1 实验目的

- 1. 了解霍尔效应原理以及有关霍尔器件对材料要求的知识。
- 2. 学习用"对称测量法"消除副效应影响。
- 3. 根据霍尔电压判断霍尔元件载流子类型。
- 4. 计算载流子的浓度和迁移速度。

2 实验原理

2.1 通过霍尔效应测量磁场

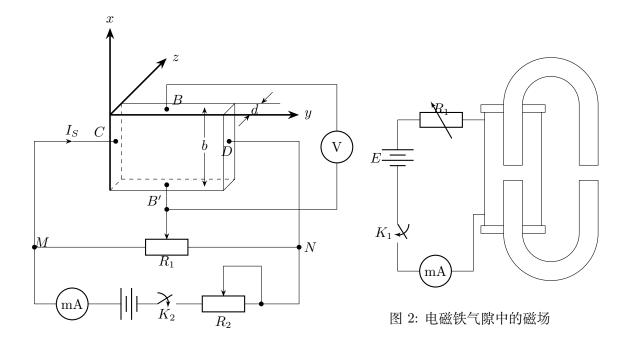


图 1: 实验装置图 (霍尔元件部分)

如图 1 和图 2所示,将一个半导体薄片放在垂直于它的磁场中,当沿电极 C, D 上施加电流 I_S 时,薄片内定向移动的载流子 (设平均速率为 u) 受到洛伦兹力 F_B 的作用, $F_B = quB$ 在磁力作用下,载流子发生偏移,产生电荷积累,从而在薄片 B', B 两侧产生一个电位差 $V_{BB'}$, 形成一个电场 E, 电场使载流子又受到与 F_B 反向的电场力 F_E

$$F_E = qE = \frac{qV_{BB'}}{b} \tag{1}$$

其中 b 为薄片宽度, F_E 随着点和积累而增大, 当达到稳定状态时 $F_E = F_B$, 即

$$quB = q\frac{V_{BB'}}{h} \tag{2}$$

此时 B, B' 两侧建立的电场称为霍尔电场,相应的电压为霍尔电压,电极 B, B' 称为霍尔电极射载流子浓度为 n, 薄片厚度为 d, 则电流强度 I 与 u 的关系为:

$$I = bdnqu (3)$$

廖子文 PB21030837

2022.11.29

由式 2 和 3 可得到

$$V_{BB'} = \frac{1}{nq} \frac{IB}{d} \tag{4}$$

$$V_{BB'} = R \frac{IB}{d} \tag{5}$$

R 称为霍尔系数,它体现了材料的霍尔效应大小。根据霍尔效应制作的元件称为霍尔元件。 在应用中,式 5 常以如下形式出现:

$$V_{BB'} = K_H IB \tag{6}$$

式中 $K_H = \frac{R}{d} = \frac{1}{nqd}$ 称为霍尔元件灵敏度,I 称为控制电流。由式 6 可见,若 I , K_H 已知,只要测出霍尔电压 $V_{BB'}$,即可算出磁场 B 的大小。并且,若知载流子类型 (N 型半导体多数载流子为电子,P 型半导体多数载流子为空穴),则由 $V_{BB'}$ 的正负可测出磁场方向,反之若已知磁场方向,则可判断载流子类型。

由于霍尔效应建立所需时间很短 $(10^{-12} \sim 10^{-14} \mathrm{s})$,因此霍尔元件使用交流电或者直流电都可。指示交流电时,得到的霍尔电压也是突变的。6 中的 I 和 $V_{BB'}$ 应理解为有效值。

2.2 霍尔效应实验中的副效应

在实际应用中,伴随霍尔效应经常存在其他效应。例如实际中载流子迁移速率 u 服从统计分布规律,速度小的载流子受到的洛伦兹力小于霍尔电场作用力,向霍尔电场作用力方向偏转,速度大的载流子受到磁场作用力大于霍尔电场作用力,向洛伦兹力方向偏转。这样使得一侧高速载流子较多,相当于温度较高,而另一侧低速载流子较多,相当于温度较低。这种横向温差就是温差电动势 V_E ,这种现象称为爱廷豪森效应。这种效应建立需要一定时间,如果采用直流电测量时会因此而给霍尔电压测量带来误差,如果采用交流电,则由于交流变化快使得爱廷豪森效应来不及建立,可以减小测量误差。

此外,在使用霍尔元件时还存在不等位电动势引起的误差,这是因为霍尔电极 B, B' 不可能绝对对称焊在霍尔片两侧产生的。由于目前生产工艺水平较高,不等位电动势很小,故一般可以忽略,也可以用一个电位器加以平衡 (图 1 中电位器 R_1)。

我们可以通过改变 I_S 和磁场 B 的方向消除大多数副效应。具体说在规定电流和磁场正反方向后,分别测量下列四组不同方向的 I_S 和 B 组合的 $V_{BB'}$,即

$$+B, +I V_{BB'} = V_1$$
 $-B, +I V_{BB'} = -V_2$
 $+B, -I V_{BB'} = -V_3$
 $-B, -I V_{BB'} = V_4$

然后得到霍尔电压平均值,这样虽然不能消除所有的副效应,但其引入的误差不大,可以 忽略不计。

电导率测量方法如下图所示。设 B',A' 间距离为 L,样品横截面积为 S=bd,流经样品电流为 I_S ,在零磁场下,测得 B 间电压为 $V_{B'A'}$,根据欧姆定律可以求出材料的电导率。电导率 σ 与载流子浓度 n 及迁移率 μ 之间有如下关系:

$$\sigma = ne\mu \tag{7}$$

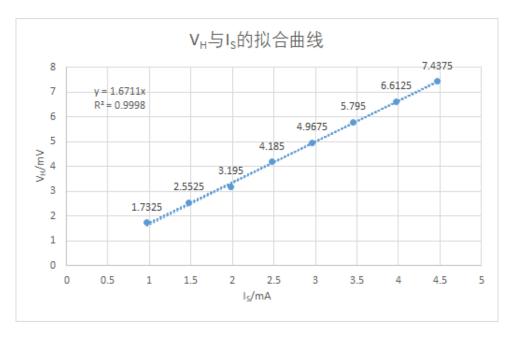
3 实验仪器

恒流源、电磁铁、霍尔样品和样品架、换向开关和接线柱、数字万用表、小磁针

4 实验内容

用六脚霍尔片接好线路, 霍尔片的尺寸为: $d = 0.5 \,\mathrm{mm}, b = 4.0 \,\mathrm{mm}, L = 3.0 \,\mathrm{mm}$

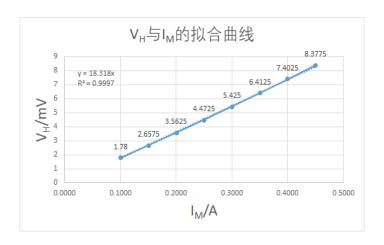
- 1. 保持 I_M 不变,取 $I_M = 0.45$ A, I_S 取 $1.00, 1.50, \dots, 4.50$ mA,测绘 $V_H I_S$ 曲线,计算 R_H
- 2. 保持 I_S 不变,取 $I_S = 4.50 \,\text{mA}$, I_M 取 $0.100, 0.150, \dots, 0.450 \,\text{A}$,测绘 $V_H I_M$ 曲线,计算 R_H
- 3. 在零磁场下,取 $I_S = 1.00 \,\text{mA}$,测 $V_{B'A'}$
- 4. 确定样品导电类型, 并求 R_H , n, σ , μ
- 5. 使用四脚锑化铟片完成。取 $I_S = 1.00 \text{mA}, I_M$ 在 $0 \sim 0.800 \text{ A}$ 之间,测绘 $V_H I_M$ 曲 线(此实验 I_M , I_S 不用换向)


5 数据数据与处理

5.1 六脚霍尔片

六脚霍尔片电阻 $R_1=228\,\Omega$ 励磁线圈参数 $3700\,\mathrm{Gs/A}$

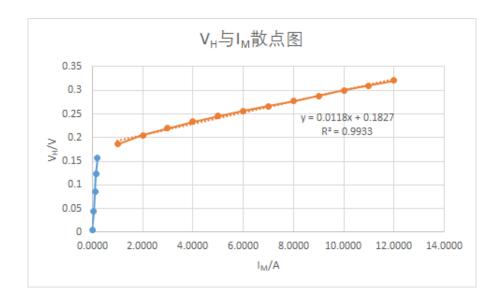
$I_S/{ m mA}$	$I_{S_{rac{\infty}{2}}}/\mathrm{mA}$	V_{H1}/mV	V_{H2}/mV	V_{H3}/mV	V_{H4}/mV	avg/mV
1.00	0.97	1.57	-1.55	1.91	-1.90	1.7325
1.50	1.47	-2.80	2.82	-2.28	2.31	2.5525
2.00	1.98	-3.01	3.72	3.03	-3.02	3.1950
2.50	2.48	-3.76	3.76	-4.60	4.62	4.1850
3.00	2.96	5.49	-5.46	4.47	-4.45	4.9675
3.50	3.46	-5.20	5.22	-6.38	6.38	5.7950
4.00	3.97	7.29	-7.27	5.96	-5.93	6.6125
4.50	4.47	-6.68	6.69	-8.18	8.20	7.4375


表 1: 使用六脚霍尔片, 保持 I_M 不变, 改变 I_S , 测量 V_H 的值

由式 4 和 5 可得: $R_H = \frac{V_H d}{I_S B} = 1.6711 \times \frac{0.5 \times 10^{-3}}{3700 \times 10^{-4} \times 0.45} = 5.0183 \times 10^{-3} \,\mathrm{Gs}$

I_M/A	$I_{M \odot}/\mathrm{A}$	V_{H1}/mV	V_{H2}/mV	V_{H3}/mV	V_{H4}/mV	avg/mV
0.100	0.1002	-2.53	2.54	-1.02	1.03	1.7800
0.150	0.1501	1.91	1.89	3.41	-3.42	2.6575
0.200	0.2003	-4.30	4.32	-2.81	2.82	3.5625
0.250	0.2500	3.70	-3.68	5.26	-5.25	4.4725
0.300	0.3002	-6.13	6.15	-4.70	4.72	5.425
0.350	0.3501	5.62	-5.60	7.22	-7.21	6.4125
0.400	0.4001	-8.12	8.13	-6.67	6.69	7.4025
0.450	0.4500	7.62	-7.59	9.16	-9.14	8.3775

表 2: 使用六脚霍尔片, 保持 I_S 不变, 改变 I_M , 测量 V_H 的值



 $\mu = \sigma R_H = 6.578 \times 5.5192 = 0.0363$

5.2 四脚锑化铟片

$I_M/{ m A}$	$I_{M \odot}/\mathrm{A}$	$V_H/{ m V}$	0.400	0.4001	0.2341
0.000	0.0010	0.0040	0.450	0.4500	0.2453
0.050	0.0503	0.0435	0.500	0.4999	0.2559
0.100	0.1002	0.0847	0.550	0.5498	0.2667
0.150	0.1500	0.1227	0.600	0.6000	0.2775
0.200	0.2000	0.1577	0.650	0.6499	0.2884
0.250	0.2502	0.1861	0.700	0.6998	0.2995
0.300	0.3001	0.2050	0.750	0.7497	0.3103
0.350	0.3500	0.2199	0.800	0.7998	0.3205

表 3: 使用四脚锑化铟片, 保持 I_S 不变, 改变 I_M , 测量 V_H 的值

