
LECTURE NOTES ON EXISTENCE OF SOLUTIONS

XIANG LI

Abstract. In this note, we mainly study two methods for the existence of solutions
to elliptic equations.
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1. Introduction

In section 4 the solvability of the classical Dirichlet problem for quasilinear equa-
tions is reduced to the establishment of certain apriori estimates for solutions. This
reduction is achieved through the application of topological fixed point theorems (sec-
tion 3) in appropriate function spaces. In Section 5, we briefly introduce the Single-
and Double-Layer Potentials Methods.

2. Preliminaries

Theorem 2.1. (Global Schauder Estimate) Let Ω be a domain in Rn and let u ∈
C2,α(Ω) be a solution of Lu = f in Ω, where f ∈ Cα(Ω) and the coefficients of L
satisfy,for positive constants λ, Λ,

aijξiξj ≥ λ|ξ|2 ∀x ∈ Ω, ξ ∈ Rn

and

|aij|0,α;Ω, |bi|0,α;Ω, |c|0,α;Ω ≤ Λ.

Let ϕ(x) ∈ C2,α(Ω), and suppose u = ϕ on ∂Ω. Then

|u|2,α;Ω ≤ C(|u|0;Ω + |ϕ|2,α;Ω + |f |0,α;Ω)

where C = C(n, α, λ,Λ,Ω).

Theorem 2.2. Let L be strictly elliptic in a bounded domain Ω, with c ≤ 0, and let f
and the coefficients of L belong to Cα(Ω). Suppose that Ω is a C2,α domain and that
ϕ ∈ C2,α(Ω). Then the Dirichlet problem,{

Lu = f in Ω,

u = ϕ on ∂Ω,

has a (unique) solution lying in C2,α(Ω).

3. Fixed-Point Theorems

Theorem 3.1. (Brouwer Fixed-Point Theorem) A continuous mapping of a closed
ball in Rn into itself has at least one fixed point.

Proof. M1. Algebraic topology.
M2. Milnor’s proof.(cf.[2])

�

The Brouwer fixed point theorem can be extended to infinite dimensional spaces
in various ways. We require first the following extension to Banach spaces.

Theorem 3.2. (Schauder’s Fixed-Point Theorem) Let G be a compact, convex set in
a Banach space X, and let T be a continuous mapping of G into itself. Then T has
a fixed point, that is, Tx = x for some x ∈ X.
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Proof. Let k be any positive integer. Since G is compact, there exists a finite number of
points x1, ..., xN ∈ G, where N = N(k), such that the balls Bi = B1/k(xi), i = 1, ..., N,
cover G. Let Gk ⊂ G be the convex hull of {x1, ..., xN}, and define the mapping
Jk : G → Gk by

Jk(x) =

∑
dist(x,G −Bi)xi∑
dist(x,G −Bi)

Clearly Jk is continuous and for any x ∈ G

‖Jk(x)− x‖ ≤
∑
dist(x,G −Bi)‖xi − x‖∑

dist(x,G −Bi)
<

1

k
.

The mapping Jk ◦ T when restricted to Gk is accordingly a continuous mapping of
Gk into itself and hence, by virtue of the Brouwer fixed point theorem, possesses a
fixed point x(k). (Note that Gk is homeomorphic to a closed ball in some Euclidean
space.(cf.[3])) Since G is compact, a subsequence of the sequence x(k), k = 1, 2, ...,
converges to some x ∈ G. We claim that x is a fixed point of T. For, applying the
above inequality to Tx(k), we have

‖x(k) − Tx(k)‖ = ‖Jk ◦ Tx(k) − Tx(k)‖ < 1

k
,

and, since T is continuous, we have

lim
k→∞

x(k) = x = Tx

for some x ∈ G. �

Corollary 3.3. Let G be a closed convex set in a Banach space X and let T be a
continuous mapping of G into itself such that the image TG is precompact. Then T
has a fixed point.

Remark 3.4. In the above theorems we note an essential difference from the con-
traction mapping principle in that the fixed points whose existence is asserted are not
necessarily unique.

A continuous mapping between two Banach spaces is called compact (or completely
continuous) if the images of bounded sets are precompact (that is, their closures are
compact). The following consequence of Corollary 3.3 is the fixed point result most
often applied in our approach to the Dirichlet problem for quasilinear equations.

Theorem 3.5. (Leray-Schauder Theorem) Let T be a compact mapping of a Banach
space X into itself, and suppose there exists a constant M such that

(3.1) ‖u‖X < M

for all x ∈ X and σ ∈ [0, 1] satisfying x = σTx. Then T has a fixed point.

Proof. We can assume without loss of generality that M = 1. Let us define a mapping
T ∗ by

T ∗ =

{
Tx if ‖Tx‖ ≤ 1,
Tx
‖Tx‖ if ‖Tx‖ ≥ 1.



4 XIANG LI

Then T ∗ is a continuous mapping of the closed unit ball B in X into itself. Since TB
is precompact the same is true of T ∗B. Hence by Corollary 3.3 the mapping T ∗ has a
fixed point x. We claim that x is also a fixed point of T. For, suppose that ‖Tx‖ ≥ 1.
Then x = T ∗x = σTx if σ = 1/‖Tx‖, and ‖x‖ = ‖T ∗‖ = 1 which contradicts (3.1)
with M = 1. Hence ‖Tx‖ ≤ 1 and consequently x = T ∗x = Tx. �

Remark 3.6. Theorem 3.5 implies that if T is any compact mapping of a Banach
space into itself (whether or not (3.1) holds), then for some σ ∈ (0, 1] the mapping
σT possesses a fixed point. Indeed, since TB is compact in X, there is an A ≥ 1 such
that ‖Tx‖ ≤ A for all x ∈ B. Thus the mapping σT with σ = 1

A
maps B into itself

and our conclusion follows. Furthermore, if the estimate (3.1) holds then σT has a
fixed point for all σ ∈ [0, 1].

4. Existence Results

In this section, we apply Leray-Schauder Theorem (Theorem 3.5) to the Dirichlet
problem for quasilinear equations.

We fix a number β ∈ (0, 1) and take the Banach space X to be the Holder space
C1,β(Ω), where Ω is a bounded domain in Rn. Let Q be the operator given by

(4.1) Qu = aij(x, u,Du)Diju+ b(x, u,Du)

and assume that Q is elliptic in Ω, that is, the coefficient matrix [aij(x, z, p)] is positive
for all (x, z, p) ∈ Ω×R×Rn. We also assume, for some α ∈ (0, 1), that the coefficients
aij, b ∈ Cα(Ω×R×Rn), that the boundary ∂Ω ∈ C2,α and that ϕ is a given function
in C2,α(Ω). For all v ∈ C1,β(Ω), the operator T is defined by letting u = Tv be the
unique solution in C2,αβ(Ω) of the linear Dirichlet problem,

(4.2)

{
aij(x, v,Dv)Diju+ b(x, v,Dv) = 0 in Ω,

u = ϕ on ∂Ω.

The unique solvability of the problem (4.2) is guaranteed by the linear existence
result, Theorem 2.2. The solvability of the Dirichlet problem,{

Qu = 0 in Ω,

u = ϕ on ∂Ω,

in the space C2,α(Ω) is thus equivalent to the solvability of the equation u = Tu in
the Banach space X = C1,β(Ω). The equation u = σTu in X is equivalent to the
Dirichlet problem

(4.3)

{
Qσu = aij(x, u,Du)Diju+ b(x, u,Du) = 0 in Ω,

u = σϕ on ∂Ω.

By applying Theorem 3.5, we can then prove the following criterion for existence.

Theorem 4.1. Let Ω be a bounded domain in Rn and suppose that Q is elliptic in Ω
with coefficients aij, b ∈ Cα(Ω×R×Rn), 0 < α < 1. Let ∂Ω ∈ C2,α and ϕ ∈ C2,α(Ω).
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Then, if for some β > 0 there exists a constant M, independent of u and σ, such that
every C2,α(Ω) solution of the Dirichlet problems,{

Qσu = 0 in Ω,

u = σϕ on ∂Ω,

0 ≤ σ ≤ 1, satisfies

‖u‖C1,β(Ω) < M,

it follows that the Dirichlet problem,{
Qu = 0 in Ω,

u = ϕ on ∂Ω,

is solvable in C2,α(Ω).

Proof. In view of the remarks preceding the statement of the theorem, it only remains
to show that the operator T is continuous and compact. By virtue of the global
Schauder estimate, Theorem 2.1, T maps bounded sets in C1,β(Ω) into bounded sets
in C2,αβ(Ω) which (by Arzela’s theorem) are precompact in C2(Ω) and C1,β(Ω). In
order to show the continuity of T, we let vm, m = 1, ... converge to v in C1,β(Ω).
Then, since the sequence {Tvm} is precompact in C2(Ω), every subsequence in turn
has a convergent subsequence. Let {Tvm} be such a convergent subsequence with
limit u ∈ C2(Ω). Then since

aij(x, v,Dv)Diju+ b(x, v,Dv)

= lim
m→∞

{aij(x, vm, Dvm)Diju+ b(x, vm, Dvm)}

=0

(4.4)

we must have u = Tv, and hence the sequence {Tvm} itself converges to u. �

Remark 4.2. Theorem 4.1 reduces the solvability of the Dirichlet problem{
Qu = 0 in Ω,

u = ϕ on ∂Ω,

to the apriori estimation in the space C1,β(Ω), for some β > 0, of the solutions of a
related family of problems.

In practice it is desirable to break the derivation of the apriori estimates into four
stages(cf.[1]):

I. Estimation of supΩ |u|;
II. Estimation of sup∂Ω |Du|;
III. Estimation of supΩ |Du|;
IV. Estimation of [Du]β;Ω, for some β > 0.
We shall briefly mention how assumptions in Theorem 4.1 can be verified for the

minimal surface equation. For simplicity, we consider the case where Ω is a uniformly
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convex, C2,α−bounded domain in Rn and the following Dirichlet problem:

(4.5)

{
div
( ∇u√

1+|∇u|2

)
= 0 in Ω.

u = φ on ∂Ω,

We assume that φ ∈ C2,α(∂Ω).
Suppose u is a C2,α−solution of (4.5); then the maximum principle implies that

(4.6) ‖u‖L∞(Ω) ≤ ‖φ‖L∞(∂Ω) ≡ C0 <∞.

Next, by the uniform convexity of ∂Ω and the C2,α−regularity of φ, we can check
that(cf.[1]), for every x0 ∈ ∂Ω, there exist linear functions l±x0(x) such that

l±x0(x) = φ(x0) and l−x0(x) ≤ φ(x) ≤ l+x0(x)

for all x ∈ ∂Ω. Since linear functions are solutions of div
( ∇u√

1+|∇u|2

)
= 0 in Ω, from

the maximum principle we conclude that

l−x0(x) ≤ u(x) ≤ l+x0(x), x ∈ Ω;

in particular,

|∇u(x0)| ≤ max |l±x0(x0)| ≡ C1 <∞.

On the other hand, if u is a C2,α−solution of (4.5), then ui = ∂
∂xi
u, i = 1, ..., n,

satisfies
∂

∂xi
(FPiPj(Du)uj) = 0.

Here F (Du) =
√

1 + |∇u|2, hence (FPiPj(Du)) > 0. Thus ui satisfies the maximum
principle. Therefore we have

‖∇u‖L∞(Ω) ≤ ‖∇u‖L∞(∂Ω) ≡ C1 <∞.

From the above inequalities we further deduce that

(4.7) ‖∇u‖Cβ(Ω) ≤ C(C0, C1, C2) <∞.

where C2 = ‖φ‖C2,α(∂Ω). This follows from De GiorgiõMoser theory.

We rewrite div
( ∇u√

1+|∇u|2

)
= 0 in Ω as

(4.8) ∆u− uiuj
1 + |∇u|2

uij = 0

and combine (4.7) with (4.8) and the Schauder estimates to obtain

‖∇u‖C2,β(Ω) ≤ C(C0, C1, C2,Ω) <∞.

where we may assume that 0 < β ≤ α.
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5. Single- and Double-Layer Potentials Methods

Now we assume that Ω is a bounded, connected domain in Rn, n ≥ 3, with a
C2−boundary.(Here we assume n 6= 2 to simplify matters and avoid technicalities.)
Consider the Dirichlet problem

(5.1)

{
∆u = 0 in Ω,

u = f on ∂Ω,

where f ∈ C(∂Ω).
Let γ(x) = Cn

|x|n−2 be the fundamental solution of the Laplace operator in Rn; here

Cn =
−1

(n− 2)ωn
=

−1

(n− 2)

Γ(n
2
)

2πn/2
.

Definition 5.1. Set R(x, y) = −γ(x− y), and for f ∈ C(∂Ω), we define the double-
layer potential

(5.2) Df(x) =

∫
∂Ω

∂

∂ny
R(x, y)f(y)dHn−1(y), x /∈ ∂Ω,

and the single-layer potential

(5.3) Sf(x) =

∫
∂Ω

R(x, y)f(y)dHn−1(y), x /∈ ∂Ω.

Here ny is the outward unit normal for ∂Ω at y.

Remark 5.1. It is easy to check that

∆Df(x) = 0, for x ∈ Rn\∂Ω.

We need to understand the boundary behavior of Df(x) on ∂Ω.

Lemma 5.2. If f ∈ C(∂Ω), then
(i) Df(x) ∈ C(Ω),
(ii) Df(x) ∈ C(Ωc).

In other words, Df(x) can be extended continuously from inside Ω to Ω and from
outside Ω to Ωc.

Let D+f(x) and D−f(x) be the restrictions of these two functions to ∂Ω. Set

K(x, y) =
∂

∂ny
R(x, y) =

1

ωn

〈x− y,ny〉
|x− y|n

.

Thus
K(x, y) ∈ C(∂Ω× ∂Ω\{(x, x) : x ∈ ∂Ω})

and

|K(x, y)| ≤ C

|x− y|n−2

for x, y ∈ ∂Ω and some C <∞. The latter estimate follows from the C2 property of
∂Ω.
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We shall define, for f ∈ C(∂Ω), the operator

(5.4) T f(x) =

∫
∂Ω

K(x, y)f(y)dHn−1(y), x ∈ ∂Ω.

We have the following:

Lemma 5.3. (Jump Relations for D)
(i) D+ = 1

2
I + T

(ii) D− = −1
2
I + T

Moreover, T : C(∂Ω)→ C(∂Ω) is compact.

Proof. We first verify that T defined by (5.4) is a compact operator from C(∂Ω) →
C(∂Ω). Let

KN(x, y) = signK(x, y) ·min{N, |K(x, y)|}, N ∈ Z+.

Thus KN is continuous on ∂Ω × ∂Ω, and the Arzela-Ascoli theorem implies that
TNf(x) =

∫
∂Ω
KN(x, y)f(y)dHn−1(y) is compact on C(∂Ω). Furthermore, since ‖TN‖ ≤

supx∈∂Ω ‖KN(x, y)‖L1(∂Ω) ≤ C <∞ where C is independent of N, it is rather easy to
see that

‖TN − TN+1‖ ≤ C
[
(

1

N
)

1
n−2 − (

1

N + 1
)

1
n−2

]
≤ CN−1− 1

n−2 .

We therefore conclude that T = limN→∞ TN is a compact operator on C(∂Ω).
Next we apply the divergence theorem on Ω|Bδ(x) for small positive δ with δ → 0+

to obtain

(5.5) Df(x) =

∫
∂Ω

∂

∂ny
R(x, y)dHn−1(y) = 1, if x ∈ Ω,

(5.6) T f(x) =

∫
∂Ω

K(x, y)dHn−1(y) =
1

2
, if x ∈ ∂Ω.

Let x0 ∈ ∂Ω and x ∈ Ω such that x→ x0. We want to verify that

(5.7) Df(x)⇒ 1

2
f(x0) + T f(x0).

Here we observe that
∫
∂Ω
| ∂
∂ny

R(x, y)|dHn−1(y) ≤ C < ∞ for all x /∈ ∂Ω. Thus, in

particular, ‖Df‖L∞(Rn\∂Ω) ≤ C‖f‖L∞(∂Ω).
If x0 /∈ support of f, then it is obvious that∫

∂Ω

∂

∂ny
R(x, y)dHn−1(y)

x→x0−→
∫
∂Ω

K(x0, y)dHn−1(y) = T f(x0).

If x0 ∈ support of f and f(x0) = 0, then we let {fk} ⊂ C(∂Ω) such that

‖f − fk‖L∞(∂Ω)
k→∞−→ 0,

and x0 /∈ support of fk for each k, k = 1, 2... Then

|Df(x)− T f(x)| ≤|D(f − fk)(x)|+ |T (f − fk)(x)|+ |Dfk(x)− T fk(x)|
≤C‖f − fk‖L∞(∂Ω) + ‖T ‖‖f − fk‖L∞(∂Ω) + ‖Dfk(x)− T fk(x)‖
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We initially choose k large so that the first two terms on the right-hand side of the
above inequality will be small. We then observe that for fixed k (large) as x → x0,
the last term in the inequality also goes to 0.

To complete the proof it suffices to verify the case when f = 1, for which the result
is trivial. If we replace Ω by Ωc then all the other statements in Lemmas 5.2 and 5.3
follow.

�

To conclude our consideration of double-layer potentials we need to show how to
use them to solve the Dirichlet problem (5.1).

We begin with a g ∈ C(∂Ω) and let u(x) = Dg(x) for x ∈ Ω. It is clear from our
previous discussion that ∆u = 0 in Ω and u ∈ C(Ω); moreover, u|∂Ω = (1

2
I + T )g.

Therefore, we need to solve for g a given f ∈ C(∂Ω), f = (1
2
I + T )g. Since T is

compact, (1
2
I + T ) is obviously a 1 : 1 map on C(∂Ω); hence it is also an onto map

from C(∂Ω) to C(∂Ω). This last statement follows from Theorem 3.5.
Finally, we shall state without proof the results corresponding to those for single-

layer potentials (5.3). All of the proofs are similar to those for Lemmas 5.2 and 5.3
above.

Once again we assume Ω to be class C2 and f ∈ C(∂Ω).

Lemma 5.4. If f ∈ C(∂Ω), then
(i) D+S(x) = gradS(f) ∈ C(Ωδ0),
(ii) D−S(x) = gradS(f) ∈ C(Ωc

δ0
).

Here Ωδ0 = {x ∈ Ω : dist(x, ∂Ω) ≤ δ0} for some small δ0 > 0.

Let K∗(x, y) = K(y, x) and define

T ∗f(x) =

∫
∂Ω

K∗(x, y)f(y)dHn−1(y), x ∈ ∂Ω.

Lemma 5.5. (Jump Relations for DS(f))
(i) D+S(f) = −1

2
I + T ∗,

(ii) D−S(f) = 1
2
I + T ∗.

Single-layer potentials can be used to solve the Neumann problem{
∆u = 0 in Ω,
∂u
∂n

= f on ∂Ω.

Remark 5.6. Layer potentials can be used to solve more general elliptic equations
(and systems) with constant coefficients on smooth domains. This method can be fur-
ther generalized to C1,α−domains for general elliptic equations of second order with
Cα−coefficients (or general first-order elliptic systems with suitably smooth coeffi-
cients). The latter is often referred to as ADN theory due to Agmon, Douglis, and
Nirenberg.
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