
Tecplot, Inc. Bellevue, WA 2015

Data Format Guide

Tecplot 360 EX 2015 Release 1

Tecplot 360 EX Data Format Guide is for use with Tecplot 360 EX 2015 R1.

Copyright © 1988-2015 Tecplot, Inc. All rights reserved worldwide. Except for personal use, this manual may not be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated in any form, in whole or in part, without the express written permission of Tecplot, Inc., 3535 Factoria Blvd, Ste. 550;
Bellevue, WA 98006 U.S.A.

The software discussed in this documentation and the documentation itself are furnished under license for utilization and duplication only according to the
license terms. The copyright for the software is held by Tecplot, Inc. Documentation is provided for information only. It is subject to change without notice. It
should not be interpreted as a commitment by Tecplot, Inc. Tecplot, Inc. assumes no liability or responsibility for documentation errors or inaccuracies.

Tecplot, Inc.
Post Office Box 52708
Bellevue, WA 98015-2708 U.S.A.

Tel:1.800.763.7005 (within the U.S. or Canada), 00 1 (425)653-1200 (internationally)

email: sales@tecplot.com, support@tecplot.com
Questions, comments or concerns regarding this document: documentation@tecplot.com

For more information, visit http://www.tecplot.com

Tecplot®, Tecplot 360,™ Tecplot 360 EX,™ Tecplot Focus, the Tecplot product logos, Preplot,™ Enjoy the View,™ Master the View,™ SZL,™ Sizzle,™ and
Framer™ are registered trademarks or trademarks of Tecplot, Inc. in the United States and other countries. All other product names mentioned herein are
trademarks or registered trademarks of their respective owners.

NOTICE TO U.S. GOVERNMENT END-USERS

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer-
Restricted Rights clause at FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, and/or in similar or successor clauses in the DOD or NASA FAR Supplement. Contractor/manufacturer is Tecplot, Inc., 3535 Factoria
Blvd, Ste. 550; Bellevue, WA 98006 U.S.A.

15-360-05-1

Rev 1/2015

For third-party trademark and copyright information, see the Tecplot 360 EX User’s Manual.

3

Table of Contents

1 Introduction .. 7

Subzone Loading ..7
Creating Data Files for Tecplot 360 & Tecplot Focus...............8
Best Practices ...8

2 Data Structure .. 11

Ordered Data... 12
Finite Element Data .. 12

Line Data ... 14
Surface Data ... 14
Volume Data ... 14
Finite Element Data Limitations... 15

Variable Location .. 15
Face Neighbors.. 16
Working with Unorganized Data Sets..................................... 16

Example - Unorganized Three-Dimensional Volume 17
Time and Date Representation ... 18

3 Binary Data .. 19

Getting Started .. 19
Viewing Your Output... 20
Binary File Compatibility .. 20

Deprecated Binary Functions ... 21
Character Strings in FORTRAN .. 21
Boolean Flags .. 21

Binary Data File Function Calling Sequence 21
Writing to Multiple Binary Data Files...................................... 22

Table of Contents

4

Linking with the TecIO Library.. 22
Linux/Macintosh... 22
Windows .. 22
Notes for Windows Programmers using Fortran 23

Binary Data File Function Reference 23
Defining Polyhedral and Polygonal Data 52

Boundary Faces and Boundary Connections 52
FaceNodeCounts and FaceNodes... 53
FaceRightElems and FaceLeftElems .. 54
FaceBoundaryConnectionElements and Zones 55
Partially Obscured Boundary Faces .. 55

Examples.. 56
Face Neighbors.. 56
Polygonal Example.. 63
Multiple Polyhedral Zones ... 68
Multiple Polygonal Zones .. 80
Polyhedral Example... 93
IJ-ordered zone .. 96
Switching Between Two Files ... 99
Text Example .. 102

4 ASCII Data ... 105

Converting ASCII to Binary .. 105
Syntax Rules & Limits.. 105
ASCII File Structure ... 106

File Header ... 106
Zone Record ... 107
Text Record... 116
Geometry Record... 119
Custom Labels Record.. 122
Data Set Auxiliary Data Record ... 122
Variable Auxiliary Data Record .. 123
ASCII Data File Parameter Assignment Values 123

Ordered Data... 124
I-Ordered Data ... 124
IJ-Ordered Data .. 124
IJK-Ordered Data .. 125
Ordered Data Examples ... 125

Finite Element Data .. 130
Variable and Connectivity List Sharing 132
Finite Element Data Set Examples .. 134

ASCII Data File Conversion to Binary................................... 144
Preplot Options... 145
Preplot Examples .. 145

5

5 Glossary ... 147

A Binary Data File Format ... 151

Table of Contents

6

7

1

Introduction

Tecplot 360 can read in data produced in many different formats using the data loaders provided with the
product. This manual describes a complementary approach: writing your data in the Tecplot 360 data
format so it can be read natively, providing the best experience for Tecplot 360 users.This Data Format
Guide includes the following topics:

• Chapter 2: “Data Structure” Learn about the different types of data structure available in
Tecplot 360 and how to use them.

• Chapter 3: “Binary Data” Refer to this chapter for details on outputting data in Tecplot 360’s
binary file format (.plt) or the newer subzone load format (.szplt) using the TecIO library, a
collection of routines we provide that you can use to write files in these format from your
software.

• Chapter 4: “ASCII Data” We strongly recommend that you create binary data files. However,
we provide the ASCII data chapter to allow you to create simple data files.

• Chapter 5: “Glossary” Refer to the Glossary for the definitions of terms used throughout the
manual.

• The Appendix, Binary Data File Format, documents the .plt binary file format.

1 - 1 Subzone Loading
Tecplot 360 EX introduced a new subzone loadable file format with extension .szplt that is optimized for
loading partial zones (“subzones”) as individual chunks of data are needed for a plot or for other
operations. Subzone loading improves performance substantially for large cases while reducing RAM
usage. If your software generates large data files, we strongly encourage you to support this format, as it
will significantly improve your user experience. The API is the same as is used to write .plt files, so if your
program already uses TecIO, it is straightforward to upgrade it to write .szplt files instead of, or in addition
to, .plt files.

Before continuing to either the Binary or ASCII chapter, please review this overview of
Best Practices.

8

1 - 2 Creating Data Files for Tecplot 360 & Tecplot Focus

If you intend to create data files that will load in both Tecplot 360 and Tecplot Focus, you need to be aware
that polyhedral/polygonal zones are not supported in Tecplot Focus. If any of the zones in a given data file
are polyhedral, you will not be able to load the data file into Tecplot Focus. To create data files that will
load in both products, you must use either ordered zones or cell-based finite element zones (triangular,
quadrilateral, tetrahedral or brick elements).

The subzone load file format (.szplt) is not supported by Tecplot Focus, nor by legacy versions of Tecplot
360 (versions without “EX” in their designation).

1 - 3 Best Practices
Users who wish to generate native Tecplot 360 data files automatically from applications such as complex
flow solvers have a number of options for outputting data into Tecplot’s data format. This section outlines
a few "best practices" for outputting your data into Tecplot 360 data format.

1. Offer the Option to Write Subzone Load Files (.szplt)
Users of Tecplot 360 EX will appreciate the improved experience provided by these files,
especially for large cases.

2. Create Binary Data Files (.plt or .szplt) instead of ASCII (.dat)
Binary data files are more efficient than ASCII files, in terms of disk space and time to first
image. To create binary data files, you may use functions provided in the TecIO library. To
create ASCII files, you can write out plain text in the usual manner.
There are some cases where ASCII files are preferred. Create ASCII files when:

• Your data files are small.
• Your application runs on a platform for which the TecIO library is not provided. Even if

this is the case, please contact us at support@tecplot.com. There may be a way to resolve
this issue.

• You wish users to be able to view or edit the data in a text editor.
3. Use Block Format instead of Point Format

Block format is by far the most efficient format when it comes to loading the file into Tecplot
360. If your data files are small and you can only obtain the data in a point-like format (for
example, with a spreadsheet), then using point format is acceptable.

4. Use the Native Byte Ordering for the Target Machine
When you create binary data, you can elect to produce these files in either Motorola byte
order or Intel byte order. Today’s most popular platforms all use Intel byte order, and
generally this is the order you should use when writing binary data. The exceptions involve
older platforms no longer supported by Tecplot. If you are using such legacy platforms, be
sure to write the binary data in the order native to the platform on which it will be viewed.

For the purposes of this discussion, “polyhedral” refers to either polyhedral or polygonal
zones.

Binary files can only be written in block format. Point format is allowed for ASCII files,
but running the preplot utility will convert the data to block format.

mailto:support@tecplot.com

9

Best Practices

While Tecplot 360 automatically detects the byte order and loads either format, it is more
efficient if the file uses the byte order used on the platform where you run Tecplot 360. For See
the notes about this option in Section B - 3 “Preplot” in the User’s Manual for the Preplot flag.

5. Add Auxiliary data to Preset Variable Assignments in Tecplot 360
Zone Auxiliary data can be used to give Tecplot 360 hints about properties of your data. For
example, it can be used to set the defaults for which variables to use for certain kinds of plots.
Auxiliary data is supported by both binary and ASCII formats. Refer to Section
“TECAUXSTR142” on page 23 or Section 4 - 3.6 “Data Set Auxiliary Data Record” for
information on working with auxiliary data in binary or ASCII data files, respectively.

6. Data Sharing
Share variables whenever possible. Variable sharing is commonly used for the spatial
variables (X, Y, and Z) when you have many sets of data that use the same basic grid. This
saves disk space, as well as memory when the data is loaded into Tecplot 360. In addition, the
benefits are compounded with scratch data derived from these variables because it is also
shared within Tecplot 360. See also Section “TECZNE142” on page 47 (for binary data) or
Section 4 - 5.1 “Variable and Connectivity List Sharing” (for ASCII data).

7. Passive Variables
Tecplot 360 can manage many data sets at the same time. However, within a given data set
you must supply the same number of variables for each zone. In some cases you may have
data where there are many variables and, for some of the zones some of those variables are
not important. If that is the case, you can set selected variables in those zones to be passive. A
passive variable is one that will always return the value zero if queried (e.g. in a probe) but
will not involve itself in operations such as the calculations of the min and max range. This is
very useful when calculating default contour levels.

10

11

2

Data Structure

Tecplot 360 accommodates two different types of data: Ordered Data and Finite Element Data.

A connectivity list is used to define which nodes are included in each element of an ordered or cell-based
finite element zone. You should know your zone type and the number of elements in each zone in order to
create your connectivity list.

The number of nodes required for each element is implied by your zone type. For example, if you have a
finite element quadrilateral zone, you will have four nodes defined for each element. Likewise, you must
provide eight numbers for each cell in a BRICK zone, and three numbers for each element in a TRIANGLE
zone. If you have a cell that has a smaller number of nodes than that required by your zone type, simply
repeat a node number. For example, if you are working with a finite element quadrilateral zone and you
would like to create a triangular element, simply repeat a node in the list (e.g., 1,4,5,5).

In the example below, the zone contains two quadrilateral elements. Therefore, the connectivity list must
have eight values. The first four values define the nodes that form Element 1. Similarly, the second four
values define the nodes that form Element 2.

The connectivity list for this example would appear as follows:

 ConnList[8] = {4,5,2,1, /* nodes for Element 1 */
 5,6,3,2}; /* nodes for Element 2 */

It is important to provide your node list in either a clockwise or counter-clockwise order.
Otherwise, your cell will twist, and the element produced will be misshapen.

12

2 - 1 Ordered Data
Ordered data is defined by one, two, or three-dimensional logical arrays, dimensioned by IMAX, JMAX,
and KMAX. These arrays define the interconnections between nodes and cells. The variables can be either
nodal or cell-centered. Nodal variables are stored at the nodes; cell-centered values are stored within the
cells.

• One-dimensional Ordered Data (I-ordered, J-ordered, or K-ordered)

• Two-dimensional Ordered Data (IJ-ordered, JK-ordered, IK-ordered)

• Three-dimensional Ordered Data (IJK-ordered)

2 - 2 Finite Element Data
While finite element data is usually associated with numerical analysis for modeling complex problems in
3D structures (heat transfer, fluid dynamics, and electromagnetics), it also provides an effective approach
for organizing data points in or around complex geometrical shapes. For example, you may not have the

A single dimensional array where either IMAX, JMAX
or KMAX is greater than or equal to one, and the others
are equal to one. For nodal data, the number of stored
values is equal to IMAX * JMAX * KMAX. For cell-
centered I-ordered data (where IMAX is greater than
one, and JMAX and KMAX are equal to one), the
number of stored values is (IMAX-1) - similarly for J-
ordered and K-ordered data.

A two-dimensional array where two of the three
dimensions (IMAX, JMAX, KMAX) are greater than
one, and the other dimension is equal to one. For nodal
data, the number of stored values is equal to IMAX *
JMAX * KMAX. For cell-centered IJ-ordered data
(where IMAX and JMAX are greater than one, and
KMAX is equal to one), the number of stored values is
(IMAX-1)(JMAX-1) - similarly for JK-ordered and IK-
ordered data.

A three-dimensional array where all IMAX,
JMAX and KMAX are each greater than one. For
nodal ordered data, the number of nodes is the
product of the I-, J-, and K-dimensions. For
nodal data, the number of stored values is equal
to IMAX * JMAX * KMAX. For cell-centered data,
the number of stored values is (IMAX-1)(JMAX-
1)(KMAX-1).

13

Finite Element Data

same number of data points on different lines, there may be holes in the middle of the dataset, or the data
points may be irregularly (randomly) positioned. For such difficult cases, you may be able to organize
your data as a patchwork of elements. Each element can be independent of the other elements, so you can
group your elements to fit complex boundaries and leave voids within sets of elements. The figure below
shows how finite element data can be used to model a complex boundary.

Figure 2-1. This figure shows finite element data used to model a complex boundary. This plot file,
feexchng.plt, is located in your Tecplot 360 distribution under the examples/2D subdirectory.

Finite element data defines a set of points (nodes) and the connected elements of these points. The
variables may be defined either at the nodes or at the cell (element) center. Finite element data can be
divided into three types:

• Line data is a set of line segments defining a 2D or 3D line. Unlike I-ordered data, a single
finite element line zone may consist of multiple disconnected sections. The values of the
variables at each data point (node) are entered in the data file similarly to I-ordered data,
where the nodes are numbered with the I-index. This data is followed by another set of data
defining connections between nodes. This second section is often referred to as the
connectivity list. All elements are lines consisting of two nodes, specified in the connectivity
list.

• Surface data is a set of triangular, quadrilateral, or polygonal elements defining a 2D field or a
3D surface. When using polygonal elements, the number of sides may vary from element to
element. In finite element surface data, you can choose (by zone) to arrange your data in three
point (triangle), four point (quadrilateral), or variable-point (polygonal) elements. The number
of points per node and their arrangement are determined by the element type of the zone. If a
mixture of quadrilaterals and triangles is necessary, you may repeat a node in the quadrilateral
element type to create a triangle, or you may use polygonal elements.

• Volume data is a set of tetrahedral, brick or polyhedral elements defining a 3D volume field.
When using polyhedral elements, the number of sides may vary from element to element.
Finite element volume cells may contain four points (tetrahedron), eight points (brick), or
variable points (polyhedral). The figure below shows the arrangement of the nodes for

14

tetrahedral and brick elements. The connectivity arrangement for polyhedral data is governed
by the method in which the polyhedral facemap data is supplied.

Figure 2-2. Connectivity arrangements for FE-volume datasets
In the brick format, points may be repeated to achieve 4, 5, 6, or 7 point elements. For example,
a connectivity list of “n1 n1 n1 n1 n5 n6 n7 n8” (where n1 is repeated four times) results in a
quadrilateral-based pyramid element.
 Section 4 - 5 “Finite Element Data” in the Data Format Guide provides detailed information
about how to format your FE data in Tecplot’s data file format.

2 - 2.1 Line Data
Unlike I-ordered data, a single finite element line zone may consist of multiple disconnected sections. The
values of the variables at each data point (node) are entered in the data file similarly to I-ordered data,
where the nodes are numbered with the I-index. This data is followed by another set of data defining
connections between nodes. This second section is often referred to as the connectivity list. All elements are
lines consisting of two nodes, specified in the connectivity list.

2 - 2.2 Surface Data
In finite element surface data, you can choose (by zone) to arrange your data in three point (triangle), four
point (quadrilateral), or variable-point (polygonal) elements. The number of points per node and their
arrangement are determined by the element type of the zone. If a mixture of quadrilaterals and triangles is
necessary, you may repeat a node in the quadrilateral element type to create a triangle or you may use
polygonal elements.

2 - 2.3 Volume Data
• Finite element volume cells may contain four points (tetrahedron),eight points (brick) or a variable

number of points (polyhedral). The figure below shows the arrangement of the nodes for tetrahedral and

Tetrahedral connectivity arrangement Brick connectivity arrangement

15

Variable Location

brick elements. The connectivity arrangement for polyhedral data is governed by the method in which
the polyhedral facemap data is supplied.

Figure 2-3. Connectivity arrangements for FE-volume datasets
In the brick format, points may be repeated to achieve 4, 5, 6, or 7 point elements. For example,
a connectivity list of “n1 n1 n1 n1 n5 n6 n7 n8” (where n1 is repeated four times) results in a
quadrilateral-based pyramid element.

2 - 2.4 Finite Element Data Limitations
Working with finite element data has some limitations:

• XY-plots of finite element data treat the data as I-ordered; that is, the connectivity list is
ignored. Only nodes are plotted, not elements, and the nodes are plotted in the order in which
they appear in the data file.

• Index skipping in vector and scatter plots treats finite element data as I-ordered; the
connectivity list is ignored. Nodes are skipped according to their order in the data file.

2 - 3 Variable Location
Data values can be stored at the nodes or at the cell centers.

• For finite element meshes, cell-centers are the centers (centroids) of elements.
• For many types of plots, cell-centered values are interpolated to the nodes internally.

Tetrahedral connectivity arrangement Brick connectivity arrangement

16

2 - 4 Face Neighbors
A cell is considered a neighbor if one of its faces shares all nodes in common with the selected cell, or if it
is identified as a neighbor by face neighbor data in the dataset. The face numbers for cells in the various
zone types are defined below.

Figure 2-1. A: Example of node and face neighbors for an FE-brick cell or IJK-ordered cell. B: Example of
node and face numbering for an IJ-ordered/ FE-quadrilateral cell. C: Example of tetrahedron
face neighbors.

The implicit connections between elements in a zone may be overridden, or connections between cells in
adjacent zones established by specifying face neighbor criteria in the data file. Refer to Section
“TECFACE142” on page 26 for additional information.

2 - 5 Working with Unorganized Data Sets
Tecplot 360 loads unorganized data as a single I-ordered zone and displays them in XY Mode, by default.
Tecplot products consider an I-ordered zone irregular if it has more than one dependent variable. An I-
ordered data set with one dependent variable (i.e. an XY or polar line) is NOT an irregular zone.

To check for irregular data, you can go to the Data>Data Set Info dialog (accessed via the Data menu). The
values assigned to: IMax, JMax, and KMax are displayed in the lower left quadrant of that dialog. If IMax
is greater than 1, and JMax and KMax are equal to 1, then your data is irregular.

It is also easy to tell if you have irregular data by looking at the plot. If you are looking at irregular data
with the Mesh layer turned on, the data points will be connected by lines in the order the points appear in
the data set.

 You can organize your data set for Tecplot 360 in one of the following ways.

1. Manually order the data file using a text editor.

2. Use one of the Data>Interpolation options. See Section 20 - 7 “Data Interpolation” in the
Tecplot 360 User’s Manual.

A B C

Use the “Label Points and Cells” feature from the Plot menu to see if your data set can
be easily corrected using a text editor by correcting the values for I, J, and/or K.

17

Working with Unorganized Data Sets

2 - 5.1 Example - Unorganized Three-Dimensional Volume
To use 3D volume irregular data in field plots, you must interpolate the data onto a regular, IJK-ordered
zone. To interpolate your data, perform the following steps:

1. Place your 3D volume irregular data into an I-ordered zone in a data file.
2. Read in your data file and create a 3D scatter plot.
3. From the Data menu, choose Create Zone>Rectangular. (Circular will also work.)
4. In the Create Rectangular Zone dialog, enter the I-, J-, and K-dimensions for the new zone; at

a minimum, you should enter 10 for each dimension. The higher the dimensions, the finer the
interpolation grid, but the longer the interpolating and plotting time.

5. Enter the minimum and maximum X, Y, and Z values for the new zone. The default values are
the minimums and maximums of the current (irregular) dataset.

6. Click [Create] to create the new zone, and [Close] to dismiss the dialog.
7. From the Data menu, choose Interpolate>Inverse Distance. (Linear also works.)
8. In the Inverse-Distance Interpolation dialog, choose the irregular data zone as the source

zone, and the newly created IJK-ordered zone as the destination zone. Set any other
parameters as desired

9. Select the [Compute] button to perform the interoplation.

Once the interpolation is complete, you can plot the new IJK-ordered zone as any other 3D volume zone.
You may plot iso-surfaces, volume streamtraces, and so forth. At this point, you may want to deactivate or
delete the original irregular zone so as not to conflict with plots of the new zone.

Figure 2-2 shows an example of irregular data interpolated into an IJK-ordered zone, with iso-surfaces
plotted on the resultant zone.

Figure 2-2. Irregular data interpolated into an IJK-ordered zone.

18

2 - 6 Time and Date Representation
Tecplot 360 uses floating point numbers to represent times and dates. The integer portion represents the
number of days since December 30, 1899. The decimal portion represents a fractional portion of a day. The
table below illustrates some examples of this method.

Tecplot 360 supports dates from 1800-01-01 through 9999-12-31. This formatting matches the
representation method used by Microsoft Excel, enabling you to load time/date data easily from Excel into
Tecplot 360. However, because Excel software’s original formatting incorrectly calculated 1900 as a leap
year, only dates from Mar 1, 1900 forward will import correctly into Tecplot 360.

Date Time Floating Point Number
 1900-01-01 00:00:00 2.0
1900-01-01 12:00:00 2.5
2008-07-31 00:00:00 39660.0
 2008-07-31 12:00:00 39660.5
 2008-07-31 12:01:00 39660.5006944444
 2008-07-31 13:00:00 39660.5416666667

19

3

Binary Data

This chapter is intended for experienced programmers who need to create Tecplot binary data files
directly. Support for topics discussed in this chapter is limited to general questions about writing Tecplot
binary files. It is beyond the scope of our Technical Support to offer programming advice and to debug
programs. For additional help, visit http://www.tecplottalk.com.

It is easy to write ASCII files in text format, and they have the advantage that you can inspect them using a
text editor to make sure they are being written correctly. Their primary disadvantages are that they can
consume much more disk space than binary files and are slower to load, which is especially noticeable
when they are large. While users can convert them to the binary format with the Preplot utility (see
Section 4 - 1 “Converting ASCII to Binary” for additional information), it is much more efficient to simply
write them in binary format to begin with.

To output your data directly into Tecplot’s basic binary file format, .plt, you may use the TecIO library,
which is provided at no cost by Tecplot, Inc., or you may write your own binary functions. If you wish to
write your own functions, refer to Appendix A: Section “Binary Data File Format” for details on the
structure of .plt files. If you wish to link with the library provided by Tecplot, begin with Section 3 - 1
“Getting Started” and use Appendix A: Section “Binary Data File Format” only for reference.

If you wish to write files in the newer .szplt format, you must use the TecIO library.

3 - 1 Getting Started
TecIO is a static library of utility functions that you can link with your application to create binary data
files directly, bypassing the use of ASCII files. This makes for fewer files to manage, conserves disk space,
and saves the time required to convert the files.

TecIO supports two binary file formats:

• Tecplot Binary (.plt) - The legacy format written by versions of Tecplot 360 and Tecplot Focus
prior to Tecplot 360 EX. It is of course also supported by Tecplot 360 EX.

You can find source files for most of the examples in this chapter in the examples/tecio
folder of your Tecplot 360 EX installation.

http://www.tecplottalk.com

20

• Tecplot Subzone Loadable (.szplt) - A newer format introduced with Tecplot 360 EX,
optimized for large data sets, that enables substantially improved interactive performance for
common workflows and a reduced memory footprint.

We encourage you to support both formats. Users of Tecplot 360 EX will appreciate the improved
experience, while users of older versions of Tecplot 360, Tecplot Focus, and other programs that can read
Tecplot-format binary files will appreciate being able to use your data with their software.

A copy of the TecIO library is installed with your Tecplot 360 installation. The path of the file varies slighly
depending on the platform.

Before preparing to output your data in Tecplot’s binary format using the TecIO library, we recommend
you proceed as follows:

1. Review Section 3 - 4 “Binary Data File Function Calling Sequence” and Section 3 - 5 “Writing
to Multiple Binary Data Files”.

2. Review the example files in the examples/tecio folder. The example programs demonstrate the
use of the TecIO utility functions and are provided in both FORTRAN and C/C++:

• simtest.f, simtest.f90, simtest.c - These files demonstrate simple use of the TecIO
utility functions.

• comtest.f, comtest.f90, comtest.c - These files demonstrate complex use of TecIO utility
functions, such as multiple file generation and transient data.

Numerous additional, more modern examples included in the TecIO package target specific
actions, like writing polyhedral data. Review these examples for additional guidance.

3. Follow the instructions in Section 3 - 6 “Linking with the TecIO Library” for information on
setting up your project to develop with TecIO and linking with the library.

4. Begin developing your code.

3 - 2 Viewing Your Output
You may load your binary files in Tecplot 360 or Tecplot Focus using the Tecplot Data loader or the Tecplot
Subzone Data Loader, as appropriate. Once loaded, you may view information about your data file using
any of the following techniques:

• Dataset Information dialog - You may use the Data Set Information dialog (accessed via the
Data menu) to display information about your file (once it is loaded into Tecplot). Refer to this
dialog for a list of the zones, variables, variable ranges, auxiliary data and more. Refer to
Section 5 - 4 “Dataset Information” on page 145 in the User’s Manual for details.

• Data Spreadsheet - Use the Data Spreadsheet to view a table of every variable value in your
file. Refer to Section 20 - 9 “Data Spreadsheet” in the User’s Manual for details.

3 - 3 Binary File Compatibility
The .plt file that you create will be compatible with the version of Tecplot tied to the version of the TecIO
library that you use. For example, if you were to use the TecIO library that was bundled with Tecplot 360
Version 2006, your files can be loaded with Tecplot 360 Version 2006 and newer.

Platform Path

Linux lib/libtecio.a

Mac OS X tecio/libtecio.a

Windows lib/tecio.lib

21

Binary Data File Function Calling Sequence

This is independent of the version number used for the binary functions (for example, the 142 in
TECZNE142). For example, even if you use 112 functions with the version of the TecIO library included
with this distribution, your .plt file will be compatible with this version of Tecplot 360 and newer.

A .plt file is also backward compatible to the first version of Tecplot 360 or Focus that uses the file format
version supported by the library being used. However, these older Tecplot products cannot read .szplt files
regardless of their version.

Subzone data files (.szplt) can be loaded only in Tecplot 360 EX. At this writing, there is only one version of
this file format. We anticipate a similar situation as with .plt files, however: future versions of Tecplot 360
EX (after the initial release, Tecplot 360 EX 2014 R1) will be able to read files created with older versions of
the TecIO library, but future versions of Tecplot 360 EX may have features that require a new version of
TecIO to write them, and these files may not be loadable by previous version of Tecplot 360 EX.

3 - 3.1 Deprecated Binary Functions
Functions whose names end in an integer less than 142 are deprecated and are provided only for
compatibility with older code. We recommend you use the 142 binary function family with new code and/
or if you need to update your application to take advantage of the new functionality provided with
version 142. In order to use the 142 family of functions, use the TecIO library included in your Tecplot 360
2015 distribution. If you have existing code using deprecated functions, and want to use any binary
function calls from version 142, you must update all your TecIO library calls to 142.

API version 142 or later allows applications to select between the .plt and .szplt file formats at runtime, a
feature introduced with Tecplot 360 2014 R2. In Tecplot 360 2014 R1, two versions of the TecIO library were
provided, one that wrote .plt files and one that wrote the new .szplt files. Both used version 142 functions
and had identical APIs; the file format was determined solely by the version of the library linked with
your application. In Tecplot 360 2014 R2 and later, a single library is provided, and a parameter was added
to TECINI to choose the format when opening the file for writing (see TECINI142). The library always
writes .plt files when using an API version before 142.

3 - 3.2 Character Strings in FORTRAN
All character string parameters passed to TecIO must use C-style strings: that is, they must terminate with
a null character. In FORTRAN, this can be done by concatenating char(0) to the end of a character string.

For example, to send the character string “Hi Mom” to a function called A, use the following syntax:

I=A("Hi Mom"//char(0))

3 - 3.3 Boolean Flags
Integer parameters identified as "flags" indicate boolean values. Pass 1 for true, and 0 for false.

3 - 4 Binary Data File Function Calling Sequence
For a given file, the binary data file functions must be called in a specific order. The order is as follows:

TECFOREIGN142 (Optional)
TECINI142

For each call to TECINI142, use one or more of the following:
TECAUXSTR142 (Optional)
TECVAUXSTR142 (Optional)
TECZNE142 (One or more to create multiple zones)

For each call to TECZNE142, use one of more of these:
TECDAT142 (One or more to fill each zone)

22

TECNOD142 or TECNODE142 (One or more for each finite element zone)
TECFACE142 (One for each zone with face connections)
TECPOLY142 or TECPOLYFACE142/TECPOLYBCONN142 (Optional - polyhedral data)
TECZAUXSTR142 (Optional)

TECLAB142 (Optional)
TECGEO142 (Optional)
TECTXT142 (Optional)

TECFIL142 (Optional - use if you are switching between files)
TECUSR142 (Optional)
TECEND142

Section 3 - 5 “Writing to Multiple Binary Data Files” explains how you can use the TECFIL142 function
along with the above functions to write to multiple files simultaneously.

3 - 5 Writing to Multiple Binary Data Files
Each time TECINI142 is called it sets up a new file context. For each file context, you must maintain the
order of the calls as described in the previous section. The TECFIL142 function is used to switch between file
contexts. Up to 10 files can be written to at a time. TECFIL142 can be called almost anywhere after TECINI142
has been called. The only parameter to TECFIL142, an integer, n, shifts the file context to the nth open file.
The files are numbered relative to the order of the calls to TECINI142.

3 - 6 Linking with the TecIO Library
Followthe instructions below to link with the TecIO library. The library is provided as a static library on
all platforms, meaning that it becomes a part of your application and is not distributed as a separate file.

3 - 6.1 Linux/Macintosh
To link with the TecIO library, pass the full path to libtecio.a to your compiler or linker along with all
other input files needed to compile and link your application. The TecIO library is written in C++, so in
addition to linking it, you will likely also need to link in the C++ standard library. For example, to create an
output file my-executable from a C source file of my-prog.c and link in the TecIO library and the C++
standard library:

cc -o my-executable my-prog.c /path/to/libtecio.a -lstdc++

#include the TecIO header file TECIO.h in your source files. It may be found in the inlcude directory of your
Tecplot 360 installation.

3 - 6.2 Windows
To link with the TecIO library, list tecio.lib as an additional dependency in your Visual Studio project.

#include the TecIO header file TECIO.h in your source files. It may be found in the include directory of your
Tecplot 360 installation.

Fortran programmers: some Fortran 90 compilers do not recognize the f90 filename
extension.

23

Binary Data File Function Reference

3 - 6.3 Notes for Windows Programmers using Fortran
Files tecio.f90 and tecio.for, located in the include folder in your installation, contain both Fortran-90
interfaces for all TecIO routines and several compiler-specific directives (the !MS$ATTRIBUTES lines).
These direct Visual Fortran to use STDCALL calling conventions with by-reference parameter passing.
While tecio.f90 is free-formatted, tecio.for contains the traditional column-based formatting. Include the
appropriate file in any of your subroutines that call TecIO routines. Both files were developed for Intel
Visual Fortran version 9.

Users of other compilers may need to adjust the Fortran settings or add other compiler directives to
achieve the same effect. In particular, Fortran strings must be null-terminated and passed without a length
argument.

3 - 7 Binary Data File Function Reference
This section describes each of the TecIO functions in detail.

TECAUXSTR142

Writes auxiliary data for the data set to the data file. The function may be called at any time between
TECINI142 and TECEND142. Auxiliary data may be used by text, macros, equations (if it is numeric) and
add-ons. It may be viewed directly in the Aux Data page of the Data Set Information dialog (accessed via
the Data menu).

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECAUXSTR142(Name,
& Value)
 CHARACTER*(*) Name
 CHARACTER*(*) Value

C Syntax:
#include TECIO.h
INTEGER4 TECAUXSTR142(char *Name,

char *Value)

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Example
For example, to set an Auxiliary Variable called DeformationValue to 0.98:

char DeformationValue[128];
strcpy(DeformationValue,"0.98");

Parameter Description

Name The name of the auxiliary data. If this duplicates an existing name, the value will overwrite the
existing value. It must be a null-terminated character string and cannot contain spaces.

Value The value to assign to the named auxiliary data. It must be a null-terminated character string.

24

TECAUXSTR142("DeformationValue",
 DeformationValue);

When the data file is loaded into Tecplot, “Deformation Value” will appear on the Aux Page of the Data Set
Information dialog when “for Data Set” is selected in Show Auxiliary Data menu.

TECDAT142

Writes an array of data to the data file. Data should not be passed for variables that have been indicated as
passive or shared (via TECZNE142).

TECDAT142 allows you to write your data in piecemeal fashion in case it is not contained in one contiguous
block in your program or is not available all at once. TECDAT142 must be called enough times to ensure that
the correct number of values is written for each zone and that the aggregate order for the data is correct.

In the above summary, NumVars is based on the number of variable names supplied in a previous call to
TECINI142.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECDAT142(N,
& Data,
& IsDouble)
 INTEGER*4 N
 REAL or DOUBLE PRECISION Data(1)
 INTEGER*4 IsDouble

C Syntax:
#include TECIO.h
INTEGER4 TECDAT142(INTEGER4 *N,

void *Data,
INTEGER4 *IsDouble);

Return Value:
0 if successful, -1 if unsuccessful.

25

Binary Data File Function Reference

Parameters:

Data Arrangement
The following table describes the order the data must be supplied given different zone types. IsBlock and
VarLocation are parameters supplied to TECZNE142. The value of IsBlock should always be 1, since
binary data must be written in block format:

Example
Refer to the following examples in Section 3 - 9 “Examples” for examples using TECDAT142:

• Section 3 - 9.1 “Face Neighbors”
• Section 3 - 9.2 “Polygonal Example”

Parameter Description

N Pointer to an integer value specifying number of values to write.

Data Array of single or double precision data values. Refer to Table 3 - 1 for a description of how to
arrange your data.

IsDouble Pointer to the integer flag stating whether the array Data is single (0) or double (1) precision.

Zone
Type

Var. Location IsBlock Number of
Values

Order

Ordered Nodal 1

IMax*
JMax*
KMax*
NumVars

I varies fastest, then J, then K, then Vars. That is,
the numbers should be supplied in the following
order:
 for (Var=1;Var<=NumVars;Var++)
 for (K=1;K<=KMax;K++)
 for (J=1;J<=JMax;J++)
 for (I=1;I<=IMax;I++)
 Data[I, J, K, Var] = value;

Ordered Cell Centered 1

(IMax-1)*
(JMax-1)*
(KMax-1)*
NumVars

I varies fastest, then J, then K, then Vars. That is,
the numbers should be supplied in the following
order:
 for (Var=1;Var<=NumVars;Var++)
 for (K=1;K<=(KMax-1);K++)
 for (J=1;J<=(JMax-1);J++)
 for (I=1;I<=(IMax-1);I++)
 Data[I, J, K, Var] = value;

Finite
element Nodal 1

IMax (i.e.
NumNodes) *
NumVars

N varies fastest, then Vars. That is, the numbers
should be supplied in the following order:
 for (Var=1;Var<=NumVars;Var++)
 for (N=1;N<=NumNodes;N++)
 Data[N, Var] = value;

Finite
element Cell Centered 1

JMax (i.e.
NumElements
) * NumVars

E varies fastest, then Var. That is, the numbers
should be supplied in the following order:
 for (Var=1;Var<=NumVars;Var++)
 for (E=1;E<=NumElements;E++)
 Data[E, Var] = value;

Table 3 - 1: Data Arrangement

26

• Section 3 - 9.3 “Multiple Polyhedral Zones”
• Section 3 - 9.4 “Multiple Polygonal Zones”
• Section 3 - 9.5 “Polyhedral Example”
• Section 3 - 9.6 “IJ-ordered zone”

TECEND142

Must be called to close the current data file. There must be one call to TECEND142 for each TECINI142.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECEND142()

C Syntax:
#include TECIO.h
INTEGER4 TECEND142();

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:
None.

TECFACE142

Writes face connections for the current zone to the file. Face Neighbor Connections are used for ordered or
cell-based finite element zones to specify connections that are not explicitly defined by the connectivity list
or ordered zone structure. You many use face neighbors to specify connections between zones (global
connections) or connections within zones (local connections). Face neighbor connections are used by
Tecplot when deriving variables or drawing contour lines. Specifying face neighbors, typically leads to
smoother connections. NOTE: face neighbors have expensive performance implications. Use face
neighbors only to manually specify connections that are not defined via the connectivity list.

This function must be called after TECNOD142 or TECNODE142, and may only be called if a non-zero
value of NumFaceConnections was used in the previous call to TECZNE142.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECFACE142(FaceConnections)
INTEGER*4 FACECONNECTIONS(*)

C Syntax:
#include TECIO.h
INTEGER4 TECFACE142(INTEGER4 *FaceConnections);

Return Value:
0 if successful, -1 if unsuccessful.

27

Binary Data File Function Reference

Parameters:

Where:

cz = cell in current zone

fz = face of cell in current zone

oz = face obscuration flag (only applies to one-to-many):

0 = face partially obscured

1 = face entirely obscured

nz = number of cell or zone/cell associations (only applies to one-to-many)

ZZ = remote Zone

CZ = cell in remote zone

cz,fz combinations must be unique. Additionally, Tecplot 360 assumes that with the one-to-one face
neighbor modes a supplied cell face is entirely obscured by its neighbor. With one-to-many, the
obscuration flag must be supplied. Faces that are not supplied with neighbors are run through Tecplot
360’s auto face neighbor generator (FE only).

Parameter Description

FaceConnect
ions

The array that specifies the face connections. The array must have L values, where L is the sum of
the number of values for each face neighbor connection in the data file. The number of values in a
face neighbor connection is dependent upon the FaceNeighborMode parameter (set via
TECZNE142) and is described in the following table.

FaceNeighbor Mode Number of
values

Data

LocalOneToOne 3 cz1,fz,cz2

LocalOneToMany nz+4 cz1,fz,oz,nz,cz2,cz3,...,czn

GlobalOneToOne 4 cz, fz, ZZ, CZ

GlobalOneToMany 2*nz+4 cz, fz, oz, nz, ZZ1, CZ1, ZZ2, CZ2, ...,ZZn, CZn

28

The face numbers for cells in the various zone types are defined in Figure 3-1.

Figure 3-1. A: Example of node and face neighbors for an FE-brick cell or IJK-ordered cell. B: Example of node and
face numbering for an IJ-ordered/ FE-quadrilateral cell. C: Example of tetrahedron face neighbors.

Example
Refer to Section 3 - 9.1 “Face Neighbors” for an example of working with face neighbors. In this example,
face neighbors are used to prevent an Edge line from being drawn between the two zones.

TECFIL142

Switch output context to a different file. Each time TECINI142 is called the file context is switched to a
different file. This allows you to write multiple data files at the same time. When working with multiple
files, be sure to call TECFIL142 each time you wish to write to a file. This will ensure your data is written to
the appropriate file.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECFIL142(F)
INTEGER*4 F

C Syntax:
#include TECIO.h
INTEGER4 TECFIL142(INTEGER4 *F);

Return Value:
0 if successful, -1 if unsuccessful.

A B C

29

Binary Data File Function Reference

Parameters:

Examples
Refer to Section 3 - 9.7 “Switching Between Two Files” for a simple example of working with TECFIL142.

TECFOREIGN142

Optional function that sets the byte ordering request for subsequent calls to TECINI142. The byte ordering
request will remain in effect until the next call to this function. This has no effect on files already opened
via TECINI142. Use this function to reverse the byte ordering from the format native to your operating
system. For example, this is useful if you are creating a file on an SGI machine to be used on a Windows or
Intel-based Linux machine. If the function call is omitted, native byte ordering will be used.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECFOREIGN142(DoForeignByteOrder)
INTEGER*4 DoForeignByteOrder

C Syntax:
#include TECIO.h
INTEGER4 TECFOREIGN142(INTEGER4 *DoForeignByteOrder);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

TECGEO142

Adds a geometry object to the file (e.g. a circle or a square). NOTE: you cannot set unused parameters to
NULL. You must use dummy values for unused parameters.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECGEO142(XOrThetaPos,
& YOrRPos,
& ZPos,
& PosCoordMode,
& AttachToZone,

Parameter Description

F Pointer to integer specifying file number to switch to. A value of 1 indicates a switch to the file
opened by the first call to TECINI142.

Parameter Description

DoForeignByteOrd
er

Pointer to boolean value indicating if future files created by TECINI142 should be
written out in foreign byte order. 0 indicates native byte order. 1 indicates foreign byte
order.

30

& Zone,
& Color,
& FillColor,
& IsFilled,
& GeomType,
& LinePattern,
& PatternLength,
& LineThicknessness,
& NumEllipsePts,
& ArrowheadStyle,
& ArrowheadAttachment,
& ArrowheadSize,
& ArrowheadAngle,
& Scope,
& Clipping,
& NumSegments,
& NumSegPts,
& XOrThetaGeomData,
& YOrRGeomData,
& ZGeomData,
& MFC)
 DOUBLE PRECISION XOrThetaPos
 DOUBLE PRECISION YOrRPos
 DOUBLE PRECISION ZPos
 INTEGER*4 PosCoordMode
 INTEGER*4 AttachToZone
 INTEGER*4 Zone
 INTEGER*4 Color
 INTEGER*4 FillColor
 INTEGER*4 IsFilled
 INTEGER*4 GeomType
 INTEGER*4 LinePattern
 DOUBLE PRECISION PatternLength
 DOUBLE PRECISION LineThicknessness
 INTEGER*4 NumEllipsePts
 INTEGER*4 ArrowheadStyle
 INTEGER*4 ArrowheadAttachment
 DOUBLE PRECISION ArrowheadSize
 DOUBLE PRECISION ArrowheadAngle
 INTEGER*4 Scope
 INTEGER*4 Clipping
 INTEGER*4 NumSegments
 INTEGER*4 NumSegPts
 REAL*4 XOrThetaGeomData
 REAL*4 YOrRGeomData
 REAL*4 ZGeomData
 CHARACTER*(*) MFC

C Syntax:
#include TECIO.h
INTEGER4 TECGEO142(double *XOrThetaPos,
double *YOrRPos,
double *ZPos,
INTEGER4 *PosCoordMode,
INTEGER4 *AttachToZone,
INTEGER4 *Zone,
INTEGER4 *Color,
INTEGER4 *FillColor,
INTEGER4 *IsFilled,
INTEGER4 *GeomType,
INTEGER4 *LinePattern,
double *PatternLength,
double *LineThicknessness,
INTEGER4 *NumEllipsePts,
INTEGER4 *ArrowheadStyle,
INTEGER4 *ArrowheadAttachment,
double *ArrowheadSize,
double *ArrowheadAngle,
INTEGER4 *Scope,
INTEGER4 *Clipping,

31

Binary Data File Function Reference

INTEGER4 *NumSegments,
INTEGER4 *NumSegPts,
float *XOrThetaGeomData,
float *YOrRGeomData,
float *ZGeomData,
char *MFC

Return Value:
0 if successful, -1 if unsuccessful.

32

Parameters:

Parameter Description

XPos
Pointer to double value specifying the X- position or, for polar line plots, the Theta-
position of the geometry.or

ThetaPos

YPos
Pointer to double value specifying the Y-position or, for polar line plots, the R-position
of the geometry.or

RPos

ZPos Pointer to double value specifying the Z-position of the geometry.

PosCoordMode

Pointer to integer value specifying the position coordinate system.
0=Grid
1=Frame
6=Grid3D

Grid3D is available only when the GeomType is equal to 3D Line Segments.

AttachToZone
Pointer to integer flag to signal that the geometry is “attached” to a zone. When a
geometry is attached to a zone, it will be visible only when that zone is visible.

1 = Yes 0 = No

Zone Pointer to integer value specifying the number of the zone to attach to. Must be greater
than or equal to one.

Color

Pointer to integer value specifying the color to assign to the geometry.
0=Black 8=Custom1
1=Red 9=Custom2
2=Green 10=Custom3
3=Blue 11=Custom4
4=Cyan 12=Custom5
5=Yellow 13=Custom6
6=Purple 14=Custom7
7=White 15=Custom8

FillColor Pointer to integer value specifying the color used to fill the geometry. Refer to Color for
a list of available values.

IsFilled Pointer to integer flag to specify if geometry is to be filled.
1 = Yes 0 = No

GeomType
Pointer to integer value specifying the geometry type.

0=2D Line Segments 3=Circle
1=Rectangle 4=Ellipse
2=Square 5=3D Line Segments

LinePattern
Pointer to integer value specifying the line pattern.

0=Solid 3=Dotted
1=Dashed 4=LongDash
2=DashDot 5=DashDotDot

PatternLength Pointer to double value specifying the pattern length in frame units (from 0.01 and less
than 100).

LineThicknessness Pointer to double value specifying the line thickness in frame units. The value must be
greater than 0.0001 and less than 100.

NumEllipsePts Pointer to integer value specifying the number of points to use for circles and ellipses.
The value must be between 2 and 720.

33

Binary Data File Function Reference

Origin positions
The origin (XOrThetaPos, YOrRPos, ZPos) of each geometry type is listed below:

• SQUARE - lower left corner at XOrThetaPos, YOrRPos.
• RECTANGLE - lower left corner at XOrThetaPos, YOrRPos.
• CIRCLE - centered at XOrThetaPos, YOrRPos.
• ELLIPSE - centered at XOrThetaPos, YOrRPos.
• LINE - anchored at XOrThetaPos, YOrRPos.
• LINE3D - anchored at XOrThetaPos, YOrRPos, ZPos.

Data Values
The origin (XOrThetaGeomData, YOrRGeomData, ZGeomData) of each geometry type is listed below:

• SQUARE - set XOrThetaGeomData equal to the desired length.
• RECTANGLE - set XOrThetaGeomData equal to the desired width and YOrThetaGeomData equal to

the desired height.
• CIRCLE - set XOrThetaGeomData equal to the desired radius.

ArrowheadStyle
Pointer to integer value specifying the arrowhead style.

0=Plain 2=Hollow
1=Filled

ArrowheadAttachmen
t

Pointer to integer value specifying where to attach arrowheads.
0=None 2=End
1=Beginning 3=Both

ArrowheadSize Pointer to double value specifying the arrowhead size in frame units (from 0 to 100).

ArrowheadAngle Pointer to double value specifying the arrowhead angle in degrees.

Scope

Pointer to integer value specifying the scope with respect to frames. A local scope places
the object in the active frame. A global scope places the object in all frames that contain
the active frame’s data set.

0=Global 1=Local.

Clipping
Specifies whether to clip the geometry (that is, only plot the geometry within) to the
viewport or the frame.

0=ClipToViewport 1=ClipToFrame.

NumSegments Pointer to integer value specifying the number of polyline segments.

NumSegPts Array of integer values specifying the number of points in each of the NumSegments
segments.

XGeomData

Array of floating-point values specifying the X-, Y- and Z-coordinates. Refer to “Data
Values” on page 33 for information regarding the values required for each GeomType.

ThetaGeomData

YGeomData

RGeomData

ZGeomData

MFC Macro function command. Must be null terminated.

Parameter Description

34

• ELLIPSE - set XOrThetaGeomData equal to the desired width along the x-axis and
YOrThetaGeomData equal to the desired width along the y-axis.

• LINE - specify the coordinate positions for the data points in each line segment with
XOrThetaGeomData and YOrRGeomData.

• LINE3D - specify the coordinate positions for the data points in each line segment with
XOrThetaGeomData, YOrRGeomData and ZGeomData.

TECINI142

Initializes the process of writing a binary data file. Either this function or TECINI142 must be called first
before any other TecIO calls are made (except TECFOREIGN142). You may write to multiple files by calling
TECINI142 more than once. Each time TECINI142 is called, a new file is opened. Use TECFIL142 to switch
between files. For each call to TECINI, there must be a corresponding call to TECEND142.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECINI142(Title,
& Variables,
& FName,
& ScratchDir,
& FileFormat,
& FileType,
& Debug,
& VIsDouble)
CHARACTER*(*) Title
CHARACTER*(*) Variables
CHARACTER*(*) ScratchDir
CHARACTER*(*) FName
INTEGER*4 FileFormat
INTEGER*4 FileType
INTEGER*4 Debug
INTEGER*4 VIsDouble

C Syntax:
#include TECIO.h
INTEGER4 TECINI142(char *Title,

char *Variables,
char *FName,
char*ScratchDir,
INTEGER4*FileFormat,
INTEGER4*FileType,
INTEGER4*Debug
INTEGER4*VIsDouble);

Return Value:
0 if successful, -1 if unsuccessful.

35

Binary Data File Function Reference

Parameters:

Examples
Each example in Section 3 - 9 “Examples” calls TECINI142 at least once. Refer to this section for details.

TECLAB142

Adds custom labels to the data file. Custom Labels can be used for axis labels, legend text, and tick mark
labels. The first custom label string corresponds to a value of one on the axis, the next to a value of two, the
next to a value of three, and so forth. You must have at least one zone in your data set.

A custom label set is added to your file each time you call TECLAB142. You may have up to sixty labels in a
set and up to ten sets in a file. Each label must be surrounded by double-quotes, e.g. “Mon” “Tues” “Wed”,
etc. The \n escape sequence may be used to indicate a line break.

Custom labels are assigned to an object via the Tecplot interface. Refer to Section 17 - 8 “Axis Title
Options” in the User’s Manual for details.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECLAB142(Labels)
CHARACTER*(*) Labels

C Syntax:
#include TECIO.h
INTEGER4 TECLAB142(char *Labels);

Return Value:
0 if successful, -1 if unsuccessful.

Parameter Description

Title Title of the data set. Must be null terminated.

Variables List of variable names. If a comma appears in the string it will be used as the separator between
variable names, otherwise a space is used. Must be null terminated.

FName Name of the file to create. Must be null terminated.

ScratchDir Name of the directory to put the scratch file. Must be null terminated.

FileFormat Specifies the file format to be used.
0=Tecplot binary (.plt) 1=Tecplot subzone loadable (.szplt)

FileType
Specify whether the file is a full data file (containing both grid and solution data), a grid file or a
solution file.

0=Full 1=Grid 2=Solution

Debug Pointer to the integer flag for debugging. Set to 0 for no debugging or 1 to debug. When set to 1,
the debug messages will be sent to the standard output (stdout).

VIsDouble
Pointer to the integer flag for specifying whether field data generated in future calls to
TECDAT142 are to be written in single or double precision.

0=Single 1=Double

36

Parameters:

Examples
To add the days of the week to your data file, to be displayed along the x-axis:

char Labels[60] = "\"Mon\", \"Tues\",\"Wed\",\"Thurs\", \”Fri\”";
TECLAB142(&Labels[0]);

TECNOD142

Writes an array of node data to the binary data file. This is the connectivity list for cell-based finite element
zones (line segment, triangle, quadrilateral, brick, and tetrahedral zones). The connectivity list for face-
based finite element zones (polygonal and polyhedral) is specified via TECPOLY142.

See also TECNODE142, which allows you to provide connectivity information in arbitrarily-sized chunks
rather than requiring it all at once.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECNOD142(NData)
INTEGER*4 NData (T, M)

C Syntax:
#include TECIO.h
INTEGER4 TECNOD142(INTEGER4 *NData);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Examples:
Refer to Section 3 - 9.1 “Face Neighbors” for examples using TECNOD142.

Parameter Description

Labels Character string of custom labels. Each label must be surrounded by double-quotes. Separate
labels by a comma or space. You may have up to sixty labels in each call to TECLAB142.

Parameter Description

NData

Array of integers listing the nodes for each element. This is the connectivity list, dimensioned (T,
M) (T moving fastest), where M is the number of elements in the zone and T is set according to
the following list:

2=Line Segment 4=Tetrahedral
3=Triangle 8=Brick
4=Quadrilateral

37

Binary Data File Function Reference

TECNODE142

Writes a chunk of node data to the binary data file. This is the connectivity list for cell-based finite element
zones (line segment, triangle, quadrilateral, brick, and tetrahedral zones). The connectivity list for face-
based finite element zones (polygonal and polyhedral) is specified via TECPOLY142.

This function is similar to TECNOD142 but does not require that the entire connectivity list be provided at
once. Rather, you may call TECNODE142 as many times as you like, providing connectivity information
for as many elements as you like each time, so long as you eventually provide connectivity information
for all elements in the zone.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECNODE142(N, NData)
INTEGER*4 N
INTEGER*4 NData (T, M)

C Syntax:
#include TECIO.h
INTEGER4 TECNODE142(INTEGER4 *N, INTEGER4 *NData);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

TECPOLY142

Writes the face map for polygonal and polyhedral zones to the data file. All numbering schemes are one-
based. The first node is Node 1, the first face is Face 1, and so forth. Refer to Section 3 - 8 “Defining
Polyhedral and Polygonal Data” on page 52 for additional information.

The TECPOLY142 function requires that all face map data, both face nodes and boundary connections, be
provided with a single call. For most applications, we recommend you use TECPOLYFACE142 and
TECPOLYBCONN142 instead, as these do not have this requirement and can be used when the face map
data is not available all at once or will not fit into memory.

Avoid creating concave objects (or bad meshes), as they will not look good when plotted.

FORTRAN syntax:
 INTEGER*4 FUNCTION TECPOLY142(
& FaceNodeCounts,
& FaceNodes,

Parameter Description

N Handle to an integer indicating the number of values to write.

NData

Array of integers listing the nodes for each element. This is the connectivity list, dimensioned (T,
N) (T moving fastest), where N is the number of elements provided in this call to TECNODE142
and T is set according to the following list:

2=Line Segment 4=Tetrahedral
3=Triangle 8=Brick
4=Quadrilateral

38

& FaceLeftElems,
& FaceRightElems,
& FaceBndryConnectionCounts,
& FaceBndryConnectionElems,
& FaceBndryConnectionZones)
 INTEGER*4 FaceNodeCounts(*)
 INTEGER*4 FaceNodes(*)
 INTEGER*4 FaceLeftElems(*)
 INTEGER*4 FaceRightElems(*)
 INTEGER*4 FaceBndryConnectionCounts(*)
 INTEGER*4 FaceBndryConnectionElems(*)
 INTEGER*2 FaceBndryConnectionZones(*)

C Syntax:
include TECIO.h
INTEGER4 TECPOLY142(INTEGER4 *FaceNodeCounts,
 INTEGER4 *FaceNodes,
 INTEGER4 *FaceLeftElems,
 INTEGER4 *FaceRightElems,
 INTEGER4 *FaceBndryConnectionCounts,
 INTEGER4 *FaceBndryConnectionElems,
 INTEGER4 *FaceBndryConnectionZones);

Return Value:
0 if successful, -1 if unsuccessful.

39

Binary Data File Function Reference

Parameters:

TECPOLYFACE142

Writes the face nodes of the face map for polygonal and polyhedral zones. All numbering schemes are
one-based. The first node is Node 1, the first Face is Face 1, and so forth. Refer to Section 3 - 8 “Defining
Polyhedral and Polygonal Data” on page 52 for additional information.

This function may be called any number of times, with any number of face nodes each time, so long as face
nodes for all faces are eventually written. You must also, at some point, call TECPOLYBCONN142 to
specify any boundary connections in the zone; this can be done in any order, even to the point of
interleaving calls to specify boundary connections and face nodes.

Using the two functions TECPOLYFACE142 and TECPOLYBCONN142 is generally preferred to using
TECPOLY142, as the latter requires all face node data be available at once.

Avoid creating concave objects (or bad meshes), as they will not look good when plotted.

FORTRAN syntax:
 INTEGER*4 FUNCTION TECPOLYFACE142(
& NumFaces,
& FaceNodeCounts,
& FaceNodes,
& FaceLeftElems,
& FaceRightElems)
 INTEGER*4 NumFaces(*)
 INTEGER*4 FaceNodeCounts(*)
 INTEGER*4 FaceNodes(*)
 INTEGER*4 FaceLeftElems(*)
 INTEGER*4 FaceRightElems(*)

Parameter Description

FaceNodeCounts
An array used to define the number of nodes in each face. The array is
dimensioned by the number of faces (defined in TECZNE142). This is NULL
for polygonal zones, as each face in a polygonal zone has exactly two nodes.

FaceNodes An array used to specify which nodes belong to which face. The array is
dimensioned by TotalNumFaceNodes (defined in TECZNE142).

FaceLeftElems An array used to define the left neighboring element for each face. The array is
dimensioned by NumFaces (defined in TECZNE142).

FaceRightElems An array used to define the right neighboring element for each face. The array
is dimensioned by NumFaces (defined in TECZNE142).

FaceBndryConnectionCounts
An array used to define the number of boundary connections for each
boundary face. The array is dimensioned by NumConnectedBoundaryFaces
(defined in TECZNE142).

FaceBndryConnectionElems
An array used to define the boundary element(s) to which each boundary face
is connected. The array is dimensioned by TotalNumBndryConnections
(defined in TECZNE142).

FaceBndryConnectionZones
An array used to define the zone(s) to which each boundary element belongs.
The array is dimensioned by TotalNumBndryConnections (defined in
TECZNE142).

40

C Syntax:
include TECIO.h
INTEGER4 TECPOLYFACE142(INTEGER4 *NumFaces,
 INTEGER4 *FaceNodeCounts,
 INTEGER4 *FaceNodes,
 INTEGER4 *FaceLeftElems,
 INTEGER4 *FaceRightElems);

Return Value:
0 if successful; -1 if unsuccessful.

Parameters:

Examples:
Refer to the following sections for examples using TECPOLYFACE142:

• 3 - 9.2 “Polygonal Example”
• 3 - 9.3 “Multiple Polyhedral Zones”
• 3 - 9.4 “Multiple Polygonal Zones”
• 3 - 9.5 “Polyhedral Example”

TECPOLYBCONN142

Writes the boundary connections of the face map for polygonal and polyhedral zones. Boundary faces are
faces that either have more than one neighboring cell on a side or have at least one neighboring cell in
another zone. (Refer to Section 3 - 8.1 “Boundary Faces and Boundary Connections” on page 52 for a
simple example.)

All numbering schemes are one-based. The first node is Node 1, the first face is Face 1, and so forth. Refer
to Section 3 - 8 “Defining Polyhedral and Polygonal Data” on page 52 for additional information.

This function may be called any number of times, with any number boundary connections each time, so
long as boundary connections for all faces are eventually written. You must also, at some point, call
TECPOLYFACE142 at least once to specify the face nodes. This can be done in any order, even to the point
of interleaving calls to specify boundary connections and face nodes.

Parameter Description

NumFaces
The number of faces being defined in this call. TECPOLYFACE142 may be called any number of
times with any number of faces in each call, so long as all faces in the zone are eventually
defined.

FaceNodeCounts
An array used to define the number of nodes in each face. The array is dimensioned by
NumFaces. This is NULL for polygonal zones, as each face in a polygonal zone is already
known to have exactly two nodes.

FaceNodes An array used to specify the nodes belonging to each face. The array is dimensioned by the sum
of the FaceNodeCounts array for polyhedral zones or, for polygonal zones, twice NumFaces.

FaceLeftElems An array used to define the left neighboring element for each face. The array is dimensioned by
NumFaces.

FaceRightElems An array used to define the right neighboring element for each face. The array is dimensioned
by NumFaces.

41

Binary Data File Function Reference

Using the two functions TECPOLYFACE142 and TECPOLYBCONN142 is generally preferred to using
TECPOLY142, as the latter requires that all face map data (including boundary connections) be available at
once.

Avoid creating concave objects (or bad meshes), as they will not look good when plotted.

FORTRAN syntax:
 INTEGER*4 FUNCTION TECPOLYBCONN142(
& NumBndryFaces,
& FaceBndryConnectionCounts,
& FaceBndryConnectionElems,
& FaceBndryConnectionZones)
 INTEGER*4 NumBndryFaces(*)
 INTEGER*4 FaceBndryConnectionCounts(*)
 INTEGER*4 FaceBndryConnectionElems(*)
 INTEGER*2 FaceBndryConnectionZones(*)

C Syntax:
#include TECIO.h
INTEGER4 TECPOLYBCONN142(INTEGER4 *NumBndryFaces,
 INTEGER4 *FaceBndryConnectionCounts,
 INTEGER4 *FaceBndryConnectionElems,
 INTEGER4 *FaceBndryConnectionZones);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Examples:
Refer to the following sections for examples using TECPOLYBCONN142:

• 3 - 9.2 “Polygonal Example”
• 3 - 9.3 “Multiple Polyhedral Zones”
• 3 - 9.4 “Multiple Polygonal Zones”
• 3 - 9.5 “Polyhedral Example”

Parameter Description

NumBndryFaces

The number of boundary faces being defined in this call. Each call to
TECPOLYBCONN142 may define any number of boundary faces, so long as all
boundary faces (i.e., NumConnectedBoundaryFaces in TECZNE142) are
eventually defined.

FaceBndryConnectionCounts An array used to define the number of boundary connections for each
boundary face. The array is dimensioned by NumBndryFaces.

FaceBndryConnectionElems An array used to define the boundary element(s) to which each boundary face
is connected.

FaceBndryConnectionZones An array used to define the zone(s) to which each boundary element belongs.

42

TECTXT142

Adds a text box to the file.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECTXT142(XOrThetaPos,
& YOrRPos,
& ZOrUnusedPos,
& PosCoordMode,&
& AttachToZone,
& Zone,
& Font,
& FontHeightUnits,
& FontHeight,
& BoxType,
& BoxMargin,
& BoxLineThickness,
& BoxColor,
& BoxFillColor,
& Angle,
& Anchor,
& LineSpacing,
& TextColor,
& Scope,
& Clipping,
& Text,
& MFC)
 DOUBLE PRECISION XOrThetaPos
 DOUBLE PRECISION YOrRPos
 DOUBLE PRECISION ZOrUnusedPos
 INTEGER*4 PosCoordMode
 INTEGER*4 AttachToZone
 INTEGER*4 Zone
 INTEGER*4 Font
 INTEGER*4 FontHeightUnits
 DOUBLE PRECISION FontHeight
 INTEGER*4 BoxType
 DOUBLE PRECISION BoxMargin
 DOUBLE PRECISION BoxLineThickness
 INTEGER*4 BoxColor
 INTEGER*4 BoxFillColor
 DOUBLE PRECISION Angle
 INTEGER*4 Anchor
 DOUBLE PRECISION LineSpacing
 INTEGER*4 TextColor
 INTEGER*4 Scope
 INTEGER*4 Clipping
 CHARACTER*(*) Text
 CHARACTER*(*) MFC

C Syntax:
#include TECIO.h
INTEGER4 TECTXT142(double *XOrThetaPos,

double *YOrRPos,
double *ZOrUnusedPos,
INTEGER4*PosCoordMode,
INTEGER4*AttachToZone,
INTEGER4*Zone,
INTEGER4*Font,
INTEGER4*FontHeightUnits,
double*FontHeight,
INTEGER4*BoxType,
double*BoxMargin,
double*BoxLineThickness,
INTEGER4*BoxColor,
INTEGER4*BoxFillColor,
double*Angle,

43

Binary Data File Function Reference

INTEGER4*Anchor,
double*LineSpacing,
INTEGER4*TextColor,
INTEGER4*Scope,
INTEGER4*Clipping,
char*Text,
char*MFC)

Return Value:
 0 if successful, -1 if unsuccessful.

44

Parameters:

Parameter Description

XOrThetaPos Pointer to double value specifying the X-position or Theta-position (polar plots only) of the
text.

YOrRPos Pointer to double value specifying the Y-position or R-position (polar plots only) of the text.

ZOrUnusedPos Pointer to double value specifying the Z-position of the text.

PosCoordMode

Pointer to integer value specifying the position coordinate system.
0=Grid
1=Frame
6=Grid3D

If you use Grid3D, the plot type must be set to 3D Cartesian to view your text box.

AttachToZone Pointer to integer flag to signal that the text is “attached” to a zone.

Zone Pointer to integer value specifying the zone number to attach to.

Font

Pointer to integer value specifying the font.
0=Helvetica 6=Times Italic
1=Helvetica Bold 7=Times Bold
2=Greek 8=Times Italic Bold
3=Math 9=Courier
4=User-Defined 10=Courier Bold
5=Times

FontHeightUnits
Pointer to integer value specifying the font height units.

0=Grid 2=Point
1=Frame

FontHeight Pointer to double value specifying the font height. If PosCoordMode is set to FRAME, the
value range is zero to 100.

BoxType
Pointer to integer value specifying the box type.

0=None 2=Hollow
1=Filled

BoxMargin Pointer to double value specifying the box margin (in frame units ranging from 0 to 100).

BoxLineThickness Pointer to double value specifying the box line thickness (in frame units ranging from 0.0001
to 100).

BoxColor

 Pointer to integer value specifying the color to assign to the box.
0=Black 8=Custom1
1=Red 9=Custom2
2=Green 10=Custom3
3=Blue 11=Custom4
4=Cyan 12=Custom5
5=Yellow 13=Custom6
6=Purple 14=Custom7
7=White 15=Custom8

BoxFillColor Pointer to integer value specifying the fill color to assign to the box. (See BoxColor)

Angle Pointer to double value specifying the text angle in degrees.

Anchor

 Pointer to integer value specifying where to anchor the text.
0=Left 5=MidRight
1=Center 6=HeadLeft
2=Right 7=HeadCenter
3=MidLeft 8=HeadRight
4=MidCenter

45

Binary Data File Function Reference

Examples
Refer to Section 3 - 9.8 “Text Example” for an example of working with TECTXT142.

TECUSR142

Writes a character string to the data file in a USERREC record. USERREC records are ignored by Tecplot
360, but may be used by add-ons.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECUSR142(S)
CHARACTER*(*) S

C Syntax:
#include TECIO.h
INTEGER4 TECUSR142(CHAR *S);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

TECVAUXSTR142

Writes an auxiliary data item to the data file for the specified variable. Must be called after TECINI142 and
before TECEND142. Auxiliary data may be used by text, macros, equations (if it is numeric) and add-ons. It
may be viewed directly in the Aux Data page of the Data Set Information dialog (accessed via the Data

LineSpacing Pointer to double value specifying the text line spacing.

TextColor Pointer to integer value specifying the color to assign to the text. (See BoxColor)

Scope

Pointer to integer value specifying the scope with respect to frames. A local scope places the
object in the active frame. A global scope places the object in all frames that contain the
active frame’s data set.

0=Global 1=Local

Clipping
Specifies whether to clip the geometry (that is, only plot the geometry within) to the
viewport or the frame.

 0=ClipToViewport 1=ClipToFrame.

Text Character string representing text to display. Must be null terminated.

MFC Macro function command. Must be null terminated.

Parameter Description

S The character string to write to the data file. Must be null-terminated.

Parameter Description

46

menu). The value can be verified by selecting “Variable” from the “Show Auxiliary Data” menu and
selecting the corresponding variable number from the menu.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECVAUXSTR142(Var, Name, Value)
INTEGER*4 Var
CHARACTER*(*) Name
CHARACTER*(*) Value

C Syntax:
#include TECIO.h
INTEGER4 TECAUXSTR142(INTEGER4 *Var,
 char *Name,
 char *Value);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Example:
The following example illustrates adding auxiliary data to the pressure variable in the data file. In this
case, pressure is the third variable.

 INTEGER4 Var = 3;
 char PressureUnitsName[16] = "PressureUnits";
 char PressureUnitsValue[16] = "Pascal (Pa)";

 TECVAUXSTR142(&Var,
 &PressureUnitsName[0],
 &PressureUnitsValue[0]);

TECZAUXSTR142

Writes an auxiliary data item for the current zone to the data file. Must be called immediately after
TECZNE142 for the desired zone. Auxiliary data may be used by text, macros, equations (if it is numeric)
and add-ons. It may be viewed directly in the Aux Data page of the Data Set Information dialog (accessed
via the Data menu). The value can be verified by selecting “Zone” from the “Show Auxiliary Data” menu
and selecting the corresponding zone number.

FORTRAN Syntax:
INTEGER*4 FUNCTION TECZAUXSTR142(Name, Value)
CHARACTER*(*) Name
CHARACTER*(*) Value

Parameter Description

Var The variable number for which to set the auxiliary data. Variable numbers start at one.

Name The name of the auxiliary data item. If a data item with this name already exists, its value will be
overwritten. Must be a null-terminated character string and cannot contain spaces.

Value The auxiliary data value to be written to the data file. Must be a null-terminated character string.

47

Binary Data File Function Reference

C Syntax:
#include TECIO.h
INTEGER4 TECZAUXSTR142(char *Name,
 char *Value);

Return Value:
0 if successful, -1 if unsuccessful.

Parameters:

Example:
The following example code adds auxiliary data to the zone. NOTE: TECZAUXSTR142 must be called
immediately after TECZNE142 for the desired zone.

char CreatedByName[16] = "CreatedBy";
char CreatedByValue[16] = "My Company";

TECZAUXSTR142(&CreatedByName[0],
 &CreatedByValue[0]);

TECZNE142

Writes header information about the next zone to be added to the data file. After TECZNE142 is called, you
must call TECDAT142 one or more times. If the zone is a finite element zone, call TECNOD142/
TECNODE142 (cell-based zones) or TECPOLY142/TECPOLYFACE142/TECPOLYBCONN142 (face-based
zones) after calling TECDAT142.

FORTRAN Syntax:
 INTEGER*4 FUNCTION TECZNE142(ZoneTitle,
& ZoneType,
& IMxOrNumPts,
& JMxOrNumElements,
& KMxOrNumFaces,
& ICellMax,
& JCellMax,
& KCellMax,
& SolutionTime,
& StrandID,
& ParentZone,
& IsBlock,

Parameter Description

Name The name of the auxiliary data item. If a data item with this name already exists, its value will be
overwritten. Must be a null-terminated character string and cannot contain spaces.

Value The auxiliary data value to be written to the data file. Must be a null-terminated character string.

When specifiying your ZoneType, please note that some features in Tecplot 360 are
limited by zone type. For example, iso-surfaces and slices are available for 3D zones
types only (FETETRAHEDRON, FEBRICK, FEPOLYHEDRON and ORDERED - with K greater
than 1).
However, the plot type that you specify (in Tecplot 360 once you have loaded your data)
is not limited by your zone type. You may have a 3D zone displayed in a 2D Cartesian
plot (and visa versa).

48

& NumFaceConnections,
& FaceNeighborMode,
& TotalNumFaceNodes,
& NumConnectedBoundaryFaces,
& TotalNumBoundaryConnections,
& PassiveVarList,
& ValueLocation,
& ShareVarFromZone,
& ShareConnectivityFromZone)
 CHARACTER*(*) ZoneTitle
 INTEGER*4 ZoneType
 INTEGER*4 IMxOrNumPts
 INTEGER*4 JMxOrNumElements
 INTEGER*4 KMxOrNumFaces
 INTEGER*4 ICellMax
 INTEGER*4 JCellMax
 INTEGER*4 KCellMax
 DOUBLE PRECISION Solution Time
 INTEGER*4 StrandID
 INTEGER*4 ParentZone
 INTEGER*4 IsBlock
 INTEGER*4 NumFaceConnections
 INTEGER*4 FaceNeighborMode
 INTEGER*4 TotalNumFaceNodes,
 INTEGER*4 NumConnectedBoundaryFaces,
 INTEGER*4 TotalNumBoundaryConnections,
 INTEGER*4 PassiveVarList(*)
 INTEGER*4 ValueLocation
 INTEGER*4 ShareVarFromZone(*)
 INTEGER*4 ShareConnectivityFromZone

C Syntax:
#include TECIO.h

INTEGER4 TECZNE142(char *ZoneTitle,
INTEGER4*ZoneType,
INTEGER4*IMxOrNumPts,
INTEGER4*JMxOrNumElements,
INTEGER4*KMxOrNumFaces,
INTEGER4*ICellMax,
INTEGER4*JCellMax,
INTEGER4*KCellMax,
DOUBLE*SolutionTime,
INTEGER4*StrandID,
INTEGER4*ParentZone,
INTEGER4*IsBlock,
INTEGER4*NumFaceConnections,
INTEGER4*FaceNeighborMode,
INTEGER4*TotalNumFaceNodes,
INTEGER4*NumConnectedBoundaryFaces,
INTEGER4*TotalNumBoundaryConnections,
INTEGER4*PassiveVarList,
INTEGER4*ValueLocation,
INTEGER4*ShareVarFromZone,
INTEGER4*ShareConnectivityFromZone)

Return Value:
0 if successful, -1 if unsuccessful.

49

Binary Data File Function Reference

Parameters:

Parameter Applies to Zone
Type(s) Notes

ZoneTitle ALL The title of the zone. Must be null-terminated.

ZoneType ALL

The type of the zone:
0=ORDERED
1=FELINESEG
2=FETRIANGLE
3=FEQUADRILATERAL
4=FETETRAHEDRON
5=FEBRICK
6=FEPOLYGON
7=FEPOLYHEDRON

IMax
or
NumPts

ALL
For ordered zones, the number of nodes in the I-
index direction. For finite element zones (cell-based
and face-based), the number of nodes.

JMax
or
NumElements

ALL
For ordered zones, the number of nodes in the J
index direction. For finite element zones (cell-based
and face-based), the number of elements.

KMax
or
NumFaces

ORDERED
FEPOLYGON
FEPOLYHEDRON

For ordered zones, the number of nodes in the K
index direction. For polyhedral and polygonal finite
element zones, it is the number of faces. Not used all
other finite element zone types.

ICellMax N/A Reserved for future use. Set to zero.

JCellMax N/A Reserved for future use. Set to zero.

KCellMax N/A Reserved for future use. Set to zero.

SolutionTime ALL

Scalar double precision value specifying the time
associated with the zone. Refer to Section 7 - 2 “Time
Aware” in the User’s Manual for additional
information on working with transient data.

StrandID ALL

Scalar integer value specifying the strand to which
the zone is associated.

0 = static zone, not associated with a strand.
Values greater than 0 indicate a zone is assigned to a
given strand.

Refer to Section 7 - 2 “Time Aware” in the User’s
Manual for additional information on strands.

If you are converting your function calls from
function calls 109 or older, use “0” for StrandID.

50

ParentZone ALL

Scalar integer value representing the relationship
between this zone and its parent. With a parent zone
association, Tecplot 360 can generate a surface
streamtrace on a no-slip boundary zone. A zone may
not specify itself as its own parent.

 0 = indicates that this zone is not associated with a
parent zone.
>0 = A value greater than zero is considered this
zone's parent.

Refer to Section 7 - 2 “Time Aware” in the User’s
Manual for additional information on parent zones
and Section 15 - 2 “Surface Streamtraces on No-slip
Boundaries” in the User’s Manual for additional
information regarding no-slip boundaries.

IsBlock ALL

Indicates that data will be passed into TECDAT142 in
BLOCK format. Always use 1 to indicate the BLOCK
format, as TecZne functions do not output in point
format.

NumFaceConnections

ORDERED
FELINESEG
FETRIANGLE
FEQUADRILATERAL
FETETRAHEDRON
FEBRICK

Used for cell-based finite element and ordered zones
only. The number of face connections that will be
passed in routine TECFACE142.

FaceNeighborMode

ORDERED
FELINESEG
FETRIANGLE
FEQUADRILATERAL
FETETRAHEDRON
FEBRICK

Used for cell-baseda finite element and ordered zones
only. The type of face connections that will be passed
in routine TECFACE142.

0=LocalOneToOne
2=GlobalOneToOne
1=LocalOneToMany
3=GlobalOneToMany

TotalNumFaceNodes FEPOLYGON
FEPOLYHEDRON

Used for face-basedb finite element zones. Total
number of nodes for all faces. It is also the sum of the
FaceNodeCounts array (defined in TECPOLY142).
For polygonal zones this value is equivalent to 2 *
NumFaces. NumFaces = the number of faces in the
zone. Refer to Section 3 - 8.2 “FaceNodeCounts and
FaceNodes” for simple example.

NumConnectedBoundaryFaces FEPOLYGON
FEPOLYHEDRON

Used for face-basedb finite element zones. Total
number of boundary faces, where boundary faces are
faces that either have more than one neighboring cell
on a side or have a neighboring cell from another
zone. Refer to Section 3 - 8.1 “Boundary Faces and
Boundary Connections” for simple example.

Parameter Applies to Zone
Type(s) Notes

51

Binary Data File Function Reference

Examples:
Refer to the following examples for illustrations of working with TECZNE142:

• Section 2 - 4 “Face Neighbors”
• Section 3 - 5 “Writing to Multiple Binary Data Files”
• Section 3 - 9.2 “Polygonal Example”
• Section 3 - 9.3 “Multiple Polyhedral Zones”
• Section 3 - 9.4 “Multiple Polygonal Zones”
• Section 3 - 9.5 “Polyhedral Example”

TotalNumBoundaryConnection
s

FEPOLYGON
FEPOLYHEDRON

Used for face-basedb finite element zones. Total
number of boundary connections for all faces. In
general, TotalNumBoundaryConnections will be
equal to NumConnectedBoundaryFaces. However,
TotalNumBoundaryConnections must be greater
than or equal to NumConnectedBoundaryFaces.
Refer to Section 3 - 8.1 “Boundary Faces and
Boundary Connections” for simple example.

PassiveVarList ALL

Array, dimensioned by the number of variables, of 4
byte integer values specifying the active/passive
nature of each variable. A value of 0 indicates the
associated variable is active while a value of 1
indicates that it is passive. If all variables are active,
you may pass NULL rather than an array of zeroes.
Refer to “Passive Variables” on page 9 for additional
information.

ValueLocation ALL

The location of each variable in the data set.
ValueLocation(I) indicates the location of variable I
for this zone. 0=cell-centered, 1=node-centered. Pass
null to indicate that all variables are node-centered.

ShareVarFromZone ALL

Indicates variable sharing. Array, dimensioned by
the number of variables. ShareVarFromZone(I)
indicates the zone number with which variable I will
be shared. This reduces the amount of data to be
passed via TECDAT142. A value of 0 indicates that
the variable is not shared. Pass null to indicate no
variable sharing for this zone. You must pass null for
the first zone in a data set (there is no data available
to share).

ShareConnectivityFromZone ALL

Indicates the zone number with which connectivity is
shared. Pass 0 to indicate no connectivity sharing.
You must pass 0 for the first zone in a data set.
NOTE: Connectivity and/or face neighbors cannot be
shared when the face neighbor mode is set to Global.
Connectivity cannot be shared between cell-based
and face-based finite element zones.

a. Cell-based finite element zones: FELINESEG, FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRON, and
FEBRICK.

b. Face-based finite element zones: FEPOLYGON and FEPOLYHEDRON.

Parameter Applies to Zone
Type(s) Notes

52

3 - 8 Defining Polyhedral and Polygonal Data
Polyhedral data is defined using TECPOLY142 (or TECPOLYFACE142/TECPOLYBCONN142) and TECZNE142. Via
TECZNE142 the number of nodes, faces, elements, boundary faces, and boundary connections are specified.
TECPOLY142 is used to specify the face mapping connections for the zone.

Before defining your polyhedral or polygonal data, you should determine the numbering scheme for the
nodes, faces and elements in each zone of your data set. The numbering scheme is communicated to
Tecplot implicitly by the order in which you supply the data. For example, the first nodal value supplied is
for Node 1, followed by the value for Node 2, continuing to node N (where N is the total number of
nodes). Similarly, for faces and elements.

The remainder of this section provides simple examples illustrating how to define polygonal and
polyhedral data.

3 - 8.1 Boundary Faces and Boundary Connections
A “Connected Boundary Face” is a face with at least one neighboring element that belongs to another
zone. Each “Connected Boundary Face” has one or more “Boundary Connections”. A “Boundary
Connection” is defined as the element-zone tuple used to identify the neighboring element when the
element is part of another zone.

Consider the following picture:

In the figure shown above, Zone 1 contains a single element (e1) and Zone 2 contains two elements (e1 and
e2). The boundary faces and boundary connections for each zone are as follows:

• Zone 1 - In Zone 1, Face 1 (f1) is the sole connected boundary face. It has two boundary
connections. The first boundary connection is Element 1 in Zone 2. The second boundary
connection is Element 2 in Zone 2.

• NumConnectedBoundaryFaces = 1
• TotalNumBndryConnections = 2

• Zone 2 - In Zone 2, both Face 1 and Face 2 are connected boundary faces. There is a total of two
boundary connections. The boundary connection for each boundary face in Zone 2 is Element
1 in Zone 1.

• NumConnectedBoundaryFaces = 2
• TotalNumBndryConnections = 2

53

Defining Polyhedral and Polygonal Data

3 - 8.2 FaceNodeCounts and FaceNodes
For illustration purposes, consider a zone composed of a single pyramidal element. The pyramid is
composed of five nodes and five faces.

Figure 3-2. A simple pyramid. The remaining triangular faces are Faces 2 and 3. The bottom rectangular
face is Face 5. Node 4 is obscured from view.

The FaceNodeCounts array is used to specify the number of nodes that compose each face. The values in
the array are arranged as follows:

FaceNodeCounts = [NumNodesInFace1,
 NumNodesInFace2,
 ...
 NumNodesInFaceF]

where F is the total number of faces in the zone

In this example, the FaceNodeCounts array is: [3 3 3 3 4]. The first four faces are composed of three nodes
and the last face is composed of four nodes.

The FaceNodes array is used to specify which nodes belong to which face. The array is dimensioned by
the total number of face nodes in the zone (specified via TECZNE142). The total number of face nodes is
defined as the sum of the number of nodes in each face.

The first K values in the FaceNodes array are the node numbers for Face 1, where K is the first value in the
FaceNodeCounts array. The next L values are the node numbers for Face 2, where L is the second value in
the FaceNodeCounts array.

Consider the pyramid used above. Using the FaceNodeCounts array we have already defined and the
figure, we can create the FaceNodes array for the pyramid.

FaceNodes = [1, 2, 3
3, 2, 4,
5, 2, 4,
5, 1, 2,
1, 5, 4, 3]

When supplying the node numbers for each face, you must supply the numbers in
either a clockwise or counter-clockwise configuration around the face. Otherwise, the
faces will be contorted when the data is plotted.
It is not important to be consistent when choosing between clockwise or counter-
clockwise ordering. The key is to present the numbers consistently within the
numbering scheme. For example, you may present the node numbers for face 1 in a
clockwise order and the node numbers for the remaining faces in counter-clockwise
order.

54

3 - 8.3 FaceRightElems and FaceLeftElems
After specifying the face map data (using the FaceNodeCounts and FaceNodes array), the next step is to
identify the element on either side of each face. To illustrate this, we will switch from the single element
zone to the following data set:

The neighboring elements can be determined using the right-hand rule:

• 2D Data - For each face, place your right-hand along the face with your fingers pointing in the
direction of incrementing node numbers (i.e. from Node 1 to Node 2). The right side of your
hand will indicate the right element, and the left side of your hand will indicate the left
element.

• 3D Data - For each face, curl the fingers of your right-hand following the order that the nodes
were presented in the FaceNodes array. Your thumb will point to the right element. The left
element is the other adjacent element. If the face has more than one neighboring element on a
single side, you will need to use the FaceBoundaryConnectionCounts,
FaceBoundaryConnectionElems and FaceBoundaryConnectionZones array.

The neighboring elements for each face are stored in the FaceRightElems and FaceLeftElems array. Each
array is dimensioned by the total number of faces in the zone. The first value in each array is the right or
left neighboring element for Face 1, followed by the neighboring element for Face 2, and so forth.

FaceRightElems = [RightNeighborToFace1,
 RightNeighborToFace2,
 ...
 RightNeighborToFaceF]

FaceLeftElems = [LeftNeighborToFace1,
 LeftNeighborToFace2,
 ...
 LeftNeighborToFaceF]

where F is the total number of faces

In the above plot, the face neighbors are as follows:

Face Number Right Neighboring
Element

Left Neighboring
Element

Face 1 1 0

Face 2 1 0

Face 3 1 2

Face 4 1 3

55

Defining Polyhedral and Polygonal Data

The number zero is used to indicate that the face is on the edge of the data (i.e. has “no neighboring
element”).

3 - 8.4 FaceBoundaryConnectionElements and Zones
When working with multiple zones, an additional aspect is folded into the FaceLeftElems and
FaceRightElems arrays. When the neighboring element is not within the current zone, you cannot identify
the element by its element number alone. Instead you need to specify both the element number and its
zone number. This is accomplished using the FaceBoundaryConnectionElements and
FaceBoundaryConnectionZones arrays. For each boundary connection, the element number of the
boundary connection is stored in the FaceBoundaryConnectionElements array while its zone number is
stored in the FaceBoundaryConnectionZones array.

A negative value in the FaceLeftElems or FaceRightElems array is used to indicate that the neighboring
element belongs to another zone. The magnitude of the negative number is a pointer to a value in the
FaceBoundaryConnectionElements and FaceBoundaryConnectionZones arrays. For example, given the
following FaceBoundaryConnectionElements and FaceBoundaryConnectionZones arrays:

FaceBoundaryConnectionElements = [1 1 3 4]
FaceBoundaryConnectionZones = [2 2 3 3]

A value of -4 in the FaceLeftElems indicates that the left neighboring element for that face is element four
in zone three.

3 - 8.5 Partially Obscured Boundary Faces
A face on the boundary of a zone may be partially obscured by its boundary connections (neighboring
elements). While Tecplot 360 does not draw fully obscured boundary faces (because it treats those faces as
internal faces), Tecplot 360 does draw partially obscured boundary faces. Thus, Tecplot 360 requires
definition of partially obscured boundary faces.

To indicate a partially obscured face, indicate the appropriate neighboring element as zero in the
FaceBndryConnectionElems and FaceBndryConnectionZones arrays, followed by the actual neighboring
elements. When Tecplot 360 sees a list of neighboring elements for a boundary face that begin with
element zero, it marks that boundary face as partially obscured.

Face 5 1 4

Face 6 1 0

Face 7 2 0

Face 8 2 0

Face 9 2 0

Face 10 2 3

Face 11 3 0

Face 12 3 4

Face 13 4 0

Face 14 4 0

Face 15 4 0

Face Number Right Neighboring
Element

Left Neighboring
Element

56

If Tecplot 360 sees a zero in FaceBndryConnectionElems that is not the first boundary element listed for a
face, an error message will appear, indicating that either the partially obscured boundary face was not
indicated correctly, or FaceBndryConnectionsElems and/or FaceBndryConnectionsZones was not
completely filled out.

3 - 9 Examples
The following examples (written in C) provide a basic illustration of creating a *.plt file using the TecIO
library. If you plan to compile the examples, be sure to review the instructions in Section 3 - 6 “Linking
with the TecIO Library” first.

In order to keep the examples as simple as possible, error checking is not included. For complete details on
the parameters used and the function syntax for each TecIO function, refer to Section 3 - 7 “Binary Data
File Function Reference”. When creating a binary data file using the TecIO library, the functions must be
called in a specific order. Refer to Section 3 - 4 “Binary Data File Function Calling Sequence” for details.

3 - 9.1 Face Neighbors
This example illustrates how to (1) create two simple FE-quadrilateral zones and (2) create a face neighbor
connection between the two zones. In order to keep the example as simple as possible, error checking is
not included. If you plan to compile this example, be sure to include TECIO.h.

For complete details on the parameters used and the function syntax for each TecIO function, refer to
Section 3 - 7 “Binary Data File Function Reference”. When creating a binary data file using the TecIO
library, the functions must be called in a specific order. Refer to Section 3 - 4 “Binary Data File Function
Calling Sequence” for details.

Step 1 Initialize the data file using TECINI
TECINI is required for all data files. It is used to: open the data file and initialize the file header
information (name the data file, the variables for the data file, and the file type).

INTEGER4 Debug = 1;
INTEGER4 VIsDouble = 0;
INTEGER4 FileType = 0;
INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT
INTEGER4 I = 0; /* Used to track return codes */

I = TECINI142((char*)”Face Neighbors Example”, /* Specifies the name
 * of the entire
 * dataset
 */
 (char*)”X Y P”, /* Defines the
 * variables for the
 * data file. Each
 * zone must contain
 * each of the vars
 * listed. The order
 * of the variables in
 * the list is used to
 * define the variable
 * number (e.g. X is
 * Var 1.)
 */

 (char*)”FaceNeighbors.plt”, /* Specifies the
 * file name.
 */
 (char*)”.”,
 &FileFormat,

57

Examples

Step 2 Create Zone 1
After TECINI is called, call TECZNE to create one or more zones for your data file.

 &FileType, /* The FileType is set to
 * zero, indicating it is
 * a full file (containing
 * both grid and solution
 * data).
 */
 &Debug,
 &VIsDouble);

INTEGER4 ZoneType = 3; /* set the zone type to
 * FEQuadrilateral
 */
INTEGER4 NumPts = 6;
INTEGER4 NumElems = 2;
INTEGER4 NumFaces = 8;
INTEGER4 ICellMax = 0; /* not used */
INTEGER4 JCellMax = 0; /* not used */
INTEGER4 KCellMax = 0; /* not used */
double SolTime = 360.0;
INTEGER4 StrandID = 0; /* StaticZone */
INTEGER4 ParentZn = 0;
INTEGER4 IsBlock = 1; /* Block */
INTEGER4 NFConns = 1; /* Specify the number of Face
 * Neighbor Connections in the
 * Zone. When this value is
 * greater than zero, TECFACE must
 * be called prior to creating the
 * next zone or ending the file.
 */

/* Specify the Face Neighbor Mode.
 * A value of 2 indicated that the face neighbor mode is global
 * one-to-one. The scope of the face neighbors (local or
 * global) is with respect to the zones. A value of global
 * indicates that the face neighbor(s) is/are shared aross zones;
 * a value of local indicates that the face neighbor(s) are
 * shared within the current zone. The terms one-to-one and
 * one-to-many are used to indicate whether the face in question
 * is shared with one cell or several cells.
 * For example, if your data is arranged as follows:

 | | | |
 | 1 | 2 | 3 |
 | | | |

 | | |
 | 4 | 5 |
 | | |

 * The face between 1 & 4 is local-one-to-one. The face between
 * 5 and (2 & 3) is local one-to-many.
 */

INTEGER4 FNMode = 2;

INTEGER4 TotalNumFaceNodes = 1; /* Not used for
 * FEQuad zones*/
INTEGER4 NumConnectedBoundaryFaces = 1; /* Not used for

58

Step 3 Define the node numbering for Zone 1
For this example, we will create 2 rectangular cells in Zone 1. Before defining your variables, you must
establish a consistent node numbering scheme for your data. Once the node numbers are defined, supply
the variable values in the node numbering order. In this example, Node 1 is defined at X = 0 and Y = 0. As
such, the first value supplied for X (i.e. X[0]) is 0. Similarly, the first value supplied for Y is 0.

 * FEQuad zones*/
INTEGER4 TotalNumBoundaryConnections = 1; /* Not used for
 * FEQuad zones*/
INTEGER4 ShrConn = 0;

INTEGER4 ValueLocation[3] = {1, 1, 1}; /* Specify the variable
 * values at the nodes.
 * NOTE: Because all of
 * the variables are
 * defined at the nodes,
 * we can just pass
 * NULL for this array.
 * We are providing the
 * array for illustration
 * purposes.
 */

I = TECZNE142((char*)”Zone 1”,
 &ZoneType,
 &NumPts,
 &NumElems,
 &NumFaces,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolTime,
 &StrandID,
 &ParentZn,
 &IsBlock,
 &NFConns,
 &FNMode,
 &TotalNumFaceNodes,
 &NumConnectedBoundaryFaces,
 &TotalNumBoundaryConnections,
 NULL,
 ValueLocation,
 NULL,
 &ShrConn);

It is important that you refer to node numbers consistently. The node numbers will be
used later to define the connectivity for each element.

59

Examples

For this example, we will create two quadrilateral elements. The node numbering for the elements is
defined in the following picture.

Step 4 Set up the variable values
The variable values will be written to the file using TECDAT. Because we are specifying nodal variables (as
specified via the ValueLocation parameter in TECZNE), each variable is dimensioned by the number of
points (NumPts) in the Zone. You have the option to specify some variables with nodal values and some
with cell-centered values. Refer to the Section “TECZNE142” on page 47 for details.

float *X = new float[NumPts];
float *Y = new float[NumPts];
float *P = new float[NumPts];

/* For this example, we will create 2 rectangular cells in Zone
 * 1. Before defining your variables, you must establish a
 * consistent node numbering scheme for your data. Once the
 * node numbers are defined, supply the variable values in the
 * node numbering order. In this example, node 1 is defined at
 * X = 0 and Y = 0. As such, the first value supplied for X
 * (i.e. X[0]) is 0. Similarly, the first value supplied for Y
 * is 0.
 *
 * It is important that you refer to node numbers consistently.
 * The node numbers will be used later to define the
 * connectivity for each element.
 */

X[0] = 0;
X[1] = 0;
X[2] = 1;
X[3] = 1;
X[4] = 2;
X[5] = 2;

Y[0] = 0;
Y[1] = 1;
Y[2] = 0;
Y[3] = 1;
Y[4] = 0;
Y[5] = 1;

for (INTEGER4 ii = 0; ii < NumPts; ii++)
 P[ii] = (float)(NumPts - ii);

INTEGER4 DIsDouble = 0; /* Set DIsDouble to zero to use
 * variables in float format.
 */

60

Step 5 Define the connectivity list for Zone 1
The Connectivity List is used to specify the nodes that compose each element. When working with nodal
variables, the numbering of the nodes is implicitly defined when the variables are declared. The first value
of each variable is for node one, the second value for node two, and so on.

Because this zone contains two quadrilateral elements, we must supply 8 values in the connectivity list.
The first four values define the nodes that form Element 1. Similarly, the second four values define the
nodes that form Element 2.

Step 6 Define the face neighbor connections for Zone 1
Now that TECNOD or TECNODE has been called, the creation of Zone 1 is complete. However, in this
example, we will define a face neighbor between Zone 1 and Zone 2 (to be created later in the example).
Face Neighbor connections are used to define connections that are not created via the connectivity list. For
example, local face neighbors may need to be defined when a zone wraps onto itself and global face
neighbors may need to be defined to smooth edges across zones. Face Neighbors are used when deriving
variables and drawing contours.

In this example, we are creating a face neighbor connection between Cell 2 in Zone 1 and Cell 1 in Zone 2.
The information required when specifying face neighbors depends upon the type of connection. Refer to
Section “TECFACE142” on page 26 for details.

In this case, we must supply the following information (in the order provided):

• the cell number in the current zone that contains the face neighbor
• the number of the face in that cell that contains the face neighbor

/* Call TECDAT once for each variable */
I = TECDAT142(&NumPts, &X[0], &DIsDouble);
I = TECDAT142(&NumPts, &Y[0], &DIsDouble);
I = TECDAT142(&NumPts, &P[0], &DIsDouble);

INTEGER4 ConnList[8] = {1, 3, 4, 2,
 3, 5, 6, 4
 };
I = TECNOD142(ConnList);

It is important to provide the node list in either a clockwise or counter-clockwise order.
Otherwise, your elements will be misshapen. For example, if the first two numbers in
the above connectivity list were switched, the zone would appear as follows:

61

Examples

• the number of the other zone to which the face is connected
• the number of the cell in the other zone to which the face is connected

The face numbering for cell-based finite elements is defined using Figure 3-1 on page 28. In this example,
Face 2 in Cell 2 in the current zone is connected to Cell 1 in Zone 2.

Step 7 Create Zone 2
The creation of Zone 1 is complete. We are ready to create Zone 2. For simplicity, Zone 2 is a copy of Zone
1 shifted along the X-axis. As such, many of the variables used to create Zone 1 are re-used here.

Step 8 Define the variables for Zone 2
Because Zone 2 is a copy of Zone 1, shifted along the X-axis, we can share the Y variable definition used to
Zone. We will also create a second pressure variable for Zone 2 (P2).

INTEGER4 FaceConn[4] = {2, 2, 2, 1};
I = TECFACE142(FaceConn);

/* Call TECZNE to create Zone 2 */
I = TECZNE142((char*)”Zone 2”,
 &ZoneType,
 &NumPts,
 &NumElems,
 &NumFaces,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolTime,
 &StrandID,
 &ParentZn,
 &IsBlock,
 &NFConns,
 &FNMode,
 &TotalNumFaceNodes,
 &NumConnectedBoundaryFaces,
 &TotalNumBoundaryConnections,
 NULL,
 ValueLocation,
 NULL,
 &ShrConn);

float *X2 = new float[NumPts];
float *P2 = new float[NumPts];

for (INTEGER4 ii = 0; ii < NumPts; ii++)
{

62

Step 9 Define the connectivity list for Zone 2
As with Zone 1, we must define the connectivity list for Zone 2. Because, the node numbering restarts at
one for each new zone and the nodal arrangement is identical between the two zones, we may reuse the
connectivity list from Zone 1.

Step 10 Define the face neighbor connections for Zone 2
We will now specify the face neighbor connection with respect to our new current zone of Zone 2.

Step 11 Close the file
Call TECEND to close the file.

 X2[ii] = X[ii] + 2;
 P2[ii] = 2 * (float)ii;
}

I = TECDAT142(&NumPts, &X2[0], &DIsDouble);
I = TECDAT142(&NumPts, &Y[0], &DIsDouble);
I = TECDAT142(&NumPts, &P2[0], &DIsDouble);

delete X;
delete Y;
delete P;
delete X2;
delete P2;

I = TECNOD142(ConnList);

INTEGER4 FaceConn2[4] = {1, 4, 1, 2}; /* cell 1, face 4 in
 * current zone is a
 * neighbor to cell 2 in
 * zone 1.
 */
I = TECFACE142(FaceConn2);

I = TECEND142();

63

Examples

Summary
When the preceding code is compiled and built, the data file will look as follows (with the Mesh and Edge
layers turned-on):

With the Mesh layer deactivated, the data set will look as follows:

If we had not included face neighbor connections, an Edge line would be drawn in between the two zones.

3 - 9.2 Polygonal Example
The following example (written in C++) illustrates how to create a single octagonal cell using the TecIO
library.

In order to keep the example as simple as possible, error checking is not included. If you plan to compile
this example, be sure to include TECIO.h.

For complete details on the parameters used and the function syntax for each TecIO function, refer to
Section 3 - 7 “Binary Data File Function Reference”. When creating a binary data file using the TecIO
library, the functions must be called in a specific order. Refer to Section 3 - 4 “Binary Data File Function
Calling Sequence” for details.

64

Step 1 Initialize the data file using TECINI
TECINI is required for all data files. It is used to: open the data file and initialize the file header
information (name the data file, the variables for the data file, and the file type).

Step 2 Create Zone 1
After TECINI is called, call TECZNE to create one or more zones for your data file.

INTEGER4 Debug = 1;
INTEGER4 VIsDouble = 0;
INTEGER4 FileType = 0;
INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT; Only PLT is currently
 // supported for polygonal zones.
INTEGER4 I; /* used to check return codes */

/*
 * Open the file and write the Tecplot datafile
 * header information
 */

I = TECINI142((char*)”Octagon”,
 (char*)”X Y P”, /* Defines the variables for the data
 * file. Each zone must contain each
 * of the vars listed here. The order
 * of the variables in the list is
 * used to define the variable number
 * (e.g. X is Variable 1). When
 * referring to variables in other
 * TecIO functions, you will refer to
 * thevariable by its number.
 */
 (char*)”Octagon.plt”,
 (char*)”.”, /* scratch directory */
 &FileFormat,
 &FileType,
 &Debug,
 &VIsDouble);

/* In this example, we will create a single octagonal cell in
 * Tecplot 360’s polyhedral file format.
 */
INTEGER4 ZoneType = 6; /* FEPolygon */
INTEGER4 NumNodes = 8; /* Number of nodes in the octagon.*/
INTEGER4 NumElems = 1; /* Number of octagonal elements. */
INTEGER4 NumFaces = 8; /* Number of faces in the octagon.*/
INTEGER4 ICellMax = 0; /* Not Used */
INTEGER4 JCellMax = 0; /* Not Used */
INTEGER4 KCellMax = 0; /* Not Used */
double SolTime = 360.0;
INTEGER4 StrandID = 0; /* Static Zone */
INTEGER4 ParentZn = 0; /* No Parent Zone */
INTEGER4 IsBlock = 1; /* Block */
INTEGER4 NFConns = 0;
INTEGER4 FNMode = 0;

/* For polygonal zones, the total number of face nodes is equal
 * to twice the number of nodes. This is because, each face
 * has exactly two nodes.
 */
INTEGER4 NumFaceNodes = 2 * NumNodes;

65

Examples

Step 3 Define node numbering
For this example, we will create a single octagonal cell. Before defining your variables, you must establish
a consistent node numbering scheme for your data. Once the node numbers are defined, supply the
variable values in the node numbering order. In this example, Node 1 is defined at X = .25 and Y = 0. As
such, the first value supplied for X (i.e. X[0]) is .25. Similarly, the first value supplied for Y is 0.

It is important that you refer to node numbers consistently. The node numbers will be used later to define
the connectivity for each element.

/* Boundary Faces and Boundary Connections are not used in this
 * example.
 */
INTEGER4 NumBFaces = 0;
INTEGER4 NumBConnections = 0;

INTEGER4 ShrConn = 0;

I = TECZNE142((char*)”Octagonal Zone”,
 &ZoneType,
 &NumNodes,
 &NumElems,
 &NumFaces,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolTime,
 &StrandID,
 &ParentZn,
 &IsBlock,
 &NFConns,
 &FNMode,
 &NumFaceNodes,
 &NumBFaces,
 &NumBConnections,
 NULL,
 NULL, /* When Value Location is not specified,
 * Tecplot will treat all variables as
 * nodal variables.
 */
 NULL,
 &ShrConn);

66

Step 4 Set up the variable values
Write the variable values to the file using TECDAT. Because we are specifying nodal variables (as specified
via the ValueLocation parameter in TECZNE), each variable is dimensioned by the number of points
(NumPts) in the Zone. You have the option to specify some variables with nodal values and some with
cell-centered values. Refer to Section “TECZNE142” on page 47 for details.

The order of the values supplied for each nodal variable is determined by the node numbering established
in Step 3. The first value for each variable is for Node 1, the second value for each variable is for Node 2
and so forth.

V1 = {ValueAtNode1, ValueAtNode2, ..., ValueAtNodeN}

 where N is the total number of nodes

float *X = new float[NumNodes];
float *Y = new float[NumNodes];
float *P = new float[NumNodes];

//Define the grid values.
X[0] = 0.25;
Y[0] = 0.0;

X[1] = 0.75;
Y[1] = 0.0;

X[2] = 1.0;
Y[2] = 0.25;

X[3] = 1.0;
Y[3] = 0.75;

X[4] = 0.75;
Y[4] = 1.0;

X[5] = 0.25;
Y[5] = 1.0;

X[6] = 0.0;
Y[6] = 0.75;

X[7] = 0.0;
Y[7] = 0.25;

for (INTEGER4 ii = 0; ii < 8; ii++)
 P[ii] = .5;

/* Write out the field data using TECDAT */
INTEGER4 DIsDouble = 0; /* set IsDouble to 0 to use float
 * variables. */

I = TECDAT142(&NumNodes, X, &DIsDouble);
I = TECDAT142(&NumNodes, Y, &DIsDouble);
I = TECDAT142(&NumNodes, P, &DIsDouble);

delete X;
delete Y;
delete P;

67

Examples

Step 5 Define the Face Nodes
The FaceNodes array is used to indicate which nodes define which face. As mentioned earlier, the number
of the nodes is implicitly defined by the order in which the nodal data is provided. The first value of each
nodal variable describes Node 1, the second value describes Node 2, and so on.

The face numbering is also implicitly defined. Because there are two nodes in each face of any polygonal
zone, the first two nodes provided define Face 1, the next two define Face 2 and so on. If there was a
variable number of nodes used to define the faces, the array would be more complicated. Refer to Section
3 - 9.4 “Multiple Polygonal Zones” for an example.

The following picture describes the face numbering for this example:

As you can see, Face 1 is defined by Nodes 1 and 2, Face 2 is defined by Nodes 2 and 3, and so forth.
Because of this simple arrangement, we can use a for-loop to define all but the end points of the face nodes
array.

Step 6 Define the right and left elements of each face
The last step for writing out the polygonal data is to define the right and left neighboring elements for
each face. The neighboring elements can be determined using the right-hand rule. For each face, place
your right-hand along the face with your fingers pointing the direction of incrementing node numbers (i.e.
from Node 1 to Node 2). The right side of your hand will indicate the right element, and the left side of
your hand will indicate the left element. Refer to Section 3 - 8.3 “FaceRightElems and FaceLeftElems” for
details.

The number zero is used to indicate that there isn't an element on that side of the face (i.e. the face is on the
edge of the data set). This is referred to as “no neighboring element”.

INTEGER4 *FaceNodes = new INTEGER4[NumFaceNodes];

/*
 * Loop over number of sides, and set each side to two
 * consecutive nodes.
 */
for (INTEGER4 ii = 0; ii < 8; ii++)
{
 FaceNodes[2*ii] = ii + 1;
 FaceNodes[2*ii+1] = ii + 2;
}
FaceNodes[15] = 1;

68

Because of the way we numbered the nodes and faces, the right element for every face is the element itself
(Element 1) and the left element is "no-neighboring element" (Element 0).

Step 7 Write the face nodes to the file
We can now call TECPOLYFACE142 to write the face nodes to the file. Since we do not have any boundary
connections in this data set, there is no need to call TECPOLYBCONN142. We could have also used
TECPOLY142 since all the needed data is in memory.

Step 8 Close the file
Call TECEND to close the file.

3 - 9.3 Multiple Polyhedral Zones
The following example demonstrates how to create two polyhedral zones, a rectangular solid and a prism.
The resulting image is a three-dimensional arrow (shown below).

This example covers the following topics: polyhedral data, working with multiple zones, and specifying
partially obscured faces. In order to keep the example as simple as possible, error checking is not included.
If you plan to compile this example, be sure to include: TECIO.h.

For complete details on the parameters used and the function syntax for each TecIO function, refer to
Section 3 - 7 “Binary Data File Function Reference”. When creating a binary data file using the TecIO
library, the functions must be called in a specific order. Refer to Section 3 - 4 “Binary Data File Function
Calling Sequence” for details.

INTEGER4 *FaceLeftElems = new INTEGER4[NumFaces];
INTEGER4 *FaceRightElems = new INTEGER4[NumFaces];

for (INTEGER4 ii = 0; ii < NumFaces; ii++)
{
 FaceLeftElems[ii] = 0;
 FaceRightElems[ii] = 1;
}

I = TECPOLYFACE142(&NumFaces,
 NULL,
 FaceNodes,
 FaceLeftElems,
 FaceRightElems);

delete FaceNodes;
delete FaceLeftElems;
delete FaceRightElems;

I = TECEND142();

69

Examples

Step 1 Initialize the data file using TECINI
TECINI is required for all data files. This function opens the data file and initializes the file header
information (names the data file, the variables for the data file, and the file type)

Step 2 Create Zone 1 (rectangle)
After TECINI is called, call TECZNE to create one or more zones for your data file. In this example, Zone 1
contains a single rectangular solid created as a face-based finite element (i.e. polyhedral zone). The zone
has eight points (or nodes), six faces and one element.

INTEGER4 Debug = 1;
INTEGER4 VIsDouble = 1;
INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT; Only PLT is currently
 // supported for ployhedral zones
INTEGER4 FileType = 0;
INTEGER4 I;

/* Open the file and write the Tecplot datafile
 * header information
 */
I = TECINI142((char*)”Multiple polyhedral zones”, /* Name of the entire
 * dataset.
 */
 (char*)”X Y Z P”, /* Defines the variables for the data
 * file. Each zone must contain each of
 * the variables listed here. The order
 * of the variables in the list is used
 * to define the variable number (e.g.
 * X is Var 1).
 */
 (char*)”Arrow.plt”,
 (char*)”.”, /* Scratch Directory */
 &FileFormat,
 &FileType,
 &Debug,
 &VIsDouble);

/* TECZNE Parameters */
INTEGER4 ZoneType = 7; /* sets the zone type
 * to polyhedral */
INTEGER4 NumPts_Rect = 8;
INTEGER4 NumElems_Rect = 1;
INTEGER4 NumFaces_Rect = 6;
INTEGER4 ICellMax = 0; /* not used */
INTEGER4 JCellMax = 0; /* not used */
INTEGER4 KCellMax = 0; /* not used */
double SolutionTime = 0.0;
INTEGER4 StrandID = 0;
INTEGER4 ParentZone = 0;
INTEGER4 IsBlock = 1;
INTEGER4 NumFaceConnections = 0; /* not used */

70

Step 3 Set variable values for Zone 1 (rectangle)
Now that the zone has been created, write the variable values to the file by calling TECDAT. While there
are more elegant ways to define the grid coordinates for the rectangle, the values are defined explicitly for
simplicity.

INTEGER4 FaceNeighborMode = 1; /* not used */
INTEGER4 SharConn = 0;

/* In a rectangular solid, each face is composed of four nodes.
 * As such, the total number of face nodes is twenty-four (four
 * nodes for each of the six faces).
 */
INTEGER4 TotalNumFaceNodes_Rect = 24;

/* There is one connected boundary face in this zone (the face on
 * the rectangle adjacent to the arrowhead). Refer to the Data
 * Format Guide for additional information. */
INTEGER4 NumConnBndryFaces_Rect = 1;

/* The connected boundary face has one connection, the face on
 * the bottom of the arrowhead. A connection is an element-zone
 * tuple that indicates a neighboring element (and its zone) when
 * the neighboring element is in a different zone. Generally,
 * there will be one boundary connection for each boundary face.
 */
INTEGER4 TotalNumBndryConns_Rect = 1;

/* For illustrative purposes, the grid variables (X, Y, and Z)
 * are nodal variables (i.e. ValueLocation = 1), and the pressure
 * variable (P) is a cell-centered variable (i.e.
 * ValueLocation = 0).
 */
INTEGER4 ValueLocation[4] = { 1, 1, 1, 0 };

I = TECZNE142((char*)”Zone 1: Rectangular Solid”,
 &ZoneType,
 &NumPts_Rect,
 &NumElems_Rect,
 &NumFaces_Rect,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolutionTime,
 &StrandID,
 &ParentZone,
 &IsBlock,
 &NumFaceConnections,
 &FaceNeighborMode,
 &TotalNumFaceNodes_Rect,
 &NumConnBndryFaces_Rect,
 &TotalNumBndryConns_Rect,
 NULL,
 ValueLocation,
 NULL,
 &SharConn);

71

Examples

Using the picture below, define the variable values.

For nodal variables, provide the values for each variable in nodal order. Similarly, for cell-centered values,
provide the variable values in cell order. The location of each variable is specified with TECZNE.

//set variable values (X_Rect, Y_Rect, Z_Rect & P_Rect)
double *X_Rect = new double[NumPts_Rect];
double *Y_Rect = new double[NumPts_Rect];
double *Z_Rect = new double[NumPts_Rect];
double *P_Rect = new double[NumElems_Rect];

for (INTEGER4 ii = 0; ii <= NumPts_Rect / 2; ii += 4)
{
 X_Rect[ii] = 0;
 X_Rect[ii+1] = 3;
 X_Rect[ii+2] = 3;
 X_Rect[ii+3] = 0;

 Y_Rect[ii] = 3;
 Y_Rect[ii+1] = 3;
 Y_Rect[ii+2] = 1;
 Y_Rect[ii+3] = 1;
}

for (INTEGER4 ii = 0; ii < 4; ii++)
 Z_Rect[ii] = 0;

for (INTEGER4 ii = 4; ii < NumPts_Rect; ii++)
 Z_Rect[ii] = -2;

P_Rect[0] = 10;

INTEGER4 IsDouble = 1;
I = TECDAT142(&NumPts_Rect, X_Rect, &IsDouble);
I = TECDAT142(&NumPts_Rect, Y_Rect, &IsDouble);
I = TECDAT142(&NumPts_Rect, Z_Rect, &IsDouble);
I = TECDAT142(&NumElems_Rect, P_Rect, &IsDouble);

72

Step 4 Define the facemap data for Zone 1
Using the following figure, specify which nodes define which face.

Figure 3-3. Zone 2 of the sample data. Node 7 is obscured from view and located in the back-left hand
corner. Face 6 is the bottom face. Face 3 is opposite Face 1 and Face 4 is opposite Face 2.

In order to specify the face map data, you must first specify how many nodes are in each face using the
FaceNodeCounts array. After defining the FaceNodeCounts array, use the FaceNodes array to identify the
nodes that compose each face. Refer to Section 3 - 8.2 “FaceNodeCounts and FaceNodes” for additional
information.

/* The FaceNodeCounts array is used to describe the number of
 * nodes in each face of the zone. The first value in the array
 * is the number of nodes in Face 1, the second value is the
 * number of nodes in Face 2 and so forth. In this example, each
 * face of the zone has four nodes.
 */

INTEGER4 *FaceNodeCounts_Rect = new INTEGER4[NumFaces_Rect];
//For this particular zone, each face has the 4 nodes
for (INTEGER4 ii = 0; ii < NumFaces_Rect; ii++)
 FaceNodeCounts_Rect[ii] = 4;

/* The FaceNodes array is used to specify the nodes that compose
 * each face. For each face (n of N), the number of nodes used
 * to define the face is specified by the nth value in the
 * FaceNodeCounts array. For example, if the first value in the
 * FaceNodeCounts array is 4 (indicating Face 1 is composed of
 * four nodes), the first four values in the FaceNodes array are
 * the node numbers of the nodes in Face 1.
 *
 * ------------
 * WARNING
 * When providing the node numbers for each face, you must
 * provide the node numbers in a consistent order (either
 * clockwise or counter-clockwise. Providing the node numbers
 * out of order results in contorted faces.
 * ------------
 */

INTEGER4 *FaceNodes_Rect = new INTEGER4[TotalNumFaceNodes_Rect];

//Nodes for Face 1
FaceNodes_Rect[0] = 1;
FaceNodes_Rect[1] = 2;
FaceNodes_Rect[2] = 3;
FaceNodes_Rect[3] = 4;

//Nodes for Face 2
FaceNodes_Rect[4] = 1;
FaceNodes_Rect[5] = 4;

73

Examples

Step 5 Specify the neighboring elements for Zone 1
The next step for writing out the polyhedral data is to define the right and left neighboring elements for
each face. The neighboring elements can be determined using the right-hand rule. For each face, place
your right-hand along the face with your fingers pointing the direction of incrementing node numbers (i.e.
from Node 1 to Node 2). The right side of your hand will indicate the right element, and the left side of
your hand will indicate the left element. Refer to Section 3 - 8.3 “FaceRightElems and FaceLeftElems” for
details.

The number zero is used to indicate that there isn't an element on that side of the face. A negative number
is used when the neighboring element is in another zone. The value of the negative number along with the
FaceBndryConnectionCounts array points to the position in the FaceBoundaryConnectionElems and
FaceBoundaryConnectionZones arrays that defines the element and zone numbers of the neighboring
element. Refer to Step 6 for details.

Because of the way we numbered the nodes and faces, the right element for every face (except the face
connected to the arrowhead) is the element itself (Element 1) and the left element is "no-neighboring
element" (Element 0).

FaceNodes_Rect[6] = 8;
FaceNodes_Rect[7] = 5;

//Nodes for Face 3
FaceNodes_Rect[8] = 5;
FaceNodes_Rect[9] = 8;
FaceNodes_Rect[10] = 7;
FaceNodes_Rect[11] = 6;

//Nodes for Face 4
FaceNodes_Rect[12] = 2;
FaceNodes_Rect[13] = 6;
FaceNodes_Rect[14] = 7;
FaceNodes_Rect[15] = 3;

//Nodes for Face 5
FaceNodes_Rect[16] = 6;
FaceNodes_Rect[17] = 2;
FaceNodes_Rect[18] = 1;
FaceNodes_Rect[19] = 5;

//Nodes for Face 6
FaceNodes_Rect[20] = 3;
FaceNodes_Rect[21] = 7;
FaceNodes_Rect[22] = 8;
FaceNodes_Rect[23] = 4;

When providing the node numbers for each face, you must provide the node numbers in
a consistent order (either clockwise or counter-clockwise. Providing the node numbers
out of order results in contorted faces.

INTEGER4 *FaceLeftElems_Rect = new INTEGER4[NumFaces_Rect];
INTEGER4 *FaceRightElems_Rect = new INTEGER4[NumFaces_Rect];

/* Since this zone has just one element, all leftelems are
 * NoNeighboring Element and all right elems are itself
 */
for (INTEGER4 ii = 0; ii < NumFaces_Rect; ii++)
{
 FaceRightElems_Rect[ii] = 1;

74

After defining the face nodes, we call TECPOLYFACE to write it to the file.

Step 6 Define boundary connections for Zone 1
The last step for defining the rectangular solid is to describe the boundary connections and call
TECPOLYBCONN.

 FaceLeftElems_Rect[ii] = 0;
}

/* The negative value in the FaceLeftElems array indicates that
 * the face is connected to an element in another zone. In this
 * case, Face 4 is connected to a face in Zone 2 (to be defined
 * later in the example). The FaceBoundaryConnectionElems array
 * lists all of the element numbers in other zones that the
 * current zone shares boundary connections with. Similarly, the
 * FaceBoundaryConnectionZones array lists all of the zone numbers
 * with which the current zone shares boundaries. A negative
 * value in the FaceLeftElems or FaceRightElems array indicates
 * the position within these arrays that defines the neighboring
 * element and zone for a face.
 *
 * For example, if the FaceBoundaryConnectionElems array is:
 * [1 8 2] and the FaceBoundaryConnectionZones array is: [2 5 3],
 * a FaceLeftElems or FaceRightElems value of -2 indicates that
 * the face in question has a boundary connection with Element 8
 * in Zone 5.
 */
FaceLeftElems_Rect[3] = -1;

I = TECPOLYFACE142(&NumFaces_Rect,
 FaceNodeCounts_Rect,
 FaceNodes_Rect,
 FaceLeftElems_Rect,
 FaceRightElems_Rect);

/* The FaceBndryConnectionCounts array is used to define the
 * number of boundary connections for each face that has a
 * boundary connection. For example, if a zone has three boundary
 * connections in total (NumConnectedBoundaryFaces), two of those
 * boundary connections are in one face, and the remaining
 * boundary connection is in a second face, the
 * FaceBndryConnectionCounts array would be: [2 1].
 * In this example, the total number of connected boundary faces
 * (specified via TECZNE) is equal to one, so the
 * FaceBoundaryConnectionCounts array contains a single value (1).
 */
INTEGER4 *FaceBndryConnCounts_Rect = new
INTEGER4[NumConnBndryFaces_Rect];
FaceBndryConnCounts_Rect[0] = 1;

/* The value(s) in the FaceBndryConnectionElems and
 * FaceBndryConnectionZones arrays specify the element number and
 * zone number, respectively, that a given boundary connection is
 * connected to. In this case, the boundary connection face is
 * connected to Element 1 in Zone 2.
 */
INTEGER4 *FaceBndryConnElems_Rect = new
INTEGER4[TotalNumBndryConns_Rect];
INTEGER4 *FaceBndryConnZones_Rect = new
INTEGER4[TotalNumBndryConns_Rect];

FaceBndryConnElems_Rect[0] = 1;
FaceBndryConnZones_Rect[0] = 2;

75

Examples

Step 7 Create Zone 2
The data for Zone 1 has been written to the data file, so we are ready to create Zone 2. For simplicity, we
will reuse many of the variables from that are not relevant to this tutorial.

Zone 2 (the arrowhead or prism) has a single element composed of six nodes and five faces.

I = TECPOLYBCONN142(&NumConnBndryFaces_Rect,
 FaceBndryConnCounts_Rect,
 FaceBndryConnElems_Rect,
 FaceBndryConnZones_Rect);

/* cleanup */
delete X_Rect;
delete Y_Rect;
delete Z_Rect;
delete P_Rect;
delete FaceNodeCounts_Rect;
delete FaceNodes_Rect;
delete FaceLeftElems_Rect;
delete FaceRightElems_Rect;
delete FaceBndryConnCounts_Rect;
delete FaceBndryConnElems_Rect;
delete FaceBndryConnZones_Rect;

//TECZNE Parameters
INTEGER4 NumPts_Prism = 6;
INTEGER4 NumElems_Prism = 1;
INTEGER4 NumFaces_Prism = 5;

/* The prism is composed of two triangular faces and three
 * rectangular faces. The total number of face nodes is the sum
 * of the nodes in each triangular face (2 times 3) and the nodes
 * in each rectangular face (3 times 4).
 */
INTEGER4 TotalNumFaceNodes_Prism = 18;

/* As with Zone 1, Zone 2 has one connected boundary face, the
 * face that is connected to Zone 1.
 */
INTEGER4 NumConnBndryFaces_Prism = 1;

/* In this case, we have set the total number of boundary
 * connections for the connected face to two. The first boundary
 * connection is the connection to Zone 1. The second boundary
 * connection is used to indicate that the face is only partially
 * obscured by the face from Zone 1. If we omitted the second
 * boundary connection, the connected face of the prism would
 * disappear if the rectangular zone was deactivated.
 */
INTEGER4 TotalNumBndryConns_Prism = 2;

76

Step 8 Specify the variable values for Zone 2
Now that the zone has been created, we must write the variable values to the file by calling TECDAT.
While there are more elegant ways to define the grid coordinates for the prism, the values are defined
explicitly in order to keep the example relatively simple.

Using the picture below, define the variable values.

I = TECZNE142((char*)”Zone 2: Prism”,
 &ZoneType,
 &NumPts_Prism,
 &NumElems_Prism,
 &NumFaces_Prism,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolutionTime,
 &StrandID,
 &ParentZone,
 &IsBlock,
 &NumFaceConnections,
 &FaceNeighborMode,
 &TotalNumFaceNodes_Prism,
 &NumConnBndryFaces_Prism,
 &TotalNumBndryConns_Prism,
 NULL,
 ValueLocation,
 NULL,
 &SharConn);

double *X_Prism = new double[NumPts_Prism];
double *Y_Prism = new double[NumPts_Prism];
double *Z_Prism = new double[NumPts_Prism];

/* Set the X and Y variable values, one z-plane at a time */
double ZVal = 0;
for (INTEGER4 ii = 0; ii < 2; ii++)
{
 // triangle in Z=ZVal plane
 X_Prism[3*ii] = 3;
 Y_Prism[3*ii] = 4;
 Z_Prism[3*ii] = ZVal;

 X_Prism[3*ii+1] = 7;
 Y_Prism[3*ii+1] = 2;

77

Examples

Step 9 Define the face map for the arrowhead
Before creating the data set, we have defined the node numbers, face numbers and element numbers.
Using the following figure, specify the nodes that define each face.

Figure 3-4. The arrowhead with three faces visible (Face 2, Face 3 and Face 5). The remaining
rectangular face is Face 1, and the remaining triangular face is Face 4).

The faces are created from the data file format using the FaceNodeCounts and FaceNodes array. The
FaceNodeCounts array specifies the number of nodes contained in each face. The first value in the array is
the number of nodes in Face 1, followed by the number of nodes in Face 2, and so forth. The FaceNodes
array lists the node numbers in each face. The FaceNodes array first lists all of the nodes in Face 1,
followed by all of the nodes in Face 2, and so forth.

In this example, Face 1 is composed of four nodes (Node 1, Node 3, Node 6 and Node 4). As such, the first
value in the FaceNodeCounts array is “4” and the first four values in the FaceNodes array are [1, 3, 6, 4].

 Z_Prism[3*ii+1] = ZVal;

 X_Prism[3*ii+2] = 3;
 Y_Prism[3*ii+2] = 0;
 Z_Prism[3*ii+2] = ZVal;

 ZVal = ZVal - 2;
}

/* When we called TecZne, we specified that the variable 4
 * (pressure) is cell-centered. As such, only NumElements number
 * of values needs to be written to the data file for the pressure
 * variable.
 */
double *P_Prism = new double[NumElems_Prism];
P_Prism[0] = 20;

I = TECDAT142(&NumPts_Prism, X_Prism, &IsDouble);
I = TECDAT142(&NumPts_Prism, Y_Prism, &IsDouble);
I = TECDAT142(&NumPts_Prism, Z_Prism, &IsDouble);
I = TECDAT142(&NumElems_Prism, P_Prism, &IsDouble);

INTEGER4 *FaceNodeCounts_Prism = new INTEGER4[NumFaces_Prism];
INTEGER4 *FaceNodes_Prism = new INTEGER4[TotalNumFaceNodes_Prism];

/* Because of the way we chose to number our faces, the first
 * three faces are rectangular and the last two are triangular.
 * The numbering of the faces is arbitrary, but the faces must
 * be referred to consistently.
 */

78

Step 10 Specify the neighboring elements for Zone 2
Now that we have defined the nodes that compose each face, we must specify the element on either side of
each face. The neighboring elements can be determined using the right-hand rule. For each face, place
your right-hand along the face with your fingers pointing the direction of incrementing node numbers (i.e.
from Node 1 to Node 2). The right side of your hand will indicate the right element, and the left side of
your hand will indicate the left element. Refer to Section 3 - 8.3 “FaceRightElems and FaceLeftElems” for
details.

The number zero is used to indicate that there isn't an element on that side of the face. A negative number
is used when the neighboring element is in another zone. The value of the negative number points to the
position in the FaceBoundaryConnectionElems and FaceBoundaryConnectionZones arrays that defines
the element and zone numbers of the neighboring element. Refer to Step 11 for details.

Because of the way we numbered the nodes and faces, the right element for every face (except the face
connected to the rectangular solid) is the element itself (Element 1) and the left element is "no-neighboring
element" (Element 0).

for (INTEGER4 ii = 0; ii < 3; ii++)
 FaceNodeCounts_Prism[ii] = 4;

for (INTEGER4 ii = 3; ii < NumFaces_Prism; ii++)
 FaceNodeCounts_Prism[ii] = 3;

//Nodes for Face 1
FaceNodes_Prism[0] = 1;
FaceNodes_Prism[1] = 3;
FaceNodes_Prism[2] = 6;
FaceNodes_Prism[3] = 4;

//Nodes for Face 2
FaceNodes_Prism[4] = 1;
FaceNodes_Prism[5] = 4;
FaceNodes_Prism[6] = 5;
FaceNodes_Prism[7] = 2;

//Nodes for Face 3
FaceNodes_Prism[8] = 3;
FaceNodes_Prism[9] = 2;
FaceNodes_Prism[10] = 5;
FaceNodes_Prism[11] = 6;

//Nodes for Face 4
FaceNodes_Prism[12] = 5;
FaceNodes_Prism[13] = 4;
FaceNodes_Prism[14] = 6;

//Nodes for Face 5
FaceNodes_Prism[15] = 1;
FaceNodes_Prism[16] = 2;
FaceNodes_Prism[17] = 3;

/* Since this zone has just one element, all leftelems are
 * NoNeighboring Element and all right elems are itself.
 */
INTEGER4 *FaceLeftElems_Prism = new INTEGER4[NumFaces_Prism];
INTEGER4 *FaceRightElems_Prism = new INTEGER4[NumFaces_Prism];

for (INTEGER4 ii = 0; ii < NumFaces_Prism; ii++)
{
 FaceRightElems_Prism[ii] = 1;

79

Examples

Step 11 Specify boundary connections for Zone 2
The last step for creating Zone 2 is to specify the boundary connections.

 FaceLeftElems_Prism[ii] = 0;
}

/* The negative value in the FaceLeftElems array indicates that
 * the face is connected to an element in another zone. In this
 * case, Face 1 is connected to a face in Zone 1 (as indicated in
 * Line 6). The FaceBoundaryConnectionElems array lists all of
 * the element numbers in other zones that the current zone shares
 * boundary connections with. Similarly, the
 * FaceBoundaryConnectionZones array lists all of the zone numbers
 * with which the current zone shares boundaries. A negative
 * value in the FaceLeftElems or FaceRightElems array indicates
 * the position within these arrays that defines the neighboring
 * element and zone for a face.
 */
FaceLeftElems_Prism[0] = -1;

I = TECPOLYFACE142(&NumFaces_Prism,
 FaceNodeCounts_Prism,
 FaceNodes_Prism,
 FaceLeftElems_Prism,
 FaceRightElems_Prism);

INTEGER4 *FaceBndryConnCounts_Prism = new
INTEGER4[NumConnBndryFaces_Prism];
FaceBndryConnCounts_Prism[0] = 2;

INTEGER4 *FaceBndryConnElems_Prism = new
INTEGER4[TotalNumBndryConns_Prism];
INTEGER4 *FaceBndryConnZones_Prism = new
INTEGER4[TotalNumBndryConns_Prism];

/* As previously mentioned, a connected boundary face is a face
 * that has either multiple neighboring faces or neighbor(s) that
 * belong to another zone. Those cases are sufficient when the
 * combination of all of the face 痴 neighbors completely cover the
 * face. However, there are some cases (such as the bottom of the
 * arrowhead) where the face is not completely covered by its
 * neighbors. In those cases the face is referred to as 菟 artially
 * obscured ? A partially obscured face is indicated by
 * incrementing the value in TotalNumConnectedBoundaryFaces and
 * entering a value of 0 in both the FaceBndryConnectionElems and
 * FaceBoundaryConnectionZones arrays for the boundary connection
 * for the partially obscured face.
 */
FaceBndryConnElems_Prism[0] = 0;
FaceBndryConnZones_Prism[0] = 0;

/* Indicates that Face 1 is connected to Element 1 in Zone 1. */
FaceBndryConnElems_Prism[1] = 1;
FaceBndryConnZones_Prism[1] = 1;

I = TECPOLYBCONN142(&NumConnBndryFaces_Prism,
 FaceBndryConnCounts_Prism,
 FaceBndryConnElems_Prism,
 FaceBndryConnZones_Prism);

/* cleanup */
delete X_Prism;

80

Step 12 Close the file
Call TECEND to close the file.

3 - 9.4 Multiple Polygonal Zones
The following example demonstrates how to create multiple polygonal zones. The example covers:
creating a zone where each element contains a different number of nodes, boundary connections and
varying variable locations (cell-centered versus nodal).

The code in this example produces the following plot:

Before beginning to create a polyhedral data file, you should assign a number to each node, face, element
and zone. The numbering system is used to determine the order that the information is supplied to
Tecplot. You may assign any order you would like. However, once you have supplied information to

delete Y_Prism;
delete Z_Prism;
delete P_Prism;
delete FaceNodeCounts_Prism;
delete FaceNodes_Prism;
delete FaceLeftElems_Prism;
delete FaceRightElems_Prism;
delete FaceBndryConnCounts_Prism;
delete FaceBndryConnElems_Prism;
delete FaceBndryConnZones_Prism;

I = TECEND142();

81

Examples

Tecplot, you cannot change the number configuration. For this example, we have selected the numbering
system shown below:

Zone 1 has a total of three elements, thirteen unique nodes and fifteen faces. Zone 2 has two elements,
twelve nodes and thirteen faces.

In order to keep the example as simple as possible, error checking is not included. If you plan to compile
this example, be sure to include: TECIO.h.

For complete details on the parameters used and the function syntax for each TecIO function, refer to
Section 3 - 7 “Binary Data File Function Reference”. When creating a binary data file using the TecIO
library, the functions must be called in a specific order. Refer to Section 3 - 4 “Binary Data File Function
Calling Sequence” for details.

Step 1 Initialize the Data File
The first step for creating a binary data file using the TecIO library is to initialize and open the data file by
calling TECINI

INTEGER4 I; /* use to check return values */

INTEGER4 Debug = 1;
INTEGER4 VIsDouble = 0;
INTEGER4 FileType = 0;
INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT

I = TECINI142((char*)”Example: Multiple polygonal zones”,
 (char*)”X Y P”, /* Defines the variables for the data
file.
 * Each zone must contain each of the vars
 * listed here. The order of the variables
 * in the list is used to define the
 * variable number (e.g. X is Variable 1).
 * When referring to variables in other
 * TecIO functions, you will refer to the
 * variable by its number.
 */
 (char*)”HexagonsAndOctagon.plt”,
 (char*)”.”, /* scratch directory */
 &FileFormat,
 &FileType,
 &Debug,
 &VIsDouble);

82

Step 2 Create Zone 1 (3 Hexagons)
The first step toward creating Zone 1 is to call TECZNE. TECZNE is used to initialize the zone and specify
parameters that apply to the entire zone (e.g. number of nodes, number of elements and variable location).

/* TECZNE Parameters */
INTEGER4 ZoneType = 6; /* FE Polygon */
INTEGER4 NumPts_Z1 = 13; /* the number of unique
 * nodes in the zone.
 */
INTEGER4 NumElems_Z1 = 3;
INTEGER4 NumFaces_Z1 = 15; /* the number of unique
 * faces in the zone.
 */
INTEGER4 ICellMax = 0; /* not used */
INTEGER4 JCellMax = 0; /* not used */
INTEGER4 KCellMax = 0; /* not used */
double SolutionTime = 0.0;
INTEGER4 StrandID = 0;
INTEGER4 ParentZone = 0;
INTEGER4 IsBlock = 1;
INTEGER4 NumFaceConnections = 0;
INTEGER4 FaceNeighborMode = 1;
INTEGER4 SharConn = 0;

INTEGER4 ValueLocation[3] = { 1, 1, 0 };

/* For a polygonal zone, the total number of face nodes is
 * twice the total number of faces. This is because each face
 * is composed of exactly two nodes.
 */
INTEGER4 TotalNumFaceNodes_Z1 = 2 * NumFaces_Z1;

/* A boundary face is a face that is neighbored by an element

83

Examples

Step 3 Specify the variable values for Zone 1
The variable values are written to the data file via the TECDAT function. For each variable you must
provide either a total number of values equivalent to NumPts (if the variables are nodal) or a total number
of values equivalent to NumElements (if the variables are cell-centered). The variable location is specified
by the VarLocation parameter in TECZNE. In this example, X and Y are nodal variables and P is cell-
centered.

The order in which the variable values must be provided is established by the numbering scheme
(specified at the beginning of the example). The first value for each nodal variable (X and Y) corresponds
to Node 1, the second value corresponds to Node 2 and so forth. The first value for the cell-centered value
is for Element 1, the second value is for the second element or cell and so forth.

 * or elements in another zone or zone(s). In Zone 1, Face 9,
 * Face 10 and Face 12 have a neighbor in Zone 2. Therefore,
 * the total number of boundary faces is ??
 */
INTEGER4 TotalNumBndryFaces_Z1 = 3;

/* Each boundary face has one or more boundary connections. A
 * boundary connection is defined as another element in another
 * zone. Face 9 has a boundary connection with Element 1 in
 * Zone 2. In this example, each boundary face is connected to
 * one other element, so the total number of boundary
 * connections is equivalent to the total number of boundary
 * faces (3).
 */
INTEGER4 TotalNumBndryConns_Z1 = 3;

I = TECZNE142((char*)"Zone 1: 3 Hexagons", /* Specifies the name of
 * the entire dataset. When
 * the file is loaded into
 * Tecplot, the value is
 * available via the Data
 * Set Info dialog.
 */
 &ZoneType,
 &NumPts_Z1,
 &NumElems_Z1,
 &NumFaces_Z1,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolutionTime,
 &StrandID,
 &ParentZone,
 &IsBlock,
 &NumFaceConnections,
 &FaceNeighborMode,
 &TotalNumFaceNodes_Z1,
 &TotalNumBndryFaces_Z1,
 &TotalNumBndryConns_Z1,
 NULL,
 ValueLocation,
 NULL,
 &SharConn);

84

In order for the example to be easily followed, the grid coordinates are explicitly defined. When working
with larger data sets, you will likely wish to use equations to define your coordinates. Refer to the picture
in Step 2 for the X and Y coordinate values for Zone 1.

/* TECDAT Parameters */
double *X_Z1 = new double[NumPts_Z1];
double *Y_Z1 = new double[NumPts_Z1];

X_Z1[0] = 1;
Y_Z1[0] = 6;

X_Z1[1] = 2;
Y_Z1[1] = 6;

X_Z1[2] = 3;
Y_Z1[2] = 5;

X_Z1[3] = 2;
Y_Z1[3] = 4;

X_Z1[4] = 1;
Y_Z1[4] = 4;

X_Z1[5] = 0;
Y_Z1[5] = 5;

X_Z1[6] = 4;
Y_Z1[6] = 5;

X_Z1[7] = 5;
Y_Z1[7] = 4;

X_Z1[8] = 4;
Y_Z1[8] = 3;

X_Z1[9] = 3;
Y_Z1[9] = 3;

X_Z1[10] = 2;
Y_Z1[10] = 2;

X_Z1[11] = 1;
Y_Z1[11] = 2;

X_Z1[12] = 0;
Y_Z1[12] = 3;

double *P_Z1 = new double[NumElems_Z1];
P_Z1[0] = 2;
P_Z1[1] = 4;
P_Z1[2] = 5;

INTEGER4 IsDouble = 1;
I = TECDAT142(&NumPts_Z1, X_Z1, &IsDouble);
I = TECDAT142(&NumPts_Z1, Y_Z1, &IsDouble);
I = TECDAT142(&NumElems_Z1, P_Z1, &IsDouble);
delete X_Z1;
delete Y_Z1;
delete P_Z1;

85

Examples

Step 4 Specify the face map data for Zone 1
Use the picture in Step 2 to specify the nodes that compose each face. The first two values in the face node
array define Face 1, the next two define Face 2, and so on.

/* TecPolyFace Parameters */

/* Create a FaceNodes array, dimensioned by the total number
 * of face nodes in the zone.
 */
INTEGER4 *FaceNodes_Z1 = new INTEGER4[TotalNumFaceNodes_Z1];

/* Face Nodes for Element 1 */
FaceNodes_Z1[0] = 1;
FaceNodes_Z1[1] = 2;

FaceNodes_Z1[2] = 2;
FaceNodes_Z1[3] = 3;

FaceNodes_Z1[4] = 3;
FaceNodes_Z1[5] = 4;

FaceNodes_Z1[6] = 4;
FaceNodes_Z1[7] = 5;

FaceNodes_Z1[8] = 5;
FaceNodes_Z1[9] = 6;

FaceNodes_Z1[10] = 6;
FaceNodes_Z1[11] = 1;

/* Face Nodes for Element 2 */
FaceNodes_Z1[12] = 3;
FaceNodes_Z1[13] = 7;

FaceNodes_Z1[14] = 7;
FaceNodes_Z1[15] = 8;

FaceNodes_Z1[16] = 8;
FaceNodes_Z1[17] = 9;

FaceNodes_Z1[18] = 9;
FaceNodes_Z1[19] = 10;

FaceNodes_Z1[20] = 10;
FaceNodes_Z1[21] = 4;

/* Face Nodes for Element 3 */
FaceNodes_Z1[22] = 10;
FaceNodes_Z1[23] = 11;

FaceNodes_Z1[24] = 11;
FaceNodes_Z1[25] = 12;

FaceNodes_Z1[26] = 12;
FaceNodes_Z1[27] = 13;

FaceNodes_Z1[28] = 13;
FaceNodes_Z1[29] = 5;

86

Step 5 Specify the neighboring elements for Zone 1
Now that we have defined the nodes that compose each face, we must specify the element on either side of
each face. The neighboring elements can be determined using the right-hand rule. For each face, place
your right-hand along the face with your fingers pointing the direction of incrementing node numbers (i.e.
from Node 1 to Node 2). The right side of your hand will indicate the right element, and the left side of
your hand will indicate the left element. Refer to Section 3 - 8.3 “FaceRightElems and FaceLeftElems” for
details.

The number zero is used to indicate that there isn't an element on that side of the face. A negative number
is used when the neighboring element is in another zone. The value of the negative number points to the
position in the FaceBoundaryConnectionElems and FaceBoundaryConnectionZones arrays that defines
the element and zone numbers of the neighboring element. Refer to Step 6 for details.

Because of the way we numbered the nodes and faces, the right element for every face is the element itself.
The left element will either be: another element in the zone, “no neighboring element”, or an element in
Zone 2. The term “no neighboring element” is used to describe a face that is on the edge of the entire data
set (not just the zone).

INTEGER4 *FaceLeftElems_Z1 = new INTEGER4[NumFaces_Z1];
INTEGER4 *FaceRightElems_Z1 = new INTEGER4[NumFaces_Z1];

/* Left Face Elems for Element 1 */
FaceLeftElems_Z1[0] = 0;
FaceLeftElems_Z1[1] = 0;
FaceLeftElems_Z1[2] = 2;
FaceLeftElems_Z1[3] = 3;
FaceLeftElems_Z1[4] = 0;

/* Left Face Elems for Element 2 */
FaceLeftElems_Z1[5] = 0;
FaceLeftElems_Z1[6] = 0;
FaceLeftElems_Z1[7] = 0;
FaceLeftElems_Z1[8] = -1;
FaceLeftElems_Z1[9] = -2;
FaceLeftElems_Z1[10] = 3;

/* Left Face Elems for Element 3 */
FaceLeftElems_Z1[11] = -3;
FaceLeftElems_Z1[12] = 0;
FaceLeftElems_Z1[13] = 0;
FaceLeftElems_Z1[14] = 0;

/* Set Right Face Elems. Because of the way we numbered the
 * nodes and faces, the right element for every face is the
 * element itself.
 */
for (INTEGER4 ii = 0; ii < 6; ii++)
 FaceRightElems_Z1[ii] = 1;

for (INTEGER4 ii = 6; ii < 11; ii++)
 FaceRightElems_Z1[ii] = 2;

for (INTEGER4 ii = 11; ii <= 14; ii++)
 FaceRightElems_Z1[ii] = 3;

I = TECPOLYFACE142(&NumFaces_Z1,
 NULL, /* Not used for polygon zones */
 FaceNodes_Z1,
 FaceLeftElems_Z1,
 FaceRightElems_Z1);

87

Examples

Step 6 Specify the boundary connections for Zone 1
The final step for creating Zone 1 is to define the boundary connections.

delete FaceNodes_Z1;
delete FaceLeftElems_Z1;
delete FaceRightElems_Z1;

/* TecPolyBConn Parameters */

/* The FaceBndryConnectionCounts array is used to define the
 * number of boundary connections for each face that has a
 * boundary connection. For example, if a zone has three
 * boundary connections in total (NumConnectedBoundaryFaces),
 * two of those boundary connections are in one face, and the
 * remaining boundary connection is in a second face, the
 * FaceBndryConnectionCounts array would be: [2 1].
 *
 * In this example, the total number of connected boundary
 * faces (specified via TECZNE) is equal to three. Each
 * boundary face is connected to only one other element,
 * so the FaceBoundaryConnectionCounts array is (1, 1, 1).
 */
INTEGER4 FaceBndryConnectionCounts_Z1[3] = {1, 1, 1};

/* The value(s) in the FaceBndryConnectionElems and
 * FaceBndryConnectionZones arrays specifies the element number
 * and zone number, respectively, that a given boundary
 * connection is connected to. In this case, the first
 * boundary connection face is connected to Element 1 in Zone 2
 * and the remaining connection is to Element 2 in Zone 2.
 */
INTEGER4 FaceBndryConnectionElems_Z1[3] = {1, 2, 2};
INTEGER4 FaceBndryConnectionZones_Z1[3] = {2, 2, 2};

I = TECPOLYBCONN142(&TotalNumBndryFaces_Z1,
 FaceBndryConnectionCounts_Z1,
 FaceBndryConnectionElems_Z1,
 FaceBndryConnectionZones_Z1);

88

Step 7 Create Zone 2
Now that Zone 1 is complete, we are ready to begin creating Zone 2 by calling TECZNE. For simplicity, we
are reusing many of the variables that were defined for Zone 1.

INTEGER4 NumPts_Z2 = 12; /* number of unique
 * nodes in the zone
 */
INTEGER4 NumElems_Z2 = 2;
INTEGER4 NumFaces_Z2 = 13; /* number of unique
 * faces in the zone
 */
INTEGER4 NumFaceConnections_Z2 = 0;
/* In polygonal zones, each face has exactly two nodes */
INTEGER4 TotalNumFaceNodes_Z2 = NumFaces_Z2 * 2;

/* A boundary face is a face that is neighbored by an element or
 * elements from another zone or zone(s). In Zone 2, Face 6,
 * Face 7 and Face 13 have a neighbor in Zone 1. Therefore, the
 * total number of boundary faces is ??
 */
INTEGER4 TotalNumBndryFaces_Z2 = 3;

/* Each boundary face has one or more boundary connections. In
 * this example, each boundary face is connected to one other
 * element (i.e. the number of boundary faces and the number of
 * boundary connections is one-to-one).
 */
INTEGER4 TotalNumBndryConns_Z2 = 3;

I = TECZNE142((char*)"Zone 2: 1 Hexagon and 1 Octagon",
 &ZoneType,
 &NumPts_Z2,
 &NumElems_Z2,
 &NumFaces_Z2,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolutionTime,
 &StrandID,

89

Examples

Step 8 Specify the variable values for Zone 2
The variable values are written to the data file via the TECDAT function. For each variable you must
provide either a total number of values equivalent to NumPts (if the variables are nodal) or equivalent to
NumElements (if the variables are cell-centered). The variable location is specified by the VarLocation
parameter in TECZNE. In this example, X and Y are nodal variables and P is cell-centered.

The order in which the variable values must be provided is established by the numbering scheme
specified at the beginning of the example. The first value for each nodal variable (X and Y) corresponds to
Node 1, the second value corresponds to Node 2 and so forth. The first value for the cell-centered value is
for Element 1, the second value is for the second element or cell and so forth.

In order for the example to be easily followed, the grid coordinates are explicitly defined. When working
with larger data sets, you will likely wish to use equations to define your coordinates. Refer to the picture
in Step 7 for the X and Y coordinate values for Zone 2.

 &ParentZone,
 &IsBlock,
 &NumFaceConnections_Z2,
 &FaceNeighborMode,
 &TotalNumFaceNodes_Z2,
 &TotalNumBndryFaces_Z2,
 &TotalNumBndryConns_Z2,
 NULL,
 ValueLocation,
 NULL,
 &SharConn);

double *X_Z2 = new double[NumPts_Z2];
double *Y_Z2 = new double[NumPts_Z2];

X_Z2[0] = 5;
Y_Z2[0] = 4;

X_Z2[1] = 6;
Y_Z2[1] = 4;

X_Z2[2] = 7;
Y_Z2[2] = 3;

X_Z2[3] = 6;
Y_Z2[3] = 2;

X_Z2[4] = 5;
Y_Z2[4] = 2;

X_Z2[5] = 4;
Y_Z2[5] = 3;

X_Z2[6] = 3;
Y_Z2[6] = 3;

X_Z2[7] = 5;
Y_Z2[7] = 1;

X_Z2[8] = 4;
Y_Z2[8] = 0;

X_Z2[9] = 3;
Y_Z2[9] = 0;

90

Step 9 Specify the face map for Zone 2
Use the picture in Step 7 to specify which nodes compose which face. The first two values in the face node
array define Face 1, the next two define Face 2, and so on.

X_Z2[10] = 2;
Y_Z2[10] = 1;

X_Z2[11] = 2;
Y_Z2[11] = 2;

/* In the call to TecZne, P was set to a cell centered variable.
 * As such, only two values need to be defined.
 */
double *P_Z2 = new double[NumPts_Z2];

P_Z2[0] = 8;
P_Z2[1] = 6;

I = TECDAT142(&NumPts_Z2, X_Z2, &IsDouble);
I = TECDAT142(&NumPts_Z2, Y_Z2, &IsDouble);
I = TECDAT142(&NumElems_Z2, P_Z2, &IsDouble);

delete X_Z2;
delete Y_Z2;
delete P_Z2;

INTEGER4 *FaceNodes_Z2;
FaceNodes_Z2 = new INTEGER4[TotalNumFaceNodes_Z2];

/* Face Nodes for Element 1 */
FaceNodes_Z2[0] = 1;
FaceNodes_Z2[1] = 2;

FaceNodes_Z2[2] = 2;
FaceNodes_Z2[3] = 3;

FaceNodes_Z2[4] = 3;
FaceNodes_Z2[5] = 4;

FaceNodes_Z2[6] = 4;
FaceNodes_Z2[7] = 5;

FaceNodes_Z2[8] = 5;
FaceNodes_Z2[9] = 6;

FaceNodes_Z2[10] = 6;
FaceNodes_Z2[11] = 1;

/* Face Nodes for Element 2 */
FaceNodes_Z2[12] = 7;
FaceNodes_Z2[13] = 6;

FaceNodes_Z2[14] = 5;
FaceNodes_Z2[15] = 8;

FaceNodes_Z2[16] = 8;
FaceNodes_Z2[17] = 9;

FaceNodes_Z2[18] = 9;
FaceNodes_Z2[19] = 10;

91

Examples

Step 10 Specify the neighboring elements for Zone 2
Now that we have defined the nodes that compose each face, we must specify the element on either side of
each face. The neighboring elements can be determined using the right-hand rule. For each face, place
your right-hand along the face with your fingers pointing the direction of incrementing node numbers (i.e.
from Node 1 to Node 2). The right side of your hand will indicate the right element, and the left side of
your hand will indicate the left element. Refer to Section 3 - 8.3 “FaceRightElems and FaceLeftElems” for
details.

The number zero is used to indicate that there isn't an element on that side of the face. A negative number
is used when the neighboring element is in another zone. The value of the negative number points to the
position in the FaceBoundaryConnectionElems and FaceBoundaryConnectionZones arrays that defines
the element and zone numbers of the neighboring element. Refer to Step 11 for details.

Because of the way we numbered the nodes and faces, the right element for every face is the element itself.
The left element will either be: another element in the zone, “no neighboring element”, or an element in
Zone 2. The term “no neighboring element” is used to describe a face that is on the edge of the entire data
set (not just the zone).

FaceNodes_Z2[20] = 10;
FaceNodes_Z2[21] = 11;

FaceNodes_Z2[22] = 11;
FaceNodes_Z2[23] = 12;

FaceNodes_Z2[24] = 12;
FaceNodes_Z2[25] = 7;

/* Specify the right and left neighboring elements.
 * The neighboring elements can be determined using the
 * right-hand rule. For each face, place your right-hand along
 * the face with your fingers pointing the direction of
 * incrementing node numbers (i.e. from Node 1 to Node 2). The
 * right side of your hand will indicate the right element,
 * and the left side of your hand will indicate the left
 * element. A value of zero indicates that there is no
 * neighboring element on that side. A negative value
 * indicates that the neighboring element is in another zone.
 * The number is a pointer into the FaceBndryConnectionElems
 * and FaceBndryConnectionZones arrays.
 */

INTEGER4 *FaceLeftElems_Z2 = new INTEGER4[NumFaces_Z2];
INTEGER4 *FaceRightElems_Z2 = new INTEGER4[NumFaces_Z2];

/* Left Face Elems for Element 1 */
FaceLeftElems_Z2[0] = 0;
FaceLeftElems_Z2[1] = 0;
FaceLeftElems_Z2[2] = 0;
FaceLeftElems_Z2[3] = 0;
FaceLeftElems_Z2[4] = 2;
FaceLeftElems_Z2[5] = -1;

/* Left Face Elems for Element 2 */
FaceLeftElems_Z2[6] = -2;
FaceLeftElems_Z2[7] = 0;
FaceLeftElems_Z2[8] = 0;
FaceLeftElems_Z2[9] = 0;
FaceLeftElems_Z2[10] = 0;
FaceLeftElems_Z2[11] = 0;
FaceLeftElems_Z2[12] = -3;

92

Step 11 Specify the Boundary Connections for Zone 2
The final step for creating Zone 2 is to define the boundary connections

Step 12 Close the file using TECEND
Call TECEND to close the file.

/* Set Right Face Elems. Because of the way we numbered the
 * nodes and faces, the right element for every face is the
 * element itself. */
for (INTEGER4 ii = 0; ii < 6; ii++)
 FaceRightElems_Z2[ii] = 1;

for (INTEGER4 ii = 6; ii < 13; ii++)
 FaceRightElems_Z2[ii] = 2;

I = TECPOLYFACE142(&NumFaces_Z2,
 NULL,
 FaceNodes_Z2,
 FaceLeftElems_Z2,
 FaceRightElems_Z2);

delete FaceNodes_Z2;
delete FaceLeftElems_Z2;
delete FaceRightElems_Z2;

/* The FaceBndryConnectionCounts array is used to define the
 * number of boundary connections for each face that has a
 * boundary connection. In this example, the total number of
 * connected boundary faces (specified via TECZNE) is equal to
 * three. Each boundary face is connected to only one other
 * element, so the FaceBoundaryConnectionCounts array is
 * (1, 1, 1).
 */
INTEGER4 FaceBndryConnectionCounts_Z2[3] = {1, 1, 1};

/* The value(s) in the FaceBndryConnectionElems and
 * FaceBndryConnectionZones arrays specifies that element
 * number and zone number, respectively, that a given boundary
 * connection is connected to. In this case, the first boundary
 * connection face is connected to Element 2 in Zone 1 and the
 * remaining connections are Element 3 in Zone 1.
 */
INTEGER4 FaceBndryConnectionElems_Z2[3] = {2, 3, 3};
INTEGER4 FaceBndryConnectionZones_Z2[3] = {1, 1, 1};

I = TECPOLYBCONN142(&TotalNumBndryFaces_Z2,
 FaceBndryConnectionCounts_Z2,
 FaceBndryConnectionElems_Z2,
 FaceBndryConnectionZones_Z2);

I = TECEND142();

93

Examples

3 - 9.5 Polyhedral Example
The following example (written in C) illustrates how to create a single polyhedral cell using the TecIO
library.

#include “TECIO.h”
#include “MASTER.h” /* for defintion of NULL */

int main()
{
 /* Call TECINI142 */
 INTEGER4 FileType = 0; /* 0 for full file */
 INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT; Only PLT is
currently
 // supported for polyhedral zones
 INTEGER4 Debug = 0;
 INTEGER4 VIsDouble = 1;
 INTEGER4 I = 0; /* use to check return codes */

 I = TECINI142((char*)”Pyramid”, /* Data Set Title */
 (char*)”X Y Z”, /* Variable List */
 (char*)”pyramid.plt”, /* File Name */
 (char*)”.”, /* Scratch Directory */
 &FileFormat,
 &(FileType),
 &(Debug),
 &(VIsDouble));

 /* Call TECZNE142 */
 INTEGER4 ZoneType = 7; /* 7 for FEPolyhedron */
 INTEGER4 NumNodes = 5; /* number of unique nodes */
 INTEGER4 NumElems = 1; /* number of elements */
 INTEGER4 NumFaces = 5; /* number of unique faces */

 INTEGER4 ICellMax = 0; /* Not Used, set to zero */
 INTEGER4 JCellMax = 0; /* Not Used, set to zero */
 INTEGER4 KCellMax = 0; /* Not Used, set to zero */

 double SolTime = 12.65; /* solution time */
 INTEGER4 StrandID = 0; /* static zone */
 INTEGER4 ParentZone = 0; /* no parent zone */

 INTEGER4 IsBlock = 1; /* block format */

 INTEGER4 NFConns = 0; /* not used for FEPolyhedron
 * zones
 */
 INTEGER4 FNMode = 0; /* not used for FEPolyhedron
 * zones
 */

 INTEGER4 *PassiveVarArray = NULL;
 INTEGER4 *ValueLocArray = NULL;
 INTEGER4 *VarShareArray = NULL;

 INTEGER4 ShrConn = 0;

 /* The number of face nodes in the zone. This example creates
 * a zone with a single pyramidal cell. This cell has four
 * triangular faces and one rectangular face, yielding a total
 * of 16 face nodes.
 */
 INTEGER4 NumFaceNodes = 16;
 INTEGER4 NumBConns = 0; /* No Boundary Connections */

94

 INTEGER4 NumBItems = 0; /* No Boundary Items */

 I = TECZNE142((char*)”Polyhedral Zone (Octahedron)”,
 &ZoneType,
 &NumNodes,
 &NumElems,
 &NumFaces,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolTime,
 &StrandID,
 &ParentZone,
 &IsBlock,
 &NFConns,
 &FNMode,
 &NumFaceNodes,
 &NumBConns,
 &NumBItems,
 PassiveVarArray,
 ValueLocArray,
 VarShareArray,
 &ShrConn);

 /* Initialize arrays of nodal data */
 double *X = new double[NumNodes];
 double *Y = new double[NumNodes];
 double *Z = new double[NumNodes];

 X[0] = 0;
 Y[0] = 0;
 Z[0] = 0;

 X[1] = 1;
 Y[1] = 1;
 Z[1] = 2;

 X[2] = 2;
 Y[2] = 0;
 Z[2] = 0;

 X[3] = 2;
 Y[3] = 2;
 Z[3] = 0;

 X[4] = 0;
 Y[4] = 2;
 Z[4] = 0;

 /* Write the data (using TECDAT142) */
 INTEGER4 DIsDouble = 1; /* One for double precision */
 I = TECDAT142(&NumNodes, X, &DIsDouble);
 I = TECDAT142(&NumNodes, Y, &DIsDouble);
 I = TECDAT142(&NumNodes, Z, &DIsDouble);

 delete X;
 delete Y;
 delete Z;

 /* Define the Face Nodes.
 *
 * The FaceNodes array is used to indicate which nodes define
 * which face. As mentioned earlier, the number of the nodes is
 * implicitly defined by the order in which the nodal data is

95

Examples

 * provided. The first value of each nodal variable describes
 * node 1, the second value describes node 2, and so on.
 *
 * The face numbering is implicitly defined. Because there are
 * two nodes in each face, the first two nodes provided define
 * face 1, the next two define face 2 and so on. If there was
 * a variable number of nodes used to define the faces, the
 * array would be more complicated.
 */

 INTEGER4 *FaceNodeCounts = new INTEGER4[NumFaces];
 /* The first four faces are triangular, i.e. have three nodes.
 * The fifth face is rectangular, i.e. has four nodes. */
 FaceNodeCounts[0] = 3;
 FaceNodeCounts[1] = 3;
 FaceNodeCounts[2] = 3;
 FaceNodeCounts[3] = 3;
 FaceNodeCounts[4] = 4;

 INTEGER4 *FaceNodes = new INTEGER4[NumFaceNodes];
 /* Face Nodes for Face 1 */
 FaceNodes[0] = 1;
 FaceNodes[1] = 2;
 FaceNodes[2] = 3;

 /* Face Nodes for Face 2 */
 FaceNodes[3] = 3;
 FaceNodes[4] = 2;
 FaceNodes[5] = 4;

 /* Face Nodes for Face 3 */
 FaceNodes[6] = 5;
 FaceNodes[7] = 2;
 FaceNodes[8] = 4;

 /* Face Nodes for Face 4 */
 FaceNodes[9] = 1;
 FaceNodes[10] = 2;
 FaceNodes[11] = 5;

 /* Face Nodes for Face 5 */
 FaceNodes[12] = 1;
 FaceNodes[13] = 5;
 FaceNodes[14] = 4;
 FaceNodes[15] = 3;

 /* Define the right and left elements of each face.
 *
 * The last step for writing out the polyhedral data is to
 * define the right and left neighboring elements for each
 * face. The neighboring elements can be determined using the
 * right-hand rule. For each face, place your right-hand along
 * the face which your fingers pointing the direction of
 * incrementing node numbers (i.e. from node 1 to node 2).
 * Your right thumb will point towards the right element; the
 * element on the other side of your hand is the left element.
 *
 * The number zero is used to indicate that there isn’t an
 * element on that side of the face.
 *
 * Because of the way we numbered the nodes and faces, the
 * right element for every face is the element itself
 * (element 1) and the left element is “no-neighboring element”
 * (element 0).

96

3 - 9.6 IJ-ordered zone
The following example illustrates how to create a simple IJ-ordered zone. TECZNE142 is called first to
initialize the zone.

 */

 INTEGER4 *FaceLeftElems = new INTEGER4[NumFaces];
 FaceLeftElems[0] = 1;
 FaceLeftElems[1] = 1;
 FaceLeftElems[2] = 0;
 FaceLeftElems[3] = 0;
 FaceLeftElems[4] = 0;

 INTEGER4 *FaceRightElems = new INTEGER4[NumFaces];
 FaceRightElems[0] = 0;
 FaceRightElems[1] = 0;
 FaceRightElems[2] = 1;
 FaceRightElems[3] = 1;
 FaceRightElems[4] = 1;

 /* Write the face map (created above) using TECPOLYFACE142. */
 I = TECPOLYFACE142(&NumFaces,
 FaceNodeCounts, /* The face node counts array */
 FaceNodes, /* The face nodes array */
 FaceLeftElems, /* The left elements array */
 FaceRightElems); /* The right elements array */

 delete FaceNodeCounts;
 delete FaceNodes;
 delete FaceLeftElems;
 delete FaceRightElems;

 I = TECEND142();
 return 0;
}

#include “TECIO.h”
#include “MASTER.h” /* for defintion of NULL */

int main()
{
 INTEGER4 Debug = 1;
 INTEGER4 VIsDouble = 0;
 INTEGER4 FileType = 0;
 INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT
 INTEGER4 I = 0; /* Used to track return codes */

 /*
 * Open the file and write the tecplot datafile
 * header information
 */
 I = TECINI142((char*)”IJ Ordered Zones”, /* Name of the entire
 * dataset.
 */
 (char*)”X Y P”, /* Defines the variables for the data
 * file. Each zone must contain each of
 * the variables listed here. The order
 * of the variables in the list is used
 * to define the variable number (e.g.
 * X is Var 1).
 */
 (char*)”ij_ordered.plt”,
 (char*)”.”, /* Scratch Directory */

97

Examples

 &FileFormat,
 &FileType,
 &Debug,
 &VIsDouble);

 float X1[4];
 float Y1[4];
 float P1[4];
 float X2[4];
 float Y2[4];
 float P2[4];

 INTEGER4 ICellMax = 0;
 INTEGER4 JCellMax = 0;
 INTEGER4 KCellMax = 0;
 INTEGER4 DIsDouble = 0;
 double SolTime = 360.0;
 INTEGER4 StrandID = 0; /* StaticZone */
 INTEGER4 ParentZn = 0;
 INTEGER4 IsBlock = 1; /* Block */
 INTEGER4 NFConns = 0;
 INTEGER4 FNMode = 0;
 INTEGER4 TotalNumFaceNodes = 1;
 INTEGER4 TotalNumBndryFaces = 1;
 INTEGER4 TotalNumBndryConnections = 1;
 INTEGER4 ShrConn = 0;

 /*Ordered Zone Parameters*/
 INTEGER4 IMax = 2;
 INTEGER4 JMax = 2;
 INTEGER4 KMax = 1;

 X1[0] = .125;
 Y1[0] = .5;
 P1[0] = 5;

 X1[1] = .625;
 Y1[1] = .5;
 P1[1] = 7.5;

 X1[2] = .125;
 Y1[2] = .875;
 P1[2] = 10;

 X1[3] = .625;
 Y1[3] = .875;
 P1[3] = 7.5;

 X2[0] = .375;
 Y2[0] = .125;
 P2[0] = 5;

 X2[1] = .875;
 Y2[1] = .125;
 P2[1] = 7.5;

 X2[2] = .375;
 Y2[2] = .5;
 P2[2] = 10;

 X2[3] = .875;
 Y2[3] = .5;
 P2[3] = 7.5;

98

 /* Ordered Zone */
 INTEGER4 ZoneType = 0;
 I = TECZNE142((char*)”Ordered Zone”,
 &ZoneType,
 &IMax,
 &JMax,
 &KMax,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolTime,
 &StrandID,
 &ParentZn,
 &IsBlock,
 &NFConns,
 &FNMode,
 &TotalNumFaceNodes,
 &TotalNumBndryFaces,
 &TotalNumBndryConnections,
 NULL,
 NULL,
 NULL,
 &ShrConn);
 INTEGER4 III = IMax * JMax * KMax;
 I = TECDAT142(&III, X1, &DIsDouble);
 I = TECDAT142(&III, Y1, &DIsDouble);
 I = TECDAT142(&III, P1, &DIsDouble);

 I = TECZNE142((char*)”Ordered Zone2”,
 &ZoneType,
 &IMax,
 &JMax,
 &KMax,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolTime,
 &StrandID,
 &ParentZn,
 &IsBlock,
 &NFConns,
 &FNMode,
 &TotalNumFaceNodes,
 &TotalNumBndryFaces,
 &TotalNumBndryConnections,
 NULL,
 NULL,
 NULL,
 &ShrConn);

 I = TECDAT142(&III, X2, &DIsDouble);
 I = TECDAT142(&III, Y2, &DIsDouble);
 I = TECDAT142(&III, P2, &DIsDouble);

 I = TECEND142();
 return 0;
}

99

Examples

3 - 9.7 Switching Between Two Files
In this simplified example, information is written to two separate files. First, one file is created and a zone
is written to the file. Then, a second file is created and a zone and auxiliary data are written to the file. The
second file is closed and the auxiliary data is written to the first file.INTEGER4 DemoTecFil(void)

#include “TECIO.h”
#include “MASTER.h” /* for defintion of NULL */
#include <string.h>

int main()
{
 /*
 * Open the file and write the tecplot datafile
 * header information
 */
 INTEGER4 Debug = 1;
 INTEGER4 VIsDouble = 0;
 INTEGER4 FileType = 0;
 INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT
 INTEGER4 I = 0; /* Used to check the return value */

 I = TECINI142((char*)”SIMPLE DATASET”, /* Name of the entire
dataset.*/

 (char*)”X1 Y1 P1”, /* Defines the variables for the
data
 * file. Each zone must contain
each of
 * the variables listed here. The
order
 * of the variables in the list is
used
 * to define the variable number
(e.g.
 * X1 is Var 1).
 */
 (char*)”file1.plt”,
 (char*)”.”, /* Scratch Directory */
 &FileFormat,
 &FileType,
 &Debug,
 &VIsDouble);

 /* Set the parameters for TecZne */
 INTEGER4 ZoneType = 0; /* sets the zone type to
 * ordered
 */
 INTEGER4 IMax = 2; /* Create an IJ-ordered zone,
 * by using IMax and JMax
 * values that are greater
 * than one, and setting KMax
 * to one.
 */
 INTEGER4 JMax = 2;
 INTEGER4 KMax = 1;

 double SolTime = 0;
 INTEGER4 StrandID = 0; /* StaticZone */
 INTEGER4 ParentZn = 0; /* used for surface streams */

 INTEGER4 ICellMax = 0; /* not used */
 INTEGER4 JCellMax = 0; /* not used */
 INTEGER4 KCellMax = 0; /* not used */

100

 INTEGER4 IsBlock = 1; /* Block */

 INTEGER4 NFConns = 0; /* this example does not use
 * face neighbors */
 INTEGER4 FNMode = 0;
 INTEGER4 TotalNumFaceNodes = 1;
 INTEGER4 TotalNumBndryFaces = 1;
 INTEGER4 TotalNumBndryConn = 1;
 INTEGER4 ShrConn = 0;

 /* Create an Ordered Zone */
 I = TECZNE142((char*)”Ordered Zone”,
 &ZoneType,
 &IMax,
 &JMax,
 &KMax,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolTime,
 &StrandID,
 &ParentZn,
 &IsBlock,
 &NFConns,
 &FNMode,
 &TotalNumFaceNodes,
 &TotalNumBndryFaces,
 &TotalNumBndryConn,
 NULL,
 NULL,
 NULL,
 &ShrConn);

 /* Set the variable values for the ordered zone. */
 float X1[4];
 float Y1[4];
 float P1[4];

 X1[0] = 0.125;
 Y1[0] = 0.5;
 P1[0] = 7.5;

 X1[1] = 0.625;
 Y1[1] = 0.5;
 P1[1] = 10.0;

 X1[2] = 0.125;
 Y1[2] = 0.875;
 P1[2] = 5.0;

 X1[3] = 0.625;
 Y1[3] = 0.875;
 P1[3] = 7.5;

 INTEGER4 DIsDouble = 0; /* set DIsDouble to 0, for float
 * values.
 */

 INTEGER4 III = IMax * JMax * KMax;
 I = TECDAT142(&III, X1, &DIsDouble);
 I = TECDAT142(&III, Y1, &DIsDouble);
 I = TECDAT142(&III, P1, &DIsDouble);

101

Examples

 /* Open a new data file. note: the first file is still open
 * because TecEnd was not called.
 */
 I = TECINI142((char*)”Auxiliary Data”,
 (char*)”X1 Y1 P1”,
 (char*)”file2.plt”,
 (char*)”.”,
 &FileFormat,
 &FileType,
 &Debug,
 &VIsDouble);

 /* Switch the active file to the newly created data file
 * (file2.plt) which is the second file opened with TECINI142
 * so we use 2.
 */
 INTEGER4 WhichFile = 2;
 I = TECFIL142(&WhichFile);

 /* Create a second zone, using many of the values from the first
 * zone, and write it to the second data file.
 */

 I = TECZNE142((char*)”Ordered Zone2”,
 &ZoneType,
 &IMax,
 &JMax,
 &KMax,
 &ICellMax,
 &JCellMax,
 &KCellMax,
 &SolTime,
 &StrandID,
 &ParentZn,
 &IsBlock,
 &NFConns,
 &FNMode,
 &TotalNumFaceNodes,
 &TotalNumBndryFaces,
 &TotalNumBndryConn,
 NULL,
 NULL,
 NULL,
 &ShrConn);
 /* set the variable values for the second zone */
 float X2[4];
 float Y2[4];
 float P2[4];

 X2[0] = 0.375;
 Y2[0] = 0.125;
 P2[0] = 5;

 X2[1] = 0.875;
 Y2[1] = 0.125;
 P2[1] = 7.5;

 X2[2] = 0.375;
 Y2[2] = 0.5;
 P2[2] = 10;

 Y2[3] = 0.5;
 X2[3] = 0.875;

102

3 - 9.8 Text Example
The following example creates a data file with a single text box reading “Sample Text”.

 P2[3] = 7.5;

 III = IMax * JMax * KMax;
 I = TECDAT142(&III, X2, &DIsDouble);
 I = TECDAT142(&III, Y2, &DIsDouble);
 I = TECDAT142(&III, P2, &DIsDouble);

 /* Switch to the first file. */
 WhichFile = 1;
 I = TECFIL142(&WhichFile);

 /* Create an auxiliary data value and write it to the file */
 char DeformationValue[128];
 strcpy(DeformationValue, “0.98”);

 I = TECAUXSTR142((char*)”DeformationValue”,
 DeformationValue);
 /* Close the first file */
 I = TECEND142();

 /* The remaining file will become the active file. As such,
 * TecFil does not need to be called again to close the second
 * file.
 */
 I = TECEND142();

 return 0;
}

#include “TECIO.h”
#include <string.h>

int main()
{
 /* Open the file & write the datafile header information */
 INTEGER4 Debug = 1;
 INTEGER4 VIsDouble = 0;
 INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT
 INTEGER4 FileType = 0;
 INTEGER4 I = 0; /* used to check the return value */

 I = TECINI142((char*)”Text”,
 (char*)”X Y P”,
 (char*)”text.plt”,
 (char*)”.”,
 &FileFormat,
 &FileType,
 &Debug,
 &VIsDouble);

 /* Specify the X, Y and Z position of the anchor point */
 double XPos = 0.0;
 double YPos = 1.0;
 double ZPos = 0.0; /* N/A for 2D text */

 INTEGER4 PosCoordMode = 0; /* use grid coordinates */

 /* opt not to attach the text to a given zone. When text is
 * attached to a given zone, it is displayed only when the zone
 * is displayed.

103

Examples

 */
 INTEGER4 AttachToZone = 0;
 INTEGER4 Zone = 2;

 /* Specify the font values */
 INTEGER4 Font = 1; /* Helvetica Bold */
 INTEGER4 FontHeightUnits = 2; /* in grid coordinates */
 double FontHeight = 18;

 /* Set the box style parameters */
 INTEGER4 BoxType = 1; /* filled box */
 double BoxMargin = .5; /* margin between the text
 * and the text box
 */
 double BoxLineThickness = .1;
 INTEGER4 BoxColor = 0; /* set the box line color
 * to black.
 */
 INTEGER4 BoxFillColor = 1; /* set the box fill color
 * to red.
 */

 /* set the font properties */
 double Angle = 30; /* angle of the text */
 INTEGER4 Anchor = 1; /* set the anchor point to
 * the center of the text
 * box.
 */
 double LineSpacing = 1.5;
 INTEGER4 TextColor = 7; /* set the font color to
 * white
 */

 INTEGER4 Scope = 1; /* set the text to “local”,
 * i.e. available in the
 * current frame only.
 */
 INTEGER4 Clipping = 1;

 char Text[60];
 char MFC[24];
 strcpy(Text, “Sample Text”);
 strcpy(MFC, “My Macro”);

 I = TECTXT142(&XPos,
 &YPos,
 &ZPos,
 &PosCoordMode,
 &AttachToZone,
 &Zone,
 &Font,
 &FontHeightUnits,
 &FontHeight,
 &BoxType,
 &BoxMargin,
 &BoxLineThickness,
 &BoxColor,
 &BoxFillColor,
 &Angle,
 &Anchor,
 &LineSpacing,
 &TextColor,

104

 &Scope,
 &Clipping,
 Text,
 MFC);

 I = TECEND142();

 return 0;
}

105

4

ASCII Data

Files exported into Tecplot’s data format may be either ASCII or binary. However, we strongly recommend
using Tecplot’s binary file format (*.plt). The ASCII file format is provided to illustrate how data is
structured in Tecplot. ASCII data format is useful only for very small data files. Reading an ASCII data file
into Tecplot 360 can be much slower than reading a binary data file, as binary data files are structured for
more efficient data access, and Tecplot 360 must convert from ASCII to binary prior to loading the data.
Refer to Chapter 3: “Binary Data” for information on creating files in Tecplot’s binary format.

4 - 1 Converting ASCII to Binary
Tecplot 360 or Preplot can be used to convert ASCII data files to binary as part of a post-processing step,
before the data is presented for interactive visualization. See Section 4 - 15 “Tecplot-Format Loader” in the
User’s Manual for converting with Tecplot 360, or Section 4 - 6 “ASCII Data File Conversion to Binary” for
converting with Preplot. A description of the binary format is included in Appendix A: Section “Binary
Data File Format”. If your data is generated in FORTRAN or C, you may be able to generate binary data
files directly using the utilities described in Chapter 3: “Binary Data”.

4 - 2 Syntax Rules & Limits
An ASCII data file begins with a file header defining a title for the data file and/or the names of the
variables. The header is followed by zone records containing the plot data. Zone records may contain
ordered or finite element data. You may also include text, geometry, and custom-label records that create
text, geometries, and/or custom labels on plots. The records in the file may be in any order.

ASCII data files have the following limits:

• Number of Records - Each data file may have ten custom label records, and any number of
text and geometry records.

• Maximum Characters per Line - The maximum length of a line in a data file is 32,000
characters.

There are additional limits specific to some of the record types and parameters. These limits are discussed
in the section for the associated record type or parameter.

When writing an ASCII data file, please keep the following syntax rules in mind:

106

• Character Strings - Double quotes must be used to enclose character strings with embedded
blank spaces or other special characters.

• Multiple Lines - Any line may be continued onto one or more following lines (except for text
enclosed in double quotes ["]).

• Escape Characters - A backslash (\) may be used to remove the significance of (or escape) the
next character (that is, \" produces a single double-quote).

• Comments - Any line beginning with an # is treated as a comment and ignored.

The following simple example of a Tecplot 360 ASCII data file has one small zone and a single line of text:

TITLE="Simple Data File"
VARIABLES="X" "Y"
ZONE I=4 DATAPACKING=POINT
1 1
2 1
2 2
1 2
TEXT X=10 Y=90 T="Simple Text"

4 - 3 ASCII File Structure
An ASCII data file begins with an file header defining a title for the data file and or the names of the
variables. The header is followed by optional zone records containing the plot data. Zone records may
contain ordered or finite element data. Refer to Chapter 3: “Data Structure” in the User’s Manual for a
complete description of ordered and finite element data. You may also include text, geometry, and
custom-label records, in any order.

The first line in a zone, text, geometry, custom label, data set auxiliary data record or variable auxiliary
record begins with the keyword ZONE, TEXT, GEOMETRY, CUSTOMLABELS, DATASETAUXDATA, or VARAUXDATA.

The primary components of ASCII data files are:

• File Header
• Zone Record
• Text Record
• Geometry Record
• Custom Labels Record
• Data Set Auxiliary Data Record
• Variable Auxiliary Data Record

4 - 3.1 File Header
The File Header is an optional component of an ASCII data file. It may contain a TITLE, FILETYPE and/or
a VARIABLES list. If the file header occurs in a place other than at the top of the data file, a warning is
printed and the header is ignored. This allows you to concatenate two or more ASCII data files before
using Tecplot 360 (provided each data file has the same number of variables per data point).

107

ASCII File Structure

File Header Components

Example Grid File
The following example displays a very simple 2D grid file.

#"Grid" files look like standard Tecplot data files with no solution variables.
TITLE = "Example Grid File"
FILETYPE = GRID
VARIABLES = "X" "Y"
ZONE
I = 3, J = 3, K = 1
ZONETYPE = Ordered, DATAPACKING = BLOCK
0.0 0.5 1.0 0.00.51.00.00.51.0
0.0 0.0 0.0 0.50.50.51.01.01.0

Example Solution File
The following example displays a very simple solution file (to be used with the Example Grid File).

TITLE = "Example Solution File"
FILETYPE = SOLUTION
VARIABLES = "Pressure"
ZONE
I = 3, J = 3, K = 1
ZONETYPE = Ordered, DATAPACKING = BLOCK
2.0 2.0 2.0 0.00.00.02.02.02.0

4 - 3.2 Zone Record
A zone record consists of a control line that begins with the keyword ZONE, followed by the zone header,
followed by a set of numerical data called the zone data. The contents of the zone footer depend upon the
type of zone. Refer to the following table for an overview of the contents of a zone record.

Token Syntax Notes
TITLE = “<string>” The title will be displayed in the headers of Tecplot 360 frames.
FILETYPE =FULL, GRID or

SOLUTION
Specifies the data file type. A full data file contains both grid and
solution data. If omitted, the FILETYPE will be treated as
“FULL”.

VARIABLES = “VARNAME1”,
“VARNAME2”,
“VARNAME3”, ...,
“VARNAMEN”

You may also assign a name to each of the variables by including
a line that begins with VARIABLES=, followed by each variable’s
name enclosed in double quotes. Tecplot 360 calculates the
number of variables (N) from the list of variable names. If you do
not specify the variable names (and your first zone has POINT
data packing), Tecplot 360 sets the number of variables equal to
the number of numeric values in the first line of zone data for the
first zone, and names the variables V1, V2, V3, and so forth.
Initially, Tecplot 360 uses the first two variables in data files as the
X- and Y-coordinates, and the third variable for the Z-coordinate
of 3D plots. However, you may order the variables in the data file
any way you want, since you can interactively reassign the
variables to the X-, Y-, and/or Z-axes via the Select Variables
dialog (accessed via Plot>Assign XYZ).

Component Notes

ZONE The keyword “ZONE” is required at the start of every zone record

Zone Header The Zone Header is used to specify the type of data in the zone, the
structure of the data, the names of the variables in the zone, and
more. Refer to “Zone Header” on page 108 for details.

108

Zone Header

Data The data section follows the zone header. The arrangement of the
data is dependent upon the values of DATA PACKING and VAR
LOCATION (specified in the Zone Header). Refer to “Data” on
page 111 for details.

Zone Footer The contents required for the Zone Footer depend upon the
ZONETYPE (specified in the Zone Header).
For ordered zones, the Zone Footer contains the Face Neighbor
Connections List information (if any).
For cell-based finite element zones (FETRIANGLE,
FEQUADILATERAL, FETETRAHEDRAL and FEBRICK), the Zone
Footer contains Connectivity information, followed by Face Neighbor
Connections List.
For face-based finite element zones (FEPOLYHEDRAL,
FEPOLYGON), the Zone Footer contains Facemap Data, followed by
Boundary Map Data.
Refer to “Zone Footer” on page 113 for additional information.

Keyword Syntax Required
(Y/N)

Default Notes

ZONE Y Keyword required to start a zone record
T = <string> N Zone Title. This may be any text string up to 128

characters in length. If you supply a longer text string, it
is automatically truncated to the first 128 characters.
The titles of zones appear in the Zone Style and other
dialogs, and, optionally, in the XY- plot legend.

ZONETYPE = <zonetype> N ORDERE
D

The zone data are of the type specified by the
ZONETYPE parameter in the control line. There are two
basic types of zones: ordered and finite element.
ORDERED is presumed if the ZONETYPE parameter is
omitted. See Section 4 - 4 “Ordered Data” for more
information on ordered zones, and Section 4 - 5 “Finite
Element Data” for details on finite element data.

When specifying your ZoneType, please note that some
features in Tecplot 360are limited by zone type. For
example, iso-surfaces and slices are available for 3D
zones types only (FETETRAHEDRON,
FEBRICK,FEPOLYHEDRON and ORDERED - with K
greater than 1).

However, the plot type that you specify (in Tecplot 360
once you have loaded your data) is not limited by your
zone type. You may have a 3D zone displayed in a 2D
Cartesian plot (and visa versa).

I = <integer> Y Specify the maximum number of points in the I- J- or K-
direction. Use only when ZONETYPE is ORDERED.J = <integer> Y

K = <integer> Y
NODES = <integer> Y Use for finite element zone types only (that is, not

ordered zones). Specify the total number of NODES
and ELEMENTS in the data file. Refer to Section 4 - 5
“Finite Element Data” for additional information.

ELEMENTS = <integer> Y

FACES = <integer> Y (for face-
based finite
element
zones)

Use for face-based finite element zones types
(polygonal and polyhedral) only. Specify the number of
FACES in the data file. See Section 4 - 5 “Finite Element
Data” for more information.

TOTALNUMFA
CENODES

= <integer> Y (for
polyhedral
zones)

For face-based finite element zones only. Total number
of nodes in the Facemap Data section for all faces. This
is optional for polygons as TotalNumFaceNodes =
2*NumFaces.

NUMCONNECT
EDBOUNDARY
FACES

= <integer> Y For face-based finite element zones only. Total number
of boundary faces listed in the Facemap Data section.
Set to zero if boundary faces aren't used.

109

ASCII File Structure

TOTALNUMBO
UNDARYCONN
ECTIONS

= <integer> Y For face-based finite element zones only. Total number
of entries for boundary items listed in the Facemap
Data section. Set to zero if boundary faces aren't used.

FACENEIGHB
ORMODE

=
[LOCALONETO
ONE,

LOCALONETO
MANY,

GLOBALONETO
ONE,

GLOBALONETO
MANY]

N LOCALO
NETOON
E

For ordered or cell-based finite element zones only.
Used to indicate whether the neighboring faces are
within the current zone or in another zone (i.e. local or
global), as well as whether the connections are one-to-
one or one-to-many. When this token is used, both the
FACENEIGHBORCONNECTIONS token and the
FaceNeighbor Connections List are required. Refer to
Section “Face Neighbor Connections List” on page 113
for details.

FACENEIGHB
ORCONNECTI
ONS

= <integer> Y, if
FACENEIG
HBORMOD
E,is in use.

For ordered or cell-based finite element zones only.
Used to indicate the total number of connections for all
elements in the zone. For example, if you have two cells
with three connections each, the number of face
neighbor connections is equal to six. When this token is
used, both the FACENEIGHBORMODE token and the
FaceNeighbor Connections List are required. Refer to
Section “Face Neighbor Connections List” on page 113
for details.

DT =
(<datatype>
for var1,
<datatype>
for var2, ...,
<datatype>
for varn)

N SINGLE Each variable in each zone in the data file may have its
own data type. The data type determines the amount of
storage Tecplot 360 assigns to each variable. Therefore,
the lowest level data type should be used whenever
possible. For example, imaging data, which usually
consists of numerical values ranging from zero to 255,
should be given a data type of BYTE. By default,
Tecplot 360 treats numeric data as data type SINGLE. If
any variable in the zone uses the BIT data type, the
DATA PACKING must be BLOCK. Refer to “Data” on
page 111 for details.

DATA
PACKING

= <datapacking> N BLOCK In POINT format, the values for all variables are given
for the first point, then the second point, and so on. In
BLOCK format, all of the values for the first variable are
given in a block, then all of the values for the second
variable, then all of the values for the third, and so
forth. BLOCK format must be used for cell-centered
data and polyhedral zones (FEPOLYGON/
FEPOLYHEDRAL), as well as for all binary data.

VAR
LOCATION

=([set-of-vars]
=<varlocation>,
[set-of-vars]
=<varlocation>,
...)

N NODAL Each variable in each zone in a data file may be located
at the nodes or the cell-centers. Each variable is
specified as NODAL or CELLCENTERED in the
VARLOCATION parameter array. All cell-centered
variables must list one value for each element. With
nodal variables, one value must be listed for each node.
Zones with cell-centered variables must be in BLOCK
data packing format.

VAR
SHARELIST

=([set-of-vars]=
<zone>, [set-of-
vars]=<zone>)

N If zone
number is
omitted,
the
variables
are shared
from the
previous
zone.

Used for variables that are exactly the same for a set of
zones. Specify the integer value of the source zone.
Ordered zones may only share with ordered zones
having the same dimensions. Finite element zones may
share with any zone having the same number of nodes,
for nodal variables, or the same number of cells, for cell-
centered data.

NV = <integer> N Specifies the variable number of the variable
representing the “Node” value in finite element data.
The NV parameter is used infrequently. It is mostly
used when the order in which nodes are listed in the
data file does not match the node numbering desired in
the plot. Refer to Section “Finite Element Zone Node
Variable Parameters Example” on page 137 for an
example using the NV parameter.

Keyword Syntax Required
(Y/N)

Default Notes

110

CONNECTIVI
TYSHAREZON
E

=<zone> N Specify the number of the zone from which the
connectivity is shared. The connectivity list (cell-
basedfinite element only) and face-neighbors may be
shared between zones using the
CONNECTIVITYSHAREZONE parameter in the
control line of the current zone. Alternatively, the
parameter may be used to share the Facemap Data for
face-based finite element zones.To use connectivity
sharing, the zone must have the same number of points
and elements (and faces, if the zone is face-based), and
be the same zone type.

STRANDID = <integer> N Each zone can optionally specify an integer value
associating itself with a particular strand. More than
one zone can associate itself with a particular strand
and differentiate itself from other zones by assigning
different SOLUTIONTIME values. StrandID's must be
positive integer values greater than or equal to 1. By
convention strandID's are successive integer values.

SOLUTIONTI
ME

= <double> N Specify a floating point time value representing the
solution time. Zones can be organized together by
associating themselves to the same STRANDID.

PARENTZONE = <zone> N Scalar integer value representing the relationship
between this zone and its parent. A value of zero
indicates that this zone is not associated with a parent
zone. A value greater than zero is considered this zone's
parent. A zone may not specify itself as its own parent.
With a parent zone association, Tecplot 360 can
generate a surface streamtrace on a no-slip boundary
zone. Refer to Section 15 - 2 “Surface Streamtraces on
No-slip Boundaries” in the User’s Manual for
additional information.

PASSIVEVAR
LIST

= [set of vars] N All
variables
non-
passive

Use this option to make variables passive. For example,
to make variables 4, 5, and 20 passive, use this syntax:
PASSIVEVARLIST=[4-5,20]
See Section 1 - 3 “Best Practices”, Section 7. “Passive
Variables” for information on passive variables.

AUXDATA NAME = <string> N Auxiliary data strings associated with the current zone
are specified with the AUXDATA parameter in the
control line. This auxiliary data may be used in
dynamic text, equations, macros, or add-ons. There
may be multiple AUXDATA parameters in the control
line for a zone, but names must be unique. NOTE: The
NAME portion of the string cannot contain spaces.
Auxiliary data is provided as named strings:
AUXDATA EXPERIMENTDATE ="October 13, 2007, 8
A.M."

Keyword Syntax Required
(Y/N)

Default Notes

111

ASCII File Structure

Data
Tecplot 360 supports the following six data types:

• DOUBLE (eight-byte floating point values).
• SINGLE (four-byte floating point values).
• LONGINT (four-byte integer values).
• SHORTINT (two-byte integer values).
• BYTE (one-byte integer values, from zero to 255).
• BIT

The arrangement of ASCII data depends upon the combination of datapacking (BLOCK or POINT),
variable location (NODAL or CELL-CENTERED). The zone type also plays a role in that not all forms of
datapacking and variable locations are supported by all zone types. In BLOCK data, the data is arranged
by variable, while in POINT data the data is arranged by point (node or data point, depending upon the
zone type). In NODAL data the variable values are defined at every node (FE data) or point (ORDERED
data). In CELLCENTERED data, the variable values are defined at the center of every cell (ORDERED
data) or element (FE data).

The available combinations of datapacking and variable location parameters are:

• Block - Nodal
• Block - Cell-centered
• Point - Nodal

The combination of POINT and CELLCENTERED is not available.

BLOCK - NODAL
In block data with nodal values, the data is arranged by variable and each variable is defined at the nodes.
The data arrangement is as follows:

A11 A12 ... A1P
A21 A22 ... A2P
.
.
.

AV1 AV2 ... AVP

where:

V = total number of nonpassive, nonshared variables
P = I * J * K (ordered zones) orNODES(FE zones)

BLOCK - CELLCENTERED
In block data with cell-centered values, the data is arranged by variable and each variable is defined at the
center of each cell (ORDERED data) or element (FE data). The data arrangement is as follows:

A11 A12 ... A1P
A21 A22 ... A2P
.
.
.
AV1 AV2 ... AVP

where:

V = total number of nonpassive, nonshared variables

112

P = (I -1) * (J - 1) * (K -1) (ordered zones1)
or

P = ELEMENTS (FE zones)

POINT - NODAL
In point data, the values for all variables are given for the first point, then the second point and so on. The
variable location is always NODAL.

A11 A12 ... A1V
A21 A22 ... A2V
.
.
.
AP1 AP2 ... APV

where:

V = total number of nonpassive, nonshared variables
P = I * J * K (ordered zones)

or
P = ELEMENTS (FE zones)

General Formatting Rules
The following formatting guidelines apply to all data arrangements:

• Numerical values in zone data must be separated by one or more spaces, commas, tabs, new
lines, or carriage returns. The radix (decimal point) is ‘.‘ (period) even in locales that use
another character, such as ‘,‘ (comma).

• Blank lines are ignored.
• Integer (101325), floating point (101325.0), and exponential (1.01325E+05) numbers are accepted.
• To repeat a particular number in the data, precede it with a repetition number as follows:

“Rep*Num,” where Rep is the repetition factor and Num is some numeric value to be repeated.
For example, you may represent 37 values of 120.5 followed by 100 values of 0.0 as follows:

37*120.5, 100*0.0

Variable Sharing
Frequently, some variables are exactly the same for a set of zones. For example, a series of zones may
contain measurement or simulation data at the same XYZ-locations, but different times. In this case,
Tecplot 360’s memory usage may be dramatically reduced by sharing the coordinate variables between the
zones. The zones that variables are shared from are specified in the VARSHARELIST in the control line of the
current zone. The format is:

VARSHARELIST=([set-of-vars]=zzz, [set-of-vars]=zzz)

where set-of-vars is the set of variables that are shared and zzz is the zone they are shared from. If zzz is
omitted, the variables are shared from the previous zone.

For example:

VARSHARELIST=([4-6,11]=3, [20-23]=1, [13,15])

specifies that variables four, five, six and 11 are shared from zone three, variables 20, 21, 22, and 23 are
shared from zone one, and variables 13 and 15 are shared from the previous zone. For variable sharing,
ordered zones may only share with ordered zones having the same dimensions. Finite element zones may

1. For all I, J and K greater than one. When I, J or K is equal to one, a value of one is used instead of subtract-
ing one.

113

ASCII File Structure

share with any zone having the same number of nodes (for nodal variables) or the same number of cells
(for cell-centered data).

Zone Footer
The contents required for the Zone Footer depend upon the ZONETYPE (specified in the Zone Header).

• Ordered zones - the Zone Footer contains the Face Neighbor Connections List (if any).
• Cell-based finite element zones (FETRIANGLE, FEQUADILATERAL, FETETRAHEDRAL

and FEBRICK) - the Zone Footer contains Connectivity information, followed by Face
Neighbor Connections List (if any).

• Face-based finite element zones (FEPOLYHEDRAL, FEPOLYGON) - the Zone Footer
contains Facemap Data, followed by Boundary Map Data.

Connectivity
For cell-based finite element zones (FETRIANGLE, FEQUADILATERAL, FETETRAHEDRAL, and
FEBRICK), the nodal data is followed by the connectivity information. The connectivity list is not
preceded by a token or keyword. It is simply a list of numbers.

The connectivity list details the node numbers of all of the nodes included in each element. When
providing the connectivity list, please keep in mind the following guidelines:

• Each row in the connectivity list corresponds to an element, where the first row corresponds to
the first element, and so forth.

• The node numbers must be provided in order, either clockwise or counter-clockwise.
• You must provide the same number of nodes as are included in an element. For example, you

must provide eight numbers for BRICK elements and three numbers for TRIANGLE elements.
If you are using repeated nodes, provide the node number of the repeated node multiple times.

See also: “Connectivity Sharing” on page 116.

The connectivity for face-based zones (FEPOLYGON and FEPOLYHEDRAL) is defined by the Facemap
Data (refer to “Facemap Data” on page 115 for details).

Face Neighbor Connections List
For ordered zones, the data section may be followed with face neighbor connections. For cell-based finite
element zones, the data section and connectivity list may be followed by the face neighbor connection
information.

Use face neighbors to specify connections between zones (global connections) or connections within zones
(local connections). Face neighbor connections are used by Tecplot when deriving variables or drawing
contour lines. Specifying face neighbors, typically leads to smoother connections. NOTE: face neighbors
have expensive performance implications. Use face neighbors to manually specify connections that are
not defined via the connectivity list.

Face neighbor connections are defined by the FACENEIGHBORMODE and
FACENEIGHBORCONNECTIONS tokens along with the Face Neighbor Connections list. The
FACENEIGHBORMODE token is used to specify the type of face neighbor connection used. The
FACENEIGHBORCONNECTIONS token is used to define the total number of face neighbor connections included in
the zone.

The nature of the data arranged in the Face Neighbor Connections list depends upon the
FACENEIGHBORMODE, described in the table below. To connect the cells along one edge to cells on another edge
of the same zone, use LOCAL. To connect cells of one zone to cells of another zone or zones, use GLOBAL. If the

114

points of the cells are exactly aligned with the neighboring cell points, use ONETOONE. If even one cell face is
neighbor to two or more other cell faces, use ONETOMANY.

In this table,

• cz -the cell number in the current zone
• fz - the number of the cell face in the current zone
• nc -the cell number of the neighbor cell in the current zone
• oz - face obscuration flag (zero for face partially obscured, one for face entirely obscured)
• nz - the number of neighboring cells for the ONETOMANY options
• ncn - the number of the nth local zone neighboring cell in the list
• zr - the remote zone number
• cr - the cell number of the neighboring cell in the remote zone
• zrn - the zone number of the nth neighboring cell in the GLOBALONETOMANY list
• crn - the cell number in the remote zone of the nth neighboring cell in the GLOBALONETOMANY list.

The cz, fz combinations must be unique; multiple entries are not allowed. The face numbers for cells in the
various zone types are defined in Figure 4-1..

Figure 4-1. A: Example of node and face neighbors for an FE-brick cell or IJK-ordered cell. B: Example of node and
face numbering for an IJ-ordered/ FE-quadrilateral cell. C: Example of tetrahedron face neighbors.

A connection must be specified for two matching cell faces to be effective. The nature of the Face
Neighbor Connections list depends upon its FACENEIGHBORMODE.

For example, for data with a FACENEIGHBORMODE of GLOBALONETOONE, if cell six, face two in zone nine should be
connected to cell one, face four in zone 10, the connections for zone nine must include the line:

6 2 10 1 (cell#, face#, connecting zone#, connecting cell#)

Mode Number of Values Order of Data in the Face
Neighbor Connections List

LOCALONETOONE 3 cz, fz, nc

LOCALONETOMANY nz+4 cz, fz, oz, nz, nc1, nc2, ..., ncn

GLOBALONETOONE 4 cz, fz, zr, cr

GLOBALONETOMANY 2*nz+4 cz, fz, oz, nz, zrl, crl, zr2, cr2,
..., zrn, crn

A B C

115

ASCII File Structure

And the connections for zone 10 must include this line:

1 4 9 6 (cell#, face#, connecting zone#, connecting cell#)

Global face neighbors are useful for telling Tecplot 360 about the connections between zones. This could be
used, for example, to smooth out the crease in Gouraud surface shading at zone boundaries. For cell-
centered data, they can make contours and streamtraces more continuous at zone boundaries.

Facemap Data
For face-based finite element zones (FEPOLYGON and FEPOLYHEDRAL), the data section is followed by
the Facemap Data section. If boundary faces are used, the Facemap Data section is followed by the
Boundary Map Data data section. Otherwise, the facemap data section marks the end of the zone record.

The face map data (in four major groupings) is defined by the following list:

1. TotalNodesInFace - A space-separated list of the total number of nodes in each face:

NodesInFace1 NodesInFace2 …NodesInFaceF

where F is equal to the total number of faces.
NOTE: The TotalNodesInFace section is not used for polygonal zones, as each face of a
polygon always has two nodes.

2. WhichNodesInFace - A list of the node numbers for each node in each face. Use a separate
line for each face.

Face1Node1 Face1Node2 …Face1NodeTotalNodesInFace1

Face2Node1 Face2Node2 …Face2NodeTotalNodesInFace2

...

FaceFNode1 Face2Node2 …Face2NodeTotalNodesInFaceF

3. LeftNeighborForFace - A list of left neighboring elements for each face:

LeftElementForFace1 LeftElementForFace2 ... LeftElementForFaceF

4. RightNeighborForFace -A list of right neighboring elements for each face:

RightElementForFace1 RightElementForFace2 ... RightElementForFaceF

Defining Neighboring Elements

The left element and right element are determined by the left-hand versus right-hand winding rule.
The left and right neighboring elements represent elements within the current zone, and they are

Like the Data section of the zone record, the data region of the Face Map section does
not include tokens. It includes a list of data. The descriptors TotalNodesInFace,
WhichNodesInFace, LeftNeighborForFace and RightNeighborForFace should not be
included in your data file.

The face map may be shared between zones in the same file by specifying the zone
number of the sharing zone in place of the CONNECTIVITYSHAREZONE value.

116

always "one-to-one". That is, each face represents a complete interface between two elements. A nega-
tive value (-t) in either of the neighboring faces lists indicates that the neighboring element(s) are
defined in the boundary face section at the tth boundary face. Refer to Section “Boundary Map Data”
for details.

Any face that has no neighboring element for either its right or left adjacent element, will use a value
of zero for the element value.

See also “Connectivity Sharing” on page 116.

Boundary Map Data
If the NUMCONNECTEDBOUNDARYFACES is greater than zero, the boundary map data section is
required. The boundary map data section should immediately follow the Facemap Data section. This
section does not need to be "one-to-one". One face can link up to multiple elements in other zones.

The boundary map data section need only be used for global or one-to-many connections. Local, one-
to-one connections should be defined as left/right elements.

The number of adjacent elements is listed for each of the boundary faces. Then each boundary face
lists the element number for each of its adjacent elements. Then each boundary face lists the zone
number for each of its adjacent elements (0 can be used to refer to the current zone). The number of the
face is not specified but is implicit (first face listed is 1 and corresponds to -1 in the left/right neighbor
list, the second is 2 and corresponds to -2, etc.).

Connectivity Sharing
The connectivity list and face neighbor connections (for cell-based finite element zones) or the facemap
data (for face-based finite element zones) may be shared between zones by using the
CONNECTIVITYSHAREZONE parameter in the control line of the current zone. The format is:

CONNECTIVITYSHAREZONE=nnn

where nnn is the number of the zone that the connectivity is shared from. To use connectivity sharing, the
zone must have the same number of points and elements, and be the same zone type.

4 - 3.3 Text Record
Text records are used to import text directly from a data file. Text can also be imported into Tecplot 360
using a macro file. You may create data files containing only text records and read them into Tecplot 360
just as you would read any other data file. You may delete and edit text originating from data files just like
text created interactively.

The text record consists of a single control line. The control line starts with the keyword TEXT and has one
or more options:

Text Record:

Token Syntax Required
(Y/N)

Default Notes

TEXT Y Keyword required to start a text record
T = <string> Y The text string is defined in the required T (text) parameter. To

include multiple lines of text in a single text record, include \\n in
the text string to indicate a new line.

ZN = <integer> N Use the ZN (zone) parameter to attach text to a specific zone or XY
mapping. For further information, see Section 18 - 1.3 “Text Box” in
the User’s Manual.

117

ASCII File Structure

X = <double> Y Specify the x-origin, y-origin and z-origin of the object. The x-origin
and y-origin should be in CS (coordinatesys) units. The z-origin of
object must always in GRID units. Y = <double> Y

Z = <double> Y
R = <double> Y r-origin (in CS units) of the object
THETA = <double> Y theta-origin (in CS units) of the object
CS =

<coordina
tesys>

N FRAME Text coordinate system. If you specify the frame coordinate system,
the values of the X (xorigin) and Y (yorigin) parameters are in frame
units; if you specify grid coordinates, X and Y are in grid units (that
is, units of the physical coordinate system). Specify X, Y and Z for
GRID3D coordinates. For Polar Line plots, you may specify THETA
and R instead of X and Y.

A = <double> N Use the A parameter to rotate the text box at an angle counter-
clockwise from horizontal. The angle is in units of degrees.

S = <scope> N Scope of the text box. GLOBAL scope attaches the text box to all
frames using the same data set. It is the same as selecting the check
box Show in “Like” Frames in the Text Options dialog.

BX =
<boxtype>

N NOBOX Draw a box around the text string using the BX (boxtype) parameter.
The parameters BXO (boxoutlinecolor), BXM (boxmargin), and LT
(linethickness) are used if the boxtype is HOLLOW or FILLED. The
parameter BXF (boxfillcolor) is used only if the boxtype is FILLED.
The default boxtype, NOBOX, ignores all other box parameters.

BXF = <color> N Box Fill Color; BX (boxtype) must be set to FILLED.
BXM = <double> N When BX (boxtype) is set to HOLLOW or FILLED, use the BXM token to

specify the margin around text in box as fraction of H (text height).
BXO = <color> N When BX (boxtype) is set to HOLLOW or FILLED, use the BXO token to

specify the color of the box outline.
LT = <double> When BX (boxtype) is set to HOLLOW or FILLED, use the LT token to

specify the thickness of the box outline.
F = N Use the F parameter to specify the font family.
C = <color> N Font color.
AN =

<textanchor>
Use the AN (textanchor) parameter to specify the position of the
anchor point relative to the text. There are nine possible anchor
positions, as shown in Figure 4-2.

LS = <double> N 1 Assign the line spacing for multi-line text using the LS (linespacing)
parameter. The default value, 1, gives single-spacing. Use 1.5 for
line-and-a-half spacing, 2 for double-spacing, and so on.

H = <double> Specify the height, measured in the units defined by HU.
HU =

<heightunits
>

Units for character heights. If the CS parameter is FRAME, you can
set HU to either FRAME or POINT. If the CS parameter is GRID, you
can set HU to either GRID or FRAME.

MFC = <string> Attach a macro function to the text. The macro function must be a
retained macro function that was either set during the current
Tecplot session or included in the tecplot.mcr file. Refer to Section 18
- 3 “Linking Geometries to Macros” in the User’s Manual and
“$!MACROFUNCTION...$!ENDMACROFUNCTION” in the
Scripting Guide for additional information.

CLIPPIN
G

= <clipping> Plot the geometry within to the viewport or the frame.

Token Syntax Required
(Y/N)

Default Notes

118

Figure 4-2. Text anchor positions—values for the AN parameter.

119

ASCII File Structure

Text Record Examples
Some simple examples of text records are shown below. The first text record specifies only the origin and
the text. The next text record specifies the origin, color, font, and the text. The third text record specifies the
origin, height, box attributes, and text. Note that the control line for the text can span multiple file lines if
necessary (as in the third text record below). The last text record is an example of using 3D text in Tecplot
360.

TEXT X=50, Y=50, T="Example Text"
TEXT X=10, Y=10, F=TIMES-BOLD, C=BLUE, T="Blue Text"
TEXT X=25, Y=90, CS=FRAME, HU=POINT, H=14,
BX=FILLED, BXF=YELLOW, BXO=BLACK, LS=1.5,
T="Box Text \\n Multi-lined text"
TEXT CS=GRID3D, X=0.23,Y=0.23,Z=0.5, T="Well 1"

4 - 3.4 Geometry Record
Geometry records are used to import geometries from a data file. Geometries are line drawings that may
be boundaries, arrows, or even representations of physical structures. You may create data files containing
only geometry and text records and read them into Tecplot 360. You may delete and edit geometries
originating from data files just like the geometries that you create interactively.

The geometry record control line begins with the keyword GEOMETRY.

120

Geometry Record Contents

Data for Geometry Record
The control line of the geometry is followed by geometry data. For SQUARE, the geometry data consists of
just one number: the side length of the square.

For RECTANGLE, the geometry data consists of two numbers: the first is the width (horizontal axis
dimension), and the second is the height (vertical axis dimension).

For CIRCLE, the geometry data is one number: the radius. For ELLIPSE, the geometry data consists of two
numbers: the first is the horizontal axis length and the second is the vertical axis length. For both circles
and ellipses, you can use the EP (numellipsepts) parameter to specify the number of points used to draw
circles and ellipses. All computer-generated curves are simply collections of very short line segments; the
EP parameter allows you to control how many line segments Tecplot 360 uses to approximate circles and
ellipses. The default is 72.

Token Available Values Notes
GEOMETRY Keyword required to start a geometry record
T = <geomtype> Geometry type
F = <datapacking> Geometry data format
DT = <datatype> Data type
ZN = <integer> Attach text to a specific zone or XY mapping. For further information, see Section 18 - 1.3

“Text Box” in the User’s Manual.
X = <double> Specify the x-origin, y-origin and z-origin of the object. The x-origin and y-origin should

be in CS (coordinatesys) units. The z-origin of object is for LINE3D geometries only and
must always in GRID units. Refer to “Origin positions” for additional information
regarding the origin location for each type of geometry.

Y = <double>
Z = <double>

R = <double> Specify the r-origin and theta-origin of the object. The origins should be in CS units.
Refer to Section “Origin positions” on page 121 for additional information.THETA = <double>

CS = <coordinatesys> Geometry coordinate system. If you specify the frame coordinate system, the values of
the X (xorigin) and Y (yorigin) parameters are in frame units; if you specify grid
coordinates, X and Y are in grid units (that is, units of the physical coordinate system).
Specify X, Y and Z for GRID3D coordinates. For Polar Line plots, you may specify THETA
and R instead of X and Y.

DRAWORDER = <draworder> Draw order.
S = <scope> The S (scope) parameter specifies the text scope. GLOBAL scope attaches the text box to all

frames using the same data set. It is the same as selecting the check box Show in “Like”
Frames in the Geometry Options dialog.

C = <color> Geometry outline color.
L = <linetype> Line type
PL = <double> Pattern length (in frame units).
LT = <double> Line thickness (in frame units)
EP = <integer> Number of points used to approximate circles or ellipses
FC = <color> Fill Color. Any geometry type except LINE3D may be filled with a color by using the FC

(fillcolor) parameter. Each polyline of a LINE geometry is filled individually (by
connecting the last point of the polyline with the first). Not specifying the FC (fillcolor)
parameter results in a hollow, or outlined, geometry drawn in the color of the C (color)
parameter.

AST = <arrowheadstyle> Arrowhead style
AAT = N<arrowheadattach> Arrowhead attachment along the line geometry
ASZ = <double> Size of arrowhead in frame units
AAN = <double> Angle of arrowhead in degrees
MFC = <string> You may attach a macro function to the text with the MFC parameter. The macro function

must be a retained macro function that was either set during the current Tecplot session
or included in the tecplot.mcr file. Refer to Section 18 - 3 “Linking Geometries to Macros”
in the User’s Manual and “$!MACROFUNCTION...$!ENDMACROFUNCTION” on
page 152 in the Scripting Guide for additional information.

CLIPPING = <clipping> plot the geometry within the viewport or the frame.

121

ASCII File Structure

For LINE and LINE3D geometries, the geometry data is controlled by the F (format) parameter. These
geometries may be specified in either POINT or BLOCK format. By default, POINT format is assumed. Each
geometry is specified by the total number of polylines, up to a maximum of 50 polylines, where each
polyline can have up to 32,000 points. Each polyline is defined by a number of points and a series of XY- or
XYZ- coordinate points between which the line segments are drawn. In POINT format, the XY- or XYZ-
coordinates are given together for each point. In BLOCK format, all the X-values are listed, then all the Y-
values, and (for LINE3D geometries) all the Z-values. All coordinates are relative to the X, Y, and Z specified
on the control line. You can specify points in either single or double precision by setting the DT (datatype)
parameter to either SINGLE or DOUBLE.

Origin positions
Geometry types are selected with the T (geomtype) parameter. The available geometry types are listed
below:

• SQUARE - A square with lower left corner at X, Y.
• RECTANGLE - A rectangle with lower left corner at X, Y.
• CIRCLE - A circle centered at X, Y.
• ELLIPSE - An ellipse centered at X, Y.
• LINE - A set of 2D polylines (referred to as multi-polylines) anchored at X, Y.
• LINE3D - A set of 3D polylines (referred to as multi-polylines) anchored at X, Y, Z.

Geometry Record Examples
• Rectangle - The following geometry record defines a rectangle of 40 width and 30 height:

GEOMETRY T=RECTANGLE
40 30 #WIDTH HEIGHT

• Circle - The following geometry record defines an origin and a red circle of 20 radius, with an
origin of (75, 75) that is filled with blue:

GEOMETRY X=75, Y=75, T=CIRCLE, C=RED, FC=BLUE,CS=FRAME
20 #RADIUS

• Polyline - The following geometry record defines an origin and two polylines, drawn using
the Custom 3 color. The first polyline is composed of three points, the second of two points.

GEOMETRY X=50, Y=50, T=LINE, C=CUST3
2 #Number of polylines
3 #Number of points in polyline 1
0 1 #X, Y coordinates of the point 1 in polyline 1
0 0 #X, Y coordinates of the point 2 in polyline 1
2 0 #X, Y coordinates of the point 3 in polyline 1
2 #Number of points in polyline 2
0 0 #X, Y coordinates of the point 1 in polyline 2
1 2 #X, Y coordinates of the point 2 in polyline 2

In BLOCK format, the same geometry appears as:
GEOMETRY X=50, Y=50, T=LINE, C=CUST3, F=BLOCK, CS=FRAME
2 #Number of polylines
3 #Number of points in polyline 1
0 0 2 #X position of each point in polyline 1
1 0 0 #Y position of each point in polyline 1
2 #Number of points in polyline 2
0 1 #X position of each point in polyline 2
0 2 #y position of each point in polyline 2

• Ellipse - The next geometry record defines a purple ellipse with a horizontal axis length of 20
and a vertical axis length of 10, with an origin of (10, 70), that is filled with yellow.

GEOMETRY X=10, Y=70, T=ELLIPSE, C=PURPLE, FC=YELLOW
20 10 #Horizontal Axis, Vertical Axis

• 3D polyline - The final geometry record is a 3D polyline with four points that is composed of
one polyline using the default origin of (0, 0, 0):

122

GEOMETRY T=LINE3D
1 #Number of polylines
4 #Number of points in polyline 1
0 0 0 #X, Y, Z coordinates of point 1
1 2 2 .
3 2 3 .
4 1 2 #X, Y, Z coordinates of point 4

In BLOCK format, this geometry record can be written as follows:
GEOMETRY T=LINE3D, F=BLOCK
1 #Number of polylines
4 #Number of points in polyline 1
0 1 3 4 #X position for each point in the polyline
0 2 2 1 #Y position for each point in the polyline
0 2 3 2 #Z position for each point in the polyline

4 - 3.5 Custom Labels Record
The custom label record is an optional record used to provide custom labels for axes, the contour legend or
value labels. A single custom label record begins with the keyword CUSTOMLABELS, followed by a series of
text strings. The first custom label string corresponds to a value of one on the axis, the next to a value of
two, and so forth.

You may have up to ten custom label records in a data file. The custom label set to use is specified via the
Tecplot interface. Refer to Section 17 - 8 “Axis Title Options” in the User’s Manual for details.

A simple example of a custom-label record is shown below. MON corresponds to a value of 1, TUE
corresponds to 2, WED to 3, THU to 4, and FRI to 5. Since custom labels have a wrap-around effect, MON also
corresponds to the values 6, 11, and so forth.

CUSTOMLABELS "MON", "TUE", "WED", "THU", "FRI"

You may include \n in a custom label to indicate that the following text should start a new line. For
example,"Jan\n2012" appears in Tecplot 360 as:

Jan
2012

4 - 3.6 Data Set Auxiliary Data Record
There is frequently auxiliary data (or Metadata) that helps describe the data set. For example,
experimental data may have information about the facility and time at which the data was taken, and
other parameters that describe the experiment. Likewise, simulation results have auxiliary data (such as
reference quantities for non-dimensional data) needed to fully analyze and present the results.

Auxiliary data are name/value pairs that a user can specify and then use in Tecplot 360 with dynamic text,
equations, macros, or add-ons. This data may be with respect to the data set as a whole or it can vary from
zone to zone. The ASCII file format token for specifying auxiliary data associated with the entire data set is
DATASETAUXDATA, described here. Auxiliary data for a given variable is defined by VARAUXDATA,
described in Section 4 - 3.7 “Variable Auxiliary Data Record”. Auxiliary data for a given zone is defined by
the AUXDATA token within the zone record (refer to “Zone Header” on page 108 for details).

The data set auxiliary data control line is as follows:

DATASETAUXDATA name = “value”

where name is a unique character string with no spaces. You may have multiple DATASETAUXDATA records.
However, the value of name must be unique for each record.

You must include a data set in order to use custom labels. You cannot use custom labels
in files that contain only text and/or geometries.

123

ASCII File Structure

Auxiliary data may be used in text, macros, equations (if it is numeric), and accessed from add-ons. It may
also be viewed directly in the AuxData page of the Data Set Information dialog.

Data Set Auxiliary Data Examples
The following auxiliary data contain flow field information that might be found in output from a
computational fluid-dynamics simulation.

DATASETAUXDATA MachNo = "1.2"
DATASETAUXDATA Alpha = "5"
DATASETAUXDATA RefTemperature = "250"
DATASETAUXDATA RefPressure = "101325"
DATASETAUXDATA Configuration = "A2 No. 3"
DATASETAUXDATA Date = "August 5, 2003"
DATASETAUXDATA Region = "NE Quadrant of Sector 47"

You may then use the numerical values in equations to modify the variables as follows:

{P} = {P_non_dim} * AuxDataSet:RefPressure

Similar principles apply when using auxiliary data in text boxes or labels.

4 - 3.7 Variable Auxiliary Data Record
Variable auxiliary data is added to Tecplot 360 on a per variable basis. Like data set auxiliary data,
multiple items can be added for each variable:

VARAUXDATA 1 MyData=”Hello”
VARAUXDATA 1 MoreData=”World”
VARAUXDATA 2 MyData=”More information”
VARAUXDATA 2 MoreData=”hi mom”
VARAUXDATA 2 MyExtraData=”Some extra data”

The variable number with which the auxiliary data is associated immediately follows the VARAUXDATA
record. Also note that the data associated with a particular auxiliary data name are unique for each
variable. Therefore the same named item can be added to each variable if desired. Conversely a particular
auxiliary data item can be added to only one variable. NOTE: The name of an auxiliary data record cannot
contain spaces.

4 - 3.8 ASCII Data File Parameter Assignment Values
The following parameters assignment values are shared among the following types of ASCII file records:
Zone Record, Text Record, and/or Geometry Record. Refer to those sections for details.

Table 4:

<arrowheadstyle> PLAIN, HOLLOW, FILLED

<arrowheadattach> NONE, BEGINNING, END, BOTH

<boxtype> NOBOX, HOLLOW ,FILLED

<clipping> CLIPTOVIEWPORT, CLIPTOFRAME

<color> BLACK, RED, GREEN, BLUE, CYAN, YELLOW, PURPLE, WHITE, CUST1, ...,
CUST8

<coordinatesys> FRAME, GRID, GRID3D

<datapacking> BLOCK, POINT

<datatype> SINGLE, DOUBLE

124

4 - 4 Ordered Data
For ordered data, the numerical values in the zone data must be in either POINT or BLOCK format, specified
by the DATAPACKING parameter.

4 - 4.1 I-Ordered Data
I-ordered data has only one index, the I-index. This type of data is typically used for XY-plots, scatter
plots, and irregular (random) data for triangulation or for interpolation into an IJ-or IJK-ordered zone
within Tecplot 360.

In I-ordered data, the I-index varies from one to IMax. The total number of data points is IMax. For zones
with only nodal variables, the total number of values in the zone data is IMax*N (where N is the number of
variables). For a mixture of nodal and cell-centered variables, the number of values in the zone data is
IMax*Nn+(IMax-1)*Nc, where Nn is the number of nodal variables and Nc is the number of cell-centered
variables. For data in POINT format, IMax is calculated by Tecplot 360 from the zone data if it is not
explicitly set by the zone control line (using the I-parameter).

4 - 4.2 IJ-Ordered Data
IJ-ordered data has two indices: I and J. IJ-ordered data is typically used for 2D and 3D surface mesh,
contour, vector, and shade plots, but it can also be used to plot families of lines in XY-plots. Refer to
Chapter 3: “Data Structure” in the User’s Manual for more information on data structure. In IJ-ordered
data, the I-index varies from one to IMax, and the J-index varies from one to JMax. The total number of
data points (nodes) is IMax*JMax. For zones with only nodal variables, the total number of numerical
values in the zone data is IMax*JMax*N (where N is the number of variables). For a mixture of nodal and
cell-centered variables, the number of values in the zone data is IMax*JMax*Nn+(IMax-1)*(JMax-1)*Nc,
where Nn is the number of nodal variables and Nc is the number of cell-centered variables. Both IMax and
JMax must be specified in the zone control line (with the I and J parameters). The I- and J-indices should
not be confused with the X- and Y-coordinates—on occasions the two may coincide, but this is not the
typical case.

<draworder> AFTERDATA,BEFOREDATA

 HELV, HELV-BOLD, TIMES, TIMES-ITALIC, TIMES-BOLD, TIMES-ITALIC-BOLD,
COURIER, COURIER-BOLD, GREEK, MATH, USER-DEF

<geomtype> LINE, SQUARE, RECTANGLE, CIRCLE, ELLIPSE

<heightunits> In FRAME coordinatesys either FRAME or POINT; in GRID coordinatesys
either GRID or FRAME.

<linetype> SOLID, DASHED, DASHDOT, DOTTED, LONGDASH, DASHDOTDOT

<scope> GLOBAL, LOCAL

<textanchor> LEFT, CENTER, RIGHT, MIDLEFT, MIDCENTER, MIDRIGHT, HEADLEFT,
HEADCENTER, HEADRIGHT

<varlocation> NODAL, CELLCENTERED

<zone> zone number to which this item is assigned (0=all)

<zonetype> ORDERED, FELINESEG, FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRON,
FEBRICK, FEPOLYGON or FEPOLYHEDRAL

Table 4:

125

Ordered Data

The I-index varies the fastest. That is, when you write programs to print IJ-ordered data, the I-index is the
inner loop and the J-index is the outer loop. Note the similarity between I-ordered data and IJ-ordered
data with JMax=1.

4 - 4.3 IJK-Ordered Data
IJK-ordered data has three indices: I, J, and K. This type of data is typically used for 3D volume plots,
although planes of the data can be used for 2D and 3D surface plots. See Section “Ordered Data” in the
User’s Manual for more information.

In IJK-ordered data, the I-index varies from one to IMax, the J-index varies from one to JMax, and the K-
index varies from one to KMax. The total number of data points (nodes) is IMax*JMax*KMax. For zones
with only nodal variables, the total number of values in the zone data is IMax*JMax*KMax*N, where N is
the number of variables. For a mixture of nodal and cell-centered variables, the number of values in the
zone data is IMax*JMax*KMax*Nn+(IMax-1)*(JMax-1)*(KMax-1)*Nc, where Nn is the number of nodal
variables and Nc is the number of cell-centered variables. The three indices, IMax, JMax, and KMax, must
be specified in the zone control line using the I, J, and K-parameters.

The I-index varies the fastest; the J-index the next fastest; the K-index the slowest. If you write a program
to print IJK-ordered data, the I-index is the inner loop, the K-index is the outer loop, and the J-index is the
loop in between. Note the similarity between IJ-ordered data and IJK-ordered data with KMax=1.

4 - 4.4 Ordered Data Examples
The following examples are provided for your reference:

• I-Ordered Data - Simple example
• IJ-Ordered Data - Simple Example
• IJK-Ordered Data - Simple Example
• Multi-Zone XY Line Plot
• Multi-Zone XY Line Plot with Variable Sharing Example
• Cell-Centered Data
• Two-Dimensional Field Plots
• Three-Dimensional Field Plots
• Polygonal - simple example
• Polyhedral - complex example

I-Ordered Data - Simple example
This data set is plotted in Figure 4-3; each data point is labeled with its I-index.

126

Figure 4-3. An I-ordered data set.

In this example, each column of zone data corresponds to a data point; each row to a variable.

VARIABLES = "X", "Y"
ZONE I=5, DATAPACKING=BLOCK
2 3 5 6 7
4 9 25 36 49

In BLOCK format all values of each variable are listed, one variable at a time.

FORTRAN Code
The following sample FORTRAN code shows how to create I-ordered data in BLOCK format:

INTEGER VAR
.
.
.
WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX
DO 1 VAR=1,NUMVAR
DO 1 I=1,IMAX
 WRITE (*,*) ARRAY(VAR,I)

1 CONTINUE

IJ-Ordered Data - Simple Example
There are four variables (X, Y, Temperature, Pressure) and six data points.

Figure 4-4. An IJ-ordered data set.

 In this example, each column of data corresponds to a data point; each row to a variable.

VARIABLES = "X", "Y", "Temperature", "Pressure"
ZONE I=2, J=3, DATAPACKING=BLOCK
3 7 2 6 1 5
0 2 4 6 8 9
0 0 1 0 1 1
50 43 42 37 30 21

In BLOCK format, all IMax*JMax values of each variable are listed, one variable at a time. Within each
variable block, all the values of a variable at each data point are listed.

FORTRAN Code
The following sample FORTRAN code shows how to create IJ-ordered data in BLOCK format:

127

Ordered Data

 INTEGER VAR
.
.
.
WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX, ´, J=´, JMAX
DO 1 VAR=1,NUMVAR

 DO 1 J=1,JMAX
 DO 1 I=1,IMAX
 WRITE (*,*) ARRAY(VAR,I,J)
1 CONTINUE

IJK-Ordered Data - Simple Example
An example of IJK-ordered data in BLOCK format is listed below. There are four variables (X, Y, Z,
Temperature) and twelve data points.This data is plotted in Figure 4-5; each data point is labeled with its
IJK-index.

Figure 4-5. An IJK-ordered data set.

For this example, each column of data corresponds to a data point; each row to a variable.

VARIABLES = "X" "Y" "Z" "Temp"
ZONE I=3, J=2, K=2, DATAPACKING=BLOCK
 0 3 6 0 3 6 0 3 6 0 3 6
 0 0 0 6 6 6 0 0 0 6 6 6
 0 1 3 3 4 6 8 9 11 11 12 14
 0 5 10 10 41 72 0 29 66 66 130 169

FORTRAN Code
The following sample FORTRAN code shows how to create an IJK-ordered zone in BLOCK format:

 INTEGER VAR
 .
 .
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX, ´, J=´, JMAX, ´, K=´, KMAX
 DO 1 VAR=1,NUMVAR
 DO 1 K=1,KMAX

128

 DO 1 J=1,JMAX
 DO 1 I=1,IMAX
 WRITE (*,*) ARRAY(VAR,I,J,K)
1 CONTINUE

Multi-Zone XY Line Plot
The two tables below show the values of pressure and temperature measured at four locations on some
object at two different times. The four locations are different for each time measurement.

For this case, we want to set up two zones in the data file, one for each time value. Each zone has three
variables (Position, Temperature, and Pressure) and four data points (one for each location). This means
that IMax=4 for each zone. We include a text record (discussed in Section 4 - 3.3 “Text Record”) to add a
title to the plot. The plot shown in Figure 4-6 can be produced from this file.

Figure 4-6. A multi-zone XY Line plot.

All of the values for the first variable (Position) at each data point are listed first, then all of the values for
the second variable (Temperature) at each data point, and so forth.

TITLE = "Example: Multi-Zone XY Line Plot"
VARIABLES = "Position", "Temperature", "Pressure"
ZONE DATAPACKING=BLOCK, T="0.0 seconds", I=4
71.30 86.70 103.1 124.4
563.7 556.7 540.8 449.2
101362.5 101349.6 101345.4 101345.2
ZONE DATAPACKING=BLOCK, T="0.1 seconds", I=4
71.31 84.42 103.1 124.8
564.9 553.1 540.5 458.5
101362.1 101348.9 101344.0 101342.2

Time = 0.0 seconds: Time = 0.1 seconds:

Position Temperature Pressure Position Temperature Pressure

71.30 563.7 101362.5 71.31 564.9 101362.1

86.70 556.7 101349.6 84.42 553.1 101348.9

103.1 540.8 101345.4 103.1 540.5 101344.0

124.4 449.2 101345.2 124.8 458.5 101342.2

129

Ordered Data

TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE CASE"

Multi-Zone XY Line Plot with Variable Sharing Example
If the data from the section above was taken at the same position for both times, variable sharing could
reduce memory usage and file size. That file appears as:

TITLE = "Example: Multi-Zone XY Line Plot with Variable Sharing"
VARIABLES = "Position", "Temperature", "Pressure"
ZONE T="0.0 seconds", I=4
71.30 563.7 101362.5
86.70 556.7 101349.6
103.1 540.8 101345.4
124.4 449.2 101345.2
ZONE T="0.1 seconds", I=4
VARSHARELIST=([1]=1) #share variable 1 from zone 1
564.9 101362.1
553.1 101348.9
540.5 101344.0
458.5 101342.2
TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE VARIABLE SHARING CASE"

Cell-Centered Data
An example of IJ-ordered data with cell-centered variables might include four variables (X, Y,
Temperature, Pressure), nine data points, and four cells where Temperature and Pressure are cell-ce

ntered.

Figure 4-7. An IJ-ordered data set with cell-centered data.

VARIABLES = "X", "Y", "Temperature", "Pressure"
ZONE I=3, J=3, DATAPACKING=BLOCK, VARLOCATION=([3,4]=CELLCENTERED)
3 7 11 2 6 10 1 5 9
0 2 3 4 6 8 8 9 10
0 2 1 3
45 60 35 70

130

The nodal variables of X and Y are specified at all nine nodes, and the values of cell-centered variables are
specified at the four cells [(IMax-1)*(JMax-1)]. Zones with cell-centered data must have DATAPACKING=BLOCK.

Two-Dimensional Field Plots
A 2D field plot typically uses an IJ-ordered or finite element surface data set. However, any data structure
can be viewed as a 2D field plot, by simply selecting “2D Cartesian” from the plot-type menu in the Plot
sidebar.

An IJ-ordered data file has the basic structure shown below:

TITLE = "Example: Multi-Zone 2D Plot"
VARIABLES = "X", "Y", "Press", "Temp", "Vel"
ZONE T="BIG ZONE", I=3, J=3, DATAPACKING=POINT
1.0 2.0 100.0 50.0 1.0
1.0 3.0 95.0 50.0 1.00
1.0 4.0 90.0 50.0 0.90
2.0 2.0 91.0 40.0 0.90
2.0 3.0 85.0 40.0 0.90
2.0 4.0 80.0 40.0 0.80
3.0 2.0 89.0 35.0 0.85
3.0 3.0 83.0 35.0 0.80
3.0 4.0 79.0 35.0 0.80
ZONE T="SMALL ZONE", I=3, J=2, DATAPACKING=POINT
3.0 2.0 89.0 35.0 0.85
3.5 2.0 80.0 35.0 0.85
4.0 2.0 78.0 35.0 0.80
3.0 3.0 83.0 35.0 0.80
3.5 3.0 80.0 35.0 0.85
4.0 3.0 77.0 33.0 0.78

This data file has two zones and five variables. The first zone has nine data points arranged in a three-by-
three grid (I=3, J=3). Each row of each zone represents one data point, where each column corresponds to
the value of each variable for a given data point, i.e. X = 1.0, Y = 2.0, Press = 100.0, Temp = 50.0, and Vel=- 1.0
for data point one in zone one (Big Zone).

Similarly, the second zone (Small Zone) has six data points in a three-by-two mesh (I=3, J=2). Reading this
data file yields the mesh plot shown in Figure 4-12.

Refer to Section “Two-Dimensional Field Plots” on page 136 for an presentation of the same data in finite
element format.

Three-Dimensional Field Plots
IJK-ordered data sets have the general form shown below:

TITLE = "Example: Simple 3D Volume Data"
VARIABLES = "X", "Y", "Z", "Density"
ZONE I=3, J=4, K=3, DATAPACKING=POINT
1.0 2.0 1.1 2.21
2.0 2.1 1.2 5.05
3.0 2.2 1.1 7.16
1.0 3.0 1.2 3.66
...

4 - 5 Finite Element Data
The zone header for a finite element zones lists the zone type, along with the number of nodes, elements
and faces included in the zone. The following zone types are available for finite element data:

• FELINESEG - FE line segments zones contain one-dimensional finite element zones. For the
line segment element type, each line of the connectivity list contains two node numbers that
define a linear element.

131

Finite Element Data

• FETRIANGLE - FE triangular zones contain two-dimensional finite elements defined by three
nodes. For the triangle element type, each line of the connectivity list contains three node
numbers that define a triangular element.

• FEQUADRILATERAL - FE quadrilateral zones contain two-dimensional elements defined by
four nodes. For the quadrilateral element type, each line of the connectivity list contains four
node numbers that define a quadrilateral element.

• FEPOLYGON - FE polygonal zones contain two-dimensional elements defined by a varying
number of nodes (three or greater).

• FETETRAHEDRON - FE tetrahedral zones contain three-dimensional elements defined by
four nodes.

• FEBRICK - FE brick zones contain three-dimensional elements defined by eight nodes. Tecplot
360 divides the eight nodes into two groups of four; nodes N1M, N2M, N3M, and N4M make up the
first group, and N5M, N6M, N7M, and N8M make up the second group (where N# is the node
number and M is the element number). Each node is connected to two nodes within its group
and the node in the corresponding position in the other group. For example, N1M is connected
to N2M and N4M in its own group, and to N5M in the second group.
To create elements with fewer than eight nodes, repeat nodes as necessary, keeping in mind the
basic brick connectivity just described. Figure 4-8 shows the basic brick connectivity. For
example, to create a tetrahedron, you can set N3M=N4M and N5M=N6M=N7M=N8M. To create a
quadrilateral-based pyramid, you can set N5M=N6M=N7M=N8M.

Figure 4-8. Basic brick connectivity.
• FEPOLYHEDRAL - FE polyhedral zones contain elements with a varying number of faces.

Each element has at least four faces. The faces are defined by any number of nodes (with a
minimum of three nodes in each face).

Refer to Section 4 - 3.2 “Zone Record” for a complete list of the tokens included in the zone header.

After the zone header, the nodal data is listed. The nodal data contains the value of each variable for each
node or element. Refer to Section “Data” on page 111 for details on arranging the data. The information
following the nodal data is dependent upon the zone type.

For cell-based zone types (FETRIANGLE, FEQUADILATERAL, FETETRAHEDRON, and FEBRICK), the nodal data is
followed by the connectivity section. The connectivity section describes arrangement of cells, relative to
one another. There must be numelements lines in the second section; each line defines one element. The
number of nodes per line in the connectivity list depends on the element type specified in the zone control
line (ZONETYPE parameter). For example, ZONETYPE=FETRIANGLE has three numbers per line in the connectivity
list. If nodes five, seven, and eight are connected, one line reads: 5 7 8. Refer to Section “Connectivity” on

If you need to mix quadrilateral and triangle elements, either use the polygonal zone
type or use the quadrilateral element type with node numbers repeated to form
triangles.

132

page 113 for details. You may also define Face Neighbors following the connectivity list. Refer to Section
“Face Neighbor Connections List” on page 113 for details.For face-based zone type (FEPOLYGON and
FEPOLYHEDRAL), the data section (Section “Data” on page 111) is followed by the zone footer and facemap
data sections. Refer to Section “Facemap Data” on page 115 for details.

4 - 5.1 Variable and Connectivity List Sharing
The VARSHARELIST in the ZONE record allows you to share variables from specified previous zones. The
CONNECTIVITYSHAREZONE parameter in the ZONE record allows you to share the connectivity list from a
specified previous zone. The following is an example to illustrate these features. NOTE: Connectivity and/
or face neighbors cannot be shared when the face neighbor mode is set to Global.

The table below shows Cartesian coordinates X and Y of six locations, and the pressure measured there at
three different times (P1, P2, P3). The XY locations have been arranged into finite elements.

For this case, we want to set up three zones in the data file, one for each time measurement. Each zone has
three variables: X, Y, and P. The zones are of the triangle element type, meaning that three nodes must be
used to define each element. One way to set up this data file would be to list the complete set of values for
X, Y, and P for each zone. Since the XY-coordinates are exactly the same for all three zones, a more compact
data file can be made by using the VARSHARELIST. In the data file given below, the second and third zones
have variable sharing lists that share the values of the X- and Y-variables and the connectivity list from the
first zone. As a result, the only values listed for the second and third zones are the pressure variable
values. Note that the data could easily have been organized in a single zone with five variables. Since

X Y P1 P2 P3

-1.0 0.0 100 110 120

0.0 0.0 125 135 145

1.0 0.0 150 160 180

-0.5 0.8 150 165 175

0.5 0.8 175 185 195

0.0 1.6 200 200 200

133

Finite Element Data

blank lines are ignored in the data file, you can embed them to improve readability. A plot of the data is
shown in Figure 4-9.

Figure 4-9. A plot of finite element zones.

TITLE = "Example: Variable and Connectivity List Sharing"
VARIABLES = "X", "Y", "P"
ZONE T="P_1", DATAPACKING=POINT, NODES=6, ELEMENTS=4, ZONETYPE=FETRIANGLE
-1.0 0.0 100
0.0 0.0 125
1.0 0.0 150
-0.5 0.8 150
0.5 0.8 175
0.0 1.6 200

1 2 4
2 5 4
3 5 2
5 6 4
ZONE T="P_2", DATAPACKING=POINT, NODES=6, ELEMENTS=4, ZONETYPE=FETRIANGLE, VARSHARELIST = ([1,
2]=1), CONNECTIVITYSHAREZONE = 1
110 135 160 165 185 200

ZONE T="P_3", DATAPACKING=POINT, NODES=6, ELEMENTS=4, ZONETYPE=FETRIANGLE, VARSHARELIST = ([1,
2]=1), CONNECTIVITYSHAREZONE = 1
120 145 180 175 195 200

134

4 - 5.2 Finite Element Data Set Examples
Creating a finite element data set is generally more complicated than creating a similar-sized ordered data
set1. In addition to specifying all the data points, you must also specify the connectivity list. Consider the
data shown in Table 4 - 1.

You can create a POINT Tecplot 360 data file for this data set as follows (a 2D mesh plot of this data set is
shown in Figure 4-10):

TITLE = "Example: 2D Finite Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE NODES=8, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
0.0 1.0 100.0 1.6
1.0 1.0 150.0 1.5
3.0 1.0 300.0 2.0
0.0 0.0 50.0 1.0
1.0 0.0 100.0 1.4
3.0 0.0 200.0 2.
4.0 0.0 400.0 3.0
2.0 2.0 280.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

Figure 4-10. A mesh plot of 2D finite element data.

The ZONE record describes completely the form and format of the data set: there are eight nodes, indicated
by the parameter NODES=8; four elements, indicated by the parameter ELEMENTS=4, and the elements are all
quadrilaterals, as indicated by the parameter ZONETYPE=FEQUADRILATERAL.

1. Background information for FE data sets is provided in Section “Indexing Cell-centered Ordered Data” in
the User’s Manual.

Node X Y P T

A 0.0 1.0 100.0 1.6

B 1.0 1.0 150.0 1.5

C 3.0 1.0 300.0 2.0

D 0.0 0.0 50.0 1.0

E 1.0 0.0 100.0 1.4

F 3.0 0.0 200.0 2.2

G 4.0 0.0 400.0 3.0

H 2.0 2.0 280.0 1.9
Table 4 - 1: finite element Data

135

Finite Element Data

The same data file can be written more compactly in BLOCK format as follows:

TITLE = "Example: 2D Finite Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE NODES=8, ELEMENTS=4, DATAPACKING=BLOCK, ZONETYPE=FEQUADRILATERAL
0.0 1.0 3.0 0.0 1.0 3.0 4.0 2.0
1.0 1.0 1.0 0.0 0.0 0.0 0.0 2.0
100.0 150.0 300.0 50.0 100.0 200.0 400.0 280.0
1.6 1.5 2.0 1.0 1.4 2.2 3.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

In BLOCK format, all values for a single variable are written in a single block. The length of the block is the
number of data points in the zone. In POINT format, all variables for a single data point are written in a
block, with the length of the block equal to the number of variables.

You can change the connectivity list to obtain a different mesh for the same data points. In the above
example, substituting the following connectivity list yields the five-element mesh shown in Figure 4-11.
(You must also change the ELEMENTS parameter in the zone control line to specify five elements.)

Figure 4-11. Finite element data of Figure 4-10 with a different connectivity list

1 2 4 4
4 2 3 5
5 3 6 6
6 7 3 3
3 2 8 8

The connectivity list is the same for both POINT and BLOCK formats.

136

Two-Dimensional Field Plots
A 2D finite element data file is shown below:.

Figure 4-12. A 2D field plot.

TITLE = "Example: 2D Finite Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE NODES=8, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
0.0 1.0 75.0 1.6
1.0 1.0 100.0 1.5
3.0 1.0 300.0 2.0
0.0 0.0 50.0 1.0
1.0 0.0 100.0 1.4
3.0 0.0 200.0 2.2
4.0 0.0 400.0 3.0
2.0 2.0 280.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

The above finite element data file has eight nodes (the first eight rows of the zone) and four elements (the
last four rows of the zone). Each row in the node matrix represents a given node. Each column in the row
matrix corresponds to the value of each variable at a given node. The order of the variables definition
correlates to the order the variables are named in the data set, i.e. for node one, X = 0.0, Y=1.0, P = 75.0 and
T = 1.6. The element matrix defines the connectivity of the nodes, i.e. element one is composed of nodes
one, two, five and four.

Please refer to Chapter 3: “Data Structure” in the User’s Manual for information on ordered and FE data
sets.

137

Finite Element Data

Triangle Data in BLOCK Format Example
An example of triangle element type finite element data is listed below. There are two variables (X, Y) and
five data points. This data set is plotted in Figure 4-13. Each data point is labeled with its node number.

Figure 4-13. A finite element triangle data set.

In this example, each column of the data section corresponds to a node and each row to a variable. Each
row of the connectivity list corresponds to a triangular element and each column specifies a node number.

VARIABLES = "X", "Y"
ZONE NODES=5, ELEMENTS=3, DATAPACKING=BLOCK, ZONETYPE=FETRIANGLE
1.0 2.0 2.5 3.5 4.0
1.0 3.0 1.0 5.0 1.0
1 2 3
3 2 4
3 5 4

FORTRAN Code
This FORTRAN code creates triangle element type finite element data in BLOCK format:

 INTEGER VAR
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=BLOCK, ZONETYPE=FETRIANGLE,NODES=´,NNODES,
&´ ,ELEMENTS=´,NELEM
 DO 1 VAR=1,NUMVAR
 DO 1 NODES=1,NNODES
 WRITE(*,*) VARRAY(VAR,NODES)
1 CONTINUE
 DO 2 M=1,NELEM
 DO 2 L=1,3
 WRITE (*,*) NDCNCT(M,L)
2 CONTINUE

Finite Element Zone Node Variable Parameters Example
The node variable parameter allows setting of the connectivity to match the value of the selected node
variable. In the example below, the files appear to be identical in Tecplot 360, although the connectivity list
has changed to reflect the values of the node order. Notice that the index value of the nodes is not changed
by the node variable value.

The original data set:

TITLE = "Data with original node ordering"

138

VARIABLES = "X" "Y"
ZONE T="Triangulation"
 NODES=6, ELEMENTS=5,DATAPACKING=POINT, ZONETYPE=FETRIANGLE
DT=(SINGLE SINGLE)
 2.00E+000 3.00E+000
 2.20E+000 3.10E+000
 3.10E+000 4.20E+000
 2.80E+000 3.50E+000
 2.40E+000 2.10E+000
 4.30E+000 3.20E+000
 1 2 5
 6 4 3
 5 4 6
 2 3 4
 5 2 4

The data set with the nodes re-ordered for connectivity:

TITLE = "Data with modified node ordering"
VARIABLES = "X" "Y" "Node-Order"
ZONE T="Triangulation"
 NODES=6, NV = 3, ELEMENTS=5,DATAPACKING=POINT, ZONETYPE=FETRIANGLE
DT=(SINGLE SINGLE)
 2.00E+000 3.00E+000 5
 2.20E+000 3.10E+000 4
 3.10E+000 4.20E+000 1
 2.80E+000 3.50E+000 2
 2.40E+000 2.10E+000 6
 4.30E+000 3.20E+000 3
 5 4 6
 3 2 1
 6 2 3
 4 1 2
 6 4 2

FE surface data
Finite element surface data specify node locations in three dimensions. Consider the data in Table 4 - 2.
Locations are listed for eleven nodes, each having only the three spatial variables X, Y, and Z. We would
like to create an finite element surface zone with this data set, where some of the elements are triangles
and some are quadrilaterals. All the elements could be organized into one zone of element type
Quadrilateral. However, as an illustration of creating 3D surface data, create three zones: one triangular,
one quadrilateral, and one a mixture (using quadrilaterals with repeated nodes for the triangles).

X Y Z

0.0 0.0 1.0

0.0 0.0 -2.0

1.0 0.0 -2.0

1.0 1.0 0.0

1.0 1.0 -1.0

1.0 -1.0 0.0

1.0 -1.0 -1.0

-1.0 1.0 0.0

-1.0 1.0 -1.0
Table 4 - 2: Data set with eleven nodes and three variables.

139

Finite Element Data

A Tecplot 360 data file for the data in Table 4 - 2 is shown below in POINT format and plotted in Figure 4-14:

TITLE = "Example: 3D FE-SURFACE ZONES"
VARIABLES = "X", "Y", "Z"
ZONE T="TRIANGLES", NODES=5, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FETRIANGLE
0.0 0.0 1.0
-1.0 -1.0 0.0
-1.0 1.0 0.0
1.0 1.0 0.0
1.0 -1.0 0.0
1 2 3
1 3 4
1 4 5
1 5 2
ZONE T="PURE-QUADS", NODES=8, ELEMENTS=4, DATAPACKING=POINT,

ZONETYPE=FEQUADRILATERAL
-1.0 -1.0 0.0
-1.0 1.0 0.0
1.0 1.0 0.0
1.0 -1.0 0.0
-1.0 -1.0 -1.0
-1.0 1.0 -1.0
1.0 1.0 -1.0
1.0 -1.0 -1.0
1 5 6 2
2 6 7 3
3 7 8 4
4 8 5 1
ZONE T="MIXED", NODES=6, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
-1.0 -1.0 -1.0
-1.0 1.0 -1.0
1.0 1.0 -1.0
1.0 -1.0 -1.0
0.0 0.0 -2.0
1.0 0.0 -2.0
1 5 2 2
2 5 6 3
3 4 6 6
4 1 5 6

-1.0 -1.0 0.0

-1.0 -1.0 -1.0

X Y Z

Table 4 - 2: Data set with eleven nodes and three variables.

140

Figure 4-14. Three-dimensional mesh plot of finite element surface data.

FE Volume Data Files
Finite element volume data in Tecplot 360 is constructed from either tetrahedra having four nodes or
bricks having eight nodes. Bricks are more flexible, because they can be used (through the use of repeated
nodes in the connectivity list) to construct elements with fewer than eight nodes and combine those
elements with bricks in a single zone.

Finite Element Volume - Brick Data Set
As a simple example of finite element volume brick data, consider the data in Table 4 - 3. The data can be
divided into five brick elements, each of which is defined by eight nodes.

X Y Z Temperature

0.0 0.0 0.0 9.5

1.0 1.0 0.0 14.5

1.0 0.0 0.0 15.0

1.0 1.0 1.0 16.0

1.0 0.0 1.0 15.5

2.0 2.0 0.0 17.0

2.0 1.0 0.0 17.0

2.0 0.0 0.0 17.5

2.0 2.0 1.0 18.5

2.0 1.0 1.0 20.0

2.0 0.0 1.0 17.5

2.0 2.0 2.0 18.0
Table 4 - 3: Finite Element Volume - Brick Data Set. Data with 14 nodes and four variables.

141

Finite Element Data

In each element’s connectivity list, Tecplot 360 draws connections from each node to three other nodes.
You can think of the first four nodes in the element as the “bottom” layer of the brick, and the second four
nodes as the “top.” Within the bottom or top layer, nodes are connected cyclically (1-2-3-4-1; 5-6-7-8-5); the
layers are connected by connecting corresponding nodes (1-5; 2-6; 3-7; 4-8). Figure 4-8 illustrates this basic
connectivity. When you are creating your own connectivity lists for brick elements, you must keep this
basic connectivity in mind, particularly when using duplicate nodes to create pyramids and wedges.
Tecplot 360 lets you create elements that violate this basic connectivity, but the result will probably not be
what you want.

The data file in POINT format is shown below:

TITLE = "Example: FE-Volume Brick Data"
VARIABLES = "X", "Y", "Z", "Temperature"
ZONE NODES=14, ELEMENTS=5, DATAPACKING=POINT, ZONETYPE=FEBRICK
0.0 0.0 0.0 9.5
1.0 1.0 0.0 14.5
1.0 0.0 0.0 15.0
1.0 1.0 1.0 16.0
1.0 0.0 1.0 15.5
2.0 2.0 0.0 17.0
2.0 1.0 0.0 17.0
2.0 0.0 0.0 17.5
2.0 2.0 1.0 18.5
2.0 1.0 1.0 20.0
2.0 0.0 1.0 17.5
2.0 2.0 2.0 18.0
2.0 1.0 2.0 17.5
2.0 0.0 2.0 16.5
1 1 1 1 2 4 5 3
2 4 5 3 7 10 11 8
4 4 5 5 10 13 14 11
4 4 4 4 9 12 13 10
2 2 4 4 7 6 9 10

The same data in BLOCK format is shown below:

TITLE = "Example: FE-Volume Brick Data"
VARIABLES = "X", "Y", "Z", "Temperature"
ZONE NODES=14, ELEMENTS=5, DATAPACKING=BLOCK, ZONETYPE=FEBRICK
0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0.0 1.0 0.0 1.0 0.0 2.0 1.0 0.0 2.0 1.0 0.0 2.0 1.0 0.0
0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 2.0 2.0 2.0
9.5 14.5 15.0 16.0 15.5 17.0 17.0
17.5 18.5 20.0 17.5 18.0 17.5 16.5
1 1 1 1 2 4 5 3
2 4 5 3 7 10 11 8
4 4 5 5 10 13 14 11
4 4 4 4 9 12 13 102 2 4 4 7 6 9 10

2.0 1.0 2.0 17.5

2.0 0.0 2.0 16.5

X Y Z Temperature

Table 4 - 3: Finite Element Volume - Brick Data Set. Data with 14 nodes and four variables.

142

Figure 4-15 shows the resulting mesh plot from the data set listed in this section.

Figure 4-15. A finite element brick zone.

Finite Element Volume - Tetrahedral Data Set
As a simple example of a finite element volume data set using tetrahedral elements, consider the data in
Table 4 - 4. The data set consists of thirteen nodes, with seven variables. The nodes are to be connected to
form twenty tetrahedral elements, each with four nodes.

The data file in POINT format for the data in Table 4 - 4 is shown below, and plotted in Figure 4-16:

TITLE = "Example: FE-Volume Tetrahedral Data"
VARIABLES = "X", "Y", "Z", "C", "U", "V", "W"
ZONE NODES=13, ELEMENTS=20, DATAPACKING=POINT, ZONETYPE=FETETRAHEDRON
0 0 -95 -1 1 0 8
0 85 -42 0 -85 -3 9
81 26 -42 2 -22 80 8

X Y Z C U V W

0 0 -95 -1 1 0 8

0 85 -42 0 -5 -3 9

81 26 -42 2 -22 80 8

50 -69 -42 -6 72 52 9

-50 -69 -42 14 67 -48 9

-81 26 -2 20 -30 -82 9

0 0 0 1 -2 -5 10

50 69 43 14 -68 48 11

81 -26 43 20 31 82 11

0 -85 43 0 84 -3 10

-81 -26 43 2 21 -80 11

-50 69 43 -6 -71 -51 11

0 0 96 1 0 -1 12
Table 4 - 4: Finite Element Volume - Tetrahedral data set with 13 nodes and seven variables.

143

Finite Element Data

50 -69 -42 -6 72 52 9
-50 -69 -42 14 67 -48 9
-81 26 -42 20 -30 -82 9
0 0 0 1 -2 -5 10
50 69 43 14 -68 48 11
81 -26 43 20 31 82 11
0 -85 43 0 84 3 10
-81 -26 43 2 21 -80 11
-50 69 43 -6 -71 -51 11
0 0 96 1 0 -1 12
1 2 3 7
1 3 4 7
1 4 5 7
1 5 6 7
1 6 2 7
2 8 3 7
3 9 4 7
4 10 5 7
5 11 6 7
6 12 2 7
12 2 8 7
8 3 9 7
9 4 10 7
10 5 11 7
11 6 12 7
12 8 13 7
8 9 13 7
9 10 13 7
10 11 13 7
11 12 13 7

Figure 4-16. Finite element volume tetrahedral data.

Polygonal - simple example
A polygonal element in one zone connected to an element in another zone.

Zone
ZoneType=FEPolygon

144

Nodes=3
Faces=3
Elements=1
NumConnectedBoundaryFaces=2
TotalNumBoundaryConnections=1

…variable values in block format…

#face nodes
1 2
2 3
3 1
#left elements
1 1 1
#right elements (negative indicates boundary connections)
0 -1 0
#boundary connection counts
1
#boundary connection elements
1
#boundary connection zones
2

Polyhedral - complex example
A single tetrahedron bounded on face two by zone two (elements 13 and 14) and on face three by zone
three (element 11).

Zone
ZoneType=FEPolyhedron
Nodes=4
Faces=4
Elements=1
TotalNumFaceNodes=12
NumConnectedBoundaryFaces=2
TotalNumBoundaryConnections=3

…variable values in block format…

#node count per face
3 3 3 3
#face nodes
1 2 3
1 4 2
2 4 3
3 4 1
#left elements (negative indicates boundary connection)
0 -1 -2 0
#right elements
1 1 1 1
#boundary connection counts
2 1
#boundary connection elements
13 14 11
#boundary connection zones
2 2 3

4 - 6 ASCII Data File Conversion to Binary
Although Tecplot 360 can read and write ASCII or binary data files, binary data files are more compact
and are read into Tecplot 360 much more quickly. Even if you write ASCII files, for best performance, we
recommend that you convert your data files to binary as a post-processing step, before interactive
visualization.

In the bin folder of your Tecplot 360 distribution you will find Preplot, which converts ASCII to binary
data files. You can also use Preplot to debug ASCII data files that Tecplot 360 cannot read.

145

ASCII Data File Conversion to Binary

4 - 6.1 Preplot Options
To use Preplot, type the following command from the UNIX shell prompt, from a DOS prompt, or using
the Run command on Windows platforms:

preplot infile [outfile] [options]

where infile is the name of the ASCII data file, outfile is an optional name for the binary data file created by
Preplot, and options is a set of options from the standard set of Preplot options. If outfile is not specified, the
binary data file has the same base name as the infile with a .plt extension. You may use a minus sign (“-”)
in place of either the infile or outfile to specify standard input or standard output, respectively.

Any or all of -iset, -jset, and -kset can be set for each zone, but only one of each per zone.

For the standard set of preplot options, see Section B - 3 “Preplot” in the User’s Manual.

4 - 6.2 Preplot Examples
If you have an ASCII file named dset.dat, you can create a binary data file called dset.plt with the
following Preplot command:

preplot dset.dat dset.plt

By default, Preplot looks for files with the .dat extension, and creates binary files with the .plt extension.
Thus, either of the following commands is equivalent to the above command:

preplot dset
preplot dset.dat

Preplot checks the input ASCII data file for errors such as illegal format, numbers too small or too large,
the wrong number of values in a data block, and illegal finite element node numbers. If Preplot finds an
error, it issues a message displaying the line and column where the error was first noticed. This is only an
indication of where the error was detected; the actual error may be in the preceding columns or lines.

If Preplot encounters an error, you may want to set the debug option to get more information about the
events leading up to the error:

preplot dset.dat -d

You can set the flag to -d2, or -d3, or -d4, and so forth, to obtain more detailed information.

In the following Preplot command line, the number of points that are written to the binary data file
dset.plt is less than the number of points in the input file dset.dat:

preplot dset.dat -iset 3,6,34,2 -jset 3,1,21,1 -iset 4,4,44,5

For zone three, Preplot outputs data points with I-index starting at six and ending at 34, skipping every
other one, and J-index starting at one and ending at 21. For zone four, Preplot outputs data points with the
I-index starting at four, ending at 44, and skipping by five.

In the following Preplot command line, every other point in the I-, J-, and K-directions is written to the
binary data file:

preplot dset.dat -iset ,,,2 -jset ,,,2 -kset ,,,2

The zone, start, and end parameters are not specified, so all zones are used, starting with index one, and
ending with the maximum index. The overall effect is to reduce the number of data points by a factor of
about eight.

146

147

5

Glossary

The following terms are used throughout the Data Format Guide and are included here for your reference.

2D Plotting in two dimensions. Line plots of one or more variables (XY and Polar Line plots)
are not considered 2D.

2D Cartesian Plot A plot of some variable by location on a single plane using two axes.

3D Plotting in three dimensions. Three-dimensional plotting can be subdivided into 3D
surface and 3D volume.

3D Cartesian Plot A plot displaying a 3D scattering of points, surfaces, or volumes using three orthogonal
axes.

3D Surface Three-dimensional plotting confined to a surface. For example, the surface of a wing.

3D Volume Three-dimensional plotting of data that includes interior data points of a volume, as well
as those on the surface. For example, the vector field around a wing.

Active Zone A zone that is displayed in the current plot, as determined in the Zone Style dialog.

ASCII Data File A data file composed of human-readable statements and numbers using ASCII characters.

Auxiliary Data Metadata attached to zones, data sets, and frames.

Binary Data File A data file composed of machine-readable data. This type of file is created by converting
ASCII data files with Preplot, or by directly creating them from an application.

Block A data file format in which the data is listed by variable. All the point values of the first
variable are listed first, then all the point values of the second variable, and so forth.

Boundary Cell
Faces

A set of un-blanked cell faces in a 3D volume zone which have only one neighboring
volume cell. In contrast, interior cell faces have two neighboring volume cells, one on
either side, which share the face. For an IJK-ordered zone the boundary cell faces are on
the exterior of the zone. That is, the first and last I-planes, the first and last J-planes, and
the first and last K-planes. For a finite element 3D volume zone, boundary cell faces are on
the exterior of the zone and the surface of any voids within the zone.

148

Brick An element type of finite element volume data composed of eight node points arranged in
a hexahedron-like format. This element type is used in 3D volume plotting.

Cell Either an element of finite element data, or the space contained by one increment of each
index of IJ- or IJK-ordered data.

Cell-Centered Val-
ues Values located at the center of the cell (assumed to be the centroid).

Connectivity List The portion of a finite element data file which defines the elements or cells by listing the
relationships between points. The number of points per cell is determined by the element
type.

Custom Labels Text strings contained within a data file or text geometry file which define labels for your
axes or contour table. You may select Custom Labels anywhere you can choose a number
format, the result is the text strings in place of numbers. The maximum length of a custom
label is 1024 characters.

Data File A file that contains data used for plotting in Tecplot.

Data Format The type of zone data as specified by the format parameter in a Tecplot data file, such as:
BLOCK or POINT.

Data Loader A Tecplot add-on which allows you to read non-Tecplot data files.

Data Point An XYZ-point at which field variables are defined.

Data Set A set of one or more zones. A data set may be plotted in one or more frames. However, a
single frame may only plot one data set. A data set may be created by loading one or more
data files.

Element Type The form of individual elements in a finite element zone. There are four types of cell-based
finite element zones: Triangle and Quadrilateral (finite element surface types), and
Tetrahedron and Brick (finite element volume types). For cell-based finite elements, the
element type of a zone determines the number of nodes per element and their orientation
within an element.
There are two types of face-based finite element zones: polygonal (2D) and polyhedral
(3D). For face-based elements, the number of nodes per element is variable.

FE An abbreviation for finite element, a common means of arranging data for calculations.
(Often referred to as “unordered” or “unstructured”.)

FE Surface A finite element zone of the element type Triangle, Quadrilateral, Polygon. These zones are
used for 2D and 3D surface plots.

FE Volume A finite element zone of the element type Tetrahedron, Brick, Polyhedron. These zones are
used for 3D volume plots.

Field Map A collection of zones for 2D and 3D field plots. A common style can be easily applied to all
zones in the selection.

Field Plot Includes 2D Cartesian and 3D Cartesian plot types. Generally used to display the spacial
relationship of data. Mesh, Contour, Vector, Scatter and Shade are all considered field
plots. XY and Polar Line plots and the Sketch plot type are not field plots.

Finite Element A type of data point ordering. Data is arranged by listing the data points (called nodes),
and then listing their relationships (called elements). The element type of the zone
determines the number of nodes which are contained in each element, as well as the exact
relationship of nodes within an element. There are several different element types
supported by Tecplot: Triangle,Quadrilateral,Tetrahedron, Brick, Polygonal and
Polyhedral. See also: Connectivity List and Node

149

I-Ordered A type of data point ordering where each point is listed one at a time (that is, by one
index). Used mainly in XY-plots. In 2D or 3D, this type of data point ordering is sometimes
called irregular, and is only useful for scatter plots, or for interpolating into 2D, 3D surface,
or 3D volume zones. (This type of data can also be used for 2D or 3D vector plots if
streamtraces are not required.)

IJ-Ordered A type of data point ordering where the points are arranged in a 2D array used for 2D and
3D surface plotting.

IJK-Blanking A feature to include or exclude portions of an IJK-ordered zone based on index ranges.

IJK-Ordered A type of data ordering where the points are arranged in a 3D array. Used for 3D volume
plotting as well as 2D and 3D surface plotting.

I-Plane In an ordered zone, the connected surface of all points with a constant I-index. In reality, I-
planes may be cylinders, spheres, or any other shape.

Irregular Data Points which have no order, or at least no order which can be easily converted to IJ- or IJK-
ordering.

J-Plane In an ordered zone, the connected surface of all points with a constant J-index. In reality, J-
planes may be cylinders, spheres, or any other shape.

K-Plane In an IJK-ordered zone, the connected surface of all points with a constant K-index. In
reality, K-planes may be cylinders, spheres, or any other shape.

Macro A file containing a list of instructions, called macro commands, which can duplicate
virtually any action performed in Tecplot.

Macro Command An instruction given to Tecplot in a macro file. Macro commands always start with a dollar
sign and then an exclamation mark. For example, $!Redraw refreshes a plot view.

Macro File A file which contains a series of macro commands. Macro files are run from the command
line, or through the Play option of the Macro sub-menu of the File menu.

Macro Function A self-contained macro sub-routine.

Macro Variable A holding place for numeric values in a macro file. There are two types of macro variables:
user-defined (you set and retrieve the value), or internal (Tecplot sets the value and you
may retrieve it).

No Neighboring
Element

In polyhedral/polygonal fe data sets, the term “no neighboring element” refers to a face
that does not have a neighboring element on either its right or left side.

Node A point in finite element data.

Number Format The style of numbers to display for a data or axis label; exponent, integer, float, and so
forth.

Ordered Data A type of data point organization which consists of a parameterized series of points. There
are seven types of ordered data: I-, J-, K-, IJ-, JK-, IK-, and IJK-ordered. I-, IJ-, and IJK-
ordered are the most common.

Polygonal A 2D, face-based finite element type. The number of nodes per element is variable. That is,
a single polygonal zone may contain triangular, quadrilateral, hexagonal, ..., etc. elements.

Polyhedral A 3D, face-based finite element type. The number of nodes per element is variable. That is,
a single polyhedral zone may contain tetrahedral and brick (and others) elements.

Point A data file format for an I-, IJ-, or IJK-ordered zone in which the data is listed by point. All
of the variable values for the first data point are listed first, then all the variable values for
the second data point, and so forth.

150

Quadrilateral An element type of finite element surface data which is composed of four node points
arranged in a quadrilateral. Used in 2D and 3D surface plotting.

Sharing Variable sharing allows a single storage location to be used by more than one party. For
example, if the X-variable is shared between zones five and seven only one storage location
is created. The storage is not freed by Tecplot until the number of parties accessing the data
is reduced to zero. Variables and connectivity information may be shared.

Subzone Loadable A file format (.szplt) introduced in Tecplot 360 EX that allows partial zones (subzones) to be
loaded as needed for plots and other operations. In typical use, this significantly improves
performance and reduces memory footprint compared to .plt files.

Tetrahedron An element type of finite element volume data which is composed of four node points
arranged in a tetrahedron. (Used in 3D volume plotting.)

Triangle An element type of finite element surface data which is composed of three node points
arranged in a triangle. (Used in 2D and 3D surface plotting.)

Unordered or
Unorganized Data (See Irregular Data.)

Zone A subset of a data set which is assigned certain plot types. Zones may be activated
(plotted) or deactivated (not plotted). Each zone has one type of data ordering: I-, IJ-, IJK-,
or finite element. Zones are typically used to distinguish different portions of the data. For
example, different calculations, experimental versus theoretical results, different time
steps, or different types of objects, such as a wing surface versus a vector field around a
wing.

Zone Layers One way of displaying a 2D or 3D plot’s data set. The plot is the sum of the active zone
layers, which may include mesh, contour, vector, shade, scatter and edge.

151

A

Binary Data File Format

Refer to this section only if you wish to write your own code that writes Tecplot binary-format (.plt) files
without utilizing the TecIO library. Otherwise, refer to Section 3 - 1 “Getting Started” for instructions for
linking with this library, which is provided at no cost by Tecplot, Inc.

The subzone loadable format (.szplt) is not currently documented because we anticipate the need for
changes to the file format in the near future. Furthermore, the format is sufficiently complex that we do
not expect application developers finding it worthwhile to undertake writing their own code to output in
.szplt format. If you want your application to write subzone loadable files and find the TecIO library
insufficient, please contact us.

/*
BINARY FILE FORMAT:

The binary data file format (as produced by the preplot) is described below.

The binary datafile has two main sections. A header section and a data
section.

 +----------------+
 | HEADER SECTION |
 +----------------+
 +---------+
 |FLOAT32 | EOHMARKER, value=357.0
 +---------+
 +----------------+
 | DATA SECTION |
 +----------------+

I. HEADER SECTION

 The header section contains: the version number of the file, a title
 of the file, the names of the variables to be plotted, the
 descriptions of all zones to be read in and all text and geometry
 definitions.

 i. Magic number, Version number

152

 +-----------+
 | “#!TDV112”| 8 Bytes, exact characters “#!TDV112”.
 +-----------+ Version number follows the “V” and
 consumes the next 3 characters (for
 example: “V75 “, “V101”).

 ii. Integer value of 1.
 +-----------+
 | INT32 | This is used to determine the byte order
 +-----------+ of the reader, relative to the writer.

 iii. Title and variable names.
 +-----------+
 | INT32 | FileType: 0 = FULL,
 +-----------+ 1 = GRID,
 2 = SOLUTION
 +-----------+
 | INT32*N | The TITLE. (See note 1.)
 +-----------+
 +-----------+
 | INT32 | Number of variables (NumVar) in the datafile.
 +-----------+
 +-----------+
 | INT32*N | Variable names.
 +-----------+ N = L[1] + L[2] + L[NumVar]
 where:
 L[i] = length of the ith variable name + 1
 (for the terminating 0 value).
 (See note 1.)
 iv. Zones
 +-----------+
 | FLOAT32 | Zone marker. Value = 299.0
 +-----------+
 +-----------+
 | INT32*N | Zone name. (See note 1.)
 +-----------+ N = (length of zone name) + 1.
 +-----------+
 | INT32 | ParentZone: Zero-based zone number within this
 +-----------+ datafile to which this zone is
 a child.
 +-----------+
 | INT32 | StrandID: -2 = pending strand ID for assignment
 +-----------+ by Tecplot
 -1 = static strand ID
 0 <= N < 32700 valid strand ID
 +-----------+
 | FLOAT64 | Solution time.
 +-----------+
 +-----------+
 | INT32 | Not used. Set to -1.
 +-----------+
 +-----------+
 | INT32 | ZoneType 0=ORDERED, 1=FELINESEG,
 +-----------+ 2=FETRIANGLE, 3=FEQUADRILATERAL,
 4=FETETRAHEDRON, 5=FEBRICK,
 6=FEPOLYGON, 7=FEPOLYHEDRON
 +-----------+
 | INT32 | Data packing.
 +-----------+ 0 = Block
 1 = Point
 +-----------+
 | INT32 | Specify Var Location.
 +-----------+ 0 = Don’t specify, all data is located
 at the nodes.
 1 = Specify
 if “specify var location” == 1
 +-----------+
 | INT32*NV | Variable Location (only specify if above is 1).
 +-----------+ 0 = Node, 1 = Cell Centered (See note 5.)
 +-----------+

153

 | INT32 | Are raw local 1-to-1 face neighbors supplied?
 +-----------+ (0=FALSE 1=TRUE). These raw values are a
 compact form of the local 1-to-1 face neighbors.
 If supplied, Tecplot assumes that the face
 neighbors are fully specified. As such, it
 will not perform auto face neighbor assignment.
 This improves Tecplot’s time to first plot.
 See the data section below for format details.
 ORDERED and FELINESEG zones must specify 0 for
 this value because raw face neighbors are not
 defined for these zone types. FEPOLYGON and
 FEPOLYHEDRON zones must specify 0 for this value
 since face neighbors are defined in the face map
 for these zone types.

 +-----------+
 | INT32 | Number of miscellaneous user-defined face
 +-----------+ neighbor connections (value >= 0). This value
 is in addition to the face neighbors supplied
 in the raw section. FEPOLYGON and FEPOLYHEDRON
 zones must specify 0.

 if “number of miscellaneous user-defined
 face neighbor connections” != 0
 +-----------+
 | INT32 | User defined face neighbor mode
 +-----------+ (0=Local 1-to-1, 1=Local 1-to-many,
 2=Global 1-to-1, 3=Global 1-to-many)
 if FE Zone:
 +-----------+
 | INT32 | Indicates if the finite element face neighbors
 +-----------+ are completely specified by the miscellaneous
 face neighbors given: (0=NO, 1=YES). If yes,
 then Tecplot will not perform auto assignment
 of face neighbors otherwise all faces not
 specified are considered boundaries. If no,
 then Tecplot will perform auto-assignment of
 the face neighbors unless the raw face neighbor
 array was supplied. This option is not valid
 for ORDERED zones.
 if Ordered Zone:
 +-----------+
 | INT32*3 | IMax,JMax,KMax
 +-----------+

 if FE Zone:
 +-----------+
 | INT32 | NumPts
 +-----------+
 if ZoneType is FEPOLYGON or FEPOLYHEDRON:
 +-----------+
 | INT32 | NumFaces
 +-----------+
 +-----------+
 | INT32 | Total number of face nodes. For FEPOLYGON
 +-----------+ zones, this is NumFaces*2.
 +-----------+
 | INT32 | Total number of boundary faces. If any
 +-----------+ boundary faces exist, include one to represent
 no neighboring element.
 +-----------+
 | INT32 | Total number of boundary connections.
 +-----------+

 +-----------+
 | INT32 | NumElements
 +-----------+
 +-----------+
 | INT32*3 | ICellDim,JCellDim,
 +-----------+ KCellDim (for future use; set to zero)

 For all zone types (repeat for each Auxiliary data name/value pair):

154

 +-----------+
 | INT32 | 1=Auxiliary name/value pair to follow
 +-----------+ 0=No more Auxiliary name/value pairs.

 If the above is 1, then supply the following:
 +-----------+
 | INT32*N | name string (See note 1.)
 +-----------+
 +-----------+
 | INT32 | Auxiliary Value Format
 +-----------+ (Currently only allow 0=AuxDataType_String)

 +-----------+
 | INT32*N | Value string (See note 1.)
 +-----------+

 v. Geometries
 +-----------+
 | FLOAT32 | Geometry marker. Value = 399.0
 +-----------+
 +-----------+
 | INT32 | Position CoordSys 0=Grid, 1=Frame,
 +-----------+ 2=FrameOffset(not used),
 3= OldWindow(not used),
 4=Grid3D
 +-----------+
 | INT32 | Scope 0=Global 1=Local
 +-----------+
 +-----------+
 | INT32 | DrawOrder 0=After, 1=Before
 +-----------+
 +-----------+
 | FLOAT64*3 | (X or Theta),(Y or R),(Z or dummy)
 +-----------+ i.e. the starting location
 +-----------+
 | INT32 | Zone (0=all)
 +-----------+
 +-----------+
 | INT32 | Color
 +-----------+
 +-----------+
 | INT32 | FillColor
 +-----------+
 +-----------+
 | INT32 | IsFilled (0=no 1=yes)
 +-----------+
 +-----------+
 | INT32 | GeomType 0=Line, 1=Rectangle 2=Square,
 +-----------+ 3=Circle, 4=ellipse
 +-----------+
 | INT32 | LinePattern 0=Solid 1=Dashed 2=DashDot
 +-----------+ 3=DashDotDot 4=Dotted
 5=LongDash
 +-----------+
 | FLOAT64 | Pattern Length
 +-----------+
 +-----------+
 | FLOAT64 | Line Thickness
 +-----------+
 +-----------+
 | INT32 | NumEllipsePts
 +-----------+
 +-----------+
 | INT32 | Arrowhead Style 0=Plain, 1=Filled, 2=Hollow
 +-----------+
 +-----------+
 | INT32 | Arrowhead Attachment 0=None, 1=Beg, 2=End, 3=Both
 +-----------+
 +-----------+
 | FLOAT64 | Arrowhead Size
 +-----------+

155

 +-----------+
 | FLOAT64 | Arrowhead Angle
 +-----------+
 +-----------+
 | IN32*N | Macro Function Command (string: N = Length+1)
 +-----------+
 +-----------+
 | INT32 | Polyline Field Data Type
 +-----------+ 1=Float, 2=Double (GTYPE)
 +-----------+
 | INT32 | Clipping (0=ClipToAxes, 1=ClipToViewport,
 +-----------+ 2=ClipToFrame)

If the geometry type is line then:
 +-----------+
 | INT32 | Number of polylines
 +-----------+
 +-----------+
 | INT32 | Number of points, line 1.
 +-----------+
 +-----------+
 | GTYPE*N | X-block geometry points N=NumPts
 +-----------+
 +-----------+
 | GTYPE*N | Y-block geometry points N=NumPts
 +-----------+
 +-----------+
 | GTYPE*N | Z-block geometry points N=NumPts (Grid3D Only)
 +-----------+
 .
 .
 .

If the geometry type is Rectangle then
 +-----------+
 | GTYPE*2 | X and Y offset for far corner of rectangle
 +-----------+

If the geometry type is Circle then
 +-----------+
 | GTYPE | Radius
 +-----------+

If the geometry type is Square then
 +-----------+
 | GTYPE | Width
 +-----------+

If the geometry type is Ellipse then
 +-----------+
 | GTYPE*2 | X and Y Radii
 +-----------+

 vi. Text
 +-----------+
 | FLOAT32 | Text marker. Value=499.0
 +-----------+
 +-----------+
 | INT32 | Position CoordSys 0=Grid, 1=Frame,
 +-----------+ 2=FrameOffset(not used),
 3= OldWindow(not used),
 4=Grid3D(New to V10)
 +-----------+
 | INT32 | Scope 0=Global 1=Local
 +-----------+
 +-----------+
 | FLOAT64*3 | (X or Theta),(Y or R),(Z or dummy)
 +-----------+ Starting Location
 +-----------+
 | INT32 | FontType

156

 +-----------+
 +-----------+
 | INT32 | Character Height Units 0=Grid, 1=Frame, 2=Point
 +-----------+
 +-----------+
 | FLOAT64 | Height of characters
 +-----------+
 +-----------+
 | INT32 | Text Box type 0=NoBox 1=Hollow 2=Filled
 +-----------+
 +-----------+
 | FLOAT64 | Text Box Margin
 +-----------+
 +-----------+
 | FLOAT64 | Text Box Margin Linewidth
 +-----------+
 +-----------+
 | INT32 | Text Box Outline Color
 +-----------+
 +-----------+
 | INT32 | Text Box Fill Color
 +-----------+
 +-----------+
 | FLOAT64 | Angle
 +-----------+
 +-----------+
 | FLOAT64 | Line Spacing
 +-----------+
 +-----------+
 | INT32 | Text Anchor. 0=left, 1=center,
 +-----------+ 2=right, 3=midleft
 4=midcenter 5=midright,
 6=headleft 7=headcenter
 8=headright
 +-----------+
 | INT32 | Zone (0=all)
 +-----------+
 +-----------+
 | INT32 | Color
 +-----------+
 +-----------+
 | INT32*N | MacroFunctionCommand (string: N = Length + 1)
 +-----------+
 +-----------+
 | INT32 | Clipping (0=ClipToAxes,
 +-----------+ 1=ClipToViewport, 2=ClipToFrame)
 +-----------+
 | INT32*N | Text. N=Text Length+1
 +-----------+

 vii.CustomLabel
 +-----------+
 | FLOAT32 | CustomLabel Marker; F=599
 +-----------+
 +-----------+
 | INT32 | Number of labels
 +-----------+
 +-----------+
 | INT32*N | Text for label 1. (N=length of label + 1)
 +-----------+ See note 1.
 +-----------+
 | INT32*N | Text for label 2. (N=length of label + 1)
 +-----------+ See note 1.
 .
 .
 .
 +-----------+
 | INT32*N | Text for label NumLabels.
 +-----------+ (N=length of label + 1) See note 1.

 viii.UserRec
 +-----------+

157

 | FLOAT32 | UserRec Marker; F=699
 +-----------+
 +-----------+
 | INT32*N | Text for UserRec. See note 1.
 +-----------+

 ix. Dataset Auxiliary data.
 +-----------+
 | FLOAT32 | DataSetAux Marker; F=799.0
 +-----------+
 +-----------+
 | INT32*N | Text for Auxiliary “Name”. See note 1.
 +-----------+
 +-----------+
 | INT32 | Auxiliary Value Format (Currently only
 +-----------+ allow 0=AuxDataType_String)
 +-----------+
 | INT32*N | Text for Auxiliary “Value”. See note 1.
 +-----------+
 x. Variable Auxiliary data.
 +-----------+
 | FLOAT32 | VarAux Marker; F=899.0
 +-----------+
 +-----------+
 | INT32*N | Variable number (zero based value)
 +-----------+
 +-----------+
 | INT32*N | Text for Auxiliary “Name”. See note 1.
 +-----------+
 +-----------+
 | INT32 | Auxiliary Value Format (Currently only
 +-----------+ allow 0=AuxDataType_String)
 +-----------+
 | INT32*N | Text for Auxiliary “Value”. See note 1.
 +-----------+

II. DATA SECTION (don’t forget to separate the header from the data
 with an EOHMARKER). The data section contains all of the data
 associated with the zone definitions in the header.

 i. For both ordered and fe zones:
 +-----------+
 | FLOAT32 | Zone marker Value = 299.0
 +-----------+
 +-----------+
 | INT32*N | Variable data format, N=Total number of vars
 +-----------+ 1=Float, 2=Double, 3=LongInt,
 4=ShortInt, 5=Byte, 6=Bit
 +-----------+
 | INT32 | Has passive variables: 0 = no, 1 = yes.
 +-----------+
 if “has passive variables” != 0
 +-----------+
 | INT32*NV | Is variable passive: 0 = no, 1 = yes
 +-----------+ (Omit entirely if “Has passive variables” is 0).
 +-----------+
 | INT32 | Has variable sharing 0 = no, 1 = yes.
 +-----------+
 if “has variable sharing” != 0
 +-----------+
 | INT32*NV | Zero based zone number to share variable with
 +-----------+ (relative to this datafile). (-1 = no sharing).
 (Omit entirely if “Has variable sharing” is 0).
 +-----------+
 | INT32 | Zero based zone number to share connectivity
 +-----------+ list with (-1 = no sharing). FEPOLYGON and
 FEPOLYHEDRON zones use this zone number to
 share face map data.

 Compressed list of min/max pairs for each non-shared and non-passive
 variable. For each non-shared and non-passive variable (as specified

158

 above):
 +-----------+
 | FLOAT64 | Min value
 +-----------+
 +-----------+
 | FLOAT64 | Max value
 +-----------+
 +-----------+
 | xxxxxxxxxx| Zone Data. Each variable is in data format as
 +-----------+ specified above.

 ii. specific to ordered zones
 if “zone number to share connectivity list with” == -1 &&
 “num of misc. user defined face neighbor connections” != 0
 +-----------+
 | INT32*N | Face neighbor connections.
 +-----------+ N = (number of miscellaneous user defined
 face neighbor connections) * P
 (See note 5 below).

 iii. specific to fe zones
 if ZoneType is NOT FEPOLYGON or FEPOLYHEDRON:
 if “zone number to share connectivity lists with” == -1
 +-----------+
 | INT32*N | Zone Connectivity Data N=L*JMax
 +-----------+ (see note 2 below).

 if “zone number to share connectivity lists with” == -1 &&
 “raw local 1-to-1 face neighbors are supplied”
 +-----------+
 | INT32*N | Raw local 1-to-1 face neighbor array.
 +-----------+ N = (NumElements * NumFacesPerElement)
 (See note 3 below).

 if “zone number to share connectivity lists with” == -1 &&
 “num of misc. user defined face neighbor connections” != 0
 +-----------+
 | INT32*N | Face neighbor connections.
 +-----------+ N = (number of miscellaneous user defined
 face neighbor connections) * P
 (See note 4 below).

 if ZoneType is FEPOLYGON or FEPOLYHEDRON:
 if “zone number to share face map data with” == -1
 +-----------+
 | INT32*F | Face node offsets into the face nodes array
 +-----------+ below. Does not exist for FEPOLYGON zones.
 F = NumFaces+1.

 +-----------+
 | INT32*FN | Face nodes array containing the node numbers
 +-----------+ for all nodes in all faces.
 FN = total number of face nodes.

 +-----------+
 | INT32*F | Elements on the left side of all faces.
 +-----------+ Boundary faces use a negative value which is
 the negated offset into the face boundary
 connection offsets array. A value of “-1”
 indicates there is no left element.
 F = NumFaces.

 +-----------+
 | INT32*F | Elements on the right side of all faces. See
 +-----------+ description of left elements above for more
 details. F = NumFaces.

 if “total number of boundary faces” != 0
 +-----------+
 | INT32*NBF | Boundary face connection offsets into the
 +-----------+ boundary face connecion elements array and

159

 the boundary face connection zones array.
 The number of elements for a face (F) is
 determined by offset[-o] - offset[-o-1]
 where ‘o’ is the negative value from either
 the left or right elements arrays above.
 Offset[0] = 0. Offset[1] = 0 so that -1 as
 the left or right element always indicates
 no neighboring element. If the number of
 elements is 0, then there is no neighboring
 element.
 NBF = total number of boundary faces + 1.

 +-----------+
 | INT32*NBI | Boundary face connection elements. A value of
 +-----------+ “-1” indicates there is no element on part of
 the face.
 NBI = total number of boundary connections.

 +-----------+
 | INT32*NBI | Boundary face connection zones. A value of
 +-----------+ “-1” indicates the current zone.
 NBI = total number of boundary connections.

NOTES:

1. All character data is represented by INT32 values.

 Example: The letter “A” has an ASCII value of 65. The WORD
 written to the data file for the letter “A” is then
 65. In fortran this could be done by doing the following:

 Integer*32 I
 .
 .
 I = ICHAR(‘A’);

 WRITE(10) I

 All character strings are null terminated
 (i.e. terminated by a zero value)

2. This represents JMax sets of adjacency zero based indices where each
 set contains L values and L is
 2 for LINESEGS
 3 for TRIANGLES
 4 for QUADRILATERALS
 4 for TETRAHEDRONS
 8 for BRICKS

3. The raw face neighbor array is dimensioned by (number of elements for
 the zone) times (the number of faces per element), where each member
 of the array holds the zero-based element neighbor of that face. A
 boundary face is one that has no neighboring element and is
 represented by a -1. Faces should only be neighbors if they logically
 share nodes and they should be reciprocal.

4. FaceNeighbor Mode # values Data

 LocalOneToOne 3 cz,fz,cz
 LocalOneToMany nz+4 cz,fz,oz,nz,cz1,cz2,...,czn
 GlobalOneToOne 4 cz,fz,ZZ,CZ
 GlobalOneToMany 2*nz+4 cz,fz,oz,nz,ZZ1,CZ1,ZZ2,CZ2,...,ZZn,CZn

 Where:
 cz = cell in current zone (zero based)
 fz = face of cell in current zone (zero based)
 oz = face obscuration flag (only applies to one-to-many):

160

 0 = face partially obscured
 1 = face entirely obscured
 nz = number of cell or zone/cell associations
 (only applies to one-to-many)
 ZZ = remote Zone (zero based)
 CZ = cell in remote zone (zero based)

 cz,fz combinations must be unique and multiple entries are
 not allowed. Additionally, Tecplot assumes that with the
 one-to-one face neighbor modes, a supplied cell face is
 entirely obscured by its neighbor. With one-to-many, the
 obscuration flag must be supplied.

 Face neighbors that are not supplied are run through
 Tecplot’s auto face neighbor generator (FE only).

5. Cell centered variable (DATA SECTION)
 To make reading of cell centered binary data efficient, Tecplot stores
 IMax*JMax*KMax numbers of cell centered values, where IMax, JMax,
 and KMax represent the number of points in the I, J, and K directions.
 Therefore extra zero values (ghost values) are written to the data file
 for the slowest moving indices. For example, if your data’s IJK
 dimensions are 2x3x2, a cell-centered variable will have 1x2x1
 (i.e. (I-1)x(J-1)x(K-1)) significant values. However, 2x3x2 values must
 be written out because it must include the ghost values. Assume that the
 two significant cell-centered values are 1.5 and 12.5. The ghost values
 will be output with a zero value.

 So if the zone was dimensioned 2x3x2 its cell centered variable would be
 represented as follows:
 1.5 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 If the zone was dimensioned 3x2x2 its cell centered variable would be
 represented as follows:
 1.5 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 and if the zone was dimensioned 2x2x3 its cell centered variable would be
 represented as follows:
 1.5 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 For large variables the wasted space is less significant that it
 is for the small example above.

*/

161

Index
A
Anchor

text position 118
ASCII Data

conversion to binary 105, 144
Custom Label Record 122
File Format 106–124
finite-element data 130–144
Geometry Record 119–122
ordered data 124–130
parameters 123
syntax 112
Text Record 116–119
Zone Record 107–116

ASCII format
syntax 105

Auxiliary Data 23, 110
variable auxiliary data 45, 123
zone auxiliary data 46

Axis Labels 35

B
Binary Data

byte order 29
conversion from ASCII 105, 144
File Format 151–160
geometry creation 29
text record 42
user record 45

Binary files
debugging 20
writing to multiple 22, 28
writing to multiple, example 99

Block Data 111
Boundary Connection 52
Boundary Face 52
Boundary Map 116
Brick cells 131
Byte order 29

C
Cell-centered 15
Cell-centered Data 25, 111
Cell-centered data 15
Connected Boundary Face 52
Connectivity list 113

cell-based finite elements 36, 37
face-based finite elements 37
sharing 110, 116

Custom Label Record
ASCII data 122
binary data 35

D
Data

cell-centered 15
FE Volume 14
nodal 15

Data Arrangement 25
Data conversion 105, 144

Data File Format
ASCII 106–124
binary 151–160

Data structure
finite-element 12
ordered data 12

Data Types 111

E
Elements

finite element zone types to specify 108
EOF 26
Examples

ASCII
auxiliary data 123
finite-element 134–144
Geometry 121
ordered data 125–130
Text Record 119

Binary
Face Neighbors 56
IJ-ordered 96
polygonal data 63
polyhedral zones 68, 80, 93
text record 102

F
Face Neighbors 113, 115

data 26
example 56
mode 114
polyhedral zones 54
right-hand rule 54
scope 114

Face Numbering
cell-based finite elements 114

Facemap data 37, 115
polyhedral zones 53

Faces
face-based finite element zone types to specify 108

FE data
see Finite-element

FE-line 14
FE-surface 14
FE-volume 14
File

grid file 35
shared grid 35
solution file 35

File Format
ASCII 106–124
Binary Data 151–160

File Header 106
Finite-element 12

FE-line 14
FE-surface 14
FE-volume 14
volume data 14

Finite-element data
ASCII format 130–144
boundary map 116
bricks 131
connectivity list 36, 37, 113
face neighbors 26

INDEX

162

face numbering (cell-based) 114
facemap 115
line segments 130
polygons 131
polyhedra 131
polyhedral format 37
quadrilaterals 131
tetrahedron 131
triangles 131

Full file 35
Function reference

TecIO library 23–51
Function sequence

binary files 21

G
Geometry Record

ASCII data 119–122
binary

syntax 29
data (ASCII) 120
origin positions 33

Global one-to-many 114
Global one-to-one 114
Grid

sharing 35
Grid File 35

H
Header

file header 106
zone header 47

I
Irregular data 124

L
Labels, custom

binary data 35
Legend text 35
Line Segments 130
Local one-to-many 114
Local one-to-one 114

M
Metadata, see Auxiliary Data

N
Neighboring elements 115
Nodal 15
Nodal Data 25, 111
Nodal data 15
Nodes

finite element zone types to specify 108

O
Ordered Data 124–130

Example (binary) 96
Examples

2D Field Plot 130
3D Field Plot 130
IJK-ordered 127
IJ-ordered 126
I-ordered 125

Examples (ASCII) 125–130
IJK-ordered data 125
IJ-ordered data 124
I-ordered data 124
one-dimensional 124
three-dimensional 125
two-dimensional 124

Ordered data 12
Origin positions

geometry 33

P
Parameters

ASCII data file 123
Polygonal zones 131
Polyhedral cells 131
Polyhedral data

boundary connection 52
boundary face 52
Examples (binary)

multiple zones (2D) 80
multiple zones (3D) 68
polygon 63
polyhedral 93

face neighbors 54
facemap data 53

Preplot 105, 144

Q
Quadrilateral cells 131

R
Right-hand rule

face neighbors 54

S
Scatter Plots 124
Shared grid 35
Solution file 35
Syntax

ASCII format 105
TecIO functions 23–51

T
TECAUXSTR112 23
TECDAT112 24
TECEND112 26
TECFACE 26
TECFIL 28
TECFOREIGN 29
TECGEO 29
TecIO functions 23–51
TecIO library 20

deprecated functions 21
function calling sequence 21
function reference 23–51
linking with 22

TECLAB 35
TECNOD 36
TECNODE 37
TECPOLY 37
TECTXT 42
TECUSR 45
TECVAUXSTR 45

163

TECZAUXSTR 46
TECZNE 47
Tetrahedral cells 131
Text Anchor 118
Text Record

ASCII data 116–119
Binary Data 42

example 102
Text Anchor positions 118

Tick mark Labels 35
Triangular Cells 131
Triangulation 124

U
Unstructured Data 124
User record

binary data 45

V
Variable auxiliary data 45
Variable Location 109, 111–112
Variable location 15
Variable Sharing 109, 112, 132
Variables

location 15

X
XY Plot

example 128
XY Plots 124

Z
Zone auxiliary data 46
Zone Footer 113
Zone header 47
Zone Record 107–116
Zone Type

finite-element zones 130
Zone Types 108, 124

FEBRICK 131
FELINESEG 130
FEPOLYGON 131
FEPOLYHEDRAL 131
FEQUADRILATERAL 131
FETETRAHEDRON 131
FETRIANGLE 131

164

	Data Format Guide
	Table of Contents
	1: Introduction
	1 - 1 Subzone Loading
	1 - 2 Creating Data Files for Tecplot 360 & Tecplot Focus
	1 - 3 Best Practices

	2: Data Structure
	2 - 1 Ordered Data
	2 - 2 Finite Element Data
	2 - 2.1 Line Data
	2 - 2.2 Surface Data
	2 - 2.3 Volume Data
	2 - 2.4 Finite Element Data Limitations

	2 - 3 Variable Location
	2 - 4 Face Neighbors
	2 - 5 Working with Unorganized Data Sets
	2 - 5.1 Example - Unorganized Three-Dimensional Volume

	2 - 6 Time and Date Representation

	3: Binary Data
	3 - 1 Getting Started
	3 - 2 Viewing Your Output
	3 - 3 Binary File Compatibility
	3 - 3.1 Deprecated Binary Functions
	3 - 3.2 Character Strings in FORTRAN
	3 - 3.3 Boolean Flags

	3 - 4 Binary Data File Function Calling Sequence
	3 - 5 Writing to Multiple Binary Data Files
	3 - 6 Linking with the TecIO Library
	3 - 6.1 Linux/Macintosh
	3 - 6.2 Windows
	3 - 6.3 Notes for Windows Programmers using Fortran

	3 - 7 Binary Data File Function Reference
	TECAUXSTR142
	TECDAT142
	TECEND142
	TECFACE142
	TECFIL142
	TECFOREIGN142
	TECGEO142
	TECINI142
	TECLAB142
	TECNOD142
	TECNODE142
	TECPOLY142
	TECPOLYFACE142
	TECPOLYBCONN142
	TECTXT142
	TECUSR142
	TECVAUXSTR142
	TECZAUXSTR142
	TECZNE142

	3 - 8 Defining Polyhedral and Polygonal Data
	3 - 8.1 Boundary Faces and Boundary Connections
	3 - 8.2 FaceNodeCounts and FaceNodes
	3 - 8.3 FaceRightElems and FaceLeftElems
	3 - 8.4 FaceBoundaryConnectionElements and Zones
	3 - 8.5 Partially Obscured Boundary Faces

	3 - 9 Examples
	3 - 9.1 Face Neighbors
	3 - 9.2 Polygonal Example
	3 - 9.3 Multiple Polyhedral Zones
	3 - 9.4 Multiple Polygonal Zones
	3 - 9.5 Polyhedral Example
	3 - 9.6 IJ-ordered zone
	3 - 9.7 Switching Between Two Files
	3 - 9.8 Text Example

	4: ASCII Data
	4 - 1 Converting ASCII to Binary
	4 - 2 Syntax Rules & Limits
	4 - 3 ASCII File Structure
	4 - 3.1 File Header
	4 - 3.2 Zone Record
	4 - 3.3 Text Record
	4 - 3.4 Geometry Record
	4 - 3.5 Custom Labels Record
	4 - 3.6 Data Set Auxiliary Data Record
	4 - 3.7 Variable Auxiliary Data Record
	4 - 3.8 ASCII Data File Parameter Assignment Values

	4 - 4 Ordered Data
	4 - 4.1 I-Ordered Data
	4 - 4.2 IJ-Ordered Data
	4 - 4.3 IJK-Ordered Data
	4 - 4.4 Ordered Data Examples

	4 - 5 Finite Element Data
	4 - 5.1 Variable and Connectivity List Sharing
	4 - 5.2 Finite Element Data Set Examples

	4 - 6 ASCII Data File Conversion to Binary
	4 - 6.1 Preplot Options
	4 - 6.2 Preplot Examples

	5: Glossary
	A: Binary Data File Format
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X
	Z

