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ØAbout Task
• Extract a set of tuples (act-slot-value triples or act-slot pairs) 

from users' utterances in Chinese Audio-Textual Spoken 
Language Understanding Challenge (CATSLU)

• Audio information and text generated by automatic speech 
recognition (ASR) was provided

• For example, "What's the weather like in Shunyi District today?" 
à (inform, area, Shunyi District), (inform, date, today), (request, 
weather).

ØBaseline System provided by organizers
• Baseline system 1: a rule-based method, works in a simple 

string matching [Zhu et al., 2019]
• Baseline system 2: a neural network-based method, a 

shared utterance encoder, an act type classifier, a slot type 
classifier, and a value decoder [Zhao et al., 2019]
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ØTag heads
• Value Decoding is a more difficult problem compared with

classification
• Most values in tuples are the words of input utterance
• Thus use sentence tagging to get the value

ØPretrained language model, BERT
• Training the utterance is difficult without enough training data
• BERT is the state-of-the-art pretrained language model
• BERT provides lots of prior knowledge for comprehending

semantic of the utterance

ØMinimum Edit Distance to reduce bias, MED
• We only use the text from ASR as input, the ASR accuracy will

limit the upper bound of our extract systems
• To reduce this bias, MED was performed to rebuild the triples

extracted from utterance
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Ø Framework
• Multitask framework
• Getting tuples like (act, slot, value) from one utterance, means

that different task can share the input semantic
• Archive the targets means better understand of the utterance

Ø Sentence encoder
• Pretrained language model, BERT, to encode input utterance

Ø Task-specific output layer
• Three different tag heads to get tuples

Ø Post processing
• MED to repair the output from our system
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ØModel Architecture

3 heads with a Shared Utterance Encoder
Act tags and Slot tags for (act, slot, value) triples
Slot classification for (act, slot) pairs
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ØSlot Tags
• IOB form

Each word is tagged as "B−slot!", "I−slot!" or "O". 
• Classification

2|S| + 1. |S| means the number of slot classes in triple's acts.

ØAct Tags
• The number of act classes holding in act-slot-value triples.
• Only classify the words which are tagged with "B−slot!" in slot

tags.

ØSlot Type Classifier
• A linear layer over the top of the hidden state associated to the 

first character of the input ([CLS])
• Add a "NONE" label to this classifier
• |S'|+1. |S'| means the number of slot class in the pair's act
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ØMinimum Edit Distance to reduce bias (MED)
• Outputs of our system may not be covered in the candidates

since the ASR error
• ASR error has a direct influence on value, indirect effects on act

and slot, thus assume act and slot are correct
• Use the MED [Levenshtein, 1966 ] between values from results 

and candidates to rebuild the triples
• Perform MED on phonetic space maybe more suitable

Manual 导航到包埠村收费站

Navigate to Baobu Village Toll Station

ASR best 导航到保铺村收费站

Navigate to Baopu Village Toll Station

Tuples [inform, 操作, 导航]，[inform, 终点名称, 包埠村收费站]

[inform, operation, navigation], [inform, endpoint name,
Baobu Village Toll Station]
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How to train?

ü Fine-tune the pretrained Chinese Language BERT

ü Summarize the cross entropy loss from three tag heads

ü Cut off
• Notice that act labels is a little set and classification will be

simple
• Weak encoder of the utterance can also due with this

classification
• We truncate the back propagation of gradient before act tags 

head 
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How to get result (infer)?

ü Feed an input sentence to the model and get three
logits from tag heads

ü Get tuples from the logits
• Perform argmax on slot type classifier to get (act, slot) pairs
• Perform argmax on slot tags to get (slot, value) pairs and then
• Perform argmax on act tags at the position where slots own

the prefix "B-" to get (act, slot, value) triples

ü Perform MED on (act, slot, value) triples
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ØCATSLU Dataset
• 4 domain: map, music, weather, video
• map and music domains contained 5,093 and 2,189 training 

samples
• weather and video domains contained just 341 and 205 

training samples

ØModel for comparison
• Baseline system 1: a rule-based method, works in a simple 

string matching [Zhu et al., 2019]
• Baseline system 2: a neural network-based method, a 

shared utterance encoder, an act type classifier, a slot type 
classifier, and a value decoder [Zhao et al., 2019]
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ØEvaluation

• Our model achieved significantly better results than the baseline systems.
• Even in the weather and video domain, which lacks of training data, we

achieve high score under F1 and accuracy metrics

System 
Map Music Weather Video 

F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) 

Baseline 1 37.92 40.43 77.39 49.26 85.52 75.38 78.25 45.28 

Baseline 2 77.61 74.65 81.57 71.15 85.25 78.16 75.18 57.53 

Our system 87.43 83.08 91.53 82.40 93.24 86.95 91.71 81.17 
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ØAblation

• On weather and video domains cutting off performed better while map
and music domains did not.

• Map and music domains have enough samples so can provide correct
information for act tags to adjust the encoder

• Choice appropriate heads to joint calculate the shared encoder

System 
Map Music Weather Video 

F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) 

Our system 87.43 83.08 91.53 82.40 93.24 86.95 91.71 81.17 

- Cut off 87.95 83.78 92.49 83.73 92.65 86.09 90.73 79.10 

- MED 81.43 77.63 88.01 78.85 90.99 84.17 84.81 72.46 



p Experiments

17

ØAblation

System 
Map Music Weather Video 

F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%) Acc(%) 

Our system 87.43 83.08 91.53 82.40 93.24 86.95 91.71 81.17 

- Cut off 87.95 83.78 92.49 83.73 92.65 86.09 90.73 79.10 

- MED 81.43 77.63 88.01 78.85 90.99 84.17 84.81 72.46 

• MED contributed a lot for better performance
• It repaired the gaps between ASR and ground truth
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ØThe main contributions of our proposed method include:
• Tag heads
• Pretrained language model BERT
• Minimum Edit Distance to reduce bias
• Multi-task Learning framework

ØNot all heads' information are beneficial to the shared 
utterance encoder
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