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1. Perron Method

1.1. Introduction. We are in a position now to approach the question of existence
of solutions of the classical Dirichlet problem in arbitrary bounded domains. The
treatment here will be accomplished by Perron′s method of subharmonic functions
which relies heavily on the maximum principle and the solvability of the Dirich-
let problem in balls. The method has a number of attractive features in that it is
elementary, it separates the interior existence problem from that of the boundary be-
haviour of solutions, and it is easily extended to more general classes of second order
elliptic equations.

1.2. Part 1:Perlimiary. Let Ω be a bounded domain in Rn and ϕ be a continuous
function on ∂Ω.
Consider

4u = 0 in Ω(1.1)

u = ϕ on ∂Ω

If Ω is a ball, then the solution of (2.1) is given by the Poisson formula. We now
solve (2.1) by Perron’s method. The maximum principle plays an essential role. In
discussions below, we avoid mean value properties of harmonic functions.
We first define continuous subharmonic and superharmonic functions based on the
maximum principle.

Definition 1.1. A C(Ω) function u will be called subharmonic (superharmonic) in
Ω if for every ball B ⊂⊂ Ω and every function h harmonic in B satisfying u ≤ (≥)h
on ∂B, we also have u ≤ (≥)h in B.

We now prove a maximum principle for such subharmonic and superharmonic func-
tions.

Lemma 1.1. If u is subharmonic in Ω and v is superharmonic in Ω with v ≥ u on
∂Ω. Then either v > u in Ω or v ≡ u.

Proof. Suppose u− v attains its nonnegative maximum of Ω in some point of Ω. Set
M = maxΩ(u− v) ≥ 0 and Σ = {x ∈ Ω : u(x)− v(x) = M} ⊂ Ω. It is nonempty and
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relatively closed in Ω, so we only need to show Σ is open.
Now we show that Σ is open. For x0 ∈ Σ, we take B = Br(x0) ⊂⊂ Ω. Letting
u, v denote the harmonic functions respectively equal to u, v on ∂B, one sees that
M ≥ sup∂B(u − v) ≥ (u − v)(x0) = M , and hence the equality holds throughout.
By the strong maximum principle for harmonic functions, it follows that u− v ≡M
on ∂B. This holds for any 0 < ρ ≤ r, then u − v ≡ M in B and hence B ⊂ Σ. In
conclusion, u− v ≡M ≥ 0 in Ω. By v ≥ u on ∂Ω, we have u = v in Ω. �

Before we start our discussion of Perron’s method, we demonstrate how to generate
bigger subharmonic functions from existing subharmonic functions.

Lemma 1.2. Let u be subharmonic in Ω and B ⊂⊂ Ω. Denote by u the harmonic
function in B (given by the Poisson integral of u on ∂B) satisfying u = u on ∂B.
We define in Ω the harmonic lifting of u (in B) by

(1.2) U(x) =

{
u(x), x ∈ B
u(x), x ∈ Ω \B

Proof. For consider an arbitrary ball B̃ ⊂⊂ Ω and let h be a harmonic function in B̃
satisfying h ≥ U on ∂B̃. Since u ≤ U in B̃ (in fact, we have u ≤ U in Ω) we have
u ≤ h in B̃ and hence U ≤ h in B̃ \ B. Also since U is harmonic in B ∩ B̃, we have
by the maximum principle U ≤ h in B̃ ∩ B. Consequently U ≤ h in B̃ and U is
subharmonic in Ω. �

Next, we say that the class of subharmonic functions S is closed by taking the
maximum among finite by many functions in S.

Lemma 1.3. Let u1, u2, · · · , uN be subharmonic in Ω. Then the function u(x) =
max{u1(x), u2(x), · · · , uN(x)} is also subharmonic in Ω.

Proof. This is an easy consequence of the definition of subharmonicity. �

Remark 1.4. Corresponding results for superharmonic functions are obtained by
replacing u by −u in lemma 2.1, 2.1, 2.3.

1.3. Part 2:Solving the Dirichlet problem. Now let Ω be bounded and ϕ be a
bounded function on ∂Ω.

Definition 1.2. A C(Ω̄) subharmonic function u is called a subfunction relative to
ϕ if it satisfies u ≤ ϕ on ∂Ω. Similarly, a C(Ω̄) superharmonic function u is called a
superfunction relative to ϕ if it satisfies u ≥ ϕ on ∂Ω.

By the maximum principle(lemma 2.1), every subfunction is less that or equal to
every superfunction. In particular, constant functions ≤ inf∂Ω ϕ (≥ sup∂Ω ϕ) are
subfunctions(superfunctions). Let Sϕ denote the set of subfunctions relative to ϕ.
The basic result of the Perron method is contained in the following theorem.

Theorem 1.5. The function u(x) = supv∈Sϕ
v(x) is harmonic in Ω.

Tools: the harmonic lifting, the compactness of bounded harmonic function, the max-
imum principle
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Proof. First we explain the ideas. We need to prove that u is harmonic. Since
harmonicity is a local property, we only need to prove that u is locally consistent
with a harmonic function.
By the maximum principle, any function v ∈ Sϕ satisfies v ≤ sup∂Ω ϕ, so that u
is well-defined. Let y be an arbitrary fixed point of Ω. By the definition of u,
there exists a sequence {vn} ⊂ Sϕ such that vn(y) → u(y). By replacing vn with
max(vn, inf ϕ), we may assume that the sequence {vn} is bounded. Now choose R so
that the ball B = BR(y) ⊂⊂ Ω and defined Vn to be the harmonic lifting of vn in
B. Then Vn ∈ Sϕ, {Vn(y)} → u(y) and by the compactness of bounded harmonic
functions the sequence {Vn} contains a subsequence {Vnk

} converging uniformly in
any ball Bρ(y) with ρ < R to a function v that is harmonic in B. v ==)�3B
þ"Clearly v ≤ u in B and v(y) = u(y). We claim now that in fact v = u in B. For
suppose v(z) < u(z) at some z ∈ B. Then there exists a function u ∈ Sϕ such that
v(z) < u(z). Defining wk = max(u, Vnk

) and also the harmonic liftings Wk, we obtain
as before a subsequence of the sequence {Wnk

} converging to a harmonic function
w satisfying v ≤ w ≤ u in B and v(y) = w(y) = u(y). But then by the maximum
principle we must have v = w in B. This contradicts the definition of u and hence u
is harmonic in Ω. �

The preceding result exhibits a harmonic function which is a prospective solu-
tion(called the Perron solution) of the classical Dirichlet problem: 4u = 0, u = ϕ
on ∂Ω. Indeed, if the Dirichlet problem is solvable, its solution is identical with the
Perron solution. For let w be the presumed solution. Then clearly w ∈ Sϕ and by
the maximum principle(lemma 2.1) w ≥ u for all u ∈ Sϕ.

In the Perron method the study of boundary behaviour of the solution is essentially
separate from the existence problem. The continuous assumption of boundary values
is connected to the geometric properties of the boundary through the concept of
barrier function.

Definition 1.3. Let ξ be a point of ∂Ω. Then a C(Ω̄) function w = wξ is called a
barrier at ξ relative to Ω if:
(i) w is superharmonic in Ω;
(ii) w > 0 in Ω̄ \ {ξ}; w(ξ) = 0.

An important feature of the barrier concept is that it is a local property of the
boundary ∂Ω. Namely, let us define w to be a local barrier at ξ ∈ ∂Ω if there is
a neighborhood N of ξ such that w satisfies the above definition in Ω ∩ N . Then
a barrier at ξ relative to Ω can be defined as follows. Let B be a ball satisfying
ξ ∈ B ⊂⊂ N and m = infN\B w > 0. The function

(1.3) w(x) =

{
min(m,w(x)), x ∈ Ω̄ ∩B
m, x ∈ Ω̄ \B

is then a barrier at ξ relative to Ω .

Lemma 1.6. Prove that w defined above is a barrier at ξ relative to Ω .
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Proof. First, it is easy to see that w is continuous in Ω̄ and property (ii) is immediate.
So we only need to prove that w is superharmonic in Ω. In fact, for B̃ ⊂⊂ Ω, w ≥ h
on ∂B̃ and h is harmonic in B̃. Since w ≥ h on ∂B̃ and m ≥ w in Ω̄, we have m ≥ h
in B̃ and hence w ≥ h in B̃ \ B. Also since w ≥ h on ∂(B̃ ∩ B), we have m ≥ h on
∂(B̃ ∩B) and hence m ≥ h on B̃ ∩B. On the other hand, since w ≥ h on ∂(B̃ ∩B),
we have w ≥ h on ∂(B̃ ∩ B) and hence w ≥ h on B̃ ∩ B by the maximum principle.
Consequently w ≥ h in B̃ ∩B and hence w ≥ h in B̃. �

Definition 1.4. A boundary point will be called regular (with respect to the Laplacian)
if there exists a barrier at that point.

The connection between the barriar and boundary behavior of solutions is contained
in the following.

Lemma 1.7. Let u be the harmonic function defined in Ω by the Perron method. If
ξ is a regular boundary point of Ω and ϕ is continuous at ξ, then u(x) → ϕ(ξ) as
x→ ξ.

Proof. Given ε > 0, and let M = sup∂Ω |ϕ|. Since ξ is a regular boundary point, there
is a barrier w at ξ and, by virtue of the continuity of ϕ, there are constants δ(ε) and
k(δ) such that |ϕ(x)− ϕ(ξ)| < ε if |x− ξ| < δ, and kw(x) ≥ 2M if |x− ξ| ≥ δ. The
functions ϕ(ξ) + ε+kw, ϕ(ξ)−ε−kw are respectively superfunction and subfunction
relative to ϕ. Hence from the definition of u and the fact that every superfunction
domimates every subfunction, we have in Ω,

(1.4) ϕ(ξ)− ε− kw(x) ≤ u(x) ≤ ϕ(ξ) + ε+ kw(x)

i.e.

(1.5) |u(x)− ϕ(ξ)| ≤ ε+ kw(x).

Since w(x)→ 0 as x→ ξ, we obtain u(x)→ ϕ(ξ) as x→ ξ. �

We now give an equivalent characterization of existence of solutions of the classical
Dirichlet problem in arbitrary bounded domains.

Theorem 1.8. The classical Dirichlet problem in a bounded domain is solvable for
arbitrary continuous boundary values if and only if the boundary points are all regular.

Proof. If the boundary values ϕ are continuous and the boundary ∂Ω consists of
regular points, the preceding lemma states that the harmonic function provided by the
Perron method solves the Dirichlet problem. Conversely, suppose that the Dirichlet
problem is solvable for all continuous boundary values. Let ξ ∈ ∂Ω, then the function
ϕ(x) = |x − ξ| is continuous on ∂Ω and the harmonic function solving the Dirichlet
problem in Ω with boundary values ϕ is obviously a barrier at ξ. Hence ξ is regular,
as are all points of ∂Ω.

�
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1.4. Part 3:Some examples of domains which the boundary points are reg-
ular. IMPORTANT QUESTION REMAINS: For what domains are the boundary
points regular? It turns out that general sufficient conditions can be stated in terms
of local geometric properties of the boundary. We mention some of these conditions
below.
¶ n = 2, consider a boundary point z0 of a bounded domain Ω and take the origin at
z0 with polar coordinates r, θ. Suppose there is a neighborhood N of z0 such that a
single valued branch of θ is defined in Ω∩N , or in component of Ω∩N having z0 on
its boundary. One sees that

(1.6) w = −Re 1

log z
= − log r

log2 r + θ2

is a local barrier at z0 and hence z0 is a regular point. More generally, the same
barrier shows that the boundary value problem is solvable if every component of the
complement of the domain consists of more than a single point.
Question: for disc with center removed, is the classical Dirichlet problem solvable?
¶ For higher dimensions a simple sufficient condition for solvability in a bounded
domain Ω ⊂ Rn is that Ω satisfy the exterior sphere condition; that is, for every
point ξ ∈ ∂Ω, there exists a ball B = BR(y) satisfying B̄ ∩ Ω̄ = {ξ}. If such a
condition is fulfilled, then the function w given by

(1.7) w(x) =

{
R2−n − |x− y|2−n, n ≥ 3

log |x−y|
R
, n = 2

will be a barrier at ξ. Consequently the boundary points of a domain with C2 bound-
ary are all regular points.
¶ The Dirichlet problem is solvable for any domain Ω satisfying an exterior cone
condition; that is, for every point ξ ∈ ∂Ω there exists a finite right circular cone K,
with vertex ξ, satisfying K̄ ∩ Ω̄ = {ξ}.

2. Variational Method

2020c12�1F

2.1. Introduction. This Lecture, we discuss the Dirichlet problem for elliptic equa-
tions of divergence form and prove the existence of weak solutions.

2.2. Part 1:Perlimiary. Let Ω be a bounded domain in Rn and aij, bi, and c be
bounded functions in Ω.
Consider the differential operator

(2.1) Lu = −Dj(aijDiu) + biDiu+ cu.

We always assume that

(2.2) λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2
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for any x ∈ Ω and ξ ∈ Rn.

Definition 2.1. Let f ∈ L2(Ω) and u ∈ H1
0 (Ω). Then u is a weak solution of Lu = f

in Ω if

(2.3)

∫
Ω

(aijDiuDjϕ+ biDiuϕ+ cuϕ)dx =

∫
Ω

fϕdx

for any ϕ ∈ H1
0 (Ω).

Next, we define

(2.4) B[u, v] =

∫
Ω

(aijDiuDjv + biDiuv + cuv)dx

for any u, v ∈ H1
0 (Ω). We call B the bilinear form associated with the operator L. If

aij = aji and bi = 0, then B is symmetric, i.e.

(2.5) B[u, v] = B[v, u] for any u, v ∈ H1
0 (Ω).

We now solve the Dirichlet problem in the weak sense for a special class of elliptic
operators. We recall that the standard H1

0 (Ω) inner product is defined by

(2.6) (u, v)H1
0 (Ω) =

∫
Ω

(uv +∇u · ∇v)dx.

2.3. Part2:Existence of weak solutions. We assume H is a real Hilbert space,
with norm ‖ ‖ and inner product (, ). We let 〈, 〉 denote the pairing of H with its
dual space.

Theorem 2.1. (Lax-Milgram Theorem) Assume that

B : H ×B → R
is a bilinear mapping, for which there exist constants α, β > 0 such that

|B[u, v]| ≤ α‖u‖ ‖v‖ (u, v ∈ H)

and
β‖u‖2 ≤ B[u, u] (u ∈ H)

Finally, let f : H → R be a bounded linear functional on H.
Then there exists a unique element u ∈ H such that

(2.7) B[u, v] = 〈f, v〉
for all v ∈ H.

Proof. Step 1. For each fixed u ∈ H, the mapping v 7→ B[u, v] is a bounded linear
functional on H, whence the Riesz Representation Theorem asserts the existence of
a unique element w ∈ H satisfying

(2.8) B[u, v] = (w, v) (v ∈ H)

Let us write Au = w whenever (2.8) holds, so that

B[u, v] = (Au, v) (u, v ∈ H).
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Step 2. We first claim A : H → H is a bounded linear operator.

Step 3. Next we assert{
A is one− to− one and
R(A), the range of A, is closed in H.

In fact, we have
β‖u‖ ≤ ‖Au‖.

Step 4. We demonstrate now

(2.9) R(A) = H.

Step 5. Next, we observe once more from the the Riesz Representation Theorem

〈f, v〉 = (w, v) (∀u ∈ H)

for some element w ∈ H. Then we can find u ∈ H satisfying Au = w by (2.9). Then

B[u, v] = (Au, v) = (w, v) = 〈f, v〉 (v ∈ H)

and this is (2.7).

Step 6. Finally, we show there is at most one element u ∈ H verifying (2.7). �

Remark 2.2. If the bilinear form B[, ] is symmetric, that is, if

B[u, v] = B[v, u] (u, v ∈ H),

we can fashion a much simpler proof by noting ((u, v)) := B[u, v] is a new inner
product on H, to which the Riesz Representation Theorem directly applies. Conse-
quently, the Lax − Milgram Theorem is primarily significant in that it does not
require symmetric of B[, ].

We return now to the specific bilinear form B[, ] defined by the formula (2.4), and
try to verify the hypothesis of the Lax−Milgram Theorem.

Theorem 2.3. Energy estimates There exist constants α, β > 0 and γ ≥ 0 such that

(2.10) |B[u, v]| ≤ α‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω)

and

(2.11) β‖u‖2
H1

0 (Ω) ≤ B[u, u] + γ‖u‖2
L2(Ω)

for all u, v ∈ H1
0 (Ω).

Proof. Step 1. It is easy to verify (2.10) by the Holder’s inequality.
Step 2. It is easy to verify (2.11) by the uniformly elliptic condition and Cauchy’s

inequality. �

Remark 2.4. Observe now that if γ > 0 in these energy estimates, then B[, ] does
not precisely satisfy then hypotheses of the Lax−Milgram Theorem. The following
existence assertion for weak solutions must confront this possibility:
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Theorem 2.5. There is a number γ ≥ 0 such that for each

µ ≥ γ

and each function

f ∈ L2(Ω),

there exists a unique weak solution u ∈ H1
0 (Ω) of the boundary-value problem

(2.12)

{
Lu+ µu = f in Ω

u = 0 on ∂Ω.

Proof. Step 1. Take γ from Theorem 3.3, let µ ≥ γ, and define then the bilinear form

Bµ[u, v] := B[u, v] + µ(u, v) (u, v ∈ H1
0 (Ω))

which corresponds (3.1) to the operator Lµu := Lu + µu. Then Bµ[, ] satisfies the
hypotheses of the Lax−Milgram Theorem.

Step 2. Now fix f ∈ L2(Ω) and set 〈f, v〉 := (f, v)L2(Ω). This is a bounded linear
functional on L2(Ω) and thus on H1

0 (Ω).
We apply the Lax−Milgram Theorem to find a unique function u ∈ H1

0 (Ω) satisfying

Bµ[u, v] = 〈f, v〉 (v ∈ H1
0 (Ω));

u is consequently the unique weak solution of (2.12). �

In the rest of this lecture, we use a minimizing process to solve the Dirichlet problem
on the boundary domain with the homogeneous boundary value. Suppose f ∈ L2(Ω)
Define

(2.13) J(u) :=
1

2

∫
Ω

(aijDiuDju+ cu2)dx+

∫
Ω

ufdx.

Theorem 2.6. Let aij = aji and c ≥ 0. Then J admits a minimizer u ∈ H1
0 (Ω).

It is easy to check that the minimizer u is a weak solution of

Lu = −Dj(aijDiu)cu = −f in Ω.

Proof. We first prove that J has a lower bound in H1
0 (Ω). We calculate∫

Ω

|u|fdx ≤
( ∫

Ω

u2dx
) 1

2
( ∫

Ω

f 2dx
) 1

2

≤
√
C
( ∫

Ω

|∇u|2dx
) 1

2
( ∫

Ω

f 2dx
) 1

2

≤ λ

4

∫
Ω

|∇u|2dx+ C
1

λ

∫
Ω

f 2dx.

Hence for any u ∈ H1
0 (Ω),

(2.14) J(u) ≥ λ

4

∫
Ω

|∇u|2dx− C 1

λ

∫
Ω

f 2dx.
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and in particular

J(u) ≥ −C 1

λ

∫
Ω

f 2dx.

Therefore, J has a lower bound in H1
0 (Ω). We set

J0 := inf{J(u) : u ∈ H1
0 (Ω)}.

Next, we prove that J0 is attained by some u ∈ H1
0 (Ω). We consider a minimizing

sequence {uk} ⊂ H1
0 (Ω) with J(uk)→ J0 as k →∞. By (2.14) we have∫

Ω

|∇uk|2dx ≤
4

λ
J(uk) + 4C

1

λ2

∫
Ω

f 2dx.

Then we have that ‖u‖H1
0 (Ω) is bounded. Hence we may assume uk → u0 ∈ H1

0 (Ω)

strongly in L2(Ω) and weakly in H1
0 (Ω). Hence we have

J(u0) ≤ lim inf
k→∞

J(uk)

This implies J(u0) = J0. We conclude that J0 is attained in H1
0 (Ω). �

Remark 2.7. In fact, by J is a convex functional and uk ⇀ u0 weakly in H1
0 (Ω), we

have
J(u0) ≤ lim inf

k→∞
J(uk)

3. Continuity Method

2020c12�8F

3.1. Introduction. This Lecture, we discuss how to solve the Dirichlet problems by
the method of continuity. We illustrate this method by solving the Dirichlet problem
for uniformly elliptic equationa on C2,α−domains by assuming that a similar problem
for the Laplace equation can be solved(�¯¢þ§·�8c�«@
3¥þkù
��(J,��/,Kellogg’theorem). The method of continuity can be applies to
nonlinear elliptic equations. The crucial ingredient is a priori estimates.

3.2. Par1. Let Ω be a bounded domain in Rn and let aij, bi, and c be defined in Ω,
with aij = aji. We consider the differential operator

(3.1) Lu = aijDiju) + biDiu+ cu.

for any u ∈ C2(Ω). We always assume that

aij(x)ξiξj ≥ λ|ξ|2

for any x ∈ Ω and ξ ∈ Rn.
Now we state a general existence result for solutions of the Dirichlet problem with

C2,α boundary values for general uniformly elliptic equations with Cα coefficients.

Theorem 3.1. Let L ≡ aijDij + biDi + c be uniformly elliptic with coefficients in
Cα(Ω̄) in a bounded C2,α domain Ω. Assume that c ≤ 0 in Ω. Then Lu = f in
Ω, u = ϕ, in ∂Ω, has a unique C2,α(Ω̄) solution for all f ∈ Cα(Ω̄), ϕ ∈ C2,α(Ω̄).
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4. Compactness Methods

2020c12�8F

4.1. Introduction. This Lecture, we discuss several methods to solve nonlinear el-
liptic differential equations. All these methods involve the compactness of the Holder
functions: A bounded sequence of Holder functions has a subsequence convergent to
a Holder function.

4.2. Part1.

Theorem 4.1. Let Ω be a bounded C2,α-domain in Rn and f be a C1-function in
Ω̄× R. Suppose u, u ∈ C2,α(Ω̄) satisfy u ≤ u,

(4.1) ∆u ≥ f(x, u) in Ω, u ≤ 0 on ∂Ω, and ∆u ≥ f(x, u) in Ω, u ≤ 0 on ∂Ω.

Then there exists a solution u ∈ C2,α(Ω̄) of

∆u = f(x, u) in Ω,(4.2)

u = 0 on ∂Ω, u ≤ u ≤ u in Ω.

Corollary 4.2. Let Ω be a bounded C2,α-domain in Rn and f be a C1-function in
Ω̄× R. Then there exists a solution u ∈ C2,α(Ω̄) of

∆u = f(x, u) in Ω,(4.3)

u = 0 on ∂Ω.

Remark 4.3. Corollary still holds if we assume f is C1 in Ω̄× R and satisfies

(4.4) |f(x, z)| ≤ C(1 + |z|τ ) for any (x, z) ∈ Ω̄× R
for some C > 0 and τ ∈ [0, 1).


