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module. The DLFA fuses the information from one selected lower transformer layer of
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Figure 2. The architecture of the proposed attentional information fusion (AlF) module.
The AlF extracts global and local information via two branches and element-wisely L1 @ Lo L1 @ Lo
multiplies the result with the input tensor L=1L0AIF( )+ La® (1 — AIF( )) (2)
Main Results on Xtreme Benchmark Analysis and Discussion
Table 1. All results of zero-shot cross-lingual transfer trials for 4 tasks. “D_x" means the Table 2. Results of Classification tasks. The scores in the “avg_enf’ column denote the
system with the DLFA module that fuses the last and the x* transformer layers’ output. average performance of the subset “enf” (involving “en, de”). The scores in the
‘avg_noenf” column denote the average performance of the subset “noenf”.
Task XNLI PAWS-X  NER POS
Model\Metrics | Acc (%) Acc (%) F1(%) F1 (%) XNL PAWS-X
haseline 65 40 3194 6217 70.28 Model avg enf avg noenf Model avg enf avg noenf
D 11 66.91 3304 6227 71513 baseline  /5.40 63.86 baseline  89.85 /3.80
D 10 66 55 8433 6276 71.81 D 11 /7.34 65.31 D 10 90.30 81.94
D 9 66 57 3424 6243 7158 D 8 /7.11 65.34 D 6 90.00 82.12
D 8 66.90 82.91 63.34 /1.36
D 7 656 20 3348 652 63 7152 Table 3. Results of cosine similarity experiment on XNLI and PAWS-X.
D 6 66./5 84.37/ 61.84 /1.29
D5 6542 8244 61.66 7108 XINL PAWS X
; Model Avg C.S. | Model Avg C.S.
D 4 66.14 82./5 6228 /1.26
; ; D 11  0.56389 D 10 0.8548
D 3 66.00 83.81 6188 /1.21 58 0.4897 54 09461
DI 66.15 83.04 61.34 /1.38 = ' = '
D 1 65.85 82.50 61./73 /1.18

Table 4. Several languages’ results on PAWS-X(Acc.)

Best performances on these four tasks are obtained with different fusion

ayers. Different tasks focus on different aspects of language structure Model\Lang | en de I <> KO Al

earning ability, resulting in the fusion of different layers. Table 2,3,4 In- MBERT 740 85.7 &/4 8/0 696 /70
dicate that the information of language structure lies on the upper layers D_10 741 86.5 883 88./9 /5.8 80.3
while the lower layers of mBERT are more flexible for cross-lingual transfer. D_6 3.9 860 878 89.09 761 81.2
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