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ABSTRACT
Markov decision processes (MDPs) provide an expressive
framework for planning in stochastic domains. However,
exactly solving a large MDP is often intractable due to the
curse of dimensionality. Online algorithms help overcome
the high computational complexity by avoiding computing
a policy for each possible state. Hierarchical decomposition
is another promising way to help scale MDP algorithms up
to large domains by exploiting their underlying structure. In
this paper, we present an effort on combining the benefits of
a general hierarchical structure based on MAXQ value func-
tion decomposition with the power of heuristic and approx-
imate techniques for developing an online planning frame-
work, called MAXQ-OP. The proposed framework provides
a principled approach for programming autonomous agents
in a large stochastic domain. We have been conducting a
long-term case-study with the RoboCup soccer simulation
2D domain, which is extremely larger than domains usu-
ally studied in literature, as the major benchmark to this
research. The case-study showed that the agents developed
with this framework and the related techniques reached out-
standing performances, showing its high scalability to very
large domains.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search
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1. MAIN RESULTS
Markov decision processes (MDPs) have been proved to

be a useful model for planning under uncertainty. In gen-
eral, online planning interleaves planning with execution
and chooses the best action for the current step. Given
the MAXQ [2] hierarchy of an MDP, the main procedure
of MAXQ-OP evaluates each subtask by forward search to
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compute the recursive value functions V ∗(i, s) andQ∗(i, s, a)
online. This involves a complete search of all paths through
the MAXQ hierarchy starting from the root task M0 and
ending with some primitive subtasks at the leaf nodes. Af-
ter the search process, the best action a ∈ A0 is selected
for the root task M0 based on the recursive Q function.
Meanwhile, the true primitive action ap ∈ A that should be
performed first can also be determined. This action ap will
be executed to the environment, leading to a transition of
the system state. Then, the planning procedure starts over
to select the best action for the next step.

1.1 Task Evaluation over Hierarchy
The search starts with the root task Mi and the current

state s. Then, the node of the current state s is expanded by
trying each possible subtask of Mi. This involves a recursive
evaluation of the subtasks and the subtask with the highest
value is selected. The evaluation of a subtask requires the
computation of the value function for its children and the
completion function. The value function can be computed
recursively. Therefore, the key challenge is to calculate the
completion function.

Intuitively, the completion function represents the opti-
mal value of fulfilling the task Mi after executing a subtask
Ma first. Obviously, computing the optimal policy is equiv-
alent to solving the entire problem. In principle, we can ex-
haustively expand the search tree and enumerate all possible
state-action sequences starting with s, a and ending with s′

to identify the optimal path. However, this may be inap-
plicable for large domains. In Section 1.2, we will present a
more efficient way to approximate the completion function.

1.2 Completion Function Approximation
To compute the optimal completion function, Cπ∗

(i, s, a),
the agent must know the optimal policy π∗, which is unavail-
able in the online settings. Due to the time constraint, it is
intractable to find the optimal policy online since the search
process is equivalent to solve the entire problem. When ap-
plying MAXQ-OP to large problems, approximation should
be made to compute the completion function for each sub-
task. We assume that each subtask Mi will terminate at
its terminal states in Gi with a prior distribution of Di. In
principle, Di can be any probability distribution associated
with each subtask. It can also take into consideration of the
task parameters. For simplicity, we take uniform distribu-
tion as an example, then Cπ(i, s, a) can be approximated



Figure 1: MAXQ task graph for Wright Eagle

as:

Cπ(i, s, a) ≈ 1

|G̃a|

∑
s′∈G̃a

V π(i, s′), (1)

where G̃a ⊂ Ga is a set of sampled states drawn from uni-
form distribution Da. A recursive procedure is proposed
to estimate the completion function. In practice, the prior
distribution P (s′, N |s, a)–a key distribution when comput-
ing the completion function, can be improved by considering
the domain knowledge.

1.3 Heuristic Search in Action Space
For some domains with large action space, it may be very

time-consuming to enumerate all possible actions (subtasks)
exhaustively. Hence it is necessary to introduce some heuris-
tic techniques (including prune strategies) to speed up the
search. Intuitively, there is no need to evaluate those ac-
tions that are not likely to be better. Different heuristic
techniques can be chosen for different subtasks, such as hill-
climbing, gradient ascent, branch and bound, etc.

2. CASE STUDY: ROBOCUP 2D
It is our long-term effort to apply the MAXQ-OP frame-

work to the RoboCup soccer simulation 2D domain–a very
large testbed for the research of decision-theoretic planning
[3]. In this section, we present a case-study of this domain
and evaluate the performance of MAXQ-OP based on the
general competition results with several high-quality teams
in the RoboCup simulation 2D community. The goal is to
test the scalability of MAXQ-OP and shows that it can solve
large real-world problems that are previously intractable.

2.1 Solution with MAXQ-OP
The graphical representation of the MAXQ hierarchical

structure of our team Wright Eagle1 is shown in Figure 1,
where a parenthesis after a subtask’s name indicates this
subtask will take parameters. It is worth noting that state
abstractions are implicitly introduced by this hierarchy. To
deal with the large action space, heuristic methods are crit-
ical when applying MAXQ-OP. Table 1 summarizes the gen-
eral performance of our team with MAXQ-OP in the RoboCup
completion of past 7 years.2

There are multiple factors contributing to the general per-
formance of a RoboCup 2D team. It is our observation that
our team benefits greatly from the abstraction we made for
the actions and states. The key advantage of MAXQ-OP
in our team is to provide a formal framework for conduct-
ing the search process over a task hierarchy. Therefore, the

1Team website: http://www.wrighteagle.org/2d
2Logfiles: http://ssl.robocup-federation.org/ftp/2d/log/

Table 1: History results of Wright Eagle
Competitions Games Goals Win Draw Lost

RoboCup 2005 19 84 : 16 15 2 2
RoboCup 2006 14 57 : 6 12 2 0
RoboCup 2007 14 125 : 9 11 1 2
RoboCup 2008 16 74 : 18 13 1 2
RoboCup 2009 14 81 : 17 12 0 2
RoboCup 2010 13 123 : 7 11 0 2
RoboCup 2011 12 151 : 3 12 0 0

team can search for a strategy-level solution automatically
online by given the pre-defined task hierarchy. To the best
of our knowledge, most of the current RoboCup teams de-
velop their team based on hand-coded rules and behaviors.
Overall, the goal of this case-study is twofold: 1) it demon-
strates the scalability and efficiency of MAXQ-OP for solv-
ing a large real-world application such as RoboCup soccer
simulation 2D; 2) it presents a decision-theoretic solution for
developing a RoboCup soccer team, which is more general
and easy for programming high-level strategies.

3. CONCLUSIONS
This paper presents MAXQ-OP–a novel online planning

algorithm that benefits from both the advantage of hierar-
chical decomposition and the power of heuristics. A key
contribution of this work is to approximate the prior distri-
bution when computing the completion function. By given
such prior distributions, MAXQ-OP can evaluate the root
task online without actually computing the sub-policy for
each subtask. Similar to our work, Barry et al. proposed
an offline algorithm called DetH* to solve large MDPs hier-
archically by assuming that the transitions between macro-
states are totally deterministic [1]. In contrast, we assume
a prior distribution over the terminal states of each sub-
task, which is more realistic. The case study shows that
MAXQ-OP is able to solve a very large problem such as the
RoboCup 2D that are previously intractable in the litera-
ture of the decision-theoretic planning. This demonstrates
the soundness and stability of MAXQ-OP for solving large
MDPs with the pre-defined task hierarchy. In the future, we
plan to theoretically analyze MAXQ-OP with different task
priors and try to generate these priors automatically.
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