

PoNet: Pooling Network for Efficient Token Mixing in Long Sequences

Chao-Hong Tan^{1*}, Qian Chen², Wen Wang², Qinglin Zhang², Siqi Zheng², Zhen-Hua Ling¹ ¹ National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China

² Speech Lab, Alibaba Group

* Work is done during the internship at Speech Lab, Alibaba Group.

1. Introduction

- The self-attention mechanism in transformer
 - Has quadratic time and memory complexity with respect to the sequence length
 - Hinders applications to long sequences
- - Long sequence modeling capabilities Long Range Arena benchmark
 - Significantly outperforms Transformer by +2.28 absolute (+3.9% relative) on accuracy
 - **Transfer learning** capabilities GLUE

We propose a novel **Pooling Network** (**PoNet**) for token mixing in long sequences with **linear** complexity

• Efficiency up to 9 times faster and memory usage 10 times smaller than Transformer on GPU

PoNet-Base reaches 95.7% of the accuracy of BERT-Base on the GLUE benchmark

2. Motivation

- Inspired by the External Attention (EA) approach (Guo et al., 2021)
- Simplify EA into multi-layer perceptron (MLP) and Softmax
- Softmax infuses the sequence-level information into each token through the denominator term
 - Involves calculations of exponents, still slow
- Our idea: Using pooling as an alternative to capture contextual information

3. Model PoNet Architecture

The right enlarged view shows multi-granularity pooling (GA, SMP, LMP) and pooling fusion.

3. Model Global Aggregation (GA)

- Capture the most important global information for each token
- Guarantee an overall linear computational complexity •
- First stage: Average at the sequence level

$$\boldsymbol{g} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{h}_{\mathcal{Q}_{g_n}} \in \mathbb{R}^d$$

$$g' = Attention\{g, H_{K_g}, H_{V_g}\}$$

Second stage: Cross-attention to provide a more accurate sequence representation

3. Model Segment Max-pooling (SMP)

- Alleviate information loss from co global token
- Introduce an intermediate level between tokens and the global token
- Explore prior knowledge of structure in the data

$$s_j^k = \max\{h_{s_{0j}}^k, h_{s_{1j}}^k, \dots, h_{s_{N_k j}}^k\}$$
$$s^k = \{s_1^k, \dots, s_d^k\} \in \mathbb{R}^d$$
$$S = \{s^1, \dots, s^K\} \in \mathbb{R}^{K \times d}$$

Alleviate information loss from compressing a long sequence into a single

tween tokens and the global token **re** in the data

3. Model Local Max-pooling (LMP)

- A standard max-pooling over sliding windows
- Capture contextual information from neighboring tokens for each token
- Different from GA and SMP, the window for LMP is overlapped

3. Model Pooling Fusion (PF)

Interact with tokens through element-wise product

$$\boldsymbol{G}_n = \boldsymbol{g}' \circ \boldsymbol{H}_{o_n}$$

$$\mathbf{S}'_n = \mathbf{S}_{k(n)} \circ \mathbf{H}_{o_n}$$

block

P = G + S' + L

Add up these three features as the final output of our multi-granularity pooling

4. Experiments LRA benchmark

Model	ListOps(2K)	Text(4K)	Retrieval(4K)	Image(1K)	Pathfinder(1K)	AVG.
Transformer(1)	36.37	64.27	57.46	42.44	71.40	54.39
Longformer (1)	35.63	62.85	56.89	42.22	69.71	53.46
BigBird (1)	36.05	64.02	59.29	40.83	74.87	55.01
Performer (1)	18.01	65.40	53.82	42.77	77.05	51.41
Transformer(2)	36.06	61.54	59.67	41.51	80.38	55.83
Linear (2)	33.75	53.35	58.95	41.04	83.69	54.16
FNet (2)	35.33	65.11	59.61	38.67	77.80	55.30
Transformer(3)	37.10	65.02	79.35	38.20	74.16	58.77
Performer(3)	18.80	63.81	78.62	37.07	69.87	53.63
Reformer(3)	19.05	64.88	78.64	43.29	69.36	55.04
Linformer(3)	37.25	55.91	79.37	37.84	67.60	55.59
Nyströmformer(3)	37.15	65.52	79.56	41.58	70.94	58.95
FNet	37.40	62.52	76.94	35.55	FAIL	53.10
PoNet (Ours)	37.80	69.82	80.35	46.88	70.39	61.05

Results on the Long Range Arena (LRA) benchmark (AVG: average accuracy across all tasks). Results with (1) are cited from (Tay et al., 2021), with (2) are from (Lee-Thorp et al., 2021), with (3) are from (Xiong et al., 2021). We implement our **PoNet** and re-implement **FNet** (Lee-Thorp et al., 2021) based on the PyTorch codebase from (Xiong et al., 2021) and use the **same experimental configurations** to ensure a fair comparison. For each group, the **best results** for each task and AVG are bold-faced.

4. Experiments LRA benchmark

Seq. length	512	1024	2048	4096	8192	16384		
	Training Speed (steps/s) [↑]							
Transformer	45.1	19.4	6.3	1.8	OOM	OOM		
Performer	39.4(0.9x)	25.0(1.3x)	14.3(2.3x)	7.8(4.3x)	4.0	2.0		
Nyströmformer	39.1(0.9x)	30.3(1.6x)	20.0(3.2x)	11.5(6.4x)	6.1	3.1		
FNet	83.4(1.8x)	61.3(3.1x)	38.1(6.0x)	21.4(11.9x)	11.0	5.4		
PoNet (Ours)	50.4(1.1x)	40.1(2.1x)	27.8(4.4x)	16.2(9.0x)	<u>8.7</u>	<u>4.5</u>		
	Peak Memory Usage (GB)↓							
Transformer	1.4	2.5	6.7	23.8	OOM	OOM		
Performer	1.5(1.1x)	2.1(0.8x)	3.1(0.5x)	5.4(0.2x)	9.8	18.7		
Nyströmformer	1.2(0.8x)	1.5(0.6x)	1.9(0.3x)	2.8(0.1x)	4.5	8.2		
FNet	$\overline{\mathbf{1.1(0.8x)}}$	1.2(0.5x)	1.4(0.2x)	1.7(0.1x)	2.3	3.8		
PoNet (Ours)	1.1(0.8x)	1.3(0.5x)	1.7(0.2x)	2.4(0.1x)	<u>3.6</u>	<u>6.5</u>		

Comparison of **GPU training speed** and **peak memory consumption** on various input sequence lengths on the LRA text classification task (using the same hyper-parameter setting for this task as in (Xiong et al., 2021)). The **best results** are bold-faced with the <u>second-best results</u> underlined.

4. Experiments **Transfer Learning — Pre-training Task Accuracy**

(a) MLM Accuracy

MLM and SSO validation accuracy against the numbers of training steps from BERT-Base, FNet-Base, and our PoNet-Base. All models are uncased.

MLM as used in BERT (Devlin et al., 2019).

SSO (Sentence Structural Objective) as used in StructBERT (Wang et al., 2020b).

(b) SSO Accuracy

4. Experiments Transfer Learning — GLUE Fine-tuning Results

Model	MNLI(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	AVG.
BERT-Base	81.35/80.98	88.89	88.01	91.17	47.66	87.83	86.66	69.31	80.21
FNet-Base	73.13/73.66	85.75	80.50	88.65	40.61	80.62	80.84	57.40	73.46
PoNet-Base (Ours)	76.99/77.21	87.55	84.33	89.22	45.36	84.57	81.76	64.26	76.80

GLUE Validation results from our PoNet-Base, BERT-Base, and FNet-Base. All models are uncased and pre-trained with the same configurations using 5GB data (Wikitext-103 and BooksCorpus) with 340K steps. We report the best GLUE results for each model from multiple hyper-parameter configurations. We report the mean of accuracy and F1 for QQP and MRPC, matthews correlations for CoLA, spearman correlations for STS-B, and accuracy for other tasks. MNLI(m/mm) means match/mismatch splits.

4. Experiments Transfer Learning — Extra GLUE Fine-tuning Results

Model	MNLI(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	AVG.
BERT-Base(1)	84/81	87	91	93	73	89	83	83	83.3
Linear-Base(1)	74/75	84	80	94	67	67	83	69	77.0
FNet-Base(1)	72/73	83	80	95	69	79	76	63	76.7
BERT-Base(2)	85/85	89.77	91.78	92.66	58.88	89.28	89.31	70.76	83.52
FNet-Base(2)	75/76	86.72	83.23	90.13	35.37	81.43	80.34	59.92	74.23
PoNet-Base(Ours)(2)	78/78	87.76	85.17	89.00	47.24	85.86	83.39	63.53	77.54
BERT-Base(3)	83/83	89.48	90.65	91.74	51.19	89.28	88.73	67.51	81.63
FNet-Base(3)	75/76	86.17	82.52	88.42	40.57	83.64	80.90	61.73	74.99
PoNet-Base(Ours)(3)	79/78	87.92	86.31	89.79	45.18	87.17	84.27	66.43	78.29

Extra GLUE Validation results.

Results with (1) are from (Lee-Thorp et al., 2021). Results with (2) and (3) are the best results from searching 20 sets of hyperparameter configurations based on Table 6 for fine-tuning the pre-trained models. For BERT-Base (2) and FNet-Base (2), we use the official checkpoints provided by authors while for PoNet-Base (2), we pre-train the PoNet model on **5GB data** (Wikitext-103 and BooksCorpus). For a fair comparison on model capacity by pre-training with more data, BERT-Base(3), FNet-Base(3), and PoNet-Base(3) are all pretrained on the same **16GB data** (Wikipedia and BooksCorpus), trained with MLM+SSO tasks for **1M steps**. Note that our BERT-Base(3) has a lower performance than the official BERT-Base(2), which is mainly due to the different batch size.

4. Experiments Transfer Learning — Long-Text Classification

Model	HND(F ₁)	$IMDb(F_1/Acc)$	Yelp-5(F_1)	$Arxiv(F_1)$
#Example (#Classes)	500 (2)	25000 (2)	650000 (5)	30043 (11)
#Wordpieces avg. (95thpctl.)	734 (1,974)	312 (805)	179 (498)	16,210 (32,247)
RoBERTa-Base (Zaheer et al., 2020)	87.8	95.3/95.0	71.75	87.42
Longformer (Beltagy et al., 2020)	94.8	95.7 /		
BigBird (Zaheer et al., 2020)	92.2	/ 95.2	72.16	92.31
BERT-Base	88.0	94.1/94.1	69.59	85.36
FNet-Base	86.3	90.4/90.5	65.49	79.90
PoNet-Base (Ours)	96.2	93.0/93.0	69.13	86.11

Fine-tuning results (in F₁ and Acc) on long-text classification datasets. For the **third group of results**, we use the **official checkpoints of BERT-Base and FNet-Base**. PoNet-Base reaches **99%** of BERT-Base's F1 on IMDb and Yelp-5

5. Ablation Analysis

Madal	Pre-train	ned tasks	Downstream tasks		
widdei	MLM	SST	CoLA	STS-B	
PoNet($340K$ steps)	59.44	80.75	45.36	84.57	
PoNet w/o SS-GA	59.33	76.92	46.18	78.38	
PoNet w/o GA	56.64	74.36	49.51	64.61	
PoNet w/o SMP	56.96	78.41	44.21	84.89	
PoNet w/o LMP	56.53	80.27	41.44	85.55	
PoNet w/o (SMP&LMP)	43.61	76.72	11.36	84.93	
PoNet using \mathcal{L}_{MN}	62.53	79.28	50.91	75.32	
PoNet using \mathcal{L}_{OM}	63.11		51.26	69.83	

Results of ablation study as accuracy for pre-training MLM and SST (Sentence Structure Task) tasks, matthews correlations for CoLA, and spearman correlations for STS-B. L_{MN} denotes MLM and NSP loss. L_{OM} denotes only MLM loss. SST denotes **NSP** when using **L_{MN}** and the **SSO** task otherwise. All pre-training experiments run 340K steps with 5GB data.

5. Ablation Analysis

- Removing GA
 - Degrades accuracy on SST pre-training task and downstream STS-B
 - Sentence-pair tasks heavily rely on the global information
- Removing SMP or LMP
 - Drastic degradation on MLM and CoLA accuracy
- All three poolings are important for the modeling capabilities of PoNet
- Weakening SST loss (L_{MN}, L_{OM})
 - Weakens GA representation learning
 - Strengthens SMP and LMP learning

Fine-tuning performance of PoNet on sentence-pair tasks highly relies on sentence structural tasks in pre-training

6. Conclusion

- A novel Pooling Network (PoNet) to replace self-attention with a multi-granularity pooling block
- Linear time and memory complexity
- Competitive long-range dependency modeling capacity and strong transfer learning capabilities
- Future work include
 - Further optimization of model structure and pre-training
 - Applying PoNet to a broader range of tasks including generation tasks (e.g., summarization, machine translation)

github.com/lxchtan/PoNet

Thanks for listening!

Reference

- transformers for language understanding. NAACL-HLT 2019.
- Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia, Zuyi Bao, Liwei Peng, and Luo Si. StructBERT: incorporating language structures into pre-training for deep language understanding. ICLR 2020.
- two linear layers for visual tasks. CoRR, abs/2105.02358, 2021.
- Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
- transforms. CoRR, abs/2105.03824, 2021.
- Nyströmformer: A nyström-based algorithm for approximating self-attention. AAAI 2021.

• Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional

• Meng-Hao Guo, Zheng-Ning Liu, Tai-Jiang Mu, and Shi-Min Hu. Beyond self-attention: External attention using

Sebastian Ruder, and Donald Metzler. Long Range Arena : A benchmark for efficient transformers. ICLR 2021.

• James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontañón. FNet: mixing tokens with fourier

• Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.

