

Learning to Retrieve Entity-Aware Knowledge and Generate Responses with Copy Mechanism for Task-Oriented Dialogue Systems

Chao-Hong Tan1*, Xiaovu Yang2*, Zi'ou Zheng2*, Yufei Feng2*, Tianda Li2*, Jia-Chen Gu¹, Quan Liu¹, Dan Liu¹, Zhen-Hua Ling^{1†}, Xiaodan Zhu^{2†}

¹National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China *Equal contribution. ²ECE & Ingenuity Labs, Queen's University, Kingston, Canada [†]Corresponding authors.

Introduction

This challenge can be separated into three subtasks.

(1) knowledge-seeking turn detection.

(2) knowledge selection.

(3) knowledge-grounded response generation.

We use pre-trained language models, ELECTRA and RoBERTa, as our base encoder for different subtasks.

Subtask 1 and 2: coarse-grained information like domain and entity are used.

Subtask 3: latent variable at encoder and generate responses combined with copy mechanism.

Our proposed system ranks second under objective metrics and ranks fourth under human metrics.

Knowledge-seeking Turn Detection

Knowledge-aware ELECTRA:

(1) conduct an entity matching for each question, concatenate the domain label to the end of history (2) add a one-bit knowledge flag to the end of the final hidden vector of the token <bos> to classify

Knowledge Selection

(1) Retrieve and Rank Model:

- Retrieve candidate knowledge base entities using textmatching based heuristics.
- Rank the candidate knowledge snippets by finetuning a Roberta model.

(2) Three-step Model:

- Predict domain, entity and document of the desired knowledge snippets with separate Roberta models.
- Augment the training data for better performance by leveraging the domain text in the knowledge base.

(3) Ensemble Model:

Ensemble the Retrieve & Rank model with Three-step model together.

Model architecture. The trapezoidal mask is to prevent response information leakage from our bi-directional encoder.

(1) Latent variable: Capture the response information, work like shortcut connection, optimize under KLD

(2) Knowledge Copy: Combine auto-regressive generation with copy mechanism by weight adding.

(3) Segmented Response Generation(SRG): Generate knowledge part and greedy part separately

(4) Modified Beam Search(FFBS): Fix different first word of response then do normal beam search for each group

(5) Post-processing Strategies: Plus semantic similarity score and minus word similarity score between response candidates from FFBS and knowledge to NLL score.

Evaluation(On Test Set)

Model	Knowledge Detection	Knowledge Selection	Knowledge Grounded Generation						
moder	Precision/Recall/F1	MRR@5/Recall@1/Recall@5	BLEU-1/2/3/4		METEOR	ROUGE-1/2/L			
Baseline	0.9933/0.9021/0.9455	0.7263 / 0.6201 / 0.8772	0.3031/0.1732/0.1005	/ 0.0655	0.2983	0.3386 / 0.1364 /	0.3039		
Ours	0.9933 / 0.9677 / 0.9803	0.9195 / 0.8975 / 0.9460	0.3779 / 0.2532 / 0.1731	/ 0.1175	0.3931	0.4204 / 0.2113 / 0.376			
The evaluation results (objective/human metrics) on test dataset of our all three subtasks.					Accuracy	Appropriateness	Average		
Compare	d with the baseline, our m	Baseline	3.7155	3.9386	3.8271				
In addition, human metrics show that the performance of our model is close to human.					4.3793	4.2755	4.3274		
					th 4.5930	4.4513	4.5221		

				An							
Subtask-1 Model	Precision	Recall	F1-score	Subtask-2 Model	MRR@5	Recall@1	Recall@5	Subtask-3 Model	BLEU-4	METEOR	ROUGE-L
Baseline(GPT2) Xlnet Roberta ELECTRA Our	0.957 0.944 0.947 0.950 0.996	0.966 0.983 0.993 0.994 0.999	0.961 0.963 0.970 0.972 0.998	Roberta (baseline) Retrieve & Rank Three-step w/ data aug. Three-step w/o data aug. Our Ensemble Model	0.8691 0.9747 0.9739 0.9692 0.9743	0.8058 0.9622 0.9660 0.9607 0.9678	0.9428 0.9880 0.9828 0.9783 0.9813	Ours w/ PP Ours w/o PP -FFBS -SRG -Copy 7	0.1450 0.1512 0.1490 0.1473 0.1424 0.1327	0.4526 0.4534 0.4536 0.4485 0.4322 0.4322	0.4256 0.4317 0.4342 0.4311 0.4194 0.4096

(1) Subtask-1: Compared with the original ELECTRA, the F1-score of our model has 2.6% improvement, (2) Subtask-2: Retrieve & Rank model has a better recall@5 while Three-step model with data augmentation provides better recall@1, especially better in domain and entity prediction. The ablation test on data augmentation also shows that the data augmentation technique is helpful at the domain and entity level.

(3) Subtask-3: Latent z contributes about 1% to on each metrics, while knowledge-copy mechanism wins about 0.5% on BLEU-4, about 1.6% on METEOR, about 1.2% in ROUGE-L. Note that the use of post-processing could increase human evaluation scores, while the objective scores may reduce.

Generation Example

Contact

Context	By the way, what hours is the station where the train departs open?
Knowledge(Body)	The hours of operation are Monday-Saturday 05:00 - 23:00, and on Sundays 07:00 - 22:55.
Ground-Truth	Monday through Saturday 5 AM to 11:00 PM, Sundays 7 AM to 11:55 PM. Can I help you with
	any more information?
Ours w/ PP	Hours of operation at the train station are Monday-Saturday 05:00-23:00 and on Sundays 07:00 -
	22:55. Anything else I can do for you?
Ours w/o PP	The station opens at 5:00 am Monday-Saturday and 7:00 on Sundays. Anything else I can do for
	you?
Ours w/o Copy	The station opens at 5 am Monday-Saturday and 7 am on Sunday. Anything else I can do for you?

Conclusion

(1) This paper describes our overall system that is evaluated in Track 1 of DSTC 9.

(2) Pre-trained language models are used as our base encoder, and task-specific components are applied to improve performance.

(3) In the released evaluation results, we rank second under objective metrics and rank fourth under human metrics.

Email

chtan@mail.ustc.edu.cn {xiaovu.vang, ziou.zheng, feng.yufei, tianda.li}@queensu.ca Github:

github.com/lxchtan/DSTC9-Track1

