

National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China

Multi-Classification Model for Spoken Language Understanding

Chao-Hong Tan, Zhen-Hua Ling

Oct 18, 2019 · Suzhou, China

- Introduction
- ➤ Methods
- ➤ Experiments
- Conclusions

Introduction

Methods

➤ Experiments

Conclusions

Introduction

► About Task

- Extract a set of tuples (act-slot-value triples or act-slot pairs) from users' utterances in Chinese Audio-Textual Spoken Language Understanding Challenge (CATSLU)
- Audio information and text generated by automatic speech recognition (ASR) was provided
- For example, "What's the weather like in Shunyi District today?"
 → (inform, area, Shunyi District), (inform, date, today), (request, weather).
- Baseline System provided by organizers
 - Baseline system 1: a rule-based method, works in a simple string matching [Zhu et al., 2019]
 - Baseline system 2: a neural network-based method, a shared utterance encoder, an act type classifier, a slot type classifier, and a value decoder [Zhao et al., 2019]

Introduction (Motivation)

- ➤ Tag heads
 - Value Decoding is a more difficult problem compared with classification
 - Most values in tuples are the words of input utterance
 - Thus use sentence tagging to get the value
- ➢ Pretrained language model, BERT
 - Training the utterance is difficult without enough training data
 - BERT is the state-of-the-art pretrained language model
 - BERT provides lots of prior knowledge for comprehending semantic of the utterance
- ➤ Minimum Edit Distance to reduce bias, MED
 - We only use the text from ASR as input, the ASR accuracy will limit the upper bound of our extract systems
 - To reduce this bias, MED was performed to rebuild the triples extracted from utterance

Introduction (Model Description)

➤ Framework

- Multitask framework
- Getting tuples like (act, slot, value) from one utterance, means that different task can share the input semantic
- Archive the targets means better understand of the utterance
- Sentence encoder
 - Pretrained language model, BERT, to encode input utterance
- Task-specific output layer
 - Three different tag heads to get tuples
- Post processing
 - MED to repair the output from our system

➢ Introduction

Methods

➤ Experiments

Conclusions

Model Architecture

3 heads with a Shared Utterance Encoder Act tags and Slot tags for (act, slot, value) triples Slot classification for (act, slot) pairs

- ➢ Slot Tags
 - IOB form

```
Each word is tagged as "B-slot<sub>i</sub>", "I-slot<sub>i</sub>" or "O".
```

- Classification
 2|S| + 1. |S| means the number of slot classes in triple's acts.
- ➢ Act Tags
 - The number of act classes holding in act-slot-value triples.
 - Only classify the words which are tagged with "B—slot_i" in slot tags.
- Slot Type Classifier
 - A linear layer over the top of the hidden state associated to the first character of the input ([CLS])
 - Add a "NONE" label to this classifier
 - |S'|+1. |S'| means the number of slot class in the pair's act

Minimum Edit Distance to reduce bias (MED)

- Outputs of our system may not be covered in the candidates since the ASR error
- ASR error has a direct influence on *value*, indirect effects on *act* and *slot*, thus assume *act* and *slot* are correct
- Use the MED [Levenshtein, 1966] between values from results and candidates to rebuild the triples
- Perform MED on phonetic space maybe more suitable

Manual	导航到 <mark>包埠</mark> 村收费站					
	Navigate to Baobu Village Toll Station					
ASR best	导航到 <mark>保铺</mark> 村收费站					
	Navigate to Baopu Village Toll Station					
Tuples	[inform, 操作, 导航], [inform, 终点名称, <mark>包埠</mark> 村收费站]					
	[inform, operation, navigation], [inform, endpoint name, Baobu Village Toll Station]					

How to train?

- ✓ Fine-tune the pretrained Chinese Language BERT
- ✓ Summarize the cross entropy loss from three tag heads

✓ Cut off

- Notice that act labels is a little set and classification will be simple
- Weak encoder of the utterance can also due with this classification
- We truncate the back propagation of gradient before act tags head

How to get result (infer)?

✓ Feed an input sentence to the model and get three logits from tag heads

- ✓ Get tuples from the logits
 - Perform **argmax** on slot type classifier to get (act, slot) pairs
 - Perform **argmax** on slot tags to get (slot, value) pairs and then
 - Perform argmax on act tags at the position where slots own the prefix "B-" to get (act, slot, value) triples
- ✓ Perform MED on (act, slot, value) triples

➢ Introduction

➢ Methods

Conclusions

D Experiments

CATSLU Dataset

- 4 domain: map, music, weather, video
- **map** and **music** domains contained 5,093 and 2,189 training samples
- weather and video domains contained just 341 and 205 training samples
- ➤ Model for comparison
 - Baseline system 1: a rule-based method, works in a simple string matching [Zhu et al., 2019]
 - Baseline system 2: a neural network-based method, a shared utterance encoder, an act type classifier, a slot type classifier, and a value decoder [Zhao et al., 2019]

➤ Evaluation

System	Мар		Music		Weather		Video	
	F1(%)	Acc(%)	F1(%)	Acc(%)	F1(%)	Acc(%)	F1(%)	Acc(%)
Baseline 1	37.92	40.43	77.39	49.26	85.52	75.38	78.25	45.28
Baseline 2	77.61	74.65	81.57	71.15	85.25	78.16	75.18	57.53
Our system	87.43	83.08	91.53	82.40	93.24	86.95	91.71	81.17

- Our model achieved significantly better results than the baseline systems.
- Even in the **weather** and **video** domain, which lacks of training data, we achieve high score under F1 and accuracy metrics

D Experiments

➤ Ablation

System	Мар		Music		Weather		Video	
	F1(%)	Acc(%)	F1(%)	Acc(%)	F1(%)	Acc(%)	F1(%)	Acc(%)
Our system	87.43	83.08	91.53	82.40	93.24	86.95	91.71	81.17
- Cut off	87.95	83.78	92.49	83.73	92.65	86.09	90.73	79.10
- MED	81.43	77.63	88.01	78.85	90.99	84.17	84.81	72.46

- On weather and video domains cutting off performed better while map and music domains did not.
- Map and music domains have enough samples so can provide correct information for act tags to adjust the encoder
- Choice appropriate heads to joint calculate the shared encoder

D Experiments

➤ Ablation

System	Мар		Music		Weather		Video	
	F1(%)	Acc(%)	F1(%)	Acc(%)	F1(%)	Acc(%)	F1(%)	Acc(%)
Our system	87.43	83.08	91.53	82.40	93.24	86.95	91.71	81.17
- Cut off	87.95	83.78	92.49	83.73	92.65	86.09	90.73	79.10
- MED	81.43	77.63	88.01	78.85	90.99	84.17	84.81	72.46

- MED contributed a lot for better performance
- It repaired the gaps between ASR and ground truth

- ➤ Introduction
- ➢ Methods
- ➢ Experiments
- Conclusions

Conclusions

> The main contributions of our proposed method include:

- Tag heads
- Pretrained language model BERT
- Minimum Edit Distance to reduce bias
- Multi-task Learning framework

Not all heads' information are beneficial to the shared utterance encoder

Thanks!

References

- 1. Jacob Devlin, et al. 2019. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". In North American Chapter of the Association for Computational Linguistics.
- Abhinav Rastogi, et al. 2018. "Multitask learning for Joint Language Understanding and Dialogue State Tracking". In Annual Meeting of the Special Interest Group on Discourse and Dialogue. 376–384.
- 3. Zijian Zhao, et al. 2019. "A Hierarchical Decoding Model For Spoken Language Understanding From Unaligned Data". In International Conference on Acoustics Speech and Signal Processing.
- 4. Su Zhu, et al. 2019. "CATSLU: The 1st Chinese Audio-Textual Spoken Language Understanding Challenge". In ACM International Conference on Multimodal Interaction. (in press).