝜕P
𝜕ρ

)0

T
Δρ(r, t) +

(
𝜕P
𝜕T

)0

ρ
ΔT(r, t) . (8.46)

The linearized hydrodynamic equations take the form

𝜕Δρ
𝜕t

+ ρ0∇r ⋅ v = 0 , (8.47)

ρ0
𝜕v
𝜕t

= −
(
𝜕P
𝜕ρ

)0

T
∇rΔρ −

(
𝜕P
𝜕T

)0

ρ
∇rΔT + η∇2

r v +
(
ζ + 1

3
η
)
∇r(∇r ⋅ v) ,

(8.48)

and

ρ0
(
𝜕s
𝜕ρ

)0

T

𝜕Δρ
𝜕t

+ ρ0
(
𝜕s
𝜕T

)0

ρ

𝜕ΔT
𝜕t

= K
T0

∇2
rΔT . (8.49)

Equations (8.47)–(8.49) forma set of coupled equations that describe the behavior
of small deviations from absolute equilibrium.
Given that we have linearized equations, we can obtain dispersion relations

for various processes in the fluid. As a first step, let us Fourier transform the
space dependence of the linearized hydrodynamic equations. We let Δρ(r, t) =
(1∕2π)3 ∫ dkρk(t)e−ik⋅r so that ρk(t) = ∫ drΔρ(r, t)eik⋅r , with similar transforms
for v(r, t) and ΔT(r, t). If we substitute these expressions into Eqs. (8.47)–(8.49),
we find

𝜕ρk
𝜕t

− iρ0k ⋅ vk = 0 , (8.50)

ρ0
𝜕vk
𝜕t

= i
(
𝜕P
𝜕ρ

)0

T
kρk + i

(
𝜕P
𝜕T

)0

ρ
kTk − ηk2vk −

(
ζ + 1

3
η
)
k(k ⋅ vk) ,

(8.51)

and

ρ0
(
𝜕s
𝜕ρ

)0

T

𝜕ρk
𝜕t

+ ρ0
(
𝜕s
𝜕T

)0

ρ

𝜕Tk

𝜕t
= − K

T0
k2Tk , (8.52)

where ρk = ρk(t), Tk = Tk(t), and vk = vk(t).
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We can simplify Eqs. (8.50)–(8.52) still further. Let us divide the velocity into
longitudinal (parallel to k) and transverse (perpendicular to k) components:

vk(t) = v
∥
k(t)k̂ + v⟂k (t) , (8.53)

where k ⋅ v⟂k (t)≡ 0 and k ⋅ vk(t)≡ kv∥k(t). The component kv∥k(t) is the amplitude of
a longitudinal velocity variation (in the direction k) that haswavelength λ = 2π∕k.
The velocity vector, v⟂k (t), is a two-component vector which describes velocity
variations with wavelength λ = 2π∕k, but transverse (perpendicular) to the direc-
tion of k.
The transverse and longitudinal components of the average velocity decouple

in the linearized hydrodynamic equations and evolve according to different equa-
tions of motion. From Eqs. (8.50)–(8.53), we can write

𝜕ρk
𝜕t

− iρ0kv
∥
k = 0 , (8.54)

ρ0
𝜕v∥k
𝜕t

= ik
(
𝜕P
𝜕ρ

)0

T
ρk + ik

(
𝜕P
𝜕T

)0

ρ
Tk −

(
ζ + 4

3
η
)
k2v∥k , (8.55)

ρ0
(
𝜕s
𝜕ρ

)0

T

𝜕ρk
𝜕t

+ ρ0
(
𝜕s
𝜕T

)0

ρ

𝜕Tk

𝜕t
= − K

T0
k2Tk , (8.56)

and

ρ0
𝜕vk⟂

𝜕t
= −ηk2v⟂k . (8.57)

Equations (8.54)–(8.56) govern the evolution of the coupled heat and sound
modes (sound consists of longitudinal oscillations of the fluid). Equation (8.57)
governs the evolution of shear modes (transverse velocity oscillations).
If we want to solve the hydrodynamic equations for a given set of initial condi-

tions ρk(0), Tk(0), and vk(0), it is useful to introduce the Laplace transform

ρ̃k(z) =
∞

∫
0

dtρk(t)e−zt and ρk(t) =
1
2πi

δ+i∞

∫
δ−i∞

dzρ̃k(z)ezt , (8.58)

where δ is a positive number. The Laplace transform of the time derivative is

∞

∫
0

dt
𝜕ρk(t)
𝜕t

e−zt = −ρk(0) + zρ̃k(z) . (8.59)

Similar Laplace transforms can be written for the other variables.



292 8 Hydrodynamics

Let us now Laplace transform Eqs. (8.54)–(8.57). We find

zρ̃k(z) − iρ0kṽ
∥
k(z) = ρk(0) , (8.60)

ρ0zṽ
∥
k(z) − ik

(
𝜕P
𝜕ρ

)0

T
ρ̃k(z) − ik

(
𝜕P
𝜕T

)0

ρ
T̃k(z) +

(
ζ + 4

3
η
)
k2 ṽ∥k(z)

= ρ0v
∥
k(0) , (8.61)

ρ0z
(
𝜕s
𝜕ρ

)0

T
ρ̃k(z) + ρ0z

(
𝜕s
𝜕T

)0

ρ
T̃k(z) +

K
T0
k2T̃k(z)

= ρ0
(
𝜕s
𝜕ρ

)0

T
ρk(0) + ρ0

(
𝜕s
𝜕T

)0

ρ
Tk(0) , (8.62)

and

ρ0zṽ⟂k (z) + ηk
2 ṽ⟂k (z) = ρ0v

⟂
k (0) . (8.63)

We can simplify these equations as follows. First note that (𝜕P∕𝜕ρ)0s = (𝜕P∕𝜕ρ)0T +

(𝜕P∕𝜕T )0ρ(𝜕T∕𝜕ρ)
0
s , where c0 =

√
(𝜕P∕𝜕ρ)0s is the speed of sound. Also note the

thermodynamic identities(
𝜕P
𝜕ρ

)0

T
=
c20
γ

and
(
𝜕P
𝜕T

)0

ρ
=
ρ0c20αP
γ

=
ρ0
T0

cP − cρ
αP

, (8.64)

where cρ = T0(𝜕s∕𝜕T )0ρ and cP = T0(𝜕s∕𝜕T )0P are the specific heats at constant
density and pressure, respectively, αP = −1∕ρ0(𝜕ρ∕𝜕T )0P is the thermal expansiv-
ity, and γ = cP∕cρ . Note theMaxwell relation, (𝜕s∕𝜕ρ)0T = −1∕ρ20(𝜕P∕𝜕T )0ρ . Also,
let us introduce the longitudinal kinetic viscosity, νl, the transverse kinetic viscos-
ity, ντ , and the thermal diffusivity, χ, which are defined

νl =
1
ρ0

(
ζ + 4

3
η
)
, ντ =

η
ρ0

, and χ = K
ρ0cP

, (8.65)

respectively. Then Eqs. (8.60)–(8.63) take the form

zρ̃k(z) − iρ0kṽ
∥
k(z) = ρk(0) , (8.66)

(
z + νlk2

)
ṽ∥k(z) − ik

c20
γρ0

ρ̃k(z) − ik
c20αP
γ
T̃k(z) = v

∥
k(0) , (8.67)

−z
c20αP
ρ0γ

ρ̃k(z) +
cρ
T0

(z + γχk2)T̃k(z) = −
c20αP
ρ0γ

ρk(0) +
cρ
T0
Tk(0) , (8.68)

and

(z + ντk2)ṽ⟂k (z) = v⟂k (0) . (8.69)

Solving the linearized hydrodynamic equations is now simply a matter of doing
some algebra. Since the transverse modes completely decouple from the longitu-
dinal modes, we will consider them separately below.
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Exercise 8.4

A rough infinitely long cylinder of radius a lies along the z-axis and is immersed in
an incompressible fluid. The cylinder rotates with a constant angular velocity ω.
The fluid sticks to the outer surface of the cylinder and, at the surface, moves with
the same velocity as the surface of the cylinder. (a) Find the velocity v(r, φ, z) of
the fluid, assuming that v → 0 as r → ∞. (b) Replace the cylinder by a singular
region such that the fluid velocity abruptly goes to zero for r < a and compute the
vorticity 𝛁 × v of the fluid when this singular region is present.

Answer: (a) If we take the curl of theNavier–Stokesequations, we find∇2𝛁× v =
0. Since the cylinder is infinitely long, symmetry considerations restrict the fluid
velocity to the form v = vφ(r)êφ . Then∇2𝛁× v = d2∕dr2(1∕rd(rvφ)∕dr) = 0. If we
require that the fluid velocity be zero at r = ∞, then this has the solution vφ(r) =
C∕r, where C is a constant. Next require that the fluid velocity and the surface of
the cylinder have the same velocity, namely vφ(a) = C∕a = ωa. This givesC = ωa2
and vφ(r) = ωa2∕r. (b)We can write the fluid velocity for the case where the fluid
velocity abruptly goes to zero for r < a. Then, we have v = (ωa2∕r)θ(r − a)êφ ,
where θ(r− a) is a Heaviside function. The vorticity of the fluid for this case is𝛁×
v = ωaδ(r − a)êz . The singularity in the fluid flow at r = a gives rise to a non zero
vorticity. The singular region extends along the entire z-axis and is called a vortex
line. This example roughlymodels the behavior of a tornado or hurricane.

8.3.2
Transverse Hydrodynamic Modes

Let us assume that the Fourier components of the transverse velocity at time t = 0
are known to be v⟂k (0). Then from Eq. (8.69) we have

ṽ⟂k (z) =
v⟂k (0)
z + ντk2

. (8.70)

The Fourier components of the transverse velocity at time t are

v⟂k (t) =
1
2πi

δ+i∞

∫
δ−i∞

dz
v⟂k (0)e

zt

z + ντk2
= v⟂k (0)e

−ντk2t . (8.71)

In order to obtain the final result in Eq. (8.71), we have changed the integration
along the line z = δ + iy (with y varying from−∞ to+∞) to a contour integration
with the contour shown in Figure 8.2. We see that any transverse velocity varia-
tions in the fluid decay in time and cannot propagate. The short-wavelength dis-
turbances decay faster than the long-wavelength disturbances. This wavelength
dependence of the decay time is the signature of a hydrodynamic mode.
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Figure 8.2 The contour, C, used to integrate (8.71).

8.3.3
Longitudinal Hydrodynamic Modes

The time evolutionof the longitudinalmodes canbedetermined fromEqs. (8.66)–
(8.68). Let us first write them in the following matrix from:

⎛⎜⎜⎜⎜⎝
z −iρ0k 0

− ikc20
γρ0

[z + νlk2] − ikc20αP
γ

−z c
2
0αP
ρ0γ

0 cρ
T0
[z + γχk2]

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ρ̃k(z)
ṽ∥k(z)
T̃k(z)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
1 0 0
0 1 0

− c20αP
ρ0γ

0 cρ
T0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
Δρk(0)
v∥k(0)
ΔTk(0)

⎞⎟⎟⎟⎠ . (8.72)

If we multiply by the inverse of the matrix on the left in Eq. (8.72), we obtain

⎛⎜⎜⎜⎝
ρ̃k(z)
ṽ∥k(z)
T̃k(z)

⎞⎟⎟⎟⎠ =
M

D(k , z)

⎛⎜⎜⎜⎝
Δρk(0)
vk(0)

− c20αP
ρ0γ

Δρk(0) +
cρ
T0
ΔTk(0)

⎞⎟⎟⎟⎠ , (8.73)

where D(k , z) is the determinant of the 3 × 3 matrix on the left in Eq. (8.72),
andM∕D(k , z) is its inverse. The determinant D(k , z), can be written

D(k , z) =
cρ
T0

[
z3 + z2

(
νl + γχ

)
k2 + z

(
γχνlk4 + c20k

2) + c20χk4] . (8.74)

The matrix,M, which appears in Eq. (8.73) can be written

M =

⎛⎜⎜⎜⎜⎝
cρ
T0
(z + νlk2)(z + γχk2)

ikρ0cρ
T0

(z + γχk2) − ρ0αPc20k
2

γ
ikcρc20
ρ0T0

(z + χk2) cρ
T0
z(z + γχk2) ikz αPc

2
0

γ
c20αP
ρ0γ
z(z + νlk2) ikz c

2
0αP
γ

z2 + zνlk2 + k2
c20
γ

⎞⎟⎟⎟⎟⎠
.

(8.75)
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Before we use Eqs. (8.73) and (8.75) to solve the equations of motion, it is useful
to look more closely at the determinant, Eq. (8.74).
To second order in k, the three roots of the equation D(k , z) = 0, are given by

z1 = −χk2 and z± = ±ic0k − 1∕2k2[νl + χ(γ − 1)]. Therefore, for long-wave-length
disturbances (small k), D(k , z) is approximately given by

D(k , z) ≈
cρ
T0

(z + χk2)(z + ikc0 + Γk2)(z − ikc0 + Γk2) , (8.76)

where Γ = 1∕2[νl + χ(γ − 1)] and we have neglected terms of higher order in k.
The dissipative fluid has three longitudinal normal modes. The time evolution

of the density, longitudinal velocity, and temperature variations each contain con-
tributions from all three longitudinal normal modes. One of the longitudinal nor-
mal modes is primarily a heat mode and has a decay rate given by z1. The other
two longitudinal normal modes are primarily damped sound modes. The sound
modes can propagate but eventually will be damped out by dissipative processes
in the fluid, both viscous and thermal.
The time evolution of the density, longitudinal velocity, and temperature vari-

ations can be obtained by performing the following integration:⎛⎜⎜⎜⎝
ρk(t)
v‖k(t)
Tk(t)

⎞⎟⎟⎟⎠ =
1
2πi

δ+i∞

∫
δ−i∞

dzezt
⎛⎜⎜⎜⎝
ρk(z)
v‖k(z)
Tk(z)

⎞⎟⎟⎟⎠ . (8.77)

In Exercise 8.5, we obtain the time dependence of Fourier components of the den-
sity under special conditions.

Exercise 8.5

Compute ρk(t) assuming that at time t = 0 we have ρk(0) ≠ 0, v‖k(0) = 0, and
Tk(0) = 0. Write the amplitude of the evolution to lowest order in k.

Answer: From Section 8.3.3 we can write

ρ̃k(z) =

(
[z + νlk2][z + γχk2] + c20k

2(γ − 1)∕γ
[z + χk2][z + ic0k + Γk2][z − ic0k + Γk2]

)
ρk(0) .

The density at time t is

ρk(t) =
1
2πi

δ+i∞

∫
δ−i∞

dzρ̃k(z)ezt .

If, after the integration, we retain terms in the coefficients of time-dependent
terms to zeroth order in k, ρk(t) reduces to

ρk(t) ≈
[(

1 − 1
γ

)
e−χk2t + 1

γ
e−Γk2t cos(c0kt)

]
ρk(0) .

Thus, the initial disturbance in the density is eventually damped out. The long-
wavelength components are the last to go.
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8.3.4
Dynamic Correlation Function and Spectral Density

The dynamic density correlation function for a fluid in a box of volume V may be
written

Cnn(ρ, τ) =
1
N ∫ dr⟨n(r + ρ, τ)n(r , 0)⟩T , (8.78)

where N is the total number of particles. The spectral density (also called the
dynamic structure factor) is given by

Snn(k ,Ω) = ∫ dρ

∞

∫
−∞

dτCnn(ρ, τ)eik⋅ρe−iΩτ . (8.79)

For a fluid of point particles in equilibrium, the average, ⟨⟩T , is taken over the
equilibrium distribution.We can compute both the dynamic correlation function
and the spectral density for a fluid of point particles in equilibrium.
Let us first write the density variations as n(r, t) = n0 + Δn(r , t), where n0 =⟨n(r, t)⟩T = N∕V , is the equilibrium density and Δn(r , t) describes fluctuations

about equilibrium such that ⟨Δn(r, t)⟩T = 0. If we substitute n(r, t) = n0+Δn(r, t)
into the expression for the correlation function, we obtain

Cnn(ρ, τ) =
1
N ∫ dr⟨n(r + ρ, t)n(r , 0)⟩T ,

= n0 +
1
N ∫ dr⟨Δn(r + ρ, t)Δn(r , 0)⟩T . (8.80)

Let us introduce the Fourier series expansion of the density

Δn(r, t) = 1
V

∑
k
e−ik⋅rnk(t) with nk(t) = ∫ dreik⋅rΔn(r, t) , (8.81)

and of the correlation function

Cnn(k , τ) = ∫ dρeik⋅ρCnn(ρ, τ) = Nδk ,0 +
1
N

⟨nk(t)n−k(0)⟩T . (8.82)

To obtain the last term in Eq. (8.82), we have substituted the Fourier expansion of
the density, Eq. (8.81), into Eq. (8.80) and have used the identity (1∕V ) ∫ dreik⋅r =
δk ,0, where δk ,0 is the Kronecker delta function. From equilibriumfluctuation the-
ory in Section 3.7.4, we know that temperature and density fluctuations are statis-
tically independent. Therefore, ⟨Δnk(0)ΔT−k(0)⟩T = 0. Also, we will assume that
velocity fluctuations are statistically independent of density fluctuations. There-
fore, any contributions to the density at time t, due to fluctuations in velocity or
temperature at time t = 0, will disappear when the average, ⟨⟩T , is taken. As a re-
sult, we can use the solution for the density, ρk(t) ≡ mnk(t), obtained in Exer-
cise 8.5 to determine the time evolution of the density correlation function. We
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can write

Cnn(k , t) = Nδk ,0 +
1

m2N
⟨nk(0)n−k(0)⟩T

×
[(

1 − 1
γ

)
e−χk

2 |t| + 1
γ
e−Γk2|t| cos(c0kt)

]
. (8.83)

The absolute value of the time appears in Eq. (8.83) because it is the correlation
function for a stationary process.Wemust remember that Eq. (8.83) is an approx-
imate expression for the density correlation function. Some terms proportional to
the wavevector have been neglected. We shall leave it as a homework problem to
determine the size of these neglected terms.
Let us now consider the spectral density function. If we substitute Eq. (8.80)

into Eq. (8.79) and make use of Eqs. (8.82) and (8.83), we find

Snn(k ,Ω) = 2πNδ(Ω)δk ,0 +
1

m2N
⟨nk(0)n−k(0)⟩ [(1 − 1

γ

)
2χk2

Ω2 + χ2k4

+1
γ

(
Γk2

(Ω − c0k)2 + Γ2k4
+ Γk2

(Ω + c0k)2 + Γ2k4

)]
,

(8.84)

where we have used the fact that 1∕2π ∫∞−∞ dteiΩt = δ(Ω). Away from the critical
point, the correlation function, ⟨nk(0)n−k(0)⟩, is independent of k and propor-
tional to the compressibility. Near the critical point it behaves like (C + k2)−1,
where C ∼ (T − Tc) (cf. Eq. (5.112)).
The spectral density for an isotropic fluid has three terms of the form

f (Ω) = 2Δ
Δ2 + (Ω − Ω′)2

, (8.85)

where f (Ω) is a Lorentzian centered at frequency,Ω′, with half-width at one-half
maximum given by Δ. Therefore, the spectral density, as a function of frequency,
has three peaks.One is centered atΩ = 0with width χk2 and is due to the thermal
hydrodynamic mode. This is called the Rayleigh peak. The other two are centered
at Ω = ±c0k with width, Γk2. They are called the Brillouin peaks.

8.4
Light Scattering

A light wave incident on a simple fluid induces oscillating dipoles in the particles
of the fluid. These oscillating dipoles reemit spherical light waves. If the medium
is homogeneous, all scattered light waves cancel except those in the forward di-
rection. However, if density fluctuations exist in the fluid, light will be scattered
in directions other than the forward direction [15, 33, 108, 147].
From the late 1800s until 1928, light scattering experiments involved measure-

ment of the intensity of scattered light as a function of angle with respect to the
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incident direction. In 1928, Raman measured the spectrum of light inelastically
scattered from gases using conventional light sources, and he found frequency
shifts in the scattered light due to internal degrees of freedom of the molecules.
One of the sharpest conventional light sources is the 6438Å line of cadmium, but
it has a line width of order 6 × 108 Hzwhich swampsmany details of the spectrum
of the inelastically scattered light. Also, conventional light sources are very weak
so experiments often last 10–12 h.A revolution in the subject occurred in the early
1960s with the development of lasers. The neon–helium laser had a monochro-
matic light source with a line width of order 1Hz and a very high power. Light
scattering experiments can now measure dynamical events on time scales rang-
ing from 10−1 to 10−15 s.
Since equilibrium fluctuations in a fluid decay, on the average, according to the

laws of hydrodynamics, it is possible to obtain information about transport coef-
ficients by scattering light (or particles) off of equilibrium fluctuations. In 1934,
Landau and Placzek [115] showed that it is possible to obtain the time depen-
dence of the density autocorrelation function for a fluid from the hydrodynamic
equations. Later, van Hove [204] was able to relate the differential cross section
for scattering of neutrons from a fluid to the density autocorrelation function of
the fluid, thus establishing another method for probing equilibrium fluctuations.
In this section we shall obtain an expression for the intensity of light scattered
from a fluid in terms of the hydrodynamic modes.
Density fluctuations are both thermal andmechanical in origin. Thermal densi-

ty fluctuations result fromdamped temperature or entropy waves, whilemechan-
ical density fluctuations result from sound waves in the fluid. Light which scatters
fromdensity fluctuations will be unshifted in frequency, while light which scatters
from the sound waves will undergo a frequency shift (Doppler shift).
In general, sound waves in the fluid have a wide range of wavevectors and fre-

quencies. However, for a given scattering angle, θ, only selected soundmodes will
contribute to the scattering. Light will scatter from the wave-fronts of the sound
waves and must satisfy the Bragg condition (cf. Figure 8.3)

2λs sin
θ
2
= λ0 , (8.86)

where λs is the wavelength of the sound and λ0 is the wavelength of the incident
light. The wavevector of the light wave will be shifted by an amount

Δk = 2k0 sin
θ
2
, (8.87)

where k0 = 2π∕λ0. The frequency of the scattered light will be Doppler-shifted by

Ω = ω − ω0 = ±vsΔk = ±
2ω0vs
c

sin θ
2
, (8.88)

where ω0 = ck0, vs is the speed of sound in the fluid, and c is the speed of light.
In the sections below, we find an expression relating the intensity of scattered

light to the correlation function for density fluctuations in the fluid.
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Figure 8.3 Light scattered from a sound wavefront.

8.4.1
Scattered Electric Field

We wish to find an expression for the intensity of light scattered from a simple
fluid of identical particles [90, 198]. We shall assume that a monochromatic light
wave,

E(r, t) = E0ei(k0⋅r−ω0t) , (8.89)

impinges on the fluid, and that the fluid particles have a polarizability α. The in-
duced polarization gives rise to a dipole moment density (r, t) such that

(r, t) = αE(r, t)
N∑
i=1
δ(r − qi(t)) , (8.90)

where qi(t) is the position of the ith particle at time t. In writing Eq. (8.90) we have
neglected multiple scattering effects because we are assuming the polarization is
induced entirely by the external field.
The easiest way to obtain the amplitude of the scattered light is to introduce the

Hertz potential Z(r, t). This is done in the following way. The electric field E(r, t)
is defined in terms of the usual scalar potential φ(r, t) and vector potential A(r, t)
as

E = −∇rφ − 𝜕A
𝜕t

. (8.91)

In the Lorentz gauge, the scalar and vector potentials satisfy the equations

∇2
rA − εμ 𝜕

2A
𝜕t2

= −μ J = −εμ 𝜕
𝜕t

, (8.92)

and

∇2
r φ − εμ

𝜕2φ
𝜕t2

= −
ρ
ε
= ∇r ⋅  , (8.93)

where μ is the permeability of themedium and ε is the permittivity of themedium,
J is the electric current, and ρ is the electric charge density. For the system we
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are considering, the source of electric current and electric charge is the dipole
moment density, (r, t). We now introduce the Hertz potential, Z(r, t) [198] by
means of the equations

A = εμ 𝜕Z
𝜕t

and φ = −∇r ⋅ Z . (8.94)

Comparing Eqs. (8.92)–(8.94),we find that Z(r, t) satisfies the following equation:

∇2
rZ − εμ 𝜕

2Z
𝜕t2

= − . (8.95)

Thus, we have an equation of motion for the Hertz potential in which the polar-
ization acts as a source.
Given Eq. (8.95) we can write the Hertz potential for the scattered light wave.

The retarded solution to Eq. (8.95) is given by

Z(r, t) = 1
4π ∫ dr′

∞

∫
−∞

dt′(r′ , t′)|r′ − r| δ
(
t′ − t + |r′ − r|

c

)
(8.96)

(cf. [90]).Wenext introduce the Fourier expansion of the delta function and obtain

Z(r, t) = 1
2

( 1
2π

)2

∫ dr′
∞

∫
−∞

dt′
∞

∫
−∞

dω′(r′ , t′)|r′ − r|
× exp

[
iω′

(
t′ − t + |r′ − r|

c

)]
(8.97)

for the outgoing wave. The outgoing electric field is related to Z(r, t) through the
expression

E′(r, t) = ∇r(∇r ⋅ Z) − εμ
𝜕2Z
𝜕t2

(8.98)

(cf. Eqs. (8.91) and (8.94)).
We only need an expression for the scattered light far from the source. If we

remember that r′ is restricted to the region of the dipoles and r is the coordinate
of the observer so r′ ≪ r, we can make the following approximation:

|r − r′| ≈ r − êr ⋅ r′⋅ +⋯ , (8.99)

where êr is the unit vector êr = r∕|r|. If we substitute Eqs. (8.90) and (8.99) into
Eq. (8.97), we obtain

Z(r, t) ≈ 1
2

( 1
2π

)2 αE0

r ∫ dr′
∞

∫
−∞

dt′
∞

∫
−∞

dω′ei(k0⋅r′−ω0t′)
N∑
i=1
δ(r′ − qi(t′))

× exp
[
iω′

(
t′ − t + r

c
−

̂r ⋅ r′
c

)]
. (8.100)
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We next substitute Eq. (8.100) into Eq. (8.98) and neglect terms of order r′∕r and
smaller. We then obtain the following expression for the scattered electric field:

E′(r, t) = 1
2

( 1
2π

)2 α
c2r

[
E0 − r̂

(
r̂ ⋅ E0

)]
∫ dr′

∞

∫
−∞

dt′
∞

∫
−∞

dω′ω′2

× exp
[
i(k0 ⋅ r′ − ω0t′)

]
exp

[
iω′

(
t′ − t + r

c
− 1
c
r̂ ⋅ r′

)]
n(r′ , t′) ,

(8.101)

where

n(r′ , t′) ≡
N∑
i=1
δ(r′ − qi(t′)) (8.102)

is the microscopic density of particles in the medium and we remember that the
speed of light is c = 1∕

√
ε0μ0.

8.4.2
Intensity of Scattered Light

The spectral intensity of scattered light is defined as (cf. Eq. (7.84))

I(r, ω) ≡ lim →∞

1
2

√ ε0
μ0

E′(r, ω;  ) ⋅ E′∗(r, ω;  ) , (8.103)

where

E′(r, ω;  ) =
∞

∫
−∞

dteiωtE′(r, t)θ( − |t|) (8.104)

and θ( − |t|) is a Heaviside function. Because equilibrium systems are ergodic,
we can equate the time average to the equilibrium thermal average. We combine
Eqs. (8.103) and (8.104) to obtain

I(r, ω) = lim →∞

1
2

√ ε0
μ0

∞

∫
−∞

dt
∞

∫
−∞

dt′eiω(t−t′ )

× E′(r, t) ⋅ E′∗(r, t′)θ( − |t|)θ( − |t′|)
= 1

2

√ ε0
μ0

∞

∫
−∞

dτeiωτ lim →∞

1




∫
−

dt′E′(r, t′ + τ) ⋅ E′∗(r, t′)

= 1
2

√ ε0
μ0

∞

∫
−∞

dτeiωτ⟨E′(r, τ) ⋅ E′∗(r, 0)⟩T . (8.105)
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The thermal average ⟨⟩T in Eq. (8.105) is taken with respect to a stationary equi-
librium ensemble. Now substitute (8.101) into (8.105), to obtain

I(r, ω) =

1
8

√ ε0
μ0

( α
4π2c2r

)2
E20 sin

2(φ) ∫ dr′ ∫ dr′′
∞

∫
−∞

dt′
∞

∫
−∞

dt′′
∞

∫
−∞

dω′

×
∞

∫
−∞

dω′′

∞

∫
−∞

dτω′2ω′′2eiωτei(k0⋅r′−ω0t′)e−i(k0⋅r′′−ω0t′′)

× exp
[
iω′

(
t′ − τ + r

c
− 1
c
r̂ ⋅ r′

)]
exp

[
−iω′′

(
t′′ + r

c
− 1
c
r̂ ⋅ r′′

)]
× ⟨n(r′ , t′)n(r′′, t′′)⟩T , (8.106)

where we have let r̂ ⋅ E0 = E0 cosφ. We next integrate over τ and ω′. This gives

I(r, ω) =

1
16

√ ε0
μ0

( α
2πc2r

)2
E20 sin

2(φ) ∫ dr′ ∫ dr′′
∞

∫
−∞

dt′
∞

∫
−∞

dt′′
∞

∫
−∞

dω′′ω′′2ω2

× ei(k0⋅r′−ω0t′)e−i(k0⋅r′′−ω0t′′) exp
[
iω

(
t′ + r

c
− 1
c
r̂ ⋅ r′

)]
× exp

[
−iω′′

(
t′′ + r

c
− 1
c
r̂ ⋅ r′′

)] ⟨n(r′ , t′)n(r′′ , t′′)⟩T . (8.107)

Let us note that ⟨n(r′ , t′)n(r′′ , t′′)⟩ can only depend on the differences τ′ = t′ − t′′
and ρ = r′ − r′′. If we make the change of variables τ = t′ − t′′ and ρ = r′ − r′′,
we find

I(r, ω) = 1
8

√ ε0
μ0

( α
2πrc2

)2
E20 sin

2(φ) ∫ dρ ∫ dr′′
∞

∫
−∞

dτω4e−i(ω0−ω)τ

× exp
[
i
(
k0 − iω

c
r̂
)
⋅ ρ

] ⟨n(r′′ + ρ, τ)n(r′′)⟩T . (8.108)

We next introduce the dynamic density correlation function

C(ρ, τ) ≡ 1
N ∫ dr′⟨n(r′ + ρ, τ)n(r′ , 0)⟩T , (8.109)

where N is the number of particles in the fluid. In terms of these quantities, the
intensity may be written

I(r, ω) = 1
4
I0ω4

( α
2πc2r

)2
N sin2(φ) ∫ dρ ∫ dτC(ρ, τ)

× exp
[
i
(
k0 −

ω0

c
r̂
)
⋅ ρ

]
e−i(ω0−ω)τ

= 1
4
I0ω4

( α
2πc2r

)2
N sin2(φ)Snn(k ,Ω) , (8.110)
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where Snn(k ,Ω) is the spectral density function (see Eq. (8.79)), I0 = (1∕2)
√
ε0∕μ0

E20, k = k0 − ω0∕cr̂, and Ω = ω0 − ω.
An expression for the spectral density function, Snn(k ,Ω), for an isotropic flu-

id was obtained in Eq. (8.84). If we use that result, we find that the intensity of
scattered light for an isotropic fluid can be written

I(r, ω) = 1
4
I0ω4

( α
2πc2r

)2
sin2(φ)

{
2πN2δ(Ω)δk ,0

+ 1
m2 ⟨nk(0)n−k(0)⟩ [ γ − 1

γ
2χk2

Ω2 + χ2k4

+1
γ

(
Γk2

(Ω − c0k)2 + Γ2k4
+ Γk2

(Ω + c0k)2 + Γ2k4

)]}
, (8.111)

where γ = (cP∕cρ), χ is the thermal diffusivity, Γ = 1∕2[νl + χ(γ − 1)], and νl is the
longitudinal kinetic viscosity. In a typical light scattering experiment for a simple
liquid, c0 ≈ 105 cm∕s, k ≈ 105 cm−1, χk∕c0 ≈ 10−2−10−3, and νtk∕c0 ≈ 10−2−10−3.
Thus, we see that the scattered light spectral intensity will have peaks at fre-

quencies Ω = ω0 and Ω = ω0 ± c0k. The central peak (Ω = ω0) is due to scat-
tering from thermal density fluctuations. It is called the Rayleigh peak. The two
side peaks (Ω = ω0 ± c0k) are due to scattering of light from mechanical density
fluctuations (sound waves) in the fluid. They are called Brillouin peaks.
The ratio of the intensity, Ith, of light scattered from thermal density fluctuations

to the intensity, Imech, of light scattered from mechanical density fluctuations is
given by

Ith
Imech

= γ − 1 =
cP − cρ
cρ

=
κT − κS
κS

, (8.112)

where κT is the isothermal compressibility and κS is the adiabatic compressibil-
ity. Since cP → ∞ and κT → ∞ as we approach the critical point, we expect the
Rayleigh peak to become very large compared to the Brillouin peaks.
In Figure 8.4, we show experimental plots for the intensity of light scattered

from CO2 at an angle of 90◦ with respect to the incident direction. The CO2 is at
a temperature 2.7 ◦C below the critical temperature. Note that the Rayleigh peak
is very wide and high (not all of it is shown) compared to the Brillouin peaks. This
is because the system is close to the critical point.

8.5
Friction on a Brownian particle

In Section 7.2, we reviewed the theory of Brownian motion for the case in which
a Brownian particle of radius, R, is assumed to move under the influence of the
Stokes friction, 6πηR, and a random white noise. In this section, we derive the
Stokes friction using the linearized hydrodynamic equations (8.42) and (8.43). For
simplicity, wewill consider an incompressible fluid so that∇r ⋅ vω = 0. If we Fourier
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Figure 8.4 Intensity of light scattered
from CO2 at an angle of 90◦ from the incident
direction, shown as a function of frequency
shift, Ω. The CO2 is 2.7

◦C below the critical

point. (a) Light scattered from CO2 liquid.
(b) Light scattered from CO2 vapor. Reprinted,
by permission, from [33].

transform the time dependence of the hydrodynamic equations, the equation for
the Fourier component of the velocity flow reduces to

−iωρ0vω(r) = −∇rPω(r) − η∇r × (∇r × vω(r)) (8.113)

where we have used the vector identity, ∇2
r v = ∇r(∇r ⋅ v) − ∇r × (∇r × v) (see

Appendix F).
Let us now assume that a spherical Brownian particle of radius, R, moves

through the fluid along the z-direction with velocity, uω = uω êz , where the unit
vector êz = cos(θ)êr − sin(θ)êθ . We also assume that the surface of the Brown-
ian particle is very rough so the fluid sticks to its surface. At the surface of the
Brownian particle, the velocity of the fluid equals the velocity of the surface. In
the rest frame of the particle, the fluid velocity, v r fω (R), at the particle surface
is v r fω (R) = vω(R) − uω = 0 so vω(R) = uω . This gives the additional boundary
condition vω(r) → 0 as r → ∞.
In order to determine the force exerted on the Brownian particle by the fluid, we

first find the velocity distribution of the fluid in the presence of themoving Brow-
nian particle. Once the velocity distribution is known, the force on the Brownian
particle is given by

F = ∮ dS ⋅ P̄ = ∮ dSr̂ ⋅ P̄ , (8.114)

where P̄ is the pressure tensor (cf. Section 8.2.1.2) and dS is a surface area element
directed normal to the surface of the Brownian particle.
We can use some vector identities (see Appendix F) to help solve Eq. (8.113).

The velocity, vω , is a polar vector and can be written in the form vω = ∇r × Aω ,
where Aω is an axial vector. There are two vectors in the problem from which we
can build the vector Aω . They are the radial vector, r, and the velocity, uω . Let us
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write Aω = (∇rg(r)) × uω = ∇r × (g(r)uω), where g(r) is a function of the distance,
r, from the center of the Brownian particle. The fluid velocity can then be written

vω = ∇r × ∇r × (g(r)uω) and ∇r × vω(r) = −∇2
r (∇r × g(r)uω) . (8.115)

The boundary conditions on the fluid velocity require that g(r) → 0 as r → ∞.
We now take the curl of Eq. (8.113) and obtain

−iωρ0∇r × vω = −η∇r × ∇r × (∇r × vω) = η∇2
r (∇r × vω) . (8.116)

If we use the expression for vω(r) in Eq. (8.115), and the vector identities in Ap-
pendix F, Eq. (8.116) reduces to

(k2∇2
r∇rg(r) + ∇4

r∇rg(r)) × uω = 0 , (8.117)

where k2 = iωρ0∕η and k =
√
ωρ02η(1 + i). Thus, we must solve the equation,

∇r(∇4
r g(r) + k

2∇2
r g(r)) = 0 , (8.118)

subject to the boundary conditions of the problem. If we integrate Eq. (8.118)
once, we obtain

∇4
r g(r) + k

2∇2
r g(r) = C , (8.119)

where C is an integration constant. Because of the boundary conditions on the
fluid, the solution to Eq. (8.119) will be such that ∇2

r g(r) and all derivatives of
∇2

r g(r) go to zero at r = ∞. This also means that C = 0.
The boundary conditions at r = ∞ are satisfied by the solution

∇2
r g(r) =

1
r2

𝜕

𝜕r
r2
𝜕g
𝜕r

=
c1
r
eikr , (8.120)

where c1 is a constant. Let us now integrate Eq. (8.120) once to find

𝜕g
𝜕r

= 1
r2

[
c1eikr

( r
ik

+ 1
k2

)
+ c2

]
. (8.121)

From Eq. (8.115), the fluid velocity can be written

vω(r) = −r̂
2uωcos(θ)

r
𝜕g
𝜕r

+ θ̂
uωsin(θ)

r

(
𝜕g
𝜕r

+ r
𝜕2g
𝜕r2

)
. (8.122)

The constants, c1 and c2 in Eq. (8.121) can be found from the “stick” boundary
condition at the surface of the Brownian particle, vω(R , θ) = uω . This boundary
condition, together with Eqs. (8.121) and (8.122), yields

c1 = −3R
2
e−ikR and c2 =

R3

2

(
−1 + − 3

ikR
+ 3
k2R2

)
. (8.123)

To find the drag force on the Brownian particle, we must perform the integra-
tion in Eq. (8.114). The first step is to write the pressure tensor. The hydrostatic
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pressure Pω(r) can be found from Eq. (8.113). The gradient of the hydrostatic
pressure is

∇rPω(r) = iωρ0vω(r) − η∇r × (∇r × vω(r)) . (8.124)

If we use the results fromEqs. (8.121)–(8.123) (with iωρ0= ηk2), to find an explicit
expression for ∇rPω(r), we can then integrate that expression to obtain

P = ηuωcos(θ)
(
3R
2r2

− 3ikR2

2r2
− k2R3

2r2

)
. (8.125)

From Eq. (8.114), the drag force on the Brownian particle is given by

F = R2

π

∫
0

sin(θ)dθ
2π

∫
0

dφ
(
Prr êr + Prθ êθ + Prφ êφ

)
. (8.126)

For the spherical Brownian particle Prφ = 0 and the components, Prr and Prθ , of
the pressure tensor are given by

Prr = P − 2η
𝜕vr
𝜕r

and Prθ = −η
(
1
r
𝜕vr
𝜕θ

+
𝜕vθ
𝜕r

−
vθ
r

)
. (8.127)

On the surface of the Brownian particle, (𝜕vr∕𝜕r)r=R = 0, so

Prr = ηuωcos(θ)
(

3
2R

− 3ik
2

− k2R
2

)
and

Prθ = −ηuωsin(θ)
(

3
2R

− 3ik
2

)
(8.128)

on the surface.
We can now substitute these results into Eq. (8.126) and integrate. However,

beforewe do the integrationwemust expand the unit vectors, êr and êθ in terms of
Cartesian unit vectors. The directions of êr and êθ vary over the surface while the
Cartesian unit vectors do not. Note that êr = sin(θ) cos(φ)êx + sin(θ) sin(φ)ê y +
cos(θ)êz and êθ = cos(θ) cos(φ)êx + cos(θ) sin(φ)ê y − sin(θ)êz . If we perform the
integration in Eq. (8.126), we obtain

F = 6πηuω êz
(
1 − ikR − k2R2

9

)
. (8.129)

In the limit that the frequency ω → 0, the drag force reduces to the usual Stokes
friction force, namely, F = 6πηuRẑ. The Stokes friction can only be used to de-
scribe Brownian particles which are moving very slowly, and generally works well
forBrownian particles that are large andmassive relative to the particles that com-
pose the fluid in which they are immersed. However, when describing the Browni-
anmotion of individual atoms ormolecules, the frequency-dependent terms gen-
erally cannot be neglected and memory effects become important. In Section 8.6,
we compute the velocity autocorrelation function for a Brownian particle which
is undergoing rapid random motion.
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8.6
Brownian Motion with Memory

In Section 8.5, we derived frequency-dependent corrections to the Stokes fric-
tion on a particle undergoing Brownian motion. The frequency-dependent terms
become important for small Brownian particles, which can be strongly agitated
by density fluctuations in the surrounding medium. This became apparent in the
1960s, when molecular dynamics simulations by Rahman [178] of liquid argon
showed significant deviations from exponential behavior in the velocity autocor-
relation function of argon atoms. In Figure 8.5, we compare Rahman’s results for
the decay of the velocity autocorrelation function of argon atoms in liquid argon
to the exponential decay expected for the case of Brownian motion with white
noise and a constant friction coefficient. There is a significant difference in the
detailed behavior of the two cases.
Subsequent to the work of Rahman, Alder and Wainwright [2] used computer

simulations to obtain the velocity autocorrelation function for hard-sphere parti-
cles in a hard-sphere gas. They also found deviations from exponential behavior.
One of the more striking features they found was a long time tail in the velocity
autocorrelation function. In the long time limit, the velocity autocorrelation func-
tion decayed as t−3∕2 rather than exponentially with time. Alder and Wainwright
were able to pinpoint the reason for the discrepancy. They observed vortices in
the flow pattern around the Brownian particle. As the Brownian particle moved
through the fluid, it left a memory of its motion which could influence its later
movement. This complicated flow around the Brownian particle is a direct con-
sequence of hydrodynamics.

Figure 8.5 The velocity autocorrelation func-
tion for argon atoms in liquid argon. The
dotted line is the numerical simulation of
Rahman. The dashed line is the exponential
decay predicted by Brownian motion theo-

ry using the constant Stokes friction coeffi-
cient. The solid line is the Zwanzig–Bixon (Z-B)
theoretical result. Reprinted, by permission,
from [222].
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As we can see from Eq. (8.129), the friction force for a Brownian particle in a
fluid depends on frequency, and thismeans that the Brownian particle velocity has
memory. We can generalize the Langevin equation Eq. (7.1) to include memory
effects by writing it in the form

mdv(t)
dt

+
∞

∫
−∞

α(t − t′)v(t′)dt′ = Frand(t) , (8.130)

where α(t) is a time-dependent friction coefficient whose Fourier transform is
given by Eq. (8.129). Namely,

α(ω) =
∞

∫
−∞

dtα(t)eiωt = 6πηR
(
1 − ikR − k2R2

9

)
, (8.131)

where k2 = iρ0ω∕η. The friction force is assumed to be causal so that α(t) = 0
for t < 0 and α(t) ≠ 0 for t > 0. In Eq. (8.131), Frand(t) is the random force of
the medium on the Brownian particle. We assume that the random force has ze-
ro average value, ⟨Frand(t)⟩F = 0, where ⟨⟩F is an average over realizations of the
random force. Because there is memory, the random force will not be “white.”
If wemake use of Eq. (8.131), the Fourier transformof Eq. (8.130) can bewritten

−im′ωṽ(ω) + ζṽ(ω) − ζΔi
√
iωṽ(ω) = F̃rand(ω) , (8.132)

where Δ =
√
R2ρ0∕η,m′ = m+ 1∕2M, ζ = 6πηR, andM = 4∕3πρ0R3 is themass

of the displaced fluid. If we take the inverse Fourier transform of Eq. (8.132), we
find

m′ dv(t)
dt

+ ζv(t) + ζΔ√
π

t

∫
−∞

dτ 1√
t − τ

dv
dτ

= Frand(t) . (8.133)

Equation (8.133) is the Langevin equation for a Brownian particle of radius, R, in
an incompressible fluid assuming “stick” boundary conditions. Note that there is
a dressing of the mass of the Brownian particle.
Let us now construct the velocity autocorrelation function Cvv(t) ≡ ⟨⟨v(t)⟩F

v(0)⟩T , for the Brownian particle, where ⟨⟩T denotes a thermal average over the
initial conditions. We first average Eq. (8.133) over the random force and obtain

m′ d⟨v(t)⟩F
dt

+ ζ⟨v(t)⟩F + ζΔ√
π

t

∫
−∞

dτ 1√
t − τ

d⟨v(s)⟩F
dτ

= 0 . (8.134)

We then must solve for ⟨v(t)⟩F , given the initial condition, ⟨v(0)⟩F = v(0). This is
most easily done by means of a Laplace transform.



3098.6 BrownianMotionwithMemory

First take the Laplace transform of the third term in Eq. (8.134) (see Ap-
pendix F). We write

g(t) ≡
t

∫
−∞

dτ 1√
t − τ

d f (τ)
dτ

= 1
2πi

t

∫
−∞

dτ√
t − τ

δ+i∞

∫
δ−i∞

dzzezτ f (z) , (8.135)

wherewe let f (τ)≡ ⟨v(τ)⟩F andwe have inserted the Laplace transformof d f ∕dτ.
If we now interchange the order of the integration over τ and z and note that
∫ t−∞ dτ(t − τ)−1e−z(t−τ) =

√
π∕z for t > τ, we obtain

g(t) = 1
2πi

δ+i∞

∫
δ−i∞

dz
√
πzezt f (z) and g̃(z) =

√
πz f̃ (z) , (8.136)

where g̃(z) and f̃ (z) are the Laplace transforms of g(t) and f (t), respectively.
We can now substitute the above results into Eq. (8.134) and obtain(

m′z + ζ + ζΔ
√
z
) ⟨ṽ(z)⟩F = m′v(0) . (8.137)

If we solve for ⟨ṽ(z)⟩F , we can write the velocity autocorrelation function in the
form

Cvv(t) =
1
2πi

δ+i∞

∫
δ−i∞

dzezt
m′⟨v(0)2⟩T

m′z + ζ + ζΔ
√
z
, (8.138)

where m′⟨v(0)2⟩T∕2 = kBT∕2 denotes the thermal average of the kinetic energy
for Brownian motion in one space dimension. Note that the thermal average in-
volves the dressedmassm′ of the Brownian particle. The velocity autocorrelation
function then becomes

Cvv(t) =
kBT
2πi

δ+i∞

∫
δ−i∞

dzezt 1
m′z + ζ + ζΔ

√
z
. (8.139)

The integrand in Eq. (8.139) has a branch point at z = 0. We draw the branch
cut along the negative real axis as shown in Figure 8.6. Then we integrate along
the contour, C2. The contribution from the small semicircle at the origin is zero

Figure 8.6 Branch cut and integration contours. C1 is the
Bromwich contour.
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because there is no pole at the origin. The correlation function is then found to
be

Cvv(t) =
kBT
π

∞

∫
0

dxe−x|t| ζΔ
√
x

(ζ − m′x)2 + ζ2Δ2x
, (8.140)

where x = −Re(z). This integral must be evaluated numerically. However, we can
obtain an approximate analytic expression for the long time behavior of Cvv(t)
because it is determined by small values of x. Thus, by expanding the integrand
in powers of

√
x, we obtain

Cvv(t) =
kBTδ
πζ

∞

∫
0

dx
√
xe−x|t| +… = DΔ

2
√
π|t|3∕2 +… , (8.141)

where D = kBT∕(6πηR) is the Einstein diffusion coefficient. Note that Cvv(t) has
a long time tail. It decays with time as t−3∕2.
We can also compute the variance of the Brownian particle. Let us remember

that x(t) − x(0) = ∫ t0 dt′v(t′). Then for a Brownian particle in equilibriumwith the
surrounding fluid,

⟨Δx2(t)⟩ = ⟨(x(t) − x(0))2⟩ = t

∫
0

dt1

t

∫
0

dt2⟨v(t1)v(t2)⟩
=

⎛⎜⎜⎝
t

∫
t∕2

dT

2(t−T)

∫
2(T−t)

dτ +
t∕2

∫
0

dT

2T

∫
−2T

dτ
⎞⎟⎟⎠ Cvv(τ)

= 2

t

∫
0

dτ

t−T∕2

∫
τ∕2

dTCvv(τ) = 2

t

∫
0

dτ(t − τ)Cvv(τ) . (8.142)

In the second line, we have made a change in the variables, τ = t2 − t1 and T =
(1∕2)(t1 + t2). In the third line, we have changed the order of integration. For ex-
ample, ∫ tt∕2 dT∫ 2(t−T)0 dτ = ∫ t0 dτ∫ t−τ∕2t∕2 dT . For long times the variance then takes
the form

⟨Δx2(t)⟩ = 2Dt − 4DΔ√
π
t1∕2 +… (8.143)

It is also useful to define a „time-dependent diffusion coefficient“ given by

D(t) ≡ 1
2
d⟨Δx2(t)⟩

dt
= D − DΔ

π

√
π
t
+… (8.144)

Thus, in the very long time limit the diffusion coefficient approaches the expected
value.
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Figure 8.7 Measurement of D(t) (in units of
cm2 s−1), versus time (in seconds). Curve A
is the prediction for constant friction coeffi-
cient. Curve B is the prediction whenmemory

effects are included. The black dots are mea-
surements for a Brownian particle in water.
Reprinted by permission from [160].

The diffusion coefficient D(t), for a Brownian particle with radius R = 1.7 mi-
crons in water, has been measured in light scattering experiments by Paul and
Pusey [160]. We show the results in Figure 8.7. Curve A is the result for the case
when the friction coefficient, α = 6πηR, has nomemory. Curve B is the prediction
of Eq. (8.140). The black dots are the result of experiment.While the experimental
values qualitatively follow the theoretical predictions, they differ by a systematic
quantitative amount. One possible source for these deviations is the rotational de-
grees of freedom of water. The deviations between theory and experiment have
been used to estimate the rotational transport coefficients in water [182].
The velocity autocorrelation function for Argon atoms moving in Argon have

been reproduced theoretically by Zwanzig and Bixon [222] using the hydrody-
namic equations for a compressible fluid, assuming that the Brownian particle is
an Argon atom. A comparison of the results of Zwanzig and Bixon with Rahman’s
numerical experiments is shown in Figure 8.5. The qualitative agreement is quite
impressive. This shows that even on the molecular scale, the conservation laws
which give rise to hydrodynamic behavior play a fundamental role. The effect of
rotational degrees of freedom of the fluid on Brownian motion has been stud-
ied in [181]. The effect of hydrodynamic memory on the dielectric response of a
Brownian particle in a nonpolar fluid was studied in [191].

8.7
Hydrodynamics of Binary Mixtures

In this section, we will consider some of the key transport processes that occur in
binary mixtures [39, 95, 173]. We begin with the derivation the entropy produc-
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tion in binary mixtures. The entropy production determines the type of dissipa-
tive processes that can occur in the mixture. We will find that temperature gra-
dients and concentration gradients can each drive both diffusion processes and
heat flow. We then consider, in more detail, several types of transport processes
commonly found in binary mixtures.

8.7.1
Entropy Production in Binary Mixtures

We consider a fluid that consists of a mixture of two distinguishable types of par-
ticle, a and b, with mass ma and mb, respectively, and chemical potential μa and
μb, respectively. The fundamental equation for the mixture is

ρu = Tρs − P + ρaμa + ρbμb , (8.145)

where ρ is the total mass density (mass/volume), u is the internal energy per unit
mass, s is the entropy per unit mass, ρa (ρb) is themass density of particle of type a
(b), and μa (μb) is the chemical potential per unit mass of particle of type a (b).
Note also that ρ = ρa + ρb. The Gibbs–Duhem equation is

ρs dT − dP + ρa dμa + ρb dμb = 0 . (8.146)

If we take the differential of Eq. (8.145) and then combine it with Eq. (8.146), we
obtain the following expression for the total differential of the entropy,

T d(ρs) = d(ρu) − μa dρa − μb dρb . (8.147)

We can write the total particle current in the form

J = ρava + ρbvb = ρw , (8.148)

wherew is the barycentric velocity.We also introduce a diffusive (dissipative) par-
ticle current for each particle, defined

JDa = ρa(va − w) and JDb = ρb(vb − w) . (8.149)

The diffusive particle currents have the property that JDa + JDb = 0. The conser-
vation of number of particles of type a and of type b is expressed in terms of the
balance equations

𝜕ρ j
𝜕t

= −∇r ⋅ (ρ jv j) = −∇r ⋅
(
JDj + ρ jw

)
, (8.150)

where j = a, b. If we add the balance equations for the two types of particles, we
obtain the balance equation for the total mass density

𝜕ρ
𝜕t

= −∇r ⋅ J . (8.151)
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The momentum density balance equation can be written

𝜕 J
𝜕t

= −∇rP − ∇r ⋅ ΠD , (8.152)

where P is the hydrostatic pressure and ΠD is the (dissipative) stress tensor. The
balance equations for the total energy and entropy are

𝜕ρe
𝜕t

+ ∇r ⋅ J e = 0 and
𝜕ρs
𝜕t

+ ∇r ⋅ J s= σs , (8.153)

respectively, where e is the total energy per unit mass, J e is the total energy cur-
rent, J s is the total entropy current, and σs is the entropy production due to irre-
versible processes in the fluid.
The total energy consists of the internal energy and kinetic energy due to the

fluid flow.We write it

ρe = ρu + 1
2
ρw2 . (8.154)

The differential of the total energy can then be written

dρe = d(ρu) + w ⋅ d J − 1
2
w2 dρ . (8.155)

Let us now use Eq. (8.147) to write

d(ρu)
dt

− T
d(ρs)
dt

− μa
dρa
dt

− μb
dρb
dt

= 0 . (8.156)

Next let d∕dt = 𝜕∕𝜕t + v ⋅∇r in Eq. (8.156). If we use the fundamental equation
and the Gibbs–Duhem equation, we can show that

v ⋅
(
∇r(ρu) − T∇r(ρs) − μa∇rρa − μb∇rρb

)
= 0 . (8.157)

Then we obtain

T
𝜕(ρs)
𝜕t

=
𝜕(ρu)
𝜕t

− μa
𝜕ρa
𝜕t

− μb
𝜕ρb
𝜕t

. (8.158)

If we now replace the internal energy by the total energy and use the balance equa-
tions, we obtain

T
𝜕(ρs)
𝜕t

=
𝜕(ρe)
𝜕t

− w ⋅
𝜕 J
𝜕t

+ 1
2
w2 𝜕ρ

𝜕t
− μa

𝜕ρa
𝜕t

− μb
𝜕ρb
𝜕t

= −∇r ⋅ J e + w ⋅∇rP + w ⋅ (∇r ⋅ ΠD) − 1
2
w2(∇r ⋅ J)

+ μa∇r ⋅ JDa + μb∇r ⋅ JDb + μa ⋅ ∇(ρaw) + μb ⋅∇(ρbw) . (8.159)
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Next divide by T and rearrange terms. If we use the Gibbs–Duhem equation
∇rP = ρa∇rμa + ρb∇rμb + ρs∇rT , we obtain

𝜕(ρs)
𝜕t

= −∇r ⋅

(
J e − w ⋅ ΠD − μa JDa − μb JDb − ρaμaw − ρbμbw

T

)
− 1
T
ΠD : ∇rw − 1

T
(
JDa ⋅ ∇rμa + JDb ⋅∇rμb

)
− 1
T2

[
J e − ρsTw − w ⋅ ΠD − μa JDa − μb JDb − (ρaμa + ρbμb)w

]
× ∇rT .

(8.160)

Note that we have now neglected terms that are third order in the barycentric
velocity.
Before continuing, it is useful to consider nondissipative fluid flow. If we set the

dissipative currents to zero, we obtain

𝜕(ρs)
𝜕t

= −∇r ⋅

(
JRe − ρaμaw − ρbμbw

T

)
− 1
T2 ( J

R
e − ρsTw − ρaμaw − ρbμbw) ⋅ ∇rT , (8.161)

where JRe is the nondissipative (reactive) part of the energy current. In order for
the entropy production to be zero in the nondissipative fluid, the reactive energy
current takes the form JRe = ρsTw + ρaμaw + ρbμbw.
The entropy balance equation for the dissipative mixture then takes the form

𝜕(ρs)
𝜕t

= −∇r ⋅
(
ρsw + JDs

)
+ σs (8.162)

where the reactive and dissipative parts of the entropy current are

JRs = ρsw and JDs =
JDe − w ⋅ ΠD − μa JDa − μb JDb

T
(8.163)

respectively, and the entropy production is given by

σs = − 1
T
JDs ⋅∇rT − 1

T
ΠD : ∇rw − 1

T
JDa ⋅ ∇rμa −

1
T
JDb ⋅∇rμb . (8.164)

Note that the entropy production is again written in terms of products of gener-
alized forces and currents. If we note that JDa + JDb = 0, the last term in σs can be
written∑

j=a,b

1
T
JDj ⋅ ∇μj =

1
2T

(
JDa − JDb

)
⋅∇(μa − μb)

and explicitly gives the entropy production due to diffusion of particles a and b.
For an isotropic fluid, forces with a given symmetry can only drive currents with
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the same symmetry. Thus, the entropy current can be driven by both a temper-
ature gradient and a chemical potential gradient. Similarly, particle diffusion can
be driven by both a chemical potential gradient and a temperature gradient. The
transport coefficients for these processes are related by the Onsager relations dis-
cussed in Chapter 7.

8.7.2
Fick’s Law for Diffusion

We can derive the diffusion coefficientD, for a dilute solution of solute molecules
in a solvent, starting from the expression for the entropy production given in
Eq. (8.164). Let us assume that we have a small amount of a solute (which we
don’t yet specify) dissolved in a solvent (which we assume to be water). Let ρw(ρs)
be the density of water (solute) and let ρ = ρs + ρw be the total density.We assume
that the mass density of the solute is much smaller than the mass density of water
so that (ρs∕ρw) ≪ 1. Also, we assume that the fluid is at rest so that w = 0, and
that the pressure P and temperature T are uniform throughout the fluid. From
Eq. (8.164), the entropy production σ is given by

Tσs = − JDw ⋅ [∇rμw]T − JDs ⋅ [∇rμs]T . (8.165)

From the Gibbs–Duhem equation, we can write ρw[∇rμw]T,P + ρs[∇rμs]T,P = 0,
when P and T are held constant. If we also use the condition JDs + JDw = 0,
Eq. (8.165) can be written

Tσs = −
(
JDs −

ρs
ρw

JDw

)
⋅ [∇rμs]T,P . (8.166)

The current that appears in Eq. (8.166) is the diffusion current, JD = JDs −ρs∕ρw J
D
w

of solute relative to water.
Whenwritten in terms of the diffusion current, the entropy production σs takes

the form

Tσs = − JD ⋅ [∇rμs]T,P . (8.167)

We can write the generalized Ohm’s Law for this process. The chemical potential
of the solute can be written μs = μs(T, P, xs), where xs is the mole fraction of the
solute. We can then write

JD = −Ls[∇rμs]T,P = −Ls
(
𝜕μs
𝜕xs

)
P,T

∇rxs , (8.168)

where Ls is a transport coefficient. If we treat the mixture as an ideal mixture, the
chemical potential takes the form μs = μ0s + RT∕Ms ln xs, whereMs is the molec-
ular mass of the solute, and

(
𝜕∕μs𝜕xs

)
P,T = RT∕(xsMs). Also note that ∇rxs =

cw∕c2∇rcs − cs∕c2∇rcw, where c j = n j∕V is the concentration (moles/volume) of
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Table 8.1 Diffusion coefficients of typical substances in the limit of infinitely dilute aqueous
solution (T = 25 ◦C) [124].

Solute Formula D (10−5 cm2 s−1)

Acetone C3H6O 1.28
Benzene C6H6 1.02
Ethanol C2H6O 1.24
Methane CH4 1.49
Ethylbenzene C8H10 0.8

Table 8.2 Diffusion coefficientD of benzene in some typical solvents in the limit of infinitely
dilute solution (T = 25 ◦C) η is the viscosity of the solvent [124].

Solvent Formula D (10−5 cm2 s−1) η (10−3 Pa s)

1-Butanol C4H10O 1.00 2.54
Cyclohexane C6H12 1.41 0.89
Ethanol C2H6O 1.81 1.07
Heptane C7H16 3.91 0.39
Toluene C7H8 2.54 0.56

molecules of type j and c = cw + cs is the total concentration. Since we are assum-
ing that cs ≪ cw, to lowest order in cs∕cw, we can write the diffusion current in
the form

J ′D = 1
Ms

JD = −Ls
RT
M2

s cs
∇rcs ≡ −D∇rcs . (8.169)

The equation J ′D = −D∇r cs is Fick’s Law for diffusion and D = LsRT∕(M2
s cs)

is the diffusion coefficient. If we equate the diffusion coefficient D to the Ein-
stein diffusion coefficient for Brownian motion, D = RT∕(NAπηa), we find Ls =
csM2

s∕(NAπηa), where η is the coefficient of viscosity for water, a is the radius
of the solute molecule, and NA is Avogadro’s number. We can obtain a numeri-
cal estimate for these quantities. At T = 25 ◦C = 298.15K, the viscosity of water
is η ≈ 0.9 × 10−3 Pa s. For solute molecules with a radius a = 4Å, the Einstein
diffusion coefficient is D = 0.61 × 10−5 cm2∕s. We can compare this with actual
measurements of the diffusion coefficient given in Table 8.1 for very dilute aque-
ous solutions. The value given by the Einstein diffusion coefficient is of the correct
order of magnitude.
It is also interesting to see how the diffusion coefficient depends on the nature

of the solvent. In Table 8.2, we give the diffusion coefficient for some infinitely
dilute solutions of benzene in various solvents.
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8.7.3
Thermal Diffusion

If a temperature gradient exists in a mixture of molecules, it can drive diffusion
processes. Also, if a concentration gradient exists in amixture, it can induce a tem-
perature gradient. Diffusion induced by a temperature gradient is called the ther-
mal diffusion. The parameter that measures its strength is called the Soret coeffi-
cient.
Let us consider a binary mixture consisting of water (the solvent) and a solute.

We shall assume that the pressure P is uniform throughout the mixture and that
the fluid is at rest so thatw = 0. FromEq. (8.164), the entropy source term (entropy
production) σs is given by

Tσs = − 1
T
JDS ⋅ ∇rT − JDs ⋅ [∇rμs]P − JDw ⋅ [∇rμw]P

= − 1
T
JDS ⋅ ∇rT − JD ⋅ [∇rμs]P , (8.170)

(see Eq. (8.167)) where JD is the mass current of solute relative to water and JDS
is the dissipative entropy current. The constitutive equations (generalized Ohm’s
Laws) for this system can be written

JD = −Ls ,s[∇rμs]P − Ls ,S∇rT , (8.171)
JDS = −LS ,s[∇rμs]P − LS ,S∇rT , (8.172)

where Ls ,s , Ls ,S , LS ,s and LS ,S are the transport coefficients (Onsager coefficients)
associated with this process. Let us again assume that we have a dilute mixture of
solute in water so that [∇rμs]P ≈

(
𝜕∕μs𝜕cs

)
P ∇rcs. Then Eqs. (8.171) and (8.172)

take the form

JD = −Ls ,s
(
𝜕μs
𝜕cs

)
P
∇rcs − Ls ,S∇rT , (8.173)

JDS = −LS ,s
(
𝜕μs
𝜕cs

)
P
∇rcs − LS ,S∇rT . (8.174)

The diffusion coefficient is thenD = (Ls ,s∕Ms)
(
𝜕∕μs𝜕cs

)
P . The coefficient of ther-

mal conductivity is K = LS ,S. In experiments it is found that the coefficient Ls ,S is
linearly proportional to the solute concentration. Therefore, a coefficient of ther-
mal diffusion DT is introduced and is defined so that Ls ,S = MscsDT . The solute
particle flux J ′D = JD∕Ms then takes the form

J ′D = −D∇r cs − csDT∇rT . (8.175)

The Soret coefficient ST is defined as ST = DT∕D = Ls ,q∕(MscsD). The Soret co-
efficient is a measure of the concentration gradient that is set up as the result of
a temperature gradient for a system in its steady state. The effect of thermal dif-
fusion is generally small with DT ≈ 10−2D or DT ≈ 10−3D. However, it has been
used, for example, to separate isotopes Kr84 from Kr86 and H35Cl from H37Cl in
the gaseous phase [31].
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8.8
Thermoelectricity

One may view a metal wire as an electrically neutral system consisting of posi-
tively charged metal ions at rest and negatively charged electrons which are free
to move through the metal [39, 95, 140, 220]. (Although the carriers of current
are negatively charged, we follow the usual convention of depicting the direction
of electric current flow to be that of positive charges.) A flux of electrons can car-
ry both a charge current, I = −F Jel, where F is Faraday’s constant (the charge of
onemole of protons) and Jel is electron number current (mol∕area ⋅ time), and an
entropy current, JS , (or heat current T JS). We will assume that the electrons have
uniform spatial density, when the system is in equilibrium, because the system
is electrically neutral and the density of positive metal ions is fixed. The electro-
chemical potential of the electrons can be written in the form μeel = μel(T ) − Fφ,
where μel(T ) is the chemical potential of the electrons and φ is the electric po-
tential. The entropy source term (entropy production), σs, which results from the
flow of electrons in the metal can be written

Tσs = − JS∇rT − Jel∇rμeel . (8.176)

The constitutive equations (generalized Ohm’s laws) take the form

JS = −LSS∇rT − LSE∇rμeel , (8.177)

Jel = −LES∇rT − LEE∇rμeel . (8.178)

As we shall show below, Onsager’s relation, LSE = LES, is well verified for this
system.

8.8.1
The Peltier Effect

Consider two distinctmetals, A andB (copper and iron, for example), are placed in
contact at two points (metal junctions) to form a closed circuit. If the metal junc-
tions are kept at the same temperature, but a battery is connected to the circuit and
an electric current is passed through the circuit, one junction will become hotter
(absorb heat) and the other junction will become colder (emit heat). An amount
of heat, Q̇ ≡ hPI, (Q̇ has units joule∕area ⋅ time) will be absorbed or emitted (de-
pending on the types of metal at the junction and the direction of current flow).
The amount of heat absorbed per unit area per unit time per unit electric current
is called the Peltier heat, hP, and is written

hP =
(
Q̇
I

)
∇T=0

. (8.179)

The electric current, I, will be continuous at the junction, but the entropy current
will be discontinuous due to the absorption or emission of heat. As we show in
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Figure 8.8 The Peltier effect. (a) If an electric
current, I, flows through the junction of two
metals, A and B, held at uniform temperature,
Q ≡ hP I will be absorbed (or emitted). (b) A cir-
cuit at uniform temperature, consisting of two
wires, one of metal A and the other of metal B,

joined together. A battery is inserted between
points a and d, and an electric current, I, is
induced in the circuit. At one metal junction,
an amount of heat/time, Q̇, is absorbed; and
at the other metal function, −Q̇ is absorbed
(emitted).

Figure 8.8a, the relation between the entropy current in metal A and in metal B is
given by

T JBS = T JAS − hPI . (8.180)

It is useful to consider a specific example. In Figure 8.8b, if metal A is iron and
B is copper then junction b cools and junction c becomes hotter. If the current is
reversed, then junction c is cooled and junction b becomes hotter. The absorption
or emission of heat depends on both the types of metal and the direction of the
current. Peltier heat is not a Joule heat since Joule heat depends on the square of
the current. Peltier heat is due to the contact potential in the junction. When an
electron must “climb” a potential hill in crossing a junction, it will absorb energy,
thus causing the junction to cool. When the electron “descends” a potential hill in
crossing a junction, it will emit energy, thus causing the junction to heat.
Let us now consider the circuit in Figure 8.8b which contains two junctions

between metals A and B (cf. Figure 8.8b). We assume that the entire circuit is
kept at temperature T . We connect a battery between points a and d and drive
a current, I, in the circuit. If Eqs. (8.177) and (8.178) correctly describe the system,
then the electrical current, I, will be accompanied by an entropy current, JAS

(
JBS
)
,

in metal A (B).We can define an entropy transport parameter, S∗i , formetal i, such
that

S∗i =

(
J iS
J iel

)
∇T=0

=
LiSE
LiEE

, where i = A, B . (8.181)

S∗i is a measure of the amount of entropy carried along with the electron cur-
rent when the temperature in the circuit is uniform. Measurement of the entropy
transport parameter enables us to determine the ratio of phenomenological coef-
ficients (LSE∕LEE), for each metal.
The Peltier heat, hP, can be expressed in terms of the entropy transport param-

eters, S∗A and S∗B. Since from (8.181) we have [ J iS]∇rT=0 = S
∗
i [ J

i
el]∇rT=0 = −S∗i I∕F ,

we can use Eq. (8.180) to obtain

hP = T
F

(
S∗B − S

∗
A
)
. (8.182)
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Figure 8.9 The Seebeck effect. A circuit con-
sisting of two wires, one of metal A and the
other of metal B, are joined together and the
junctions are held at different temperatures,

T and T + ΔT . A potentiometer is inserted
between points a and d, and a potential differ-
ence, Δ𝜙ad = 𝜙a − 𝜙d, is measured.

Thus, the change in entropy carried by the electrons across the junction has been
connected to the heat absorbed at the junction.

8.8.2
The Seebeck Effect

If two different metals A and B are joined to form a closed circuit and if the two
metal junctions are kept at different temperatures, T and T + ΔT , an electric
current will flow in the circuit. The current exists because the temperature differ-
ence has created an electromotive force (EMF) in the circuit due to the fact that
the electrons at the two junctions have different chemical potentials. Assume that
a potentiometer is inserted at points a and d, rather than a battery, and that the
points a and d, and the potentiometer are all maintained at a common tempera-
ture, T0, which lies between T and T + ΔT (cf. Figure 8.9). For this arrangement
there will be no electric current flow so I = 0. When ΔT ≠ 0, a potential dif-
ference, Δφad = φa − φd, is measured between points a and d. From Eq. (8.178),
Jel = −LES∇rT − LEE∇rμeel = 0 so that

[
∇rμeeli

]
Jel=0

= −
LiES
LiEE

∇rT = −
LiSE
LiEE

∇rT = −S∗i∇rT , (8.183)

where we have made use of Onsager’s relation, LiSE = L
i
ES .

We can now obtain a relation between the temperature difference, ΔT , and the
potential difference, Δφad = φa−φd, measured by the potentiometer. Let x denote
the spatial coordinate along the wire. We can integrate Eq. (8.183) along the wire,
but it must be done in segments. In Figure 8.9 we have marked points a–d. The
change in electrochemical potential as we go from point d to point c is

(
Δμeel

)
cd = −

T+ΔT

∫
T0

S∗B dT . (8.184)

Similarly,

(
Δμeel

)
bc = −

T

∫
T+ΔT

S∗A dT , and
(
Δμeel

)
ab = −

T0

∫
T

S∗B dT . (8.185)
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Table 8.3 Test of the equation (d𝜙ad)∕dT = hP∕T [140, 220].

Thermocouple T (K) hP∕T (μV/K) d𝝓ad∕dT (μV/K)

Cu-Ni 273 18.6 20.4
302 22.3 21.7
373 24.4 24.9

Fe-Hg 292 16.7 16.7
373 15.6 15.4
456 13.9 13.7

But the change in electrochemical potential from d to a is

(
Δμeel

)
da = −

(
Δμeel

)
cd −

(
Δμeel

)
bc −

(
Δμeel

)
ab =

T+ΔT

∫
T

(
S∗B − S

∗
A
)
dT .

(8.186)

Since points a and d are at the same temperature, we obtain (Δμeel)da = −FΔφda
and

Δφad = φa − φd =
1
F

T+ΔT

∫
T

(S∗B − S
∗
A)dT . (8.187)

The potential difference depends only on properties of the metal wires and the
temperature difference between the junctions. For very small temperature differ-
ences, we can write

dφad

dT
=
S∗B − S

∗
A

F
=
hP
T

. (8.188)

The quantity (dφad∕dT ) is the relative thermoelectric power of metal A against
metal B. In order to obtain Eq. (8.188), we had to use Onsager’s relation, LiSE =
LiES. Therefore, the validity of Eq. (8.188) provides a test of Onsager’s relations. In
Table 8.3, we compare measured values of (dφad∕dT ) and (hP∕T ) over a range
of temperatures for two different thermocouples. We see that the agreement is
quite good.

8.8.3
Thomson Heat

A temperature gradient can be induced in ametal wire by placing opposite ends of
the wire in contact with thermal reservoirs at different temperatures. If the wire
is connected to a battery, an electric current, I, will flow in the wire. Thomson
found that in the presence of the electric current, the original temperature gra-
dient (in the absence of current) can only be maintained if heat, calledThomson
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heat, is absorbed (or emitted depending on the direction of current flow) along
the wire. Thomson heat is distinct from Joule heat. Thomson showed that in or-
der to maintain a temperature gradient in a wire made of metal A, one must add
or subtract an amount of heat, dQ = σA(T )I dT , for each incremental change in
temperature, dT , along a wire of metal A. The quantity

σA = 1
I
dQ
dT

(8.189)

is called theThomson heat. Thomson heat depends both on the type of metal and
the magnitude and direction of the electric current, I.

8.9
Superfluid Hydrodynamics

We can derive hydrodynamic equations for liquid He4 below the λ line where it is
a superfluid (see Section 4.6.1).We assume that the superfluid is composed of two
interpenetrating fluids: (1) a normal fluid that behaves somewhat like a classical
fluid and has velocity vn in the laboratory frame and (2) a superfluid which carries
no entropy and has velocity vs in the laboratory frame. We shall first obtain the
hydrodynamic equations for the superfluid and then obtain dispersion relations
for sound modes [52, 107, 131, 176].

8.9.1
Superfluid Hydrodynamic Equations

The mass balance (mass conservation) equation for the superfluid is given by
𝜕ρ
𝜕t

+ ∇r ⋅ J = 0 , (8.190)

where ρ is the total mass density and J is the total momentum density of the fluid.
The total mass density can be written ρ = ρn + ρs, where ρn is the mass density
of the normal fluid and ρs is the mass density of the superfluid. The momentum
density of the fluid can be written J = ρnvn + ρsvs, where vn is the normal fluid
velocity and vs is the superfluid velocity. The superfluid and normal fluid phases
cannot be separated in configuration space. The superfluid phase results from the
condensation of part of the substance into a single quantum state.
The momentum balance equation is

𝜕 J
𝜕t

+ ∇rP + ∇r ⋅ Π̄
R + ∇r ⋅ Π

D
= 0 , (8.191)

where P is the hydrostatic pressure, Π̄R is a reversible part of the stress tensor
(momentum current), and Π

D
is the dissipative part.

The energy balance equation is
𝜕U
𝜕t

+∇r ⋅
(
JRE + JDE

)
= 0 , (8.192)

where JRE and JDE are the reversible and dissipative energy currents.
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The entropy balance equation is

𝜕ρs
𝜕t

+ ∇r ⋅
(
ρsvn + JDS

)
= σs , (8.193)

where s is the specific entropy, ρsvn is the reversible entropy current, JDS is the dis-
sipative entropy current, and σs is the entropy production. The reversible entropy
current only depends on the normal fluid velocity, vn, because the superfluid does
not carry entropy.
If different regions of a superfluid are connected such that only superfluid can

flow between them, they will be in equilibrium (no super fluid flow) when their
chemical potentials are equal, even if they do not have the same temperature and
pressure (see Eq. (4.47)). Superfluid flow occurs when the chemical potentials are
not equal. Thus, we can assume that changes in the superfluid velocity are driven
by gradients in the chemical potential and we can write

dvs
dt

=
𝜕vs
𝜕t

+ (vs ⋅∇r)vs = −∇r(μR + μD) , (8.194)

where dvs∕dt is the convective time derivative of the superfluid, and μR and μD
are reversible and dissipative contributions to the chemical potential, respectively.
It is useful to consider the fluid in the rest frame of the superfluid. Let E0 denote

the energy in the superfluid rest frame. Then differential changes in the energy are
given by

dE0 = μ dρ + T d(ρs) + w ⋅ d J0 , (8.195)

where J0 = J − ρvs is the momentum density of the fluid in the superfluid rest
frame and J is the momentum density in the laboratory frame. The chemical po-
tential is μ = (𝜕E0∕𝜕ρ)ρs , J 0 . The temperature is T = (𝜕E0∕𝜕ρs)ρ, J 0 . The new quan-
tity, w, is a velocity which is defined w = (𝜕E0∕𝜕 J0)ρ,ρs .
The total energy, E, in the laboratory frame is related to the energy, E0, in the

rest frame of the fluid by a Galilean transformation

E = E0 + vs ⋅ J0 +
1
2
ρv2s = E0 + vs ⋅ ( J − ρvs) +

1
2
ρv2s . (8.196)

In the discussion below,we shall consider the fluid to be a function of the variables,
ρ, ρs , J , and vs. From Eqs. (8.195) and (8.196), a differential change in energy, E,
can be written

dE =
(
μ − w ⋅ vs −

1
2
v2s
)
dρ+T d(ρs)+(w+ vs) ⋅d J +[ J −ρ(w+ vs)]dvs .

(8.197)

It is found experimentally that if the velocities of the fluid are too great the super-
fluid phase can be destroyed. Therefore, the superfluid equations are only useful
for low velocities and we can neglect convective contributions to the hydrody-
namic equations. As a first step we will reexpress Eq. (8.197) in terms of partial
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time derivatives rather than total time derivatives since total time derivatives con-
tain contributions due to convection. Thus we write

𝜕E
𝜕t

=
(
μ − w ⋅ vs −

1
2
v2s
) 𝜕ρ
𝜕t

+T
𝜕ρs
𝜕t

+(w+vs) ⋅
𝜕 J
𝜕t

+[ J−ρ(w+vs)] ⋅
𝜕vs
𝜕t

.

(8.198)

As a next step we will substitute the balance equations, Eqs. (8.190)–(8.194), into
Eq. (8.198) and eliminate terms which are cubic in the velocity. This gives

T
𝜕ρs
𝜕t

= −∇r ⋅
(
JRE + JDE

)
+ μ∇r ⋅ J + (w + vs) ⋅ ∇rP + (w + vs)

× ∇r ⋅ Π
D
+ [ J − ρ(v + w)] ⋅∇r(μR + μD) . (8.199)

The reversible stress tensor does not appear in Eq. (8.199) because it is a momen-
tum current which is explicitly quadratic in the velocity and therefore leads to
contributions in Eq. (8.199) which are cubic in the velocity.
Let us now write the Gibbs–Duhem equation in the superfluid rest frame,

dP = ρ dμ + ρs dT + J0 ⋅ dw . (8.200)

If we substitute the Gibbs–Duhem equation (8.200) into Eq. (8.199) and neglect
terms cubic in the velocity, we obtain

T
𝜕ρs
𝜕t

= −∇r ⋅
[
JRE + JDE − μ J − (w + vs) ⋅ Π

D]
+ ( J − ρ(vs + w) ⋅∇r(μR − μ)

+ [ J − ρ(vs + w)] ⋅∇rμD + ρs(vs + w) ⋅∇rT − Π
D
: ∇r(vs + w) .

(8.201)

There is one final step necessary to put the entropy balance equation into the form
Eq. (8.193). If we divide Eq. (8.201) by T and rearrange terms, we find

𝜕ρs
𝜕t

= −∇r ⋅
⎡⎢⎢⎣
JRE + JDE − μ J − (w + vs) ⋅ Π

D
− μDλ

T

⎤⎥⎥⎦
+

[
JRE + JDE − μ J − (w + vs) ⋅ Π

D
− ρsT(w + vs) − μDλ

]
⋅∇r

1
T

+ 1
T
λ ⋅∇r(μR − μ̃) −

μD

T
∇r ⋅ λ − 1

T
Π

D
: ∇r(w + vs) .

(8.202)

To obtain Eq. (8.202), we have used the fact that

1
T
[ J − ρ(vs + w)] ⋅ ∇rμD = ∇r ⋅

μDλ
T

−
μD

T
∇r ⋅ λ − μDλ ⋅ ∇r

1
T

, (8.203)

where λ = J − ρ(vs + w). Equation (8.202) can be simplified further if we first
consider the case of a reversible fluid. The fact that the entropy production must
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be zero for a reversible fluid allows us to give a more precise definition of the
reversible currents.
In a reversible fluid, all the dissipative contributions in Eq. (8.202) are zero. The

equation for a reversible fluid is then

𝜕ρs
𝜕t

= −∇r ⋅

(
JRE − μ J
T

)
+

[
JRE − μ J − ρsT(w + vs)

]
⋅∇r

1
T

+ 1
T
λ ⋅ ∇r(μR − μ) . (8.204)

A reversible fluid, by definition, has no entropy production. This, in turn, means
that the reversible energy current must be given by

JRE = μ J + ρsT(w + vs) , (8.205)

and the reversible entropy current is given by

JRS = 1
T

(
JRE − μ J

)
= ρs(w + vs) . (8.206)

However, the superfluid can’t carry entropy so we must have JRS = ρsvn, and this
in turn means that

w = vn − vs . (8.207)

Also, μR = μ, so the reversible part of the chemical potential is just the thermo-
dynamic chemical potential. The quantity μD is a contribution to the chemical
potential due to dissipative processes. We can write the equation for the dissipa-
tive fluid as

𝜕ρs
𝜕t

= −∇r ⋅
(
ρsvn + JDS

)
− 1
T
JDS ⋅∇rT −

μD

T
∇r ⋅ λ−

1
T
Π

D
:∇r vs , (8.208)

where JDS = ( JDE − vn ⋅ Π̄
D − μDλ)∕T and λ = J − ρvn.

Let us now write the generalized Ohm’s laws for the superfluid. There are two
scalar forces, namely, ∇r ⋅ λ and ∇r ⋅ vn. There is one vector force, ∇rT , and one
symmetric tensor force, (∇rvn)s. We therefore can write

ΠD = −ζ1∇r ⋅ λ − ζ2∇r ⋅ vn ,
μD = −ζ3∇r ⋅ λ − ζ4∇r ⋅ vn ,

JDS = −K
T
∇rT ,

and

(Π
D
)s = −η(∇rvn)s . (8.209)

The superfluid has six transport coefficients. From Onsager’s relations we have
ζ1 = ζ4.
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8.9.2
SoundModes

We now obtain dispersion relations for the various types of sound modes in the
absence of dissipation. To obtain sound modes in the nondissipative case, we
set all dissipative currents to zero in Eqs. (8.190), (8.191), (8.193), and (8.194)
and we linearize about absolute equilibrium. We write ρ = ρ0 + Δρ, s = s0 + Δs,
P = P0 + ΔP, where ρ0, s0, and P0 denote the equilibrium density, entropy, and
pressure, respectively, and Δρ = Δρ(r, t), Δs = Δs(r , t), and ΔP = ΔP(r, t) denote
their deviations from equilibrium.We also neglect all terms to second order in the
velocities, vn and vs. The hydrodynamic equations then take the form

𝜕Δρ
𝜕t

+ ρ0n∇r ⋅ vn + ρ
0
s∇r ⋅ vs = 0 , (8.210)

ρ0n
𝜕vn
𝜕t

+ ρ0s
𝜕vs
𝜕t

+ ∇rΔP = 0 , (8.211)

ρ0 𝜕Δs
𝜕t

+ s0
𝜕Δρ
𝜕t

+ ρ0s0∇r ⋅ vn = 0 , (8.212)

and

𝜕vs
𝜕t

+ ∇rΔμ = 0 . (8.213)

Let us now choose the density and temperature to be our independent thermo-
dynamic variables. Equations (8.210)–(8.213) then become

𝜕Δρ
𝜕t

+ ρ0n∇r ⋅ vn + ρ
0
s∇r ⋅ vs = 0 , (8.214)

ρ0n
𝜕vn
𝜕t

+ ρ0s
𝜕vs
𝜕t

+ 1
ρκT

∇rΔρ +
(
𝜕P
𝜕T

)0

ρ
∇rΔT = 0 , (8.215)[

s0 − 1
ρ0

(
𝜕P
𝜕T

)0

ρ

]
𝜕Δρ
𝜕t

+
ρ0cρ
T0

𝜕ΔT
𝜕t

+ ρ0s0∇r ⋅ vn = 0 , (8.216)

and

𝜕vs
𝜕t

+ 1
(ρ0)2κT

∇Δρ −
[
s0 − 1

ρ

(
𝜕P
𝜕T

)0

ρ

]
∇ΔT = 0 . (8.217)

In Eqs. (8.214)–(8.217), we have used the fact that the isothermal compressibility
is defined as κT = 1∕ρ(𝜕ρ∕𝜕P)T and the specific heat is defined cρ = T(𝜕s∕𝜕T )ρ .
Also s = −(𝜕μ̃∕𝜕T )P and 1∕ρ = (𝜕μ∕𝜕P)T , so that (𝜕μ∕𝜕T )ρ = (𝜕μ∕𝜕T )P +
(𝜕μ∕𝜕P)T (𝜕P∕𝜕T )ρ and (𝜕μ∕𝜕ρ)T = (𝜕μ∕𝜕P)T (𝜕P∕𝜕ρ)T = 1∕(ρ2κT ).
Equations (8.214)–(8.217) enable us to obtain the dispersion relations for the

various types of sound that can exist in an ideal superfluid system. Let us Laplace
transform the time-dependent part of the above equations and Fourier transform
the space-dependent part. If we note that all contributions from the normal and
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superfluid velocities are longitudinal, we canwrite the Fourier–Laplace transform
of Eqs. (8.214)–(8.217) in the following matrix form:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

z 0 −ikρ0n −ikρ0s
z
[
s0 − 1

ρ0

(
𝜕P
𝜕T

)0

ρ

]
z ρ

0cρ
T0 −ikρ0s0 0

− ik
ρ0κT

−ik
(

𝜕P
𝜕T

)0

ρ
ρ0nz ρ0s z

−i k
(ρ0)2κT

ik
[
s0 − 1

ρ0

(
𝜕P
𝜕T

)
ρ0

]
0 z

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
ρ̃(k , z)
T̃(k , z)
ṽn(k , z)
ṽs(k , z)

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0[
s0 − 1

ρ0

(
𝜕P
𝜕T

)0

ρ

]
ρ0cρ
T

0 0

0 0 ρ0n ρ0s
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
Δρ(k , 0)
ΔT(k , 0)
vn(k , 0)
vs(k , 0)

⎞⎟⎟⎟⎟⎠
.

(8.218)

The determinant of the 4 × 4 matrix,

S(k , z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

z 0 −ikρ0n −ikρ0s
z
[
s0 − 1

ρ0

(
𝜕P
𝜕T

)0

ρ

]
z ρ

0cρ
T0 −ikρ0s0 0

− ik
ρ0κT

−ik
(

𝜕P
𝜕T

)0

ρ
ρ0nz ρ0nz

− k
(ρ0)2κT

ik
[
s0 − 1

ρ0

(
𝜕P
𝜕T

)0

ρ

]
0 z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(8.219)

gives the dispersion relation for sound modes in the fluid. The sound frequencies
occur at values of z which satisfy the equation

Det[S(k , z)] = −
ρ0ρ0n c̃ρ
T0

{
z4 +

(
1

ρ0κT
+
T0(s0)2ρ0s
c̃ρρ0n

+ T0

c̃ρ(ρ0)2

[(
𝜕P
𝜕T

)0

ρ

]2)

×k2z2 +
T0ρ0s (s

0)2

ρ0ρ0n c̃ρ κT
k4

}
= 0 . (8.220)

We can simplify the dispersion relation somewhat because the thermal expan-
sivity, αP , for liquid helium is very small, at least for temperatures well below the
transition temperature. This can also be seen in Figure 4.10a. For low enough tem-
perature, the slope, (𝜕P∕𝜕T )ρ is approximately zero. Thus, to good approximation
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Figure 8.10 Speed of second sound (based on [44]).

we can set

αP = −1
ρ

(
𝜕ρ
𝜕T

)
P
= κT

(
𝜕P
𝜕T

)
ρ
≈ 0 . (8.221)

The dispersion relation then simplifies to

Det[S(k , z)] ≈ −
ρ0ρ0n c̃ρ
T0

{
z4 +

(
1

ρ0κT
+
T0(s0)2ρ0s
c̃ρρ0n

)
k2z2 +

T0ρ0s (s
0)2

ρ0ρ0n c̃ρ κT
k4

}

= −
ρ0ρ0n c̃ρ
T0

(
z2 + 1

ρ0κT
k2

)(
z2 +

T0ρ0s (s
0)2

ρ0n c̃ρ
k2

)
= 0 .

(8.222)

We see from Eq. (8.222) that there are two different types of propagating sound
modes in He(II). They are called first sound and second sound, respectively.
First sound has a dispersion relation, z = ±ic1k, and propagates with speed

c1 =

√
1

ρ0κT
. (8.223)

First sound consists of density waves, similar to sound modes in classical fluids,
with one difference. The speed of first sound depends on the isothermal com-
pressibility, while the speed of ordinary sound in classical fluids depends on the
adiabatic compressibility. Note that Eq. (8.223) assumes that (𝜕P∕𝜕T )ρ ≈ 0.
Second sound has a dispersion relation z = ±ic2k and propagates with a speed

c2 =

√
ρ0s (s0)2T0

c̃ρρ0n
. (8.224)

Second sound consists of temperature waves which can propagate across the flu-
id. It was first measured by Peshkov [165], who used an oscillating heat source to
set up standing waves in a tube. A plot of the speed of second sound as a func-
tion of temperature is given in Figure 8.10. We see that the velocity first peaks
at 20.36m s−1 at T = 1.65K and decreases slightly as we lower the temperature,
but then increases again and reaches a limiting value of about 150ms−1 atT = 0K.
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Measurements of the speed of second sound enable us to obtain a value of the
ratio ρ0n∕ρ

0. If we remember that ρ = ρ0n + ρ
0
s , Eq. (8.224) takes the form

ρ0n
ρ0

= T0(s0)2

c̃ρ c22 + T0(s0)2
. (8.225)

From Eq. (8.225), estimates of the hydrodynamic density of the normal fluid can
be obtained. Another form of sound occurs when He(II) flows through a porous
material. It is called fourth sound. Derivation of the dispersion relation of fourth
sound is left as a homework problem.

8.10
Problems

Problem 8.1 Prove that

∇r ⋅ Π = −η∇2
r v −

(
ζ + 1

3
η
)
∇r(∇r ⋅ v) (8.226)

if Π
s
= −2η[∇rv]s and Π = −ζ(∇r ⋅ v)with Π = ΠU +Π

s
. Note thatU is the unit

tensor.

Problem 8.2 Assume that a viscous fluid flows in a pipe with a circular cross
section of radius a. Choose the z-axis to be the direction of motion of the fluid.
Assume that the density of the fluid is constant and that the flow is steady. Starting
from the hydrodynamic equations, find the equation relating pressure gradients
to velocity gradients in the fluid. Describe what is happening in the pipe. (Note:
For steady flow, the velocity is independent of time, but can vary in space. At the
walls the velocity is zero due to friction.)

Problem8.3 Consider an ideal fluid. Assume that at time t = 0 the Fourier ampli-
tudes of the density, velocity, and temperature variations are given by ρk(0), vk(0),
and Tk(0), respectively. Compute ρk(t), vk(t), and Tk(t).

Problem 8.4 Consider a fluid of point particles. Assume that at time t = 0 the
Fourier amplitudes of the coupled longitudinal density, velocity, and temperature
variations are given by ρk(0), v

‖
k(0), and Tk(0). Compute ρk(t), v

‖
k(t), and Tk(t),

but only keep terms in the amplitudes which are zeroth order in the wavevector,
k.

Problem 8.5 Consider an isotropic fluid whose deviation from equilibrium can
be described by the linearizedNavier–Stokesequations. Assume that at time t = 0
the velocity is v(r, 0) = v0e−ar

2 ẑ. Compute v⊥k (t), where v⊥k (t) = vk(t) − k̂v‖k(t)
and vk(t) is the Fourier transform of v(r, t).

Problem 8.6 Consider an incompressible fluid that is at rest. (a) Starting from
the linearized Navier–Stokes equations, derive a closed equation for space-time
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variations of temperature ΔT(r, t) in the fluid. (b) If a laser pulse creates a tem-
perature spike ΔT(r, 0) = τ0δ(r) at point r = 0 and time t = 0, what is the temper-
ature distribution ΔTr, t) at time t? (Assume that there are no walls to constrain
the fluid). Fourier transform of v(r, t).

Problem 8.7 In an ideal fluid, sound propagation is adiabatic because entropy
is constant. Nonideal fluids with very high thermal conductivity K can have a
different kind of sound propagation, called isothermal sound. In such fluids, the
viscosity can be neglected but the thermal conductivity cannot. (a) Starting from
the linearized Navier–Stokes equations, compute the coupled equations for tem-
perature and pressure variations (in space and time) in a non ideal with very large
thermal conductivity. (b) Compute the dispersion relation for this type of wave
propagation.Write the dispersion relation interns of the speed of adiabatic sound
cS =

√
(𝜕P∕𝜕ρ)S, the speed of isothermal sound cT =

√
(𝜕P∕𝜕ρ)T , the constant

pressure heat capacity CP , and the thermal conductivity K .

Problem 8.8 Consider an isotropic fluid contained in a rectangular box with
sides of length Lx = L, Ly = 2L, and Lz = 3L. Assume that the temperature of
the fluid at time t = 0 has a distribution T(r, 0), but the fluid is initially at rest.
Assume that the thermal expansivity of the fluid is very small so that coupling
to pressure variations can be neglected. (a) Show that under these conditions the
temperature variations satisfy the heat equation, 𝜕T(r , t)∕𝜕t =−κ∇2T(r, t).What
is κ? (b) If the walls of the box conduct heat and are maintained at temperature,
T0, approximately how long does it take for the system to reach equilibrium. (c) If
the walls of the box are insulators, approximately how long does it take for the
system to reach equilibrium? (Hint: No heat currents flow through the walls of
insulators.)

Problem 8.9 At time t = 0, water flows in the z-direction between straight par-
allel walls which are located at x = 0 and x = D = 0.05 m in the x-direction. The
velocity profile at time t = 0 is of the form v(x , y, z , 0) = vz(x)êz and the veloc-
ity at the walls is zero so vz(0) = vz(D) = 0. The shear viscosity of water is η =
3.33 × 10−3 N sm−2. The thermal conductivity of water is K = 0.56 J∕(smK). The
density of water is ρ = 103 kgm−3. Approximately how long does it take for this
flow to damp out (what is the decay time)? (Assume that vz(x) is small enough
that the linearized hydrodynamic equations can be used.)

Problem 8.10 Consider an isotropic fluid of point particles. (a) Write the dyatic,
∇rv, in spherical coordinates. (b) Use your results in (a) to write the stress tensor
in spherical coordinates.

Problem8.11 Compute corrections of order k to the spectral density function of
an isotropic fluid of point particles. Estimate the size of these corrections relative
to the dominant terms in a light scattering experiment.

Problem 8.12 Amonatomic fluid of point particles, of massm, at time t = 0 has
a transverse average velocity v⟂(r, 0) = v0 ẑe−ax

2 . (a) Compute the average veloci-
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ty v⟂(r, t) at time t. (b) Compute the velocity autocorrelation function,

Cv⟂ ,v⟂ (q, T) = ∫ dr⟨v⟂(r + q, t)v⟂(r, 0)⟩T ,

where ⟨v20⟩ = kBT∕m. (Note: Do all integrations and find an explicit expression).

Problem 8.13 A fixed smooth hard sphere of radius a experiences a drag force F
due to the fluid flowing over its surface with a steady velocity u = uêz. The
drag force is given by F = ∫dS ⋅ P, where dS is the surface area element dS =
êra2 sin(θ)dθ dφ perpendicular to the surface of the sphere and P is the pressure
tensor. The fact that the surface is smooth means that no force tangent to its sur-
face can be exerted on it so êr × [êr ⋅ Π] = 0. Also, since the sphere is hard and at
rest, the normal component of the fluid at the surface of the sphere êr ⋅ v(r, θ) = 0.
Compute the drag force F (Stokes friction) on the sphere.

Problem 8.14 A rough spherical particle, of radius R, is immersed in an incom-
pressible fluid. The particle spins with constant angular velocityΩ = Ωêz , about
the z-axis, so at its surface the particle has velocity v(R) = Ω × R = ΩR sin θêφ .
The fluid is at rest, except for the local disturbance created by the spinning parti-
cle. Compute the torque on the particle due to the surrounding fluid. (Hint: Follow
the procedure in Section 8.5, but for the case ω = 0. Write the axial vector as A =
g(r)Ω and show that the hydrostatic pressure is zero, so that𝛁r(∇2

r g(r)) = 0. Solve
for g(r). The torque on the particle is given by τ = − ∫ dS ⋅ P × r, where P is the
pressure tensor.)

Problem 8.15 The entropy production, σ, in a thermocouple can be written

Tσ = − JS ⋅ ∇rT − I ⋅
(
∇r
μel
F

− FE
)

,

where JS is the entropy current, I is the current carried by the electrons, F is
Faraday’s constant, E is the electric field in the metal wires, and μel is the chem-
ical potential of the electrons. The balance equation for the entropy/volume, s,
is 𝜕s∕𝜕t = −∇ ⋅ JS + σ. The generalized Ohm’s laws can be written

JS = − λ
T
∇rT + Γ

T
I and E − ∇r

μel
F

= −ζ∇rT + RI ,

where λ is the coefficient of thermal conductivity at zero electrical current, R
is the isothermal electrical resistance, ζ is the differential thermoelectric pow-
er, and Γ∕T is the entropy transported per unit electric current. (a) Show that the
Onsager relation, LSE = LES, implies that Γ = Tζ. (b) Show that the entropy bal-
ance equation can be written 𝜕s∕𝜕t = λ∕T∇2

r (T ) − ∇r ⋅ ΓI∕T + RI2∕T . The first
term on the right is the entropy production due to thermal conductivity. The third
term on the right is the entropy production due to Joule heating. The second term
on the right is the entropy production due to the Peltier and Thomson effects.



332 8 Hydrodynamics

Problem 8.16 Consider the thermocouple shown in Figure 8.4. Replace the po-
tentiometer with a capacitor held at temperature T0 with wire ofmetal B attached
at points a and d. Show that

Δφad

ΔT
= ζA − ζB ,

where Δφad = φa−φd is the potential difference across the capacitor and ζA and ζB
are the differential thermoelectric powers in the two metals (cf. Problem 10.5).
Note that in this circuit, there is no electric current.

Problem8.17 The junction between twometal wires, A andB, in a thermocouple
has a circular cross-sectional area, πρ2, where ρ is the radius of the wires. Assume
that the transition between the two metals takes place smoothly over a distance,
ΔL, so the transition region (the junction) has a volume, πρ2ΔL. Assume that the
temperature is uniform throughout the junction and that an electric current, I,
is flowing through the junction. From Problem 10.5 the entropy production, σ
(entropy/volume ⋅ time), is given by

σ = −∇ ⋅
ΓI
T

+ RI2
T

.

In the limit ΔL → 0, show that the Peltier heat, π which is just the entropy/(area ⋅
time ⋅ current) produced (or lost) in the junction, is given by π = ΓB − ΓA.

Problem 8.18 Consider the flow of He(II) through a porous material. Only the
superfluid can flow so vn = 0. Also, the porous material exchanges momentum
with fluid so that momentum is not conserved and the momentum balance equa-
tion cannot be used. Use the linearized nondissipative superfluid hydrodynamic
equations to determine the dispersion relation for density oscillations (fourth
sound). Show that fourth sound has a speed c4 =

√
ρn∕ρc22 + ρs∕ρc

2
1 where

c1 and c2 are the speeds of first and second sound, respectively. Assume that
(𝜕P∕𝜕T )ρ = 0.

Problem 8.19 Derive the wave equations for first sound and second sound in
a nondissipative superfluid for the case when (𝜕P∕𝜕T )ρ = 0. Show that only
second sound propagates when the momentum density is zero. Show that only
first sound propagates when the super fluids and normal fluids move in phase
so vn = vs.
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9
Transport Coefficients

9.1
Introduction

Microscopic expressions for the transport coefficients for gases can be derived
from kinetic theory. In this chapter, we first derive expressions for the coefficients
of self-diffusion, shear viscosity, and thermal conductivity using the simplest pos-
sible mean free path arguments. Then to obtain a deeper understanding of trans-
port phenomena, we will derive the transport coefficients from a more rigorous
microscopic theory using a “kinetic equation” first derived by Boltzmann.
The Boltzmann equation works extremely well in providing numerical values

for the transport coefficients in gases and, to this day, remains one of the great
milestones in the history of statistical physics [19].Muchof this chapter is devoted
to a study of the Boltzmann equation.
We will apply Boltzmann’s equation to the case of dilute gas containing a mix-

ture of two types of particles which are distinguishable from one another.We will
derive microscopic expressions for the coefficients of self-diffusion, shear viscosi-
ty, and thermal conductivity. Themethodwe usewas introduced byResibois [184]
to derive the transport coefficients in classical gases. It has also provided a sim-
ple and elegant way to derive microscopic expressions for transport coefficients
in quantum gases [77], and even in Bose–Einstein condensates [78]. The method
proceeds as follows. We first derive the linearized hydrodynamic equations from
the linearized Boltzmann equation, introducing into them the transport coeffi-
cients, and we find the normal mode frequencies of the hydrodynamic equations
in terms of the transport coefficients. We next find the hydrodynamic eigenfre-
quencies of the Boltzmann equation and match these to the normal mode fre-
quencies of the hydrodynamic equations. This gives us the desired microscopic
expressions for the transport coefficients.

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.
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9.2
Elementary Transport Theory

Before we discuss the full microscopic theory of transport processes based on the
Boltzmann equation, it is useful to derive the transport coefficients using very
simple mean free path arguments [102, 169]. We will assume that the interac-
tion is very short ranged compared to the mean free path. For a low density gas
of N particles contained in a volume V , the interaction energy between parti-
cles is negligible compared to the kinetic energy of the particles. The normalized
probability density, F(v1), of finding a particle with velocity, v1 → v1 + dv1, where
v1 = p1∕m, is well described by theMaxwell–Boltzmann distribution,

F(v1) =
(
mβ
2π

)3∕2

exp

(
−βmv21

2

)
, (9.1)

which was derived in Section 5.3.

The Mean Free Path
Themean free path, λ, of a particle is the average distance it travels between col-
lisions. We shall assume that collisions occur at random in the gas, so a particle
has the same chance of collision in any interval of length r → r + dr. The average
number of collisions per unit length is 1∕λ. The probability that a collision occurs
in an interval dr is therefore dr∕λ.
Let P0(r)denote the probability thatno collision occurs in an interval of length r.

Then the probability that no collision occurs in an interval of length r + dr is

P0(r + dr) = P0(r)
(
1 − dr

λ

)
. (9.2)

The factor 1 − dr∕λ is the probability that no collision occurs in interval dr. We
multiply P0(r) and 1 − dr∕λ together because the events “collision in length r”
and “collision in length dr” are independent. If we expand the left-hand side of
Eq. (9.2) in a Taylor series, we obtain

d
dr
P0(r) = −1

λ
P0(r) (9.3)

which has the solution

P0(r) = e−r∕λ . (9.4)

The probability that no collision occurs in length of path r is a Poisson distribu-
tion.Theprobability that a particle suffers its first collision in an interval r→ r+dr
is P0(r)dr∕λ. The average distance traveled between collisions is

⟨r⟩ = ∞

∫
0

rP0(r)
dr
λ

= λ , (9.5)

which is just our original definition of the mean free path.
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The Collision Frequency
Consider a gas which contains particles of types A and B. Particles A (B) have
mass mA (mB), diameter dA (dB), and number density nA (nB). We assume that
each type of particle is distributed uniformly in space but has a velocity distribu-
tion given by the Maxwell–Boltzmann distribution (9.1).
The average relative speed between particles A and B is given by

⟨vr⟩AB ≡ ∫ dvA ∫ dvBF(vA)F(vB)|vA − vB| . (9.6)

The center-of-mass velocity of particles A and B is V cm = (mAvA + mBvB)∕(mA +
mB) and the relative velocity is vr = vA − vB. The Jacobian of the transformation
fromcoordinates vA and vB to coordinates vr andV cm is equal to one. Thus, ⟨vr⟩AB
can be rewritten

⟨vr⟩AB =
(
βMAB
2π

)3∕2 (βμAB
2π

)3∕2

∬ dvr dV cmvre−β∕2(MABV 2
cm+μABv2r ) ,

(9.7)

where MAB = mA + mB is the total mass and μAB = mAmB∕(mA + mB) is the
reduced mass. If we perform the integrations in (9.7), we obtain

⟨vr⟩AB =
(
8kBT
πμAB

)1∕2

(9.8)

for the average relative speed of particles A and B.
We can now find the frequency of collisions between A particles and B par-

ticles. Assume that all B particles in the gas are at rest and an A particle moves
through the gas with a speed ⟨vr⟩AB. The A particle sweeps out a collision cylin-
der of radius dAB = (dA + dB)∕2 (radius of the sphere of influence) and vol-
ume πd2AB⟨vr⟩ABt in time t. The number of B particles that particle A collides
with in time t is fABt, where fAB is the collision frequency

fAB = nBπd2AB⟨vr⟩AB . (9.9)

Therefore, the total number of collisions per unit volume per second, νAB, be-
tween particles of type A and type B is

νAB = nAnBπd2AB⟨vr⟩AB = nAnBπd2AB

(8kBT
πμAB

)1∕2

. (9.10)

From Eq. (9.10) we can easily write down the collision frequency νAA between
identical particles:

νAA = 1
2
n2Aπd

2
AA⟨vr⟩AA = 1

2
n2Aπd

2
AA

(16kBT
πmA

)1∕2

. (9.11)

The extra factor of 1∕2 enters because the colliding particles are identical and it
prevents overcounting.
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If we consider a gas of identical particles, then the mean free path, λ, the col-
lision frequency for a single particle, fAA = nAπd2AA⟨vr⟩, and the average speed,⟨v⟩, are simply related by the equation

λ =
⟨v⟩
fAA

= ⟨v⟩τ = 1√
2nAπd2AA

, (9.12)

where τ is the collision time (the time between collisions), and the average speed,⟨v⟩, is related to the relative speed by the relation ⟨vrel⟩ = √
2⟨v⟩.

Tracer Particle Current
Let us consider a gas of particles that are identical in every way except that a small
fraction of the particles have a radioactive tracer attached. We shall assume that
the density of tracer particles, nT(z), varies in the z-direction, while the total par-
ticle density, n, is held constant. As a first step in obtaining the tracer particle
current (number/(area ⋅ time)), we draw an imaginary wall in the fluid at z = 0
and find the net flux of particles across the wall.
First find the number of particles that hit the wall from above. Consider a seg-

ment of the wall, dS, and place the origin of coordinates at the center of dS. Next
consider a volume element, dV , of the gas located at position r, θ, φ above the
wall (see Figure 9.1a). The average number of tracer particles undergoing colli-
sions in dV per unit time is f nT(z)dV = (⟨v⟩∕λ)nT(z)dV , where f is the colli-
sion frequency. Particles in dV leave in randomdirections (any direction is equally
likely). The fraction of particles that move towards dS is dΩ∕(4π), where dΩ is
the solid angle subtended by dS and dΩ = dS| cos θ|∕r2. Not all particles leav-
ing dV in the direction of dS reach dS. The probability that a tracer particle will
reach dS is e−r∕λ (the probability that it will not undergo a collision). Combin-
ing the above results, we obtain the following expression for the number of tracer
particles, dnT(r), which collide in dV , leave directed toward dS, and reach dS
without another collision:

dnT(r) =
⟨v⟩nT(z)dV

λ
dS| cos θ|

4πr2
e−r∕λ . (9.13)

Figure 9.1 (a) Only a fraction of the particles in volume element, dV , reach the surface area el-
ement, dS, without undergoing a collision en route. (b) A particle has a collision a distance Δz
above the plan and transports property A to another particle a distance Δz below the plane.
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The total number hitting a unit area of wall per unit time from above, Ṅ+, is found
by integrating over the entire volume for z > 0:

Ṅ+ =
⟨v⟩
4πλ

∞

∫
0

r2 dr

π∕2

∫
0

sin θ dθ

2π

∫
0

dφnT(z) cos θ
e−r∕λ
r2

. (9.14)

For the case in which the tracer particles are distributed uniformly throughout
the gas so n(z) = constant, (9.14) reduces to Ṅ+ = n⟨v⟩∕4.
For small variations in tracer density we may expand nT(z) in a Taylor series

about the origin,

nT(z) = nT(0) + z
(
𝜕nT
𝜕z

)
0
+ z2

2

(
𝜕2nT
𝜕z2

)
0
+⋯ (9.15)

If nT(z) is a slowly varying functionof z, thenhigher order derivatives (𝜕2nT∕𝜕z2)0,
(𝜕3nT∕𝜕z3)0, and so on, will be small. Because of the factor e−r∕λ in the integral in
Eq. (9.14), only small values of z (values of z ≈ λ) will contribute. Therefore, we
can terminate the expansion at z2∕2(𝜕2nT∕𝜕z2)0.
The net number of tracer particlesmoving in the negative z-direction that cross

a unit area of the wall per unit time is given by (Ṅ+ − Ṅ−), where Ṅ− is the number
crossing a unit area per unit time in the positive z-direction. The expression for Ṅ−
is the same as for Ṅ+ except that θ is integrated from θ = π∕2 → π and | cos θ| is
changed to − cos θ. Therefore,

(Ṅ+ − Ṅ−) =
⟨v⟩
4πλ

∞

∫
0

drr2
π

∫
0

sin θ dθ

2π

∫
0

dφnT(z) cos θ
e−r∕λ
r2

. (9.16)

If we substitute Eq. (9.15) into Eq. (9.16), the first and third terms are identically
zero and we obtain

(Ṅ+ − Ṅ−) =
⟨v⟩λ
3

(
𝜕nT
𝜕z

)
0
. (9.17)

If the density increases in the z-direction, then (𝜕nT∕𝜕z)0 > 0 and (Ṅ+ − Ṅ−) > 0.
Therefore, there will be a net transport of particles in the negative z-direction.
If we let JD(z) = Ṅ− − Ṅ+ denote the number of tracer particles crossing a unit

area at z in unit time in the positive z-direction, then

JD(z) = −D
𝜕nT(z)
dz

, (9.18)

where

D =
⟨v⟩λ
3

(9.19)

is the coefficient of self-diffusion.



338 9 Transport Coefficients

9.2.1
Transport of Molecular Properties

It is possible to treat all transport processes in a unified manner. Assume that A =
A(z) is the molecular property to be transported and that it varies in the z-
direction. Let us draw an imaginary plane in the gas at z = z0. When a particle
crosses the plane, it transports the value of A it obtained in its last collision and
transfers it to another particle in its next collision.
Let A(z0 + Δz) be the value of A transported in the negative z-direction across

the plane where Δz = aλ is the distance above the plane where the particle had
its last collision (cf. Figure 9.1b), λ is the mean free path and a is a proportionality
constant. The average number of particles crossing the plane per unit area per
unit time is n⟨v⟩. The net amount of A transported in the positive z-direction per
unit area per unit time (the current) is

n⟨v⟩[A(z0 − Δz) − A(z0 + Δz)] = −2n⟨v⟩ΔzdA
dz

= −2an⟨v⟩λdA
dz

. (9.20)

More generally, we can write the current, JA, as

JA(z) = −bAn⟨v⟩λdAdz , (9.21)

where bA is a proportionality constant. Let us now apply Eq. (9.21) to the cases of
self-diffusion, viscosity, and heat conductivity.
Assume that the concentration of tracer particles per particle is A = nT(z)∕n.

If the density of tracer particles varies in the z-direction, there will be a concen-
tration gradient (1∕n)(dnT∕dz) = dA∕dz causing them to diffuse through space.
If we let JA = JD , where JD is the tracer particle current then, from Eq. (9.21), we
obtain

JD(z) = −bA⟨v⟩λdnTdz
= −D

dnT
dz

. (9.22)

The coefficient of self-diffusion is given by D = ⟨v⟩λ∕3 if we let bA = 1∕3.
If a gas is stirred, one part will move relative to another part. Let us assume that

the y-component of the average velocity varies in the z-direction. Then A(z) =
m⟨v y(z)⟩ and JA = Jz y, where Jz y is the net flux of the y-component ofmomentum
per unit area per unit time in the z-direction. From Eq. (9.21) we have

Jz y = −1
3
nm⟨v⟩λd⟨v y(z)⟩

dz
= −η

d⟨v y(z)⟩
dz

(9.23)

where

η = 1
3
nm⟨v⟩λ (9.24)

is the coefficient of shear viscosity. From Eq. (9.12) we know that λ = (
√
2nπd2)−1

for hard spheres of diameter d. Therefore, the coefficient of shear viscosity is

η =
m⟨v⟩

3
√
2πd2

(9.25)
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and is independent of density – a somewhat surprising result that is verified by
experiment.
If the temperature of the gas varies in the z-direction then

A(z) = 1
2
m⟨v2(z)⟩ = 3

2
kBT(z) (9.26)

and JA = JQ is the heat current (the net flux of thermal energy per unit area per
unit time). Since bA = 1∕3, Eq. (9.21) gives

JQ = −K dT
dz

, (9.27)

where

K = 1
2
n⟨v⟩λkB = 1

3
nm⟨v⟩λcv (9.28)

is the coefficient of thermal conductivity and cv is the specific heat.

9.2.2
The Rate of Reaction

When chemical reactions occur in a dilute gas, we can use elementary arguments
to obtain a qualitative expression for the rate of the reactions [102]. We cannot
simply equate the number of collisions between various molecules to the rate at
which they undergo chemical reactions. A simple example will illustrate this. Let
us consider the reaction 2HI→H2 + I2. The radius of the sphere of influence may
be obtained from viscosity data on HI gas (d = 4 × 10−8 cm). At a temperature
T = 700K, pressure P = 1 atm, the collision frequency is easily computed and
yields ν(HI)2 = 1.3 × 1028∕s. If every collision between HI molecules contributed
to the reaction, then for a gas containing 1023 molecules the reaction would be
completed in a fraction of a second. However, experimentally one finds that it
takes a much longer time to complete the reaction, the reason being that there is
an energy barrier that must be surmounted before a chemical reaction can occur.
Not all collisions lead to a reaction.
In order for a reaction of the type A + B → C + D to occur, a certain amount

of the kinetic energy of A and B must be absorbed during the collision. A and B
first form an intermediate state (AB), which then can decay into the products C
and D. The intermediate state (AB) is called an activated complex and A and B are
called the reactants. The amount of energy, ε, that must be absorbed in order to
form the activated complex is called the activation energy.
All of the energy that goes into exciting the activated complex must come from

the energy of relative motion of the reactants. Energy in the center-of-mass mo-
tion cannot contribute. If ε is the activation energy of the activated complex, then
a reaction between A and B can occur only if the relative velocity of A and B is
such that

1
2
μABv2r > ε . (9.29)
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Therefore, to find the rate at which reactions between A and B can take place, we
must multiply the collision frequency between A and B by the probability that A
and B have a relative velocity greater than

√
2ε∕μAB .

The probability that the molecules A and B have center-of-mass velocity in the
range V cm → V cm + dV cm and a relative velocity in the range vr → vr + dvr is
given by the Maxwell–Boltzmann distribution P(V cm , vr)dV cm dvr, where

P(V cm , vr) =
(
βMAB

2π

)3∕2 (βμAB
2π

)3∕2

e−(β∕2)(MABV 2
cm+μABv2r ) . (9.30)

The probability that A and B have a relative velocity in the range vr → vr + dvr is
found by integrating Eq. (9.30) over the center-of-mass velocity. We then find

P(vr)dvr =
( βμAB

2π

)3∕2

e−(β∕2)μABv2r dvr . (9.31)

The probability that A and B have a relative velocity vr >
√
2ε∕μAB is found by

integrating Eq. (9.31) from vr =
√
2ε∕μAB to vr =∞ and integrating over all angles.

Thus,

Prob
(
vr >

√
2ε
μAB

)
=

(βμAB
2π

)3∕2 π

∫
0

dθ

2π

∫
0

dφ

∞

∫√
2ε∕μAB

dvr

× v2r sin θe
−(β∕2)μABv2r = fβ,εe−βε . (9.32)

The probability that a reaction takes place depends exponentially on the activation
energy. The quantity fβ,ε is a function of temperature and activation energy. Its
form is not important here.
We can now write the following qualitative expression for the rate of reaction

of A and B. The number of reacting molecules, NR, per second per unit volume is

ṄR = Kβ,ε νABe−βε , (9.33)

where νAB is the collision frequency between molecules A and B, and the coeffi-
cient Kβ,ε depends on activation energy and temperature and may also depend on
the geometry of the interacting molecules A and B. We may rewrite Eq. (9.33) in
the form of a rate equation. If we let nA denote the number of moles of A per unit
volume and use Eq. (9.10), we can write

dnA
dt

= −K ′
ε,βd

2
ABe

−βεnAnB ≡ −kABnAnB . (9.34)

In Eq. (9.34), K ′
ε,β is a function of ε and β and may depend on the geometry of A

and B. The quantity kAB is called the rate constant for the reaction. It depends ex-
ponentially on the activation energy.We see that the activation energy is themost
important quantity in determining the rate of a chemical reaction, since a small



3419.3 The Boltzmann Equation

change in ε can cause a large change in kAB. Equation (9.34) gives the rate of de-
crease of A in the fluid due to the reaction A + B → C + D.
In general, the expression describing a given chemical reaction is written in the

form

−νAA − νBB
k1
⇌
k2
νCC + νDD , (9.35)

where νi are the stoichiometric coefficients. The constant k1 is the rate constant
for the forward reaction and k2 is the rate constant for the backward reaction. The
rate of change of A can, in general, be written

dnA
dt

= −k1n
|νA|
A n|νB|B + k2n

νc
C n

νc
D , (9.36)

where |νA| denotes the absolute value of νA.
9.3
The Boltzmann Equation

Let us consider a dilute gas of particles of mass, m, which interact via a spher-
ically symmetric potential V (|q i − q j|). We shall assume that the time a parti-
cle spends between collisions is very much longer than the duration of a colli-
sion. We shall describe the behavior of the system in terms of a number density
f (p, q, t) rather than a probability density. The distribution function, f (p, q, t),
gives the number of particles in the six-dimensional phase space volume element
p→ p+dp, q→ q+dq. It is related to the reduced probability density ρ1(p, q, t)
through the relation

f (p, q, t) ≡ Nρ1(p, q, t) , (9.37)

where ρ1(p, q, t) is defined in Appendix A.
Let us now consider a volume element, ΔV1 = d p1Δr, lying in the region p1 →

p1 + d p1, r → r + Δr of the six-dimensional phase space. We shall assume the
volume element Δr is large enough to contain many particles and small enough
that the distribution function f (p, r, t) does not vary appreciably over Δr. We
wish to find an equation for the rate of change of number of particles in ΔV1.
This change will be due to free streaming of particles into (and out of ) ΔV1 and
to scattering of particles into (and out of ) ΔV1 because of collisions. The rate of
change of f (p1, r , t)may be written in the form

𝜕 f1
𝜕t

= −ṙ1 ⋅
𝜕 f1
𝜕r1

+
𝜕 f1
𝜕t

||||coll . (9.38)

The first term on the right is the contribution due to streaming (flow through
the surface of ΔV1), and the second term is the contribution due to collisions.
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If an external field were present, then an additional streaming term of the form
− ṗ1 ⋅ 𝜕 f1∕𝜕p1 would be present on the right.
We shall assume that the gas is dilute enough that only two-body collisions need

be considered. Furthermore, we shall assume that all collisions are elastic. In order
to write an expression for 𝜕 f ∕𝜕t||coll, we must use ideas from two-body scattering
theory. Two-body scattering theory is reviewed in Appendix E.

9.3.1
Derivation of the Boltzmann Equation

Let us denote the rate of particles scattered out of ΔV1 by (𝜕 f−∕𝜕t)Δr d p1. The
number of particles in ΔV1 at time t with coordinates p1 → p1 + d p1 and r →
r +Δr is f (p1, r, t)Δr dp1. All particles of momentum p2 lying within a cylinder
of radius b and volume dq2 = 2πb dbg dt collide with particles p1 in time dt,
wheremg = |p1− p2|. The number of suchparticles is f (p2, r, t)2πb dbg dt d p2.
The total number of collisions, N

(
p1 p2 → p3 p4

)
, per unit volume in time dt

between particles of momentum p1 and particles of momentum p2 resulting in
new momenta p3 and p4 is given by

N
(
p1 p2 → p3 p4

)
= 2πgb db dt f (p2, r, t) f (p1, r, t)d p1 dp2 (9.39)

(see Appendix E). In Eq. (9.39) we have assumed that the distribution functions
do not change appreciably in position space for the volume element ΔV1 we are
considering. Also, we have assumed that the particles p1 and p2 are completely
uncorrelated. This assumption is calledmolecular chaos, or Stosszahl-Ansatz.
In analogy to Eq. (9.39) we may write for the inverse scattering process

N
(
p3, p4 → p1, p2

)
= 2πgb db dt f

(
p3, r, t

)
f
(
p4, r , t

)
d p3 d p4 .

(9.40)

For elastic collisions, d p1 d p2 = d p3 d p4. (This is easily proved if we note that
dp1 d p2 = dP1,2 d p1,2 and d p3 d p4 = dP3,4 dp3,4. Furthermore, for elastic colli-
sions, dP1,2 = dP3,4 and p21,2 d p1,2 = p23,4 d p3,4. Therefore, d p1 d p2 = d p3 d p4.)
We may now combine Eqs. (9.39) and (9.40) to obtain the following expression
for the net increase, (𝜕 f1∕𝜕t)coll dp1, in number of particles with momentum
p1 → p1 + d p1 per unit volume per unit time:(

𝜕 f1
𝜕t

)
coll

d p1 = d p1 ∫ d p2 ∫ dΩgσcm(b, g)

× ( f (p3, r, t) f
(
p4, r, t

)
− f (p1, r, t) f (p2, r, t)) ,

(9.41)

where dΩ = sin(Θ)dΘ dα, σcm is the center-of-mass collision cross section, and
Θ and α are the polar and azimuthal scattering angles, respectively. If we now
combine Eqs. (9.38) and (9.41), we obtain

d f1
𝜕t

+ q̇1 ⋅
𝜕 f1
𝜕r

= ∫ d p2 ∫ dΩgσcm(b, g)( f3 f4 − f1 f2) , (9.42)
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where f i = f (pi , r, t). Equation (9.42) is the Boltzmann equation [19, 26, 133,
202]. The Boltzmann equation is a nonlinear integrodifferential equation for
f (pi , r, t).
We can write the Boltzmann equation in a form where conservation of ener-

gy and momentum is made explicit. It only requires a bit of algebra. The rela-
tive velocity before the collision is g = v2 − v1, and after the collision it is g′ =
v4 − v3, where |g| = |g′| = g. For simplicity, assume that the initial relative ve-
locity vector, g, lies along the z-axis. Then g = g êz and g′ = g sin(Θ) cos(α)êx +
g sin(Θ) sin(α)ê y + g cos(Θ)êz (see Appendix E). If we define dΩ = d(cos(Θ))dα,
we can write

g dΩ = ∫ g′ dg′ dΩδ(g′ − g) = ∫ g′ dg′ dΩδ(g′ − g) ∫ dV 3,4δ(3)(V 3,4 − V 1,2)

= m
2 ∬ dV 3,4 dg′δ(E3,4 − E1,2)δ(3)(V 3,4 − V 1,2) ,

(9.43)

where dg′ = g′2 dg′ dΩ and V 1,2 = (v1 + v2)∕2 is the center-of-mass velocity. We
have used the fact that the total kinetic energy can be written

E1,2 =
m
2

(
v21 + v

2
2
)
= m

(
V 2
1,2 +

1
4
g2
)
= m

(
V 2
3,4 +

1
4
g′2

)
. (9.44)

We can also write Eq. (9.43) as

g dΩ = 8
m ∬ d p3dp4δ

(
p23 + p

2
4 − p

2
1 − p

2
2
)
δ(3)(p3 + p4 − p1 − p2) ,

(9.45)

where we have used the fact that m6 dV 3,4 dg′ = d p3 d p4 and δ(E3,4 − E1,2)
δ(V 3,4 − V 1,2) = 16m4δ(p21 + p22 − p23 − p24)δ

(3)(p1 + p2 − p3 − p4). If we now
define

δ(4)1,2;3,4 ≡ 8
m
δ
(
p21 + p

2
2 − p

2
3 − p

2
4
)
δ(3)(p1 + p2 − p3 − p4), , (9.46)

the Boltzmann equation takes the form

d f1
𝜕t

+ v1 ⋅
𝜕 f1
𝜕r

= ∫ dp2 ∫ d p3 ∫ dp4σcm(b,Θ)δ
(4)
1,2;3,4( f3 f4 − f1 f2) , (9.47)

where v1 = q̇1. Note that we have written the scattering cross section in terms of
the polar scattering angle Θ, rather than the impact parameter, b.

9.4
Linearized Boltzmann Equations for Mixtures

Wewish to obtainmicroscopic expressions for the transport coefficients for a two-
component mixture whose distribution function varies in time and space accord-
ing to the Boltzmann equation.
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9.4.1
Kinetic Equations for a Two-Component Gas

Let us consider a dilute gas mixture of particles of type A and B which undergo
collisions, but no chemical reactions. The Boltzmann equation for typeAparticles
is

𝜕 f1,A
𝜕t

+ v1 ⋅
𝜕 f1,A
𝜕r

=
∑
α,β,γ

∭ dp2 d p3 d p4σα,β;A,γ (g ,Θ)

× δ(4)(1A, 2γ ; 3α , 4β)
(
f3,α f4,β − f1,A f2,γ

)
, (9.48)

and the Boltzmann equation for type B particles is

𝜕 f1,B
𝜕t

+ v1 ⋅
𝜕 f1,B
𝜕r

=
∑
α,β,γ

∭ d p2 dp3 dp4σα,β;B,γ (g ,Θ)

× δ(4)(1B, 2γ ; 3α , 4β)
(
f3,α f4,β − f1,B f2,γ

)
, (9.49)

where the summations over α, β, and γ are over type-A and type-B particles and
we have used the notations f1,A = fA(p1, r, t) and f1,B = fB(p1, r, t). Since there
are no chemical reactions, the number of A and B particles is conserved during
collisions.Only the cross sections σA,A;A,A, σA,B;A,B, σB,A;B,A, and σB,B;B,B are nonze-
ro. The conservation of momentum and kinetic energy nowmust take account of
the possible different mass of type-A and type-B particles so that

δ(4)(1A, 2γ ; 3α , 4β) = 8δ
(
mAv21 + mγv22 − mαv23 − mβv24

)
× δ(3)(mAv1 + mγv2 −mαv3 −mβv4) . (9.50)

When computing transport coefficients, it is sufficient to consider systems with
small-amplitude disturbance from equilibrium. We therefore linearize the Boltz-
mann equation in terms of deviations from the equilibrium state of the gas. De-
note the type-A (type-B) particle equilibrium distribution by f 0A (p1) ( f 0B (p1)),
where

f 0j (p1) = n j

(
β

2πmj

)3∕2

e−βp21∕(2mj) , (9.51)

j = A , B, n j is the particle density, and mj is the mass of particles of type-j parti-
cles.
As a first step in linearizing the Boltzmann equation, we can write

fA(p1, r, t) = f 0A (p1)(1 + hA(p1, r, t)) (9.52)

and

fB(p1, r, t) = f 0B (p1)(1 + hB(p1, r, t)) (9.53)
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where hA(p1, r, t) and hB(p1, r, t) denote small amplitude disturbances in the
type-A and type-B particle distributions, respectively.
If we substitute Eqs. (9.52) and (9.53) into Eqs. (9.48) and (9.49), and neglect

terms of second order or higher in hA(p1, r, t), and hB(p1, r, t), we obtain
𝜕h1,A
𝜕t

+ v1 ⋅
𝜕h1,A
𝜕r

=
∑
β
∭ d p2 dp3 dp4σA,β;A,β(g ,Θ) f 0

β (p2)

× δ(4)(1A, 2β ; 3A, 4β)
(
h3,A + h4,β − h1,A − h2,β

)
(9.54)

and
𝜕h1,B
𝜕t

+ v1 ⋅
𝜕h1,B
𝜕r

=
∑
β

∭ d p2 d p3 d p4σB,β;B,β(g ,Θ) f 0
β (p2)

×δ(4)(1B, 2β ; 3B, 4β)
(
h3,B + h4,β − h1,B − h2,β

)
. (9.55)

In Eqs. (9.54) and (9.55), we have used kinetic energy conservation (contained in
δ(4)(1A, 2β ; 3A, 4β)) to write f 0A

(
p1

)
f 0β

(
p2

)
= f 0A (p3) f 0β (p4). Equations (9.54)

and (9.55) are the linearized Boltzmann equations for the dilute gas mixture of
particles A and B.
We can now decouple diffusion and thermal diffusion effects from viscous and

thermal effects. Let us define the total distribution by

h+(p1, r, t) = hA(p1, r, t) + hB(p1, r, t) (9.56)

and the difference distribution by

h−(p1, r, t) = hA(p1, r, t) − hB(p1, r, t) . (9.57)

As long as h−(p1, r, t) is nonzero, diffusion will occur in the gas.

Exercise 9.1

Assume that the masses of A and B are equal, but their collision cross sections
differ and are given by σA,A;A,A = σ0 + σ1, σB,B;B,B = σ0 − σ1, σA,B;A,B = σB,A;B,A = σ0.
Obtain the equations of motion for the total distribution, h+(p1, r, t), and for the
difference distribution, h−(p1, r, t).

Answer: The equations of motion for h+(p1, r , t), and h−(p1, r, t) can be ob-
tained by adding and subtracting, respectively, Eqs. (9.54) and (9.55). If we add
Eqs. (9.54) and (9.55), we obtain

𝜕h+1
𝜕t

+ v1 ⋅
𝜕h+1
𝜕r

= ∭ d p2 d p3 d p42σ(g ,Θ)δ(4) (1, 2; 3, 4) f 0(p2)

×
[
2σ0

(
h+3 + h+4 − h+1 − h+2

)
+ 2σ1

(
h−3 + h−4 − h−1 − h−2

)]
. (9.58)

If we subtract Eqs. (9.54) and (9.55), we obtain

𝜕h−1
𝜕t

+ v1 ⋅
𝜕h−1
𝜕r

= ∭ d p2 d p3 d p42σ(g ,Θ)δ(4) (1, 2; 3, 4) f 0(p2)

×
[
2σ0

(
h−3 − h−1

)
+ 2σ1

(
h+3 + h+4 − h+1 − h+2

)]
. (9.59)



346 9 Transport Coefficients

These two equations are coupled because they both depend on h+ and h−. How-
ever, they have very different behavior. The right-hand side of Eq. (9.58) con-
serves particle number, energy, and momentum and describes viscous, and ther-
mal transport. The right-hand side of Eq. (9.59) only conserves particle number,
and describes diffusion and thermal diffusion in the gas mixture (see Section 8.7).

For simplicity, we assume that particles A and B are distinguishable, but dynam-
ically identical. That is, we assume that they have the same mass, mA = mB = m
(or mass differences are negligible), and that the cross sections for collisions be-
tween A and A, B and B, and A and B particles are the same. Then we can write
σA,A;A,A = σA,B;A,B = σB,A;B,A = σB,B;B,B = σ. The equations of motion for the total
distribution, h+(p1, r, t), and for the difference distribution, h−(p1, r, t), can be
obtained by adding and subtracting, respectively, Eqs. (9.54) and (9.55). If we add
Eqs. (9.54) and (9.55), we obtain

𝜕h+1
𝜕t

+ v1 ⋅
𝜕h+1
𝜕r

=
∑
β

∭ d p2 d p3 d p42σ(g ,Θ) f 0(p2)

× δ(4)(1, 2; 3, 4)
(
h+3 + h+4 − h+1 − h+2

)
, (9.60)

which is the linearized Boltzmann equation for the total particle distribution. If
we subtract Eqs. (9.54) and (9.55), we obtain

𝜕h−1
𝜕t

+ v1 ⋅
𝜕h−1
𝜕r

=
∑
β

∭ d p2 d p3 d p42σ(g ,Θ) f 0(p2)

× δ(4)(1, 2; 3, 4)
(
h−3 − h−1

)
, (9.61)

which is called the Lorentz–Boltzmann equation and is the kinetic equation de-
scribing diffusion. Note that for this gas mixture of dynamically identical distin-
guishable particles there is no thermal diffusion, but only viscosity, thermal con-
ductivity and particle diffusion. In subsequent sections, wewill obtainmicroscop-
ic expressions for the coefficients of shear viscosity η, thermal conductivityK , and
diffusionD for this gas mixture of dynamically identical distinguishable particles.

9.4.2
Collision Operators

The linearized Boltzmann equation can be written in the form

𝜕h+1
𝜕t

+ ṙ1 ⋅
𝜕h+1
𝜕r

= Ĉ+
1 h

+
1 , (9.62)
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where Ĉ+
1 is theBoltzmann collision operator. When Ĉ+

1 acts on an arbitrary func-
tion g(p1), it gives

Ĉ+
1 g(p1) = 2∭ dp2 dp3 d p4σ(g ,Θ)δ

(4)
1,2;3,4 f

0(p2)(g3 + g4 − g1 − g2) .

(9.63)

We introduce the following scalar product of two functions φ(p1) and χ(p1):

⟨φ, χ⟩ ≡ (
β

2πm

)3∕2

∫ d p1e−βp
2
1∕(2m)φ(p1)χ(p1) . (9.64)

Using Eq. (9.64) it is easy to show that Ĉ+ is a self-adjoint operator and that⟨Φ, Ĉ+χ⟩ = ⟨Ĉ+Φ, χ⟩ (proof of these statements are left as problems).
The operator Ĉ+

p has five eigenfunctions with eigenvalue zero. They are the five
additive constants of the motion: 1, p, and p2∕(2m). All other eigenvalues of Ĉ+

p
are negative. We prove this by writing the expectation value of Ĉ+

p in the form

⟨
Φ, Ĉ+

pΦ
⟩
= −1

4
N
V

(
β

2πm

)3

⨌ d p1 dp2 dp3 d p4e−β∕(2m)(p21+p22)

× δ(4)1,2;3,4σ(g ,Θ)(Φ3 + Φ4 − Φ1 − Φ2)2

(9.65)

(we leave proof of this as a problem). Thus, ⟨Φ, Ĉ+
pΦ⟩ is less than or equal to

zero for an arbitrary function Φ(p). It will be equal to zero only if (Φ3 + Φ4 −
Φ1 − Φ2) = 0. This equation is satisfied if Φ(p) is a linear combination of the
five additive constants of motion 1, p, and p2∕(2m). Therefore, Ĉ+

p is a negative
semidefinite operator with a nonpositive spectrum of eigenvalues.
The linearized collisionoperator Ĉ+

p behaves as a scalar operatorwith respect to
rotations in momentum space. Thus, Ĉ+

ph(p) transforms in the same way under
rotation in momentum space as does h(p). Eigenfunctions of Ĉ+

p have the form

Ψr,l,m(p) = Rr,l(p)Yl,m
(

p|p|
)
, (9.66)

where Yl,m(p∕|p|) are spherical harmonics.
Let us now solve the linearized Boltzmann equation (9.60) for the case of a spa-

tially homogeneous system. It takes the form

𝜕h+1
𝜕t

= Ĉ+
1 h

+
1 = 2∭ d p2 d p3 d p4σ(g ,Θ)δ

(4)
1,2;3,4 f

0
2
(
h+3 + h+4 − h+1 − h+2

)
,

(9.67)

where h+1 = h+(p1, t), and so on. We may write the solution to Eq. (9.67) in the
form

h+1 (p1, t) =
∑
r,l,m

eλr,l tAr,l,mΨr,l,m(p1) . (9.68)
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The fact that the eigenvalues λr,l must all be negative or zeromeans that h+1 (p1, t)
will decay to a time-independent quantity after a long enough time and the system
relaxes to equilibrium.
The Lorentz–Boltzmann equation can be written in the form

𝜕h−1
𝜕t

+ q̇1 ⋅
𝜕h−1
𝜕r

= Ĉ−
1 h

−
1 , (9.69)

where the Lorentz–Boltzmann collision operator Ĉ−
1 , when acting on an arbitrary

function Φ(p1) of p1, yields

Ĉ−
1Φ(p1) = 2∭ d p2 d p3 d p4σ(g ,Θ)δ

(4)
1,2;3,4 f

0
3 (Φ3 − Φ1) . (9.70)

The collision operator Ĉ−
1 differs from Ĉ+

1 in that it has only one zero eigenvalue,
a constant, while the Boltzmann collision operator, Ĉ+

1 , has a fivefold degenerate
zero eigenvalue. We can use the Boltzmann and Lorentz–Boltzmann equations
to obtain microscopic expressions for the coefficients of self-diffusion, viscosity,
and thermal conductivity.

9.5
Coefficient of Self-Diffusion

We shall derive the coefficient of self-diffusion using a method due to Resi-
bois [184] that consists of two steps. In the first step, we derive the linearized
hydrodynamic equation from the Lorentz–Boltzmann equation and introduce
the self-diffusion coefficient into the hydrodynamic equation using Fick’s law.We
then can find the dispersion relation for the hydrodynamic diffusion mode. In
the second step we use Rayleigh–Schrödinger perturbation theory to obtain the
hydrodynamic eigenvalues of the Lorentz–Boltzmann equation. We then match
the eigenvalue of the hydrodynamic equation to that of the Lorentz–Boltzmann
equation and thereby obtain a microscopic expression for the self-diffusion coef-
ficient.

9.5.1
Derivation of the Diffusion Equation

The difference in A and B particle densities at point r is given by

m(r, t) = nA(r, t) − nB(r, t) = ∫ d p1 f 0(p1)h−(p1, r, t) (9.71)

(at equilibrium this difference is zero). If we multiply the Lorentz–Boltzmann
equation by f 0(p1) and integrate over p1, we obtain

𝜕

𝜕t
m(r , t) + ∇r ⋅ JD(r, t) = 0 , (9.72)
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where JD(r, t) is the diffusion current and is defined microscopically as

JD(r, t) = ∫ d p1
p1

m
f 0(p1)h−(p1, r , t) . (9.73)

The contribution from the collision term is identically zero because C(−)
p 1= 0.We

now introduce the self-diffusion coefficient using Fick’s law:

JD(r, t) = −D∇rm(r , t) . (9.74)

If we combine Eqs. (9.72) and (9.74), we obtain the following hydrodynamic equa-
tion for the self-diffusion process:

𝜕

𝜕t
m(r, t) = D∇2

rm(r, t) . (9.75)

To find the dispersion relation for hydrodynamic modes we define the Fourier
transform

m(r, t) = 1
(2π)4 ∫ dk ∫ dωm̃(k , ω)ei(k ⋅r−ωt) , (9.76)

which allows us to study each Fourier component of the diffusion equation sepa-
rately. If we substitute Eq. (9.76) into Eq. (9.75) we obtain

−iωm̃(k , ω) + Dk2m̃(k , ω) = 0 . (9.77)

From Eq. (9.77) we obtain the following dispersion relation for the self-diffusion
mode:

ω = −iDk2 . (9.78)

The diffusion frequency is imaginary, which means that the contribution to the
density m(r , t) with wavevector k dies out in a time which depends on the diffu-
sion coefficient and the wavevector k:

m(r, t) ∼ eik⋅re−Dk2t . (9.79)

Very-long-wavelength disturbances take a long time to decay away. This is the
characteristic behavior of a hydrodynamicmode. Since the identity of the particles
is preserved in each collision, the only way to cause difference in the density of A
and B particles to disappear is to physically transport particles from one part of
the fluid to another. For very-long-wavelength disturbances the equalization takes
a long time since the particles must be transported over long distances.

9.5.2
Eigenfrequencies of the Lorentz–Boltzmann Equation

We can obtain the hydrodynamic eigenfrequencies of the Lorentz–Boltzmann
equation by using the Rayleigh–Schrödinger perturbation theory [136]. We can
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then equate the eigenfrequency of the hydrodynamic equation ω = −iDk2 to the
hydrodynamic eigenfrequency of the Lorentz–Boltzmann equation and thereby
obtain a microscopic expression for the coefficient of self-diffusion, D.
Since Eq. (9.69) is a linear equation for h−(p1, r, t), we can consider each Fourier

component separately and write

h−(p, r, t) = |Ψn(p, k)⟩−eik⋅re−iωnt . (9.80)

We then obtain the following eigenvalue equation for |Ψn(p, k)⟩−:(
Ĉ−
p − ikêk ⋅

p
m

) |Ψn(p, k)⟩− = −iω−
n |Ψn(p, k)⟩− , (9.81)

where êk = k∕|k| and the eigenfunctions, |Ψn(q, k)⟩−, are assumed to be or-
thonormal. For long-wavelength hydrodynamic disturbances, k will be a small
parameter, and we can use Rayleigh–Schrödinger perturbation theory to obtain
a perturbation expansion for ωn in powers of k.
Let us assume that both ω−

n and |Ψn(q, k)⟩− can be expanded in powers of k.
Then

ωn = ω(0)
n + kω(1)

n + k2ω(2)
n +⋯ (9.82)

and

|Ψn⟩− = |Ψ (0)
n ⟩− + k|Ψ (1)

n ⟩− + k2|Ψ (2)
n ⟩− +⋯ (9.83)

If we substitute Eqs. (9.82) and (9.83) into Eq. (9.81), we obtain the following ex-
pression for quantities ω(0)

n , ω(1)
n and ω(2)

n :

ω(0)
n = i−

⟨
Ψ (0)
n

|||Ĉ−
p
|||Ψ (0)

n

⟩
−
, ω(1)

n = −

⟨
Ψ (0)
n

||||êk ⋅ p
m

||||Ψ (0)
n

⟩
−

(9.84)

and

ω(2)
n = −

⟨
Ψ (0)
n

||| (êk ⋅ p
m

− ω(1)
n

) ⎛⎜⎜⎝ −1
iĈ −

p + ω(0)
n

⎞⎟⎟⎠
(
êk ⋅

p
m

− ω(1)
n

) |||Ψ (0)
n

⟩
−
,

(9.85)

where the matrix elements are defined as in Eq. (9.64) and ⟨Ψ0
n′ |Ψ0

n⟩ ≡ δn,n′ . At
this point we shall restrict our attention to the eigenvalue which reduces to zero
when k→ 0. This corresponds to the hydrodynamicmode. There will be only one
such eigenvalue of Ĉ −

p .
We will let |Ψ (0)

1 ⟩− denote the eigenfunction of Ĉ −
p with eigenvalue zero and

we normalize it using the scalar product in Eq. (9.64). Then |Ψ (0)
1 ⟩− = 1 and we

obtain

ω(0)
1 = 0 , ω(1)

1 = 1
m

(
β

2πm

)3∕2

∫ dp1e−βp
2
1∕(2m) êk ⋅ p1 ≡ 0 (9.86)
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and

ω(2)
1 = − 1

m2

(
β

2πm

)3∕2

∫ dp1e−βp
2
1∕(2m) êk ⋅ p1

1
iĈ −

p

êk ⋅ p1 . (9.87)

The hydrodynamic eigenfrequency, ω1, has the correct hydrodynamic behavior.
If we now equate Eqs. (9.78) and (9.82) and use Eqs. (9.86) and (9.87), we find

D = − 1
m2

(
β

2πm

)3∕2

∫ dp1e−βp
2
1∕(2m) êk ⋅ p1

1
Ĉ −

p

êk ⋅ p1 . (9.88)

Thus, we have obtained a microscopic expression for the self-diffusion coeffi-
cient, D. In later sections, we will discuss how to evaluate the integral in (9.88).

9.6
Coefficients of Viscosity and Thermal Conductivity

The Boltzmann collision operator, Ĉ(+)
p , has five zero eigenvalues. Therefore,

we can derive, from the linearized Boltzmann equation, five linearized hy-
drodynamic equations: one equation for the total particle density, n(r, t) =
nN (r, t) + nT(r, t); three equations for the three components of the momentum
density, mn(r , t)v(r, t), where v(r, t) is the average velocity; and one equation for
the average internal energy density. To find the hydrodynamic eigenfrequencies
(which will be expressed in terms of the coefficients of viscosity and thermal
conductivity), we find the normal modes of the system of five hydrodynamic
equations. We find the five microscopic hydrodynamic frequencies of the Boltz-
mann equation using Rayleigh–Schrödinger perturbation theory. We then can
match the five frequencies of the hydrodynamic equations to the fivemicroscopic
frequencies and thereby obtain microscopic expressions for the coefficients of
viscosity and thermal conductivity.

9.6.1
Derivation of the Hydrodynamic Equations

We now derive the linearized hydrodynamic equations from the linearized Boltz-
mann equation [60]. The average particle density is defined by

n(r, t) = ∫ d p f 0(p)(1 + h+(p, r, t)) . (9.89)

If we multiply Eq. (9.60) by f 0(p1), integrate over p1, and make use of the fact
that Ĉ(+)

p 1 = 0, we obtain

𝜕

𝜕t
n(r, t) + ∇r ⋅ Jn(r, t) = 0 , (9.90)
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where Jn(r, t) is the average particle current and is defined as

Jn(r, t) = ∫ d p
p
m
f 0(p)h+(p, r, t) . (9.91)

It is useful to decompose Jn(r, t) into the product Jn(r, t) = n(n , t)v(r, t). In the
linear regime, Jn(r, t) ≈ n0v(r, t), where n0 is the equilibrium particle density.
Equation (9.90) then becomes

𝜕

𝜕t
n(r , t) + n0∇r ⋅ v(r, t) = 0 . (9.92)

Equation (9.92) is the linearized continuity equation and describes the conserva-
tion of total particle number.
If we multiply Eq. (9.60) by p1 f 0(p1), integrate over p1, and use the fact that

Ĉ(+)
p p ≡ 0, we obtain

m 𝜕

𝜕t
Jn(r, t) = −∇r ⋅ P(r, t) , (9.93)

where P(r, t) is the pressure tensor and is defined

P(r, t) = 1
m ∫ d p f 0(p)pph+(p, r, t). (9.94)

The pressure tensor describes the momentum flux, or current, in the system and
contains an irreversible part due to viscous effects.
To obtain the equation for the internal energy density, we must take the aver-

age of the thermal kinetic energy 1∕(2m)(p − mv(r , t))2. However, in the linear
approximation, v(r, t) does not contribute. Thus, we can multiply Eq. (9.62) by
p21∕(2m) and integrate over p1. If we use the fact that Ĉ

(+)
p p2 ≡ 0, we obtain

𝜕

𝜕t
u(r , t) = −∇r ⋅ Ju(r, t) , (9.95)

where u(r, t) is the internal energy per unit volume,

u(r , t) = ∫ d p
p2

2m
f 0(p)h+(p, r, t) , (9.96)

and Ju(r, t) is the internal energy current,

Ju(r, t) = ∫ d p
p2

2m
p
m
f 0(p)h+(p, r, t) . (9.97)

We can write the internal energy density in the form u(r , t) = n(r , t)e(r , t), where
e(r, t) is the internal energy per particle. In the linear approximation we find
u(r, t) = n0e(r, t) + e0n(r, t), and Eq. (9.95) takes the form

n0
𝜕

𝜕t
e(r, t) + e0

𝜕

𝜕t
n(r , t) = −∇r ⋅ Ju(r, t) , (9.98)
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where e0 is the equilibrium internal energy per particle. The current Ju(r, t) will
contain an irreversible part due to thermal conduction.
As a next step we must write expressions for the pressure tensor, P(r, t), and

the energy current, Ju(r, t) in terms of transport coefficients. The form that these
two quantities must take was discussed in Section 8.2. From Eqs. (8.11), (8.35),
and (8.36), we can write the pressure tensor in the form

Pi j(r, t) = P(r, t)δi j − ζδi j(∇r ⋅ v) − η

(
𝜕vi
𝜕x j

+
𝜕v j
𝜕xi

− 2
3
δi j∇r ⋅ v

)
, (9.99)

where P(r, t) is the hydrostatic pressure, ζ is the coefficient of bulk viscosity, and
η is the coefficient of shear viscosity. If we substitute Eq. (9.99) into Eq. (9.93) we
obtain, after some rearrangement,

mn0
𝜕

𝜕t
v(r, t) = −∇rP(r, t) + η∇2

r v(r, t) +
(
ζ + 1

3
η
)
∇r(∇r ⋅ v(r, t)) .

(9.100)

The contribution from the hydrostatic pressure term is reactive, whereas the vis-
cous contribution is dissipative. All terms in Eq. (9.100) are linear in deviations
from equilibrium.
Let us now consider the energy equation, Eq. (9.98). The energy current will

have a contribution from the convection of internal energy, a contribution in-
volving the pressure which comes from work done in compression or expansion
of regions in the fluid, and a contribution from heat conduction (cf. Eq. (8.29)).
Thus, in the linear approximation we can write

Ju(r, t) = n0e0v(r, t) + P0v(r, t) − K∇rT(r, t) , (9.101)

where P0 is the equilibrium pressure, K is the coefficient of thermal conductivity,
and T(r, t) is the temperature. If we substitute Eq. (9.101) into Eq. (9.98) andmake
use of Eq. (9.92), we find

n0
𝜕

𝜕t
e(r, t) = −P0∇r ⋅ v(r, t) + K∇2

rT(r, t) . (9.102)

Equation (9.102) simplifies when we write it in terms of the local entropy. If we
use the thermodynamic relation de = T ds + P∕n2 dn, we can write

𝜕e
𝜕t

= T 𝜕s
𝜕t

+ P
n2

𝜕n
𝜕t

. (9.103)

If we combine Eqs. (9.102) and (9.92), we obtain

n0T0
𝜕

𝜕t
s(r, t) = K∇2

rT(r, t) (9.104)

where T0 is the equilibrium temperature and s(r , t) is the local entropy per parti-
cle.
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The hydrodynamic equations (Eqs. (9.92), (9.100), and (9.104)), which have
been derived from the Boltzmann equation with the help of thermodynamic
relations, are identical to Eqs. (8.47)–(8.49). If we choose the density, n(r, t),
and the temperature, T(r, t), to be the independent variables, the hydrodynamic
equations take the form

𝜕n
𝜕t

+ n0∇r ⋅ v = 0 , (9.105)

mn0
𝜕v
𝜕t

= −
(
𝜕P
𝜕n

)0

T
∇rn −

(
𝜕P
𝜕T

)0

n
∇rT + η∇2

r v +
(
ζ + 1

3
η
)
∇r(∇r ⋅ v) ,

(9.106)

and

mn0
(
𝜕s
𝜕n

)0

T

𝜕n
𝜕t

+ mn0
(
𝜕s
𝜕T

)0

ρ

𝜕T
𝜕t

= K
T0

∇2
rT . (9.107)

Equations (9.105)–(9.107) are coupled equations for variations in average density,
velocity, and temperature.
We now must find normal mode solutions. Since the equations are linear, each

Fourier component will propagate independently. Thus, we only need to consider
a single Fourier component. We can write

n(r, t) = nk(ω)eik ⋅r , v(r, t) = vk(ω)eik⋅r , and T(r, t) = Tk(ω)eik⋅r .
(9.108)

We can also separate the average velocity, vk , into a longitudinal part, v‖ = v‖ êk ,
and a transverse part, v⊥ (cf. Section 8.3). The hydrodynamic equation for the
transverse velocity, which describes the propagation of shear waves, takes the
form

(−iω + νtk2)ṽ⊥k (ω) = 0 , (9.109)

where νt= η∕mn0 denotes the transverse kinetic viscosity. The dispersion relation
for the transverse mode is given by Eq. (9.109). It is

ω = −iνtk2 . (9.110)

There are two shearmodeswith this frequency. Thus, we find that the shearwaves
behave very much like the diffusion waves. Any shear disturbance will be damped
out.
The longitudinal modes satisfy the equation

⎛⎜⎜⎜⎜⎝
iω −iρok 0

− ikc20
γρ0

[iω + νlk2] − ikc20αP
γ

−iω c
2
0αP
ρ0γ

0 cρ
T0
[iω + γχk2]

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
ρ̃k(ω)
ṽk(ω)
T̃k(ω)

⎞⎟⎟⎟⎠ = 0 , (9.111)
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where c0 =
√
(𝜕P∕𝜕(mn0))s is the speed of sound, αP = −(1∕n0)(𝜕n∕𝜕T )P is the

thermal expansivity, γ = cP∕cρ , νl = (1∕ρ0)(ζ + 4∕3η) is the longitudinal kinetic
viscosity and χ = K∕(mn0cP) (cf. Section 8.3). The dispersion relations for the
longitudinal modes can be found by setting the determinant of the matrix in
Eq. (9.110) to zero and solving for ω. To second order in wavevector k (small k
means long-wavelength disturbances), we find

ω1 = −i
[
Kk2
n0cP

]
(9.112)

and

ω± = ±c0k −
ik2

2mn0

[
4
3
η + ζ + mK

(
1
cv

− 1
cP

)]
. (9.113)

The first solution (9.112) is purely imaginary and the second two solutions (9.113)
are complex.
The wave of frequency ω1 corresponds predominantly to an entropy (or heat)

wave. It is damped out exponentially with time. Thewaves of frequency ω± (waves
going in opposite directions) correspond to pressure or longitudinal velocity
waves (sound waves). These waves propagate but, in the presence of transport
processes, they eventually get damped out. Thus, at long wavelengths there are
two shearmodes, one heatmode, and two soundmodes in the fluid. The frequen-
cies in Eqs. (9.110), (9.112), and (9.113) are the normal mode frequencies of the
system. These five frequencies, together with the diffusion frequency, Eq. (9.78),
give the six normal mode frequencies of this two-component dilute gas.

9.6.2
Eigenfrequencies of the Boltzmann Equation

The second step in deriving microscopic expressions for the thermal conductivi-
ty and shear viscosity is to obtain the hydrodynamic eigenfrequencies of the lin-
earized Boltzmann equation. We only need to consider one Fourier component
of the linearized Boltzmann equation. If we let

h+(p, r, t) = |Ψn(p, k)⟩+eik⋅re−iωnt , (9.114)

we obtain the following eigenvalue equation for the eigenvectors:(
Ĉ+

p − ikêk ⋅
p
m

) |Ψn(p, k)⟩+ = −iωn |Ψn(p, k)⟩+ . (9.115)

To obtain a perturbation expansion for ωn in powers of k, wemust first look at the
eigenvalue problem for the unperturbed operator Ĉ+

p . We will denote the eigen-
functions of Ĉ+

p by |φn⟩. Then Ĉ+
p|φn⟩ = −iω0

n |φn⟩.
We know that Ĉ+

p has five zero eigenvalues and we must take this into account
when writing a perturbation expansion for eigenstates |Ψn(p, k)⟩+. We shall use
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themethod outlined in [136] forwriting perturbation expansionswhen the unper-
turbed system is degenerate. The orthonormalized eigenfunctions of Ĉ+

p , which
have eigenvalue zero, are given by

||φ1 ⟩ = 1 , ||φ2 ⟩ = √
β
m
px , ||φ3 ⟩ = √

β
m
py , ||φ4 ⟩ = √

β
m
pz ,

(9.116)

and

||φ5 ⟩ = √
2
3

(
−3
2
+
β
2m

p2
)
. (9.117)

We shall denote the five eigenfunctions collectively as |φα⟩, where α = 1, 2, 3, 4,
and 5. All other eigenfunctions will be denoted collectively as |φβ⟩ where β =
6,… ,∞. The eigenfunctions |φn⟩ are assumed orthonormal with respect to the
scalar product in Eq. (9.64).
Since the eigenfunctions |φα⟩ are degenerate, we must first find the proper lin-

ear combination of them to use for the zero-order approximation to the exact
eigenfunctions |Ψα⟩+. Therefore, we write||Ψα⟩+ = |||Ψ (0)

α
⟩
+
+ k |||Ψ (1)

α
⟩
+
+ k2 |||Ψ (2)

α
⟩
+
+⋯ , (9.118)

where |||Ψ (0)
α

⟩
+
=

∑
α′
cαα′ ||φα′⟩ . (9.119)

The process of determining the coefficients cαα′ will also give us the first-order
term, ω(1)

α , in the perturbation expansion of ωα :

ωα = ω(0)
α + kω(1)

α + k2ω(2)
α +⋯ (9.120)

To find the coefficients cαα′ and ω(1)
α , let us first insert the expansions in

Eqs. (9.118)–(9.120) into Eq. (9.115) and equate coefficients of terms that are
first order in k. We then obtain

Ĉ+
p
|||Ψ (1)

α
⟩
+
= i

(
−ω(1)

α +
êk ⋅ p
m

)|||Ψ (0)
α

⟩
+
. (9.121)

If we multiply Eq. (9.121) by ⟨φα′′ ||, we obtain
ω(1)
α

⟨
φα′′ ,Ψ (0)

α
⟩
+ =

⟨
φα′′ , (êk ⋅

p
m
)Ψ (0)

α

⟩
+

(9.122)

(note that since Ĉ(+)
p is self-adjoint, ⟨φα′′ | is the adjoint of its dual vector |φα′′ ⟩),

or, using Eq. (9.119), we obtain

ω(1)
α cαα′′ =

∑
α′
Wα′′α′ cαα′ , (9.123)
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where

Wα′′α′ =
⟨
φα′′

êk ⋅ p
m

φα′
⟩
=
(

β
2πm

)3∕2

∫ d pe−βp2∕(2m)φα′′ (p)
êk ⋅ p
m

φα′ (p) .

(9.124)

If we use the expressions for |φα⟩(α = 1,… , 5) given in Eqs. (9.116) and (9.117)
and assume, for simplicity, that k lies along the x-axis so that p ⋅ êk = px , we find
by explicit calculation that

W12 =W21 =
(

1
mβ

)1∕2

and W25 =W52 =
(2
3

)1∕2 ( 1
mβ

)1∕2

. (9.125)

For all other α′′ and α′,Wα′′α′ ≡ 0.
We may obtain values for ω(1)

α from Eq. (9.123). We first write it in matrix form
and set the determinant of the matrix to zero:

det(W̄ − ω(1)1) = 0 . (9.126)

If we evaluate the above determinant, we obtain

(−ω(1))3
[
(ω(1))2 − 5

3
1
mβ

]
= 0 . (9.127)

From Eq. (9.127) we obtain the following first-order corrections to ωα ,

ω(1)
1 = −ω(1)

2 =
(
5
3

1
mβ

)1∕2

= c0 and ω(1)
3 = ω(1)

4 = ω(1)
5 = 0 . (9.128)

In (9.128), c0 =
√
5kBT∕(3m) is the speed of sound of an ideal gas. Notice that

we have lifted the degeneracy of only two of the states |Ψα⟩+. We have to go to
higher orders in the perturbation expansion to lift the degeneracy in the rest of
the states.
Now that we have expressions for ω(1)

α and Wαα′ , we can use Eq. (9.123) and
the orthonormality of the states |Ψ (0)

α ⟩+ to obtain expressions for cαα′ and, there-
fore, for |Ψ (0)

α ⟩+. Substitution of Eqs. (9.125) and (9.128) into Eq. (9.123) gives the
following results:

c13 = c14 = c23 = c24 = c32 = c42 = c52 = 0 , c15 = (2∕5)1∕2 ,
c12 = (2∕3)1∕2c11 , c25 = −(2∕5)1∕2 , c22 = (2∕3)1∕2c21 ,

c35 = −(3∕2)1∕2c31 , c45 = −(3∕2)1∕2c41 , and c51 = −(2∕3)1∕2c55 .

The condition of orthonormality of |Ψ (0)
α ⟩+ gives us c12 = c22 = 2−1∕2, c55 =

(3∕5)1∕2, and c31 = c34 = c41 = c43 = c53 = c54 = 0. We therefore obtain the fol-
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lowing expressions for the zeroth order eigenfunctions |Ψ (0)
α ⟩+:

|Ψ (0)
1 ⟩+ = 1√

2

[(3
5

)1∕2 |φ1⟩ + |φ2⟩ + (2
5

)1∕2 |φ5⟩] , (9.129)

|Ψ (0)
2 ⟩+ = 1√

2

[(3
5

)1∕2 |φ1⟩ − |φ2⟩ + (2
5

)1∕2 |φ5⟩] , (9.130)

|Ψ (0)
3 ⟩+ = |φ3⟩ , |Ψ (0)

4 ⟩+ = |φ4⟩ , (9.131)

and

|Ψ (0)
5 ⟩+ =

√
2
5

[
−|φ1⟩ + (3

2

)1∕2 |φ5⟩] . (9.132)

We can now use the states |Ψ (0)
α ⟩+ as the basis states for the perturbation expan-

sion. The general expression for ω(2)
n has been given in Eq. (9.85).We thus find the

following expressions for the five hydrodynamic frequencies:

ω1 = c0k + ik2 + ⟨Ψ (0)
1 | ( px

m
− c0

) 1
Ĉ+

p

( px
m

− c0
) |Ψ (0)

1 ⟩+ , (9.133)

ω2 = c0k + ik2 + ⟨Ψ (0)
2 | ( px

m
+ c0

) 1
Ĉ+

p

( px
m

+ c0
) |Ψ (0)

2 ⟩+ , (9.134)

ω3 = ik2 + ⟨Ψ (0)
3 | px

m
1
Ĉ+

p

px
m

|Ψ (0)
3 ⟩+ , (9.135)

ω4 = ik2 + ⟨Ψ (0)
4 | px

m
1
Ĉ+

p

px
m

|Ψ (0)
4 ⟩+ , (9.136)

and

ω5 = ik2+

⟨
Ψ (0)

5

||||||
px
m

1
Ĉ+

p

px
m

||||||Ψ (0)
5

⟩
+

. (9.137)

The frequencies ω1 and ω2 may be identified with sound modes, frequencies ω3
and ω4 may be identified with shear modes, and frequency ω5 may be identified
with the heat mode.

9.6.3
Shear Viscosity and Thermal Conductivity

Given the microscopic expressions for the hydrodynamic frequencies in
Eqs. (9.133)–(9.137), we can match them to the frequencies obtained from the
linearized, hydrodynamic equations and obtain microscopic expressions for the
transport coefficients. If we equate Eqs. (9.110) and (9.135), we find for the shear
viscosity

η = −
n0β
m2

(
β

2πm

)3∕2

∫ d pe−βp2∕(2m) py px
1
Ĉ+

p

py px . (9.138)
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If we equate Eqs. (9.112) and (9.137), we obtain for the thermal conductivity

K = −
2n0cP
5m2

(
β

2πm

)3∕2

× ∫ d pe−βp2∕(2m)
(
p2β
2m

− 5
2

)
px

1
Ĉ+

p

px
(
p2β
2m

− 5
2

)
. (9.139)

Note that the shear viscosity is expressed in the form of a momentum current
correlation function and the thermal conductivity is expressed in the form of an
enthalpy current correlation function.

9.7
Computation of Transport Coefficients

The coefficients of self-diffusion, D, thermal conductivity, K , and shear viscosity,
η, may be written in the form

D = − 1
m2

(
β

2πm

)3∕2

∫ d pe−βp2∕(2m) pxΔx , (9.140)

K = −
n0kB
m2

(
β

2πm

)3∕2

∫ d pe−βp2∕(2m)
(
βp2

2m
− 5

2

)
pxAx , (9.141)

and

η = −
n0β
m2

(
β

2πm

)3∕2

∫ d pe−βp2∕(2m) px pyBx y , (9.142)

respectively, where we have used the ideal gas expression for the heat capacity per
particle, cP = (5∕2)kB. The functions Dx , Ax, and Bxy satisfy the equations

Ĉ−
pΔx = px , Ĉ+

pAx =
(
βp2

2m
− 5

2

)
and Ĉ+

pBxy = px py . (9.143)

These results are identical to the results obtained using themore traditional Chap-
man–Enskogprocedure [26]. In order to obtain numerical values for the transport
coefficients, we can expand the unknown functions Δx , Ax , and Bxy in terms of
a set of orthogonal functions, Snm(x), called Sonine polynomials, which are closely
related to Leguerre polynomials. We describe these polynomials below.

9.7.1
Sonine Polynomials

The Sonine polynomials form a complete set of orthogonal polynomials which
may be used to obtain approximate expressions for the transport coefficients. The
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Sonine polynomials are defined as

Snq (x) =
n∑
l=0

(−1)l
Γ(q + n + 1)xl

Γ(q + l + 1)(n − l)!(l!)
, (9.144)

where x and q are real numbers, n is an integer, and Γ(q + n + 1) is a gamma
function. The two cases of the gamma function we shall be concerned with are

Γ(n+1) = n and Γ
(
n + 1

2

)
=
1 ⋅ 3 ⋅ 5⋯ (2n − 3)(2n − 1)

√
π

2n
. (9.145)

The Sonine polynomials for n = 0 and n = 1 are easily found to be S0q(x) = 1 and
S1q(x) = q + 1 − x. The Sonine polynomials have the orthogonality property

∞

∫
0

dxe−xxqSnq (x)S
n′
q (x) =

Γ(q + n + 1)
n!

δn,n′ . (9.146)

We will use the Sonine polynomials to obtain approximate expressions for the
transport coefficients. We consider them one at a time below.

9.7.2
Diffusion Coefficient

The diffusion coefficientD in (9.140) can be expanded in terms of Sonine polyno-
mials, Sl3∕2[βp

2∕(2m)]. If we write

Δx =
∞∑
l=0
dl pxSl3∕2

(
βp2

2m

)
, (9.147)

then D takes the form

D = − 1
m2

(
β

2πm

)3∕2 ∞∑
l=0
dl ∫ d pe−βp2∕(2m) p2xS

l
3∕2

(
βp2

2m

)
= −

d0
mβ

.

(9.148)

Thus, the self-diffusion coefficient depends only on the coefficient d0.
Wenowmust find an approximate expression for d0. Let us substitute Eq. (9.147)

into the equation Ĉ−
pΔx = px (see Eq. (9.143)),multiply the resulting expressionby

[β∕(2πm)]3∕2e−βp2∕(2m) Sl′3∕2[βp
2∕(2m)]px , and integrate over p. We then obtain

∞∑
l=0
Dl′ ,ldl =

m
β
δl′ ,0 , (9.149)

where

Dl′ ,l =
(

β
2πm

)3∕2

∫ d pe−βp2∕(2m)Sl′3∕2

(
βp2

2m

)
pxĈ−

pS
l
3∕2

(
βp2

2m

)
px . (9.150)
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Equation (9.149) is actually an infinite set of equations which determines all the
coefficients, dl .
We can obtain an approximate expression for the self-diffusion coefficient if we

use a truncated version of Eq. (9.149). Let us retain only the first ν + 1 terms in
the sum and write

ν∑
l=0
D

(ν)
l′ ,ld

(ν)
l = m

β
δl′ ,0 for l′ = 0, 1,… , ν . (9.151)

The set of coefficients D
(ν)
l′ ,l form a (ν + 1) × (ν + 1)matrix. The coefficient d(ν)0 is

given by

d(ν)0 = m
β

(
[D

(ν)
]−1

)
0,0

, (9.152)

where ([D
(ν)
]−1)0,0 is the (0,0) matrix element of the inverse of matrix, D(ν) . The

coefficient of self-diffusion now becomes

D = − 1
β2

lim
ν→∞

(
[D

(ν)
]−1

)
0,0

. (9.153)

When thematrix is truncated to lowest order, the self-diffusion coefficient is given
by

D = − 1
β2

1
D00

= − 1
β2

1⟨pxĈ−
p px⟩ . (9.154)

To second order it is

D = − 1
β2

1
D00

[
1 −

D01D10

D00D11

]−1
, (9.155)

and so on.
The self-diffusion coefficient is straightforward to compute for a hard-sphere

gas (see Appendix E). For hard spheres of radius a it is

D = − 1
β2

1⟨
pxĈ−

p px
⟩ = 3

32
1
n0a2

√
kBT
mπ

. (9.156)

For a dilute gas, it is found that higher order corrections change Eq. (9.156) by
only a few percent (cf. [26], page 168).

9.7.3
Thermal Conductivity

The coefficient of thermal conductivity in Eq. (9.141) can be expanded in terms
of Sonine polynomials, Sl3∕2[βp

2∕(2m)]. If we write

Ax =
∞∑
l=0
al pxSl3∕2

(
βp2

2m

)
, (9.157)
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substitute into Eq. (9.141), and perform the integration, we find

K = −
n0kB
m2

(
β

2πm

)3∕2 ∞∑
l=0
al ∫ d pe−βp2∕(2m)

[
βp2

2m
− 5

2

]
p2xS

l
3∕2

(
βp2

2m

)
=

5n0kB
2mβ

a1 . (9.158)

The thermal conductivity depends on a1.
Let us next determine a1. In the equation Ĉ+

pAx =
[
βp2∕(2m) − 5∕2

]
(see

Eq. (9.143)), expand Ax in Sonine polynomials, then multiply by the quantity
[β∕(2πm)]3∕2e−βp2∕(2m)Sl′3∕2[βp

2∕(2m)]px and integrate over p. We obtain

∞∑
l=0

Ml′ ,lal = −5
2
m
β
δl′ ,1 , (9.159)

where

Ml′ ,l =
(

β
2πm

)3∕2

∫ dpe−βp2∕(2m)Sl′3∕2

(
βp2

2m

)
pxĈ+

pS
l
3∕2

(
βp2

2m

)
px

(9.160)

and we have used the orthogonality of the Sonine polynomials. Note that since
the collision operator, Ĉ+

p , conserves momentum we have Ĉ+
p px = 0. Therefore,

Ml′ ,0 = 0 andM0,l = 0. Equation (9.159) becomes

∞∑
l=1
Ml′ ,lal = −5

2
m
β
δl′ ,l for l′ ≥ 1 . (9.161)

We can use the fact that momentum is conserved during the collisions so Ĉ+
p px =

0. Therefore,M11 becomes

M11 = −1
4
N
V
β2

4
m10

(
β

2πm

)3

∬ dv1 dv2e−βm(v
2
1+v

2
2)∕2

× ∫ d(cos(Θ))dαgσ(Θ, g)
(
v3,xv23 + v4,xv

2
4 − v1,xv

2
1 − v2,xv

2
2
)2 ,

(9.162)

where v23 + v
2
4 = v

2
1 + v

2
2. In order to evaluate the integral in Eq. (9.162), we intro-

duce the center-of-mass velocity, V cm = (1∕2)(v1 + v2), and the relative velocity,
g = v2 − v1, so that v1 = V cm − 1∕2g , v2 = V cm + 1∕2g , v3 = V cm − 1∕2g′, and
v4 = V cm + 1∕2g′. Then after some algebra we find

v3,xv23 + v4,xv
2
4 − v1,xv

2
1 − v2,xv

2
2 = g

′
x(g

′ ⋅ V cm) − gx(g ⋅ V cm) (9.163)
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and

M11 = −1
4
N
V
β2

4
m10

(
β

2πm

)3

∬ dV cm dge−βm(V 2
cm+g2∕4)

× ∫ d(cos(Θ))dαgσ(Θ, g)

×
[
(g′x)

2(g′ ⋅ V cm)2 − 2g′xgx(g
′ ⋅ V cm)(g ⋅ V cm) + g2x(g ⋅ V cm)2

]
.

(9.164)

The collision cross section for hard spheres of radius a is σ(Θ, g) = a2. Let Vcm,i
(i = x , y, z) denote the ith component of the center-of-mass velocity. Then

∫ dV cme−βmV
2
cmVcm,iVcm, j =

1
2mβ

(
π
mβ

)3∕2

δi j . (9.165)

If we integrate over the center-of-mass velocity in Eq. (9.164), we find

M11 = −2
3
N
4V

β2

4
m10

(
β

2πm

)3 1
2mβ

(
π
mβ

)3∕2

a2 ∫ dg ge−βmg2∕4

× ∫ d(cos(Θ))dα[g4 − (g′ ⋅ g)2] .

(9.166)

In Eq. (9.166), we have let g2x → 1∕3g2 inside the integral, since by symmetry⟨S13∕2 pxĈ+
pS

1
3∕2 px⟩ = ⟨S13∕2 pyĈ+

pS
1
3∕2 py⟩ = ⟨S13∕2 pzĈ+

pS
1
3∕2 pz⟩. Now choose the z-

axis to lie along g. Then g′x = g sin(Θ) cos(α), g
′
y = g sin(Θ) sin(α), g

′
z = g cos(Θ)

and g′ ⋅ g = g2 cos(Θ). First integrate over d(cos(Θ))dα. Then integrate over dg.
We finally obtain

M11 = −64
3
n0a2

√
mπ

β3∕2
, (9.167)

and the coefficient of thermal conductivity is given by

K = 75
256a2

√
k3BT
mπ

. (9.168)

9.7.4
Shear Viscosity

The shear viscosity in Eq. (9.141) can be written in terms of Sonine polynomials,
Sl5∕2[βp

2∕(2m)]. If we expand

Bxy =
∞∑
l=0
bl px p ySl5∕2

(
βp2

2m

)
, (9.169)



364 9 Transport Coefficients

Table 9.1 Thermal conductivity K in units of 10−3 W∕(m ⋅ K) for some monatomic gases at
pressure P = 105 Pa [124].

Gas K (at 200 K) K (at 300 K) K (at 400 K)

Argon (Ar) 12.4 17.9 22.6
Helium (He) 119.3 156.7 190.6
Krypton (Kr) 6.4 9.5 12.3
Neon (Ne) 37.6 49.8 60.3
Xenon (Xe) 3.6 5.5 7.3

and substitute into Eq. (9.141) we obtain

η = −
n0β
m2

(
β

2πm

)3∕2 ∞∑
l=0
bl ∫ d pe−βp2∕(2m) p2x p

2
yS
l
5∕2

(
βp2

2m

)
= −

n0b0
β

.

(9.170)

Thus, the shear viscosity depends on b0.
In order to determine b0, substitute the expansion Eq. (9.169) for Bxy into

Eq. (9.143). Then multiply by [β∕(2πm)]3∕2e−βp2∕(2m)Sl′5∕2[βp
2∕(2m)]px py and

integrate over p. Equation (9.143) then takes the form
∞∑
l=0
Nl′ ,lbl =

m2

β2
δl′ ,0 , (9.171)

where

Nl′ ,l =
(

β
2πm

)3∕2

∫ d pe−βp2∕(2m)Sl′5∕2

(
βp2

2m

)
px pyĈ+

pS
l
5∕2

(
βp2

2m

)
px py .

(9.172)

If we truncate Eq. (9.171) to lowest order, we can write the shear viscosity as

η = −
n0m2

β3
1
N00

= −
n0m2

β3
1⟨px pyĈ+
p px py⟩ . (9.173)

For a gas of hard spheres of radius a, Eq. (9.173) yields for the shear viscosity

η = 5
64a2

√
mkBT
π

. (9.174)

This expression is correct to within a few percent (cf. [26], page 168). Values of
the viscosity for some monatomic gases are given in Table 9.2.
It is interesting to compare the viscosity and thermal conductivity. If we take

the ratio we find K∕η = 15kB∕(4m) = 5∕2cV, where cV = 3kB∕(2m) is the specif-
ic heat of an ideal monatomic gas. The ratio K∕ηcV = 5∕2 is called the Eucken
number. One can check to see if this relation is satisfied by the monatomic gases
in Tables 9.1 and 9.2.
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Table 9.2 Viscosity η in units of 10−5 P (1 Poise = 0.10 kg∕(ms)) for some monatomic gases at
pressure P = 105 Pa [124].

Gas η (at 200 K) η (at 300 K) η (at 400 K)

Argon (Ar) 15.9 22.9 38.8
Helium (He) 15.3 20.0 24.4
Krypton (Kr) 17.1 25.6 33.1
Neon (Ne) 24.3 32.1 38.9
Xenon (Xe) 15.4 23.2 30.7

9.8
Beyond the Boltzmann Equation

Computer experiments have shown that the picture of transport phenomena giv-
en by Boltzmann is not complete. The Boltzmann equation predicts exponential
decay of the correlation functions, but simple hydrodynamic arguments give a
decay of the form t−d∕2 (long time tail), where d is the dimension of the system.
These long time tails are now well established theoretically and have been ob-
served experimentally. (Long time tails in the velocity autocorrelation function of
a Brownian particle were derived in Chapter 8.)
Expressions for transport coefficients obtained using the Boltzmann equation

are limited to systems with very low density. If we wish to obtain expressions for
the transport coefficients at higher densities using microscopic theory, we must
begin by writing them in terms of a virial expansion (expansion in powers of the
density). The first actual calculation was done by Choh and Uhlenbeck [30]. The
Boltzmann equation includes only effects of two-body collisions. Choh and Uh-
lenbeck computed the contribution to the transport coefficients due to three-
body processes. Their result was well behaved. Somewhat later, a number of au-
thors attempted to extend calculations of the transport coefficients to higher or-
der in density. In so doing, they found that all higher order terms are infinite and,
therefore, the expansion of the transport coefficients in powers of the density is
divergent and ill defined. The divergences in the virial expansion come from secu-
lar effects. Resummation of divergent terms [98] leads to well-defined expressions
for the transport coefficients but introduces a nonanalytic density expansion for
them. The divergences are related to the appearance of long time tails in the cor-
relation functions.
When the most divergent terms in the virial expansion of the transport coeffi-

cients are summed together, they give contributions to the current-current corre-
lation functions which decay as td∕2 (where d is the number of dimensions) even
for low density [45, 46]. In practice, at very low density, the many-body effects
give only a very small contribution to the transport coefficients and the Boltz-
mann equation is adequate. But in principle, they are there and become more
important as the density is raised.
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9.9
Problems

Problem 9.1 A dilute gas of density n is contained in a cubic box and is in equi-
libriumwith thewalls at temperature T . Find the number of particles per unit area
per unit time which collide with the walls and have magnitude of velocity greater
than v0.

Problem9.2 Estimate the value of the coefficient of viscosity of argon gas at 25 ◦C
and 1 atm pressure.Compare your estimate with the experimentally observed val-
ue of η = 2.27 × 10−4 g cm−1 s−1. Argon has an atomic weight of 39.9 and at low
temperature forms a closely packed solid with density ρ = 1.65 g∕cm3.

Problem 9.3 The number density in phase space of an ideal gas can be written

f (p, r) = N
V

(
β

2πm

)3∕2

e−βp2∕(2m)(1 + ε sin θ cosφ) , (9.175)

where θ and φ are the polar and azimuthal angles, respectively, of themomentum,
p, measured with respect to the z-axis. (a) Compute the net number of particles,
per unit area per unit time, that pass through the y–z plane. (b) Compute the net
number of particles, per unit area per unit time, that pass through the x–z plane.

Problem 9.4 A gas of neon atoms (20Ne10), at temperature T = 330K and
pressure P = 105 Pa, is confined to a cubic box of volume V = 8 × 103 cm3.
Assume the radius of the atoms is approximately a = 1.5Å. (a) What is the
average speed ⟨v⟩ of the neon atoms? (b) What is the mean free path λ of
the neon atoms? (c) Compute the coefficient of thermal conductivity using
the kinetic theory result (Kkth = 1∕2n⟨v⟩λkB), where n = N∕V is the particle
number density, and the result obtained from Boltzmann’s equation (KBeq =
75kB∕(256a2)

√
kBT∕(mπ)). How do they compare with the experimentally ob-

served value of Kexp ≈ 5 × 10−2W∕(mK)? (d) If a temperature difference of
ΔT = 3.0 K is created between two opposite walls of this system, what is the
heat current flowing through the gas (in units of J∕(m2 s))?

Problem 9.5 The electrons in a cubic sample of metallic solid of volume L3 and
temperature T may be considered to be a highly degenerate ideal Fermi–Dirac
gas. Assume the surface of the cube forms a potential energy barrier which is in-
finitely high, and assume that the electrons have spin s = 1∕2, massm, and charge
e. (a)What is the number of electrons in the velocity interval, v → v + dv? (b) As-
sume that an electrode is attached to the surfacewhich lowers the potential energy
to a large but finite value, W , in a small area, A, of the surface. Those electrons
which have enough kinetic energy to overcome the barrier can escape the solid.
Howmany electrons per second escape through the area,A? Assume thatW ≫ 0
and use this fact to make simplifying approximations to any integrals you might
need to do.
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Problem 9.6 (a) Prove that the linearized Boltzmann and Lorentz–Boltzmann
collision operators, Ĉ+

p and Ĉ−
p , respectively, are self-adjoint. (b) Prove that the

scalar products, ⟨Φ, Ĉ+Φ⟩ and ⟨Φ, Ĉ−Φ⟩, are always less than or equal to zero
for arbitrary functions, Φ = Φ(p).

Problem 9.7 An approximate expression for the Boltzmann collision operator,
Ĉ, is

Ĉ = −γ1̂ + γ
5∑
i=1

|φi⟩⟨φi| , (9.176)

where |φi⟩ are the five orthonormal eigenfunctions of Ĉ with eigenvalue equal to
zero. The five eigenfunctions are |φ1⟩ = |1⟩, |φ2⟩ = |px⟩, |φ3⟩ = |py⟩, |φ4⟩ = |pz⟩,
and |φ5⟩ = |5∕2 − βp2∕(2m)⟩. They are orthonormal with respect to the scalar
product,

⟨φ(p)|χ(p)⟩ = (
β

2πm

)3∕2

∫ d pe−βp2∕(2m)φ(p)χ(p) . (9.177)

1. Compute the coefficient of shear viscosity

η = − lim
ε→0

nβ
m2

⟨
px py

||| 1
Ĉ + ε

px py
⟩

, (9.178)

and the coefficient thermal conductivity,

K = − lim
ε→0

nkB
m2

⟨(
βp2

2m
− 5

2

)
px

||| 1
Ĉ + ε

px
(
βp2

2m
− 5

2

)⟩
, (9.179)

where n is the number density of particles in the gas described by Ĉ andm is
the mass of the particles.

2. What are the units of γ? What are the units of η?

Problem 9.8 The coefficient of diffusion can be written in the form

D = − lim
ε→0

1
m2

(
β

2πm

)3∕2

∫ d pe−βp2∕(2m) px
1(

Ĉ(−)
p + ε

) px , (9.180)

where Ĉ(−)
p is the Lorentz–Boltzmann collision operator. Replace Ĉ(−)

p by an effec-
tive collision operator, Ĵ (−)p , where Ĵ (−)p acting on an arbitrary function, h(p, r, t),
has the form

Ĵ (−)p h(p, r, t) = −γh(p, r, t) + γ
(

β
2πm

)3∕2

∫ d p′e−βp2∕(2m)h(p′ , r, t) .

(9.181)

1. Show that Ĵ (−)p is self-adjoint and negative semidefinite and has one eigenfunc-
tion with eigenvalue zero.
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2. Use Ĵ (−)p to obtain an explicit expression for the diffusion coefficient (do all the
integrals).

3. What are the units of γ?

Problem 9.9 The coefficient of self-diffusion can be written

D = − 1
m2

(
β

2πm

)3∕2

∫ d pe−βp2∕(2m) pxΔx , (9.182)

where Δx =
∑∞
l=0 dl pxS

l
3∕2[βp

2∕(2m)]. Compute the coefficient of self-diffusion,
D, for a gas of hard-sphere particles of radius a, keeping only the lowest-order
term (l = 0) in the expansion for Δx .

Problem 9.10 The coefficient of shear viscosity can be written

η = −
n0β
m2

(
β

2πm

)3∕2

∫ d pe−βp2∕(2m) px pyBx y , (9.183)

where Bxy =
∑∞
l=0 bl px p yS

l
5∕2[βp

2∕(2m)]. Compute the coefficient of shear vis-
cosity, η, for a gas of hard-sphere particles of radius a, keeping only the lowest-
order term (l = 0) in the expansion for Bxy.



369

10
Nonequilibrium Phase Transitions

10.1
Introduction

It is possible to use thermodynamics to analyze the behavior of systems that are
far from absolute thermodynamic equilibrium, as long as they are locally in equi-
librium. Then the state of the system can be described in terms of thermodynamic
densities that vary in space. When thermodynamic systems are held far enough
away from absolute equilibrium, nonlinear effects must be included in chemical
rate equations or hydrodynamic equations, and these nonlinear effects can open
a whole new world of behavior for such systems. Nonlinear equations allow the
possibility of multiple solutions, each with different regions of stability. Thus, as
we change the parameters of a nonlinear system, it can transition from one type
of macroscopic state to another.
Prigogine was the first to prove that near equilibrium (in the linear regime),

if one of the thermodynamic forces is held fixed, the stable state of the sys-
tem is a steady state characterized by a minimum entropy production and it is
unique [170, 173]. This state is said to lie on the “thermodynamic branch” of pos-
sible states. However, as we move away from the linear regime, nonlinearities in
the chemical rate equations or hydrodynamic equations become more important
and, at some point, the thermodynamic branch becomes unstable and a nonequi-
librium phase transition occurs. The system then changes to a new state that is
characterized by an order parameter. Often the change is dramatic. Even if the
boundary is held fixed and the steady state in the linear regime is homogeneous
or has constant gradients, the new state that appears in the nonlinear regime
can oscillate in space and/or in time and often exhibits nonlinear wave motion.
Thus, the symmetry of such systems in space and/or time is broken at the phase
transition, and the new stable nonequilibrium state exhibits muchmore structure
than the state on the thermodynamic branch. These structures (called dissipative
structures by Prigogine) require a flow of energy and sometimes a flow of matter
and, therefore, a production of entropy to maintain them.
In this chapter, we illustrate the nonequilibrium phase transition with two clas-

sic examples, one from chemistry and the other from hydrodynamics. The chem-
ical system is called the Brusselator chemical model, first introduced by Prigogine

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.
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and Lefever [174]. This is the simplest chemical model that can exhibit spatial and
temporal dissipative structures – that is, oscillations in space and timemaintained
by the flow of chemicals through the system.
The second example we consider is a purely hydrodynamic system. We show

that nonlinearities in theNavier–Stokes equations, in the presence of gravitational
forces, can lead to instabilities in fluid flow. The example we consider is called the
Rayleigh–Bénard instability, and it occurs in a fluid layer in the presence of gravity
when the layer is heated from below. When the temperature gradient becomes
great enough, the fluid undergoes a transition from an isotropic stationary state to
a state whose macroscopic behavior is dominated by stationary spatially periodic
convection cells. The hydrodynamic equations can predict the parameter values
at which this instability occurs.

10.2
Near Equilibrium Stability Criteria

Thermodynamic systems held out of equilibrium are dissipative because the
transport process and chemical reactions that occur away from equilibrium lead
to an increase in the entropy of the surrounding world. Prigogine showed that
there are stability conditions associatedwith the entropy production in a nonequi-
librium system [67, 150, 170, 173].
As we saw in Chapters 7 and 8, the local entropy production, σ, corresponds to

a generalized Joule heating, and can be written as a product of generalized cur-
rents and generalized forces such that

σs = −
∑
j
𝔍 j ⋅𝔉 j , (10.1)

where𝔍 j (𝔉 j) is the jth generalized current (force). Near equilibrium the currents
may be approximated by a linear relation (a generalized Ohm’s law) of the form

𝔍i = −
∑
j
Li, j𝔉 j , (10.2)

where Li, j is a symmetric matrix Li, j = L j,i (Onsager’s relation). If we substitute
Eq. (10.2) in (10.1), we obtain the following expression for the entropy production,

σs =
ν∑
i=1

ν∑
j=1
Li, j𝔉i ⋅𝔉 j ≥ 0 , (10.3)

so that near equilibrium the entropy production is always positive.
We can now ask under what conditions the entropy production can be mini-

mized. For simplicity, let us consider a case where two independent thermody-
namic forces are present so ν = 2 (e. g., a temperature gradient and a chemical
potential gradient). The resulting fluxes are also independent. If both forces are
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allowed to vary independently, the condition for minimum entropy production is(
𝜕σs
𝜕𝔉1

)
𝔉2

= 2L1,1𝔉1 + 2L1,2𝔉2 = −2𝔍1 = 0 (10.4)

and (
𝜕σs
𝜕𝔉2

)
𝔉1

= 2L2,2𝔉2 + 2L2,1𝔉1 = −2𝔍2 = 0 (10.5)

(note that we assume that Li, j is constant). When there are no constraints on the
forces, the state of minimum entropy production is the equilibrium state, where
the forces and currents vanish and the entropy production is zero.
Let us now hold one of the forces fixed and nonzero so 𝔉1 = constant (e. g.,

fix a temperature gradient across the system). Then the condition for minimum
entropy production becomes simply(

𝜕σs
𝜕𝔉2

)
𝔉1

= 2L2,2𝔉2 + 2L2,1𝔉1 = −2𝔍2 = 0 . (10.6)

Then,𝔍2 = 0 but𝔍1 ≠ 0 and constant. Thus, the state of minimum entropy pro-
duction is a steady state, a state in which a constant current flows through the
system. Furthermore, in the linear regime, such minimum entropy production
states are always stable. That is, fluctuations cannot drive the system away from
the state of minimum entropy production [170, 173].
As we have just seen, it is possible to create a nonequilibrium steady state

by holding one or more thermodynamic forces fixed and nonzero. In the linear
regime, the steady state that results is a state of minimum entropy production and
is always stable. In the nonlinear regime, we can no longer write the currents as
linear functions of the forces and it is no longer possible to prove that the steady
state will continue to be stable as we move further into the nonlinear regime.
Thus, we have the possibility that the steady states that exist near equilibrium can
become unstable as we increase the strength of the nonlinearities, and the system
can evolve into a new state that cannot exist close to equilibrium. The transition
from the near equilibrium steady state to a new and more ordered state far from
equilibrium is called a nonequilibrium phase transition.
The possibility that ordered states could exist far from equilibrium opened

a new field of research in the chemical and biological sciences. Living systems
may be thought of as chemical systems (although of huge complexity) maintained
far from equilibrium. There is now evidence that the formation and maintenance
of ordered states far from equilibrium is important for the maintenance of life
processes. In 1977, Ilya Prigogine received the Nobel prize in chemistry for laying
the foundation of this field of chemistry and for his many contributions to its
development.
In the next two sections, we consider two examples of nonequilibrium phase

transitions, one in a chemical system and the other in a hydrodynamic system.
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10.3
The Chemically Reacting Systems

Chemical systems that are held far from chemical equilibrium (constrained to
have a large affinity) can undergo nonequilibrium phase transitions to new states
with striking behavior [67, 149, 150, 174, 200]. The new statesmay be steady states
in which the relative concentrations of the constituents vary in space, or theymay
be spatially homogeneous states in which the concentrations of some constituents
vary in time (chemical clocks), or they may be states with nonlinear traveling
waves in the concentrations of some constituents. The classic example of such
behavior is the Belousov–Zhabotinski reaction [14, 221]. This reaction, which is
too complicated to discuss in detail here [56], involves the cerium ion catalyzed
oxidation of malonic acid by bromate in a sulfuric acid medium. The reaction
is nonlinear because it contains autocatalytic steps. The system, when it is well
stirred, can behave like a chemical clock. That is, there is a periodic change in
the concentration of Br− and of the relative concentration Ce4+/Ce3+. The system
oscillates between a red and blue color with a period of the order of a minute. Per-
haps themost fascinating behavior of this system is the traveling waves in the con-
centration of Br− and the relative concentration Ce4+/Ce3+ which are observed in
shallow unstirred dishes (cf. Figure 10.1).
The Belousov–Zhabotinski reaction appears to be well described by a model

which contains three variable intermediates. This model is called the Oregona-
tor and was first introduced by Field and Noyes [56, 57]. However, the qualita-
tive behavior of the type appearing in the Belousov–Zhabotinski reaction also oc-
curs in a simpler model called the Brusselator, first introduced by Prigogine and
Lefever [174], which contains two variable intermediates. In this section we shall
discuss some properties of the Brusselator.

Figure 10.1 Traveling waves in the chemical concentrations for the Belousov–Zhabotinski
reaction. Reprinted, by permission, from [213].
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10.3.1
The Brusselator – A Nonlinear Chemical Model

The Brusselator is one of the simplest chemical models of a chemical system that
can undergo a nonequilibrium phase transition. It has six different components,
four of which are held fixed and two others whose concentrations can vary in
space and time. The chemical reaction takes place in four steps and is held far
from equilibrium by allowing the reactions to go in one direction only. The four
steps are

A
k1
⇀X , B + X

k2
⇀ Y + D , 2X + Y

k3
⇀ 3X , X

k4
⇀ E . (10.7)

In practice,A andB are present in excess andD and E are removed as soon as they
appear. The rate equations for concentrations cX and cY of X and Y , respectively,
can be written

dcX
dt′

= k1cA − (k2cB + k4)cX + k3c2XcY + D′
1∇

2
rcX (10.8)

and

dcY
dt′

= k2cBcX − k3c2X cY + D′
2∇

2
r cY . (10.9)

We have allowed the densities to vary in space and have allowed for the pos-
sibility of diffusion (D′

1 and D′
2 are the coefficients of diffusion). If we now in-

troduce a change of variables, t = k2t′ , X =
√
k3∕k4cX , Y =

√
k3∕k4cY , A =√

k21k3∕k
3
4cA , B = (k2∕k4)cB , and Di = D′

i∕k4, then Eqs. (10.8) and (10.9) take the
form

dX
dt

= A − (B + 1)X + X2Y + D1∇2
rX (10.10)

and

dY
dt

= BX − X2Y + D2∇2
rY . (10.11)

Equations (10.10) and (10.11) have a spatially uniform steady-state solution of the
form

X0 = A and Y0 =
B
A

, (10.12)

which is the continuation, far from equilibrium, of the steady-state solution that
occurs at chemical equilibrium when the reverse reactions in Eq. (10.7) are al-
lowed to occur. That is, the steady state in Eq. (10.12) lies on the “thermodynamic
branch” of steady-state solutions. We wish to look for conditions under which
the thermodynamic branch becomes unstable and a bifurcation (nonequilibrium
phase transition) occurs to a state which may oscillate in space or time.
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We can write X(r , t) and Y (r, t) in terms of fluctuations away from the equilib-
rium steady states so that

X(r, t) = A + δx(r , t) and Y (r, t) = B
A

+ δ y(r , t) , (10.13)

where δx(r , t) and δ y(r , t) are small space and time-dependent perturbations. If
we substitute Eq. (10.13) into Eqs. (10.10) and (10.11) and linearize them with
respect to δx(r , t) and δ y(r , t), we obtain

dδx
dt

=
(
B − 1 + D1∇2

r
)
δx + A2δ y (10.14)

and
dδ y
dt

= −Bδx +
(
−A2 + D2∇2

r
)
δ y . (10.15)

Since Eqs. (10.14) and (10.15) are linear, it is sufficient to consider one Fourier
component of δx(r , t) and δ y(r , t). Before we proceed further, we must specify
both the shape of the container inwhich the reaction takes place and the boundary
conditions on the walls of the container.

10.3.2
Boundary Conditions

For simplicity, we shall assume that the reaction takes place in a rectangular con-
tainer with sides of length Lx , Ly, and Lz . We shall consider two different types of
boundary conditions. For Case I, we will hold the concentrations, X and Y , con-
stant on the boundaries. For Case II, we will assume there is no flux of X and Y
through the boundaries. Let us consider these two cases separately below.

10.3.2.1 Case I Boundary Conditions
Let us assume the concentrations, X and Y are constant on the boundaries and
take on the values

Xbound = A and Ybound = B
A

(10.16)

on the boundaries. These boundary conditions can be maintained by allowing
a flow of X and Y through the boundaries. A given Fourier component of δx(r , t)
and δ y(r , t) can be written

δx(r , t) = x̃(k , ω) sin(kxx) sin(ky y) sin(kzz)eω(k)t (10.17)

and

δ y(r , t) = ỹ(k , ω) sin(kxx) sin(ky y) sin(kzz)eω(k)t , (10.18)

where

k =
nxπ
Lx

x̂ +
nyπ
Ly

ŷ +
nzπ
Lz

ẑ , (10.19)

and nx , ny , and nz are integers that can each have values 1, 2,… ,∞.
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10.3.2.2 Case II Boundary Conditions
Let us assume there is no flux of X and Y perpendicular to the boundary surfaces
so

n̂ ⋅ ∇rX = n̂ ⋅∇rY = 0 (10.20)

on the boundaries, where n̂ is normal to the boundaries. A given Fourier compo-
nent of δx(r , t) and δ y(r , t) can now be written

δx(r , t) = x̃(k , ω) cos(kxx) cos(ky y) cos(kzz)eω(k)t , (10.21)

and

δ y(r , t) = ỹ(k , ω) cos(kxx) cos(ky y) cos(kzz)eω(k)t , (10.22)

where the wavevector k is defined in Eq. (10.19) and nx , ny , and nz can each have
values 0, 1, 2,… ,∞.

10.3.3
Stability Analysis

If we substitute the solutions in Eqs. (10.17) and (10.18), or the solutions in
Eqs. (10.21) and (10.22), – into Eqs. (10.14) and (10.15), we obtain the following
matrix equation(

ω − B + 1 + D1k2 −A2

B ω + A2 + D2k2

)(
x̃
ỹ

)
= 0 . (10.23)

An equation for ω(k) is found by setting the determinant of the 2 × 2 matrix on
the left equal to zero. We then have

ω(k)2 + (C1 − C2)ω(k) + A2B − C1C2 = 0 , (10.24)

where

C1 = B − 1 − k2D1 and C2 = A2 + k2D2 . (10.25)

Equation (10.24) has two solutions:

ω±(k) = 1
2

(
C1 − C2 ±

√(
C1 + C2

)2 − 4A2B
)

. (10.26)

From Eq. (10.26), it is easy to see that, depending on the variables D1, D2, A, and
B, the frequency ω(k) can be either complex or real and the real part can be either
positive or negative.
If ω(k) is complex, the component of the perturbation δx(r , t) and δ y(r , t)with

wavevector k and frequency ω(k) will oscillate about the steady state Eq. (10.12)
with frequency given by the imaginary part of ω(k). The real part of ω(k) deter-
mines if the steady state is stable with respect to the perturbation. If the real part
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of ω(k) is negative, then the perturbation will decay away and the steady state is
stable with respect to fluctuations with wavevector k and frequency ω(k). How-
ever, if the real part of ω(k) is positive, the perturbation δx(r , t) and δ y(r , t) grows
exponentially. Thus, when the real part of ω(k) is positive, a bifurcation or phase
transition occurs.

10.3.3.1 Real Frequency ω(k)
The frequency ω(k) is real when

(C1 + C2)2 − 4A2B > 0 (10.27)

(cf. Eq. (10.26)) and ω(k) is positive if

C1C2 − A2B > 0 (10.28)

or

B > Bn = 1 +
D1

D2
A2 + A2

D2n2π2
L2 +

D1n2π2

L2
. (10.29)

In this case, there will be no oscillations in time but only in space. A diagram that
shows the onset of time-independent spatial oscillations of the concentrations
of X and Y is given in Figure 10.2a. The curved line is Bn . The bifurcation first
occurs for B = Bc, where Bc is the lowest value of B corresponding to an integer
value of n. Linear stability analysis can only tell us that a bifurcation to a new
spatially oscillating steady state is possible for a particular set of values for the
parametersA,B,D1,D2, and L. It cannot give us information about the formof the
new state.However, for the Brusselator the spatially varying states can be obtained
numerically. In Figure 10.2b, we give an example for a one-dimensional system for
the following values of the parameters: B = 4.6, A = 2, L = 1, D1 = 1.6 × 10−3,
D2 = 6.0 × 10−3, D2 = 6.0 × 10−3, and fixed boundary conditions Xbound = A and
Ybound = B∕A. The figure shows a state with oscillations in the concentration ofX
as a function of position.

Figure 10.2 (a) Linear stability diagram for
the onset of a time-independent dissipative
structure. For the case pictured here, as B in-
creases, the first bifurcation occurs at n = 2.

(b) A steady-state spatial dissipative structure
for B = 4.6, A = 2, L = 1, D1 = 1.6 × 10−3, and
D2 = 6.0 × 10−3. The boundary conditions are
fixed at X = A and Y = B∕A (based on [150]).
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Figure 10.3 (a) Linear stability diagram for
the onset of time-dependent dissipative struc-
tures. As B is increased, the first bifurcation
occurs at n = 0 and yields a spatially homo-
geneous chemical clock. (b) Successive time
steps for a dissipative structure with fixed con-

centrations on the boundary which exhibits
oscillations in both space and time. The pa-
rameters used are L = 1, A = 2, B = 5.45,
D1 = 8 × 10−3, and D2 = 4 × 10−3 based
on [150].

10.3.3.2 Complex Frequency ω(k)
The frequency ω(k) will be complex if

D2 − D1 ≤ L2
n2π2

. (10.30)

In addition, ω(k) will have a positive real part if C1 − C2 > 0 or if

B > A2 + 1 + n2π2
L2

(D1 + D2) . (10.31)

Thus, the curve

Bn = A2 + 1 + n2π2
L2

(D1 + D2) (10.32)

denotes the boundary between the region where the steady state Eq. (10.12) is
stable and where it is unstable as a function of n.
We note that for the Case II boundary conditions we can have n = 0 and, there-

fore, the possibility of spatially homogeneous oscillations in time of the relative
concentrations of X and Y – that is, a chemical clock. For all finite values of n, we
have the possibility of a new state which varies in both space and time and there-
fore may exhibit wave motion. The linear stability diagram for the transition to
time-dependent states is given in Figure 10.3a. In Figure 10.3b, we give the results
of a computer simulation, of a one-dimensional system, for a state which oscillates
in space and time. The solution is reminiscent of a standing wave on a string, but,
due to the nonlinearities, it has a much more complicated structure. In two di-
mensions, computer simulations have shown that traveling waves can exist which
are similar to the waves shown in the Belousov–Zhabotinski reaction [150] in Fig-
ure 10.1.

10.3.4
Chemical Crystals

Chemical clocks and chemical waves have been realized in the Belousov–Zha-
botinski reaction and have been seen in other autocatalytic chemical reactions as
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well. Chemical “crystals” have beenmore difficult to achieve experimentally. They
were first proposed by Turing [199] in 1952 andwere finally realized in the labora-
tory in 1990 [25]. Chemical “crystals” or Turing structures, as they are now gener-
ally called, are stationary chemical concentration patterns (dissipative structures)
which can emerge far from chemical equilibrium in nonlinear reaction-diffusion
processes. The reason they proved difficult to realize in the laboratory is that they
generally require that the diffusion coefficients governing the reaction be very
different in value [161]. This was first achieved using a chlorite-malonic acid re-
action (CIMA) [157] in a two-dimensional gel. Two different Turing structures
formedwith theCIMA reaction in a two dimensional gel are shown in Figure 10.4.
The Brusselator chemical model can reproduce these structures. The results of
a numerical simulation of the Turing structures using parameters for the CIMA
chemical reaction are also shown in Figure 10.4. The agreement between the ex-
periment and the simulation is excellent.
Spatially varying steady states, temporally oscillating homogeneous states, and

nonlinear traveling waves have been observed in chemical systems. These states,
which only become stable far from equilibrium, were called “dissipative struc-
tures” by I. Prigogine [67, 150] because their very existence depends upon dissi-
pative processes, such as chemical reactions far from equilibrium or diffusion (if
spatial structures occur). They aremaintained by production of entropy in the sur-
rounding world and by a related flow of energy and matter through the system.
The type of autocatalytic reactions which produce them are abundant in living
systems and yet are rare in nonliving systems. Indeed, dissipative structures in
living systems play an important role in the maintenance of life processes [148].

10.4
The Rayleigh–Bénard Instability

Nonequilibrium phase transitions are abundant in hydrodynamic systems be-
cause they are governed by nonlinear equations [28, 110, 111, 139, 153]. For
example, if we let fluid flow in a pipe, we find for low velocities or high viscosi-
ties that the flow is smooth and steady. However, as we increase the velocity or
decrease the viscosity, we get a transition to turbulent flow. The smooth steady
state becomes unstable and a turbulent state becomes favored. As another exam-
ple, consider a fluid at rest and place it between horizontal parallel plates in the
gravitational field. If we put a temperature gradient across the plates (with the
hottest plate below) and slowly increase the temperature gradient, we find that at
some point the rest state becomes unstable and the fluid breaks into convective
flow cells which occur periodically in space. In each cell, fluid rises in one part
of the cell and descends in another part. The circulation of fluid repeats itself in
each cell. This instability is called the Rayleigh–Bénard instability and it is the
one we shall study in this section. We will follow closely the classic presentation
of Chandrasekhar [28].
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Figure 10.4 Two-dimensional Turing struc-
tures. (a) Hexagons and (b) stripes produced
with the CIMA chemical reaction in a two-
dimensional gel. (c) Hexagons and (d) stripes
produced by numerical simulation of Tur-
ing structures using the Brusselator chemical
model and parameters of the CIMA chemical

reaction in a two-dimensional gel. ((a) and
(b) reprinted with permission from [177].
(c) and (d) reprinted [41] with kind permission
from Elsevier Science – NL, Sara Burgerhart
Straat 25, 1055 KV Amsterdam, The Nether-
lands.)

10.4.1
Hydrodynamic Equations and Boundary Conditions

The Navier–Stokes equations for a monatomic fluid are given in Eqs. (8.38)–
(8.40), although we will now include an external force ρF on the right-hand side
of Eq. (8.39). We will consider the case of a fluid at rest and constrained to lie
between two parallel plates that extend infinitely far in the x- and y-directions.
The distance between the plates is d. We will put a temperature gradient across
the plates so that the temperature of the bottom plate is greater than that of the
top, and we will assume that a gravitational field acts in the negative z-direction.
If d is small enough, any density variations in the system will be due primarily to
the temperature gradient (as opposed to gravity) and we can write

ρ = ρ0[1 + αP(T0 − T )] , (10.33)
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where αP =−(1∕ρ)(𝜕ρ∕𝜕T )P is the thermal expansivity. Heating the bottommore
than the top causes the fluid at the top to be denser and heavier and creates the
possibility for an instability to occur.
Let us now write the equations for the steady state in the absence of any macro-

scopic flow; that is, v = 0. We obtain

∇r ⋅ ρv = 0 , ∇rP = −ρg ẑ , and ∇2
rT = 0 , (10.34)

where we have let F = −g ẑ and g is the acceleration of gravity. If we note the
boundary conditions T(0) = T0 and T(d) = Td , we can solve Eq. (10.34) to obtain
the steady-state solutions. We find

T(z) = T0 − az , (10.35)
ρ(z) = ρ0[1 + αP(T0 − T )] = ρ0(1 + αPaz) , (10.36)

and

P(z) = P0 − gρ0
(
z + 1

2
αPaz2

)
, (10.37)

where a is the temperature gradient, a = (T0 − Td)∕d, and P0 is the pressure at
z = 0.
Equations (10.35)–(10.37) are the steady-state solutions in the absence of flow.

We wish to determine conditions for which they are stable. As usual, we will per-
turb the steady-state solutions slightly and study the linearized equations for the
perturbations. Thus, we write T(r, t) = T(z) + δT(r, t), P(r , t) = P(z) + δP(r, t),
and ρ(r, t) = ρ(z)+ δρ(r , t). The velocity, v(r, t), is a first-order perturbation from
equilibrium. Let us further note that the dominant contribution to entropy vari-
ations will come from temperature variations. Thus, we write δs = (cρ∕T)δT ,
where cρ is the specific heat, and we have neglected terms proportional to αP . If
we substitute these expressions into the hydrodynamic equations (8.38)–(8.40),
and linearize them in the perturbations δT, δP, δρ, and v, we find

𝜕

𝜕t
δρ = −∇r ⋅ (ρ(z)v) , (10.38)

𝜕

𝜕t
ρ(z)v = −∇r(P(z) + δP) − ρg ẑ + η∇2

r v +
(
ζ + 1

3
η
)
∇r(∇r ⋅ v) ,

(10.39)

and
𝜕

𝜕t
(ρ(z)c̃ρ δT ) = −∇r ⋅ [ρ(z)c̃ρT(z)v − K∇r(T(z) + δT )] . (10.40)

Let us now note that

δρ(r , t) = −ρ0αPδT(r, t) (10.41)

(cf. Eq. (10.33)). Then from Eq. (10.38) we have ∇r ⋅ v ≈ αP . If we now neglect
all terms that depend on αP except those that appear in the term involving the
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external field, we obtain

∇r ⋅ v = 0 , (10.42)

ρ0
𝜕v
𝜕t

= −∇rδP + ρ0αPδTg ẑ + η∇2
r v , (10.43)

and
𝜕

𝜕t
δT = avz +

K
ρ0 c̃ρ

∇2
rδT . (10.44)

The above approximation is called the Boussinesq approximation. The consisten-
cy of the Boussinesq approximation has been demonstrated by Mihaljan [139].
Equations (10.42)–(10.44) form the starting point of our linear stability analysis.
We can simplify these equations somewhat through the following steps.Wefirst

take the curl of Eq. (10.43) to obtain
𝜕(∇r × v)

𝜕t
= gαP∇r × (δT ẑ) + νt∇2

r (∇r × v) , (10.45)

where νt = η∕ρ0.We next take the curl of Eq. (10.45) and note that∇r × (∇r × v) =
∇r(∇r ⋅ v) − ∇2

r v. Using Eq. (10.42), we find

𝜕

𝜕t
∇2

r v = −gαP∇r

(
𝜕δT
𝜕z

)
+ gαP∇2

r (δT ẑ) + ν∇
4
r v . (10.46)

In our stability analysis, we shall be interested in instabilities in the z-components
of velocity. The equation of motion for the z-component of velocity is given by

𝜕

𝜕t
∇2

rvz = gαP
(

d2

dx2
+ d2

dy2

)
δT + ν∇4vz . (10.47)

If an instability occurs in which flow develops in the z-direction, then vz ẑ must
change sign as we move in the x- or y-direction (what goes up must come down).
As for the case of the Brusselator, we must specify boundary conditions before

we apply the stability analysis. We first note the general boundary conditions that

δT(x , y, 0; t) = δT(x , y, d; t) = 0 (10.48)

and

vz(x , y, 0; t) = vz(x , y, d; t) = 0 . (10.49)

In addition to the above general boundary conditions, we have additional con-
straints on the surfaces at z = 0 and z = d. We can have either rigid surfaces
for which there can be no tangential components of velocity or smooth surfaces
where we can have a tangential flow.

10.4.1.1 Rigid Surface Boundary Conditions
For a rigid surface we have the boundary conditions

v(x , y, 0; t) = v(x , y, d; t) = 0 . (10.50)

Since v = 0 for all x and y, we find dvx∕dx = dv y∕dy = 0, and thus fromEq. (10.42)
we have the additional condition dvz∕dz = 0.
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10.4.1.2 Smooth Surface Boundary Conditions
On a smooth surface there can be horizontal flow but no transport of the horizon-
tal components of velocity in the z-direction. Thus, the components of the stress
tensor satisfy the condition

Πxz(x , y, 0; t) =Πxz(x , y, d; t) =Π yz(x , y, 0; t) =Π yz(x , y, d; t) = 0 (10.51)

or (
𝜕vx
𝜕z

+
𝜕vz
𝜕x

)
bound

= 0 and
(
𝜕v y
𝜕z

+
𝜕vz
𝜕 y

)
bound

= 0 . (10.52)

Since vz = 0 for all x and y on the surface, we have(
𝜕vz
𝜕x

)
bound

=
(
𝜕vz
𝜕 y

)
bound

= 0 and
(
𝜕vx
𝜕z

)
bound

=
(
𝜕v y
𝜕z

)
bound

= 0

(10.53)

on the smooth surface.

10.4.2
Linear Stability Analysis

We shall now look for instabilities in vz , as well as for fluctuations in T which
vary in space in the x- and y-directions. Since in the linear stability analysis we
workwith linearized equations, we only need to consider one Fourier component.
Thus, we can write

vz(r, t) = Ṽz(z)ei(kx x+k y y)eωt and T(r, t) = T̃(z)ei(kx x+k y y)eωt , (10.54)

where Ṽz(z) and T̃(z) are assumed to depend on k = kx î + ky ĵ and on ω. Substi-
tution into Eqs. (10.44) and (10.47) yields

ωT̃ = aṼz +
K
ρ0 c̃ρ

(
d2

dz2
− k2

)
T̃ (10.55)

and

ω
(

d2

dz2
− k2

)
Ṽz = −gαPk2T̃ + v

(
d2

dz2
− k2

)2

Ṽz . (10.56)

From the general boundary conditions wemust have T̃(0) = T̃(d) = 0 and Ṽz(0) =
Ṽz(d) = 0. On a rigid surface we have

dṼz
dz

|||||z=0 = dṼz
dz

|||||z=d = 0 . (10.57)
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On a smooth surface we have

d2Ṽz
dz2

|||||z=0 = d2Ṽz
dz2

|||||z=d = 0 . (10.58)

It is convenient to introduce a change of length scale. We will let ξ = z∕d, s =
ωd2∕v, α = kd, and P = vρ0 c̃ρ∕K (P is the Prandtl number). Then Eqs. (10.55)
and (10.56) can be combined and written(

𝜕2

𝜕ξ2
− α2

)(
𝜕2

𝜕ξ2
− α2 − s

)(
𝜕2

𝜕ξ2
− α2 − Ps

)
Ṽz(ξ) = −Rα2Ṽz(ξ)

(10.59)

and an identical equation holds for T̃(ξ). In (10.59),

R =
gaρ0 c̃ραPd4

vK
(10.60)

is the Rayleigh number.
The transition from the steady state in Eqs. (10.35)–(10.37) to a new steady state

(often called a “soft mode” transition when the frequency is real and no temporal
oscillations are allowed) occurs when s = 0. For s < 0, fluctuations are damped.
For s > 0, they can grow. To find conditions under which the transition occurs,
we set s = 0 in Eq. (10.59) and find values of R which satisfy the equation(

𝜕2

𝜕ξ2
− α2

)3

Ṽz(ξ) = −Rα2Ṽz(ξ) . (10.61)

Thus, the whole problem has been reduced to an eigenvalue problem.
Wewill now solve this eigenvalue problem for smooth boundary conditions and

we will compute the lowest value of the Rayleigh number for which an instability
can occur. For smooth boundaries at ξ = 0 and ξ = 1, Ṽz(ξ)must have the form

Ṽz(ξ) = A sin nπξ , (10.62)

where n = 1, 2,… ,∞. Substitution into Eq. (10.61) leads to the eigenvalue equa-
tion

R = (n2π2 + α2)3

α2
. (10.63)

The smallest value of R for which an instability can occur is for n = 1 or

R = (π2 + α2)3

α2
. (10.64)

If we plot R as a function of α, we find a critical value of α (α is related to the size
of cells in the x- and y-directions) for which R takes on its lowest value. To find it
analytically we must find the position to the minimum of R. Thus, we set

𝜕R
𝜕α2

= 3 (π
2 + α2)2

α2
− (π2 + α2)3

α4
= 0 (10.65)
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and obtain

αc =
π√
2
= 2.22 . (10.66)

The critical wavelength (the distance across a cell in the x–y plane) for the onset
of instabilities is

λc =
2πd
α

= 23∕2d (10.67)

and the critical Rayleigh number is

Rc =
27
4
π4 = 657.51 . (10.68)

Note that the critical wavelength depends on the size of the container. Thus, we
find that a nonequilibrium phase transition first occurs, as Rayleigh number is
increased, at Rayleigh number R = Rc = 27π4∕4. At this Rayleigh number a mode
emergeswhich haswavevector q = kx x̂+ ky ŷwithmagnitude q2 = q2c = π

2∕(2d2).
The case of two smooth surfaces, while easy to analyze, is difficult to realize

in experiments. Generally, in experiments one has one smooth surface and one
rigid surface, or two rigid surfaces. For these more realistic boundary conditions
the analysis proceeds along similar lines but is slightly more complicated [28] and
will not be discussed here. For the case of one rigid and one free surface, one
finds Rc = 1100.65 and αc = 2.68. For the case of two rigid boundaries, one finds
Rc = 1707.76 and αc = 3.12.
Let us now summarize our results. For the region in which the steady state

in Eqs. (10.35)–(10.37) is stable, the system is homogeneous in the x- and y-
directions. However, at the transition point, convection begins and the system
breaks into cells in the x- and y-directions. The cells will have a periodicity in the
x- and y-directions which is proportional to d, the distance between the plates.
We expect the cell walls to be vertical and that at the cell walls the normal gradient
of velocity vz(r, t) is zero.
The theory we have developed here assumes that the planes are of infinite ex-

tent in the x- and y-directions. In practice, the experiments must be done in finite
containers. Then the cell pattern that emerges is strongly dependent on the shape
of the container. For rectangular containers and circular covered containers, rolls
usually form. Square cells can be formed in square containers. In uncovered circu-
lar containers, where the effects of surface tension are important, hexagonal cells
usually form [111]. In Figure 10.5 we give an example of hexagons, that have been
observed experimentally. This transition has also been observed in molecular dy-
namics experiments on a two-dimensional Rayleigh–Bénard system [129, 175].
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Figure 10.5 Bénard instability. In an opened container where the effects of surface tension are
important hexagonal cells usually form. The dark lines indicate vertical motion, and the bright
lines indicate predominantly horizontal motion. Reprinted, by permission, from [110].

10.5
Problems

Problem 10.1 Consider the nonlinear chemical reactions

A + 2X
k1
⇌
k2
3X and X

k3
⇌
k4
B

(this reaction is called the Schlogl model). (a) Use linear stability theory to lo-
cate the stable and unstable steady-state solutions for the Schlogl chemical mod-
el. (b) Show that multiple steady states can only occur far from thermodynamic
equilibrium.

Problem 10.2 A one-dimensional chemically reacting system has a variable con-
stituent, X, whose rate equation is linear,

𝜕cX
𝜕t

= kcX − D∇2
r cX .

Assume that the concentration, cX , is held fixed on the boundaries with values,
cX = c0. Find the steady-state value of cX as a function of position (D is the diffu-
sion coefficient). Sketch the steady-state solution as a function of position.

Problem 10.3 Write the rate equations for the Brusselator near equilibrium and
find the equilibrium values of cX and cY . Find the steady-state solutions for the
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system near equilibrium (assume it is spatially homogeneous) and show that far
from equilibrium (A and B large and D and E eliminated as soon as they are pro-
duced) they reduce to the expressions, X0 = A and Y0 = B∕A.

Problem10.4 Show that the Brusselator admits travelingwave solutions, cX(rθ±
vt) and cY (rθ ± vt), for linear motion on a circle, assuming periodic boundary
conditions. Find the condition for a bifurcation from the thermodynamic branch
to a traveling wave solution using linear stability theory. Show that the velocity, v,
of the waves is a decreasing function of the wave number.

Problem 10.5 A fluid is constrained between two smooth surfaces a distance,
d, apart in a gravitational field with a temperature gradient across the fluid. If
a Bénard instability develops, show that it is possible to have square cells. Find
the horizontal width of the cells in terms of d. Find an expression for the velocity,
v, of the fluid and sketch the flow in each cell. Assume that, at the cell walls, the
fluid flows upward and has its maximum speed.
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Appendix A
Probability and Stochastic Processes

A.1
Probability

A.1.1
Definition of Probability

Probability is a quantization of our expectation of the outcome of an event or
experiment [55, 125, 146]. Suppose that one possible outcome of an experiment
isA. Then, the probability ofA occurring is P(A) if, out ofN identical experiments,
we expect thatNP(A)will result in the outcomeA. AsN becomes very large (N →
∞) we expect that the fraction of experiments which result in A will approach
P(A). An important special case is one in which an experiment can result in any
of n different equally likely outcomes. If exactlym of these outcomes corresponds
to event A, then P(A) = m∕n.
The concept of a sample space is often useful for obtaining relations between

probabilities and for analyzing experiments. The sample space of an experiment
is a set, S, of elements such that any outcome of the experiment corresponds to
one or more elements of the set. An event is a subset of a sample space S of an
experiment. The probability of an event A can be found by using the following
procedure:

a) Set up a sample space S of all possible outcomes.
b) Assign probabilities to the elements of the sample space (the sample points).

For the special case of a sample space of N equally likely outcomes, assign
a probability 1∕N to each point.

c) To obtain the probability of an event A, add the probabilities assigned to ele-
ments of the subset of S that corresponds to A.

In working with probabilities, some ideas from set theory are useful. The union of
two events A and B is denoted A ∪ B. A ∪ B is the set of all points belonging to A
or B or both (cf. Figure A.1a). The intersection of two events is denoted A ∩ B.
A ∩ B is the set of all points belonging to both A and B (cf. Figure A.1b). If the
events A and B are mutually exclusive, then A ∩ B = ∅ where ∅ is the empty set
(A ∩ B = ∅ contains no points) (cf. Figure A.1c).

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.
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Figure A.1 (a) The shaded area is the union of A and B, A ∪ B; (b) the shaded area is the inter-
section of A and B, A ∩ B; (c) when A and B are mutually exclusive there is no overlap.

We can obtain some useful relations between the probabilities of different
events. We shall let P(A) denote the probability that event A is the outcome of
an experiment (P(∅) = 0, P(S) = 1); we shall let P(A ∩ B) denote the probability
that both events A and B occur as the result of an experiment; and finally we shall
let P(A ∪ B) denote the probability that event A or event B or both occur as the
outcome of an experiment. Then the probability P(A ∪ B)may be written

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) . (A.1)

In writing P(A) + P(B), we take the region A ∩ B into account twice. Therefore,
we have to subtract a factor P(A ∩ B).
If the two events A and B are mutually exclusive, then they have no points in

common and

P(A ∪ B) = P(A) + P(B) . (A.2)

If eventsA1, A2,… , Am aremutually exclusive and exhaustive, thenA1 ∪A2∪⋯∪
Am = S and the m events form a partition of the sample space S into m subsets.
If A1, A2 ,… , Am form a partition, then

P(A1) + P(A2) +⋯ + P(Am) = 1 . (A.3)

We see versions of Eq. (A.3) often in this book.
The events A and B are independent if and only if

P(A ∩ B) = P(A)P(B) . (A.4)

Note that since P(A ∩ B) ≠ 0, A and B have some points in common. Therefore,
independent events are not mutually exclusive events. They are completely dif-
ferent concepts. For mutually exclusive events, P(A ∩ B) = 0.
The conditional probability P(B|A) is the probability that event A occurs as the

result of an experiment if B also occurs. P(B|A) is defined by the equation

P(B|A) = P(A ∩ B)
P(B)

. (A.5)

Since P(A ∩ B) = P(B ∩ A), we find also that

P(A)P(A|B) = P(B)P(B|A) . (A.6)

From Eq. (A.4) we see that if A and B are independent, then

P(B|A) = P(A) . (A.7)

The conditional probability P(B|A) is essentially the probability of event A if we
use the set B as the sample space rather than S.
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Exercise A.1

Consider a sample space consisting of eventsA andB such that P(A) = 3∕5, P(B) =
2∕3, and P(A ∪ B) = 1. Compute P(A ∩ B), P(B|A), and P(A|B). Are A and B in-
dependent?

Answer: From Eq. (A.1), P(A ∩ B) = P(A) + P(B) − P(A ∪ B) = 4∕15. But P(A ∩
B) ≠ P(A)P(B) so A and B are not independent. The conditional probabilities are
P(A|B) = P(A ∩ B)∕P(A) = 4∕9 and P(B|A) = P(A ∩ B)∕P(B) = 2∕5. Thus, 4∕9
of the points in A also belong to B and 2∕5 of the points in B also belong to A.

Exercise A.2

Nine students go camping. Of these students, three get mosquito bitesM, five get
torn clothesT , and two go unscathedU . (a)What is the probability that a student
with mosquito bites has torn clothes? (b) What is the probability that a student
with torn clothes has mosquito bites?

Answer: The probability to have torn clothes is P(T ) = 5∕9, to have mosquito
bites is P(M) = 3∕9, and to go unscathed is P(U) = 2∕9.
(a) If one draws a sample space with nine points in it (one for each student)

and assigns the events T , M, and U to the students, then it is easy to see that
P(T ∩ M) = 1∕9. Therefore, the probability that a student with mosquito bites
also has torn clothes is P(M|T ) = P(T ∩M)∕P(M) = (1∕9)∕(3∕9) = 1∕3.
(b) The probability that a student with torn clothes also has mosquito bites is

P(T|M) = P(T ∩M)∕P(T ) = (1∕9)∕(5∕9) = 1∕5.
(Note that P(T )P(M) = 15∕81 ≠ P(T ∩M) so T andM are not independent.

Note also that P(M ∩ U) = 0 soM and U are mutually exclusive.)

A.1.2
Probability Distribution Functions

A quantity whose value is a number determined by the outcome of an experiment
is called a stochastic variable (often it is also called a random variable). A stochas-
tic variable, X, on a sample space, S, is a function which maps elements of S into
the set of real numbers, {R}, in such a way that the inverse mapping of every in-
terval in {R} corresponds to an event in S (in other words, a stochastic variable is
a functionwhich assigns a real number to each sample point). Onemust be careful
to distinguish a stochastic variable (usually denoted by a capital letter X) from its
possible realizations, {xi}. (It is useful to note that the statement select at random
means that all selections are equally probable.) Some examples of stochastic vari-
ables are (i) the number of heads which appear each time three coins are tossed;
(ii) the velocity of each molecule leaving a furnace.
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A.1.2.1 Discrete Stochastic Variables
Let X be a stochastic variable that has a countable set of realizations, xi , where
i = 1, 2,… , ν (ν is either a finite integer or ν =∞). One can introduce a probability
space by assigning a probability, PX(xi ), to each realization, xi . The set of values,
PX(xi), is the probability distribution on S and must satisfy the conditions

PX(xi ) ≥ 0 and
ν∑
i=1
PX(xi) = 1 . (A.8)

If we can determine the distribution function PX(xi) for a stochastic variable X
then we have obtained all possible information about it. We usually cannot de-
termine PX(xi), but we can often obtain information about the moments of X.
The nth moment of X is defined

⟨xn⟩ = ν∑
i=1
xni PX(xi ) . (A.9)

Some of the moments have special names. The moment ⟨X⟩ is called the mean
value ofX. The combination ⟨X2⟩− ⟨X⟩2 is called the variance ofX, and the quan-
tity

σX =
√⟨X2⟩ − ⟨X⟩2 (A.10)

is called the standard deviation of X.

A.1.2.2 Continuous Stochastic Variables
In many applications the stochastic variable X can take on a continuous set of
values, such as an interval on the real axis. In that case, an interval {a ≤ x ≤ b},
corresponds to an event. Let us assume that there exists a piecewise continuous
function, fX (x), such that the probability that X has a value in the interval (a ≤
x ≤ b) is given by the area under the curve, fX(x) versus x, between x = a and
x = b,

PX(a ≤ x ≤ b) =
b

∫
a

dx fX (x) . (A.11)

Then X is a continuous stochastic variable, fX(x) is the probability density for
the stochastic variable, X, and fX(x)dx is the probability to find the stochastic
variable, X, in the interval x → x + dx. The probability density must satisfy the
conditions

fX(x) ≥ 0 and

∞

∫
−∞

dx fX (x) = 1 , (A.12)

where we have assumed that the range of allowed values ofX is −∞ ≤ x ≤∞. The
moments of X are now defined

⟨xn⟩ = ∞

∫
−∞

dxxn fX(x) , (A.13)
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where ⟨X⟩ is the mean value and the variance and standard deviation are defined
as before.

A.1.2.3 Characteristic Function
If all the moments ⟨Xn⟩ are known, then the probability density is completely
specified. To see this, we introduce the characteristic function, φX (k), defined as

φX(k) = ⟨eikx⟩ = ∞

∫
−∞

dxeikx fX(x) =
∞∑
n=0

(ik)n⟨xn⟩
n!

. (A.14)

The series expansion in Eq. (A.14) is meaningful only if the highermoments, ⟨xn⟩,
are small so the series converges. The probability density, fX (x), is given by the
inverse transform

fX(x) =
1
2π

∞

∫
−∞

dke−ikxφX(k) . (A.15)

Thus, it requires all themoments to completely determine the probability density,
f (x). Characteristic functions are continuous functions of k and have the property
that φX(0) = 1, |φX(k)| ≤ 1, and φX(−k) = φ∗

X(k) (
∗ denotes complex conjugation).

The product of two characteristic functions is always a characteristic function.
If we know the characteristic function we can obtain moments by differentiat-

ing:

⟨xn⟩ = lim
k→0

(−i)n
dnφX(x)
dkn

. (A.16)

Equation (A.16) provides a simple way to obtain moments if we know φX (k).
It is often useful to write the characteristic function, φX(k), in terms of cumu-

lants, Cn(X), rather than expand it directly in terms of moments. The cumulant
expansion is defined

φX(k) = exp

( ∞∑
n=1

(ik)n

n!
Cn(X)

)
, (A.17)

where Cn(X) is the nth-order cumulant. If we expand Eq. (A.17) in powers of k
and equate terms of the same order in k in Eqs. (A.14) and (A.17), we find the
following expressions for the first four cumulants:

C1(X) = ⟨x⟩ , (A.18)
C2(X) = ⟨x2⟩ − ⟨x⟩2 , (A.19)
C3(X) = ⟨x3⟩ − 3⟨x⟩⟨x2⟩ + 2⟨x⟩3 , (A.20)
C4(X) = ⟨x4⟩ − 3⟨x2⟩2 − 4⟨x⟩⟨x3⟩ + 12⟨x⟩2⟨x2⟩ − 6⟨x⟩4 . (A.21)

If higher order cumulants rapidly go to zero, we can often obtain a good approx-
imation to φX(k) by retaining only the first few cumulants in Eq. (A.17). We see
that C1(X) is just the mean value of X and C2(X) is the variance.
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Exercise A.3

Consider a system with stochastic variable, X, which has probability density,
fX(x), given by the circular distribution; fX (x) = (2∕π)

√
1 − x2 for |x| ≤ 1, and

fX(x) = 0 for |x| > 1. Find the characteristic function and use it to find the first
four moments and the first four cumulants.

Answer: The characteristic function is

φX(k) =
2
π

1

∫
−1

dxeikx
√
1 − x2 = 2

k
J1(k) ,

(cf. Gradshteyn and Ryzhik [71]) where J1(k) is a Bessel function. Now expand
fX(k) in powers of k

fX(k) =
2
k

[
k
2
− k3

16
+ k5

384
+⋯

]
= 1 − 1

4
k2
2!

+ 1
8
k4
4!

−⋯ .

From Eq. (A.14), themoments are ⟨x⟩ = ⟨x3⟩ = 0, ⟨x2⟩ = 1∕4, and ⟨x4⟩ = 1∕8. The
cumulants are C1 = C3 = 0, C2 = 1∕4, and C4 = −1∕16.

A.1.2.4 Jointly Distributed Stochastic Variables
The stochastic variables X and Y are jointly distributed if they are defined on the
same sample space, S. The joint probability density fX ,Y (x , y) satisfies the condi-
tions

0 ≤ f (x , y) ≤ 1 and

∞

∫
−∞

dx

∞

∫
−∞

dy fX ,Y (x , y) = 1 . (A.22)

If we want the reduced distribution function, fX (x), for the stochastic variable, X,
it is defined as

fX(x) =
∞

∫
−∞

dy fX ,Y (x , y) . (A.23)

We can obtain the reduced probability density, fY (y), in a similar manner.
The nth moment of the stochastic variable, X, is defined as

⟨xn⟩ = ∞

∫
−∞

dx

∞

∫
−∞

dyxn fX ,Y (x , y) . (A.24)

Joint moments of the stochastic variables, X and Y , are defined as

⟨xm yn⟩ = ∞

∫
−∞

dx

∞

∫
−∞

dyxm yn fX ,Y (x , y) . (A.25)
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A joint moment that is commonly used in the physics literature is the joint corre-
lation function

Cor(X , Y ) =
⟨(x − ⟨x⟩)(y − ⟨y⟩)⟩

σXσY
, (A.26)

where σX and σY are the standard deviations of the stochastic variables X and Y ,
respectively. The correlation function, Cor(X , Y ), is dimensionless and is a mea-
sure of the degree of dependence of the stochastic variables X and Y on one
another. The correlation function has the following properties: (i) Cor(X , Y ) =
Cor(Y, X); (ii) −1 ≤ Cor(X , Y ) ≤ 1; (iii) Cor(X , X) = 1 and Cor(X ,−X) = −1; and
(iv) Cor(aX+b, cY +d) =Cor(X , Y ) if a , c ≠ 0. The notion of the joint correlation
function can be extended to any number of stochastic variables.
For two stochastic variables, X and Y , which are independent, the following

properties hold: (i′) fX ,Y (x , y) = fX(x) fY (y); (ii′) ⟨XY ⟩ = ⟨X⟩⟨Y ⟩; (iii′) ⟨(X +
Y )2⟩ − ⟨(X + Y )⟩2 = ⟨X2⟩ − ⟨X⟩2 + ⟨Y 2⟩ − ⟨Y ⟩2; and (iv′) Cor(X , Y ) = 0. Note
that the converse of (iv′) does not necessarily hold. If Cor (X , Y ) = 0, it does not
always means that X and Y are independent.
Whenwe deal with several stochastic variables, we oftenwish to find the proba-

bility density for a new stochastic variable which is a function of the old stochastic
variables. For example, if we know the joint probability density, fX ,Y (x , y), wemay
wish to find the probability density for a variable Z = G(X , Y ), where G(X , Y ) is
a known function of X and Y . The probability density, fZ(z), for the stochastic
variable, Z, is defined as

fZ(z) =
∞

∫
−∞

dx

∞

∫
−∞

dyδ(z − G(x , y)) fX ,Y (x , y) . (A.27)

An example is given in Exercise A.4.

A.1.3
Binomial Distributions

Weconsider the case of a large number,N , of independent experiments, each hav-
ing two possible outcomes. The probability distribution for one of the outcomes is
called the binomial distribution [55, 68, 125]. In the limit of largeN , the binomial
distribution can be approximated by either the Gaussian or the Poisson distribu-
tion, depending on the size of the probability of a given outcome during a single
experiment. We shall consider all three distributions in this section.

A.1.3.1 The Binomial Distribution
Let us carry out a sequence of N statistically independent trials and assume that
each trial can have only one of twooutcomes,+1 or−1. Let us denote the probabil-
ity of outcome,+1, by p and the probability of outcome,−1, by q so that p+ q = 1.
In a given sequence of N trials, the outcome +1 (−1) can occur n+ (n−) times,

where N = n+ + n−. The probability for a given permutation of n+ outcomes,+1,
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and n− outcomes, −1, is pn+qn− since the N trials are statistically independent.
The probability for any combination of n+ outcomes, +1, and n− outcomes, −1,
is

PN (n+) =
N!

n+!n−!
pn+qn− (A.28)

since a combination of n+ outcomes, +1, and n− outcomes, −1, contains
(N!∕n+!n−!) permutations. The quantity PN (n+) in Eq. (A.28) is called the bino-
mial distribution.

Exercise A.4

The stochastic variables,X and Y , are independent and have probability densities,
fX(x) = (1∕

√
2π)e−(1∕2)x2 and fY (y) = (1∕

√
2π)e−(1∕2)y2 with firstmoments, ⟨x⟩=⟨y⟩ = 0, and standard deviations, σX = σY = 1. Find the joint probability density

fV,W (v, w) for the stochastic variables, V = X + Y andW = X − Y . Are V andW
independent?

Answer: Since X and Y are independent, Eq. (A.27) gives

fV,W (v, w) = 1
2π

∞

∫
−∞

dx
∞

∫
−∞

dyδ(v − v′(x , y))δ(w − w′(x , y))e−(1∕2)(x2+y2) ,

where v′(x , y) = x + y and w′(x , y) = x − y. Now note that

δ(v − v′(x , y))δ(w − w′(x , y)) = J

(
x y
w v

)
δ(x − x′(v, w))δ(y − y′(v, w)) ,

where x′(v, w) = 1∕2(v + w), y′(v, w) = 1∕2(v − w), and J

(
x y
w v

)
= 1∕2 is the

Jacobian of the coordinate transformation. Thus, fV,W (v, w) = 1∕4πe−(1∕4)(v2+w2).
V andW are independent since fV,W (v, w) is factorizable.

From the binomial theorem, we have the normalization condition

N∑
n+=0

PN (n+) =
N∑

n+=0

N!
n+!(N − n+)!

pn+qN−n+ = (p + q)N = 1 . (A.29)

The first moment, or mean value, of outcome +1 is

⟨n+⟩= N∑
n+=0

n+PN (n+) =
N∑

n+=0

n+N!
n+!(N − n+)!

pn+qN−n+ = p 𝜕

𝜕 p
(p+q)N = pN .

(A.30)
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Figure A.2 (a) The binomial distribution for p = 1∕3 and N = 10; for this case, ⟨n1⟩ = 10∕3.
(b) The Poisson distribution for ⟨n⟩ = a = 2.

In a similar manner, we obtain for the second moment

⟨n2+⟩ = N∑
n+=0

n2+PN (n+) = (N p)2 + N pq . (A.31)

The variance is given by ⟨n2+⟩ − ⟨n+⟩2 = N pq, and the standard deviation is

σN =
√
N pq . (A.32)

The fractional deviation is

σN⟨n+⟩ =
√
q
p

1√
N

. (A.33)

The fractional deviation is a measure of the deviation of the fraction, n+∕N , of
trials with outcome, +1, from its expected value, ⟨n+⟩∕N = p, in any single se-
quence ofN trials. A small value of σN∕⟨n+⟩means that n+∕N will likely be close
to p. For N → ∞, σN∕⟨n+⟩ → 0 so that n1∕N → p. The binomial distribution,
for the case N = 10 and p = 1∕3 is plotted in Figure A.2a. An application of the
binomial distribution is given in Exercise A.5.

Exercise A.5

The probability that an archer hits his target is 1∕3. If he shoots five times, what
is the probability of hitting the target at least three times?

Answer: Let n+ be the number of hits. Then N = n− + n+ = 5, p = 1∕3, and
q = 2∕3. The probability of having n+ hits in N = 5 trials is P5(n+) = 5!∕(n+!(5−
n+)!)(1∕3)n+ (2∕3)5−n+ . The probability of at least three hits = P5(3) + P5(4) +
P5(5) = 51∕243 ≈ 0.21.

A.1.3.2 The Gaussian (or Normal) Distribution
In the limit of large N and large pN (i.e., p not very small) the binomial distribu-
tion approaches a Gaussian distribution. If we make use of Stirling’s approxima-
tion

n! ≈
√
2πn

(n
e

)n
, (A.34)
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for n > 10, we can write (after a bit of algebra) the following approximation to the
binomial distribution

PN (n) ≈
1√
2πN

( n
N

)−n−1∕2 (N − n
N

)n−N−1∕2
pn(1 − p)N−n . (A.35)

If we use the fact that exp(y ln x) = xy , then we can write Eq. (A.35) in the form

PN (n) ≈
1√
2πN

exp
[
−
(
n + 1

2

)
ln

( n
N

)
−

(
N − n + 1

2

)
ln

(N − n
N

)

+n ln(p) + (N − n) ln(1 − p)
⎤⎥⎥⎦ .

(A.36)

The binomial distribution PN (n) exhibits a maximum at n = ⟨n⟩ = N p so ⟨n⟩
grows at a rate proportional to N . The standard deviation σN =

√
pqN , which is

ameasure of thewidth of PN(n), only grows at a rate proportional to
√
N . ForN≫

1, the width 2σN of the binomial distribution is very small compared to the value
of themean ⟨n⟩. Thus, all the values of n that carry significant probability lie in the
neighborhood of ⟨n⟩ = pN and are very large compared to integer changes in n.
Therefore, in the limitN→∞, it is a good approximation to treatn as a continuous
variable.
If we expand the exponent in Eq. (A.36) in a Taylor series about n = ⟨n⟩, we

obtain the following expression for PN (n)

PN (n) ≈ PN (⟨n⟩) exp [
−
(n − ⟨n⟩)2
2N pq

+
(q2 − p2)(n − ⟨n⟩)3

6N2 p2q2
+…

]
. (A.37)

For (n − ⟨n⟩) ≤ √
N pq, the terms higher than second order are negligible. For

(n − ⟨n⟩) > √
N pq, PN (n) falls off exponentially. Thus, for large N , we only need

to keep the term which is second order in (n − ⟨n⟩). The binomial distribution
then becomes, to good approximation,

PN (n) ≈ PN (⟨n⟩) exp [
−
(n − ⟨n⟩)2
2N pq

]
. (A.38)

Exercise A.6

A randomwalker has a probability p = 1∕2 (q = 1∕2) of taking a step of length d to
the right (left), so the probability density for a single step is PX (x) = 1∕2δ(x− d) +
1∕2δ(x + d). Let YN = X1 +⋯ + XN be the displacement after N steps. Assume
that the steps are independent of one another. (a) Find the probability density
PYN (y) and the first and second moments ⟨y⟩ and ⟨y2⟩.
Answer: The probability density PYN (y) is given by

PYN (y) =
∞

∫
−∞

…
∞

∫
−∞

dx1 … dxN δ(y − x1 −⋯− xN )PX1
(x1) ×⋯× PXN (xN ) .



397A.1 Probability

The characteristic function,ΦYN (k) = 1∕(2π) ∫ dyeik yPYN (y), for the randomvari-
able YN is

ΦYN (k) =
∞

∫
−∞

…
∞

∫
−∞

dx1 … dxNeik(x1+⋯+xN )PX1
(x1) ×⋯ × PXN (xN )

= φX1
(k) ×⋯ × φXN (k) = (cos(kd))N = 1

2N

N∑
n=0

N!
n!(N − n)!

ei(2n−N)kd ,

where φX(k) = 1∕(2π) ∫ dxeikxPX(x) = cos(kd) is the characteristic function for
the random variable X. The first moment is

⟨y⟩ = lim
k→0

[
(−i)

dΦYN (k)
dk

]
= lim
k→0

[
iNd(cos(kd))N−1sin(kd)

]
= 0 .

The second moment is

⟨y2⟩ = lim
k→0

[
(−i)2

d2ΦYN (k)
dk2

]
= Nd2 .

The probability density is

PYN (y) =
∞

∫
−∞

dke−ik yΦYN (k) =
1
2N

N∑
n=0

N!
n!(N − n)!

δ(y − 2n + N) .

This is a binomial distribution for the probability to find the walker at various
points along the y-axis afterN steps. In the limit of largeN , it approaches a Gaus-
sian distribution centered at y = 0 with standard deviation σY =

√
Nd.

We can nownormalize this distribution. Note that the range of allowed values of n
is given by 0≤ n ≤ N . However, asN →∞, we find that PN (0)→ 0 and PN (N)→ 0
since PN (n) goes to zero exponentially fast as we move a distance σN away from
n = ⟨n⟩. Thus, we can extend the range of n to −∞ ≤ n ≤ ∞ and require that∑N

0 PN (n) ⇒ ∫∞−∞ dn f (n) = 1, and we find that this limiting case of the binomial
distribution yields the Gaussian probability density, f (n), where

f (n) = 1
σ
√
2π

exp
[
−
(n − ⟨n⟩)2

2σ2

]
. (A.39)

It is easy to show that ⟨n⟩= ∫∞−∞ dnn f (n) and σ =
√⟨n2⟩ − ⟨n⟩2. It is important to

note that the Gaussian probability density is entirely determined by the first and
second moments, ⟨n⟩ and ⟨n2⟩, respectively. The Gaussian distribution is plotted
in Chapter 2, Figure 2.1.
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Exercise A.7

The multivariant Gaussian distribution with zero mean can be written

PX1 ,…,XN (x1 ,… , xN ) =

√
det(g)
(2π)N

e−(1∕2)xT⋅g⋅x ,

where g is a symmetric N × N positive definite matrix, x is a column vector,
and the transpose of x, xT = (x1 ,… , xN ), is a row vector. Thus, xT ⋅ g ⋅ x =∑N
i=1

∑N
j=1 gi jxix j . Show that PX1 ,…,XN (x1 ,… , xN ) is normalized to one.

Answer: Since g is a symmetric matrix, it can be diagonalized using an orthog-
onal matrix, O, where O

−1
= O

T
and O

−1
⋅O = I (I is the unit matrix). Note that

the determinant of O is one, det(O) = 1. We can write O ⋅ g ⋅ O
T
= Γ , where Γ is

diagonal (Γ ii = γi and Γ i j = 0 for i ≠ j). The orthogonalmatrix,O, transforms the
stochastic variables.Wewill let α = O ⋅ x = (α1 ,… , αN ). Since det (O) = 1, the Ja-
cobian of the transformation is one. Thus, dNx ≡ dx1 ,… , dxn = dα1 ,… , dαN ≡
dNα. Furthermore, xT ⋅ g ⋅ x = αT ⋅ Γ ,… , α, so we obtain

∫ dNxe−(1∕2)xT⋅g⋅x = ∫ dNαe−(1∕2)
∑N
i γiα

2
i =

√
(2π)N

γ1,… , γN
=

√
(2π)N

det(g)
,

since det(g) = det(Γ) = γ1,… , γn .

A.1.3.3 The Poisson Distribution
The Poisson distribution can be obtained from the binomial distribution in the
limit N → ∞ and p → 0, such that N p = a ≪ N (a is a finite constant). The first
moment for the binomial distribution is ⟨n⟩ = N p = a ≪ N which also locates
the neighborhood of the peak value of the distribution. If we use Stirling’s approx-
imation Eq. (A.34), and note that the values of n that have largest probability are
those for which n ∼ N p≪ N , thenwe findN!∕(N − n)! ∼ Nn . Let us further note
that

lim
p→0

(1 − p)N−n ≈ lim
p→0

(1 − p)N = lim
p→0

(1 − p)a∕p → e−a , (A.40)

where we have used the definition ez ≡ limn→∞(1 + (z∕n))n . If we combine the
above results, the binomial distribution takes the form

P(n) = ane−a
n!

, (A.41)

which is called the Poisson distribution.
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Exercise A.8

The characteristic function for the multivariant Gaussian (see Exercise A.7) is

fX1 ,…,XN (k1 ,… , kN ) =

√
det(g)
(2π)N

∞

∫
−∞

…
∞

∫
−∞

dx1 ,… , dxNeik
T⋅xe−(1∕2)xT⋅g⋅x ,

where kT = (k1 ,… , kN ). (a) Compute the characteristic function,
fX1 ,…,XN (k1 ,… , kN ). (b) Show that the moments, ⟨xi⟩ = 0 and that all higher
moments can be expressed in terms of products of the moments, ⟨x2i ⟩ and ⟨xix j⟩.
This is the simplest form of Wick’s theorem.

Answer: (a) If we transform the integral into diagonal form, as we did in Exer-
cise A.7, it is straightforward to show that fX1 ,…,XN

(
k1,… , kN

)
= e−(1∕2)kT⋅g

−1⋅k .
(b) The first moment is ⟨xi⟩ = limki→0(−i)(𝜕∕𝜕ki ) fX1 ,…,XN (k1 ,… , kN ) = 0, since

the derivative brings down a factor of k j . In fact, all odd moments will be zero

for the same reason. The second moment is easily seen to be ⟨xix j⟩ = (
g−1

)
i j
.

Inspection shows that all higher moments depend only on sums of products of
factors of the form

(
g−1

)
i j
, and therefore only on sums of products of second

moments. More generally, the average of a product of 2n stochastic variables is
equal to the sum of all possible combinations of different pairwise averages of the
stochastic variables. For example,

⟨x1x2x3x4⟩ = ⟨x1x2⟩⟨x3x4⟩ + ⟨x1x3⟩⟨x2x4⟩ + ⟨x1x4⟩⟨x2x3⟩ .
(Note that ⟨xix j⟩ = ⟨x jxi⟩.) More generally, if we have 2n stochastic variables, the
number of terms in the expression for the 2nth moment, is (2n)!∕n!2n . We deter-
mine this as follows.There are (2n)(2n−1)∕2 ways to form the first pair. After that
there are (2n − 2)(2n − 3)∕2 ways to form the second pair, and so on. After all the
pairs are formed in this way, by the multiplication rule, there will be

∏n−1
i=0 (2n −

2i)[2n−(2i+1)]∕2 = (2n)!∕2n different combinations of pairs. Of these, n! will be
identical because they are different permutations of the same pairs. Thus, the total
number of different terms in the expression for ⟨x1x2 ,… , x2n⟩ is (2n)!∕(n!2n ).
The Poisson distribution applies when many experiments are carried out but the
result n = +1 has only a very small probability of occurring. The Poisson distri-
bution is normalized to one

∞∑
0

an
n!

e−a = eae−a = 1 . (A.42)

The first moment, ⟨n⟩ = a. Note that the Poisson distribution depends only on
the first moment, and therefore it is sufficient to know only the first moment in
order to find the probability density for a Poisson process. In Figure A.2b, we plot
the Poisson distribution for a = 2.
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Exercise A.9

A thin sheet of gold foil (one atom thick) is fired upon by a beam of neutrons.
The neutrons are assumed equally likely to hit any part of the foil but only “see”
the gold nuclei. Assume that, for a beam containing many neutrons, the average
number of hits is two. (a) What is the probability that no hits occur? (b) What is
the probability that two hits occur?

Answer: Since the ratio (area nucleus/area atoms)≈10−12, the probability of a hit
is small. Since the number of trials is large, we can use the Poisson distribution.
Let n1 denote the number of hits. Then ⟨n1⟩ = 2 and the Poisson distribution can
be written P(n1) = e−22n1∕n1!.

1. The probability that no hits occur is P(0) = e−220∕0! = 0.135.
2. The probability that two hits occur is P(2) = e−222∕2! = 0.27.

A.1.4
Central Limit Theorem and the Law of Large Numbers

It can be shown that the probability density describing the distribution of out-
comes of a large number of events universally approaches a Gaussian form (pro-
vided the moments of the distribution for the individual events are finite). This is
called the Central Limit Theorem and explains why Gaussian distributions are so
widely seen in nature [55, 68]. The law of large numbers gives quantitative justifi-
cation to the use of probabilities.

A.1.4.1 The Central Limit Theorem
The Central Limit Theorem can be stated in a simplified form which has direct
relevance to the statistics of measurements. Let us consider a stochastic variable,
YN = (1∕N)(X1 +⋯ + XN ) − ⟨x⟩, which is the deviation from the average of N
statistically independent measurements of a stochastic variable, X. We perform
measurements of X, whose underlying probability density fX (x) is not known.
We want to find the probability density for the deviation of the average YN of
all N measurements from the mean value of X.
For simplicity consider the quantity Zi = (1∕N)(Xi − ⟨x⟩) so YN = Z1+⋯+ZN .

The characteristic function, φz(k;N), for the stochastic variable, Zi = (1∕N)(Xi −⟨x⟩), can be written

φz(k;N) =
∞

∫
−∞

dxei(k∕N)(x−⟨x⟩)PX (x) = 1 − 1
2
k2
N2 σ

2
X +⋯ ,

where σ2X = ⟨x2⟩ − ⟨x⟩2. For large N and finite variance, higher order terms in
the expansion of the right-hand side can be neglected. (Note that the oscillatory
character of the integrand ensures that the integral goes to zero for large k.) The
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characteristic function for YN is then

φYN (k) =
(
1 − 1

2
k2
N2 σ

2
X +⋯

)N

→ exp

(
−
k2σ2X
2N

)
as N → ∞ ,

where we have used the identity limN→∞(1 + x∕N)N = ex . Thus,

fYN (y) →
1
2π

∞

∫
−∞

dkeik y exp

(
−
k2σ2X
2N

)
=

√
N

2πσ2X
exp

(
−
N y2

2σ2X

)

as N → ∞. Regardless of the form of fX(x), if it has finite moments, the average
of a large number of statistically independent measurements of X will be a Gaus-
sian centered at ⟨x⟩, with a standard deviation which is 1∕

√
N times the standard

deviation of the probability density of X. This is a simple example of the Central
Limit Theorem [68].

A.1.4.2 Law of Large Numbers
The law of large numbers underlies the intuitive concept of probability. Much of
the content of the law of large numbers is contained in the Central Limit Theorem
as applied to measurements. We give a simple version of it here.
The law of large numbers applies to N independent experiments and may be

stated as follows: If an event, A, has a probability, p, of occurring, then the fraction
of outcomes, A, approaches p in the limit N → ∞. The proof has two steps. The
first step involves the derivation of the Tchebycheff inequality. The second step
uses this inequality to derive the law of large numbers.
The Tchebycheff inequality establishes a relation between the variance and the

probability that a stochastic variable can deviate by an arbitrary amount, ε (ε is
positive), from its average value. The variance, σZ , of a stochastic variable, Z, is
written

σ2Z =
∞

∫
−∞

dz(z − ⟨z⟩)2PZ(z) . (A.43)

If we now delete that range of the variable, z, for which |z − ⟨z⟩| ≤ ε, we can write

σ2Z ≥
⟨z⟩−ε
∫
−∞

dz(z − ⟨z⟩)2PZ(z) + ∞

∫⟨z⟩+ε
dz(z − ⟨z⟩)2PZ(z) . (A.44)

Since under the integral |z− ⟨z⟩|≥ ε2, we can replace (z− ⟨z⟩)2 by ε2 in Eq. (A.44)
and write

σ2Z ≥ ε2
⎛⎜⎜⎝
⟨z⟩−ε
∫
−∞

dzPZ(z) +
∞

∫⟨z⟩+ε
dzPZ(z)

⎞⎟⎟⎠ = ε2P(|z − ⟨z⟩| ≥ ε) , (A.45)
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where P(|z − ⟨z⟩| ≥ ε) is the probability that the stochastic variable, Z, deviates
from ⟨z⟩ by more than ±ε. From Eq. (A.45), we obtain the Tchebycheff inequality

P(|z − ⟨z⟩| ≥ ε) ≤ σ2Z
ε2

. (A.46)

Thus, for fixed variance, σ2Z , the probability thatZ can differ from its average value
by more than ±ε decreases as ε−2 for increasing ε.
We now come to the law of large numbers. Let us considerN independentmea-

surements of the stochastic variable,Z. Let YN be themean value of the outcomes,
YN = (1∕N)(Z1 +⋯+ ZN ), where Zi is the outcome of the ith measurement. The
law of large numbers states that the probability that YN deviates from ⟨z⟩ goes to
zero as N → ∞. Thus, limN→∞ P(|yN − ⟨z⟩| ≥ ε) = 0. To prove this, let us first
note that ⟨yN⟩ = ⟨z⟩. Since we have independent events, the variance, σYN , be-
haves as σ2YN = σ2Z∕N . We now use the Tchebycheff inequality to write

P(|yN − ⟨z⟩| ≥ ε) ≤ σ2YN
ε2

=
σ2Z
Nε2

. (A.47)

Thus, we find

lim
N→∞

P(|yN − ⟨z⟩| ≥ ε) = 0 , (A.48)

provided that σZ is finite.
The Central Limit Theorem and the Law of Large Numbers discussed above

apply to stochastic systems with finite variance. However, there is also a class of
random walks that has infinite variance. A random walk on a lattice that has self-
similar structure is an example of a random walk with infinite variance. Other
examples include the Weierstrass random walk, the Rayleigh–Pearson random
walk, and Levy flights [87, 162, 180, 210]. These random walks form fractal-like
clusters on all scales, and adifferent formofCentral LimitTheoremcanbederived
for them.

A.2
Stochastic Processes

We often need to determine how probability distributions evolve in time. Equa-
tions governing the flow of probability occur in many forms. Below we consider
several of them.

A.2.1
Markov Chains

A Markov chain involves transitions, at discrete times, between values of a dis-
crete stochastic variable, Y . Assume that Y has realizations

{
y1 ,… , yN

}
and
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that transitions between these realizations occur at times t = sτ, where s =
1, 2,… ,∞. Let Pn(s) denote the probability that Y has realization yn at t = s.
Let P(n1 , s1|n2 , s2) denote the conditional probability that Y has realization yn2
at time s2, given that it had realization yn1 at time s, then the probability Pn(s)
can be written

Pn(s + 1) =
N∑
m=1
Pm(s)P(m, s|n, s + 1) . (A.49)

P(m, s|n, s + 1) is called the transition probability and contains all necessary in-
formation about transition mechanisms in the system. If we note that Pn(s + 1) =∑N
n0=1

Pn0 (s0)P(n0 , s0|n, s + 1), we obtain the following equation for the transition
probabilities

P(n0 , s0|n, s + 1) =
N∑
m=1
P(n0 , s0|m, s)P(m, s|n, s + 1) . (A.50)

A commonly encountered situation is one in which the transition probabili-
ties are independent of time s. We then introduce the transition matrix Qm,n =
P(m, s|n, s + 1) and can write

Pn(s) =
N∑
m=1
Pm(0)(Qs)m,n . (A.51)

The transition matrix Q is generally not a symmetric matrix, so its left and right
eigenvectors will be different. If Q is an N × N matrix, it will have N eigenvalues
λ j ( j = 1,… ,N), whichmay or may not be real. The eigenvalues, λi(i = 1,… ,M),
of Q are given by the condition that det |Q − λI| = 0. The left eigenvector, χ j =
(χ j,1 ,… , χ j,N ) satisfies the eigenvalue equation χ jλ j = χ jQ, while the right eigen-
vector ψ j = (ψj,1,… , ψj,N )T (T denotes transpose) satisfies the eigenvalue equa-
tion λ jψ j = Qψ j . One can show that the left and right eigenvectors are complete∑N
m=1 ψ jχTj = 1 and are orthogonal

∑N
m=1 χ

T
j′ψ j = 0 for j′ ≠ j. Also the eigenval-

ues have the property that |λ j| ≤ 1 and at least one of the eigenvalues (let’s say
λ1) always has the value λ1 = 1 [183] (we leave the proof of these statements as
a homework problem).
We can expand the transition matrix, Q, in terms of its left and right eigen-

vectors so that Qm,n =
∑M
j=1 λ jψ j,mχ j,n. Then we obtain the following spectral

decomposition of the transition probability

P(m, s0|n, s) = M∑
j=1
λs−s0j ψ j,mχ j,n . (A.52)

The detailed behavior of the conditional probability and probability Pn(s), as
a function of time s, depends on the structure of the transition matrix. We are
particularly interested in the case when the transition matrix is regular. The tran-
sition matrix Q is called regular if all elements of some power QN (N an integer)
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are nonzero. IfQ is regular, there is only one eigenvalue ofQwith eigenvalue λ = 1
and the probability Pn(s) tends to a unique stationary state Pstn after a long time.
In Exercise A.10, we illustrate some of these ideas with an example.

Exercise A.10

Consider two pots, A and B, three red balls and two white balls. Pot A always has
two balls and pot B always has three balls. There are three different configura-
tions for the pots: y1 = (A[RR]; B[WWR]), y2 = (A[RW]; B[RRW]), y3 = (A[WW];
B[RRR]), whereA[RR]= “pot A has two red balls in it”, etc. To transition between
y1, y2 and y3, pick a ball out of A and a ball out of B, at random, and interchange
them. (a) Compute the transition matrix Q and obtain its eigenvalues and its left
and right eigenvectors. (b) Let P(s) = (p1(s), p2(s), p3(s)), where pn(s) is the prob-
ability to be in configuration yn at time s. If P(0) = (1, 0, 0) (start with two red balls
in pot A), what is P(3)? (c) What is the long-time stationary state P(∞)?

Answer: (a) We can make the following transitions from ym to yn with transi-
tion probability, Qm,n , such that Q1,1 = 0,Q1,2 = 1,Q1,3 = 0,Q2,1 = 1∕6,Q2,2 =
1∕2,Q2,3 = 1∕3,Q3,1 = 0,Q3,2 = 2∕3, and Q3,3 = 1∕3. Then

Q =
⎛⎜⎜⎜⎝
0 1 0
1
6

1
2

1
3

0 2
3

1
3

⎞⎟⎟⎟⎠ and Q2 =
⎛⎜⎜⎜⎝

1
6

1
2

1
3

1
12

23
36

10
36

1
9

20
36

1
3

⎞⎟⎟⎟⎠ .

Thus, Q is regular and this system has a unique long-time stationary state. The
eigenvalues of Q are λ1 = 1, λ2 = 1∕6, and λ3 = −1∕3. The right eigenstates can
be written ψ1 = (1, 1, 1)T, ψ2 = (−3∕2,−1∕4, 1)T, and ψ3 = (3,−1, 1)T. The left
eigenstates can be written χ1 = (1∕10, 6∕10, 3∕10), χ2 = (−4∕15,−4∕15, 8∕15),
and χ3 = (1∕6,−1∕3, 1∕6).
(b) The probability at time s = 3 is

P(3) = P(0)Q3 = (1, 0, 0)
⎛⎜⎜⎜⎝

1
12

23
36

5
18

23
216

127
216

11
36

5
54

11
18

8
27

⎞⎟⎟⎟⎠ =
( 1
12

, 23
36

, 5
18

)
.

(c) After a very long time the probability approaches the stationary state P(∞) =
λ1ψ1χ1 = (1∕10, 6∕10, 3∕10). At s = ∞, the probability to find two red balls in
pot A is p1 = 1∕10.
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A.2.2
The Master Equation

We now consider stochastic processes for which the time interval between events
can vary in a continuousmanner, but the realizations of the stochastic variable are
discrete. For such processes, we must obtain a differential equation for the time
dependence of the probability. The time evolution of such processes is governed
by the Master Equation [205].

A.2.2.1 Derivation of the Master Equation
We can derive the master equation from Eq. (A.49) for Markov chains. To begin,
let us rewrite Eq. (A.49) in the form

P1(n, t + Δt) =
M∑
m=1

P1(m, t)P1|1(m, t|n, t + Δt) . (A.53)

The differential equation for P1(n, t) can be constructed from Eq. (A.53) if we
note that

𝜕P1(n, t)
𝜕t

≡ lim
Δt→0

[
P1(n, t + Δt) − P1(n, t)

Δt

]
= lim

Δt→0

1
Δt

M∑
m=1

P1(m, t)(P1|1(m, t|n, t + Δt) − δm,n) . (A.54)

Since we will take the limit Δt → 0, we can expand the transition probability
P1|1(m, t|n, t + Δt) in a power series in Δt and keep only the lowest-order term.
In order to conserve probability at all times, its most general form is

P1|1(m, t|n, t +Δt) = δm,n

[
1 − Δt

M∑
l=1
wm,l(t)

]
+wm,n(t)Δt +… , (A.55)

where wm,n(t) is the transition probability rate. In Eq. (A.55), wm,n(t)Δt is the
probability of a transition from state m to state n during the time interval t →
t + Δt. Similarly, [1 −

∑M
l=1 wm,l(t)Δt] is the probability that no transition occurs

during the time interval t→ t+Δt. If we now substitute Eq. (A.55) into Eq. (A.54),
we obtain

𝜕P1(n, t)
𝜕t

=
M∑
m=1

[P1(m, t)wm,n(t) − P1(n, t)wn,m(t)] . (A.56)

Equation (A.56) is called themaster equation. The master equation gives the rate
of change of the probability P1(n, t) due to transitions into the state n from all
other states (first term on the right) and due to transitions out of state n into all
other states (second term on the right).
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The conditional probability P1|1(n0 , 0|n, t) also satisfies a master equation

𝜕P1|1(n0 , 0|n, t)
𝜕t

=
M∑
m=1

[P1|1(n0, 0|m, t)wm,n(t) − P1|1(n0 , 0|n, t)wn,m (t)] ,
(A.57)

where P1|1(n0 , 0|n, t) is the probability to find the system in the state n at time t,
given that it was in the state n0 at time t = 0. The conditional probability satisfies
an initial condition P1|1(n0 , 0|n, 0) = δn,n0 .
The master equation can be written in a more concise form if we introduce the

transition matrix

Wm,n(t) = wm,n(t) − δm,n

M∑
n′=1

wn,n′ (t) . (A.58)

The master equation then takes the form

𝜕P1(n, t)
𝜕t

=
M∑
m=1

P1(m, t)Wm,n(t) . (A.59)

From Eq. (A.58), we see that the transition matrix must satisfy the conditions

Wm,n ≥ 0 for n ≠ m and
∑
n
Wm,n = 0 for each m . (A.60)

Thus, the entries in the rows of Wm,n must add to zero. The transition matrix,
Wm,n(t), in general is not symmetric so its left and right eigenvectors will be differ-
ent. However, one can often obtain a spectral decomposition of the matrixWm,n .
However, care must be taken. There may be cases where the eigenvectors of the
matrix Wm,n do not span the solution space. Then the spectral decomposition
cannot be used. However, there is one type of system for which a spectral decom-
position can always be done, and that is the case for which the transition rates
wm,n(t) satisfy detailed balance.

A.2.2.2 Detailed Balance
The transition rates satisfy detailed balance if

Ps(n)wn,m = Ps(m)wm,n , (A.61)

where Ps(n)≡ limt→∞ P1(n, t) is the long-time stationary probability of the system
(we assume the transition rates, wm,n , are independent of time) and is indepen-
dent of time. Ps(n) is the left eigenvector of the transition matrix, Wm,n with
eigenvalue zero. Equation (A.61) tells us that at equilibrium, the flow of proba-
bility into level n from level m is equal to the flow of probability from level m to
level n. It is useful to note that the state, Ps(n), can be obtained from Eq. (A.61)
by iterating. For example, Ps(2) = Ps(1)(w1,2∕w2,1), Ps(3) = Ps(2)(w2,3∕w3,2) =
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Ps(1)(w1,2∕w2,1)(w2,3∕w3,2) and so on. Ps(1) can then be found by requiring that
the probability be normalized to one,

∑M
n=1 P

s(n) = 1.
Given Eq. (A.61), we can show that the dynamical evolution of themaster equa-

tion is governed by a symmetric matrix. Let us define

Vn,m =

√
Ps(n)
Ps(m)

Wn,m =

√
Ps(n)
Ps(m)

wn,m − δn,m
∑
n′
wn,n′

=

√
Ps(m)
Ps(n)

wm,n − δn,m
∑
n′
wm,n′ = Vm,n , (A.62)

where we have used Eq. (A.61). If we now introduce a new function, P̃(n, t) =
P1(n, t)∕

√
Ps(n), the master equation takes the form

𝜕P̃(n, t)
𝜕t

=
M∑
m=1

P̃(m, t)Vm,n . (A.63)

The solution to the master equation can now be written in terms of a spectral
decomposition. It takes the form

P1(n, t) =
M−1∑
i=0

M∑
m=1

√
Ps(n)
Ps(m)

P1(m, 0)⟨m|ψi⟩eλi t⟨ψi|n⟩ . (A.64)

The eigenvalues λi must be negative or zero. Let i = 0 denote the zero eigenvalue,
λ0 = 0. Then

Ps(n) = lim
t→∞

P1(n, t) =
M∑
m=1

√
Ps(n)
Ps(m)

P1(m, 0)⟨m|ψ0⟩⟨ψ0|n⟩ . (A.65)

In order to be consistent we must have ⟨m|ψ0⟩ = ⟨ψ0|m⟩ = √
Ps(m), for all m,

since
∑
m P1(m, 0) = 1. Thus,

P1(n, t) = Ps(n) +
M−1∑
i=1

M∑
m=1

√
Ps(n)
Ps(m)

P1(m, 0)⟨m|ψi⟩eλi t⟨ψi|n⟩ . (A.66)

In Exercise A.11 we give an example of a random walk which obeys detailed bal-
ance.

Exercise A.11

Consider an asymmetric random walk on an open-ended lattice with four lattice
sites. The transition rates arew1,2 = w4,3 = 1, w2,3 = w3,4 = 3∕4, w2,1 = w3,2 = 1∕4,
and wi, j = 0 for all other transitions. (a) Write the transition matrix, Wm,n , and
show that this system obeys detailed balance. (b) Compute the matrix Vm,n and
find its eigenvalues and eigenvectors. (c)Write P1(n, t) for the case P1(n, 0) = δn,1.
What is P1(2, t)?
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Answer:

1. The transition matrix,Wm,n , is given by

W =

⎛⎜⎜⎜⎜⎜⎝

−1 1 0 0
1
4

−1 3
4

0
0 1

4
−1 3

4
0 0 1 −1

⎞⎟⎟⎟⎟⎟⎠
.

It has eigenvalues λ0 = 0, λ1 = −1 +
√
3∕4, λ2 = −2, and λ3 = −1 −

√
3∕4.

The left eigenvector of matrix Wm,n with eigenvalue, λ0 = 0, is the station-
ary probability distribution, Ps = (1∕26, 2∕13, 6∕13, 9∕26). This system sat-
isfies detailed balance because Ps(n)wn,n+1 = Ps(n + 1)wn+1,n . For example,
Ps(1)w1,2 = (1∕26) (1) = 1∕26 and Ps(2)w2,1 = (2∕13) (1∕4) = 1∕26.

2. The matrix Vm,n is given by

V =

⎛⎜⎜⎜⎜⎜⎝

−1 1
2

0 0
1
2

−1
√
3
4

0

0
√
3
4

−1
√
3
2

0 0
√
3
2

−1

⎞⎟⎟⎟⎟⎟⎠
.

It also has eigenvalues λ0 = 0, λ1 = −1+
√
3∕4, y2 = −2, and λ3 = −1−

√
3∕4.

The orthonormalized eigenstates are

ψ0| = (√
1
26

,
√

2
13

,
√

6
13

,
√

9
26

)
≈ (0.196, 0.392, 0.679, 0.588) ,

ψ1 ≈ (0.679, 0.588,−0.196,−0.392) ,

ψ2 ≈ (−0.196, 0.392,−0.679, 0.588) ,

ψ3| ≈ (−0.679, 0.588, 0.196,−0.392) .

3. For the initial condition, P1(n, 0) = δn,1 , P1(n, t) can be written

P1(n, t) = P(n)s +
3∑
i=1

√
Ps(n)
Ps(1)

ψi(1)eλi tψi(n) .

Using the numbers from (b) we find

P1(2, t) ≈ 0.154 + (0.799)e−0.567t − (0.154)e−2t − (0.799)e−1.433t .

Note that P1(2, 0) = 0 as it should.
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A.2.3
Probability Density for Classical Phase Space

The state of a closed classical system with 3N degrees of freedom (e. g., N par-
ticles in a three-dimensional box) is completely specified in terms of a set of 6N
independent real variables (pN , rN ) (pN and rN denote the set of vectors pN =
(p1, p2,… , pN ) and rN = (r1, r2,… , rN ), respectively, where p j and r j are the
momentum and position of the jth particle). If the state vector XN = XN (pN , rN )
is known at one time, then it is completely determined for any other time from
Newton’s laws.
If we know the Hamiltonian, H(XN ), for the system, then the time evolution of

the quantities p j and r j( j = 1,… ,N) is given by Hamilton’s equations,

ṗ j ≡ d p j
dt

= −𝜕HN
𝜕r j

and ṙ j ≡ dr j
dt

= 𝜕HN
𝜕p j

. (A.67)

If the Hamiltonian does not depend explicitly on the time, then it is a global con-
stant of the motion and we can write HN (XN ) = E, where the constant, E, is the
total energy of the system. In this case the system is called conservative.
The state vector XN (pN , rN ) specifies a point in the 6N-dimensional phase

space, Γ . As the system evolves in time, the system point XN traces out a tra-
jectory in Γ-space.
We can consider XN as a stochastic variable and introduce a probability den-

sity ρ(XN , t) on the phase space, where ρ(XN , t)dXN is the probability that the
state point, XN , lies in the volume element Xn → Xn + dXN at time t and dXN =
d p1 × ⋯ × dpN dr1 × ⋯ × drN . If the phase space were composed of discrete
points, then each point would be assigned a probability in accordance with our
knowledge of the state of the system at the initial time and then would carry
this probability for all time (probability is conserved). Since the state points form
a continuum, the normalization condition is

∫
Γ

ρ(XN , t)dXN = 1 , (A.68)

where the integration is taken over the entire phase space. If we let P(R) denote
the probability of finding the system in region R, then

P(R) = ∫
R

ρ(XN , t)dXN , (A.69)

where the integration is over the region R. Probability behaves like a fluid in phase
space so we can use arguments from fluid mechanics to obtain the equation of
motion for the probability density. Let ẊN = ( ṗN , ṙN ) denote the velocity of a state
point and consider a small volume element, V0, at a fixed point in phase space.
Since probability is conserved, the decrease in the amount of probability in V0 per
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unit time is due to the flow of probability through the surface of V0. Thus,

d
dt
P(V0) =

𝜕

𝜕t ∫
V0

ρ(XN , t)dXN = −∮S0 ρ(X
N , t)ẊN ⋅ dSN , (A.70)

where S0 denotes the surface of volume element V0 and dSN is a differential area
element normal to S0. If we use Gauss’s theorem and change the surface integral
to a volume integral, we find

𝜕

𝜕t ∫
V0

ρ(XN , t)dXN = − ∫
V0

∇XN ⋅ [ρ(XN , t)ẊN ]dXN , (A.71)

where ∇XN denotes the gradient with respect to phase space variables ∇XN =(
(𝜕∕𝜕p1),… , (𝜕∕𝜕pN ), (𝜕∕𝜕r1),… , (𝜕∕𝜕rN )

)
.We can take the time derivative in-

side the integral because V0 is fixed in space. If we equate arguments of the two
integrals in Eq. (A.71), we obtain

𝜕

𝜕t
ρ(XN , t) + ∇XN ⋅ [ρ(XN , t)ẊN ] = 0 . (A.72)

Equation (A.72) is the balance equation for the probability density in the 6N-
dimensional phase space.
Using Hamilton’s equations we can write

∇XN ⋅ ẊN =

(
𝜕 ṗNt0
𝜕pNt0

+
𝜕ṙNt0
𝜕rNt0

)
≡ 0 , (A.73)

which tells us that the probability behaves like an incompressible fluid. If we com-
bine Eqs. (A.72) and (A.73), the equation of motion for the probability density
takes the form

𝜕ρ(XN , t)
𝜕t

= −ẊN ⋅ ∇XN ρ(XN , t) . (A.74)

Note that Eq. (A.74) gives the time rate of change of ρ(XN , t) at a fixed point in
phase space.
If we use Hamilton’s equations, we can write (A.74) in the form

𝜕ρ(XN , t)
𝜕t

= −̂Nρ(XN , t) , (A.75)

where the differential operator, ̂N , is just the Poisson bracket

̂N =
N∑
j=1

(
𝜕HN
𝜕p j

⋅
𝜕

𝜕r j
− 𝜕HN

𝜕r j
⋅

𝜕

𝜕p j

)
. (A.76)

Equation (A.75) is often written in the form

i
𝜕ρ(XN , t)

𝜕t
= L̂N ρ(XN , t) , (A.77)
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where L̂N = −i̂N . Equation (A.77) is called the Liouville equation and the dif-
ferential operator, L̂N , is called the Liouville operator. The Liouville operator is
a Hermitian differential operator.
If we know the probability density, ρ(XN , 0), at time, t = 0, then we may solve

Eq. (A.77) to find the probability density, ρ(XN , t), at time t. The formal solution
is

ρ(XN , t) = e−iL̂N tρ(XN , 0) . (A.78)

A probability density, ρs(XN ), that remains constant in time, must satisfy the con-
dition

L̂N ρs(XN ) = 0 (A.79)

and is called a stationary solution of the Liouville equation.
We are generally interested in obtaining the expectation value of phase func-

tions, ON (XN ). The expectation value of ON (XN ) is given by

⟨O⟩ = ∫ dX1 ⋯ ∫ dXNON (XN )ρ(XN , t) . (A.80)

The N-particle probability density, ρ(XN , t), contains much more information
than we would ever need or want. Most quantities we measure experimentally
can be expressed in terms of one-body or two-body phase functions. One-body
and two-body phase functions are usually written in the form

ON(1)(X
N ) =

N∑
i=1
O(X i) , and ON(2)(X

N ) =
N(N−1)∕2∑

i< j
O(X i , X j) , (A.81)

respectively. An example of a one-body phase function is the kinetic energy,∑N
i=1 p

2
i ∕2m, of an N-particle system. An example of a two-body phase function

is the potential energy,
∑N(N−1)∕2
i< j V (|r i − r j|), of anN-particle interacting system.

To find the expectation value of a one-body phase function, we only need to
know the one-body reduced probability density. Similarly, to find the expectation
value of a two-body phase function, we only need to know the two-body reduced
probability density. The s-body reduced probability density is given by

ρs(X1,… , X s , t) = ∫ ⋯ ∫ dXs+1,… , XNρ(X1,… , XN , t) . (A.82)

The expectation value of the one-body phase function is given by

⟨O(1)⟩ = N∑
i=1

∫ ⋯ ∫ dX1,… , dXNO(X i)ρ(XN , t)

= N ∫ dX1O(X1)ρ1(X1, t) . (A.83)
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Similarly, the expectation value of the two-body phase function is

⟨O(2)⟩ = N(N−1)∕2∑
i< j

∫ ⋯ ∫ dX1,… , dXNO(X i , X j)ρ(XN , t)

= N(N − 1)
2 ∬ dX1 dX2O(X1, X2)ρ2(X1, X2, t) . (A.84)

In Eqs. (A.83) and (A.84), we have assumed that the probability density is sym-
metric under interchange of particle labels if the Hamiltonian is symmetric.

A.2.4
Quantum Probability Density Operator

For quantum systems, the phase space coordinates do not commute so we cannot
introduce a probability density function directly on the phase space. Instead we
will introduce a probability density operator ρ̂(t). The probability density opera-
tor (we shall call it the density operator), contains all possible information about
the state of the quantum system. It is a positive definite Hermitian operator. If
we know the density operator, ρ̂(t), for a system, we can use it to obtain the ex-
pectation value of any observable Ô at time t. The expectation value is defined
as

⟨O(t)⟩ = Tr(Ôρ̂(t)) , (A.85)

where Tr denotes the trace. The density operator is normalized so that

Tr(ρ̂(t)) = 1 . (A.86)

In Eqs. (A.85) and (A.86), the trace can be evaluated using any convenient com-
plete set of states. Let {|oi⟩} and {|ai⟩} denote the complete orthonormal sets of
eigenstates of the operators, Ô and Â, respectively, and let {oi} and {ai} be the
corresponding sets of eigenvalues (Ô|oi⟩ = oi|oi⟩) and (Â|ai⟩ = ai|ai⟩). The trace
can be evaluated in either basis. Thus, we can write

⟨O(t)⟩ = ∑
i
oi⟨oi|ρ̂(t)|oi⟩ = ∑

i

∑
j
⟨ai|Ô|a j⟩⟨a j|ρ̂(t)|ai⟩ , (A.87)

where oi = ⟨oi|Ô|oi⟩ andwe have used the completeness relation,
∑
i |ai⟩⟨ai| = 1̂,

where 1̂ is the unit operator. The diagonal matrix element, ⟨ai|ρ̂(t)|ai⟩, gives the
probability to find the system in the state |ai⟩, at time t. The set of numbers,⟨a j|ρ̂(t)|ai⟩, forms amatrix representation of the density operator (called the den-
sitymatrix) with respect to the basis states, {|ai⟩}. The densitymatrix is a positive
definite Hermitian matrix. The off-diagonal matrix element, ⟨a j|ρ̂(t)|ai⟩ for i ≠ j,
cannot be interpreted as a probability.
The density operator can be used to describe the equilibrium and nonequilibri-

um states of a many-body system. Consider a quantum system in the state |ψ(t)⟩
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which evolves according to the Schrödinger equation,

iℏ
𝜕|ψ(t)⟩

𝜕t
= Ĥ|ψ(t)⟩ , (A.88)

where Ĥ is the Hamiltonian operator, and ℏ is Planck’s constant. The density op-
erator that describes this “pure state” is simply

ρ̂(t) = |ψ(t)⟩⟨ψ(t)| . (A.89)

A “mixed state” is an incoherent mixture of states |ψi(t)⟩:
ρ̂(t) =

∑
i
pi|ψi(t)⟩⟨ψi(t)| , (A.90)

where pi is the probability to be in the state |ψi (t)⟩, and the states |ψi(t)⟩, each sat-
isfy the Schrödinger equation. Equilibrium and near-equilibrium states of many-
body systems are of this type.
Using the Schrödinger equation, the equation ofmotion of the density operator

is easily found to be

i
𝜕ρ̂(t)
𝜕t

= 1
ℏ
[Ĥ , ρ̂(t)] = L̂ρ̂(t) , (A.91)

where [Ĥ , ρ̂(t)] is the commutator of the Hamiltonian, Ĥ, with ρ̂(t), and the op-
erator L̂ ≡ (1∕ℏ)[Ĥ , ], is proportional to the commutator of Ĥ with everything
on its right. The operator L̂ is the quantum version of the Liouville operator and
is a Hermitian operator. If the density operator is known at time t = 0, then its
value at time t is given by

ρ̂(t) = e−iL̂t ρ̂(0) = e−(i∕ℏ)Ĥ t ρ̂(0)e+(i∕ℏ)Ĥt . (A.92)

It is often convenient to expand the density operator in terms of a complete
orthonormal set of eigenstates {|Ei⟩} of the Hamiltonian, Ĥ , where Ei is the
eigenvalue corresponding to eigenstate |Ei⟩. If we note the completeness relation∑
i |Ei⟩⟨Ei| = 1̂, then Eq. (A.92) takes the form

ρ̂(t) =
∑
i

∑
j
⟨Ei|ρ̂(0)|Ej⟩e−(i∕ℏ)(Ei−E j)t|Ei⟩⟨Ej| . (A.93)

From Eq. (A.93), we see that a stationary state, ρ̂s, occurs when all off-diagonal
matrix elements ⟨Ei|ρ̂(0)|Ej⟩ (with i ≠ j), vanish. Thus, the stationary state, ρ̂s,
must be diagonal in the energy basis. This can happen if ρ̂s is a function of the
Hamiltonian,

ρ̂s = f (Ĥ) . (A.94)

For a systemwith degenerate energy levels, onemay still diagonalize both ρ̂ and Ĥ
simultaneously by introducing additional invariants of the motion, Î which com-
mutewith each other andwith Ĥ . Thus, in general, a stationary statewill be a func-
tion of all mutually commuting operators, Ĥ , Î1 ,… , În ,

ρ̂s = f (Ĥ , Î1 ,… , În) . (A.95)
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For systems which approach thermodynamic equilibrium, the stationary state
may be an equilibrium state.
It is useful to introduce the idea of one- and two-body reduced densitymatrices.

In quantummechanics, as in classicalmechanics, we generally deal with one-body
and two-body operators,

ÔN(1) =
N∑
i=1
Ôi and ÔN(2) =

N(N−1)∕2∑
i< j

Ôi, j , (A.96)

respectively. The trace of a one-bodyoperator, in the positionbasis, can bewritten

Tr
(
ÔN(1) ρ̂

)
=

N∑
i=1

∫ dr1 ⋯ ∫ drN ∫ dr′1 ⋯ ∫ dr′N ⟨r1,… , rN |Ôi|r′1 ,… , r′N ⟩
× ⟨r′1,… , r′N |ρ̂|r1 ,… , rN ⟩

≡ ∫ dr1 ∫ dr′1⟨r1|Ô1|r′1⟩⟨r′1|ρ̂(1)|r1⟩ , (A.97)

where |ra , rb ,⋯ , rl⟩ = |ra⟩1|rb⟩2 × ⋯ × |rl⟩N with |r⟩i = |r, sz⟩i = |r⟩i|sz⟩i de-
noting the eigenstates of both the position operator r̂i and z-component of spin
operator ŝz ,i of particle i. The symbol ∫ dri denotes integration over configuration
space and sum over the z-components of spin for particle i. The quantity

⟨r′1|ρ̂(1)(t)|r1⟩ = N ∫ dr2 ⋯ ∫ drN ⟨r′1, r2 ,… , rN |ρ̂|r1 ,… , rN ⟩ (A.98)

is the one-body reduced density matrix.
The two-body reduced density matrix is defined in an analogous manner. The

trace of a two-body operator in the position basis can be written

Tr
(
ÔN(2) ρ̂(t)

)
=
N(N−1)∕2∑

i< j
∫ dr1 ⋯ ∫ drN ∫ dr′1 ⋯ ∫ dr′N

× ⟨r1,… , rN |Ôi, j|r′1 ,… , r′N ⟩⟨r′1,… , r′N |ρ̂|r1,… , rN ⟩
≡ 1

2 ∫ dr1 ∫ dr2 ∫ dr′1 ∫ dr′2⟨r1, r2|Ô1,2|r′1 , r′2⟩⟨r′1, r′2|ρ̂(2)|r1 , r2⟩ ,
(A.99)

where

⟨r′1, r′2|ρ̂(2)|r1 , r2⟩=N(N −1) ∫ dr3 ⋯ ∫ drN ⟨r′1, r′2 , r3 ,… , rN |ρ̂|r1 ,… , rN ⟩
(A.100)

is the two-body reduced density matrix.
If we are dealing with a gas of N identical bosons or fermions, then the trace

must be taken with respect to symmetrized or anti-symmetrized N-particle
states, respectively. For such systems, it is often easier then to work in a second
quantized formalism (see Appendix D).
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A.3
Problems

ProblemA.1 Astochastic variable,X, can have values, x= 1 and x= 3. A stochas-
tic variable, Y , can have values, y = 2 and y = 4. Denote the joint probability den-
sity, PX ,Y (x , y) =

∑
i=1,3

∑
j=2,4pi, jδ(x − i)δ(y − j). Compute the covariance of X

and Y for the following two cases: (a) p1,2 = p1,4 = p3,2 = p3,4 = 1∕4; (b) p1,2 =
p3,4 = 0 and p1,4 = p3,2 = 1∕2. For each case, decide if X and Y are independent.

Problem A.2 The stochastic variables, X and Y , are independent and Gaussian
distributed with first moments, ⟨x⟩ = ⟨y⟩ = 0 and standard deviations, σX = σY =
1. Find the characteristic function for the randomvariable, Z = X2+Y 2, and com-
pute the moments, ⟨z⟩, ⟨z2⟩, and ⟨z3⟩. Find the first three cumulants.

Problem A.3 A die is loaded so that even numbers occur three times as often
as odd numbers. (a) If the die is thrown N = 12 times, what is the probability
that odd numbers occur three times? If it is thrown N = 120 times, what is the
probability that odd numbers occur thirty times? Use the binomial distribution.
(b) Compute the same quantities as in part (a) but use the Gaussian distribution.
(Note: For parts (a) and (b) compute your answers to four places.) (c) Compare
your answers for (a) and (b). Plot the binomial and Gaussian distributions for the
case N = 12.

Problem A.4 A book with 700 misprints contains 1400 pages. (a) What is the
probability that one page contains 0 misprints? (b) What is the probability that
one page contains 2 misprints?

ProblemA.5 Three old batteries and a resistor, R, are used to construct a circuit.
Each battery has a probability, p, to generate voltage, V = v0, and a probability,
1− p, to generate voltage, V = 0. Neglect any internal resistance in the batteries.
Find the average power, ⟨V 2⟩∕R, dissipated in the resistor if: (a) the batteries are
connected in series; (b) the batteries are connected in parallel. In cases (a) and
(b), what would be the average power dissipated if all batteries were certain to
generate voltage, V = v0? (c) How would you realize the conditions and results of
this problem in a laboratory?

Problem A.6 A fair coin (H and T equally probably) is tossed three times. Let
X denote the event “H” or “T” on the first toss. Let X = 0 if “H” occurs first and
X = 1 if “T” occurs first. Let event Y denote the event “the number of “T”s that
occur," so Y takes values 0, 1, 2, or 3. The sample space has eight equally probable
points. (a) Compute the probability distribution P(X) (it has two values) and the
probability distribution P(Y ) (it has four values). (b) Compute the first moments⟨X⟩ and ⟨Y ⟩, the second moments ⟨X2⟩ and ⟨Y 2⟩, and the standard deviations σX
and σY . (c) Compute the covariance Cov(X , Y ) = ⟨(X − ⟨X⟩)(Y − ⟨Y ⟩)⟩. (d) Com-
pute the correlation Cor(X , Y ) = Cov(X , Y )∕(σX σY ). (e) Are the events X and Y
independent?
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Problem A.7 Consider a random walk in one dimension. In a single step the
probability of a displacement between x and x + dx is given by

P(x)dx = 1√
2πσ2

exp
(
−(x − a)2

2σ2

)
.

AfterN steps the displacement of the walker is S = X1 +⋯+ XN , where Xi is the
displacement during the ith step. Assume the steps are independent of one an-
other. AfterN steps: (a) what is the probability density for the displacement, S, of
the walker; (b) what are the average displacement, ⟨S⟩, and the standard deviation
of the walker?

Problem A.8 Consider a random walk in one dimension for which the walker at
each step is equally likely to take a step with displacement anywhere in the in-
terval, d − a ≤ x ≤ d + a, where a < d. Each step is independent of the others.
After N steps the walker’s displacement is S = X1 +⋯ + XN , where Xi is his dis-
placement during the ith step. AfterN steps: (a) what is his average displacement,⟨S⟩; (b) what is his standard deviation?

Problem A.9 Three boys, A, B, and C, stand in a circle and play catch (B stands
to the right of A). Before throwing the ball, each boy flips a coin. If “heads” comes
up, the boy throws to his right. If “tails” comes up, he throws to his left. The coin
of boy A is “fair” (50% heads and 50% tails), the coin of boy B has heads on both
sides, and the coin of boy C is weighted (75% heads and 25% tails). (a) Compute
the transition matrix, its eigenvalues, and its left and right eigenvectors. (b) If the
ball is thrown at regular intervals, approximately what fraction of time does each
boy have the ball (assuming they throw the ball many times)? (c) If boy A has the
ball to begin with, what is the chance he will have it after two throws?
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Appendix B
Exact Differentials

Themathematics of exact differentials governs thermodynamics and the relation-
ships between thermodynamic state variables. In this Appendix, we review key
results that are essential when computing thermodynamic quantities.
Consider a function F = F(x1 , x2) that depends on two independent variables

x1 and x2. The differential of F is defined as

dF =
(

𝜕F
𝜕x1

)
x2

dx1 +
(

𝜕F
𝜕x2

)
x1

dx2 , (B.1)

where
(
𝜕F∕𝜕x1

)
x2

is the derivative of F with respect to x1 holding x2 fixed. If F
and its derivatives are continuous and[

𝜕

𝜕x1

(
𝜕F
𝜕x2

)
x1

]
x2

=

[
𝜕

𝜕x2

(
𝜕F
𝜕x1

)
x2

]
x1

, (B.2)

then dF is an exact differential. If we denote c1 ≡ (
𝜕F∕𝜕x1

)
x2
and c2 ≡ (

𝜕F∕𝜕x2
)
x1
,

then the variables c1 and x1 and variables c2 and x2 are called “conjugate” variables
with respect to the function F .
The fact that dF is exact has the following consequences:

1. The value of the integral F(B)−F(A) = ∫ BA dF = ∫ BA (c1 dx1+ c2 dx2) is indepen-
dent of the path taken between A and B and depends only on the end points
A and B.

2. The integral of dF around a closed path is zero: ∮closed dF = ∮closed(c1 dx1 +
c2 dx2) ≡ 0.

3. If one knows only the differential dF , then the function F can be found to
within an additive constant.

If F depends on more than two variables, then the statements given above gener-
alize in a simple way: Let F = F(x1 , x2 ,… , xn ), then the differential, dF , may be
written

dF =
n∑
i=1

(
𝜕F
𝜕xi

)
{x j≠i}

dxi . (B.3)
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The notation (𝜕F∕𝜕xi ){x j≠i} means that the derivative of F is taken with respect
to xi holding all variables but xi constant. For any pair of variables, the following
relation holds:[

𝜕

𝜕xl

(
𝜕F
𝜕xk

)
{x j≠k}

]
{x j≠l}

=

[
𝜕

𝜕xk

(
𝜕F
𝜕xl

)
{x j≠l}

]
{x j≠k}

. (B.4)

Given four state variables, x , y, z, and w, where w is a function of any two of the
variables x , y, or z, one can obtain the following useful relations along paths for
which F(x , y, z) = 0: (

𝜕x
𝜕 y

)
z
= 1

(𝜕 y∕𝜕x)z
. (B.5)(

𝜕x
𝜕 y

)
z

(
𝜕 y
𝜕z

)
x

(
𝜕z
𝜕x

)
y
= −1 . (B.6)(

𝜕x
𝜕w

)
z
=

(
𝜕x
𝜕 y

)
z

(
𝜕 y
𝜕w

)
z
. (B.7)(

𝜕x
𝜕 y

)
z
=

(
𝜕x
𝜕 y

)
w
+

(
𝜕x
𝜕w

)
y

(
𝜕w
𝜕 y

)
z
. (B.8)

Equation (B.6) is called the “chain rule.”
It is a simple matter to derive Eqs. (B.5)–(B.8). We will first consider Eqs. (B.5)

and (B.6). Let us choose variables y and z to be independent, x = x(y, z), and then
choose x and z to be independent, y = y(x , z), and write the following differen-
tials; dx = (𝜕x∕𝜕 y)z dy + (𝜕x∕𝜕z)y dz and dy = (𝜕 y∕𝜕x)z dx + (𝜕 y∕𝜕z)x dz. If we
eliminate dy between these equations, we obtain[(

𝜕x
𝜕 y

)
z

(
𝜕 y
𝜕x

)
z
− 1

]
dx +

[(
𝜕x
𝜕 y

)
z

(
𝜕 y
𝜕z

)
x
+

(
𝜕x
𝜕z

)
y

]
dz = 0 . (B.9)

Because dx and dz may be varied independently, their coefficients may be set
equal to zero separately. The result is Eqs. (B.5) and (B.6).
To derive Eq. (B.7) we let y and z be independent so that x = x(y, z) and write

the differential for dx. If we then divide by dw, we obtain

dx
dw

=
(
𝜕x
𝜕 y

)
z

dy
dw

+
(
𝜕x
𝜕z

)
y

dz
dw

. (B.10)

For constant z, dz = 0 and we find (B.7).
Finally, to derive Eq. (B.8) we let x be a function of y and w, x = x(y, w). If we

write the differential of x, divide it by dy, and restrict the entire equation to con-
stant z, we obtain Eq. (B.8).
When integrating exact differentials, one must be careful not to lose terms. In

Exercise B.1, we illustrate a method for integrating exact differentials.
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Exercise B.1

Consider the differential dφ = (x2 + y)dx + x dy. (a) Show that it is an exact dif-
ferential. (b) Integrate dφ between points A and B using indefinite integrals.

Answer: (a) From the expression dφ = (x2 + y)dx + x dy, we can
write (𝜕φ∕𝜕x)y = x2 + y and (𝜕φ∕𝜕 y)x = x. Since [(𝜕∕𝜕 y)(𝜕φ∕𝜕x)y ]x =
[(𝜕∕𝜕x)(𝜕φ∕𝜕 y)x ]y = 1, the differential, dφ, is exact.
(b) We now integrate the differential, dφ, in a different way. Let us first do the

indefinite integrals

∫
(
𝜕φ
𝜕x

)
y
dx = ∫ (x2 + y)dx =

1
3
x3 + x y + K1(y) , (B.11)

where K1(y) is an unknown function of y. Next do the integral

∫
(
𝜕φ
𝜕 y

)
x
dy = ∫ x dy = x y + K2(x) , (B.12)

where K2(x) is an unknown function of x. In order for Eqs. (B.11) and (B.12) to
be consistent, we must choose K2(x) = 1∕3x3 + K3 and K1(y) = K3, where K3 is
a constant. Therefore, φ = 1∕3x3 + x y + K3 and again, φB − φA = 1∕3x3B + xB yB −
1∕3x3A − xA yA.
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Appendix C
Ergodicity

Ergodic theory asks questions which lie at the very foundations of statistical me-
chanics [53, 54, 163]. The phase space of conservative Newtonian systems is of
a very special type because there are no diffusion processes present. For systems
with ergodic flow, we can obtain a unique stationary probability density (a con-
stant on the energy surface) which characterizes systems with a fixed energy at
equilibrium. However, a system with ergodic flow cannot necessarily reach this
equilibrium state if it does not start out there. For decay to equilibrium, we must
have at least the additional property of mixing. Mixing systems are ergodic (the
converse is not always true, however) and can exhibit random behavior even
though Newton’s laws are fully deterministic.
Let us now define ergodic flow. Consider a Hamiltonian system with 3N de-

grees of freedom with Hamiltonian H(pN , rN ) = E. If we relabel the momentum
coordinates so p1 = px ,1, p2 = py,1 , p3 = pz ,1, p4 = px ,2,… , p3N = pz ,N (with
similar relabeling for the position coordinates), then Hamilton’s equations can be
written

dq1
(𝜕H∕𝜕 p1)

=⋯=
dq3N

(𝜕H∕𝜕 p3N )
=⋯=−

d p1
(𝜕H∕𝜕x1)

=⋯=−
dx3N

(𝜕H∕𝜕q3N )
= dt .

(C.1)

Equation (C.1) provides 6N −1 equations relating phase space coordinates which,
when solved, give us 6N − 1 constants, or integrals, of the motion,

f i(p1 ,… , p3N , x1 ,… , x3N ) = Ci , (C.2)

where i = 1, 2,… , 6N − 1 and Ci is a constant. However, these integrals of the
motion can be divided into two kinds: isolating and nonisolating. Isolating inte-
grals define a whole surface in the phase space and are important in ergodic theo-
ry, while nonisolating integrals do not define a surface and are unimportant [53].
One of the main problems of ergodic theory is to determine how many isolating
integrals a given system has. An example of an isolating integral is the total en-
ergy, H(pN , rN ) = E. For N hard-sphere particles in a box, it is the only isolating
integral.
Let us consider a system forwhich the only isolating integral of themotion is the

total energy and assume that the system has total energy, E. Then trajectories in Γ

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
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space (the 6N-dimensional phase space) which have energy, E, will be restricted
to the energy surface, SE. The energy surface, SE , is a (6N − 1)-dimensional “sur-
face” in phase space which exists because of the isolating integral of the motion,
H(p1 ,… , p3N , x1 ,… , x3N ) = E. The flow of state points on the energy surface
is defined to be ergodic if almost all points, X(p1 ,… , p3N , x1 ,… , x3N ), on the
surface move in such a way that they pass through every small finite neighbor-
hood, RE , on the energy surface. In other words, each point samples small neigh-
borhoods over the entire surface during the course of its motion (a given point,
X(p1 ,… , p3N , x1 ,… , x3N ) cannot pass through every point on the surface, be-
cause a line which cannot intersect itself cannot fill a surface of two or more di-
mensions). Note that not all points need sample the surface, only “almost all.” We
can exclude a set of measure zero from this requirement.
A criterion for determining if a system is ergodic was established by Birkhoff

and is called the ergodic theorem. Let us consider an integrable phase function
f (XN ) of the state pointXN .Wemay define a phase average of the function f (XN )
on the energy surface by the equation

⟨ f ⟩S = 1
Σ(E) ∫

SE

f (XN )dSE = 1
Σ(E) ∫

Γ

δ(HN (XN ) − E) f (XN )dXN , (C.3)

where dSE is an area element of the energy surface which is invariant (does not
change size) during the evolution of the system and Σ(E) is the area of the energy
surface and is defined as

Σ(E) = ∫
SE

dSE = ∫
Γ

δ(HN (XN ) − E)dXN . (C.4)

We may define a time average of the function f (XN ) by the equation

⟨ f ⟩T = lim
T→∞

1
T

t0+T

∫
t0

f (XN (t))dt (C.5)

for all trajectories forwhich the time average exists. Birkhoff showed that the time
average in Eq. (C.5) exists for all integrable phase functions of physical interest
(i. e., for smooth functions).
In terms of averages, the ergodic theorem may be stated as follows: A system

is ergodic if for all phase functions, f (XN ): (i) the time average, ⟨ f ⟩T , exists for
almost all XN (all but a set of measure zero), and (ii) when it exists it is equal to
the phase average, ⟨ f ⟩T = ⟨ f ⟩S .
To determine the form of the invariant area element, dSE , we write an expres-

sion for the volume of phase space, Ω(E), with energy less than E – that is, the
region of phase space for which 0 < HN (XN ) < E. We then assume that the phase
space can be divided into layers, each with different energy, and that the layers
can be arranged in the order of increasing energy. (This is possible for all systems
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that we will consider.) The volume, Ω(E), can then be written

Ω(E) = ∫
0<HN (XN )<E

dXN = ∫
0<HN (XN )<E

dAH dnH , (C.6)

where dAH is an area element on a surface of constant energy and dnH is normal
to that surface. Since ∇xHN is a vector perpendicular to the surface HN (XN ) =
constant, we can write dHN = |∇xHN |dnH and the volume becomes

Ω(E) =
E

∫
0

dHN ∫
SH

dAH|∇xHN | . (C.7)

If we take the derivative of Ω(E), we find

dΩ(E)
dE

= Σ(E) = ∫
SE

dAE|∇XHN |H=E
. (C.8)

The area, Σ(E), is called the structure function. If wewish to take the average value
of a function f (XN ) over the surface, we can write

⟨ f ⟩S = 1
Σ(E) ∫

SE

f (XN )
dAE|∇XHN |HN=E . (C.9)

Thus, the differential

dSE =
dAE|∇XHN |HN=E (C.10)

is the invariant surface area element.
If a system is ergodic, the fraction of time that its state, XN (pN , qN ), spends in

a given region RE of the energy surface will be equal to the fraction of the surface
SE occupied by RE . Let us consider a function φ(RE) such that φ(RE) = 1 when
XN is in RE and φ(RE) = 0 otherwise. Then it is easy to see that, for an ergodic
system,

lim
T→∞

τRE
T

=
Σ(RE)
Σ(E)

, (C.11)

where τRE is the time the trajectory spends in RE and Σ(RE) is the area occupied
by RE .
A system can exhibit ergodic flow on the energy surface only if there are no

other isolating integrals of the motion which prevent trajectories from moving
freely on the energy surface. If no other isolating integrals exist, the system is
said to be metrically transitive (trajectories move freely on the energy surface). If
a system is ergodic, it will spend equal times in equal areas of the energy surface. If
we performmeasurements to decide where on the surface the system point is, we
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should find that result.We can also ask for the probability of finding the system in
a given region RE of the energy surface. Since we have nothing to distinguish one
region from another, the best choice we canmake is to assume that the probability
P(RE) of finding the system in RE is equal to the fraction of the energy surface
occupied by RE . Thus,

P(RE) =
1
Σ(E) ∫

RE

dSE =
Σ(RE)
Σ(E)

. (C.12)

From Eq. (C.12) it is a simple matter to write down a normalized probability den-
sity for the energy surface, namely,

ρ(XN , SE) =
1
Σ(E)

. (C.13)

Equation (C.13) is called the fundamental distribution law by Khintchine and
called the microcanonical ensemble by Gibbs. Since it is a function only of the
energy, it is a stationary state of the Liouville equation (see Appendix A). It says
that all states on the energy surface are equally probable. Equation (C.13) forms
the foundation upon which all of equilibrium and most of nonequilibrium statis-
tical mechanics are built.
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Appendix D
Number Representation

The indistinguishability of particles in a gas comes from the fact that the Hamil-
tonian and all other physical observables are invariant under permutation of their
dynamical variables [138]. This symmetry property of the Hamiltonian leads to
a decomposition of the eigenstates of the Hamiltonian and all other states of the
system into two types, either symmetric or antisymmetric under permutation of
the N particles. Particles with symmetric eigenstates are bosons. Particles with
antisymmetric eigenstates are fermions. Experiment shows that systems of parti-
cles with integral spin (photons, He4, etc.) are bosons. Systems of particles with
half-integral spin (electrons, protons, He3, etc.) are fermions.

D.1
Symmetrized and Antisymmetrized States

We often consider systems of N identical particles with spin, confined to a finite
or an infinite volume. We will usually consider Hamiltonians which can be de-
composed into a kinetic energy and a potential energy,

ĤN =
N∑
i=1

p̂2
i

2m
+
N(N−1)∕2∑
i< j=1

V (r̂i , r̂ j ; ŝi ŝ j) , (D.1)

wherem is themass of a particle, p̂i and r̂i are themomentum and position opera-
tors, respectively, for the ith particle, and ŝi is the spin operator for the ith particle.
If a particle has spin, then we must specify not only its momentum or position,
but also the component of its spin along some direction in space (we choose the
z-direction).
Let the ket, |r⟩, denote the right eigenstate of the position operator, r̂, and let

the ket, |p⟩, denote the right eigenstate of the momentum operator, p̂, so that
r̂|r⟩ = r|r⟩ and p̂|p⟩ = p|p⟩. It is useful to write the momentum operator as ℏk,
where k̂ is the wavevector. Then p̂|k⟩ = ℏk̂|k⟩. The left eigenstates are found by
taking the Hermitian adjoint (denoted by †) of these equations (note that (r̂|r⟩)† =⟨r|r̂† = ⟨r|r̂, since the position operator is Hermitian, r̂† = r̂). The left and right
eigenvectors are orthonormal ⟨r′|r⟩ = δ(r′ − r) = δ(x′ − x)δ(y′ − y)δ(z′ − z) and

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.
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⟨k′|k⟩ = δ(k′ − k) = δ
(
k′x − kx

)
δ
(
k′y − ky

)
δ
(
k′z − kz

)
. The left and right eigen-

vectors form complete sets ∫ dr|r⟩⟨r| = 1̂ and ∫ dk|k⟩⟨k| = 1̂, where the integra-
tions are taken over the entire allowed range of r and k, respectively.

D.1.1
Free Particles

For a free particle, the coordinate range is −∞ < xi < ∞, where i = 1, 2, 3 and
x1 = x, x2 = y and x3 = z. Also, −∞ < ki < ∞, where k1 = kx , k2 = ky and k3 =
ky. In open space, the momentum eigenvalues are continuous. The momentum
operator in the position basis is defined as ⟨r′| p̂|r⟩ = δ(r′ − r)(ℏ∕i)∇r . Similarly,
the position operator in the momentum basis is defined as ⟨p′|r̂|p⟩ = δ(p′ −
p)(−ℏ∕i)∇p .
The momentum eigenstate in the position basis is the solution of the equation

⟨r| p̂|k⟩ = ℏ

i
∇r⟨r|k⟩ = ℏk⟨r|k⟩ . (D.2)

The orthonormalized solution to Eq. (D.2) is

⟨r|k⟩ = φk(r) =
( 1
2π

)3∕2
eik⋅r . (D.3)

The normalized momentum eigenstate in the momentum basis is ⟨k′|k⟩ =
φk(k

′) = δ(k − k′). Similarly, the normalized position eigenstate in the momen-
tum basis is

⟨k|r⟩ = φr(k) =
( 1
2π

)3∕2
e−ik⋅r (D.4)

and the normalized position eigenstate in the position basis is ⟨r′|r⟩ = φr(r′) =
δ(r − r′).

D.1.2
Particle in a Box

Let us now assume that the particle is confined to a cubic box of volume V = L3,
and let us assume that the position eigenstates satisfy periodic boundary condi-
tions φk(r) = φk(x , y, z) = φk(x + nxL , y + nyL , z + nzL), where nx , ny , and nz
are integers ranging from −∞ to∞. The wavevector k̂ takes on discrete values

k = 2π
L
(nx êx + ny ê y + nz êz) , (D.5)

where êx , êx and êx are unit vectors in the x-, y-, z-directions, respectively. The
eigenvectors |k⟩ of k̂ obey the orthogonality condition ⟨k|k′⟩ = δKr

k ,k′
, where δKr

k ,k′
,

is the Kronecker delta function. Completeness of the states |r⟩ and |k⟩ gives
L

∫
0

dx

L

∫
0

dy

L

∫
0

dz|r⟩⟨r| = 1 and
∞∑

nx=−∞

∞∑
ny=−∞

∞∑
nz=−∞

|k⟩⟨k| = 1 . (D.6)
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The wavevector eigenstate in the position basis is then

⟨r|k⟩ = φk(r) =
1
L3∕2

eik⋅r . (D.7)

The position eigenstate in the wavevector basis, ⟨k|r⟩, is just the Hermitian ad-
joint of ⟨r|k⟩.
D.1.3
N-Particle Eigenstates

We will let |r⟩ = |r, sz⟩ = |r⟩|sz⟩ denote the eigenstates of both the position op-
erator r̂ and the z-component of spin, ŝz for a single particle, and we will let|k⟩ = |k , sz⟩ denote the eigenstate of both the wavevector k̂ and the z-component
of spin. We shall often refer to |k⟩ as a “momentum” eigenstate.
The position eigenstates of the N-body system may be written as the direct

product of the position eigenstates of the constituent particles,|ra , rb ,… , rl⟩ ≡ |ra⟩1|rb⟩2 ×⋯ × |rl⟩N . (D.8)

On the left-hand side of Eq. (D.8), we use the convention that the positions of
the particles labeled from 1 to N are ordered from left to right from 1 toN . Thus,
particle 1 has position ra , particle 2 has position rb ,…, and particleN has position
rl . On the right-hand side of Eq. (D.8), the ket, |ra⟩i , is a position eigenstate of
particle i. (When we say “position” we include spin if the particle has spin.) A
“momentum” (and spin) eigenstate of the N-body system is written|ka , kb ,… , kl⟩ ≡ |ka⟩1|kb⟩2 ×⋯ × |kl⟩N , (D.9)

where particle 1 has momentum ka , particle 2 has position kb , and so on.
In the position representation, the Hamiltonian takes the form

H(r1 ,… , rN ) = ⟨r1 ,… , rN |ĤN |r1 ,… , rN ⟩
=

N∑
i=1

−ℏ2

2m
∇2

ri
+
N(N−1)∕2∑
i< j=1

V (ri , r j , si , s j) . (D.10)

For the case when the Hamiltonian (and the other dynamical variables) are sym-
metric under interchange of particles, we must use only symmetric or antisym-
metric combinations of position or momentum eigenstates when computing ex-
pectation values [48, 142]. We will describe these states for the cases of Bose–
Einstein and Fermi–Dirac particles separately.

D.1.4
Symmetrized Momentum Eigenstates for Bose–Einstein Particles

By definition, any wave function describing the state of a system containing N
identical Bose–Einstein particles must be symmetric under interchange of coor-
dinates of any two particles. Furthermore, any number of bosons can have the
same quantum numbers.
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Let us first introduce a permutation operator, Pi j , such that Pi j interchanges the
momenta of particles i and j:

Pi j|k1 , k2 ,… , ki , k j ,… , kN ⟩ = |k1, k2 ,… , k j , ki ,… , kN ⟩ . (D.11)

We let
∑
P denote the sum over all permutations. For example,∑
P
P|k1, k2 , k3⟩ = {|k1 , k2 , k3⟩ + |k2 , k1 , k3⟩ + |k1, k3 , k2⟩

+ |k3, k2 , k1⟩ + |k3 , k1 , k2⟩ + |k2 , k3 , k1⟩} . (D.12)

Note that in |k2, k3 , k1⟩, particle 1 has momentum k2, particle 2 has momentum
k3, and particle 3 has momentum k1.
If, in the ket |k1 , k2 ,… , kN ⟩, there are n1 particles with momentum k1, n2

particles with momentum k2 , n3 particles with momentum k3, and so on, then∑
P P|k1, k2 , k3⟩ contains N! terms, but only N!∕

∏∞
α=1 nα! of them are different.

If we now use the orthonormality of momentum states,

⟨ka , kb ,… , kl |k′a , k′b ,… , k′l⟩ = δka ,k′a δkb ,k′b ×⋯ × δkl ,k′l , (D.13)

we find that

|k1 , k2 ,… , kN ⟩(S) = 1√
N!

∏∞
α=1 nα!

∑
P
P|k1,… , kN ⟩ (D.14)

is a symmetrized orthonormalN-body momentum eigenstate. The symmetrized
states have the normalization

(S)⟨k1, k2 ,… , kN |k1 , k2 ,… , kN ⟩(S) = 1 (D.15)

and satisfy the completeness relation

1̂(S) = ℭS
∑

k1 ,…,kN

|k1 , k2 ,… , kN ⟩(S)(S)⟨k1, k2 ,… , kN | . (D.16)

The factorℭS =
∏∞
α=1 nα!∕N! in front of the summation corrects for the fact that

the summation produces N!∕
∏∞

α=1 nα! copies of each term.

D.1.5
AntisymmetrizedMomentum Eigenstates for Fermi–Dirac Particles

Any wave function describing the state of a system containing N identical Fermi–
Dirac particles must be antisymmetric under interchange of coordinates of any
two particles. Because of the Pauli exclusion principle, no more than one fermion
can have a given set of quantum numbers.
An antisymmetrized momentum eigenstate may be written

|k1 , k2 ,… , kN ⟩(A) = 1√
N!

∑
P
(−1)PP|k1 ,… , kN ⟩ , (D.17)
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where (−1)P = +1 for an even number of permutations and (−1)P = −1 for an odd
number of permutations. For example,∑

P
(−1)PP|k1 , k2 , k3⟩ = {|k1 , k2 , k3⟩ − |k2, k1 , k3⟩ − |k1, k3 , k2⟩

− |k3 , k2 , k1⟩ + |k3 , k1 , k2⟩ + |k2 , k3 , k1⟩} . (D.18)

The antisymmetrized states have the normalization
(A)⟨k1, k2 ,… , kN |k1, k2 ,… , kN ⟩(A) = 1 (D.19)

and satisfy the completeness relation

1̂(A) = ℭA
∑

k1 ,…,kN

|k1 , k2 ,… , kN ⟩(A)(A)⟨k1, k2 ,… , kN | , (D.20)

whereℭS = 1∕N! corrects for the fact that the summation produces N! copies of
each state. Note that if any two particles have the samemomentum and spin, then
the state |k1, k2 ,… , kN ⟩(A) is identically zero. For example, |k1 , k1 ,… , kN ⟩(A) ≡ 0.
The wave function ⟨r1, r2 ,… , rN |k1, k2 ,… , kN ⟩(A) can be written in the form

of a determinant,

⟨r1 , r2 ,… , rN |k1 , k2 ,… , kN ⟩(A) = 1√
N

⎛⎜⎜⎜⎜⎝
⟨r1|k1⟩ ⟨r1|k2⟩ ⋯ ⟨r1|kN ⟩⟨r2|k1⟩ ⟨r2|k2⟩ ⋯ ⟨r2|kN ⟩

⋮ ⋮ ⋱ ⋮⟨rN |k1⟩ ⟨rN |k2⟩ ⋯ ⟨rN |kN ⟩
⎞⎟⎟⎟⎟⎠
,

(D.21)

known as the Slater determinant.

D.1.6
Partition Functions and Expectation Values

When evaluating the properties of many-body systems, we must compute parti-
tion functions and expectation values. Some of these quantities can be simplified
as we shall show here.
The trace for an N-particle boson system can be written

Tr(ρ̂N ) = ℭS
∑

k1 ,…,kN

(S)⟨k1, k2 ,… , kN |ρ̂N |k1 , k2 ,… , kN ⟩(S)
=

( 1
N!

)2 ∑
k1 ,…,kN

(+)⟨k1, k2 ,… , kN |ρ̂N |k1, k2 ,… , kN ⟩(+)
= 1
N!

∑
k1 ,…,kN

⟨k1, k2 ,… , kN |ρ̂N |k1 , k2,… , kN ⟩(+) , (D.22)

where |k1, k2 ,… , kN ⟩(+) ≡ ∑
P
P|k1 , k2 ,… , kN ⟩ . (D.23)
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Similarly, for an N-particle fermion system we have

Tr(ρ̂N ) = ℭA
∑

k1 ,…,kN

(A)⟨k1, k2 ,… , kN |ρ̂N |k1 , k2 ,… , kN ⟩(A)
= 1
N!

∑
k1 ,…,kN

⟨k1, k2 ,… , kN |ρ̂N |k1 , k2 ,… , kN ⟩(−) , (D.24)

where

|k1 , k2 ,… , kN ⟩(−) ≡ ∑
P
(−1)PP|k1 , k2 ,… , kN ⟩ . (D.25)

It is useful also to look at expectation values. Let consider theN-particle one-body
operator Ô(1)

N ≡ ∑N
j=1 Ô j , where Ôi depends only on momentum, coordinate and

spin operators for particle j. The kinetic energy is an example of such an operator.
The expectation value of a one-body operator for a system of N bosons can be
written

⟨Ô(1)⟩ = TrN
(
Ô(1)
N ρ̂N

)
= ℭS

∑
k1 ,…,kN

(S)⟨k1, k2 ,… , kN |Ô(1)
N ρ̂N |k1, k2 ,… , kN ⟩(S)

=
( 1
N!

)4 ∑
k1 ,…,kN

∑
k′1 ,…,k′N

N∑
i=1

(+)⟨k1,… , kN |Ôi|k′1 ,… , k′N ⟩(+)
× (+)⟨k′1,… , k′N |ρ̂N |k1 ,… , kN ⟩(+)

= N
( 1
N!

)2 ∑
k1 ,…,kN

∑
k′1 ,…,k′N

⟨k1,… , kN |Ô1|k′1,… , k′N ⟩(+)
× ⟨k′1,… , k′N |ρ̂N |k1 ,… , kN ⟩(+)

= 1
(N − 1)!

∑
k′1

∑
k1 ,…,kN

⟨k1|Ô1|k′1⟩(+)⟨k′1, k2 ,… , kN |ρ̂N |k1 ,… , kN ⟩ .
(D.26)

Wecan rewrite ⟨Ô(1)⟩ in terms of the reduced one-bodydensitymatrix ⟨k′1|ρ̂(1)|k1⟩
⟨Ô(1)⟩ = ∑

k′1

∑
k1

⟨k1|Ô1|k′1⟩⟨k′1|ρ̂(1)|k1⟩ . (D.27)

The reduced one-body density matrix, ⟨k′1|ρ̂(1)|k1⟩, is defined as

⟨k′1|ρ̂(1)|k1⟩ = 1
(N − 1)!

∑
k2 ,…,kN

(±)⟨k′1, k2 ,… , kN |ρ̂N |k1 ,… , kN ⟩ , (D.28)

where the sign (+) (−) applies to bosons (fermions).
Similarly, we can write an expression for the reduced two-body density ma-

trix ⟨k′1, k′2|ρ̂(2)|k1, k2⟩. The N-particle two-body operator can be written Ô(2)
N ≡
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i< j Ôi, j, where Ôi, j depends only on momentum, coordinate, and spin op-

erators for particles i and j. Then

⟨Ô(2)⟩ = Tr
(
Ô(i, j)
N ρ̂N

)
= 1

2
∑
k′1 ,k

′
2

∑
k1 ,k2

⟨k1, k2|Ô1,2|k′1, k′2⟩⟨k′1, k′2|ρ̂(2)|k1 , k2⟩ ,
(D.29)

where

⟨k′1, k′2|ρ̂(2)|k1 , k2⟩= 1
(N − 2)!

∑
k3 ,…,kN

(±)⟨k′1, k′2 , k3 ,… , kN |ρ̂N |k1 , k2 , k3 ,… , kN ⟩ ,
(D.30)

where the sign (+) (−) applies to bosons (fermions).

D.2
The Number Representation

Thewave functions |k1,… , kN ⟩ tell us themomentumstate of each particle. How-
ever, the states |k1,… , kN ⟩(S)(A) contain no such information because they contain
permutations of particles among all momentum states listed in the ket. Also, they
can be clumsy to work with. Therefore, it is convenient to change representations
from one which tells themomentum state of each particle (themomentum repre-
sentation) to one which tells us the number of particles in each momentum state
(the number representation).

D.2.1
The Number Representation for Bosons

The basis states in the number representation are written |n1 , n2 ,… , n∞⟩, where
nα is the number of particles in the state of momentum and spin kα . Operators in
the number representation are written â+k and âk and are called creation and an-
nihilation operators, respectively. They are Hermitian conjugates of one another.
The states and operators of the number representation are related to the N-

particle states |k1,… , km⟩(S) as follows:|k1 ,… , km⟩(S) = |0,… , n1 ,… , nm , 0 → 0⟩
≡ 1√

∞∏
α=1
nα!

(
â+k1

)n1 (
â+k2

)n2
×⋯ ×

(
â+km

)nm |0⟩ , (D.31)

where
∑m
i=1 ni = N . We have labeled the momenta in |k1 ,… , km⟩(S) from 1 tom.

However, it is understood that there are N positions in the ket. Several particles
may have the same momentum. The notation 0 → 0 means that all occupation
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numbers after nm are zero. Note that zeros may be interspersed between occupa-
tion numbers n1,… , nm . If we interchange momenta of two particles, the wave
function should not change:

|k1 , k2 ,… , km⟩(S) = |k2 , k1 ,… , km⟩(S)
= 1√

∞∏
α
nα!

(
â+k1

)n1 (
â+k2

)n2
×⋯ ×

(
â+km

)nm |0⟩
= 1√

∞∏
α
nα!

(
â+k1

)n1−1
â+k2 â

+
k1

(
â+k2

)n2−1
×⋯ ×

(
â+km

)nm |0⟩ . (D.32)

Thus, we find that symmetrization of the wave functions gives

â+k1 â
+
k2
= â+k2 â

+
k1

(D.33)

and, therefore, creation operators commute. If we take the Hermitian adjoint of
Eq. (D.33), we find âk1 âk2 = âk2 âk1 , so the annihilation operators also commute.
The wave functions must satisfy the following condition:

(S)⟨k1, k2 ,… , km |k′1, k′2 ,… , k′m⟩(S)
≡ 1

∞∏
α
nα!

⟨0|âkm ×⋯ × âk1 â
+
k′1
×⋯ × â+k′m |0⟩

=

{
0 if the sets [k1 ,… , km ] and [k′1 ,… , k′m] are not the same .
1 if the sets [k1 ,… , km ] and [k′1 ,… , k′m] are the same .

Equation (D.34) will be satisfied if the state |0⟩ and the creation and annihilation
operators have the following properties:

⟨0|0⟩ = 1 , (D.34)
âk|0⟩ = 0 for all k (D.35)

and

[âk , â+k′ ]− = âk â+k′ − â
+
k′ âk = δk ,k′ . (D.36)

One can easily show that Eq. (D.34) follows from Eqs. (D.34)–(D.36) by doing
some examples. One simply commutes each annihilation operator to the right
using Eqs. (D.34)–(D.36) as they are needed. The result is Eq. (D.34).
Again, by using Eqs. (D.31), (D.35), and (D.36), we can show that

âk j |n1 ,… , n j ,… , n∞⟩ = √
n j|n1 ,… , n j − 1,… , n∞⟩ , (D.37)

â+k j |n1 ,… , n j ,… , n∞⟩ = √
n j + 1|n1,… , n j + 1,… , n∞⟩ (D.38)
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and ⟨n1,… , n j ,… , n∞|â+k j âk j |n1,… , n j ,… , n∞⟩ = n j . (D.39)

Equation (D.39) follows from the normalization of the states:⟨n1,… , n j ,… , n∞|n1 ,… , n j ,… , n∞⟩ = 1 . (D.40)

When working withN-body systems, we commonly must evaluate one-body op-
erators of the type

ÔN(1) =
N∑
i=1
Oi(q̂i , p̂i , ŝi) . (D.41)

(Note that these operators are symmetric under interchange of particle labels.)
Some examples are the kinetic energy, the number density, and the particle cur-
rent. We wish to express these operators in the number representation.
The correspondence between ÔN(1) and its analog in the number representation

is

ÔN(1) → Ônb(1) =
∑
kakb

⟨ka|Ô1(q̂1, p̂1, ŝi)|kb⟩â+ka âkb . (D.42)

To show that Eq. (D.42) is correct, we must show that
(S)⟨k1,… , km|ÔN(1)|k′1,… , k′m⟩(S)
= ⟨0,… , n1 ,… , nm , 0 → 0|Ônb(1)|0,… , n′1 ,… , n′m , 0 → 0⟩ . (D.43)

We leave this as an exercise.
In going from themomentum representation to the number representation, we

thus make the correspondence|k1, k2 ,… , km⟩(S) → |0,… , n1 , n2 ,… , nm , 0 → 0⟩ (D.44)

and
N∑
i=1
Oi(q̂i , p̂i , ŝi) →

∑
ka ,kb

⟨ka|O1(q̂1, p̂1, ŝ1)|kb⟩â+ka âkb . (D.45)

In practice, the only other type of N-body operators we encounter are two-body
operators of the form

ÔN(2) =
(1∕2)N(N−1)∑

i< j
Oi j(q̂i , q̂ j , p̂i , p̂ j , ŝi , ŝ j) . (D.46)

Some examples are the potential energy and the momentum currents (stress ten-
sor). Similarly, we can show that

(1∕2)N(N−1)∑
i< j

Oi j(q̂i , q̂ j , p̂i , p̂ j , ŝi , ŝ j)

→
1
2

∑
kakbk′ak

′
b

⟨kakb|O12(q̂1q̂2 p̂1 p̂2 ŝ1 ŝ2)|k′ak′b⟩â+ka â+kb âk′b âk′a , (D.47)

when going from the coordinate to number representation.
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D.2.2
The Number Representation for Fermions

The basis states for fermions are also written |n1 , n2 ,… , n∞⟩, but because of the
Pauli exclusion principle the occupation numbers take on values nα = 0 or 1 only.
We also introduce creation and annihilation operators â+k and âk , respectively.
But they obey different commutation relations.
The correspondencebetween states in the number representation and antisym-

metrized momentum states is

|k1 , k2 ,… , kN ⟩(A) = |0,… , 11 , 12,… , 1N , 0 → 0⟩ ≡ â+k1 â+k2 ×⋯ × â+kN |0⟩ ,
(D.48)

where we have used the convention nα = 1α when the state kα is filled and ze-
ro otherwise. In general, there will be zeros interspersed between the occupation
numbers 11, 12,… , 1N on the left-hand side of Eq. (D.48). If we interchange mo-
menta of two particles, the states must change sign:

|k1 , k2 ,… , kN ⟩(A) = −|k2 , k1 ,… , kN ⟩(A)
= â+k1 â

+
k2
×⋯ × â+kN |0⟩ = −â+k2 â

+
k1
×⋯ × â+kN |0⟩ .

(D.49)

Thus, the creation operators anticommute,

â+k1 â
+
k2
= −â+k2 â

+
k1
. (D.50)

If we take the Hermitian adjoint of Eq. (D.50), we find âk2 âk1 = −âk1 âk2 , so the
annihilation operators also anticommute.
The wave functions must satisfy the condition

(A)⟨k1, k2 ,… , kN |k′1 , k′2 ,… , k′N ⟩(A) ≡ ⟨0|âkN ×⋯ × âk1 â
+
k′1
×⋯ × â+k′N

|0⟩
=

⎧⎪⎨⎪⎩
0 if the sets {ki} and {k′i} differ ,
+1 if the sets {ki} and {k′i} only differ by an even permutation ,
−1 if the sets {ki} and {k′i} only differ by an odd permutation .

(D.51)

Equation (D.51) will be satisfied if

⟨0|0⟩ = 1 , (D.52)
âk|0⟩ = 0 for all k , (D.53)

and

[âk , â+k ]+ ≡ âk â+k′ + â+k′ âk = δk ,k′ . (D.54)
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For Fermi systems there can be ambiguity in the overall sign of the states. There-
fore, one uses the convention that in the states |n1 , n2 ,… , n∞⟩ the occupation
numbers are ordered from left to right in order of increasing energy. We then find
that

âk j |n1 , n2 ,… , n j ,… , n∞⟩ = (−1)Σ j
√
n j|n1, n2 ,… , (1 − n j),… , n∞⟩ ,

(D.55)

â+k j |n1 , n2 ,… , n j ,… , n∞⟩ = (−1)Σ j
√

1 − n j | n1 , n2 ,… , (1 + n j),… , n∞⟩ ,
(D.56)

where
∑
j ≡ ∑ j−1

l=1 nl .
For systems of identical fermions, the same correspondence holds between op-

erators in the coordinate representation and number representation (cf.
Eqs. (D.45) and (D.46)) as was found to hold for systems of identical bosons.
However, for fermions the creation and annihilation operators anticommute and
for bosons they commute.
A similar correspondence holds for the operator ON(2). However, we must make

a brief comment about sign conventions. The correspondence is

ÔN(2) =
(1∕2)N(N−1)∑

i< j
Oi j(q̂i q̂ j p̂i p̂ j σ̂ i σ̂ j)

→
1
2

∑
kakbk′ak

′
b

⟨ka , kb |O12(q̂1q̂2 p̂1 p̂2 σ̂1 σ̂2)|k′a , k′b⟩â+ka â+kb âk′b âk′a .
(D.57)

Note that the order of the operators âk′a and âk′b is opposite to the order of k
′
a and

k′b in the ket |k′a k′b⟩. With this convention, the matrix elements whose momenta
appear in the same order (of increasing or decreasing energy) on each side have
a positive sign.

D.2.3
Thermodynamic Averages of QuantumOperators

We often need to compute average values of operators in the grand canonical en-
semble such that ⟨O⟩=Tr(Ôρ̂0), where ρ̂0 = e−βK̂0∕Tr(e−βK̂0 ) and K̂0 =

∑
k𝜖k â

†
k âk .

The quantity 𝜖k = ℏ2k2∕2m − μ. The operator Ô may consist of a long string of
creation and annihilation operators, â†k and âk , respectively. The first thing to no-
tice is that ρ̂0 is the field theoretic version of a generalized Gaussian distribution.
Thus, Wick’s theorem can be used to evaluate the trace Tr(Ôρ̂0). Wick’s theorem
states that the average of a product of operators is equal to the sum of all possible
ways of averaging the product in pairs.
Before we show how to derive Wick’s theorem, we must establish a few prop-

erties of the creation and annihilation operators. Let us first define âk (τ) =



436 D Number Representation

eτK0 âke−τK0 . Then, using the boson (upper sign) and fermion (lower sign) com-
mutation relations [âk , â

†
k′ ]∓ = δk ,k′ , we can show that

𝜕

𝜕τ
âk(τ) =

[
K̂0 , âk (τ)

]
− = −𝜖k âk(τ) (D.58)

and
𝜕

𝜕τ
â†k(τ) =

[
K̂0 , â

†
k (τ)

]
−
= 𝜖k â

†
k(τ) . (D.59)

Thus,

â†k(τ) = e𝜖kτ â†k and âk (τ) = e−𝜖k τ âk . (D.60)

Also note that

âke−K̂0τ = e−K̂0τ âke−𝜖k τ and â†ke
−K̂0τ = e−K̂0τ â†ke

𝜖kτ . (D.61)

Using these results, the expectation value of a product of creation and annihilation
operators can be written⟨

â†k âk′
⟩
=Tr

(
ρ̂â†k âk′

)
=∓δk ,k′ ±Tr

(
ρ̂âk′ â

†
k

)
=∓δk ,k′ ±eβ𝜖kTr

(
ρ̂â†k âk′

)
,

(D.62)

where we have made use of the commutation relations for bosons (upper sign)
and fermions (lower sign). Rearranging terms we obtain⟨

â†k âk′
⟩
= δk ,k′n(k) =

δk ,k′
(eβ𝜖k ∓ 1)

, (D.63)

where n(k) = (eβ𝜖k ∓1)−1 is themomentumdistribution for noninteracting bosons
(upper sign) and fermions (lower sign). Furthermore,⟨

âk â
†
k′

⟩
= δk ,k′ (1± n(k)) ,

⟨
âk âk′

⟩
= 0 , and

⟨
â†k â

†
k′

⟩
= 0 . (D.64)

If we consider a product of four operators, we evaluate the trace as follows. By
successively applying boson or fermion commutation relations, we can write

Tr
(
ρ̂â†k1 â

†
k2
âk4 âk3

)
= −δk1 ,k4Tr

(
ρ̂â†k2 âk3

)
∓ δk1 ,k3Tr

(
ρ̂â†k2 âk4

)
± e−β𝜖k1 Tr

(
ρ̂â†k1 â

†
k2
âk4 âk3

)
. (D.65)

After rearranging terms, this becomes

Tr
(
ρ̂ â†k1 â

†
k2
âk4 âk3

)
=

⟨
â†k1 âk3

⟩⟨
â†k2 âk4

⟩
±

⟨
â†k1 âk4

⟩⟨
â†k2 âk3

⟩
. (D.66)

The sign in front of a given term in the sum of products of pairwise averages is
always positive for bosons but will be negative for fermions if it requires an odd
number of permutations to rearrange the product of operators into the appropri-
ate pairs.
If we apply the above procedure to Tr(ρ̂â†k1 â

†
k2
âk4 âk3 â

†
k5
â†k6 âk7 âk8 ), we obtain

a sum of 24 terms, each containing a product of pairwise averages.



437

Appendix E
Scattering Theory

In this Appendix, we first discuss the dynamics of the scattering process and then
derive an expression for the scattering cross section [69]. We shall restrict our-
selves to elastic scattering processes.

E.1
Classical Dynamics of the Scattering Process

We consider two particles, one with mass m1 and displacement r1(t) at time t
and another with massm2 and displacement r2(t) at time t. The particles interact
via a short-range interaction, V (|r2 − r1|). It is useful to introduce the relative
displacement, r = r2 − r1, and the center-of-mass displacement, R = (m1∕M)r1 +
(m2∕M)r2, where M = m1 + m2 is the total mass. They are related through the
equations (cf. Figure E.1a)

r1 = R −
m2

M
r and r2 = R +

m1

M
r . (E.1)

The momenta of particles 1 and 2 are p1 and p2, respectively. The center-of-
mass momentum is P = p + p2. The relative momentum is p = (m1∕M)p2 −
(m2∕M)p1.

Figure E.1 (a) Relation between lab frame coordinates and center-of-mass and relative coor-
dinates. (b) Relation between lab frame velocity, v′2, and center-of-mass frame velocity, v′2,c , of
mass m2.

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.
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The total Hamiltonian for the system can be written

Htot =
p21
2m1

+
p22
2m2

+ V (|r2 − r1|) = P2
2M

+
p2

2μ
+ V (|r|) = Etot . (E.2)

TheHamiltonian decomposes into a part that depends only on the center-of-mass
coordinates, Hcm = P2∕2M = Ecm, and a part that depends only on the relative
coordinates, H = p2∕2μ + V (r) = E, so Htot = Hcm + H. Therefore, the center-
of-massmotion evolves independently from the relative motion. FromHamilton’s
equation, Ṗ = −𝜕Htot∕𝜕R = 0, so the center-of-mass momentum, P = p1 + p2, is
a constant of the motion.
We will assume that the scattering is elastic, so the total kinetic energy,

p21∕(2m1) + p22∕(2m2), is conserved. Because the potential, V (|r2 − r1|), is spher-
ically symmetric (it depends only on the distance, |r2 − r1|), the total angular
momentum vector, L = r1 × p1 + r2 × p2, is a constant of the motion.
Let us assume that initially the particles are far apart and free but approach one

another with momenta, p1 and p2, in the lab frame. Once they approach close
enough to feel the interaction, the scattering process begins and their momenta
will be altered. After the collision process is finished, they fly apart with final mo-
menta, p′

1 and p′
2. Conservation of momentum and of kinetic energy (for elastic

processes) then gives

Pcm = p1 + p2 = p′
1 + p′

2 and
p21
2m1

+
p22
2m2

=
p′21
2m1

+
p′22
2m2

, (E.3)

respectively. One can combine Eq. (E.3) to show that for elastic collisions, the
magnitude of the relative velocity, |v2 − v1|, is unchanged by the collision. The
relative velocities before and after the collision are g = v2 − v1 and g′ = v′2 − v′1,
respectively. Then for elastic collisions

g = |g| = |g′| , (E.4)

where g is the magnitude of the relative velocity before and after the collision.
Because angular momentum is conserved, the scattering process occurs in

a plane perpendicular to the angular momentum vector. We can choose the z-
axis to lie along the angular momentum vector. Then, the scattering process
takes place in the x–y plane. If we introduce polar coordinates x = r cos(φ) and
y = r sin(φ), the relative Hamiltonian can be written

H =
p2

2μ
+ V (r) = 1

2μ

(
p2r +

p2φ
r2

)
+ V (r) = E , (E.5)

where pr = μṙ and pφ = μr2 φ̇. Hamilton’s equation takes the form

d pr
dt

= −𝜕H
𝜕r

=
p2φ
μr3

− 𝜕V
𝜕r

, dr
dt

= 𝜕H
𝜕 pr

=
pr
μ

,

d pφ
dt

= −𝜕H
𝜕φ

= 0 ,
dφ
dt

= 𝜕H
𝜕 pφ

=
pφ
μr2

. (E.6)
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Since d pφ∕dt = 0, the magnitude of angular momentum, pφ , is a constant of the
motion. We therefore set pφ = l, where l is a constant. Since dφ∕dt = l∕μr2, we
can write

dφ = l
μr2

dt = l
r2

dr
pr

=
(l∕r2)dr√

2μ(E − V (r)) − l2∕r2
. (E.7)

Equation (E.7) relates the polar angle, φ, to the distance between the particles at
any time during the scattering process.
Let us now consider the scattering process in more detail. Let us assume that at

time t = −∞, massm1 is at rest at the origin andmassm2 has coordinates x = +∞
and y = b and is moving parallel to the x-axis in the negative x-direction with
a velocity v2 = v0 = −v0 x̂. The quantity b is the impact parameter. Thus, at time
t = −∞we have (r1 = 0, v1 = 0, r2 =∞êx + bê y , v2 = −v0 êx) (cf. Figure E.2a). The
center-of-mass velocity is V cm = m2v0∕M = μv0∕m1 and the relative velocity is
v =−v0 êx . The total angularmomentum is L = r1× p1+ r2× p2 =−m2v0bêz. The
angular momentum can also be divided into center-of-mass angular momentum,
Lcm =MR ×V cm, and relative angular momentum, Lrel = μr × v = μbv0 ẑ, so that
L = Lcm + Lrel. Since the magnitude of the relative velocity, g = v0, is unchanged
by the collision, the impact parameter, b, is the same before and after the collision.
Therefore, g and b are intrinsic parameters of the elastic collision processes.
At the end of the scattering event, the particles move apart with constant rela-

tive velocity. At time t = −∞we have φ = 0. At time t = +∞we have φ = φf . The
angle, Θ, between the incident relative velocity and the final relative velocity is
called the scattering angle and it satisfies the relation Θ = π − φf (cf. Figure E.2b).
It is useful to view the scattering process from the center-of-mass frame of refer-

ence, which is the reference frame inwhich the origin of coordinates is fixed to the
center-of-mass and moves with it. In the center-of-mass frame, the displacement
of m1 is r1,c = −m2r∕M and the displacement of m2 is r2,c = m1r∕M. Similarly,
their velocities are v1,c = −m2v∕M and v2,c = m1v∕M, respectively. The relation
between the final velocities v′2 and v

′
2,c =m1g′∕M, ofmassm2 in the lab frame and

center-of-mass frames, respectively, is shown in Figure E.1b. From this figure we
can relate the scattering angles, θ and Θ, as seen from the lab and center-of-mass
frames, respectively. Equating components of the vectors in Figure E.1b, we find

v′2,c sin(Θ) = v
′
2 sin(θ) and v′2,c cos(Θ) + Vcm = v′2 cos(θ) . (E.8)

Figure E.2 Scattering in the lab frame. (a) t = −∞. (b) t = +∞.
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We can combine these equations to obtain

cos(θ) = ξ + cos(Θ)√
1 + ξ2 + 2ξ cos(Θ)

, (E.9)

where ξ = Vcm∕v′2,c. The magnitude of the center-of-mass velocity is Vcm =
μv0∕m1. Also, for elastic collisions we have v′2,c = m1v0∕M and ξ = m2∕m1.
It is useful now to introduce the concept of the scattering cross section.

E.2
The Scattering Cross Section

The scattering problem may be viewed in the lab frame as that of a beam of par-
ticles of mass, m2, incident on a mass, m1, which is at rest. Let I be the intensity
of the incident beam (number of incident particles/(time ⋅ area)). Consider a cir-
cular area element of the incident beam consisting of those particles with impact
parameter in the interval b → b + db and azimuthal angle element dα (cf. Fig-
ure E.3a). These particles are scattered into the solid angle dω = sin(θ)dθ dα in
the lab frame and into the solid angle dΩ = sin(Θ)dΘ dα in the center-of-mass
frame. The angle, α, is the same in the two frames. The number of particles/time,
dṄ , scattered into the solid angle dω = sin(θ)dθ dα in the lab frame and into the
solid angle dΩ = sin(Θ)dΘ dα in the center-of-mass frame is given by (α is the
azimuthal angle)

dṄ = Ib db dα = Iσlab sin(θ)dθ dα = Iσcm sin(Θ)dΘ dα , (E.10)

where σlab = σlab(g , b) and σcm = σcm(g , b) are the differential scattering cross
sections in the lab and center-of-mass frames, respectively. Equation (E.10) gives
the relation between the impact parameter, b, and either the lab frame differential
cross section, σlab, or the center-of-mass differential cross section, σcm:

σlab =
|||| b db
sin(θ)dθ

|||| and σcm =
|||| b db
sin(Θ)dΘ

|||| . (E.11)

The differential scattering cross section is independent of α because of the spher-
ical symmetry of the potential. As b increases, θ and Θ decrease. The absolute
value signs in Eq. (E.11) are necessary for positive cross sections.

Figure E.3 (a) Relation be-
tween the impact parameter
and the scattering angle in
the lab frame. (b) Scatter-
ing process as viewed from
the center-of-mass frame.
Here v1,c = −m2g∕M, v′1,c =
−m2g′∕M, v2,c = m1g∕M, and
v′2,c = m1g′∕M.
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Exercise E.1

Compute the total scattering cross section for elastic scattering of a point particle
of massm off of a hard sphere of radius a which is fixed in position. Assume that
the incident particle has velocity v0 and impact parameter b.

Answer: The fact that the hard sphere is fixed in positionmeans that it, in effect,
has an infinite mass and v1 = 0. If we let m2 = m and m1 = ∞, we find Vcm = 0.
Therefore, ξ = 0 and the scattering angles in the center-of-mass and lab frames
are equal, cos(θ) = cos(Θ). Also the collision cross sections in the center-of-mass
and lab frames are equal, σlab = σcm.
The collision process is shown in the accompanying figure.

Let φ0 be the angle of closest approach. Then the scattering angle is giv-
en by Θ = π − 2φ0. The impact parameter is b = a sin(φ0) = a cos(Θ∕2) so
that, db = −(a∕2) sin(Θ∕2)dΘ and b db = −(a2∕2) sin(Θ∕2) cos(Θ∕2)dΘ =
−(a2∕4) sin(Θ)dΘ. Therefore

σcm(b, g) =
|||| b
sin(Θ)

db
dΘ

|||| = a2
4

.

For this special case, the differential scattering cross section is independent of
angle. The scattering is isotropic. The total cross section, σtot, is given by

σtot =
π

∫
0

σcm(b, g)2π sin(Θ)dΘ = πa2 .

Thus, the total cross section is just the area of the fixed scatterer as seen by the
incoming beam.

The total scattering cross section, σtot, is given by

σtot =
π

∫
0

sin(Θ)dΘ
2π

∫
0

dασcm(b, g) =
π

∫
0

sin(θ)dθ
2π

∫
0

dασlab(b, g) . (E.12)

The scattering cross section can be thought of as the effective area cutout of the
incident beam by the scattering process. This is clear in Exercise E.1, where we
compute the cross section for an incident beam of hard-sphere particles colliding
with a fixed hard sphere.
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From Eqs. (E.9) and (E.11), the relation between the differential scattering cross
sections in the center-of-mass and the lab frames is given by

σlab =
σcm(1 + ξ2 + 2ξ cos(Θ))3∕2

(1 + ξ cos(Θ))
. (E.13)

In Figure E.3b, we picture the scattering process in the center-of-mass frame of
reference. In the center-of-mass frame, the scattering event, (p1, p2)→

(
p′
1, p

′
2
)
,

and the reverse scattering event,
(
p′
1, p

′
2
)
→ (p1, p2), are identical except that

the directions of the particles are reversed. Therefore, σcm(b, g) is the differential
scattering cross section for both the forward and the reverse scattering events in
the center-of-mass frame.

E.3
QuantumDynamics of Low-Energy Scattering

In the center-of-mass frame, the Schrodinger equation for scattering of two iden-
tical particles with mass m, which interact via a spherically symmetric potential,
can be written

− ℏ2

2μ
∇2ψk(r) + V (r)ψk (r) =

ℏ2k2
2μ

ψk(r) , (E.14)

where μ = m∕2 is the reduced mass. This can be rewritten in the form

(∇2 + k2)ψk (r) =
m
ℏ2V (r)ψk (r) , (E.15)

and the solution can be written

ψk(r) = eik⋅r + m
ℏ2 ∫ dr′Gk(r|r′)V (r′)ψk (r′) , (E.16)

where

(∇2 + k2)Gk (r|r′) = δ(r′ − r′) (E.17)

and

Gk(r|r′) = − eik|r−r′|
4π|r − r′| . (E.18)

In the asymptotic region, r ≫ r′ and we can write |r − r′| ≈ r − r ⋅ r′∕r +…, and
the wave function takes the form

ψk(r) ≈ eik⋅r − m
4πℏ2r

eikr ∫ dr′e−ik
′⋅r′V (r′)ψk (r′) , (E.19)

where k′ = kr∕r.
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Now consider scattering between two identical hard-sphere particles of diam-
eter a. Also, consider very low energies so the wavelength of the particles is much
longer than the diameter and k = 2π∕λ≪ a. Assume the particles approach along
the z-axis and then are scattered in the radial direction. The energy eigenstate will
be the superposition of the incident plane wave and the scattered spherical wave
and can be written

ψk(r) = eikz + f (θ)e
ikr

r
, (E.20)

where f (θ) is the scattering amplitude. If we choose k = kêz in Eq. (E.19), then
the scattering amplitude can be written

f (θ) = − m
4πℏ2 ∫ dr′e−ik

′ ⋅r′V (r′)ψk(r′) . (E.21)

For hard spheres,when r ≤ a, thenV (r) =∞ and thewave function can’t penetrate
this region. This means that the wave function ψk (r) = 0 for r ≤ a. If we now use
this condition in Eq. (E.20), we can write

ψk(a , θ)) = 0 = eika + f (θ)e
ika

a
(E.22)

and we obtain f (θ) = −a. The quantity a is called the scattering length and is a
measure of the spatial distance over which the interaction of the particles takes
place.
Let us now consider the case of a contact potential between the particles V (r) =

gδ(r). If we expand Eq. (E.19) in powers of V , and keep only first-order terms, we
get

f (θ) = − m
4πℏ2 g +… (E.23)

For hard-sphere scattering f (θ) = −a and we find

g = 4πℏ2a
m

. (E.24)

It can be shown [136], using partial wave analysis, that all very low energy scatter-
ing processes can be described in terms of a single effective scattering length a.
The value of the effective scattering length depends on the type of particle. For ex-
ample, for rubidium 87Rb, aRb = 105a0 and for sodium 23Na, aNa = 55a0, where
a0 is the Bohr radius. For very dilute boson gases, at very low temperature, the
contact potential energy V (r) = gδ(r) provides a universal means of representing
interactions in the gas.
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Appendix F
Useful Math and Problem Solutions

F.1
Useful Mathematics

Some useful series expansions:

(a + x)n = an + nan−1x + n(n − 1)
2!

an−2x2 (F.1)

+ n(n − 1)(n − 2)
3!

an−3x3 +⋯ + xn (F.2)

(1 + x)−1 = 1 − x + x2 − x3 + x4 −… (F.3)

ln(1 + x) = x − x2
2

+ x3
3

− x4
4

+… (F.4)

ex = 1 + x + x2
2!

+ x3
3!

+… (F.5)

For series given by y = b1x + b2x2 + b3x3 +…, the reverted series is x = c1 y +
c2 y2 + c3 y3 +…, where b1c1 = 1, b31c2 = −b2, b51c3 = 2b22 − b1b2, . . .
Derivatives commonly used:

dun

dx
= nun−1 du

dx
, d

dx
ln(u) = 1

u
du
dx

(F.6)

Integrals often encountered:

∞

∫
0

dxxme−rx2 =
Γ((m + 1)∕2)
2r(m+1)∕2 (F.7)

∞

∫
0

dx x
ex − 1

= 1.645 (F.8)

∞

∫
0

dx x2
ex − 1

= 2.404 (F.9)

A Modern Course in Statistical Physics, 4. Edition. Linda E. Reichl.
©2016WILEY-VCHVerlagGmbH&Co.KGaA.Published2016byWILEY-VCHVerlagGmbH&Co.KGaA.
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∞

∫
0

dx x3
ex − 1

= 6.494 (F.10)

Let f (r) and A(r) denote scalar and vector functions of displacement r. Then
the following identities apply,

∇r ×
(
∇r × A

)
= ∇r

(
∇r ⋅ A

)
−∇2

rA , (F.11)

∇r ⋅
(
∇r × A

)
= 0 , (F.12)

∇r × ( f A) = (∇r f ) × A + f (∇r × A) , (F.13)

∇r × (A × B) = (B ⋅∇r)A − B(∇r ⋅ A)
− (A ⋅∇r)B + A(∇r ⋅ B) . (F.14)

Consider an orthogonal curvilinear coordinate frame for which a differential
displacement is dr =

∑3
i=1hiui êi , where êi is the unit vector in the ui direction.

A volume element in this coordinate frame is written dV = h1h2h3 du1 du2 du3.
Examples of orthogonal curvilinear coordinates include:
Cartesian coordinates with (u1 , u2 , u3) = (x , y, z) and (h1, h2 , h3) = (1, 1, 1);
Cylindrical coordinates with (u1 , u2 , u3) = (r, φ, z) and (h1 , h2 , h3) = (1, r, 1);
Spherical coordinateswith (u1, u2 , u3) = (r, θ, φ) and (h1 , h2 , h3) = (1, r, r sin θ).
The gradient ∇r f (r), divergence ∇r ⋅ A, curl ∇r × A, and Laplacian ∇2

r f (r),
respectively, are given by

∇r f (r) =
ê1
h1

𝜕 f
𝜕u1

+
ê2
h2

𝜕 f
𝜕u2

+
ê3
h3

𝜕 f
𝜕u3

, (F.15)

∇r ⋅ A = 1
h1h2h3

[
𝜕

𝜕u1
(h2h3A1) +

𝜕

𝜕u2
(h3h1A2) +

𝜕

𝜕u3
(h1h2A3)

]
(F.16)

∇r × A = 1
h2h3

[
𝜕

𝜕u2
(h3A3) −

𝜕

𝜕u3
(h2A2)

]
ê1

+ 1
h1h3

[
𝜕

𝜕u3
(h1A1) −

𝜕

𝜕u1
(h3A3)

]
ê2

+ 1
h1h3

[
𝜕

𝜕u3
(h1A1) −

𝜕

𝜕u1
(h3A3)

]
ê2 (F.17)

∇2
r f (r) =

1
h1h2h3

[
𝜕

𝜕u1

(
h2h3
h1

𝜕 f
𝜕u1

)
+ 𝜕

𝜕u1

(
h2h3
h1

𝜕 f
𝜕u1

)
+ 𝜕

𝜕u1

(
h2h3
h1

𝜕 f
𝜕u1

)]
(F.18)

Throughout the book, we use the following convention when dealing with
Fourier transforms. The Fourier transform, f̃ (ω) of function f (t), and the in-
verse transform are defined

f̃ (ω) =
∞

∫
−∞

dt eiωt f (t) and f (t) = 1
2π

∞

∫
−∞

dωe−iωt f̃ (ω) , (F.19)
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respectively. The Laplace transform f̃ (z) of the function f (t) and its inverse
transform are defined

f (t) = 1
2πi

δ+i∞

∫
δ−i∞

dz ezt f̃ (z) and f̃ (z) =
∞

∫
0

dt e−zt f (t) , (F.20)

respectively. Also, the Laplace transform, and inverse transform, of d f ∕dt are

∞

∫
0

dt e−zt
d f (t)
dt

= z f̃ (z) − f (0) and
d f (t)
dt

= 1
2πi

δ+i∞

∫
δ−i∞

dz eztz f̃ (z) ,

(F.21)

respectively.

F.2
Solutions for Odd-Numbered Problems

Chapter 2

(1) 3 725 568;
(3) (a) 75 600, (b) 2520, (c) 15 120;
(5) 4∕10;
(7) (a) 2 598 960, (b) 1.54 × 10−6, (c) 0.472;
(9) (a) S = kB ln{M!∕[N!(M − N)!]}, (b) P ≈ NkBT∕V ;
(11) (a) Multiplicity = N!∕(n0!n1!),
(b) S = kB ln{(NN )∕[(U∕𝜖)U∕𝜖 (N − U∕𝜖)N−U∕𝜖 ]},
(c) T = 𝜖∕[kB ln(n0∕n1)],
(d) C = [N𝜖2∕(kBT2)]eβ𝜖∕((1 + eβ𝜖)2);
(13) S = kB ln[N!∕(n−1!n0!n1!)], Smax = kBN ln(3).

Chapter 3

(1) (a) plot, (b) ΔQ12 = (4∕3)aT4
h(V2 − V1), ΔQ34 = (4∕3)aT4

c (V4 − V3), ΔQ23 =
ΔQ41 = 0, η = 1 + (ΔQ34∕ΔQ12) = 1 − (Tc∕Th);
(3) η = 1 − (V1∕V2)2∕3;
(5) η = αL20∕(3αL

2
0 + CL ,M);

(7) (a) (𝜕L∕𝜕T) J ,n = (L∕T)(1 − (L0∕L)3)∕[1 + 2(L0∕L)3], (b) J = (aTL∕L0)(1 −
(L0∕L)3), (c) ΔT = T − T0 = 0.005T0;
(9) (a) F(T) = d(T2B′

2)∕dT , (b) CP,N = 3NkB∕2 − kB(N2∕V )d(T2B′
2)∕dT +

NkB{[1+ (N∕V )(B2 + TB′
2)]∕(1+ 2(N∕V )B2)}, (c) U = (3∕2)NkBT − kB(N2∕V )

T2B′ + U0, S = kBN ln(V T3∕2) − kB(N2∕V )(B2 + TB′
2) + S0

(11) s = c ln(u∕u0) − (1∕2D)(m2 −m2
0) + s0, H = [ncT0 − (M2T0)∕(nD)] exp[(S −

S0)∕(nc) + (M2 − M2
0)∕(2n

2cD)], A = ncT − ncT ln(T∕T0) + (T∕(2nD))(M2 −
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M2
0) − S0T , G = ncT − ncT ln(T∕T0) − (nD∕2)(H2∕T + TH2

0∕T
2
0 ) − S0T ;

(15) (a)F(P) = R∕P2, (b) v = (RT∕P) − [a∕(RT)] − b ln(P) + v0, (c) b > 0;
(17) (a) F(P) = R∕P2, (b) v = 1∕(A∕T − RT∕P + C);
(19) (a) (Us∕A) = σ0[(1 − t∕t′)0.2]{1 − t∕t′ + [1.2(273 + t)]∕t′}, (b) plot;
(21) ⟨Δhi)2⟩ = (kBTv)∕(N0κs) + (kBcPT2)∕N0;
(23) ⟨(Δsi)2⟩ = (c2vT0κT )∕[N0(cvκTT0 − α2Pv)], ⟨ΔsiΔvi⟩ = (cvT0κT vαP)∕
[N0(cvκTT0 − α2Pv)], ⟨(Δvi)2⟩ = (cvT2

0κ
2
T v)∕[N0(cvκTT0 − α2Pv)];

(25) (a) (𝜕T∕𝜕V )U,n = {−an2∕[CV,nV (V − nb)]} exp[−na∕(VRT)],
(b) (𝜕T∕𝜕P)H ,n = (V∕CP,n)(2abn2 − 2anV + nbRTV )∕(anV − abn2 − RTV 2),
(c) Tmax = a∕(bR);
(27) (a) Tf =

∑m
i=1xiTi, Pf =

∑m
i=1Pi , ΔSmix = (5R∕2)

∑m
i=1ni ln(Tf∕Ti) − R

∑m
i=1ni

ln(xi ), (b) ΔS = 2.41R;
(29)mhemoglobin = 6.88 × 104 u;
(31) (a) ΔμA = (1∕2)(2λAB − λAA − λBB)(x2B − (x0B)

2) + RT ln[(1 − xB)∕(1 − x0B)],
(b) decreases;
(33) (a) G(T, P) =

∑
i niμ0i (P0 , T0) −

∑
i niRT ln[(T∕T0)5∕2(P0∕P)] + RT ln[(1 −

ξ)2−2ξ(ξ∕2)2ξ ], (b) A(T, P) = 4.01 + RT ln[(ξ∕2)2∕(1 − ξ)2], (c) ξeq = 0.064,
neqHI = 1.872, neqH2

= 0.064, neqI2 = 0.064, (d) ξeq = 0.064, neqHI = 1.872, neqH2
= 0.064,

neqI2 = 0.064 (no change), (e) (𝜕H∕𝜕ξ)0P,T = 6.76RT0.

Chapter 4

(1) (a) P = RT∕(v − b) − (a∕v2), (b) cP = R{5∕2 + [1 − (2a(v − b)2)∕(v3RT)]−1},
(c) 𝓁 = RT ln[(vg − b)∕(v𝓁 − b)];
(3) (dP∕dT)sub → [Pt(Δhsl + Δhlg)]∕T2

t and (dP∕dT)vap → [Pt(Δhlg)]∕T2
t ;

(5) (a) plot, (b) P = 1.1866 × 104 Pa;
(7) hd = 2564 kJ∕kg, x𝓁 = 0.1169;
(9) (a) gs = (4B∕T)(TP∕3B)3∕4, gl = (3A∕T)(TP∕2A)2∕3, (b) vl = 8vs∕9 and vs =
(PT∕3B)3∕4, (c) (dP∕dT)coex = (Av3s − Bv

2
l )∕[T

2v2l v
3
s (vl − vs)];

(11) (a) plot, (b) not;
(13) derive given eqs.;
(15) (dP∕dT) = Δcp∕(vTΔαP);
(17) 74%;
(19) (a) φ = φ0 + (1∕3)Aη2 − (2∕27)Bη3 + (1∕9)Cη4, (b) ηc = B∕(3C), (c) Δs =
−(A0B2)∕(27C2);
(21) (a) Tc = λ∕(2R), (b) xA = 0.123, xA = 0.869, (c) xA = 0.0.030, xA = 0.962;
(23) T = (λ∕2R)(1 − xc), xa = (1∕2) + (xc∕2).

Chapter 5

(1) χT,N = −(𝜕2Φ∕𝜕B2)T,N = β⟨MT ⟩2eq, magnetic susceptibility;
(3) f1 = 0.217, f2 = f3 = 0.148, f4 = f5 = f6 = 0.101, f7 = f8 = 0.069, f9 = 0.047;
(5) ZN = (1∕N!)[(V − Nb)∕λ3T ]

N exp[aN2∕(kBTV )], P = [NkBT∕(V − Nb)] −
(aN2∕V 2),U = (3∕2)NkBT −(aN2∕V ), S= (5∕2)NkB+NkB ln[(V −Nb)∕(Nλ3T )]
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with T = [2∕(3NkB)][U + (aN2∕V )];
(7) (a) ω2

D = (8Nπ∕A)(c−2t + c−2l )−1, (b) C → (28.8NkBT2)∕T2
D;

(9) (a) 0.368, (b) 0.4;
(11) (a) μI =−kBT ln[V∕(NIλ3T )], μI2 =−kBT ln[23∕2V∕(NI2λ

3
T )]−kBT ln(T∕θrot),

(b) (N2
I ∕NI2 ) = (Vθrot)∕(λ3T2

3∕2T), (c) increases;
(13) (a) Smix = (15NkB∕2) + 3NkB ln[V T3∕2∕(Nλ30)], Sred = (15NkB∕2) + 3NkB
ln[V T3∕2∕(3Nλ30)], ΔS = 3NkB ln[3];
(15) ⟨s1s2⟩ = tanh(β𝜖), T → 0 then ⟨s1s2⟩ → 1, T → ∞ then ⟨s1s2⟩ → 0;
(17) (a) β = 1, (b) δ = 1.5, (c) γ = 0.5, (d) α = −0.5, Not agree;
(19) α = −0.220, β = 0.605, γ = 1.010, δ = 2.670.

Chapter 6

(1) (a) B2(T) = (b∕NA) − [a∕(N2
AkBT)], (b) a = (2∕3)(πσ3𝜖N2

A)(λ
3 − 1), b =

(2∕3)πσ3NA, (c) σ = 3.2 × 10−10 m, 𝜖 = 0.012 64 eV ;
(3) B2 = 2π{λ3R3∕3− [R3(λ− 1)∕(β𝜖)]{(λ2 − exp(β𝜖)) + [(2(λ− 1)(λ− exp(β𝜖)))∕
(β𝜖)] + [(2(λ2 − 1)2[1 − exp(β𝜖)])∕(β2𝜖2)]}};
(5) B2 = −(2∕3)π f0R3;
(7) (a) Tc = 1.7 × 10−7 K, (b) V = 1.76 × 10−14 m3;
(9) Tc = [2πℏ∕(mkB)][(⟨N⟩∕V )∕(g3∕2(1) + g3∕2(e−βcΔ)]2∕3, lowers Tc;
(11) U = ((3

√
πkBTV )∕(2

√
2λ3T ))PolyLog[(5∕2), z], α = 2∕3;

(13) (a) 𝜖F = 1.14 × 10−18 J, Tc = 𝜖F∕kB = 83 000K;
(15) (a) 𝜖F = ⟨N⟩∕D, (b) C = (⟨N⟩π2k2BT)∕(3𝜖 f );
(17) derive given eq.;
(19) (a)⟨N2⟩− ⟨N⟩2 = ⟨N⟩, (b) ⟨N2⟩− ⟨N⟩2 = ⟨N⟩{1+ [(⟨N⟩λ3T )∕(23∕2V )] +…},
(c) ⟨N2⟩ − ⟨N⟩2 = ⟨N⟩{1 − [(⟨N⟩λ3T )∕(23∕2V )] +…};
(21) derive given eq.

Chapter 7

(1) Sv,v(ω) = (4γkBTω2)∕[m(ω2
0 − 2δω + ω2)(ω2

0 + 2δω + ω2)], plot;
(3) (a) (𝜕P∕𝜕t) = (γ∕m)(𝜕(vP)∕𝜕v) + (g∕m2)(𝜕2P∕𝜕v2), (b) P(v, τ) = {2πA[1 −
exp(−2τ)]}−1∕2 exp{−[(v − v0 exp(−τ))2]∕[2A(1 − exp(−2τ))]};
(5) (a) K(t) = {Θ(t) exp(−γt∕(2m)) sin[

√
ω2
0−γ2∕(4m2)t]}∕[m

√
ω2
0−γ2∕(4m2)],

Wabs = −F20∕(2m);
(7) (a) g = 2RkBT , (b) K(t) = (1∕R) exp[−t∕(RC)]Θ(t), (c) CQ,Q(t) = kBTC
exp(−t∕RC);
(9) (a) (dMx∕dt) =−γMyH0−(Mx∕T2), (dMy∕dt) =−γ(M0−Mz)H1 cos(ω0t)+
γMxH0 − (MyT2), (dMz∕dt) = −γMyH1 cos(ω0t) − (MzT1), (b) Kxx(t) = γM0
e−t∕T2 sin(γH0t)Θ(t), (c) P(2π∕ω0) = (ω2

0γ
2M0H0H2

1∕T2)∕{[(1∕T2)2 + (γH0)2
− ω2

0]
2 + 4ω2

0∕T
2
2};

(11) prove given eq.
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Chapter 8

(1) prove given eq.;
(3) ρk(t) = [1− (1∕γ) + (1∕γ)cos(kc0 t)]ρk(0) + i(ρ0∕c0) sin(kc0t)v

∥
k(0) − (αPρ0∕γ)

[1− cos(kc0t)]Tk(0), v
∥
k(t) = +i(c0∕ρ0γ)sin(kc0 t)ρk(0) + cos(kc0 t)v

∥
k(0) + i(αPc0∕

γ)sin(kc0 t)Tk(0),Tk(t) = +[(1 − γ)∕(ρ0γαP)][1 − cos(kc0t)]ρk(0) + i[(1 − γ)∕
(c0αP)] sin(kc0t)v

∥
k(0) + {(1∕γ) + [1 − (1∕γ)] cos(kc0 t)}Tk(0);

(5) v⟂k (t) = v0 sin(θ)[(π∕a)
3∕2] exp[−k2∕(4a2)] exp(−ηk2t∕ρ0).

(7) (a) (𝜕ρ∕𝜕T)P (𝜕2ΔT∕𝜕t2)+(𝜕ρ∕𝜕P)T (𝜕2ΔP∕𝜕t2)−∇2ΔP = 0, (𝜕S∕𝜕T)P(𝜕ΔT∕
𝜕t)+(𝜕S∕𝜕P)T (𝜕ΔP∕𝜕t)−(K∕T0)∇2ΔT = 0, (b) k4−k2{[(iωCp)∕K]+(ω2∕c2T )}+
iω3(Cp∕(Kc2S )) = 0;
(9) τ = (ρ0D2)∕(ηπ2) = 253 s;
(11) Sρ,ρ(k , t) = ⟨|ρk(0)|2⟩{[1− (1∕γ)] exp(χk2|t|) + (1∕γ) cos(c0kt) exp(−Γk2|t|)
+ [k∕(c0γ)][Γ + χ(γ − 1)] sin(c0kt) exp(−Γk2|t|)}, (b) k-correction 10−2 smaller;
(13) F = 4πa2ηêz ;
(15) (Γ∕T) = LSER, LES = LEEζ, LEE = 1∕R, LES = LSE so ζ = −Γ∕T ;
(17) prove given eq.;
(19) show given results.

Chapter 9

(1) n(v > v0) = (n0∕
√
2πmβ)(1 + (βmv20∕2)) exp[−βmv

2
0∕2];

(3) (a) d2n∕(d t dA) = 2N∕(3mV )[2m∕(πβ)]1∕2 , (b) d2n∕(dt dA) = 0;
(5) (a) n(v) = 2m3∕h3{exp[β((mv2∕2) − μ)] + 1}−1, (b) jzA = (4πm2eA∕(h3β2))
exp(−β|W − μ|);
(7) (a) η = nkBT∕γ, (b) K = 5nk2BT∕(2γm), (c) γ ∼ sec−1;
(9) D = 3∕(32n0a2)

√
kBT∕(mπ).

Chapter 10

(1) (a) Steady state if x3 − ax2 + κx− b = 0 with a = k1cA∕k2, b = k4cB∕k2, x = cX ,
κ = k3∕k2, (b) At equilibrium (ceqB ∕ceqA ) = k4k2∕(k1k3). Multiple steady states begin
to occur at critical point ac >

√
3κ, x > a∕3, and (ca)c∕(cB)c > 9k4k2∕(k1k3);

(3) (dcX∕dt) = k1cA −(k′1 + k4)cX + k
′
2cY cD − k2cBcX + k3c

2
X cY − k

′
3c

3
X + k

′
4cE and

(dcY∕dt) = −k′2cY cD + k2cBcX − k3c2X cY + k′3c
3
X , (b) Equilibrium ceqX = (k1cA +

k′4cE)∕(k
′
1 + k4) and c

eq
Y = (k2cBc

eq
X + k′3(c

eq
X )3)∕(k′2cD + k3(c

eq
X )2). Far from equil.

steady state csX = k1cA∕k4 and csY = k2cB∕(k3csX ). If X =
√
k3∕k4cX , B = k2cB∕k4,

Y =
√
k3∕k4cY , A =

√
k21k3∕k

3
4cA then X = A and Y = B∕A;

(5) Smallest Rayleigh number for transition is R = [(π2 + β3)∕β2].
vz(r) = Asin(πz∕d) cos(πx∕(2d)) cos(πy∕(2d)), cell size 4d across.



451F.2 Solutions for Odd-Numbered Problems

Appendix A

(1) (a) ⟨x y⟩ − ⟨x⟩⟨y⟩ = 0, (b) ⟨x y⟩ − ⟨x⟩⟨y⟩ = −1 and X and Y not independent;
(3) (a) PB12(3) = 0.2581, PB120(30) = 0.0839, (b) PG12(3) = 0.2660, PG120(30) = 0.0841,
(c) plot, values agree ±0.01 for N = 12 and ±0.001 for N = 120;
(5) (a) ⟨V ⟩∕R = 9v20∕R, (b) ⟨V ⟩∕R = v20∕(9R);
(7) (a) PS(s) = (1∕

√
2πNσ2) exp{−[(s−Na)2 ]∕(2Nσ2)}, (b) ⟨S⟩ = Na, σS =√

nσ;
(9) (a) Q1,1 = Q2,2 = Q3,3 = Q2,1 = 0, Q1,2 = Q1,3 = (1∕2), Q3,1 = 3∕4, Q3,2 =
1∕4. Eigenvalues λ1 = 1, λ2 = (−1∕2) + i∕(2

√
2), λ2 = (−1∕2) − i∕(2

√
2). Right

eigenvectors ψ1 = (1, 1, 1)T, ψ2 = (−0.222 + 0.786i,−1.333 − 0.942i, 1)T, ψ3 =
(−0.222 − 0.786i,−1.333 + 0.942i, 1)T. Left eigenvectors ξ1 = (0.316, 0.263,
0.421), ξ2 = (−0.421 − 0.019i, 0.132 + 0.205i, 0.289 − i0.186), ξ3 = (−0.421 +
0.019i, 0.132 − 0.205i, 0.289 + i0.186), (b) A has it 6∕19, B has it 5∕19, C has it
8∕19. (c) 3∕8.
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Table F.1 Name, symbol, atomic number (proton number) for elements in the periodic table
shown on back inside cover.

Actinium Ac 89 Gold Au 79 Praseodymium Pr 59
Aluminum Al 13 Hafnium Hf 72 Promethium Pm 61
Americium Am 95 Hassium Hs 108 Protoactinium Pa 91
Antimony Sb 51 Helium He 2 Radium Ra 88
Argon Ar 18 Holmium Ho 67 Radon Rn 86
Arsenic As 33 Hydrogen H 1 Roentgenium Rg 111
Astatine At 85 Indium In 49 Rhenium Re 75
Barium Ba 56 Iodine I 53 Rhodium Rh 45
Berkelium Bk 97 Iridium Ir 77 Rubidium Rb 37
Beryllium Be 4 Iron Fe 26 Ruthenium Ru 44
Bismuth Bi 83 Krypton Kr 36 Rutherfordium Rf 104
Bohrium Bh 107 Lanthanium La 57 Samarium Sm 62
Boron B 5 Lawrencium Lr 103 Scandium Sc 21
Bromine Br 35 Lead Pb 82 Seaborgium Sg 106
Cadmium Cd 48 Lithium Li 3 Selenium Se 34
Calcium Ca 20 Lutetium Lu 71 Silicon Si 14
Californium Cf 98 Magnesium Mg 12 Silver Ag 47
Carbon C 6 Manganese Mn 25 Sodium Na 11
Cerium Ce 58 Meitnerium Mt 109 Strontium Sr 38
Cesium Cs 55 Mendelevium Md 101 Sulfur S 16
Chlorine Cl 17 Mercury Hg 80 Tantalum Ta 73
Chromium Cr 24 Molybdenum Mo 42 Technetium Tc 43
Cobalt Co 27 Neodymium Nd 60 Tellurium Te 52
Copper Cu 29 Neon Ne 10 Terbium Tb 65
Curium Cm 96 Neptunium Np 93 Thallium Tl 81
Darmstadtium Ds 110 Nickel Ni 28 Thorium Th 90
Dubnium Db 105 Niobium Nb 41 Thulium Tm 69
Dysprosium Dy 66 Nitrogen N 7 Tin Sn 50
Einsteinium Es 99 Nobelium No 102 Titanium Ti 22
Erbium Er 68 Osmium Os 76 Tungsten W 74
Europium Eu 63 Oxygen O 8 Uranium U 92
Fermium Fm 100 Palladium Pd 46 Vanadium V 23
Fluorine F 9 Phosphorus P 15 Xenon Xe 54
Francium Fr 87 Platinum Pt 78 Ytterbium Yb 70
Gadolinium Gd 94 Plutonium Pu 94 Yttrium Y 39
Gallium Ga 31 Polonium Po 84 Zinc Zn 30
Germanium Ge 32 Potassium K 19 Zirconium Zr 40
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namique des Phénomènes Irreversibles,
Desoer, Liege.

171 Prigogine, I., Bingen, R., and Bellemans,
A. (1954) Physica, 20, 633.

172 Prigogine, I. and Defay, R. (1954) Chemi-
cal Thermodynamics, Longmans, Green
and Co., London.

173 Prigogine, I. (1967) Introduction toTher-
modynamics of Irreversible Processes,
John Wiley & Sons Inc., New York.

174 Prigogine, I. and Lefever, R. (1968) J.
Chem. Phys., 48, 1695.

175 Puhl, A., Malek-Monsour, M., and
Mareschal, M. (1989) Phys. Rev. A, 40,
1999.

176 Putterman, S.J. (1974) Superfluid Hydro-
dynamics, North-Holland, Amsterdam.

177 Quyang, Q. and Swinney, H.L. (1991)
Nature, 352, 610.

178 Rahman, A. (1964) Phys. Rev. A, 136,
405; (1966) J. Chem. Phys., 45, 2585.

179 Ravendal, F. Scaling and Renormal-
ization Groups, lecture notes 1975–
1976, Nordita, Blegdasvieg 17 DK-2100,
Copenhagen, Denmark.
(An exceptionally clear presentation of
critical phenomena and the renormal-
ization group which we have followed
closely in this chapter.)

180 Rayleigh, L. (1905) Nature., 72, 318.
181 Reichl, L.E. (1981) Phys. Rev. A, 24, 1609;

Phys. Rev. A, 24, 1617; (1982) Phys. Rev.
Lett., 49, 85.

182 Reichl, L.E. (1982) Phys. Rev. Lett., 49,
85.

183 Reichl, L.E. (1998) A Modern Course in
Statistical Physics, 2nd edn, John Wiley
and Sons Inc., New York.

184 Resibois, P. (1970) J. Stat. Phys., 2, 21.
185 Risken, H. (1984) The Fokker–Planck

Equation, Springer-Verlag, Berlin.
186 Robertson, H.S. (1993) Statistical Ther-

mophysics, Prentice-Hall, Englewood
Cliffs, N.J.
(A really excellent discussion of the one
and two dimensional Ising model and its
history.)

187 Rossi-Fanelli, A. and Antonini, E. (1958)
Arch. Biochem. Biophys., 77, 478.

188 Rowlinson, J.S. (1969) Liquids and Liq-
uid Mixtures, Butterworth, London.

189 Schultz, S.G. (1980) Basic Principles of
Membrane Transport, Cambridge Uni-
versity Press, Cambridge.

190 Schroeder, D.V. (1999) Thermal Physics,
Addison-Wesley, Reading, MA.

191 Sparling, L.C. and Reichl, L.E. (1984)
Phys. Rev. A, 29, 2194.

192 Spiegel, M.R. (1964) Complex Variables,
Schaum Outline Series, Schaum Pub-
lishing Co., New York.

193 Stanley, H.E. (1971) Introduction to
Phase Transitions and Critical Phenom-
ena, Oxford University Press, Oxford.

194 Stedman, R., Almquist, L., and Nilsson,
G. (1967) Phys. Rev., 162, 549.

195 Sydoriack, S.G., Grilly, E.R., and Ham-
mel, E.F. (1949) Phys. Rev., 75, 303.

196 ter Haar, D. and Wergeland, H. (1966)
Elements of Thermodynamics, Addison-
Wesley, Reading, MA.

197 Tinkham, M. (1975) Introduction to
Superconductivity, McGraw-Hill, New
York.

198 Tralli, N. (1963) Classical Electromag-
netic Theory, McGraw-Hill, New York.

199 Turing, A.M. (1952) Phil. Trans. R.
Soc. B, 327, 37.

200 Turner, J. (1974) In Lectures in Statisti-
cal Physics, Vol. 28 (eds W. Schieve and
J. Turner), Springer-Verlag, Berlin.



458 References

201 Uhlenbeck, G.E. and Ford, G.W. (1962)
In Studies in Statistical Mechanics,
Vol. 1 (eds J. de Boer and G.E. Uh-
lenbeck), North-Holland, Amsterdam.

202 Uhlenbeck, G.E. and Ford, G.W. (1963)
Lectures in Statistical Mechanics, Amer-
ican Mathematical Society, Providence,
RI.

203 Ursell, H.D. (1927) Proc. Cambridge
Philos. Soc., 23, 685.

204 van Hove, L. (1954) Phys. Rev., 95, 249.
205 van Kampen, N.G. (1992) Stochastic

Processes in Physics and Chemistry, re-
vised edn, North-Holland, Amsterdam.

206 Walters, G.K. and Fairbank, W.M.
(1956) Phys. Rev. Lett., 103, 262.

207 Washburn, E.W. (ed) (1957) Interna-
tional Critical Tables, McGraw-Hill,
New York.

208 Waser. J. (1966) Basic Chemical Thermo-
dynamics, W.A. Benjamin, New York.

209 Weiss, P. (1907) J. Phys. Radium, 6, 661.
210 West, B. (1990) J. Opt. Soc. Am. A, 7,

1074.

211 Wheatley, J. (1975) Rev. Mod. Phys., 47,
415.

212 Widom, B. (1965) J. Chem. Phys., 43,
3898.

213 Winfree, A.T. (1987) The Timing of
Biological Clocks, Scientific American
Books.

214 Wiener, N. (1930) Acta Math., 55, 117.
215 Wilson, K. (1971) Phys. Rev. B, 4, 3174.
216 Wilson, K. and Kogut, J. (1974) Phys.

Rep., 12C, 75.
217 Wilson, K. (1975) Rev. Mod. Phys., 47,

773.
218 Wilks, J. and Betts, D.S. (1987) An In-

troduction to Liquid Helium, Clarendon
Press, Oxford.

219 Yarnell, J.L., Katz, M.J., Wenzel, R.G.,
and Koenig, S.H. (1973) Phys. Rev. A, 7,
2130.

220 Zemansky, M.W. (1957) Heat and Ther-
modynamics, McGraw-Hill, New York.

221 Zhabotinski, A.M. (1964) Biofizika, 9,
306.

222 Zwanzig, R. and Bixon, M. (1970) Phys.
Rev. A, 2, 2005.



459

Index

a
activation energy 339
activity 75
addition principle 6
adsorption 187
affinity 69, 72
angular momentum 144, 439
– center-of-mass 439
– relative 439
antisymmetrized states 140, 187, 428
average relative speed 335
average speed 336
Avogadro’s number 16, 246
axial vector 287, 304

b
balance equation 278–283
– energy 283
– entropy 283, 286
– mass 280
– momentum 281, 282
– probability 410
balance equations (superfluid)
– energy 322
– entropy 323, 325
– mass 322
– momentum 322
ballistic electron waveguide 265–273
– average current 267
– conductivity 269
– Joule heat 270
batteries 75
BCS theory (see superconductors, BCS

theory) 224
Belousov–Zhabotinski reaction 372
binary mixture
– chemical stability 57, 106
– classical 105–108
– critical point 107

– He3-He4 113
– metastable states 107
binary mixtures 311
binomial distribution 17, 393–395
binomial theorem 12
blackbody radiation 198
Bogoliubov mean field theory 210
Bogoliubov transformation 212
bogolons 212, 226
Bohr magneton 221
Boltzmann constant 11, 135
Boltzmann equation 333, 341–348, 365
Bose–Einstein condensation 206, 210
– in harmonic trap 209
– rubidium 208, 210
– sodium 208, 209
Boussinesq approximation 381
Brillouin peak 303
Brownian motion 235–249, 303, 307
– probability density 243
Brusselator 370, 373–378
– boundary conditions 374
– chemical reaction 373
– near equilibrium steady state 373
– rate equations 373

c
canonical ensemble 135–177
Carnot engine 30–34
– efficiency 31, 32
– entropy 32
– ideal gas 32
– universality 30
causality 256–260
Celsius temperature scale 32
center-of-mass displacement 437
center-of-mass velocity 335
Central Limit Theorem 13, 401
chain rule 418
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characteristic function 391
chemical clock 372, 377
chemical crystals 377
chemical equilibrium 69
chemical potential 323
– Fermi–Dirac ideal gas 219
– ideal gas 37
– table of values 70
chemical reaction 67–73, 341
– affinity 69, 72
– degree of reaction 68
– endothermic reaction 71
– equilibrium 69
– exothermic reaction 71
– heat of reaction 71, 73
– law of mass action 71
– stoichiometric coefficients 68
chemical waves 372, 377
CIMA chemical reaction 378
classical gas
– ideal 20–23
– interacting 145–149
Clausius–Clapeyron equation 92–94
– superconductors 116
closed system 28, 136
cluster function 192
cluster integral 193
coexistence curve
– classical PVT system 91
– definition 89
– He3 112
– He4 109
– magnetic system 127
collision frequency 335
collision operator
– Boltzmann 347
– Lorentz–Boltzmann 348
collision operators 346–348
combination 7
compressibility
– adiabatic 49
– isothermal 49, 186
concave function 56
conditional average 252
conditional probability 10, 388
conductance
– Landauer 272
conductivity
– ballistic electron waveguide 269
– thermal 287
configuration integral 146, 191
contact potential 211, 443

continuous phase transition
– definition 90
continuous phase transitions 117
convective time derivative 279, 280
convex function 56
cooling of gases 61–64
– inversion temperature 63
Cooper pairs 224
correlation function 307, 393
– Brownian harmonic oscillator 241
– Brownian particle 238
– critical exponent 168
– density 146, 297
– magnetic density 160
– magnetization density 148, 149
– spectral density 240
– state variables 250
– stationary 238
– velocity 238
– white noise 237
correlation length 160, 167
– critical exponent 168
correlation matrix
– state variables 254
critical exponent 123–129
– α 125, 127, 129, 165, 174
– β 125, 127, 129, 164, 174
– correlation function 168
– correlation length 168
– definition 124
– δ 125, 126, 128, 164, 174
– exact Ising 176
– experimental values 176
– γ 125, 127, 128, 165, 174
– magnetic systems 126
– mean field theory 128, 176
– PVT systems 124
– S4-model 176
– van der Waals gas 128
critical point 91
– fluctuations 160
critical temperature
– 2D Ising system 161
– Bose–Einstein condensation 209
– Bose–Einstein ideal gas 207
– superconductors 229
cross section 440
– center-of-mass 342, 440
– lab frame 440
cumulant expansion 173, 192, 391
Curie’s principle 287
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current
– entropy 286
– momentum 282
current operator 267
curvilinear coordinates 285
cylindrical coordinates 288

d
Debye solid 149–152
– density of states 152
– heat capacity 152
– partition function 150
Debye temperature 152
degree of reaction 68
density
– microscopic 301
density matrix 412
– reduced, one body 414, 430
– reduced, two body 414, 431
density of states
– aluminum 152
– Debye solid 152
– Einstein solid 152
– harmonic potential 204
density operator 412–414
– canonical ensemble 137, 138
– grand canonical ensemble 185
– perturbed 265
– superconductors 225
detailed balance 245, 406
diamagnetism 114, 220, 222
Dieterici equation of state 83
diffusion coefficient 240, 246, 310, 316
– experimental data 316
Dirac delta function 21
dispersion relation
– diffusion process 349
dissipative structure 369, 378
– chemical clock 377
– chemical waves 377
– steady-state spatial structure 376
Doppler shift 298
dyatic tensor 282

e
eigenstate
– of momentum operator 425
– of position operator 425
Einstein A coefficient 199
Einstein diffusion coefficient 316
Einstein solid 18–20
– density of states 152
– entropy 19

– heat capacity 20
– internal energy 20
elastic collisions 342
elastic scattering 438
electric polarization 299
electrochemical potential 74, 318
electrolyte 74
endothermic reaction 71
energy
– magnetic 14
energy conservation 29, 30
energy fluctuations 138
enthalpy 40, 41
– fundamental equation 40
– Maxwell relations 40
entropic force 5, 17, 24
entropy 11, 30–35
– bogolons 230
– Bose–Einstein ideal gas 208
– Einstein solid 19
– extremized at equilibrium 34
– Gibbs 135
– homogeneous function 36
– ideal gas 22
– microscopic states 11
– mixing 38
– source term 286
– spin system 13–16
entropy production 370
– minimization 371
– mixture 317
– thermoelectricity 318
entropy transport parameter 319
equation of state 36
– classical ideal gas 23
– Dieterici 83
– magnetic system 16
– van der Waals 50
– virial expansion 193
equipartition theorem 238, 239
ergodic theorem 11, 255, 422
ergodicity 135, 421–424
Eucken number 364
Euler’s equation 37
exact differentials 28, 29, 417–419
exothermic reaction 71
expansivity, thermal 49
expectation value 412
extensive variables 27

f
Faraday’s constant 318
Fermi energy 215, 219
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Fermi sea 216
Fick’s law 316, 349
– from hydrodynamics 315
first law (see laws of thermodynamics) 29
first-order phase transition 120
– definition 90
fluctuation
– about equilibrium 14
– correlations 58–61
– current 239, 272
– decay rate 236
– density 298
– dynamic 236, 250–255
– energy 138
– entropy 58
– moments 59
– near critical point 160
– particle number 185
– probability density 250
– probability distribution 14, 58, 59
– regression 252
– state variables 250
– thermodynamic 51–56
– time rate of change 253
fluctuation–dissipation theorem 260–262
fluid particle 279
Fokker–Planck equation 240–249
– Brownian harmonic oscillator 249
– spectral decomposition 247
– strong friction limit 245
fountain effect 111
Fourier transform 240, 256, 290
free expansion 61, 83
freely jointed chain 16
fugacity 202, 215
fundamental equation 35–38, 138
fusion curve 91

g
Galilean transformation 323
gap function 225, 228
– zero temperature 229
gauge symmetry 226
Gaussian distribution 13, 395–398
– multivariant 398, 399
Gaussian model 177
Gauss’s theorem 281
generalized current 251, 370
generalized displacement 28, 29
generalized force 28, 29, 251, 370
Gibbs entropy 135
Gibbs free energy 43–45
– binary mixture 106

– first-order phase transition 91
– fundamental equation 44
– Maxwell relations 44
– stability condition 56
Gibbs paradox 38
Gibbs phase rule 88
Gibbs–Duhem equation 37
Ginzburg–Landau theory 116–123
– coherence length 123
– critical point 118
– heat capacity 119
– magnetic fluctuations 159
– magnetic systems 121
– superconductors 122
– superfluids 121
– susceptibility 119
grand canonical ensemble 183–231
grand partition function 185
– blackbody radiation 198
– Bose–Einstein ideal gas 201, 202
– cumulant expansion 192
– Fermi–Dirac ideal gas 202, 215
grand potential 45, 46
– blackbody radiation 198
– Bose–Einstein ideal gas 202
– cluster expansion 192
– Fermi–Dirac ideal gas 215
– fundamental equation 45
– Maxwell relations 45

h
half-cell 75
Hamiltonian
– electron fluid 224
– Ising system 153
– N-body 425
– phonons 150
– spin block 166
– triangular lattice 172
Hamilton’s equations 409
harmonic oscillator 150
heat capacity 46–48
– 2D Ising system 161
– along coexistence curve 94
– Bose–Einstein ideal gas 208
– coexistence region 99
– Debye solid 152
– Einstein solid 20
– Fermi–Dirac ideal gas 219
– Ginzburg–Landau theory 119
– Ising mean field theory 158
– superconductor 116, 231
heat engine
– Carnot engine 30–34
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– efficiency 31
– steam engine 102
heat of reaction 71, 73
Heaviside function 21
helium liquids 108–114
– He3 112
– He3-He4 113
– He4 109
Helmholtz free energy 42, 43
– fundamental equation 42
– Maxwell relations 42
– stability condition 56
Hertz potential 299
HFB-Popov approximation 214
homogeneous function 162, 163
hydrodynamic equations 278–297, 351, 354
– Boussinesq approximation 381
– entropy source term 283–286
– linearized 289–297
– mixtures 311–322
– Navier–Stokes equations 289
– Rayleigh–Bénard instability 378–384
– solution to 291, 295
– superfluids 322–329
hydrodynamic mode 349
– heat mode 355
– longitudinal 294
– shear 354
– sound modes 355
– transverse 293
hydrodynamics 277–329
hydrostatic pressure 306, 322

i
ideal fluid 281
ideal gas
– Bose–Einstein 201–208
– classical 20–23
– Fermi–Dirac 201, 214–220
– quantum 200, 220
– semiclassical 139–144
incompressible fluid 280
independent events 10, 388
indistinguishable particles 8
intensive variables 27
internal energy 29, 39, 40
– Debye solid 150
– Einstein solid 20
– Fermi–Dirac ideal gas 219
– fundamental equation 39
– Maxwell relations 39
inversion temperature 63
– H2 , CO2 64

irreversible process 34
Ising system
– 1D exact solution 154
– 2D exact solution 160
– critical temperature in 2D 161
– Hamiltonian 153
– heat capacity in 2D 161
– mean field theory 156–159
– partition function 153
isolated system 28, 136

j
Jacobian 279, 398
Joule coefficient 83
Joule heat 251
– ballistic electron waveguide 270
– hydrodynamic 286
Joule heating
– generalized 370
Joule–Kelvin coefficient 63
– ideal gas 63
– van der Waals gas 63

k
Kadanoff scaling 166–168
Kelvin temperature scale 32
Kramers–Kronig relations 258

l
Lagrange multipliers 136, 137, 185
Landau diamagnetism 222
Landau levels 222
Landauer conductance 272, 273
Langevin equation 235, 237, 308
– Brownian harmonic oscillator 241
Laplace transform 291, 309
latent heat 91–93
– of fusion 93
– of sublimation 94
– of vaporization 93
law of corresponding states 96
law of mass action 71
laws of thermodynamics 27
– first law 27, 29
– second law 27, 30
– third law 27, 34, 208
– zeroth law 27
Le Châteliers’s principle 55
Legendre transformation 40
Lennard–Jones potential 191, 195
lever rule 96
Levy flights 402
lighting scattering 297–303
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linear response theory 255–257
– microscopic 264–273
Liouville equation 411
Liouville operator 411
lipid bilayer 78
local equilibrium
– conditions 52
long time tails 307, 365
longitudinal average velocity 354
longitudinal kinetic viscosity, νl 292
Lorentz force 222
Lorentz gauge 299
Lorentzian 297
Lorentz–Boltzmann equation 346

m
magnetic flux density 29, 222
magnetic susceptibility 220
magnetic vector potential 222
magnetization 221
Markov Chain 402
mass current 280
master equation 405
Maxwell construction 102
Maxwell distribution 143
Maxwell–Boltzmann distribution 334, 340
mean field theory 210
– heat capacity 158
– magnetic susceptibility 158
– spin lattice 156
mean free path 334, 336
mean value 390
metastable state 56, 107
microcanonical ensemble 136, 424
microscopic states 58, 251
mixed state 413
mixture 57, 74, 105–108
– hydrodynamic equations 311–322
moment of stochastic variable 390
moments
– equilibrium fluctuations 59
– thermodynamic 61
MOT 209
multiplication principle 6
multiplicity 11
– Einstein solid 18
– ideal gas 20–22
– spin states 12, 13
mutually exclusive events 9, 387

n
Navier–Stokes equations 289, 379
Nernst equation 76

Nernst potential 78
noise
– electrical 239
nonlinear equations 369
number representation 210, 425–436
– bosons 431
– fermions 434

o
Ohm’s law 253
– generalized 370
– generalized to mixtures 317
– generalized to superfluid 325
– generalized to thermoelectricity 318
– hydrodynamic 286
Onsager’s relations 236, 253, 318, 320, 325,

370
– verification 321
open system 28, 136, 183
operator
– N-particle one-body 430
order parameter
– Bose–Einstein ideal gas 207
– Ising mean field theory 156
order–disorder transition 153–161
Oregonator 372
osmotic pressure 64–67

p
paramagnetism 220, 221
particle number operator 225
partition function 429
– canonical ensemble 137
– Debye solid 150
– internal degrees of freedom 142
– Ising system 153
– semiclassical approximation 145
– semiclassical point particles 142
partition of sample space 9, 388
Peltier effect 318
Peltier heat 318
permutation 6
perturbation theory
– degenerate systems 356
phase diagram
– classical PVT system 91
– He4 110
phase function
– expectation value 411
– n-body 411
phase space 242
phase transition
– continuous (see continuous phase

transition) 90
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– equilibrium 87–129
– first order (see first-order phase transition)

90
– nonequilibrium 369–384
– nonequilibrium, definition 371
– PVT system 91–99
phonons 150
photons 198
Planck distribution 198
Planck’s formula 150
Planck’s law of radiation 199
Poisson bracket 410
Poisson distribution 398
polar vector 287, 304
polymer 16
potassium channel 78
power absorption 262–264
– susceptibility 264
power law 163
Prandtl number 383
pressure
– blackbody radiation 199
– Bose–Einstein ideal gas 205, 217
– classical ideal gas 217
– Fermi–Dirac ideal gas 217
– hydrostatic 281
pressure tensor 281, 288, 306, 352
probability 9–11, 387–414
– definition 387
probability current
– Brownian motion 245
probability density
– Brownian motion 243, 246
– classical phase space 409–412
– fluctuations 250
probability density operator (see density

operator) 137
probability distribution
– equilibrium fluctuations 59
pure state 413

r
radial distribution function 146
random variable 389
Rankine cycle 102
rate equation 340
Rayleigh number 383
Rayleigh peak 303
Rayleigh–Bénard instability 370, 378–384
– boundary conditions 381
– linear stability analysis 382
– near equilibrium steady state 380
Rayleigh–Schrödinger perturbation theory

349

reaction rate 339–341
relative displacement 437
relative velocity 335
renormalization transformation 170
– fixed points 174
response functions 28, 46–49
– coexistence region 97
retarded solution 300
Riemann zeta function 204
rotational kinetic energy 144
rotational temperature 144
Rushbrook inequality 126

s
S4-model 175
Sackur–Tetrode equation 23, 37, 142
sample space 9, 387
scaling 162
– Kadanoff 166–168
– Widom 163–165
scattered light 299
– intensity 301–303
scattering amplitude 443
scattering length 211, 443
scattering length rubidium 443
scattering length sodium 443
scattering theory 437–442
Schlogl chemical model 385
Schrödinger equation 413
second law (see laws of thermodynamics) 30
Seebeck effect 320
self-similar lattice 169
Slater determinant 429
solute 315
solvent 315
Sonine polynomials 359
Soret coefficient 317
spectral density 303
– Brownian motion 240
– density fluctuations 297
spectral density matrix 254
speed of sound 292, 357
spherical coordinates 288
spontaneous emission 199
stability
– chemical 55, 57, 106
– entropy 34, 58
– Gibbs free energy 56
– Helmholtz free energy 56
– linear analysis 375, 378, 382
– local 52
– local equilibrium 51
– mechanical 55
– near equilibrium 370, 371



466 Index

– thermal 55
– thermodynamic 51–58
standard deviation 390
state variables 27, 250
stationary process 297
stationary state 413
statistical independence 61
steam engines 102–104
Stefan’s constant 199
stimulated emission 199
Stirling’s approximation 13
stochastic variable 389
– continuous 390
– discrete 390
– jointly distributed 392
stoichiometric coefficients 68, 341
Stokes friction 240, 303, 306, 307
stress tensor 281, 287
– superfluid 322
structure function 146, 423
– fluid density 147
– magnetic 149
– magnetic fluctuations 160
superconductors 114–116
– BCS theory 224–231
– bogolons 226
– critical temperature 115, 229
– heat capacity 231
– interacting Fermi fluid 224–231
– mean field theory 224
– momentum condensation 224–231
superfluid
– He3 112
– He4 110
– hydrodynamic equations 322–329
superfluid hydrodynamics
– first sound 328
– fourth sound 329, 332
– second sound 328
superfluid velocity 323
surface tension 53, 82
susceptibility 49
– adiabatic 49
– Brownian motion 257
– causality 258
– dynamic 256
– Ginzburg–Landau theory 119
– Ising mean field theory 158
– isothermal 49
– magnetic 148, 160
– power absorption 264
symmetric tensor 287
symmetrized states 140, 187, 427

t
tensors
– orthogonality 282
thermal diffusion 317, 346
thermal diffusivity, χ 292
thermal expansivity 49
thermal noise 272
thermocouple 332
thermodynamic branch 369
thermodynamic potentials 38–46
thermodynamic stability (see stability) 51
thermoelectricity 318
thermomechanical effect 110–112
third law (see laws of thermodynamics) 34
Thomson heat 321
throttling process 62
time reversal invariance 250, 251
transition matrix 403
transport coefficient 253, 278, 286–289,

333–364
– bulk viscosity, ζ 288
– diffusion, D 317, 337, 338, 351, 361
– generalized conductivities 286
– shear viscosity, η 288, 338, 358
– shear viscosity, η, values 364, 365
– superfluid 325
– thermal conductivity, K 287, 317, 339,

359, 363
– thermal conductivity, K , values 364
– thermal diffusion, DT 317
transverse average velocity 354
transverse kinetic viscosity, νt 292, 354
triangular lattice 172
tricritical point
– He3-He4 113
triple point 91, 96
Turing structures 377

v
van der Waals
– adiabatic compressibility 50
– constants 63
– thermal expansivity 50
van der Waals equation 100–102
– critical exponents 128
– critical point 101
van’t Hoff’s law 66
vaporization curve 91, 93
variance 390
virial coefficient
– second 80, 194, 197
virial expansion 80, 191–197, 365
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viscosity
– bulk 288
– shear 288
vortex line 293
vorticity 293

w
Weiner–Khintchine Theorem 240
white noise 237
Wick’s theorem 237, 244, 269, 399, 435
Widom scaling 163–165
Wiener–Khintchine theorem 253–255
work
– mechanical 29


