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Preface

The purpose of these note is to present some basic methods for obtaining various
a priori estimates for second order partial differential equations of elliptic type
with particular emphasis on maximum principles, Harnack inequalities, and their
applications. The equations we deal with are always linear, although most of the
methods obviously apply to nonlinear problems. Students with some knowledge of
real variables and Sobolev functions should be able to follow these notes without
much difficulty.

It is not our intention to give a complete account of the related theory. Our
goal is simply to provide these notes as a bridge between the books of John [4] and
of Evans [2], which also study equations of other types, and the book of Gilbarg
and Trudinger [3] which gives a relatively complete account of the theory of elliptic
equations of second order. We also hope our notes can serve as a bridge between
the book of Krylov [5] on the classical theory of elliptic equations developed before
or around the 1960s and the book by Caffarelli and Cabré [1] which studies fully
nonlinear elliptic equations, the theory obtained in the 1980s.

Qing Han, Fang-Hua Lin

v





CHAPTER 1

Harmonic Functions

In this chapter, we use several different methods to study harmonic functions.
These include mean value properties, fundamental solutions, maximum principles
and the energy method. Four sections in this chapter are relatively independent of
each other.

1.1. Mean Value Properties

We begin this section with the definition of mean value properties. We assume
that Ω is a connected domain in Rn.

Definition 1.1. For u ∈ C(Ω), (i) u satisfies the first mean value property if

u(x) =
1

ωnrn−1

∫

∂Br(x)

u(y)dσy for any Br(x) ⊂ Ω;

(ii) u satisfies the second mean value property if

u(x) =
n

ωnrn

∫

Br(x)

u(y)dy for any Br(x) ⊂ Ω,

where ωn denotes the surface area of the unit sphere in Rn.

Remark 1.2. These two definitions are equivalent. In fact, if we write (i) as

u(x)rn−1 =
1

ωn

∫

∂Br(x)

u(y)dσy,

we may integrate to get (ii). If we write (ii) as

u(x)rn =
n

ωn

∫

Br(x)

u(y)dy,

we may differentiate to get (i).

Remark 1.3. We may write the mean value properties in the following equiv-
alent ways:
(i) u satisfies the first mean value property if

u(x) =
1

ωn

∫

|y|=1

u(x + ry)dσy for any Br(x) ⊂ Ω;

(ii) u satisfies the second mean value property if

u(x) =
n

ωn

∫

|y|≤1

u(x + ry) dy for any Br(x) ⊂ Ω.

1
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Now we prove the maximum principle for functions satisfying mean value prop-
erties.

Theorem 1.4. If u ∈ C(Ω̄) satisfies the mean value property in Ω, then u
assumes its maximum and minimum only on ∂Ω unless u is constant.

Proof. We only prove for the maximum. Set

Σ =
{

x ∈ Ω; u(x) = M ≡ max
Ω̄

u

}
⊂ Ω.

It is obvious that Σ is relatively closed. Next we show that Σ is open. For any
x0 ∈ Σ, take B̄r(x0) ⊂ Ω for some r > 0. By the mean value property, we have

M = u(x0) =
n

ωnrn

∫

Br(x0)

u(y)dy ≤ M
n

ωnrn

∫

Br(x0)

dy = M.

This implies u = M in Br(x0). Hence Σ is both closed and open in Ω. Therefore
either Σ = φ or Σ = Ω. ¤

Now we begin to discuss harmonic functions.

Definition 1.5. A function u ∈ C2(Ω) is harmonic if 4u = 0 in Ω.

Theorem 1.6. Let u ∈ C2(Ω) be harmonic in Ω. Then u satisfies the mean
value property in Ω.

Proof. Take any ball Br(x) ⊂ Ω. For any ρ ∈ (0, r), we apply the divergence
theorem in Bρ(x) and get

(1)

∫

Bρ(x)

4u(y)dy =
∫

∂Bρ

∂u

∂ν
dσ = ρn−1

∫

|w|=1

∂u

∂ρ
(x + ρw)dσw

= ρn−1 ∂

∂ρ

∫

|w|=1

u(x + ρw)dσw.

Hence for the harmonic function u, we have for any ρ ∈ (0, r)

∂

∂ρ

∫

|w|=1

u(x + ρw) dσw = 0.

Integrating from 0 to r, we obtain∫

|w|=1

u(x + rw) dσw =
∫

|w|=1

u(x) dσw = u(x)ωn,

or

u(x) =
1

ωn

∫

|w|=1

u(x + rw) dσw =
1

ωnrn−1

∫

∂Br(x)

u(y)dσy.

This finishes the proof. ¤

Remark 1.7. For a function u satisfying the mean value property, u is not
required to be smooth. However a harmonic function is required to be C2. We now
prove these two are equivalent.

Theorem 1.8. If u ∈ C(Ω) has the mean value property in Ω, then u is smooth
and harmonic in Ω.
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Proof. Choose ϕ ∈ C∞0 (B1) with
∫

B1
ϕ = 1 and ϕ(x) = ψ(|x|), i.e.

ωn

∫ 1

0

rn−1ψ(r) dr = 1.

We define ϕε(z) =
1
εn

ϕ
(z

ε

)
for ε > 0. Now for any x ∈ Ω, consider ε < dist (x, ∂Ω).

Then we have∫

Ω

u(y)ϕε(y − x)dy =
∫

u(x + y)ϕε(y)dy =
1
εn

∫

|y|<ε

u(x + y)ϕ
(y

ε

)
dy

=
∫

|y|<1

u(x + εy)ϕ(y)dy

=
∫ 1

0

rn−1dr

∫

∂B1

u(x + εrw)ϕ(rw)dσw

=
∫ 1

0

ψ(r)rn−1dr

∫

|w|=1

u(x + εrw)dσw

= u(x)ωn

∫ 1

0

ψ(r)rn−1dr = u(x),

where in the last equality we used the mean value property. Hence we get

u(x) = (ϕε ∗ u)(x) for any x ∈ Ωε = {y ∈ Ω; d(y, ∂Ω) > ε}.
Therefore, u is smooth. Moreover, by (1) in the proof of Theorem 1.6 and the mean
value property, we have for any Br(x) ⊂ Ω

∫

Br(x)

∆u = rn−1 ∂

∂r

∫

|w|=1

u(x + rw)dσw = rn−1 ∂

∂r

(
ωnu(x)

)
= 0.

This implies ∆u = 0 in Ω. ¤

Remark 1.9. By combining Theorems 1.4-1.8, we conclude that harmonic
functions are smooth and satisfy the mean value property. Hence harmonic func-
tions satisfy the maximum principle, a consequence of which is the uniqueness of
solutions of the following Dirichlet problem in a bounded domain

∆u = f in Ω

u = ϕ on ∂Ω,

for f ∈ C(Ω) and ϕ ∈ C(∂Ω). In general, the uniqueness does not hold for un-
bounded domains. Consider the following Dirichlet problem in an unbounded do-
main Ω

∆u = 0 in Ω

u = 0 on ∂Ω.

First, we consider the case Ω = {x ∈ Rn; |x| > 1}. Then we have a nontrivial
solution u given by

u(x) =

{
log |x| for n = 2;
|x|2−n − 1 for n ≥ 3.
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Note u →∞ as |x| → ∞ for n = 2 and u is bounded for n ≥ 3. Next, we consider
the upper half space Ω = {x ∈ Rn; xn > 0}. Then u(x) = xn is a nontrivial
solution, which is unbounded.

In the following, we discuss interior gradient estimates.

Lemma 1.10. Suppose u ∈ C
(
B̄R(x0)

)
is harmonic in BR(x0). Then there

holds
|Du(x0)| ≤ n

R
max

B̄R(x0)
|u|.

Proof. For simplicity, we assume u ∈ C1(B̄R). Since u is smooth, then
∆(Dxiu) = 0, i.e., Dxiu is also harmonic in BR. Hence Dxiu satisfies the mean
value property. By the divergence theorem, we have

Dxi
u(x0) =

n

ωnRn

∫

BR(x0)

Dxiu(y)dy =
n

ωnRn

∫

∂BR(x0)

u(y) νidσy,

which implies

|Dxiu(x0)| ≤ n

ωnRn
max

∂BR(x0)
|u| · ωnRn−1 ≤ n

R
max

B̄R(x0)
|u|.

This finishes the proof. ¤

Lemma 1.11. Suppose u ∈ C
(
B̄R(x0)

)
is a nonnegative harmonic function in

BR(x0). Then there holds

|Du(x0)| ≤ n

R
u(x0).

Proof. As before, by the divergence theorem and the nonnegativeness of u,
we have

|Dxiu(x0)| ≤ n

ωnRn

∫

∂BR(x0)

u(y) dσy =
n

R
u(x0),

where in the last equality we used the mean value property. ¤

Corollary 1.12. A harmonic function in Rn bounded from above or below is
constant.

Proof. Suppose u is a harmonic function in Rn. We prove that u is a constant
if u ≥ 0. In fact for any x ∈ Rn, we apply Lemma 1.11 to u in BR(x) and then let
R →∞. We conclude Du(x) = 0 for any x ∈ Rn. ¤

Lemma 1.13. Suppose u ∈ C
(
B̄R(x0)

)
is harmonic in BR(x0). Then there

holds for any multi-index α with |α| = m

|Dαu(x0)| ≤ nmem−1m!
Rm

max
B̄R(x0)

|u|.

Proof. We will prove by an induction on m ≥ 1. It holds for m = 1 by
Lemma 1.10. We assume it holds for m and consider m + 1. For 0 < θ < 1, define
r = (1− θ)R ∈ (0, R). We apply Lemma 1.10 to u in Br(x0) and get

|Dm+1u(x0)| ≤ n

r
max

B̄r(x0)
|Dmu|.
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By the induction assumption, we have

max
B̄r(x0)

|Dmu| ≤ nm · em−1 ·m!
(R− r)m

max
B̄R(x0)

|u|.

Hence we obtain

|Dm+1u(x0)| ≤ n

r
· nmem−1m!

(R− r)m
max

B̄R(x0)
|u| = nm+1em−1m!

Rm+1θm(1− θ)
max

B̄R(x0)
|u|.

By taking θ =
m

m + 1
, we have

1
θm(1− θ)

=
(

1 +
1
m

)m

(m + 1) < e(m + 1).

Hence the result is established for any single derivative. For any multi-index α =
(α1, · · · , αn), we note α1! · · ·αn! ≤ (|α|)!. ¤

Theorem 1.14. Harmonic functions are analytic.

Proof. Suppose u is a harmonic function in Ω. For any fixed x ∈ Ω, take
B2R(x) ⊂ Ω and h ∈ Rn with |h| ≤ R. We have by the Taylor expansion

u(x + h) = u(x) +
m−1∑

i=1

1
i!

[(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)i

u

]
(x) + Rm(h),

where

Rm(h) =
1
m!

[(
h1

∂

∂x1
+ · · ·+ hn

∂

∂xn

)m

u

]
(x1 + θh1, . . . , xn + θhn),

for some θ ∈ (0, 1). Note that x + h ∈ BR(x) for |h| < R. Hence by Lemma 1.13,
we obtain

|Rm(h)| ≤ 1
m!
|h|m · nm · nmem−1m!

Rm
max

B̄2R(x)
|u| ≤

( |h|n2e

R

)m

max
B̄2R(x)

|u|.

Then for any h with |h|n2e < R/2, Rm(h) → 0 as m →∞. ¤

Next we prove the Harnack inequality.

Theorem 1.15. Suppose u is a nonnegative harmonic function in Ω. Then for
any compact subset K of Ω

1
C

u(y) ≤ u(x) ≤ Cu(y) for any x, y ∈ K,

where C is a positive constant depending only on Ω and K.

Proof. By the mean value property, we can prove easily that there holds for
B4R(x0) ⊂ Ω

1
c
u(y) ≤ u(x) ≤ cu(y) for any x, y ∈ BR(x0),

where c is a positive constant depending only on n.
Now for the given compact subset K, take x1, . . . , xN ∈ K such that {BR(xi)}

covers K with 4R < dist (K, ∂Ω). Then we can choose C = cN . ¤
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We finish this section by proving another characterization of harmonic func-
tions. Suppose u is harmonic in Ω. Then we have by integrating by parts

∫

Ω

u∆ϕ = 0 for any ϕ ∈ C2
0 (Ω).

The converse is also true.

Theorem 1.16. Suppose u ∈ C(Ω) satisfies

(1)
∫

Ω

u∆ϕ = 0 for any ϕ ∈ C2
0 (Ω).

Then u is harmonic in Ω.

Proof. We claim for any Br(x) ⊂ Ω

(2) r

∫

∂Br(x)

u(y)dσy = n

∫

Br(x)

u(y)dy.

Then we have

d

dr

(
1

ωnrn−1

∫

∂Br(x)

u(y)dσy

)
=

n

ωn

d

dr

(
1
rn

∫

Br(x)

u(y)dy

)

=
n

ωn

{
− n

rn+1

∫

Br(x)

u(y)dy +
1
rn

∫

∂Br(x)

u(y)dσy

}
= 0.

This implies
1

ωnrn−1

∫

∂Br(x)

u(y)dSy = const.

This constant is u(x) if we let r → 0. Hence we have

u(x) =
1

ωnrn−1

∫

∂Br(x)

u(y)dSy for any Br(x) ⊂ Ω.

Next we prove (2) for n ≥ 3. For simplicity, we assume x = 0. Set

ϕ(y, r) =

{
(|y|2 − r2)n |y| ≤ r

0 |y| > r,

and then for k = 2, 3, . . . , n

ϕk(y, r) = (|y|2 − r2)n−k
(
2(n− k + 1)|y|2 + n(|y|2 − r2)

)
for |y| ≤ r.

A direct calculation shows ϕ(·, r) ∈ C2
0 (Ω) and

∆yϕ(y, r) =

{
2nϕ2(y, r) |y| ≤ r

0 |y| > r.

By (1), we have ∫

Br(0)

u(y)ϕ2(y, r)dy = 0.

Now we prove if for some k = 2, · · · , n− 1,

(3)
∫

Br

u(y)ϕk(y, r)dy = 0,
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then

(4)
∫

Br

u(y)ϕk+1(y, r)dy = 0.

In fact, we differentiate (3) with respect to r and get
∫

∂Br

u(y)ϕk(y, r)dy +
∫

Br

u(y)
∂ϕk

∂r
(y, r)dy = 0.

For 2 ≤ k < n, ϕk(y, r) = 0 for |y| = r. Then we have
∫

Br

u(y)
∂ϕk

∂r
(y, r)dy = 0.

We have (4) by noting

∂ϕk

∂r
(y, r) = (−2r)(n− k + 1)ϕk+1(y, r).

Therefore by taking k = n− 1 in (4), we conclude
∫

Br

u(y)
(
(n + 2)|y|2 − nr2

)
dy = 0.

Differentiating with respect to r again, we get (2). ¤

1.2. Fundamental Solutions

We begin this section by seeking for a harmonic function u, i.e., ∆u = 0, in Rn

which depends only on r = |x− a| for some fixed a ∈ Rn. By setting v(r) = u(x),
we have

v′′ +
n− 1

r
v′ = 0,

and hence

v(r) =

{
c1 + c2 log r n = 2,

c3 + c4r
2−n n ≥ 3,

where ci are constants for i = 1, 2, 3, 4. We are interested in functions with a
singularity such that ∫

∂Br

∂u

∂r
dσ = 1 for any r > 0.

Hence we set for any fixed a ∈ Rn

Γ(a, x) =

{
1
2π log |a− x| for n = 2,

1
ωn(2−n) |a− x|2−n for n ≥ 3.

In summary, for any fixed a ∈ Rn, Γ(a, x) is harmonic at x 6= a, i.e.,

∆xΓ(a, x) = 0 for any x 6= a,

and has a singularity at x = a. Moreover, it satisfies
∫

∂Br(a)

∂Γ
∂nx

(a, x) dσx = 1 for any r > 0.

The function Γ is called the fundamental solution of the Laplacian operator.
Now we prove the Green’s identity.
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Theorem 1.17. Suppose Ω is a bounded domain in Rn and that u ∈ C1(Ω̄) ∩
C2(Ω). Then for any a ∈ Ω

u(a) =
∫

Ω

Γ(a, x)∆u(x)dx−
∫

∂Ω

(
Γ(a, x)

∂u

∂nx
(x)− u(x)

∂Γ
∂nx

(a, x)
)

dσx.

Remark 1.18. (i) For any a ∈ Ω, Γ(a, ·) is integrable in Ω although it has a
singularity.

(ii) For a /∈ Ω̄, the expression in the right hand side is zero.
(iii) By letting u = 1, we have

∫

∂Ω

∂Γ
∂nx

(a, x)dσx = 1 for any a ∈ Ω.

Proof. We apply the Green’s formula to u and Γ(a, ·) in Ω \ Br(a) for small
r > 0 and get

∫

Ω\Br(a)

(Γ∆u− u∆Γ)dx =
∫

∂Ω

(
Γ

∂u

∂n
− u

∂Γ
∂n

)
dσx −

∫

∂Br(a)

(
Γ

∂u

∂n
− u

∂Γ
∂n

)
dσx.

By Noting ∆Γ = 0 in Ω \Br(a), we have
∫

Ω

Γ∆udx =
∫

∂Ω

(
Γ

∂u

∂n
− u

∂Γ
∂n

)
dσx − lim

r→0

∫

∂Br(a)

(
Γ

∂u

∂n
− u

∂Γ
∂n

)
dσx.

For n ≥ 3, we get by the definition of Γ
∣∣∣∣

∫

∂Br(a)

Γ
∂u

∂n
dσ

∣∣∣∣ =
∣∣∣∣

1
(2− n)ωn

r2−n

∫

∂Br(a)

∂u

∂n
dσ

∣∣∣∣

≤ r

n− 2
sup

∂Br(a)

|Du| → 0 as r → 0,

and ∫

∂Br(a)

u
∂Γ
∂n

dS =
1

ωnrn−1

∫

∂Br(a)

udS → u(a) as r → 0.

For n = 2, we get the same conclusion similarly. ¤

Remark 1.19. We may employ the local version of the Green’s identity to get
gradient estimates without using the mean value property. Suppose u ∈ C(B̄1)
is harmonic in B1. For any fixed 0 < r < R < 1, choose a cut-off function
ϕ ∈ C∞0 (BR) such that ϕ = 1 in Br and 0 ≤ ϕ ≤ 1. Apply the Green’s formula to
u and ϕΓ(a, ·) in B1 \Bρ(a) for a ∈ Br and ρ small enough. We proceed as in the
proof of Theorem 1.17 to obtain

u(a) = −
∫

r<|x|<R

u(x) ∆x

(
ϕ(x)Γ(a, x)

)
dx for any a ∈ Br.

Hence, we get

sup
B 1

2

|u| ≤ c

(∫

B1

|u|p
) 1

p

,
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and

sup
B 1

2

|Du| ≤ c max
B1

|u|,

where c is a constant depending only on n.

Now we begin to discuss the Green’s functions. Suppose Ω is a bounded domain
in Rn. For any u ∈ C1(Ω̄) ∩ C2(Ω), we have by Theorem 1.17 for any x ∈ Ω

u(x) =
∫

Ω

Γ(x, y)∆u(y)dy −
∫

∂Ω

(
Γ(x, y)

∂u

∂ny
(y)− u(y)

∂Γ
∂ny

(x, y)
)

dσy.

If u solves the following Dirichlet boundary value problem

(∗)
{

∆u = f in Ω
u = ϕ on ∂Ω

for some f ∈ C(Ω̄) and ϕ ∈ C(∂Ω), then u can be expressed in terms of f and ϕ,
with one unknown term. We intend to eliminate this term by adjusting Γ.

For any fixed x ∈ Ω, consider

γ(x, y) = Γ(x, y) + Φ(x, y),

for some Φ(x, ·) ∈ C2(Ω̄) with ∆yΦ(x, y) = 0 in Ω. Then Theorem 1.17 can be
expressed as follows for any x ∈ Ω

u(x) =
∫

Ω

γ(x, y)∆u(y)dy −
∫

∂Ω

(
γ(x, y)

∂u

∂ny
(y)− u(y)

∂γ

∂ny
(x, y)

)
dσy,

since the extra Φ(x, ·) is harmonic. Now by choosing Φ appropriately, we are led
to the important concept of Green’s functions.

For each fixed x ∈ Ω, choose Φ(x, ·) ∈ C1(Ω̄) ∩ C2(Ω) such that
{

∆yΦ(x, y) = 0 for y ∈ Ω
Φ(x, y) = −Γ(x, y) for y ∈ ∂Ω.

Denote by G(x, y) the resulting γ(x, y), which is called the Green’s function. If
such a G exists, then the solution u of the Dirichlet problem (∗) can be expressed
by

(∗∗) u(x) =
∫

Ω

G(x, y)f(y)dy +
∫

∂Ω

ϕ(y)
∂G

∂ny
(x, y)dσy.

Note that the Green’s function G(x, y) is defined as a function of y ∈ Ω̄ for each
fixed x ∈ Ω. Now we discuss some properties of G as a function of x and y. We
first note by the maximum principle that the Green’s function is unique, since the
difference of two Green’s functions is harmonic in Ω with a zero boundary value.

Lemma 1.20. The Green’s function G(x, y) is symmetric in Ω×Ω, i.e., G(x, y)
= G(y, x) for x 6= y ∈ Ω.

Proof. For any x1, x2 ∈ Ω with x1 6= x2, take r > 0 small such that Br(x1)∩
Br(x2) = φ. Set G1(y) = G(x1, y) and G2(y) = G(x2, y). We apply the Green’s
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formula in Ω \Br(x1) ∪Br(x2) and get
∫

Ω\Br(x1)∪Br(x2)

(G1∆G2 −G2∆G1) =
∫

∂Ω

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dσ

−
∫

∂Br(x1)

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dσ −

∫

∂Br(x2)

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dσ.

Since Gi is harmonic for y 6= xi, i = 1, 2, and vanishes on ∂Ω, we have∫

∂Br(x1)

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dσ +

∫

∂Br(x2)

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dσ = 0.

Note that the left hand side has the same limit as the left hand side in the following
as r → 0∫

∂Br(x1)

(
Γ

∂G2

∂n
−G2

∂Γ
∂n

)
dσ +

∫

∂Br(x2)

(
G1

∂Γ
∂n

− Γ
∂G1

∂n

)
dσ = 0.

On the other hand, we have∫

∂Br(x1)

Γ
∂G2

∂n
dσ → 0,

∫

∂Br(x2)

Γ
∂G1

∂n
dσ → 0 as r → 0,

and ∫

∂Br(x1)

G2
∂Γ
∂n

dσ → G2(x1),
∫

∂Br(x2)

G1
∂Γ
∂n

dσ → G1(x2) as r → 0.

This implies G2(x1)−G1(x2) = 0, or G(x2, x1) = G(x1, x2). ¤

Proposition 1.21. Let G be the Green’s function on Ω. Then for any x, y ∈ Ω
with x 6= y

0 > G(x, y) > Γ(x, y) for n ≥ 3,

0 > G(x, y) > Γ(x, y)− 1
2π

log diam(Ω) for n = 2.

Proof. Fix an x ∈ Ω and write G(y) = G(x, y). Since lim
y→x

G(y) = −∞, there

exists an r > 0 such that G(y) < 0 in Br(x). Note that G is harmonic in Ω \Br(x)
with G = 0 on ∂Ω and G < 0 on ∂Br(x). The maximum principle implies G(y) < 0
in Ω\Br(x). Next, we discuss the other part of the inequality. Recall the definition
of the Green’s function

G(x, y) = Γ(x, y) + Φ(x, y),

where

∆Φ = 0 in Ω

Φ = −Γ on ∂Ω.

For n ≥ 3, we have

Γ(x, y) =
1

(2− n)ωn
|x− y|2−n < 0 for y ∈ ∂Ω,

which implies Φ(x, ·) > 0 on ∂Ω. By the maximum principle, we have Φ > 0 in Ω.
For n = 2, we have

Γ(x, y) =
1
2π

log |x− y| ≤ 1
2π

log diam(Ω) for y ∈ ∂Ω.
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Hence the maximum principle implies Φ > − 1
2π log diam(Ω) in Ω. ¤

Now, we calculate Green’s functions explicitly for some special domains.

Theorem 1.22. The Green’s function for the ball BR ⊂ Rn is given by
(i) for n ≥ 3

G(x, y) =
1

(2− n)ωn

(
|x− y|2−n −

∣∣∣∣
R

|x|x−
|x|
R

y

∣∣∣∣
2−n)

;

(ii) for n = 2

G(x, y) =
1
2π

(
log |x− y| − log

∣∣∣∣
R

|x|x−
|x|
R

y

∣∣∣∣
)

.

Proof. Fix an x 6= 0 with |x| < R, and consider X ∈ Rn \ B̄R given by

X =
R2

|x|2 x. In other words, X and x are reflexive of each other with respect to the

sphere ∂BR. Note that the map x 7→ X is conformal, i.e., preserves angles. For
|y| = R, we have by the similarity of triangles

|x|
R

=
R

|X| =
|y − x|
|y −X| ,

which implies

(1) |y − x| = |x|
R
|y −X| =

∣∣∣∣
|x|
R

y − R

|x|x
∣∣∣∣ for any y ∈ ∂BR.

Therefore, in order to have a zero boundary value, we take for n ≥ 3

G(x, y) =
1

(2− n)ωn

(
1

|x− y|n−2
−

(
R

|x|
)n−2 1

|y −X|n−2

)
.

The case n = 2 is similar. ¤

Next, we calculate the normal derivative of the Green’s function on the sphere.

Corollary 1.23. Suppose G is the Green’s function in BR. Then

∂G

∂ny
(x, y) =

R2 − |x|2
ωnR|x− y|n for any x ∈ BR and y ∈ ∂BR.

Proof. We only consider the case n ≥ 3. Recall with X = R2x/|x|2

G(x, y) =
1

(2− n)ωn

(
|x− y|2−n −

(
R

|x|
)n−2

|y −X|2−n

)
,

for any x ∈ BR and y ∈ ∂BR. Hence we have for such x and y

DyiG(x, y) = − 1
ωn

(
xi − yi

|x− y|n −
(

R

|x|
)n−2

· Xi − yi

|X − y|n
)

=
yi

ωnR2

R2 − |x|2
|x− y|n ,

by (1) in the proof of Theorem 1.22. With ni =
yi

R
for |y| = R, we obtain

∂G

∂ny
(x, y) =

n∑

i=1

niDyiG(x, y) =
1

wnR
· R2 − |x|2
|x− y|n .

This finishes the proof. ¤
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Denote by K(x, y) the function in Corollary 1.23 for x ∈ Ω, y ∈ ∂Ω. It is called
the Poisson kernel and has the following properties:

(K1) K(x, y) is smooth for x 6= y.
(K2) K(x, y) > 0 for |x| < R and |y| = R.
(K3) For any fixed |x0| = R, limx→x0,|x|<R K(x, y) = 0 uniformly in y for

|y − x0| > δ > 0.
(K4) ∆xK(x, y) = 0 for |x| < R and |y| = R.
(K5)

∫
|y|=R

K(x, y)dSy = 1 for any |x| < R.

Here (K1), (K2) and (K3) follow easily from the explicit expression for K in
Corollary 1.23 and (K4) follows easily from the definition K(x, y) = ∂ny

G(x, y) and
the fact that G(x, y) is harmonic in x. An easy derivation of (K5) is based on (∗∗).
By taking a C2(B̄R) harmonic function u in (∗∗), we conclude

u(x) =
∫

∂BR

K(x, y)u(y)dσy for any |x| < R.

This is called the Poisson integral formula. Then we have (K5) easily by taking
u ≡ 1.

The following result yields the existence of harmonic functions in balls with the
prescribed Dirichlet boundary value.

Theorem 1.24. For ϕ ∈ C(∂BR), the function u defined by

(1) u(x) =
∫

∂BR

K(x, y)ϕ(y)dσy for any |x| < R

is smooth in BR and continuous up to ∂BR and satisfies
{

∆u = 0 in Ω
u = ϕ on ∂Ω.

Proof. By (K1) and (K4), we conclude easily that u defined by (1) is smooth
and harmonic in BR. We only need to prove the continuity of u up to the boundary
∂BR. Let x0 ∈ ∂BR and x ∈ BR. By (K5), we have

u(x)− ϕ(x0) =
∫

|y|=R

K(x, y)
(
ϕ(y)− ϕ(x0)

)
dσy = I1 + I2,

where

I1 =
∫

|y−x0|<δ,|y|=R

· · · , I2 =
∫

|y−x0|>δ,|y|=R

· · · ,

for a positive constant δ to be determined. For any given ε > 0, we choose δ =
δ(ε) > 0 so small that

|ϕ(y)− ϕ(x0)| < ε for any |y − x0| < δ, |y| = R,

by the continuity of ϕ. Then |I1| ≤ ε by (K2) and (K5). Let M = sup∂BR
|ϕ|. By

(K3), we find a δ′ such that

K(x, y) ≤ ε

2MωnRn−1
for any |x− x0| < δ′, |y − x0| > δ,

where δ′ depends on ε and δ = δ(ε), and hence only on ε. Then |I2| < ε. Hence

|u(x)− ϕ(x0)| < 2ε for any |x− x0| < δ′, |x| < R.
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This shows that u is continuous at the boundary point x0 and hence completes the
proof. ¤

Remark 1.25. In the Poisson integral formula, by letting x = 0, we have

u(0) =
1

ωnRn−1

∫

∂BR

u(y)dσy,

which is the mean value property.

As an application, we prove the Harnack inequality.

Lemma 1.26. Suppose u is harmonic in BR(x0) and u ≥ 0. Then
(

R

R + r

)n−2
R− r

R + r
u(x0) ≤ u(x) ≤

(
R

R− r

)n−2
R + r

R− r
u(x0),

where r = |x− x0| < R.

Proof. We assume x0 = 0 and u ∈ C(B̄R). Note that u is given by the
Poisson integral formula

u(x) =
1

ωnR

∫

∂BR

R2 − |x|2
|y − x|n u(y)dσy.

Since R− |x| ≤ |y − x| ≤ R + |x| for |y| = R, we have

1
ωnR

· R− |x|
R + |x|

(
1

R + |x|
)n−2 ∫

∂BR

u(y)dσy ≤ u(x)

≤ 1
ωnR

· R + |x|
R− |x|

(
1

R− |x|
)n−2 ∫

∂BR

u(y)dσy.

The mean value property implies

u(0) =
1

ωnRn−1

∫

∂BR

u(y)dσy.

This finishes the proof. ¤

Corollary 1.27. If u is a harmonic function in Rn and bounded above or
below, then u ≡ const.

Proof. We assume u ≥ 0 in Rn. Take any point x ∈ Rn and apply Lemma
1.26 to any ball BR(0) with R > |x|. We obtain

(
R

R + |x|
)n−2

R− |x|
R + |x|u(0) ≤ u(x) ≤

(
R

R− |x|
)n−2

R + |x|
R− |x|u(0).

This implies u(x) = u(0) by letting R → +∞. ¤

Next, we prove a result concerning the removable singularity.

Theorem 1.28. Suppose u is harmonic in BR \ {0} and satisfies

u(x) =

{
o(log |x|), n = 2
o(|x|2−n), n ≥ 3

as |x| → 0.

Then u can be defined at 0 so that it is C2 and harmonic in BR.
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Proof. Assume u is continuous in 0 < |x| ≤ R. Let v solve
{

∆v = 0 in BR

v = u on ∂BR.

We prove u = v in BR \ {0}. Set w = v− u in BR \ {0} and Mr = max∂Br |w|. We
only consider the case n ≥ 3. It is obvious that

|w(x)| ≤ Mr · rn−2

|x|n−2
on ∂Br.

Note that w and
1

|x|n−2
are harmonic in BR \ Br. Hence the maximum principle

implies

|w(x)| ≤ Mr · rn−2

|x|n−2
for any x ∈ BR \Br,

where
Mr = max

∂Br

|v − u| ≤ max
∂Br

|v|+ max
∂Br

|u| ≤ M + max
∂Br

|u|,

with M = max∂BR
|u|. Then we have for each fixed x 6= 0

|w(x)| ≤ rn−2

|x|n−2
M +

1
|x|n−2

rn−2 max
∂Br

|u| → 0 as r → 0.

This implies w = 0 in BR \ {0}. ¤

1.3. Maximum Principles

In this section, we use the maximum principle to derive the interior gradient
estimate and the Harnack inequality. We first give another proof of the maximum
principle without using mean value properties.

Theorem 1.29. Suppose u ∈ C2(B1) ∩ C(B̄1) is a subharmonic function in
B1, i.e., 4u ≥ 0. Then

sup
B1

u ≤ sup
∂B1

u.

Proof. For any ε > 0, we consider uε(x) = u(x) + ε|x|2 in B1. Then a simple
calculation yields

4uε = 4u + 2nε ≥ 2nε > 0.

It is easy to see, by a contradiction argument, that uε can not have an interior
maximum. This implies in particular

sup
B1

uε ≤ sup
∂B1

uε.

Therefore, we have
sup
B1

u ≤ sup
B1

uε ≤ sup
∂B1

u + ε.

We finish the proof by letting ε → 0. ¤

The following result is called the comparison principle.
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Corollary 1.30. Suppose u, v ∈ C2(B1) ∩ C(B̄1) satisfy

4u ≥4v in B1

u ≤v on ∂B1.

Then u ≤ v in B1.

Remark 1.31. Theorem 1.29 and Corollary 1.30 still hold if B1 is replaced by
any bounded domain.

The next result is the interior gradient estimate for harmonic functions.

Theorem 1.32. Suppose u is harmonic in B1. Then

sup
B 1

2

|Du| ≤ c sup
∂B1

|u|,

where c is a positive constant depending only on n.

By Theorem 1.32, we have for any α ∈ [0, 1]

|u(x)− u(y)| ≤ c|x− y|α sup
∂B1

|u| for any x, y ∈ B 1
2
,

where c is a positive constant depending only on n.

Proof. A direct calculation shows

4(|Du|2) = 2
n∑

i,j=1

(Diju)2 + 2
n∑

i=1

DiuDi(4u) = 2
n∑

i,j=1

(Diju)2,

where we used 4u = 0 in B1. Hence |Du|2 is a subharmonic function. To get
interior estimates we need a cut-off function. For any ϕ ∈ C1

0 (B1), we have

4(ϕ|Du|2) = (4ϕ)|Du|2 + 4
n∑

i,j=1

DiϕDjuDiju + 2ϕ

n∑

i,j=1

(Diju)2.

By taking ϕ = η2 for some η ∈ C1
0 (B1) with η ≡ 1 in B1/2, we obtain by the Cauchy

inequality

4(η2|Du|2)

=2η4η|Du|2 + 2|Dη|2|Du|2 + 8η

n∑

i,j=1

DiηDjuDiju + 2η2
n∑

i,j=1

(Diju)2

≥
(

2η4η − 6|Dη|2
)
|Du|2 ≥ −C|Du|2,

where C is a positive constant depending only on η. Note

4(u2) = 2|Du|2 + 2u4u = 2|Du|2,
since u is harmonic. By taking α large enough, we get

4(η2|Du|2 + αu2) ≥ 0.

We apply Theorem 1.29, the maximum principle, to get the result. ¤

Next we derive the Harnack inequality.
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Lemma 1.33. Suppose u is a positive harmonic function in B1. Then

sup
B 1

2

|D log u| ≤ c,

where c is a positive constant depending only on n.

Proof. Set v = log u. Then a direct calculation shows

4v = −|Dv|2.
We need an interior gradient estimate on v. Set w = |Dv|2. Then we get

4w + 2
n∑

i=1

DivDiw = 2
n∑

i,j=1

(Dijv)2.

As before, we need to introduce a cut-off function. First note

(1)
n∑

i,j=1

(Dijv)2 ≥
n∑

i

(Diiv)2 ≥ 1
n

(4v)2 =
|Dv|4

n
=

w2

n
.

Take a nonnegative function ϕ ∈ C1
0 (B1). We obtain by the Cauchy inequality

4(ϕw) + 2
n∑

i=1

DivDi(ϕw)

=2ϕ

n∑

i,j=1

(Dijv)2 + 4
n∑

i,j=1

DiϕDjvDijv + 2w

n∑

i=1

DiϕDiv + (4ϕ)w

≥ϕ

n∑

i,j=1

(Dijv)2 − 2|Dϕ||Dv|3 −
(
|4ϕ|+ C

|Dϕ|2
ϕ

)
|Dv|2,

if we choose ϕ such that |Dϕ|2/ϕ is bounded in B1. Choose ϕ = η4 for some
η ∈ C1

0 (B1). For such a fixed η, we obtain by (1)

4(η4w) + 2
n∑

i=1

DivDi(η4w)

≥ 1
n

η4|Dv|4 − Cη3|Dη||Dv|3 − 4η2(η4η + C|Dη|2)|Dv|2

≥ 1
n

η4|Dv|4 − Cη3|Dv|3 − Cη2|Dv|2,
where C is a positive constant depending only on n and η. Hence we get by the
Cauchy inequality

4(η4w) + 2
n∑

i=1

DivDi(η4w) ≥ 1
n

η4w2 − C,

where C is a positive constant depending only on n and η.
Suppose η4w attains its maximum at x0 ∈ B1. Then D(η4w) = 0 and

4(η4w) ≤ 0 at x0. Hence
η4w2(x0) ≤ C(n, η).

If w(x0) ≥ 1, then η4w(x0) ≤ C(n). Otherwise η4w(x0) ≤ w(x0) ≤ η4(x0). In both
cases we conclude

η4w ≤ C(n, η) in B1.
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This finishes the proof. ¤

Corollary 1.34. Suppose u is a nonnegative harmonic function in B1. Then

u(x1) ≤ cu(x2) for any x1, x2 ∈ B 1
2
,

where c is a positive constant depending only on n.

Proof. We may assume u > 0 in B1. For any x1, x2 ∈ B 1
2
, by a simple

integration we obtain with Lemma 1.33

log
u(x1)
u(x2)

≤ |x1 − x2|
∫ 1

0

|D log u(tx2 + (1− t)x1)|dt ≤ C|x1 − x2|.

This finishes the proof. ¤

Next we prove a quantitative Hopf Lemma.

Theorem 1.35. Suppose u ∈ C(B̄1) is a harmonic function in B1. If u(x) <
u(x0) for any x ∈ B̄1 and some x0 ∈ ∂B1, then

∂u

∂n
(x0) ≥ c

(
u(x0)− u(0)

)
,

where c is a positive constant depending only on n.

Proof. Consider a positive function v in B1 defined by

v(x) = e−α|x|2 − e−α.

It is easy to see

4v(x) = e−α|x|2(−2αn + 4α2|x|2) > 0 for any |x| ≥ 1
2
,

if α ≥ 2n+1. Hence for such a fixed α, the function v is subharmonic in the region
A = B1 \B1/2. Now define for ε > 0

hε(x) = u(x)− u(x0) + εv(x).

This is also a subharmonic function, i.e., 4hε ≥ 0 in A. Obviously hε ≤ 0 on ∂B1

and hε(x0) = 0. Since u(x) < u(x0) for |x| = 1/2, we take ε > 0 small such that
hε(x) < 0 for |x| = 1/2. Therefore by Theorem 1.29, hε assumes at the point x0

its maximum in A. This implies

∂hε

∂n
(x0) ≥ 0,

or
∂u

∂n
(x0) ≥ −ε

∂v

∂n
(x0) = 2αεe−α > 0.

Note that we only used the subharmonicity of u so far. We estimate ε as follows.
Set w(x) = u(x0)− u(x) > 0 in B1. Obviously w is a harmonic function in B1. By
Corollary 1.34, the Harnack inequality, we have

inf
B 1

2

w ≥ cw(0),

or
max
B 1

2

u ≤ u(x0)− c
(
u(x0)− u(0)

)
,
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where c is a positive constant depending only on n. Hence we take

ε = δc
(
u(x0)− u(0)

)
,

for δ small, depending on n. This finishes the proof. ¤

To finish this section, we prove a result on the global Hölder continuity for
harmonic functions.

Lemma 1.36. Suppose u ∈ C(B̄1) is a harmonic function in B1 with u = ϕ on
∂B1. If ϕ ∈ Cα(∂B1) for some α ∈ (0, 1), then u ∈ Cα/2(B̄1) and

‖u‖
C

α
2 (B̄1)

≤ c‖ϕ‖Cα(∂B1),

where c is a positive constant depending only on n and α.

Proof. First, the maximum principle implies that

inf
∂B1

ϕ ≤ u ≤ sup
∂B1

ϕ in B1.

Next, we claim for any x0 ∈ ∂B1

(1) sup
x∈B1

|u(x)− u(x0)|
|x− x0|α

2
≤ 2

α
2 sup

x∈∂B1

|ϕ(x)− ϕ(x0)|
|x− x0|α .

Lemma 1.36 follows easily from (1).
For any x, y ∈ B1, set dx = dist(x, ∂B1) and dy = dist(y, ∂B1), and assume

dy ≤ dx. Take x0, y0 ∈ ∂B1 such that |x−x0| = dx and |y− y0| = dy. Assume first
that |x − y| ≤ dx/2. Then y ∈ B̄dx/2(x) ⊂ Bdx(x) ⊂ B1. We apply Theorem 1.32
(scaled version) to u− u(x0) in Bdx(x) and get by (1)

d
α
2
x
|u(x)− u(y)|
|x− y|α

2
≤ C|u− u(x0)|L∞(Bdx (x)) ≤ Cd

α
2
x ‖ϕ‖Cα(∂B1).

Hence, we obtain
|u(x)− u(y)| ≤ C|x− y|α

2 ‖ϕ‖Cα(∂B1).

Assume now that dy ≤ dx ≤ 2|x− y|. Then by (1) again we have

|u(x)− u(y)| ≤ |u(x)− u(x0)|+ |u(x0)− u(y0)|+ |u(y0)− u(y)|
≤ C(d

α
2
x + |x0 − y0|α

2 + d
α
2
y )‖ϕ‖Cα(∂B1)

≤ C|x− y|α
2 ‖ϕ‖Cα(∂B1),

since |x0 − y0| ≤ dx + |x− y|+ dy ≤ 5|x− y|.
To prove (1), we assume B1 = B1

(
(1, 0, · · · , 0)

)
, x0 = 0 and ϕ(0) = 0. Define

K = supx∈∂B1
|ϕ(x)|/|x|α. Note |x|2 = 2x1 for x ∈ ∂B1. Then

ϕ(x) ≤ K|x|α ≤ 2
α
2 Kx

α
2
1 for any x ∈ ∂B1.

Define v(x) = 2α/2Kx
α/2
1 in B1. Then we have

4v(x) = 2
α
2 K · α

2
(
α

2
− 1)x

α
2−2
1 < 0 in B1.

Corollary 1.30 implies

u(x) ≤ v(x) = 2
α
2 Kx

α
2
1 ≤ 2

α
2 K|x|α

2 for any x ∈ B1.
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Considering −u similarly, we get

|u(x)| ≤ 2
α
2 K|x|α

2 for any x ∈ B1.

This proves (1). ¤

1.4. Energy Methods

In this section, we discuss harmonic functions by using energy methods. In
general, we assume throughout this section that aij ∈ C(B1) satisfies

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ B1 and ξ ∈ Rn,

for some positive constants λ and Λ. We consider the function u ∈ C1(B1) satisfying∫

B1

aijDiuDjϕ = 0 for any ϕ ∈ C1
0 (B1).

It is easy to check by integration by parts that harmonic functions satisfy the above
equation for aij = δij .

The following result is referred to as the Cacciopolli inequality.

Lemma 1.37. Suppose u ∈ C1(B1) satisfies∫

B1

aijDiuDjϕ = 0 for any ϕ ∈ C1
0 (B1).

Then for any function η ∈ C1
0 (B1)∫

B1

η2|Du|2 ≤ c

∫

B1

|Dη|2u2,

where c is a positive constant depending only on λ and Λ.

Proof. For any η ∈ C1
0 (B1), set ϕ = η2u. Then we have

λ

∫

B1

η2|Du|2 ≤ Λ
∫

B1

η|u||Dη||Du|.

A simple application of the Cauchy inequality yields the result. ¤

Corollary 1.38. Let u be as in Lemma 1.37. Then for any 0 ≤ r < R ≤ 1∫

Br

|Du|2 ≤ C

(R− r)2

∫

BR

u2,

where C is a positive constant depending only on λ and Λ.

Proof. Take η such that η = 1 on Br, η = 0 outside BR and |Dη| ≤ 2(R −
r)−1. ¤

Corollary 1.39. Let u be as in Lemma 1.37. Then for any 0 < R ≤ 1∫

B R
2

u2 ≤ θ

∫

BR

u2,

and ∫

B R
2

|Du|2 ≤ θ

∫

BR

|Du|2,

where θ ∈ (0, 1) is a positive constant depending only on n, λ and Λ.
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Proof. Take an η ∈ C1
0 (BR) with η = 1 on BR/2 and |Dη| ≤ 2R−1. Then

Lemma 1.37 yields∫

BR

|D(ηu)|2 ≤ C

∫

BR

|Dη|2u2 ≤ C

R2

∫

BR\B R
2

u2,

since Dη = 0 in BR/2. Hence, by the Poincaré inequality, we get
∫

BR

(ηu)2 ≤ CR2

∫

BR

|D(ηu)|2.

Therefore we obtain ∫

B R
2

u2 ≤ C

∫

BR\B R
2

u2,

and hence

(C + 1)
∫

B R
2

u2 ≤ C

∫

BR

u2.

For the second inequality, observe that Lemma 1.37 holds for u − a for an
arbitrary constant a. Then as before, we have∫

BR

η2|Du|2 ≤ C

∫

BR

|Dη|2(u− a)2 ≤ C

R2

∫

BR\B R
2

(u− a)2.

The Poincaré inequality implies with a = |BR \BR
2
|−1

∫
BR\B R

2

u

∫

BR\B R
2

(u− a)2 ≤ c(n)R2

∫

BR\B R
2

|Du|2.

Hence we obtain ∫

B R
2

|Du|2 ≤ C

∫

BR\B R
2

|Du|2,

and hence

(C + 1)
∫

B R
2

|Du|2 ≤ C

∫

BR

|Du|2.

This finishes the proof. ¤

Remark 1.40. Corollary 1.39 implies, in particular, that a harmonic function
in Rn with a finite L2-norm is identically zero and that a harmonic function in Rn

with a finite Dirichlet integral is constant.

Remark 1.41. By iterating the result in Corollary 1.39, we have the following
estimates. Let u be as in Lemma 1.37. Then for any 0 < ρ < r ≤ 1∫

Bρ

u2 ≤ C
(ρ

r

)µ
∫

Br

u2,

and ∫

Bρ

|Du|2 ≤ C
(ρ

r

)µ
∫

Br

|Du|2,

for some positive constant µ depending only on n, λ and Λ. Later on, we will prove
that we can take µ ∈ (n − 2, n) in the second inequality. For harmonic functions,
we have better results.
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Lemma 1.42. Suppose {aij} is a constant positive definite matrix with

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2 for any ξ ∈ Rn,

for some constants 0 < λ ≤ Λ. Suppose u ∈ C1(B1) satisfies

(1)
∫

B1

aijDiuDjϕ = 0 for any ϕ ∈ C1
0 (B1).

Then for any 0 < ρ ≤ r

(2)
∫

Bρ

|u|2 ≤ c
(ρ

r

)n
∫

Br

|u|2,

and

(3)
∫

Bρ

|u− uρ|2 ≤ c
(ρ

r

)n+2
∫

Br

|u− ūr|2,

where c is a positive constant depending only on λ and Λ and ūr denotes the average
of u in Br.

Proof. By a simple dilation, we need only consider r = 1. We only prove (2)
and (3) for ρ ∈ (

0, 1
2

]
, since they are trivial for ρ ∈ ( 1

2 , 1].
Now we claim

|u|2L∞(B 1
2
) + |Du|2L∞(B 1

2
) ≤ c

∫

B1

|u|2,

where c is a positive constant depending only on λ and Λ. This implies for ρ ∈ (
0, 1

2

]
∫

Bρ

|u|2 ≤ ρn|u|2L∞(B 1
2
) ≤ cρn

∫

B1

|u|2,

and ∫

Bρ

|u− ūρ|2 ≤
∫

Bρ

|u− u(0)|2 ≤ ρn+2|Du|2L∞(B 1
2
) ≤ cρn+2

∫

B1

|u|2.

If u is a solution of (1), so is u − u1. With u replaced by u − u1 in the above
inequality, we have ∫

Bρ

|u− uρ|2 ≤ cρn+2

∫

B1

|u− u1|2.

We now present two methods to prove the claim.
Method 1. By a rotation, we may assume (aij) is a diagonal matrix. Hence

(1) becomes
n∑

i=1

λiDiiu = 0,

with 0 < λ ≤ λi ≤ Λ for i = 1, · · ·n. It is easy to see that there exists a constant
r0 ∈ (0, 1/2), depending only on λ and Λ, such that for any x0 ∈ B 1

2
the rectangle

{
x;
|xi − x0i|√

λi

< r0

}

is contained in B1. Consider the change the coordinate

xi 7→ yi =
xi√
λi

,
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and set
v(y) = u(x).

Then v is harmonic in {y;
∑n

i=1 λiy
2
i < 1}. In the ball {y; |y− y0| < r0}, we use the

interior estimates to yield

|v(y0)|2 + |Dv(y0)|2 ≤ c

∫

Br0 (y0)

v2 ≤ c

∫

{∑n
i=1 λiy2

i <1}

v2,

where c is a positive constant depending only on λ and Λ. We transform back to u
to get

|u(x0)|2 + |Du(x0)|2 ≤ c

∫

|x|<1

u2.

Method 2. If u is a solution of (1), so are any derivatives of u. By applying
Corollary 1.38 to derivatives of u, we conclude for any positive integer k

‖u‖Hk(B 1
2
) ≤ c‖u‖L2(B1),

where c is a positive constant depending only on n, λ and Λ. By taking k = [
n

2
] + 1,

we have Hk(B 1
2
) continuously embedded in C1(B̄ 1

2
). We then get

|u|L∞(B 1
2
) + |Du|L∞(B 1

2
) ≤ c‖u‖L2(B1).

This finishes the proof. ¤



CHAPTER 2

Maximum Principles

In this chapter, we discuss maximum principles and their applications. Two
classes of maximum principles will be discussed, one due to Hopf and the other
to Alexandroff. The former gives estimates of solutions in terms of the L∞-norm
of the nonhomogenous terms while the latter gives the estimates in terms of the
Ln-norm. Applications include various a priori estimates and the moving plane
method.

2.1. Strong Maximum Principle

Suppose Ω is a bounded and connected domain in Rn. Consider the operator
L in Ω

Lu ≡ aij(x)Diju + bi(x)Diu + c(x)u,

for u ∈ C2(Ω) ∩ C(Ω̄). We always assume that aij , bi and c are continuous and
hence bounded in Ω̄ and that L is uniformly elliptic in Ω in the following sense

aij(x)ξiξj ≥ λ|ξ|2 for any x ∈ Ω and any ξ ∈ Rn,

for some positive constant λ.

Lemma 2.1. Suppose u ∈ C2(Ω)∩C(Ω̄) satisfies Lu > 0 in Ω with c(x) ≤ 0 in
Ω. If u has a nonnegative maximum in Ω̄, then u cannot attain this maximum in
Ω.

Proof. Suppose u attains its nonnegative maximum of Ω̄ at x0 ∈ Ω. Then
Diu(x0) = 0 and the matrix

(
Dij(x0)

)
is semi-negative definite. By the ellip-

ticity condition, the matrix
(
aij(x0)

)
is positive definite. This implies Lu(x0) =

aij(x0)Diju(x0) ≤ 0, which is a contradiction. ¤

Remark 2.2. If c(x) ≡ 0, then the requirement for the nonnegativeness on u
can be removed. This remark holds for many results in the rest of this section.

The next result is referred to as the weak maximum principle.

Lemma 2.3. Suppose u ∈ C2(Ω)∩C(Ω̄) satisfies Lu ≥ 0 in Ω with c(x) ≤ 0 in
Ω. Then u attains on ∂Ω its nonnegative maximum in Ω̄.

Proof. For any ε > 0, consider w(x) = u(x)+ εeαx1 with α to be determined.
Then we have

Lw = Lu + εeαx1(a11α
2 + b1α + c).

Since b1 and c are bounded and a11(x) ≥ λ > 0 for any x ∈ Ω, by choosing α > 0
large enough we get

a11(x)α2 + b1(x)α + c(x) > 0 for any x ∈ Ω.

23
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This implies Lw > 0 in Ω. By Lemma 2.1, w attains its nonnegative maximum
only on ∂Ω, i.e.,

sup
Ω

w ≤ sup
∂Ω

w+.

Then we obtain

sup
Ω

u ≤ sup
Ω

w ≤ sup
∂Ω

w+ ≤ sup
∂Ω

u+ + ε sup
x∈∂Ω

eαx1 .

We finish the proof by letting ε → 0. ¤

As an application, we have the uniqueness of the solution u ∈ C2(Ω)∩C(Ω̄) of
the following Dirichlet boundary value problem for f ∈ C(Ω) and ϕ ∈ C(∂Ω)

Lu = f in Ω

u = ϕ on ∂Ω,

if c(x) ≤ 0 in Ω.

Remark 2.4. The boundedness of the domain Ω is essential, since it guarantees
the existence of maximum and minimum of u in Ω̄. The uniqueness does not hold
if the domain is unbounded. Some examples are given in Section 1.1. Equally
important is the nonpositiveness of the coefficient c.

Example 2.5. Set Ω = {(x, y) ∈ R2; 0 < x < π, 0 < y < π}. Then u =
sin x sin y is a nontrivial solution of the problem

4u + 2u = 0 in Ω

u = 0 on ∂Ω.

The next result is called the Hopf lemma.

Theorem 2.6. Let B be an open ball in Rn with x0 ∈ ∂B. Suppose u ∈
C2(B)∩C(B∪{x0}) satisfies Lu ≥ 0 in B with c(x) ≤ 0 in B. Assume in addition
that

u(x) < u(x0) for any x ∈ B and u(x0) ≥ 0.

Then for each outward direction ν at x0 with ν · n(x0) > 0 there holds

lim inf
t→0+

1
t
[u(x0)− u(x0 − tν)] > 0.

Remark 2.7. If, in addition, u ∈ C1(B ∪ {x0}), we have

∂u

∂ν
(x0) > 0.

Proof. We assume that B is centered at the origin with radius r. We assume
further that u ∈ C(B̄) and u(x) < u(x0) for any x ∈ B̄\{x0}, since we can construct
a ball B∗ ⊂ B tangent to B at x0.

Consider v(x) = u(x) + εh(x) for some nonnegative function h. We will choose
ε > 0 appropriately such that v attains its nonnegative maximum only at x0. Set
Σ = B ∩Br/2(x0) and h(x) = e−α|x|2 − e−αr2

with α to be determined. We check
in the following that

Lh > 0 in Σ.
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A direct calculation yields

Lh =e−α|x|2{4α2
n∑

i,j=1

aij(x)xixj − 2α

n∑

i=1

aii(x)− 2α

n∑
n=1

bi(x)xi + c
}

− ce−αr2

≥e−α|x|2{4α2
n∑

i,j=1

aij(x)xixj − 2α

n∑

i=1

[aii(x) + bi(x)xi] + c
}
.

By the ellipticity, we have
n∑

i,j=1

aij(x)xixj ≥ λ|x|2 ≥ λ
(r

2

)2

> 0 in Σ.

We conclude Lh > 0 in Σ for α large enough. With such an h, we have Lv =
Lu + εLh > 0 in Σ for any ε > 0. By Lemma 2.1, v cannot attain its nonnegative
maximum inside Σ.

Next, we prove, for some small ε > 0, v attains at x0 its nonnegative maximum.
Consider v on the boundary ∂Σ.

(i) For x ∈ ∂Σ∩B, since u(x) < u(x0), so u(x) < u(x0)−δ for some δ > 0. Take
ε small such that εh < δ on ∂Σ ∩ B. Hence, for such an ε, we have v(x) < u(x0)
for any x ∈ ∂Σ ∩B.

(ii) On Σ ∩ ∂B, h(x) = 0 and u(x) < u(x0) for x 6= x0. Hence v(x) < u(x0) on
Σ ∩ ∂B \ {x0} and v(x0) = u(x0).

Therefore, we conclude for any small t > 0
1
t

(
v(x0)− v(x0 − tν)

) ≥ 0.

By letting t → 0, we obtain

lim inf
t→0

1
t

(
u(x0)− u(x0 − tν)

) ≥ −ε
∂h

∂ν
(x0).

By the definition of h, we have
∂h

∂ν
(x0) =

∂h

∂n
(x0)n · ν = −2αre−αr2

n · ν < 0.

This finishes the proof. ¤

Next, we are ready to prove the strong maximum principle.

Theorem 2.8. Let u ∈ C2(Ω) ∩ C(Ω̄) satisfy Lu ≥ 0 with c(x) ≤ 0 in Ω.
Then the nonnegative maximum of u in Ω̄ can be assumed only on ∂Ω unless u is
a constant.

Proof. Let M be the nonnegative maximum of u in Ω̄. Set Σ = {x ∈ Ω; u(x) =
M}. It is relatively closed in Ω. We need to show Σ = Ω.

We prove by contradiction. If Σ is a proper subset of Ω, then we may find an
open ball B ⊂ Ω \Σ with a point on its boundary belonging to Σ. (In fact, we may
choose a point p ∈ Ω \Σ such that d(p, Σ) < d(p, ∂Ω) first and then extend the ball
centered at p. It hits Σ before hitting ∂Ω.) Suppose x0 ∈ ∂B ∩ Σ. Obviously we
have Lu ≥ 0 in B and

u(x) < u(x0) for any x ∈ B and u(x0) = M ≥ 0.
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Theorem 2.6 implies
∂u

∂n
(x0) > 0, where n is the outward normal direction at x0 to

the ball B. While x0 is the interior maximal point of Ω, hence Du(x0) = 0. This
leads to a contradiction. ¤

The following result is often referred to as the comparison principle.

Corollary 2.9. Suppose u ∈ C2(Ω)∩C(Ω̄) satisfies Lu ≥ 0 in Ω with c(x) ≤ 0
in Ω. If u ≤ 0 on ∂Ω, then u ≤ 0 in Ω. In fact, either u < 0 in Ω or u ≡ 0 in Ω.

In order to discuss the boundary value problem with a general boundary con-
dition, we need the following result, which is just a corollary of Theorem 2.6 and
Theorem 2.8.

Corollary 2.10. Suppose Ω has the interior sphere property and that u ∈
C2(Ω) ∩ C1(Ω̄) satisfies Lu ≥ 0 in Ω with c(x) ≤ 0. Assume u attains its nonneg-
ative maximum at x0 ∈ Ω̄. Then x0 ∈ ∂Ω and for any outward direction ν at x0 to
∂Ω

∂u

∂ν
(x0) > 0,

unless u is a constant in Ω̄.

Corollary 2.11. Suppose Ω is bounded in Rn and satisfies the interior sphere
property. Let u ∈ C2(Ω) ∩ C1(Ω̄) be a solution of the following boundary value
problem

Lu =f in Ω

∂u

∂n
+ α(x)u =ϕ on ∂Ω,

for some f ∈ C(Ω̄) and ϕ ∈ C(∂Ω). Assume in addition that c(x) ≤ 0 in Ω and
α(x) ≥ 0 on ∂Ω. Then u is the unique solution if c 6≡ 0 or α 6≡ 0. If c ≡ 0 and
α ≡ 0, u is unique up to additive constants.

Proof. Suppose u is a solution of the following homogeneous equation

Lu = 0 in Ω

∂u

∂n
+ α(x)u = 0 on ∂Ω.

Case 1. c 6≡ 0 or α 6≡ 0. Suppose that u has a positive maximum at x0 ∈ Ω̄.
If u is a positive constant, there leads to a contradiction to the condition c 6≡ 0 in
Ω or α 6≡ 0 on ∂Ω. Otherwise x0 ∈ ∂Ω and ∂u

∂n (x0) > 0 by Corollary 2.10, which
contradicts the boundary value. Therefore u ≡ 0.

Case 2. c ≡ 0 and α ≡ 0. Suppose u is a nonconstant solution. Then its
maximum in Ω̄ is assumed only on ∂Ω by Theorem 2.8, say at x0 ∈ ∂Ω. Again
Corollary 2.10 implies ∂u

∂n (x0) > 0. This is a contradiction. Therefore, u is a
constant. ¤

The following theorem generalizes the comparison principle under no restric-
tions on c(x).

Theorem 2.12. Suppose u ∈ C2(Ω) ∩ C(Ω̄) satisfies Lu ≥ 0. If u ≤ 0 in Ω,
then either u < 0 in Ω or u ≡ 0 in Ω.
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Proof. Method 1. Suppose u(x0) = 0 for some x0 ∈ Ω. We will prove that
u ≡ 0 in Ω. Write c(x) = c+(x) − c−(x), where c+(x) and c−(x) are the positive
and negative part of c(x) respectively. Then u satisfies

aijDiju + biDiu− c−u ≥ −c+u ≥ 0.

So we have u ≡ 0 by Theorem 2.8.
Method 2. Set v = ue−αx1 for some α > 0 to be determined. By Lu ≥ 0, we

have
aijDijv +

(
α(a1i + ai1) + bi

)
Div + (a11α

2 + b1α + c)v ≥ 0.

Choose α large enough such that a11α
2 + b1α + c > 0. Therefore v satisfies

aijDijv +
(
α(a1i + ai1) + bi

)
Div ≥ 0.

Hence we apply Theorem 2.8 to v to conclude that either v < 0 in Ω or v ≡ 0 in
Ω. ¤

The next result is the general maximum principle for the operator L with no
restriction on c(x).

Theorem 2.13. Suppose there exists a w ∈ C2(Ω)∩C1(Ω̄) satisfying w > 0 in
Ω̄ and Lw ≤ 0 in Ω. If u ∈ C2(Ω) ∩ C(Ω̄) satisfies Lu ≥ 0 in Ω, then u/w cannot
attain in Ω its nonnegative maximum unless u/w is constant. If, in addition, u/w
assumes its nonnegative maximum at x0 ∈ ∂Ω and u/w 6≡ const., then for any
outward direction ν at x0 to ∂Ω

∂

∂ν

( u

w

)
(x0) > 0,

provided ∂Ω has the interior sphere property at x0.

Proof. Set v =
u

w
. Then v satisfies

aijDijv + BiDiv +
(Lw

w

)
v ≥ 0,

where Bi = bi +
2
w

aijDijw. We simply apply Theorem 2.6 and Corollary 2.9 to
v. ¤

Remark 2.14. If the operator L in Ω satisfies the condition of Theorem 2.13,
then L has the comparison principle. In particular, the Dirichlet boundary value
problem

Lu = f in Ω

u = ϕ on ∂Ω

has at most one solution.

The next result is the so-called maximum principle for narrow domains.

Proposition 2.15. Let d be a positive number and e be a unit vector such that
|(y − x) · e| < d for any x, y ∈ Ω. Then there exists a d0 > 0, depending only on
λ and the sup-norm of bi and c+, such that the assumptions of Theorem 2.13 are
satisfied if d ≤ d0.



28 2. MAXIMUM PRINCIPLES

Proof. By choosing e = (1, 0, · · · , 0), we suppose Ω̄ lies in {0 < x1 < d}.
Assume, in addition, |bi|, c+ ≤ N for some positive constant N . We construct w as
follows. Set w = eαd − eαx1 > 0 in Ω̄. A direct calculation yields

Lw = −(a11α
2 + b1α)eαx1 + c(eαd − eαx1) ≤ −(a11α

2 + b1α) + Neαd.

Choose α large to have

a11α
2 + b1α ≥ λα2 −Nα ≥ 2N.

Hence Lw ≤ −2N + Neαd = N(eαd − 2) ≤ 0 if d is small with eαd ≤ 2. ¤

Remark 2.16. Some results in this section, including Proposition 2.15, hold
for unbounded domains.

2.2. Poisson Equations

In this section, we use the maximum principle to discuss solutions of Poisson
equations ∆u = f .

As the first application, we derive interior gradient estimates for solutions of
Poisson equations.

Lemma 2.17. Suppose u ∈ C2(BR) ∩ C(B̄R) satisfies

4u = f in BR,

for some f ∈ C(B̄R). Then

|Du(0)| ≤ n

R
max
∂BR

|u|+ R

2
max
BR

|f |.

Proof. We write B = BR and consider Dnu(0). Set M = max∂B |u| and
F = maxB |f |. Consider

v(x′, xn) =
1
2
(
u(x′, xn)− u(x′,−xn)

)
in B+.

Then v satisfies

|4v| ≤ F in B+,

|v| ≤ M on ∂B+,

v(x′, 0) = 0 for |x′| < R.

Consider an auxiliary function

w(x′, xn) = A|x′|2 + Bxn + Cx2
n.

By choosing A,B, C appropriately, we assume
(i) w(x′, 0) = A|x′|2 ≥ 0 for |x′| ≤ R;
(ii) w(x′, xn) = AR2 + (C −A)x2

n + Bxn ≥ M for |x′|2 + x2
n = R2;

(iii) 4w = 2(n− 1)A + 2C ≤ −F in B+.
To achieve this, we need to require

A ≥ 0,

AR2 ≥ M,

(C −A)x2
n + Bxn ≥ 0 for any 0 ≤ xn ≤ R,

2(n− 1)A + 2C ≤ −F.
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So we take
A =

M

R2
,

and
C = −F

2
− (n− 1)A,

which implies

A− C =
F

2
+ nA.

For B, we need B + (C −A)xn ≥ 0, or

B ≥
(

F

2
+

n

R2
M

)
xn for any 0 ≤ xn ≤ R.

Hence we may take

B =
(

F

2
+

n

R2
M

)
R =

R

2
F +

n

R
M.

With such a choice of w, we have4w ≤ 4v in B+ and w ≥ v on ∂B+. By Corollary
2.9, the comparison principle, we obtain w ≥ v in B+. Taking x′ = 0, we obtain

1
2

(
u(0, xn)− u(0,−xn)

xn

)
≤ B + Cxn for any 0 < xn < R.

Therefore, we have by letting xn → 0

Dnu(0) ≤ n

R
M +

R

2
F.

By considering −u similarly, we obtain

|Dnu(0)| ≤ n

R
M +

R

2
F.

This finishes the proof. ¤

Next, we derive an estimate of the modules of continuity for gradients of solu-
tions.

Lemma 2.18. Suppose u ∈ C2(B2R) ∩ C(B̄2R) satisfies

4u = f in B2R,

for some f ∈ C(B̄2R). Then for any x, y ∈ BR with x 6= y,

R2 |Du(x)−Du(y)|
|x− y| ≤ c

(
sup
B2R

|u|+ R2 sup
B2R

|f |
)(

log
2R

|x− y| + 1
)

,

where c is a positive constant depending only on n.

Proof. In the following, we use cubes QR, Q2R instead of balls BR, B2R. Set
M = sup

Q2R

|u| and F = sup
Q2R

|f |. We will prove for any xn ∈
(
0, R

4

)
,

(1)
1
2
|Du(0, xn)−Du(0,−xn)| ≤ cxn

(
M

R2
+ F

)(
log

2R

xn
+ 1

)
,

where c is a positive constant depending only on n. By Lemma 2.17, we have

(2) sup
QR

|Du| ≤ c

(
M

R
+ RF

)
.
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Let Q′ be the domain in Rn+1 given by

Q′ =
{

(x1, . . . , xn−1, y, z); |xi| < R

2
, i = 1, . . . , n− 1, 0 < y, z <

R

4

}
,

and define in Q′ the function

v(x′, y, z) =
1
4
{u(x′, y + z)− u(x′, y − z)− u(x′,−y + z) + u(x′,−y − z)} .

Define an operator L in Rn+1 by

L ≡
n−1∑

i=1

Dxixi
+

1
2
Dyy +

1
2
Dzz.

It is easy to see in Q′

(i) |Lv| ≤ F in Q′;
(ii) v(x′, 0, z) = v(x′, y, 0) = 0;

(iii) |v| ≤ M on |xi| = R

2
, i = 1, . . . , n− 1;

(iv) |v(x′,
R

4
, z)| ≤ µz and |v(x′, y,

R

4
)| ≤ µy,

where |Du| ≤ µ in QR with µ given in terms of M and F by (2). Choose a
comparison function w in Q′ of the form

w(x′, y, z) =
4M |x′|2

R2
+

4µ

R
yz + kyz log

2R

y + z
,

where k is a positive constant to be determined. Note first that |v| ≤ w on ∂Q′.
Since

Lw(x′, y, z) =
8(n− 1)

R2
M + k

(
−1 +

yz

(y + z)2

)
≤ 8(n− 1)

R2
M − 3

4
k,

we see that Lw ≤ −F provided

k ≥ 4
3

(
F +

8(n− 1)M
R2

)
.

With such a choice of k, the function

w(x′, y, z) =
4M |x′|2

R2
+ yz

(
4µ

R
+ k log

2R

y + z

)

satisfies the conditions L(w ± v) ≤ 0 in Q′ and w ± v ≥ 0 on ∂Q′. By Corollary
2.9, the comparison principle, |v| ≤ w in Q′. Letting x′ = 0 in this inequality, then
dividing by z and letting z tend to zero, we obtain

1
2
|Dyu(0, y)−Dyu(0,−y)| ≤ 4µ

R
y + ky log

2R

y
.

We proved (1) for Dn.
With a slight modification we can derive (1) for Di, i = 1, . . . , n− 1. We work

in Rn in this case. In the domain

Q′ =
{

(x1, . . . , xn−2, y, z); |xi| < R

2
, i = 1, . . . , n− 2, 0 < y, z <

R

2

}
,

we define

v(x̂, y, z) =
1
4
{u(x̂, y, z)− u(x̂,−y,−z)− u(x̂, y,−z) + u(x̂,−y,−z)}.
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We choose the comparison function of the form

w(x̂, y, z) =
4M |x|2

R2
+ yz

(
4µ

R
+ k̄ log

2R

y + z

)
,

with µ as before and

k̄ ≥ 2
3

(
F +

8(n− 2)M
R2

)
.

We verify easily that 4(w ± v) ≤ 0 in Q′ and w ± v ≥ 0 on ∂Q′. Hence |v| ≤ w in
Q′. As above, if we set x̂ = 0, then divide by y and let y tend to zero, we obtain

1
2
|Dn−1u(0, z)−Dn−1u(0,−z)| ≤ 4µ

R
z + k̄z log

2R

z
.

Obviously the same result holds if Dn−1 is replaced by Di for i = 1, . . . , n− 2. ¤

Despite the elementary character of its proof, Lemma 2.18 is essentially sharp
and the estimate cannot be improved without further continuity assumptions on f .

As the second application, we discuss the Schauder theory. We will show that,
if u ∈ C2(B1) satisfies

∆u = f in B1,

for some Hölder continuous function f in B1, then D2u is Hölder continuous with
the same exponent. We will use the maximum principle approach, avoiding the
potential integrals.

Let us recall the definition of the Hölder continuity. A function u is Cα at 0 if

|u(x)− u(0)| ≤ c|x|α.

Here |x|α is of course smaller than any constants. It gives a quantitative speed of
how functions approach constant. We define the Hölder semi-norm of u at 0 by

[u]Cα(0) ≡ sup
|x|≤1

|u(x)− u(0)|
|x|α .

Similarly, we can define C1,α and C2,α. For example, u is C2,α at 0 if there exists
a second order polynomial P (x) such that

|u(x)− P (x)| ≤ c|x|2+α.

Lemma 2.19. Suppose u ∈ C2(B1) satisfies

∆u = f in B1,

for some f ∈ C(B1). Then for any α ∈ (0, 1), there exist constants c0 > 0, µ ∈ (0, 1)
and ε0 > 0, depending only on n and α, such that, if |u| ≤ 1 and |f | ≤ ε0 in B1,
there exists a second order harmonic polynomial

p(x) =
1
2
xT Ax + B · x + C,

satisfying
|u(x)− p(x)| ≤ µ2+α for |x| ≤ µ,

and
|A|+ |B|+ |C| ≤ c0.
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Proof. Suppose v is the harmonic function satisfying

∆v = 0 in B1,

v = u on ∂B1.

Then the function u− v satisfies

∆(u− v) = f in B1,

u− v = 0 on ∂B1.

By Corollary 2.9, the comparison principle, we have

|u(x)− v(x)| ≤ 1− |x|2
2n

sup
B1

|f | for any x ∈ B1.

Clearly |v| ≤ 1 in B1. Hence its second order Taylor polynomial at 0

p(x) =
1
2
xT Ax + B · x + C

has universal bounded coefficients and is harmonic. By the mean value theorem,
we have

|u(x)− p(x)| ≤ |v(x)− p(x)|+ 1
2n

sup
B1

|f |

≤ C|x|3 sup
B 1

2

|D3v|+ 1
2n

sup
B1

|f | for any x ∈ B 1
2
.

Now take µ small enough such that the first term is less than or equal to

1
2
µ2+α for |x| ≤ µ,

and then take ε0 such that

1
2

sup
B1

|f | ≤ 1
2
ε0 ≤ 1

2
µ2+α.

This finishes the proof. ¤

Theorem 2.20. Suppose u ∈ C2(B1) satisfies

∆u = f in B1,

where f is Hölder continuous at 0. Then u(x) is C2,α at 0, i.e., there exists a
second order polynomial

p(x) =
1
2
xT Ax + Bx + C

satisfying

|u(x)− p(x)| ≤ c0|x|2+α
(|u|L∞ + |f(0)|+ [f ]Cα(0)

)
for any x ∈ B1,

and
|A|+ |B|+ |C| ≤ c0

(|u|L∞ + |f(0)|+ [f ]Cα(0)
)
,

where c0 is a positive constant depending only on n and α.
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Proof. Without loss of generality, we assume f(0) = 0. In general, we set
v = u− 1

2nf(0)|x|2. Then ∆v = f−f(0) in B1. Furthermore, we assume |u| ≤ 1 and
[f ]Cα(0) ≤ ε0 for small ε0 > 0. The general case can be recovered by considering

u

|u|L∞ + 1
ε0

[f ]Cα(0)
.

First we claim that there are harmonic polynomials for any k = 1, 2, · · · ,

Pk(x) =
1
2
xT Akx + Bkx + Ck,

satisfying
|u(x)− Pk(x)| ≤ µ(2+α)k for any |x| ≤ µk,

and

|Ak −Ak+1| ≤ cµαk,

|Bk −Bk+1| ≤ cµ(α+1)k,

|Ck − Ck+1| ≤ cµ(α+2)k,

where µ ∈ (0, 1) and c are positive constants depending only on n and α.
Note that the case k = 1 corresponds to Lemma 2.19. Let us assume it is true

for k. Set

w(y) =
(u− Pk)(µky)

µ(2+α)k
for |y| ≤ 1.

Then we have

∆w(y) =
f(µky)

µαk
for y ∈ B1.

By Lemma 2.19, there is a harmonic polynomial p0 with bounded coefficients such
that

|w(y)− p0(y)| ≤ µ2+α for |y| ≤ µ,

provided

sup
|y|≤1

|f(µky)|
µαk

≤ [f ]C0(0) ≤ ε0.

Now we scale back to get

|u(x)− Pk(x)− µ(2+α)kp0

(
x

µk

)
| ≤ µ(k+1)(2+α) for |x| ≤ µk+1.

Clearly we proved the (k + 1)-th step by letting

Pk+1(x) = Pk(x) + µ(2+α)kp0

(
x

µk

)
.

It is easy to see that Ak, Bk and Ck converge and the limiting polynomial

p(x) =
1
2
xT A∞x + B∞x + C∞

satisfies

|Pk(x)− p(x)| ≤ c
{|x|2µαk + |x|µ(α+1)k + µ(α+2)k

} ≤ cµ(2+α)k,

for any |x| ≤ µk. Hence we have for |x| ≤ µk

|u(x)− p(x)| ≤ |u(x)− Pk(x)|+ |Pk(x)− p(x)| ≤ cµ(α+2)k,
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or
|u(x)− p(x)| ≤ c|x|2+α for any x ∈ B1.

This finishes the proof. ¤

As the third application, we use the moving plane method to discuss the symme-
try of solutions. The following result was first proved by Gidas, Ni and Nirenberg.

Theorem 2.21. Suppose u ∈ C2(B̄1) is a positive solution of

∆u = f(u) in B1,

u = 0 on ∂B1,

where f is locally Lipschitz in R. Then u is radially symmetric in B1 and
∂u

∂r
(x) < 0

for x 6= 0.

We need a lemma first.

Lemma 2.22. Let u be as in Theorem 2.21. Then for any x0 ∈ ∂B1 and a unit
vector ν with ν · x0 > 0, there exists an r > 0 such that

∂u

∂ν
(x) < 0 for any x ∈ B1 ∩Br(x0).

Proof. We consider two cases.
(i) f(0) ≤ 0. Then we have

∆u = f(u) ≤ f(u)− f(0) ≤ (
f(u)− f(0)

u
)+u(x) = c(x)u(x),

where c(x) is a nonnegative bounded function. Theorem 2.6, the Hopf Lemma,

implies
∂u

∂ν
(x0) < 0.

(ii) f(0) > 0. Clearly, we have
∂u

∂r
(x) ≤ 0 for any x ∈ ∂B1. Suppose there

exists a sequence xi → x0 ∈ ∂B1 such that
∂u

∂r
(xi) ≥ 0.

Then
∂u

∂r
(x0) = 0. Hence

∂u

∂r
is maximized at x0 along ∂B1, and then

∂2u

∂T∂r
(x0) = 0,

for any tangential direction T . Clearly
∂2u

∂T 2
(x0) = 0. Therefore we have

∂2u

∂n2
(x0) = ∆u(x0) = f(0) > 0.

We may assume x0 = (1, 0, · · · , 0) and then apply Taylor expansion to
∂u

∂n
(x) at

x0. Then we get
∂u

∂n
(x) =

∂u

∂n
(x0) + D

∂u

∂n
(x0) · (x− x0) + o(|x− x0|)

=
∂2u

∂n2
(x0)(x1 − 1) + o(|x− x0|).
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Hence for x1 < 1 small, we have
∂u

∂n
(x) < 0. This contradiction finishes the proof.

¤

Proof of Theorem 2.21. We only need to show that u is symmetric in x1

direction. Define for λ > 0

Σλ = {x ∈ B1; x1 > λ},
Tλ = {x1 = λ},
Σ′λ = the reflection of Σλ with respect to Tλ,

xλ = (2λ− x1, x2, · · ·xn).

First we write the following statement

(∗) u(x) < u(xλ) for any x ∈ Σλ and ux1 < 0 on B1 ∩ Tλ.

We claim that Λ = {λ ∈ (0, 1); (∗) holds for λ} is (0,1).
To this end, we need to show that Λ is non-empty, open and closed in (0, 1). It

is clear that Λ is non-empty by Lemma 2.22. For the openness, we take a λ0 ∈ Λ
and prove that (∗) holds for λ < λ0 if λ is closed to λ0. First we have

u(x) < u(xλ0) for any x ∈ Σλ0 .

Take any λ1 > λ0 with λ1 closed to λ0. Then we get

u(x) < u(xλ0) for any x ∈ Σλ1 .

By the continuity, this implies for λ close to λ0

u(x) < u(xλ) for any x ∈ Σλ1 .

Next, Lemma 2.22 and the fact

Dx1u(x) < 0 on B1 ∩ Tλ0

imply that
Dx1u(x) < 0 on B1 ∩ Tλ,

for any λ close to λ0. Therefore, we have λ ∈ Λ for any λ close to λ0. For the
closedness, we prove that positive λ ∈ Λ if u(x) ≤ u(xλ) for x ∈ Σλ and Dx1u(x) ≤ 0
for x ∈ Tλ. For such a λ, define v(x) = u(xλ) in Σ′λ. Then, we have

∆v = f(v) in Σ′λ.

Consider w = u − v in Σ′λ. We have w ≥ 0 and w 6= 0 in Σ′λ. In fact, w > 0 on
∂Σ′λ \ Tλ. Moreover, we get

∆w = f(u)− f(v) = c(x)w,

by the mean value theorem. Theorem 2.13 implies w > 0 in Σλ. We note w ≡ 0 on
Tλ. By Theorem 2.6, the Hopf lemma, we get

2Dx1u = Dx1w < 0 on Tλ ∩B1.

Hence λ ∈ Λ. This finishes the proof of Theorem 2.21. ¤

Remark 2.23. The method above depends on the smoothness of domains and
the smoothness of solutions up to the boundary. In fact, such conditions can be
removed. See Section 2.6 for details.



36 2. MAXIMUM PRINCIPLES

2.3. A Priori Estimates

In this section, we derive a priori estimates for solutions of the Dirichlet problem
and the Neumann problem.

Suppose Ω is a bounded and connected domain in Rn. Consider the operator
L in Ω

Lu ≡ aij(x)Diju + bi(x)Diu + c(x)u,

for u ∈ C2(Ω) ∩ C(Ω̄). We assume that aij , bi and c are continuous and hence
bounded in Ω̄ and that L is uniformly elliptic in Ω, i.e.,

aij(x)ξiξj ≥ λ|ξ|2 for any x ∈ Ω and any ξ ∈ Rn,

where λ is a positive constant. We denote by Λ the sup-norms of aij and bi, i.e.,

max
Ω
|aij |+ max

Ω
|bi| ≤ Λ.

Theorem 2.24. Suppose u ∈ C2(Ω) ∩ C(Ω̄) satisfies

Lu = f in Ω,

u = ϕ on ∂Ω,

for some f ∈ C(Ω̄) and ϕ ∈ C(∂Ω). If c(x) ≤ 0, then

max
Ω
|u| ≤ max

∂Ω
|ϕ|+ C max

Ω
|f |,

where C is a positive constant depending only on λ, Λ and diam(Ω).

Proof. We will construct a function w in Ω such that
(i) L(w ± u) = Lw ± f ≤ 0, or Lw ≤ ∓f in Ω;
(ii) w ± u = w ± ϕ ≥ 0, or w ≥ ∓ϕ on ∂Ω.

Set F = maxΩ |f | and Φ = max∂Ω |ϕ|. We need

Lw ≤ −F in Ω

w ≥ Φ on ∂Ω.

Suppose the domain Ω lies in the set {0 < x1 < d} for some d > 0. Set for some
α > 0 to be chosen later

w = Φ + (eαd − eαx1)F.

Then we have by a direct calculation

−Lw = (a11α
2 + b1α)Feαx1 − cΦ− c(eαd − eαx1)F

≥ (a11α
2 + b1α)F ≥ (α2λ + b1α)F ≥ F,

by choosing α large such that α2λ + b1(x)α ≥ 1 for any x ∈ Ω. Hence w satisfies
(i) and (ii). By Corollary 2.9, the comparison principle, we conclude −w ≤ u ≤ w
in Ω, and in particular,

sup
Ω
|u| ≤ Φ + (eαd − 1)F,

where α is a positive constant depending only on λ and Λ. ¤
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Theorem 2.25. Suppose u ∈ C2(Ω) ∩ C1(Ω̄) satisfies

Lu = f in Ω,

∂u

∂n
+ α(x)u = ϕ on ∂Ω,

where n is the outward normal direction to ∂Ω. If c(x) ≤ 0 in Ω and α(x) ≥ α0 > 0
on ∂Ω, then

max
Ω
|u| ≤ C

(
max
∂Ω

|ϕ|+ max
Ω
|f |),

where C is a positive constant depending only on λ, Λ, α0 and diam(Ω).

Proof. We first consider a special case c(x) ≤ −c0 < 0. We will show

|u(x)| ≤ 1
c0

F +
1
α0

Φ for any x ∈ Ω.

Set

v =
1
c0

F +
1
α0

Φ± u.

Then we have

Lv = c(x)
(

1
c0

F +
1
α0

Φ
)
± f ≤ −F ± f ≤ 0 in Ω,

and
∂v

∂n
+ αv = α

(
1
c0

F +
1
α0

Φ
)
± ϕ ≥ Φ± ϕ ≥ 0 on ∂Ω.

If v has a negative minimum in Ω̄, then v attains it on ∂Ω, say at x0 ∈ ∂Ω, by

Theorem 2.3. This implies
∂v

∂n
(x0) ≤ 0 for n = n(x0), the outward normal direction

at x0. Therefore, we get
(

∂v

∂n
+ αv

)
(x0) ≤ αv(x0) < 0,

which is a contradiction. Hence we have v ≥ 0 in Ω̄, and in particular,

|u(x)| ≤ 1
c0

F +
1
α0

Φ for any x ∈ Ω.

Note that c0 and α0 are independent of λ and Λ for this special case.
Next, we consider the general case c(x) ≤ 0 for any x ∈ Ω. Consider an auxiliary

function u(x) = z(x)w(x) where z is a positive function in Ω̄ to be determined. A
direct calculation shows that w satisfies

aijDijw + BiDiw +
(

c +
aijDijz + biDiz

z

)
w =

f

z
in Ω,

∂w

∂n
+

(
α +

1
z

∂z

∂n

)
w =

ϕ

z
on ∂Ω,

where

Bi =
1
z
(aij + aji)Djz + bi.
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We need to choose the function z > 0 in Ω̄ such that

c +
aijDijz + biDiz

z
≤ −c0 in Ω,

α +
1
z

∂z

∂n
≥ 1

2
α0 on ∂Ω,

or
aijDijz + biDiz

z
≤ −c0 in Ω,

∣∣∣∣
1
z

∂z

∂n

∣∣∣∣ ≤
1
2
α0 on ∂Ω,

where c0 is a positive constant depending only on λ, Λ, α0 and diamΩ. Suppose the
domain Ω lies in {0 < x1 < d}. Choose z(x) = A + eβd − eβx1 for x ∈ Ω, for some
positive A and β to be determined. A direct calculation shows

−1
z

(
aijDijz + biDiz

)
=

(β2a11 + βb1)eβx1

A + eβd − eβx1

≥β2a11 + βb1

A + eβd
≥ 1

A + eβd
> 0,

if β is chosen such that β2a11 + βb1 ≥ 1. Then we have∣∣∣∣
1
z

∂z

∂n

∣∣∣∣ ≤
β

A
eβd ≤ 1

2
α0,

if A is chosen large. This reduces to the special case we just discussed. The new
extra first order term does not change the result. We may apply the special case
to w. ¤

Remark 2.26. The result fails if we just assume α(x) ≥ 0 on ∂Ω. In fact, we
cannot even get the uniqueness.

2.4. Gradient Estimates

The basic method to derive gradient estimates, the so-called the Bernstein
method, involves a differentiation of the equation with respect to xk, k = 1, . . . , n,
followed by a multiplication by Dku and summation over k. The maximum principle
is then applied to the resulting equation in the function v = |Du|2, possibly with
some modifications. There are two kinds of gradient estimates, global gradient
estimates and interior gradient estimates. We will use semi-linear equations to
illustrate the idea.

Suppose Ω is a bounded and connected domain in Rn. Consider the equation

aij(x)Diju + bi(x)Diu = f(x, u) in Ω,

for u ∈ C2(Ω) and f ∈ C(Ω×R). We always assume that aij and bi are continuous
and hence bounded in Ω̄ and that the equation is uniformly elliptic in Ω in the
following sense

aij(x)ξiξj ≥ λ|ξ|2 for any x ∈ Ω and any ξ ∈ Rn,

for some positive constant λ.
We first derive a global gradient estimate.
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Theorem 2.27. Suppose u ∈ C3(Ω) ∩ C1(Ω̄) satisfies

(1) aij(x)Diju + bi(x)Diu = f(x, u) in Ω,

for aij , bi ∈ C1(Ω̄) and f ∈ C1(Ω̄× R). Then

sup
Ω
|Du| ≤ sup

∂Ω
|Du|+ C,

where C is a positive constant depending only on λ, diam(Ω), |aij , bi|C1(Ω̄), M =
|u|L∞(Ω) and |f |C1(Ω̄×[−M,M ]).

Proof. Set L ≡ aijDij + biDi. We calculate L(|Du|2) first. Note

Di(|Du|2) = 2DkuDkiu,

and

(2) Dij(|Du|2) = 2DkiDkju + 2DkuDkiju.

Differentiating (1) with respect to xk, multiplying by Dku and summing over k, we
have by (2)

aijDij(|Du|2) + biDi(|Du|2) = 2aijDkiuDkju

− 2DkaijDkuDiju− 2DkbiDkuDiu + 2Dzf |Du|2 + 2DkfDku.

The ellipticity assumption implies
∑

i,j,k

aijDkiuDkju ≥ λ|D2u|2.

By the Cauchy inequality, we have

L(|Du|2) ≥ λ|D2u|2 − C|Du|2 − C,

where C is a positive constant depending only on λ, the C1-norms of aij and bi

in Ω̄ and the C1-norm of f in Ω̄ × [−M, M ]. We need to add another term u2 to
control |Du|2 in the right hand side. By the ellipticity assumption again, we have

L(u2) = 2aijDiuDju + 2u{aijDiju + biDiu}
≥ 2λ|Du|2 + 2uf.

Therefore we obtain

L(|Du|2 + αu2) ≥ λ|D2u|2 + (2λα− C)|Du|2 − C

≥ λ|D2u|2 + |Du|2 − C,

if we choose α > 0 large, with C depending in addition on M . In order to control
the constant term, we consider another function eβx1 for β > 0. Hence, we get

L
(|Du|2 + αu2 + eβx1

) ≥ λ|D2u|2 + |Du|2 +
{
β2a11e

βx1 + βb1e
βx1 − C

}
.

If we put the domain Ω ⊂ {x1 > 0}, then eβx1 ≥ 1 for any x ∈ Ω. By choosing β
large, we make the last term positive. Therefore, by taking large α, β depending
only on λ,diam(Ω), |aij |C1(Ω̄), |bi|C1(Ω̄), M = |u|L∞(Ω), |f |C1(Ω̄×[−M,M ]) and setting

w = |Du|2 + α|u|2 + eβx1 ,

we obtain
Lw ≥ 0 in Ω.
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By the maximum principle, we have

sup
Ω

w ≤ sup
∂Ω

w.

This finishes the proof. ¤

Similarly, we discuss the interior gradient estimate. In this case, we just require
the bound of supΩ |u|.

Proposition 2.28. Suppose u ∈ C3(Ω) satisfies

aij(x)Diju + bi(x)Diu = f(x, u) in Ω,

for aij , bi ∈ C1(Ω̄) and f ∈ C1(Ω̄× R). Then for any compact subset Ω′ ⊂⊂ Ω

sup
Ω′
|Du| ≤ C,

where C is a positive constant depending on λ, diam(Ω), dist(Ω′, ∂Ω), |aij |C1(Ω̄),
|bi|C1(Ω̄), M = |u|L∞(Ω) and |f |C1(Ω̄×[−M,M ]).

Proof. We take a cut-off function γ ∈ C∞0 (Ω) with γ ≥ 0 and consider an
auxiliary function of the form

w = γ|Du|2 + α|u|2 + eβx1 .

Set v = γ|Du|2. For L = aijDij + biDi, we then have

Lv = (Lγ)|Du|2 + γL(|Du|2) + 2aijDiγDj |Du|2.
Recall in the proof of Theorem 2.27

L(|Du|2) ≥ λ|D2u|2 − C|Du|2 − C.

Hence we have

Lv ≥ λγ|D2u|2 + 4aijDiγDkuDkju− C|Du|2 + (Lγ)|Du|2 − C.

The Cauchy inequality implies for any ε > 0

|4aijDkuDiγDkju| ≤ ε|Dγ|2|D2u|2 + c(ε)|Du|2.
For the cut-off function γ, we require

|Dγ|2 ≤ Cγ in Ω.

Therefore we have by taking ε > 0 small

Lv ≥ λγ|D2u|2
(

1− ε
|Dγ|2

γ

)
− C|Du|2 − C

≥ 1
2
λγ|D2u|2 − C|Du|2 − C.

Now we may proceed as before. ¤

In the rest of this section, we use barrier functions to derive boundary gradient
estimates. We need to assume that the domain Ω satisfies the uniform exterior
sphere property.
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Proposition 2.29. Suppose u ∈ C2(Ω) ∩ C(Ω̄) satisfies

aij(x)Diju + bi(x)Diu = f(x, u) in Ω,

for aij , bi ∈ C(Ω̄) and f ∈ C(Ω̄× R). Then

|u(x)− u(x0)| ≤ C|x− x0| for any x ∈ Ω and x0 ∈ ∂Ω,

where C is a positive constant depending only on λ,Ω, |aij , bi|L∞(Ω),M = |u|L∞(Ω),
|f |L∞(Ω×[−M,M ]) and |ϕ|C2(Ω̄) for some ϕ ∈ C2(Ω̄) with ϕ = u on ∂Ω.

Proof. For simplicity, we assume u = 0 on ∂Ω. As before, we set L =
aijDij + biDi. Then we have

L(±u) = ±f ≥ −F in Ω,

where we denote F = supΩ |f(·, u)|. Now we fix x0 ∈ ∂Ω and construct a function
w such that

Lw ≤ −F in Ω, w(x0) = 0, w|∂Ω ≥ 0.

Then by the maximum principle we have

−w ≤ u ≤ w in Ω.

Taking normal derivatives at x0, we obtain∣∣∣∣
∂u

∂n
(x0)

∣∣∣∣ ≤
∂w

∂n
(x0).

So we need to bound
∂w

∂n
(x0) independently of x0.

Consider an exterior ball BR(y) with B̄R(y) ∩ Ω̄ = {x0}. Define d(x) as the
distance from x to ∂BR(y). Then we have

0 < d(x) < D ≡ diam(Ω) for any x ∈ Ω.

In fact, d(x) = |x− y| − R for any x ∈ Ω. Consider w = ψ(d) for some function ψ
defined in [0,∞). Then we need

ψ(0) = 0 (=⇒ w(x0) = 0),

ψ(d) > 0 for d > 0 (=⇒ w|∂Ω ≥ 0),

ψ′(0) is controlled.

From the first two inequalities, it is natural to require that ψ′(d) > 0. Note

Lw = ψ′′aijDidDjd + ψ′aijDijd + ψ′biDid.

A direct calculation yields

Did(x) =
xi − yi

|x− y| ,

Dijd(x) =
δij

|x− y| −
(xi − yi)(xi − yi)

|x− y|3 ,

which imply |Dd| = 1 and, with Λ = sup |aij |,
aijDijd =

aii

|x− y| −
aij

|x− y| DidDjd

≤ nΛ
|x− y| −

λ

|x− y| =
nΛ− λ

|x− y| ≤
nΛ− λ

R
.
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Therefore we obtain by the ellipticity

Lw ≤ ψ′′aijDidDjd + ψ′
(

nΛ− λ

R
+ |b|

)

≤ λψ′′ + ψ′
(

nΛ− λ

R
+ |b|

)
,

if we require ψ′′ < 0. Hence in order to have Lw ≤ −F , we need

λψ′′ + ψ′
(

nΛ− λ

R
+ |b|

)
+ F ≤ 0.

To this end, we study the equation for some positive constants a and b

ψ′′ + aψ′ + b = 0,

whose solution is given by

ψ(d) = − b

a
d +

C1

a
− C2

a
e−ad,

for some constants C1 and C2. For ψ(0) = 0, we need C1 = C2. Hence we have for
some constant C

ψ(d) = − b

a
d +

C

a
(1− e−ad),

which implies

ψ′(d) = Ce−ad − b

a
= e−ad

(
C − b

a
ead

)
,

ψ′′(d) = −Cae−ad.

In order to have ψ′(d) > 0, we need C ≥ b

a
eaD. Since ψ′(d) > 0 for d > 0, so

ψ(d) > ψ(0) = 0 for any d > 0. Therefore we take

ψ(d) = − b

a
d +

b

a2
eaD(1− e−ad)

=
b

a

{
1
a
eaD(1− e−ad)− d

}
.

Such a ψ satisfies all the requirements we imposed. ¤

2.5. Alexandroff Maximum Principle

Suppose Ω is a bounded domain in Rn and consider a second order elliptic
operator L in Ω of the form

L ≡ aij(x)Dij + bi(x)Di + c(x),

where coefficients aij , bi, c are at least continuous in Ω. The ellipticity means that
the coefficient matrix A = (aij) is positive definite everywhere in Ω. We set D =
det(A) and D∗ = D

1
n so that D∗ is the geometric mean of the eigenvalues of A.

Throughout this section, we assume

0 < λ ≤ D∗ ≤ Λ,

where λ and Λ are two positive constants, which denote the minimal and maximal
eigenvalues of A respectively.



2.5. ALEXANDROFF MAXIMUM PRINCIPLE 43

Before stating the main theorem, we first introduce the concept of contact sets.
For u ∈ C2(Ω), we define

Γ+ = {y ∈ Ω; u(x) ≤ u(y) + Du(y) · (x− y) for any x ∈ Ω}.
The set Γ+ is called the upper contact set of u and the Hessian matrix D2u = (Diju)
is nonpositive on Γ+. In fact, the upper contact set can also be defined for a
continuous function u by

Γ+ ={y ∈ Ω; u(x) ≤ u(y) + p · (x− y),

for any x ∈ Ω and some p = p(y) ∈ Rn}.
Clearly, u is concave if and only if Γ+ = Ω. If u ∈ C1(Ω), then p(y) = Du(y) and
any support hyperplane must then be a tangent plane to the graph.

Now we consider an equation of the following form

Lu = f in Ω,

for some f ∈ C(Ω). The following result is referred to as the Alexandroff maximum
principle.

Theorem 2.30. Suppose u ∈ C(Ω̄)∩C2(Ω) satisfies Lu ≥ f in Ω with
|b|
D∗ ,

f

D∗
∈ Ln(Ω) and c ≤ 0 in Ω. Then

sup
Ω

u ≤ sup
∂Ω

u+ + C‖f−

D∗ ‖Ln(Γ+),

where Γ+ is the upper contact set of u and C is a constant depending only on n,

diam(Ω) and ‖ b

D∗ ‖Ln(Γ+). In fact, C can be written as

d ·
{

exp{ 2n−2

ωnnn

(‖ b

D∗ ‖n
Ln(Γ+) + 1

)} − 1
}

,

with ωn as the volume of the unit ball in Rn.

Remark 2.31. The integral domain Γ+ can be replaced by

Γ+ ∩ {x ∈ Ω; u(x) > sup
∂Ω

u+}.

Remark 2.32. There is no assumption on the uniform ellipticity. Compare
with Theorem 2.24.

To prove Theorem 2.30, we need a lemma first.

Lemma 2.33. Suppose g ∈ L1
loc(Rn) is nonnegative. Then for any u ∈ C(Ω̄) ∩

C2(Ω) ∫

BM̃ (0)

g ≤
∫

Γ+
g(Du)| detD2u|,

where Γ+ is the upper contact set of u and M̃ = (supΩ u − sup∂Ω u+)/d with
d = diam(Ω).
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Remark 2.34. For any positive definite matrix A = (aij), we have

det(−D2u) ≤ 1
D

(−aijDiju

n

)n

on Γ+.

Hence we have another form for Lemma 2.33∫

BM̃ (0)

g ≤
∫

Γ+
g(Du)

(−aijDiju

nD∗
)n

.

Remark 2.35. By taking g = 1, we have

sup
Ω

u ≤ sup
∂Ω

u+ +
d

ω
1
n
n




∫

Γ+

| detD2u|



1
n

≤ sup
∂Ω

u+ +
d

ω
1
n
n




∫

Γ+

(
− aijDiju

nD∗

)n



1
n

.

This is Theorem 2.30 if bi ≡ 0 and c ≡ 0.

Proof of Lemma 2.33. Without loss of generality, we assume u ≤ 0 on ∂Ω.
Set Ω+ = {u > 0}. By the area-formula for Du in Γ+ ∩ Ω+ ⊂ Ω, we have

(1)
∫

Du(Γ+∩Ω+)

g ≤
∫

Γ+∩Ω+
g(Du)| det(D2u)|,

where | det(D2u)| is the Jacobian of the map Du : Ω → Rn. In fact we may consider
χε = Du− εId : Ω → Rn. Then Dχε = D2u− εI, which is negative definite in Γ+.
Hence by the change of variable formula, we have

∫

χε(Γ+∩Ω+)

g =
∫

Γ+∩Ω+
g(χε)| det(D2u− εI)|,

which implies (1) if we let ε → 0.
Now we claim BM̃ (0) ⊂ Du(Γ+ ∩Ω+), i.e., for any a ∈ Rn with |a| < M̃ there

exists an x ∈ Γ+∩Ω+ such that a = Du(x). We may assume u attains its maximum
m > 0 at 0 ∈ Ω, i.e.,

u(0) = m = sup
Ω

u.

Consider an affine function for |a| < m/d(≡ M̃)

L(x) = m + a · x.

Then L(x) > 0 for any x ∈ Ω and L(0) = m. Since u attains its maximum at 0, then
Du(0) = 0. Hence there exists an x1 close to 0 such that u(x1) > L(x1) > 0. Note
that u ≤ 0 < L on ∂Ω. Hence there exists an x̃ ∈ Ω such that Du(x̃) = DL(x̃) = a.
Now we may translate vertically the plane y = L(x) to the highest such position,
i,e., the whole surface y = u(x) lies below the plane. Clearly at such a point, the
function u is positive. ¤

Proof of Theorem 2.30. We should choose g appropriately in order to ap-
ply Lemma 2.33. Note (−aijDiju)n ≤ |b|n|Du|n in Ω if f ≡ 0 and c ≡ 0. This
suggests that we should take g(p) = |p|−n. However, such a function is not locally
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integrable (at the origin). Hence, we will choose g(p) = (|p|n + µn)−1 and then let
µ → 0+.

First we have by the Cauchy inequality

−aijDij ≤ biDiu + cu− f

≤ biDiu− f in Ω+ = {x; u(x) > 0}
≤ |b| · |Du|+ f−

≤
(
|b|n +

(f−)n

µn

) 1
n

· (|Du|n + µn)
1
n · (1 + 1)

n−2
n ,

and in particular

(−aijDiju)n ≤
(
|b|n +

(f−

µ

)n
)

(|Du|n + µn) · 2n−2.

Now we choose

g(p) =
1

|p|n + µn
.

By Lemma 2.33, we have
∫

BM̃ (0)

g ≤ 2n−2

nn

∫

Γ+∩Ω+

|bn|+ µ−n(f−)n

D
.

We evaluate the integral in the left hand side in the following way
∫

BM̃ (0)

g = ωn

∫ M̃

0

rn−1

rn + µn
dr =

ωn

n
log

M̃n + µn

µn
=

ωn

n
log (

M̃n

µn
+ 1).

Therefore we obtain

M̃n ≤ µn

{
exp

{
2n−2

ωnnn

[
‖ b

D∗ ‖n
Ln(Γ+∩Ω+) + µ−n‖f−

D∗ ‖n
Ln(Γ+∩Ω+)

]}
− 1

}
.

If f 6≡ 0, we choose µ = ‖ f−

D∗ ‖Ln(Γ+∩Ω+). If f ≡ 0, we may choose any µ > 0 and
then let µ → 0. ¤

In the following, we use Theorem 2.30 and Lemma 2.33 to derive a priori
estimates for solutions of quasilinear equations and fully nonlinear equations. In
the next result, we do not assume the uniform ellipticity.

Theorem 2.36. Suppose u ∈ C(Ω̄) ∩ C2(Ω) satisfies

Qu ≡ aij(x, u, Du)Diju + b(x, u, Du) = 0 in Ω,

where aij ∈ C(Ω× R× Rn) satisfies

aij(x, z, p)ξiξj > 0 for any (x, z, p) ∈ Ω× R× Rn and ξ ∈ Rn.

Suppose there exist non-negative functions g ∈ Ln
loc(Rn) and h ∈ Ln(Ω) such that

|b(x, z, p)|
nD∗ ≤ h(x)

g(p)
for any (x, z, p) ∈ Ω× R× Rn,

and ∫

Ω

hn(x)dx <

∫

Rn

gn(p)dp ≡ g∞.
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Then
sup
Ω
|u| ≤ sup

∂Ω
|u|+ Cdiam(Ω),

where C is a positive constant depending only on g and h.

Example 2.37. The prescribed mean curvature equation is given by

(1 + |Du|2)4u−DiuDjuDiju = nH(x)(1 + |Du|2) 3
2 ,

for some H ∈ C(Ω). We have

aij(x, z, p) = (1 + |p|2)δij − pipj ,

b(x, z, p) = −nH(x)(1 + |p|2) 3
2 .

This implies D = (1 + |p|2)n−1 and

|b(x, z, p)|
nD∗ ≤ |H(x)|(1 + |p|2) 3

2

(1 + |p|2)n−1
n

= |H(x)|(1 + |p|2)n+2
2n ,

and in particular

g∞ =
∫

Rn

gn(p)dp =
∫

Rn

dp

(1 + |p|2)n+2
2

= ωn.

Corollary 2.38. Suppose u ∈ C(Ω̄) ∩ C2(Ω) satisfies

(1 + |Du|2)4u−DiuDjuDiju = nH(x)(1 + |Du|2) 3
2 in Ω,

for some H ∈ C(Ω) with

H0 ≡
∫

Ω

|H(x)|ndx < ωn.

Then
sup
Ω
|u| ≤ sup

∂Ω
|u|+ Cdiam(Ω),

where C is a positive constant depending only on n and H0.

Proof of Theorem 2.36. We only prove for subsolutions. Assume Qu ≥ 0
in Ω. Then we have

−aijDiju ≤ b in Ω.

Note that (Diju) is nonpositive in Γ+. Hence −aijDiju ≥ 0, which implies
b(x, u,Du) ≥ 0 in Γ+. Then

b(x, z, Du)
nD∗ ≤ h(x)

g(Du)
in Γ+ ∩ Ω+.

We apply Lemma 2.33 to gn and get∫

BM̃ (0)

gn ≤
∫

Γ+∩Ω+
gn(Du)

(−aijDiju

nD∗
)n ≤

∫

Γ+∩Ω+
gn(Du)

( b

nD∗
)n

≤
∫

Γ+∩Ω+
hn ≤

∫

Ω

hn(<
∫

Rn

gn).

Therefore there exists a positive constant C, depending only on g and h, such that
M̃ ≤ C. This implies

sup
Ω

u ≤ sup
∂Ω

u+ + C diam(Ω).

This finishes the proof. ¤
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Next we discuss Monge-Ampére equations.

Theorem 2.39. Suppose u ∈ C(Ω̄) ∩ C2(Ω) satisfies

det(D2u) = f(x, u, Du) in Ω,

for some f ∈ C(Ω×R×Rn). Suppose there exist nonnegative functions g ∈ L1
loc(Rn)

and h ∈ L1(Ω) such that

|f(x, z, p)| ≤ h(x)
g(p)

for any (x, z, p) ∈ Ω× R× Rn,

and ∫

Ω

h(x)dx <

∫

Rn

g(p)dp ≡ g∞.

Then
sup
Ω
|u| ≤ sup

∂Ω
|u|+ C diam(Ω),

where C is a positive constant depending only on g and h.

The proof is similar to that of Theorem 2.36. There are two special cases. The
first case is given by f = f(x). We may take g ≡ 1 and hence g∞ = ∞.

Corollary 2.40. Let u ∈ C(Ω̄) ∩ C2(Ω) satisfy

det(D2u) = f(x) in Ω,

for some f ∈ C(Ω̄). Then

sup
Ω
|u| ≤ sup

∂Ω
|u|+ diam(Ω)

ω
1
n
n

(∫

Ω

|f |n
) 1

n

.

The second case is the prescribed Gauss curvature equations.

Corollary 2.41. Let u ∈ C(Ω̄) ∩ C2(Ω) satisfy

det(D2u) = K(x)(1 + |Du|2)n+2
2 in Ω,

for some K ∈ C(Ω̄) with

K0 ≡
∫

Ω

|K(x)| < ωn.

Then
sup
Ω
|u| ≤ sup

∂Ω
|u|+ Cdiam(Ω),

where C is a positive constant depending only on n and K0.

We finish this section by proving a maximum principle in domains with small
volumes, which is due to Varadham.

Consider
Lu ≡ aijDiju + biDiu + cu in Ω,

where (aij) is positive definite pointwisely in Ω and

|bi|+ |c| ≤ Λ, det(aij) ≥ λ,

for some positive constants λ and Λ.
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Theorem 2.42. Suppose u ∈ C(Ω̄) ∩ C2(Ω) satisfies Lu ≥ 0 in Ω with u ≤ 0
on ∂Ω. Assume diam(Ω) ≤ d. Then there exists a positive constant δ, depending
only on n, λ, Λ and d, such that if |Ω| ≤ δ then u ≤ 0 in Ω.

Proof. If c ≤ 0, then u ≤ 0 by Theorem 2.30. In general, we write c = c+−c−.
Then

aijDiju + biDiu− c−u ≥ −c+u(≡ f).

By Theorem 2.30, we have

sup
Ω

u ≤ C‖c+u+‖Ln(Ω) ≤ C‖c+‖L∞ |Ω| 1n · sup
Ω

u ≤ 1
2

sup
Ω

u,

if |Ω| is small, where C is a positive constant, depending only on n, λ, Λ and d.
Hence we get u ≤ 0 in Ω. ¤

Compare this with Proposition 2.15, the maximum principle for narrow do-
mains.

2.6. The Moving Plane Method

In this section, we revisit the moving plane method to discuss the symmetry of
solutions.

Theorem 2.43. Suppose u ∈ C(B̄1) ∩ C2(B1) is a positive solution of

∆u + f(u) = 0 in B1

u = 0 on ∂B1,

where f is locally Lipschitz in R. Then u is radially symmetric in B1 and
∂u

∂r
(x) < 0

for x 6= 0.

We already proved Theorem 2.43 if u is C2 up to the boundary. Here we give a
method which does not depend on the smoothness of domains nor the smoothness
of solutions up to the boundary.

Lemma 2.44. Suppose that the bounded domain Ω is convex in x1 direction and
symmetric with respect to the hyperplane {x1 = 0} and that u ∈ C(Ω̄)∩C2(Ω) is a
positive solution of

∆u + f(u) = 0 in Ω

u = 0 on ∂Ω,

where f is locally Lipschitz in R. Then u is symmetric with respect to x1 and
Dx1u(x) < 0 for any x ∈ Ω with x1 > 0.

Proof. Write x = (x1, y) ∈ Ω for y ∈ Rn−1. We will prove

(1) u(x1, y) < u(x∗1, y) for any x1 > 0 and x∗1 < x1 with x∗1 + x1 > 0.

Then by letting x∗1 → −x1, we have u(x1, y) ≤ u(−x1, y) for any x1. By changing
the direction x1 → −x1, we get the symmetry.
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Let a = sup x1 for (x1, y) ∈ Ω. For 0 < λ < a, define

Σλ = {x ∈ Ω; x1 > λ},
Tλ = {x1 = λ},
Σ′λ = the reflection of Σλ with respect to Tλ,

xλ = (2λ− x1, x2, · · ·xn) for x = (x1, x2, · · ·xn).

In Σλ, we define
wλ(x) = u(x)− u(xλ) for x ∈ Σλ.

Then we have by the mean value theorem

∆wλ + c(x, λ)wλ = 0 in Σλ,

wλ ≤ 0 and wλ 6≡ 0 on ∂Σλ,

where c(x, λ) is a bounded function in Σλ.
We need to show wλ < 0 in Σλ for any λ ∈ (0, a). This implies in particular

that wλ assumes along ∂Σλ∩Ω its maximum in Σλ. By Theorem 2.6, Hopf Lemma,
we have for any such λ ∈ (0, a)

Dx1wλ

∣∣∣∣
x1=λ

= 2Dx1u

∣∣∣∣
x1=λ

< 0.

For any λ close to a, we have wλ < 0 by Proposition 2.15, the maximum
principle for narrow domains, or Theorem 2.42, the maximum principle for domains
with small volumes. Let (λ0, a) be the largest interval of values of λ such that
wλ < 0 in Σλ. We want to show λ0 = 0. If λ0 > 0, by the continuity, wλ0 ≤ 0
in Σλ0 and wλ0 6≡ 0 on ∂Σλ0 . Then Theorem 2.8, the strong maximum principle,
implies wλ0 < 0 in Σλ0 . We will show that for any small ε > 0

wλ0−ε < 0 in Σλ0−ε.

Fix a δ > 0 to be determined. Let K be a closed subset in Σλ0 such that |Σλ0 \K| <
δ/2. The fact wλ0 < 0 in Σλ0 implies

wλ0(x) ≤ −η < 0 for any x ∈ K.

By the continuity, we have
wλ0−ε < 0 in K.

For any ε > 0 small, |Σλ0−ε \K| < δ. We choose δ in such a way that we apply
Theorem 2.42 to wλ0−ε in Σλ0−ε \K. Hence we get

wλ0−ε(x) ≤ 0 in Σλ0−ε \K,

and then by Theorem 2.12

wλ0−ε(x) < 0 in Σλ0−ε \K.

Therefore we obtain for any small ε > 0

wλ0−ε(x) < 0 in Σλ0−ε.

This contradicts the choice of λ0 and hence finishes the proof. ¤





CHAPTER 3

Weak Solutions, Part I

In this chapter and the next, we discuss the regularity of weak solutions of
elliptic equations of divergence form. In order to explain ideas clearly, we will
discuss equations of the following form only

−Dj

(
aij(x)Diu

)
+ c(x)u = f(x).

We assume Ω is a domain in Rn. The function u ∈ H1(Ω) is a weak solution if
it satisfies

∫

Ω

(
aijDiuDjϕ + cuϕ

)
=

∫

Ω

fϕ for any ϕ ∈ H1
0 (Ω),

where we assume
(i) the leading coefficients aij ∈ L∞(Ω) are uniformly elliptic, i.e., for some

positive constant λ there holds

aij(x)ξiξj ≥ λ|ξ|2 for any x ∈ Ω and ξ ∈ Rn;

(ii) the coefficient c ∈ L
n
2 (Ω) and the nonhomogeneous term f ∈ L

2n
n+2 (Ω).

By the Sobolev embedding theorem, (ii) is the least assumption on c and f to have
a meaningful equation.

We will prove various interior regularity results concerning the solution u if we
have better assumptions on coefficients aij and c and on the nonhomogeneous term
f . Basically there are two class of regularity results, perturbation results and non-
perturbation results. The first is based on regularity assumptions on the leading
coefficients aij , which are assumed to be at least continuous. Under such assump-
tions, we compare solutions of the underlying equations with harmonic functions,
or solutions of constant coefficient equations. Then, the regularity of solutions
depends on how close they are to harmonic functions or how close the leading
coefficients aij are to constant coefficients. In this direction, we have Schauder
estimates and W 2,p estimates. In this chapter, we only discuss the Schauder es-
timates. For the second kind of regularity, there is no continuity assumption on
the leading coefficients aij . Hence the result is not based on perturbations. The
iteration methods introduced by DeGiorgi and Moser are successful in dealing with
the non-perturbation situation. Results proved by them are fundamental for the
discussion of quasilinear equations, where coefficients depend on solutions. In fact,
the linearlity has no bearing in their arguments. This permits an extension of these
results to quasilinear equations with appropriate structure conditions.

Boundary regularities can be discussed in a similar way. We leave details to
readers.

51
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3.1. Growth of Local Integrals

Let BR(x0) be the ball in Rn of radius R centered at x0. The well-known
Sobolev theorem asserts that, if u ∈ W 1,p(BR(x0)) with p > n, then u is Hölder
continuous with exponent α = 1− n/p.

In the first part of this section, we prove a general result, due to S. Campanato,
which characterizes Hölder continuous functions by the growth of their local inte-
grals. This result is very useful for studying the regularity of solutions of elliptic
differential equations. In the second part of this section we prove a result, due
to John and Nirenberg, which gives an equivalent definition of functions of the
bounded mean oscillation.

Let Ω be a bounded connected open set in Rn and let u ∈ L1(Ω). For any ball
Br(x0) ⊂ Ω, define

ux0,r =
1

|Br(x0)|
∫

Br(x0)

u.

We first prove Campanato’s characterization of Hölder continuity.

Theorem 3.1. Suppose u ∈ L2(Ω) satisfies for some α ∈ (0, 1)
∫

Br(x)

|u− ux,r|2 ≤ M2rn+2α for any Br(x) ⊂ Ω.

Then u ∈ Cα(Ω), and for any Ω′ ⊂⊂ Ω

sup
Ω′
|u|+ sup

x,y∈Ω′,x6=y

|u(x)− u(y)|
|x− y|α ≤ c

(
M + ‖u‖L2(Ω)

)
,

where c is a positive constant depending only on n, α, Ω and Ω′.

Proof. Denote R0 = dist(Ω′, ∂Ω). For any x0 ∈ Ω′ and 0 < r1 < r2 ≤ R0, we
have

|ux0,r1 − ux0,r2 |2 ≤ 2
(|u(x)− ux0,r1 |2 + |u(x)− ux0,r2 |2

)
.

By integrating with respect to x in Br1(x0), we obtain

|ux0,r1 − ux0,r2 |2 ≤
2

ωnrn
1

( ∫

Br1 (x0)

|u− ux0,r1 |2 +
∫

Br2 (x0)

|u− ux0,r2 |2
)
,

and hence

(1) |ux0,r1 − ux0,r2 |2 ≤ c(n)M2r−n
1

(
rn+2α
1 + rn+2α

2

)
.

For any R ≤ R0, with r1 = R/2i+1, r2 = R/2i, we get

|ux0,2−(i+1)R − ux0,2−iR| ≤ c(n)2−(i+1)αMRα,

and therefore for h < k

|ux0,2−hR − ux0,2−kR| ≤
c(n)

2(h+1)α
MRα

k−h−1∑

i=0

1
2iα

≤ c(n, α)
2hα

MRα.

This shows that {ux0,2−iR} ⊂ R is a Cauchy sequence, hence a convergent one.
Its limit û(x0) is independent of the choice of R, since (1) can be applied with
r1 = 2−iR and r2 = 2−iR̄ whenever 0 < R < R̄ ≤ R0. Thus we get

û(x0) = lim
r→0

ux0,r,
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with

(2) |ux0,r − û(x0)| ≤ c(n, α)Mrα for any 0 < r ≤ R0.

Note that {ux,r} converges, as r → 0+, in L1(Ω) to the function u, by the
Lebesgue theorem. Then we have u = û a.e., and (2) implies that {ux,r} converges
uniformly to u(x) in Ω′. Since x 7→ ux,r is continuous for any r > 0, u(x) is
continuous. By (2) we get

|u(x)| ≤ CMRα + |ux,R|,
for any x ∈ Ω′ and R ≤ R0. Hence u is bounded in Ω′ with

sup
Ω′
|u| ≤ c(MRα

0 + ‖u‖L2(Ω)).

Now we prove that u is Hölder continuous. Let x, y ∈ Ω′ with R = |x − y| <
R0/2. Then we have

|u(x)− u(y)| ≤ |u(x)− ux,2R|+ |u(y)− uy,2R|+ |ux,2R − uy,2R|.
The first two terms on the right hand side are already estimated in (2). For the
last term we write

|ux,2R − uy,2R| ≤ |ux,2R − u(ζ)|+ |uy,2R − u(ζ)|.
Integrating with respect to ζ over B2R(x) ∩B2R(y), which contains BR(x), yields

|ux,2R − uy,2R|2 ≤ 2
|BR(x)|

( ∫

B2R(x)

|u− ux,2R|2 +
∫

B2R(y)

|u− uy,2R|2
)

≤ c(n, α)M2R2α.

Therefore we have
|u(x)− u(y)| ≤ c(n, α)M |x− y|α.

For |x− y| > R0/2 we obtain

|u(x)− u(y)| ≤ 2 sup
Ω′
|u| ≤ c

(
M +

1
Rα

0

‖u‖L2

)|x− y|α.

This finishes the proof. ¤

The Sobolev theorem is an easy consequence of Theorem 3.1. In fact, we have
the following result due to Morrey.

Corollary 3.2. Suppose u ∈ H1
loc(Ω) satisfies for some α ∈ (0, 1)∫

Br(x)

|Du|2 ≤ M2rn−2+2α for any Br(x) ⊂ Ω.

Then u ∈ Cα(Ω), and for any Ω′ ⊂⊂ Ω

sup
Ω′
|u|+ sup

x,y∈Ω′,x6=y

|u(x)− u(y)|
|x− y|α ≤ c

(
M + ‖u‖L2(Ω)

)
,

where c is a positive constant depending only on n, α, Ω and Ω′.

Proof. By the Poincaré inequality, we obtain∫

Br(x)

|u− ux,r|2 ≤ c(n)r2

∫

Br(x)

|Du|2 ≤ c(n)M2rn+2α.

With Theorem 3.1, we have the desired result. ¤
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The following result will be needed in the next section.

Lemma 3.3. Suppose u ∈ H1(Ω) satisfies for some µ ∈ [0, n)
∫

Br(x0)

|Du|2 ≤ Mrµ for any Br(x0) ⊂ Ω.

Then for any Ω′ ⊂⊂ Ω and any Br(x0) ⊂ Ω with x0 ∈ Ω′
∫

Br(x0)

|u|2 ≤ c
(
M +

∫

Ω

u2
)
rλ,

where λ = µ + 2 if µ < n− 2 and λ is any number in [0, n) if n− 2 ≤ µ < n, and c
is a positive constant depending only on n, λ, µ, Ω and Ω′.

Proof. As before denote R0 = dist(Ω′, ∂Ω). For any x0 ∈ Ω′ and 0 < r ≤ R0,
the Poincaré inequality yields

∫

Br(x0)

|u− ux0,r|2 ≤ cr2

∫

Br(x0)

|Du|2dx ≤ c(n)Mrµ+2.

This implies ∫

Br(x0)

|u− ux0,r|2 ≤ c(n)Mrλ,

where λ is as in Lemma 3.3. For any 0 < ρ < r ≤ R0, we have
∫

Bρ(x0)

u2 ≤ 2
∫

Bρ(x0)

|ux0,r|2 + 2
∫

Bρ(x0)

|u− ux0,r|2

≤ c(n)ρn|ux0,r|2 + 2
∫

Br(x0)

|u− ux0,r|2

≤ c(n)
(ρ

r

)n
∫

Br(x0)

u2 + Mrλ,

where we used

|ux0,r|2 ≤ c(n)
rn

∫

Br(x0)

u2.

Hence we have

(1)
∫

Bρ(x0)

u2 ≤ c
( (ρ

r

)n
∫

Br(x0)

u2 + Mrλ
)

for any 0 < ρ < r ≤ R0.

We note λ ∈ (0, n). Now we claim

(2)
∫

Bρ(x0)

u2 ≤ c
( (ρ

r

)λ
∫

Br(x0)

u2 + Mρλ
)

for any 0 < ρ < r ≤ R0.

By choosing r = R0, we obtain
∫

Bρ(x0)

u2 ≤ cρλ
( ∫

Ω

u2 + M
)

for any ρ ≤ R0.

In order to get (2) from (1), we apply the following technical lemma to the function
φ(r) =

∫
Br(x0)

u2. ¤



3.1. GROWTH OF LOCAL INTEGRALS 55

Lemma 3.4. Let φ(t) be a nonnegative and nondecreasing function on [0, R].
Suppose for some nonnegative constants A,B, α, β with β < α

φ(ρ) ≤ A
( (ρ

r

)α

+ ε
)
φ(r) + Brβ for any 0 < ρ ≤ r ≤ R.

Then for any γ ∈ (β, α), there exists a constant ε0 such that, if ε < ε0,

φ(ρ) ≤ c
( (ρ

r

)γ

φ(r) + Bρβ
)

for any 0 < ρ ≤ r ≤ R,

where ε0 and c are positive constants depending only on A,α, β and γ. In particular,

φ(r) ≤ c
(φ(R)

Rγ
rγ + Brβ

)
for any 0 < r ≤ R.

Proof. For any τ ∈ (0, 1) and r < R, we have

φ(τr) ≤ Aτα(1 + ετ−α)φ(r) + Brβ .

Choose τ < 1 such that 2Aτα = τγ and assume ε0τ
−α < 1. Then we get for every

r < R

φ(τr) ≤ τγφ(r) + Brβ ,

and therefore for any integer k > 0

φ(τk+1r) ≤ τγφ(τkr) + Bτkβrβ

≤ τ (k+1)γφ(r) + Bτkβrβ
k∑

j=0

τ j(γ−β)

≤ τ (k+1)γφ(r) +
Bτkβrβ

1− τγ−β
.

Choosing k such that τk+2r < ρ ≤ τk+1r, we obtain

φ(ρ) ≤ 1
τγ

(ρ

r

)γ

φ(r) +
Bρβ

τ2β(1− τγ−β)
.

This finishes the proof. ¤

In the rest of this section, we discuss functions of the bounded mean oscillation
(BMO). The following result is due to John and Nirenberg and referred to as the
John-Nirenberg lemma.

Theorem 3.5. Suppose u ∈ L1(Ω) satisfies∫

Br(x)

|u− ux,r| ≤ Mrn for any Br(x) ⊂ Ω.

Then for any Br(x) ⊂ Ω ∫

Br(x)

e
p0
M |u−ux,r| ≤ Crn,

where p0 and C are positive constants depending only on n.

Remark 3.6. Functions satisfying the condition of Theorem 3.5 are called
functions of the bounded mean oscillation (BMO). We note that

L∞ is a proper subset of BMO.

The function u(x) = log(x) in (0, 1) ⊂ R is in BMO but not in L∞.
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For convenience, we use cubes instead of balls. We need the Calderon-Zygmund
decomposition in the proof of Theorem 3.5. First, we introduce some terminology.

Take the unit cube Q0. Cut it equally into 2n cubes, which we take as the first
generation. Do the same cutting for these small cubes to get the second generation.
Continue this process. These cubes (from all generations) are called dyadic cubes.
Any (k + 1)-generation cube Q arises from some k-generation cube Q̃, which is
called the predecessor of Q.

Lemma 3.7. Suppose f ∈ L1(Q0) is nonnegative and α > |Q0|−1
∫

Q0
f is a

fixed constant. Then there exists a sequence of (nonoverlapping) dyadic cubes {Qj}
in Q0 such that

f(x) ≤ α a.e. in Q0 \ ∪jQj ,

and

α ≤ 1
|Qj |

∫

Qj

fdx < 2nα.

Proof. Cut Q0 into 2n dyadic cubes and keep the cube Q if |Q|−1
∫

Q
f ≥ α.

Continue cutting for others, and always keep the cube Q if |Q|−1
∫

Q
f ≥ α and cut

the rest. Let {Qj} be the cubes we have kept during this infinite process. We only
need to verify

f(x) ≤ α a.e. in Q0 \ ∪jQj .

Let F = Q0 \ ∪jQj . For any x ∈ F , from the way we collect {Qj}, there exists a
sequence of cubes Qi containing x such that

1
|Qi|

∫

Qi

f < α,

and
diam(Qi) → 0 as i →∞.

The Lebesgue density theorem implies

f ≤ α a.e. in F.

This finishes the proof. ¤

Proof of Theorem 3.5. Assume Ω = Q0. We may rewrite the assumption
in terms of cubes as follows∫

Q

|u− uQ| < M |Q| for any Q ⊂ Q0.

We prove that there exist two positive constants c1 and c2, depending only on n,
such that for any Q ⊂ Q0

|{x ∈ Q; |u− uQ| > t}| ≤ c1|Q|exp
(
− c2

M
t
)

.

Then Theorem 3.5 follows easily.
Without loss of generality, we assume M = 1. Choose

α > 1 ≥ |Q0|−1

∫

Q0

|u− uQ0 |dx.
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Apply the Calderon-Zygmund decomposition to f = |u − uQ0 |. There exists a
sequence of (nonoverlapping) cubes {Q(1)

j }∞j=1 such that

α ≤ 1

|Q(1)
j |

∫

Q
(1)
j

|u− uQ0 | < 2nα,

and
|u(x)− uQ0 | ≤ α a.e. x ∈ Q0 \ ∪∞j=1Q

(1)
j .

This implies
∑

j

|Q(1)
j | ≤ 1

α

∫

Q0

|u− uQ0 | ≤
1
α
|Q0|,

and

|u
Q

(1)
j
− uQ0 | ≤

1

|Q(1)
j |

∫

Q
(1)
j

|u− uQ0 |dx ≤ 2nα.

The definition of the BMO norm implies for each j

1

|Q(1)
j |

∫

Q
(1)
j

|u− uQj
(1) |dx ≤ 1 < α.

Apply the decomposition procedure above to f = |u− u
Q

(1)
j
| in Q

(1)
j . There exists

a sequence of (nonoverlapping) cubes {Q(2)
j } in ∪jQ

(1)
j such that

∞∑

j=1

|Q(2)
j | ≤ 1

α

∑

j

∫

Q
(1)
j

|u− u
Q

(1)
j
| ≤ 1

α

∑

j

|Q(1)
j | ≤ 1

α2
|Q0|,

and
|u(x)− u

Q
(1)
j
| ≤ α for a.e. x ∈ Q

(1)
j \ ∪Q

(2)
j ,

which implies

|u(x)− uQ0 | ≤ 2 · 2nα for a.e. x ∈ Q0 \ ∪jQ
(2)
j .

Continue this process. For any integer k ≥ 1, there exists a sequence of disjoint
cubes {Q(k)

j } such that
∑

j

|Q(k)
j | ≤ 1

αk
|Q0|,

and
|u(x)− uQ0 | ≤ k2nα for a.e. x ∈ Q0 \ ∪jQ

(k)
j .

Thus, we obtain

|{x ∈ Q0; |u− uQ0 | > 2nkα}| ≤
∞∑

j=1

|Q(k)
j | ≤ 1

αk
|Q0|.

For any t, there exists an integer k such that t ∈ [2nkα, 2n(k + 1)α). This implies

α−k = αα−(k+1) = αe−(k+1) log α ≤ α epx
(− log α

2nα
t
)
.

This finishes the proof. ¤
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3.2. Hölder Continuity of Solutions

In this section, we prove the Hölder regularity for solutions. The basic idea is
to freeze the leading coefficients and then to compare solutions with harmonic func-
tions. The regularity of solutions depends on how close solutions are to harmonic
functions. Hence, we need some regularity assumption on the leading coefficients.

Suppose aij ∈ L∞(B1) is uniformly elliptic in B1, i.e.,

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ B1, ξ ∈ Rn.

In the following, we assume that aij is at least continuous and that u ∈ H1(B1)
satisfies

(∗)
∫

B1

aijDiuDjϕ + cuϕ =
∫

B1

fϕ for any ϕ ∈ H1
0 (B1).

The main theorem in this section is the following Hölder estimates for solutions.

Theorem 3.8. Let u ∈ H1(B1) solve (∗). Assume aij ∈ C0(B̄1), c ∈ Ln(B1)
and f ∈ Lq(B1) for some q ∈ (n/2, n). Then u ∈ Cα(B1) with α = 2−n/q ∈ (0, 1).
Moreover, there exists an R0 such that, for any x ∈ B 1

2
and r ≤ R0,

∫

Br(x)

|Du|2 ≤ Crn−2+2α
(‖f‖2Lq(B1)

+ ‖u‖2H1(B1)

)
,

where R0 and C are positive constants depending only on λ,Λ, τ and ‖c‖Ln , with τ
denoting the modulus of the continuity of aij, i.e.,

|aij(x)− aij(y)| ≤ τ(|x− y|) for any x, y ∈ B1.

If c ≡ 0, we may replace ‖u‖H1(B1) with ‖Du‖L2(B1).
The idea of the proof is to compare the solution u with harmonic functions

and use the perturbation argument. First, we prove a basic estimate for harmonic
functions.

Lemma 3.9. Suppose {aij} is a constant positive definite matrix satisfying for
some 0 < λ ≤ Λ

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2 for any ξ ∈ Rn.

Suppose w ∈ H1
(
Br(x0)

)
is a weak solution of

(1) aijDijw = 0 in Br(x0).

Then, for any 0 < ρ ≤ r∫

Bρ(x0)

|Dw|2 ≤ C
(ρ

r

)n
∫

Br(x0)

|Dw|2,

and ∫

Bρ(x0)

|Dw − (Dw)x0,ρ|2 ≤ C
(ρ

r

)n+2
∫

Br(x0)

|Dw − (Dw)x0,r|2,

where C is a positive constant depending only on n and Λ/λ.

Proof. Note that if w is a solution of (1) so is any of its derivatives. We may
apply Lemma 1.42 in Chapter 1 to Dw. ¤

Now we compare any functions with harmonic functions.
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Corollary 3.10. Suppose w is as in Lemma 2.2 and u is an arbitrary H1-
function in Br(x0). Then, for any 0 < ρ ≤ r

∫

Bρ(x0)

|Du|2 ≤ C

{ (ρ

r

)n
∫

Br(x0)

|Du|2 +
∫

Br(x0)

|D(u− w)|2
}

,

and ∫

Bρ(x0)

|Du− (Du)x0,ρ|2 ≤C

{ (ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2

+
∫

Br(x0)

|D(u− w)|2
}

,

where C is a positive constant depending only on n and Λ/λ.

Proof. With v = u− w, we have for any 0 < ρ ≤ r∫

Bρ(x0)

|Du|2 ≤ 2
∫

Bρ(x0)

|Dw|2 + 2
∫

Bρ(x0)

|Dv|2

≤ C
(ρ

r

)n
∫

Br(x0)

|Dw|2 + 2
∫

Br(x0)

|Dv|2

≤ C
(ρ

r

)n
∫

Br(x0)

|Du|2 + c
[
1 +

(ρ

r

)n] ∫

Br(x0)

|Dv|2,

and ∫

Bρ(x0)

|Du− (Du)x0,ρ|2

≤2
∫

Bρ(x0)

|Du− (Dw)x0,ρ|2 + 2
∫

Bρ(x0)

|Dv|2

≤4
∫

Bρ(x0)

|Dw − (Dw)x0,ρ|2 + 6
∫

Bρ(x0)

|Dv|2

≤C
(ρ

r

)n+2
∫

Br(x0)

|Dw − (Dw)x0,r|2 + 6
∫

Br(x0)

|Dv|2

≤C
(ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2 + c

[
1 +

(ρ

r

)n+2
] ∫

Br(x0)

|Dv|2.

This finishes the proof. ¤

The regularity of u depends on how close u is to w, the solution of the constant
coefficient equation.

We now prove Theorem 3.8.

Proof of Theorem 3.8. We decompose u into a sum v+w where w satisfies
a homogeneous equation and v has estimates in terms of nonhomogeneous terms.

For any Br(x0) ⊂ B1, we write the equation in the following form∫

B1

aij(x0)DiuDjϕ =
∫

B1

fϕ− cuϕ +
(
aij(x0)− aij(x)

)
DiuDjϕ.

In Br(x0), the Dirichlet problem∫

Br(x0)

aij(x0)DiwDjϕ = 0 for any ϕ ∈ H1
0

(
Br(x0)

)
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has a unique solution w with w − u ∈ H1
0

(
Br(x0)

)
. Obviously, the function v =

u− w ∈ H1
0 (Br(x0)) satisfies the equation

∫

Br(x0)

aij(x0)DivDjϕ =
∫

Br(x0)

fϕ−cuϕ +
(
aij(x0)− aij(x)

)
DiuDjϕ

for any ϕ ∈ H1
0

(
Br(x0)

)
.

By taking the test function ϕ = v, we obtain

∫

Br(x0)

|Dv|2 ≤ c

{
τ2(r)

∫

Br(x0)

|Du|2 +

(∫

Br(x0)

|c|n
) 2

n ∫

Br(x0)

u2

+

(∫

Br(x0)

|f | 2n
n+2

)n+2
n }

,

where we used the Sobolev inequality
(∫

Br(x0)

v
2n

n−2

)n−2
2n

≤ c(n)

(∫

Br(x0)

|Dv|2
) 1

2

,

for v ∈ H1
0 (Br(x0)). Therefore Corollary 3.10 implies for any 0 < ρ ≤ r

(1)

∫

Bρ(x0)

|Du|2 ≤ C

{[ (ρ

r

)n

+ τ2(r)
] ∫

Br(x0)

|Du|2

+

(∫

Br(x0)

|c|n
) 2

n ∫

Br(x0)

u2 +

(∫

Br(x0)

|f | 2n
n+2

)n+2
n }

,

where C is a positive constant depending only on λ and Λ. By the Hölder inequality,
we have (∫

Br(x0)

|f | 2n
n+2

)n+2
n

≤
(∫

Br(x0)

|f |q
) 2

q

rn−2+2α,

where α = 2− n/q ∈ (0, 1) if n/2 < q < n. Hence (1) implies for any Br(x0) ⊂ B1

and any 0 < ρ ≤ r
∫

Bρ(x0)

|Du|2 ≤ C

{ [(ρ

r

)n

+ τ2(r)
] ∫

Br(xo)

|Du|2 + rn−2+2α‖f‖2Lq(B1)

+

(∫

Br(x0)

|c|n
) 2

n ∫

Br(x0)

u2

}
.

Case 1. c ≡ 0. We have for any Br(x0) ⊂ B1 and for any 0 < ρ ≤ r

∫

Bρ(x0)

|Du|2 ≤ C

{[ (ρ

r

)n

+ τ2(r)
] ∫

Br(x0)

|Du|2 + rn−2+2α‖f‖2Lq(B1)

}
.

Now the result would follow if in the above inequality we could write ρn−2+2α

instead of rn−2+2α. This is in fact true and is stated in Lemma 3.4. By Lemma
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3.4, there exists an R0 > 0 such that, for any x0 ∈ B 1
2

and any 0 < ρ < r ≤ R0,

∫

Bρ(x0)

|Du|2 ≤ C

{(ρ

r

)n−2+2α
∫

Br(x0)

|Du|2 + ρn−2+2α‖f‖2Lq(B1)

}
.

In particular, taking r = R0, we obtain for any ρ < R0
∫

Bρ(x0)

|Du|2 ≤ Cρn−2+2α

{∫

B1

|Du|2 + ‖f‖2Lq(B1)

}
.

Case 2. General case. We have for any Br(x0) ⊂ B1 and any 0 < ρ ≤ r

(2)

∫

Bρ(x0)

|Du|2 ≤ C

{ [(ρ

r

)n

+ τ2(r)
] ∫

Br(x0)

|Du|2

+ rn−2+2αχ(F ) +
∫

Br(x0)

u2

}
,

where χ(F ) = ‖f‖2Lq(B1)
. We will prove for any x0 ∈ B1/2 and any 0 < ρ < r ≤ 1/2

(3)

∫

Bρ(x0)

|Du|2 ≤ C

{ [(ρ

r

)n

+ τ2(r)
] ∫

Br(x0)

|Du|2

+ rn−2+2α

[
χ(F ) +

∫

B1

u2 +
∫

B1

|Du|2
]}

.

We need a bootstrap argument. First by Lemma 3.3, there exists an R1 ∈ (1/2, 1)
such that for any x0 ∈ BR1 and any 0 < r ≤ 1−R1

(4)
∫

Br(x0)

u2 ≤ Crδ1

{∫

B1

|Du|2 +
∫

B1

u2

}
,

where δ1 = 2 if n > 2 and δ1 is arbitrary in (0,2) if n = 2. This, with (2), yields
∫

Bρ(x0)

|Du|2 ≤ C

{ [(ρ

r

)n

+ τ2(r)
] ∫

Br(x0)

|Du|2

+ rn−2+2αχ(F ) + rδ1‖u‖2H1(B1)

}
.

Then (3) holds in the following cases: (i) n = 2, by choosing δ1 = 2α; (ii) n > 2

while n− 2 + 2α ≤ 2, by choosing δ1 = 2. For n > 2 and n− 2 + 2α > 2, we have

∫

Bρ(x0)

|Du|2 ≤ c

{[(ρ

r

)n

+ τ2(r)
] ∫

Br(x0)

|Du|2 + r2[χ(F ) + ‖u‖2H1(B1)
]

}
.

Lemma 3.4 again yields for any x0 ∈ BR1 and any 0 < r ≤ 1−R1∫

Br(x0)

|Du|2 ≤ Cr2
{

χ(F ) + ‖u‖2H1(B1)

}
.

Hence by Lemma 3.3, there exists an R2 ∈ (1/2, R1) such that for any x0 ∈ BR2

and any 0 < r ≤ R1 −R2

(5)
∫

Br(x0)

u2 ≤ Crδ2

{
χ(F ) + ‖u‖2H1(B1)

}
,
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where δ2 = 4 if n > 4 and δ2 is arbitrary in (2, n) if n = 3 or 4. Notice (5) is an
improvement compared with (4). Substitute (5) in (2) and continue the process.
After finitely many steps, we obtain (3). ¤

3.3. Hölder Continuity of Gradients

In this section, we prove the Hölder regularity for gradients of solutions. We
follow the same idea used to prove Theorem 3.8.

Suppose aij ∈ L∞(B1) is uniformly elliptic in B1, i.e.,

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ B1, ξ ∈ Rn.

We assume that u ∈ H1(B1) satisfies

(∗)
∫

B1

aijDiuDjϕ + cuϕ =
∫

B1

fϕ for any ϕ ∈ H1
0 (B1).

The main theorem in this section is the following Hölder estimate for gradients.

Theorem 3.11. Let u ∈ H1(B1) solve (∗). Assume aij ∈ Cα(B̄1), c ∈ Lq(B1)
and f ∈ Lq(B1) for some q > n and α = 1 − n/q ∈ (0, 1). Then Du ∈ Cα(B1).
Moreover, there exists an R0 ∈ (0, 1) such that, for any x ∈ B 1

2
and r ≤ R0,

∫

Br(x)

|Du− (Du)x,r|2 ≤ Crn+2α
{‖f‖2Lq(B1)

+ ‖u‖2H1(B1)

}
,

where R0 and C are positive constants depending only on λ, |aij |Cα and |c|Lq .

Proof. As in the proof of Theorem 3.8, we decompose u into a sum v+w where
w satisfies a homogeneous equation and v has estimates in terms of nonhomogeneous
terms.

For any Br(x0) ⊂ B1, we write the equation in the following form
∫

B1

aij(x0)DiuDjϕ =
∫

B1

fϕ− cuϕ + (aij(x0)− aij(x))DiuDjϕ.

In Br(x0), the Dirichlet problem
∫

Br(x0)

aij(x0)DiwDjϕ = 0 for any ϕ ∈ H1
0

(
Br(x0)

)
,

has a unique solution w with w − u ∈ H1
0

(
Br(x0)

)
. Obviously, the function v =

u− w ∈ H1
0

(
Br(x0)

)
satisfies the equation

∫

Br(x0)

aij(x0)DivDjϕ =
∫

Br(x0)

fϕ−cuϕ + (aij(x0)− aij(x))DiuDjϕ

for any ϕ ∈ H1
0

(
Br(x0)

)
.

By taking the test function ϕ = v, we obtain

∫

Br(x0)

|Dv|2 ≤ C

{
τ2(r)

∫

Br(x0)

|Du|2 +

(∫

Br(x0)

|c|n
) 2

n ∫

Br(x0)

u2

+

(∫

Br(x0)

|f | 2n
n+2

)n+2
n }

.
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Therefore Corollary 3.10 implies for any 0 < ρ ≤ r

(1)

∫

Bρ(x0)

|Du|2 ≤ C

{[ (ρ

r

)n

+ τ2(r)
] ∫

Br(x0)

|Du|2

+

(∫

Br(x0)

|c|n
) 2

n ∫

Br(x0)

u2 +

(∫

Br(x0)

|f | 2n
n+2

)n+2
n }

,

and

(2)

∫

Bρ(x0)

|Du− (Du)x0,ρ|2

≤ C

{ (ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2 + τ2(r)
∫

Br(x0)

|Du|2

+

(∫

Br(x0)

|c|n
) 2

n ∫

Br(x0)

u2 +

(∫

Br(x0)

|f | 2n
n+2

)n+2
n }

,

where C is a positive constant depending only on λ and Λ.
By the Hölder inequality, we have for any Br(x0) ⊂ B1

(∫

Br(x0)

|f | 2n
n+2

)n+2
n

≤
(∫

Br(x0)

|f |q
) 2

q

rn+2α,

and (∫

Br(x0)

|c|n
) 2

n

≤ r2α

(∫

Br(x0)

|c|q
) 2

q

,

with α = 1− n/q.
Case 1. aij ≡ const., c ≡ 0. In this case, τ(r) ≡ 0. By (2), there holds for any

Br(x0) ⊂ B1 and 0 < ρ ≤ r
∫

Bρ(x0)

|Du− (Du)x0,ρ|2

≤C

{ (ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2 + rn+2α‖f‖2Lq(B1)

}
.

By Lemma 3.4, we replace rn+2α by ρn+2α to get the result.

Case 2. c ≡ 0. By (1) and (2), we have for any Br(x0) ⊂ B1 and any ρ < r

(3)
∫

Bρ(x0)

|Du|2 ≤ C

{[(ρ

r

)n

+ r2α
] ∫

Br(x0)

|Du|2 + rn+2α‖f‖2Lq(B1)

}
,

and

(4)

∫

Bρ(x0)

|Du−(Du)x0,ρ|2 ≤ C

{ (ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2

+ r2α

∫

Br(x0)

|Du|2 + rn+2α‖f‖2Lq(B1)

}
.
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We need to estimate the integral
∫

Br(x0)

|Du|2.

Write χ(F ) = ‖f‖2Lq(B1)
.

Take small δ > 0. Then (3) implies
∫

Bρ(x0)

|Du|2 ≤ C

{[(ρ

r

)n

+ r2α
] ∫

Br(x0)

|Du|2 + rn−2δχ(F )

}
.

Hence Lemma 3.4 implies the existence of an R1 ∈ (3/4, 1) with r1 = 1− R1 such
that, for any x0 ∈ BR1 and any 0 < r ≤ r1,

(5)
∫

Br(x0)

|Du|2 ≤ Crn−2δ
{

χ(F ) + ‖Du‖2L2(B1)

}
.

Therefore, by substituting (5) in (4) we obtain for any 0 < ρ < r ≤ r1

∫

Bρ(x0)

|Du− (Du)x0,ρ|2 ≤ C

{ (ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2

+ rn+2α−2δ
[
χ(F ) + ‖Du‖2L2(B1)

]}
.

By Lemma 3.4 again, we have for any x0 ∈ BR1 and any 0 < ρ < r ≤ r1

∫

Bρ(x0)

|Du− (Du)x0,ρ|2 ≤ C

{ (ρ

r

)n+2α−2δ
∫

Br

|Du− (Du)x0,r|2

+ ρn+2α−2δ[χ(F ) + ‖Du‖2L2(B1)
]
}

.

With r = r1 this implies that for any x0 ∈ BR1 and any 0 < r ≤ r1∫

Br(x0)

|Du− (Du)x0,r|2 ≤ Crn+2α−2δ
{

χ(F ) + ‖Du‖2L2(B1)

}
.

Hence Du ∈ Cα−δ
loc for any δ > 0 small. In particular, Du ∈ L∞loc and

(6) sup
B 3

4

|Du|2 ≤ C
{

χ(F ) + ‖Du‖2L2(B1)

}
.

Combining (4) and (6), we have for any x0 ∈ B 1
2

and 0 < ρ < r ≤ r1

∫

Bρ(x0)

|Du− (Du)x0,ρ|2 ≤ C

{ (ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2

+ rn+2α
[
χ(F ) + ‖Du‖2L2(B1)

] }
.

By Lemma 3.4 again, this implies
∫

Bρ(x0)

|Du− (Du)x0,ρ|2 ≤ C

{ (ρ

r

)n+2α
∫

Br(x0)

|Du− (Du)x0,r|2

+ ρn+2α
[
χ(F ) + ‖Du‖2L2(B1)

]}
.
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By choosing r = r1, we have for any x0 ∈ B 1
2

and r ≤ r1

∫

Br(x0)

|Du− (Du)x0,r|2 ≤ crn+2α
{

χ(F ) + ‖Du‖2L2(B1)

}
.

Case 3. The general case. By (1) and (2), we have for any Br(x0) ⊂ B1 and
ρ < r

(7)

∫

Bρ(x0)

|Du|2 ≤ C

{ [(ρ

r

)n

+ r2α
] ∫

Br(x0)

|Du|2

+
∫

Br(x0)

u2 + rn+2αχ(F )
}

,

and

(8)

∫

Bρ(x0)

|Du−(Du)x0,ρ|2 ≤ C

{(ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2

+ r2α

[∫

Br(x0)

u2 +
∫

Br(x0)

|Du|2
]

+ rn+2αχ(F )
}

,

where χ(F ) = ‖f‖2Lq(B1)
. In (7), we replace rn+2α by rn. As in the proof of

Theorem 3.8, we show that for any small δ > 0 there exists an R1 ∈ (3/4, 1) such
that for any x ∈ BR1 and r < 1−R1

(9)
∫

Br(x0)

|Du|2 ≤ Crn−2δ
{

χ(F ) + ‖u‖2H1(B)

}
.

By Lemma 3.3, we also get

(10)
∫

Br(x0)

u2 ≤ Crn−2δ
{

χ(F ) + ‖u‖2H1(B)

}
.

Write
χ(F, u) = ‖f‖2Lq + ‖u‖2H1 .

Then, (8), (9) and (10) imply∫

Bρ(x0)

|Du− (Du)x0,ρ|2

≤C

{(ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2 + rn+2α−2δχ(F, u)

}
.

Hence, Lemma 3.4 and Theorem 3.1 imply that Du ∈ Cα−δ
loc for small δ < α. In

particular, we have u ∈ C1
loc with

(11) sup
B 3

4

|u|2 + sup
B 3

4

|Du|2 ≤ Cχ(F, u).

Now (8) and (11) imply∫

Bρ(x0)

|Du− (Du)x0,ρ|2

≤C

{(ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2 + rn+2αχ(F, u)

}
.
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This finishes the proof. ¤

It is natural to ask whether f ∈ L∞(B1), with appropriate assumptions on aij

and c, implies Du ∈ C1. Consider∫

B1

DiuDiϕ =
∫

B1

fϕ for any ϕ ∈ H1
0 (B1).

There exists an example showing that f ∈ C and u ∈ C1,α
loc for any α ∈ (0, 1) while

D2u 6∈ C.

Example 3.12. In BR ⊂ Rn, with R < 1, consider

4u =
x2

2 − x2
1

2|x|2
{

n + 2
(− log |x|)1/2

+
1

2(− log |x|)3/2

}
,

where the right hand side is continuous in B̄R if we set it equal to zero at the origin.
The function u(x) = (x2

1 − x2
2)(− log |x|)1/2 ∈ C(B̄R) ∩ C∞(B̄R \ {0}) satisfies the

above equation in BR \ {0} and the boundary condition u =
√− log R(x2

1 − x2
2) on

∂BR. Note that u is not a classical solution of the problem since lim|x|→0 D11u = ∞,
and therefore u is not in C2(BR). In fact, the problem has no classical solutions (al-
though it has a weak solution). Assume on the contrary that a classical solution v
exists. Then the function w = u−v is harmonic and bounded in BR \{0}. By The-
orem 1.28 in Chapter 1, on removable singularities for harmonic functions, w may
be redefined at the origin so that 4w = 0 in BR and therefore belongs to C2(BR).
In particular, the (finite) limit lim|x|→0 D11u exists, which is a contradiction.



CHAPTER 4

Weak Solutions, Part II

In this chapter, we continue to discuss the regularity of weak solutions of el-
liptic equations of the divergence form. In the first three sections, we discuss the
DeGiorgi-Nash-Moser theory for linear elliptic equations of the divergence form.
In the first section, we prove the local boundedness of solutions. In the second
section, we prove the Hölder continuity. Then in Section 3, we discuss the Harnack
inequality. For all results in these three sections, there is no regularity assumption
on coefficients.

4.1. Local Boundedness

The main theorem in this section is the following boundedness result.

Theorem 4.1. Suppose aij ∈ L∞(B1) and c ∈ Lq(B1), for some q > n/2,
satisfy the following assumptions

aij(x)ξiξj ≥ λ|ξ|2 for any x ∈ B1, ξ ∈ Rn,

and
|aij |L∞ + ‖c‖Lq ≤ Λ,

for some positive constants λ and Λ. Suppose that u ∈ H1(B1) is a subsolution in
the following sense

(∗)

∫

B1

aijDiuDjϕ + cuϕ ≤
∫

B1

fϕ

for any ϕ ∈ H1
0 (B1) with ϕ ≥ 0 in B1.

If f ∈ Lq(B1), then u+ ∈ L∞loc(B1). Moreover, for any θ ∈ (0, 1) and any p > 0

sup
Bθ

u+ ≤ C

{
1

(1− θ)n/p
‖u+‖Lp(B1) + ‖f‖Lq(B1)

}
,

where C is a positive constant depending only on n, λ, Λ, p and q.

In the following, we use two approaches to prove this theorem, one by DeGiorgi
and the other by Moser.

Proof. We first prove for θ = 1/2 and p = 2.

Method 1. We first present an iteration method due to DeGiorgi.

Consider v = (u − k)+ for k ≥ 0 and ζ ∈ C1
0 (B1). Set ϕ = vζ2 as the test

function. Note v = u − k, Dv = Du a.e. in {u > k} and v = 0, Dv = 0 a.e. in
{u ≤ k}. Hence, if we substitute such a ϕ in (∗), we integrate in the set {u > k}.

67
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By the Cauchy inequality, we have
∫

aijDiuDjϕ =
∫

aijDiuDjvζ2 + 2aijDiuDjζvζ

≥ λ

∫
|Dv|2ζ2 − 2Λ

∫
|Dv||Dζ|vζ

≥ λ

2

∫
|Dv|2ζ2 − 2Λ2

λ

∫
|Dζ|2v2.

Then, we obtain
∫
|Dv|2ζ2 ≤ C

{ ∫
v2|Dζ|2 +

∫
|c|v2ζ2 + k2

∫
|c|ζ2 +

∫
|f |vζ2

}
,

and hence
∫
|D(vζ)|2 ≤ C

{ ∫
v2|Dζ|2 +

∫
|c|v2ζ2 + k2

∫
|c|ζ2 +

∫
|f |vζ2

}
.

Recall the Sobolev inequality for vζ ∈ H1
0 (B1)

(∫

B1

(vζ)2
∗
) 2

2∗

≤ c(n)
∫

B1

|D(vζ)|2,

where 2∗ = 2n/(n − 2) for n > 2 and 2∗ > 2 is arbitrary if n = 2. The Hölder
inequality implies that with δ > 0 small and ζ ≤ 1

∫
|f |vζ2 ≤

(∫
|f |q

) 1
q

(∫
|vζ|2∗

) 1
2∗

|{vζ 6= 0}|1− 1
2∗− 1

q

≤ c(n)‖f‖Lq

(∫
|D(vζ)|2

) 1
2

|{vζ 6= 0}| 12+ 1
n− 1

q

≤ δ

∫
|D(vζ)|2 + c(n, δ)‖f‖2Lq |{vζ 6= 0}|1+ 2

n− 2
q .

Note for q > n/2

1 +
2
n
− 2

q
> 1− 1

q
.

Therefore, we have
∫
|D(vζ)|2 ≤ C

{ ∫
v2|Dζ|2 +

∫
|c|v2ζ2 + k2

∫
|c|ζ2 + F 2|{vζ 6= 0}|1− 1

q

}
,

where F = ‖f‖Lq(B1).
We claim

(1)
∫
|D(vζ)|2 ≤ C

{ ∫
v2|Dζ|2 + (k2 + F 2)|{vζ 6= 0}|1− 1

q

}
,

if |{vζ 6= 0}| is small.
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It is obvious if c ≡ 0. In fact, in this special case there is no restriction on the
set {vζ 6= 0}. In general, the Hölder inequality implies

∫
|c|v2ζ2 ≤

(∫
|c|q

) 1
q

(∫
(vζ)2

∗
) 2

2∗

|{vζ 6= 0}|1− 2
2∗− 1

q

≤ c(n)
∫
|D(vζ)|2

(∫
|c|q

) 1
q

|{vζ 6= 0}| 2n− 1
q ,

and ∫
|c|ζ2 ≤

(∫
|c|q

) 1
q

|{vζ 6= 0}|1− 1
q .

Therefore, we have
∫
|D(vζ)|2 ≤ C

{ ∫
v2|Dζ|2 +

∫
|D(vζ)|2|{vζ 6= 0}| 2n− 1

q

+ (k2 + F 2)|{vζ 6= 0}|1− 1
q

}
.

This implies (1) if |{vζ 6= 0}| is small.
To continue, we note by the Sobolev inequality

∫
(vζ)2 ≤

(∫
(vζ)2

∗
) 2

2∗

|{vζ 6= 0}|1− 2
2∗

≤ c(n)
∫
|D(vζ)|2|{vζ 6= 0}| 2n .

Therefore, we have
∫

(vζ)2 ≤ C

{ ∫
v2|Dζ|2|{vζ 6= 0}| 2n + (k + F )2|{vζ 6= 0}|1+ 2

n− 1
q

}
,

if |{vζ 6= 0}| is small. Hence there exists an ε > 0 such that
∫

(vζ)2 ≤ C

{ ∫
v2|Dζ|2|{vζ 6= 0}|ε + (k + F )2|{vζ 6= 0}|1+ε

}
,

if |{vζ 6= 0}| is small. For any fixed 0 < r < R ≤ 1, choose ζ ∈ C∞0 (BR) such that
ζ ≡ 1 in Br, and 0 ≤ ζ ≤ 1 and |Dζ| ≤ 2(R− r)−1 in B1. Set

A(k, r) = {x ∈ Br; u ≥ k}.
We conclude that for any 0 < r < R ≤ 1 and k > 0

(2)

∫

A(k,r)

(u− k)2 ≤ C

{
1

(R− r)2
|A(k, R)|ε

∫

A(k,R)

(u− k)2

+ (k + F )2|A(k, R)|1+ε

}
,

if |A(k,R)| is small. Note

|A(k, R)| ≤ 1
k

∫

A(k,R)

u+ ≤ 1
k
‖u+‖L2 .

Hence (2) holds if k ≥ k0 = C‖u+‖L2 for some large C depending only on λ and Λ.
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Next, we claim for k = C(k0 + F )∫

A(k,1/2)

(u− k)2 = 0.

To this end, we take any h > k ≥ k0 and any 0 < r < 1. It is obvious that
A(k, r) ⊃ A(h, r). Hence we have∫

A(h,r)

(u− h)2 ≤
∫

A(k,r)

(u− k)2,

and
|A(h, r)| = |Br ∩ {u− k > h− k}| ≤ 1

(h− k)2

∫

A(k,r)

(u− k)2.

Therefore, by (2) we have for any h > k ≥ k0 and 1/2 ≤ r < R ≤ 1∫

A(h,r)

(u− h)2

≤C

{
1

(R− r)2

∫

A(h,R)

(u− h)2 + (h + F )2|A(h,R)|
}
|A(h,R)|ε

≤C

{
1

(R− r)2
+

(h + F )2

(h− k)2

}
1

(h− k)2ε

( ∫

A(k,R)

(u− k)2
)1+ε

,

or

(3) ‖(u− h)+‖L2(Br) ≤ C

{
1

R− r
+

h + F

h− k

}
1

(h− k)ε
‖(u− k)+‖1+ε

L2(BR).

Now we carry out the iteration. Set

ϕ(k, r) = ‖(u− k)+‖L2(Br).

For τ = 1/2 and some k > 0 to be determined, define for ` = 0, 1, 2, · · · ,

k` = k0 + k(1− 1
2`

) (≤ k0 + k),

r` = τ +
1
2`

(1− τ).

Obviously, we have

k` − k`−1 =
k

2`
, r`−1 − r` =

1
2`

(1− τ).

Therefore, we have for ` = 0, 1, 2, · · ·

ϕ(k`, r`) ≤ C

{
2`

1− τ
+

2`(k0 + F + k)
k

}
2ε`

kε
[ϕ(k`−1, r`−1)]1+ε

≤ C

1− τ
· k0 + F + k

k1+ε
· 2(1+ε)` · [ϕ(k`−1, r`−1)]1+ε.

Next, we prove inductively for any ` = 0, 1, · · ·

(4) ϕ(k`, r`) ≤ ϕ(k0, r0)
γ`

for some γ > 1,

if k is sufficiently large. Obviously, it is true for ` = 0. Suppose it is true for `− 1.
We write

[ϕ(k`−1, r`−1)]1+ε ≤
{

ϕ(k0, r0)
γ`−1

}1+ε

=
ϕ(k0, r0)ε

γ`ε−(1+ε)
· ϕ(k0, r0)

γ`
.
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Then, we obtain

ϕ(k`, r`) ≤ Cγ1+ε

1− τ
· k0 + F + k

k1+ε
· [ϕ(k0, r0)]

ε · 2`(1+ε)

γ`ε
· ϕ(k0, r0)

γ`
.

Choose γ first such that γε = 21+ε and note γ > 1. Next, we need

Cγ1+ε

1− τ
·
(

ϕ(k0, r0)
k

)ε

· k0 + F + k

k
≤ 1.

Therefore, we choose

k = C∗{k0 + F + ϕ(k0, r0)},
for C∗ large. Let ` → +∞ in (4). We conclude

ϕ(k0 + k, τ) = 0.

Hence we have

sup
B 1

2

u+ ≤ (C∗ + 1){k0 + F + ϕ(k0, r0)}.

Recall k0 = C‖u+‖L2(B1) and ϕ(k0, r0) ≤ ‖u+‖L2(B1). This finishes the proof by
the approach due to DeGiorgi.

Method 2. We will present an iteration argument due to Moser. First we explain
the idea. By choosing a test function appropriately, we estimate Lp1 norm of u in
a small ball by Lp2 norm of u in a large ball for p1 > p2, i.e.,

‖u‖Lp1 (Br1 ) ≤ C‖u‖Lp2 (Br2 ),

for p1 > p2 and r1 < r2. This is a reversed Hölder inequality. As a sacrifice, C

behaves like
1

r2 − r1
. We then obtain the desired result by an iteration and a careful

choice of {ri} and {pi}.
For some k > 0 and m > 0, set ū = u+ + k and

ūm =

{
ū if u < m

k + m if u ≥ m.

Then we have Dūm = 0 in {u < 0} and {u > m} and ūm ≤ ū. Consider the test
function

ϕ = η2(ūβ
mū− kβ+1) ∈ H1

0 (B1),

for some β ≥ 0 and some nonnegative function η ∈ C1
0 (B1). A direct calculation

yields

Dϕ = βη2ūβ−1
m Dūmū + η2ūβ

mDū + 2ηDη(ūβ
mū− kβ+1)

= η2ūβ
m(βDūm + Dū) + 2ηDη(ūβ

mū− kβ+1).

We should emphasize that later on we will begin the iteration with β = 0. Note
ϕ = 0 and Dϕ = 0 in {u ≤ 0}. Hence, if we substitute such a ϕ in (∗), we integrate
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in the set {u > 0}. Note also that u+ ≤ ū and ūβ
mū− kβ+1 ≤ ūβ

mū for k > 0. First,
we have by the Hölder inequality∫

aijDiuDjϕ

=
∫

aijDiū(βDj ūm + Dj ū)η2ūβ
m + 2

∫
aijDiūDjη(ūβ

mū− kβ+1)η

≥λβ

∫
η2ūβ

m|Dūm|2 + λ

∫
η2ūβ

m|Dū|2 − Λ
∫
|Dū||Dη|ūβ

mūη

≥λβ

∫
η2ūβ

m|Dūm|2 +
λ

2

∫
η2ūβ

m|Dū|2 − 2Λ2

λ

∫
|Dη|2ūβ

mū2.

Hence, we obtain by noting ū ≥ k

β

∫
η2ūβ

m|Dūm|2 +
∫

η2ūβ
m|Dū|2

≤C

{ ∫
|Dη|2ūβ

mū2 +
∫ (|c|η2ūβ

mū2 + |f |η2ūβ
mū

}

≤C

{ ∫
|Dη|2ūβ

mū2 +
∫

c0η
2ūβ

mū2

}
,

where c0 is defined by

c0 = |c|+ |f |
k

.

Choose k = ‖f‖Lq if f is not identically zero. Otherwise choose an arbitrary k > 0
and eventually let k → 0+. By the assumption, we have

‖c0‖Lq ≤ Λ + 1.

Set w = ū
β
2
mū. Note

|Dw|2 ≤ (1 + β){βūβ
m|Dūm|2 + ūβ

m|Dū|2}.
Therefore, we have

∫
|Dw|2η2 ≤ C

{
(1 + β)

∫
w2|Dη|2 + (1 + β)

∫
c0w

2η2

}
,

or ∫
|D(wη)|2 ≤ C

{
(1 + β)

∫
w2|Dη|2 + (1 + β)

∫
c0w

2η2

}
.

The Hölder inequality implies
∫

c0w
2η2 ≤

(∫
cq
0

) 1
q

(∫
(ηw)

2q
q−1

)1− 1
q

≤ (Λ + 1)
(∫

(ηw)
2q

q−1

)1− 1
q

.

By the interpolation inequality and the Sobolev inequality with

2∗ =
2n

n− 2
>

2q

q − 1
> 2 if q > n/2,

we have

‖ηw‖
L

2q
q−1

≤ ε‖ηw‖L2∗ + C(n, q)ε−
n

2q−n ‖ηw‖L2

≤ ε‖D(ηw)‖L2 + C(n, q)ε−
n

2q−n ‖ηw‖L2 ,
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for any small ε > 0. Therefore, we obtain∫
|D(wη)|2 ≤ C

{
(1 + β)

∫
w2|Dη|2 + (1 + β)

2q
2q−n

∫
w2η2

}
,

and in particular ∫
|D(wη)|2 ≤ C(1 + β)α

∫
(|Dη|2 + η2)w2,

where α in a positive number depending only on n and q. The Sobolev inequality
then implies (∫

|ηw|2χ

) 1
χ

≤ C(1 + β)α

∫
(|Dη|2 + η2)w2,

where χ =
n

n− 2
> 1 for n > 2 and χ > 2 for n = 2. For any 0 < r < R ≤ 1,

consider an η ∈ C1
0 (BR) with the property

η ≡ 1 in Br and |Dη| ≤ 2
R− r

.

Then, we obtain (∫

Br

w2χ

) 1
χ

≤ C
(1 + β)α

(R− r)2

∫

BR

w2.

Recalling the definition of w, we have
(∫

Br

ū2χūβχ
m

) 1
χ

≤ C
(1 + β)α

(R− r)2

∫

BR

ū2ūβ
m.

Set γ = β + 2 ≥ 2. Then we obtain
(∫

Br

ūγχ
m

) 1
χ

≤ C
(γ − 1)α

(R− r)2

∫

BR

ūγ ,

provided the integral in the right hand side is bounded. By letting m → +∞ we
conclude that

‖ū‖Lγχ(Br) ≤
(

C
(γ − 1)α

(R− r)2

) 1
γ

‖ū‖Lγ(BR),

provided ‖ū‖Lγ(BR) < +∞, where C is a positive constant depending only on n, q, λ,
Λ, and independent of γ. The above estimate suggests that we iterate, beginning
with γ = 2, as 2, 2χ, 2χ2, · · · . Now we set for i = 0, 1, 2, · · · ,

γi = 2χi and ri =
1
2

+
1

2i+1
.

By γi = χγi−1 and ri−1 − ri = 1/2i+1, we have for i = 1, 2, · · · ,

‖ū‖Lγi (Bri
) ≤ C(n, q, λ, Λ)

i

χi ‖ū‖Lγi−1 (Bri−1 ),

provided ‖ū‖Lγi−1 (Bri−1 ) < +∞. Hence, by an iteration we obtain

‖ū‖Lγi (Bri
) ≤ C

∑
i

χi ‖ū‖L2(B1),

and in particular 


∫

B 1
2

ū2χi




1
2χi

≤ C

(∫

B1

ū2

) 1
2

.
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Letting i → +∞, we get
sup
B 1

2

ū ≤ C‖ū‖L2(B1)

or
sup
B 1

2

u+ ≤ C{‖u+‖L2(B1) + k}.

Recall the definition of k. This finishes the proof for p = 2 by the approach due to
Moser.

Remark 4.2. If the subsolution u is bounded, we simply take the test function

ϕ = η2(ūβ+1 − kβ+1) ∈ H1
0 (B1),

for some β ≥ 0 and some nonnegative function η ∈ C1
0 (B1).

Next, we discuss the general case of Theorem 4.1. This is based on a dilation
argument. Take any R ≤ 1. Define

ũ(y) = u(Ry) for y ∈ B1.

It is easy to see that ũ satisfies
∫

B1

ãijDiũDjϕ + c̃ũϕ ≤
∫

B1

f̃ϕ

for any ϕ ∈ H1
0 (B1) and φ ≥ 0 in B1,

where
ã(y) = a(Ry), c̃(y) = R2c(Ry), f̃(y) = R2f(Ry),

for any y ∈ B1. A direct calculation shows

|ãij |L∞(B1) + ‖c̃‖Lq(B1) = |aij |L∞(BR) + R2−n
q ‖c‖Lq(BR) ≤ Λ.

We may apply what we just proved to ũ in B1 and rewrite the result in terms of u.
Hence, we obtain for p ≥ 2

sup
B R

2

u+ ≤ C{ 1
Rn/p

‖u+‖Lp(BR) + R2−n
q ‖f‖Lq(BR)},

where C is a positive constant depending only on n, λ, Λ, p and q.
The estimate in BθR can be obtained by applying the above result to B(1−θ)R(y)

for any y ∈ BθR. By taking R = 1, we have Theorem 4.1 for any θ ∈ (0, 1) and
p ≥ 2.

Now we prove the statement for p ∈ (0, 2). We showed that there holds for any
θ ∈ (0, 1) and 0 < R ≤ 1

‖u+‖L∞(BθR) ≤ C

{
1

[(1− θ)R]
n
2
‖u+‖L2(BR) + R2−n

q ‖f‖Lq(BR)

}

≤ C

{
1

[(1− θ)R]
n
2
‖u+‖L2(BR) + ‖f‖Lq(B1)

}
.

For p ∈ (0, 2), we have
∫

BR

(u+)2 ≤ ‖u+‖2−p
L∞(BR)

∫

BR

(u+)p,
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and hence by the Hölder inequality

‖u+‖L∞(BθR)

≤C

{
1

[(1− θ)R]
n
2
‖u+‖1−

p
2

L∞(BR)

(∫

BR

(u+)pdx

) 1
2

+ ‖f‖Lq(BR)

}

≤1
2
‖u+‖L∞(BR) + C

{
1

[(1− θ)R]
n
p

(∫

BR

(u+)p

) 1
p

+ ‖f‖Lq(BR)

}
.

Set f(t) = ‖u+‖L∞(Bt) for t ∈ (0, 1]. Then, we obtain for any 0 < r < R ≤ 1

f(r) ≤ 1
2
f(R) +

C

(R− r)
n
p
‖u+‖Lp(B1) + C‖f‖Lq(B1).

We apply the following lemma to get for any 0 < r < R < 1

f(r) ≤ C

(R− r)
n
p
‖u+‖Lp(B1) + C‖f‖Lq(B1).

By letting R → 1−, we get for any θ < 1

‖u+‖L∞(Bθ) ≤
C

(1− θ)
n
p
‖u+‖Lp(B1) + C‖f‖Lq(B1).

This finishes the proof. ¤

We need the following simple lemma.

Lemma 4.3. Let f(t) ≥ 0 be bounded in [τ0, τ1] with τ0 ≥ 0. Suppose for any
τ0 ≤ t < s ≤ τ1

f(t) ≤ θf(s) +
A

(s− t)α
+ B,

for some θ ∈ [0, 1). Then there holds for any τ0 ≤ t < s ≤ τ1

f(t) ≤ c

{
A

(s− t)α
+ B

}
,

where c is a positive constant depending only on α and θ.

Proof. Fix τ0 ≤ t < s ≤ τ1. For some 0 < τ < 1, we consider the sequence
{ti} defined by

t0 = t and ti+1 = ti + (1− τ)τ i(s− t).

Note t∞ = s. By an iteration, we get

f(t) = f(t0) ≤ θkf(tk) +
[

A

(1− τ)α
(s− t)−α + B

] k−1∑

i=0

θiτ−iα.

Choose τ < 1 such that θτ−α < 1, i.e., θ < τα < 1. As k →∞, we have

f(t) ≤ c(α, θ)
{

A

(1− τ)α
(s− t)−α + B

}
.

This finishes the proof. ¤

In the rest of this section, we use the Moser’s iteration to prove a high inte-
grability result, which is closely related to Theorem 4.1. For the next result, we
require n ≥ 3.
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Theorem 4.4. Suppose aij ∈ L∞(B1) and c ∈ Ln/2(B1) satisfy the following
assumption

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ B1, ξ ∈ Rn,

for some positive constants λ and Λ. Suppose that u ∈ H1(B1) is a subsolution in
the following sense ∫

B1

aijDiuDjϕ + cuϕ ≤
∫

B1

fϕ

for any ϕ ∈ H1
0 (B1) and ϕ ≥ 0 in B1.

If f ∈ Lq(B1) for some q ∈ [
2n

n + 2
,
n

2
), then u+ ∈ Lq∗

loc(B1) for
1
q∗

=
1
q
− 2

n
.

Moreover,

‖u+‖Lq∗ (B 1
2
) ≤ C

{
‖u+‖L2(B1) + ‖f‖Lq(B1)

}
,

where C is a positive constant depending only on n, λ, Λ, q and ε(K), with

ε(K) =
( ∫

{|c|>K}
|c|n

2

) 2
n

.

Proof. For m > 0, set ū = u+ and

ūm =

{
ū if u < m

m if u ≥ m.

Then consider a test function

ϕ = η2ūβ
mū ∈ H1

0 (B1),

for some β ≥ 0 and some nonnegative function η ∈ C1
0 (B1). By similar calculations

as in the proof of Theorem 4.1, we obtain
( ∫

η2χūβχ
m ū2χ

) 1
χ

≤ C(1 + β)
{ ∫

|Dη|2ūβ
mū2 +

∫
|c|η2ūβ

mū2 +
∫
|f |η2ūβ

mū

}
,

where χ =
n

n− 2
> 1. The Hölder inequality implies for any K > 0

∫
|c|η2ūβ

mū2 ≤ K

∫

{|c|≤K}
η2ūβ

mū2 +
∫

{|c|>K}
|c|η2ūβ

mū2

≤ K

∫
η2ūβ

mū2 +
( ∫

{|c|>K}
|c|n

2

) 2
n
( ∫

(η2ūβ
mū2)

n
n−2

)n−2
n

≤ K

∫
η2ūβ

mū2 + ε(K)
( ∫

η2χūβχ
m ū2χ

) 1
χ

.

Note ε(K) → 0 as K → +∞, since c ∈ Ln/2(B1). Hence, for bounded β we obtain
by choosing large K = K(β)

( ∫
η2χūβχ

m ū2χ

) 1
χ

≤ C(1 + β)
{ ∫

(|Dη|2 + η2)ūβ
mū2 +

∫
|f |η2ūβ

mū

}
.

Note
ūβ

mū ≤ ū
β− β

β+2
m ū1+ β

β+2 = (ūβ
mū2)

β+1
β+2 .
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Therefore, by the Hölder inequality again we have for η ≤ 1

∫
|f |η2ūβ

mū ≤
( ∫

|f |q
) 1

q
( ∫

(η2ūβ
mū2)χ

) β+1
(β+2)χ

|supp η|1− 1
q− β+1

(β+2)χ

≤ ε

( ∫
η2χūχūβχ

m

) 1
χ

+ C(ε, β)
( ∫

|f |q
) β+2

q

,

provided

1− 1
q
− β + 1

(β + 2)χ
≥ 0,

which is equivalent to

β + 2 ≤ q(n− 2)
n− 2q

.

Hence, β is required to be bounded, depending only on n and q. Then we obtain
( ∫

η2χūβχ
m ū2χ

) 1
χ

≤ C

{ ∫
(|Dη|2 + η2)ūβ

mū2 + ‖f‖β+2
Lq

}
.

By setting γ = β + 2, we have by the definition of q∗

(1) 2 ≤ γ ≤ q(n− 2)
n− 2q

=
q∗

χ
.

We conclude, as before, for any such γ in (1) and any 0 < r < R ≤ 1

(2) ‖ū‖Lχγ(Br) ≤ C

{
1

(R− r)
2
γ

‖ū‖Lγ(BR) + ‖f‖Lq(B1)

}
,

provided ‖ū‖Lγ(BR) < +∞. Again this suggests an iteration 2, 2χ, 2χ2, · · · .
For a given q ∈ [

2n

n + 2
,
n

2
), there exists a positive integer k such that

2χk−1 ≤ q(n− 2)
n− 2q

< 2χk.

For such a k, we get by finitely many iterations of (2)

‖ū‖L2χk (B 3
4
) ≤ C

{
‖ū‖L2(B1) + ‖f‖Lq(B1)

}
,

and in particular

‖ū‖
L

q∗
χ (B 3

4
)
≤ C

{
‖ū‖L2(B1) + ‖f‖Lq(B1)

}
.

With γ =
q∗

χ
in (2), we obtain

‖ū‖Lq∗ (B 1
2
) ≤ C

{
‖ū‖

L
q∗
χ (B 3

4
)
+ ‖f‖Lq(B1)

}
.

This finishes the proof. ¤
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4.2. The Hölder Continuity

We first discuss homogeneous equations with no lower order terms. Consider

Lu ≡ −Di(aij(x)Dju) in B1 ⊂ Rn,

where aij ∈ L∞(B1) satisfies

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ B1 and ξ ∈ Rn,

for some positive constants λ and Λ.

Definition 4.5. The function u ∈ H1
loc(B1) is called a subsolution (superso-

lution) of the equation Lu = 0, if
∫

B1

aijDiuDjϕ ≤ 0 (≥ 0),

for any ϕ ∈ H1
0 (B1) and ϕ ≥ 0.

Lemma 4.6. Let Φ ∈ C0,1
loc (R) be convex.

(i) If u is a subsolution and Φ′ ≥ 0, then v = Φ(u) is a subsolution provided
v ∈ H1

loc(B1);
(ii) If u is a supersolution and Φ′ ≤ 0, then v = Φ(u) is a subsolution provided

v ∈ H1
loc(B1).

Remark 4.7. If u is a subsolution, then (u− k)+ is also a subsolution, where
(u− k)+ = max{0, u− k}. In this case, Φ(s) = (s− k)+.

Proof. We only prove (i). Assume first Φ ∈ C2
loc(R). Then we have Φ′(s) ≥ 0

and Φ′′(s) ≥ 0. Consider a ϕ ∈ C1
0 (B1) with ϕ ≥ 0. A direct calculation yields

∫

B1

aijDivDjϕ =
∫

B1

aijΦ′(u)DiuDjϕ

=
∫

B1

aijDiuDj(Φ′(u)ϕ)−
∫

B1

(aijDiuDju)ϕΦ′′(u) ≤ 0,

where Φ′(u)ϕ ∈ H1
0 (B1) is nonnegative. In general, set Φε(s) = ρε ∗ Φ(s) with ρε

as the standard mollifier. Then Φ′ε(s) = ρε ∗Φ′(s) ≥ 0 and Φ′′ε (s) ≥ 0. Hence Φε(u)
is a subsolution by what we just proved. Note Φ′ε(s) → Φ′(s) a.e. as ε → 0+. The
Lebesgue dominant convergence theorem implies the desired result. ¤

We also need the following Poincaré-Sobolev inequality.

Lemma 4.8. Let ε be a positive constant. For any u ∈ H1(B1), if

|{x ∈ B1; u = 0}| ≥ ε|B1|,
then ∫

B1

u2 ≤ C

∫

B1

|Du|2,

where C is a positive constant depending only on ε and n.

Proof. We prove by contradiction. If not, there exists a sequence {um} ⊂
H1(B1) such that

|{x ∈ B1; um = 0}| ≥ ε|B1|,
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and ∫

B1

u2
m = 1,

∫

B1

|Dum|2 → 0 as m →∞.

We may assume um → u0 strongly in L2(B1) and weakly in H1(B1), with u0 ∈
H1(B1). Clearly u0 is a nonzero constant. Then we have

0 = lim
m→∞

∫

B1

|um − u0|2 ≥ lim
m→∞

∫

{um=0}
|um − u0|2

≥ |u0|2 inf
m
|{um = 0}| > 0.

This is a contradiction. ¤

Now, we begin to discuss the Hölder continuity. We first prove the following
result, which is often referred to as the density theorem.

Theorem 4.9. Suppose ε ∈ (0, 1) is a constant and u is a positive supersolution
in B2 with

|{x ∈ B1; u ≥ 1}| ≥ ε|B1|.
Then

inf
B 1

2

u ≥ C,

where C is a positive constant depending only on ε, n and Λ/λ.

Proof. We may assume u ≥ δ > 0 and then let δ → 0+ at the end.
By Lemma 4.6, v = (log u)− is a subsolution, bounded by log δ−1. Theorem

4.1 yields

sup
B 1

2

v ≤ C

(∫

B1

|v|2
) 1

2

.

Note |{x ∈ B1; v = 0}| = |{x ∈ B1; u ≥ 1}| ≥ ε|B1|. Lemma 4.8 implies

(1) sup
B 1

2

v ≤ C

(∫

B1

|Dv|2
) 1

2

.

We will prove that the right-hand side is bounded. To this end, consider a test

function ϕ =
ζ2

u
for ζ ∈ C1

0 (B2). Then we obtain

0 ≤
∫

aijDiuDj

(
ζ2

u

)
= −

∫
ζ2 aijDiuDju

u2
+ 2

∫
ζaijDiuDjζ

u
,

and hence ∫
ζ2|D log u|2 ≤ C

∫
|Dζ|2.

So for fixed ζ ∈ C1
0 (B2) with ζ ≡ 1 in B1, we have

∫

B1

|D log u|2 ≤ C.

Combining with (1), we obtain

sup
B 1

2

v = sup
B 1

2

(log u)− ≤ C,
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or
inf
B 1

2

u ≥ e−C > 0.

This finishes the proof. ¤

The next result controls the oscillation of solutions.

Theorem 4.10. Suppose u is a bounded solution of Lu = 0 in B2. Then

oscB 1
2
u ≤ γ oscB1u,

where γ ∈ (0, 1) is a constant depending only on n and Λ/λ.

Proof. The local boundedness is proved in the previous section. Set

α1 = sup
B1

u and β1 = inf
B1

u.

Consider
u− β1

α1 − β1
and

α1 − u

α1 − β1
.

Obviously, they are solutions of Lv = 0. Note the following equivalence

u ≥ 1
2
(α1 + β1) ⇐⇒ u− β1

α1 − β1
≥ 1

2
,

u ≤ 1
2
(α1 + β1) ⇐⇒ α1 − u

α1 − β1
≥ 1

2
.

Case 1. Suppose

|{x ∈ B1;
2(u− β1)
α1 − β1

≥ 1}| ≥ 1
2
|B1|.

Apply Theorem 4.9 to
u− β1

α1 − β1
≥ 0 in B1. We have for some C > 1

inf
B 1

2

u− β1

α1 − β1
≥ 1

C
,

and hence
inf
B 1

2

u ≥ β1 +
1
C

(α1 − β1).

Case 2. Suppose

|{x ∈ B1;
2(α1 − u)
α1 − β1

≥ 1}| ≥ 1
2
|B1|.

Similarly, we obtain

sup
B 1

2

u ≤ α1 − 1
C

(α1 − β1).

Now, we set
α2 = sup

B 1
2

u and β2 = inf
B 1

2

u.

Note that β2 ≥ β1 and α2 ≤ α1. In both cases, we have

α2 − β2 ≤ (1− 1
C

)(α1 − β1).

This finishes the proof. ¤
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The DeGiorgi theorem on Hölder continuity is an easy consequence of above
results.

Theorem 4.11. Suppose u is an H1(B1) solution of Lu = 0 in B1. Then
u ∈ Cα(B1) for some α ∈ (0, 1) depending only on n and Λ/λ. Moreover,

sup
B 1

2

|u(x)|+ sup
x,y∈B 1

2

|u(x)− u(y)|
|x− y|α ≤ C‖u‖L2(B1),

where C is a positive constant depending only on n and Λ/λ.

In the rest of this section, we discuss the Hölder continuity of solutions of
general linear equations. We need the following lemma.

Lemma 4.12. Suppose that aij ∈ L∞(Br) satisfies

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ Br, ξ ∈ Rn,

for some 0 < λ ≤ Λ < +∞. Suppose u ∈ H1(Br) satisfies
∫

Br

aijDiuDjϕ = 0 for any ϕ ∈ H1
0 (Br).

Then there exists an α ∈ (0, 1) such that for any ρ < r
∫

Bρ

|Du|2 ≤ C
(ρ

r

)n−2+2α
∫

Br

|Du|2,

where C and α depend only on n and Λ/λ.

Proof. By a dilation, we consider r = 1. We restrict our consideration to the

range ρ ∈ (0,
1
4
], since it is trivial for ρ ∈ (

1
4
, 1]. We may further assume

∫
B1

u = 0,

since the function u−|B1|−1
∫

B1
u solves the same equation. The Poincaré inequality

yields ∫

B1

u2 ≤ c(n)
∫

B1

|Du|2.

Hence Theorem 4.11 implies for |x| ≤ 1/2

|u(x)− u(0)|2 ≤ C|x|2α

∫

B1

|Du|2,

where α ∈ (0, 1) is as determined in Theorem 4.11. For any 0 < ρ ≤ 1/4, take a
cut-off function ζ ∈ C∞0 (B2ρ) with ζ ≡ 1 in Bρ, and 0 ≤ ζ ≤ 1 and |Dζ| ≤ 2/ρ.
Then set ϕ = ζ2

(
u− u(0)

)
. Now the equation yields

0 =
∫

B1

aijDiu
(
ζ2Dju + 2ζDjζ(u− u(0))

)

≥ λ

2

∫

B2ρ

ζ2|Du|2 − C sup
B2ρ

|u− u(0)|2
∫

B2ρ

|Dζ|2.

Therefore, we have ∫

Bρ

|Du|2 ≤ Cρn−2 sup
B2ρ

|u− u(0)|2.

The conclusion follows easily. ¤
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Now, we prove the following result in the same way we proved Theorem 3.8 in
Chapter 3, with Lemma 3.9 in Chapter 3 replaced by Lemma 4.12.

Theorem 4.13. Assume aij ∈ L∞(B1) and c ∈ Ln(B1) satisfy

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ B1, ξ ∈ Rn,

for some 0 < λ ≤ Λ < +∞. Suppose that u ∈ H1(B1) satisfies∫

B1

aijDjuDiϕ + cuϕ =
∫

B1

fϕ for any ϕ ∈ H1
0 (B1).

If f ∈ Lq(B1) for some q > n/2, then u ∈ Cα(B1) for some α ∈ (0, 1), depending
only on n, q, λ and Λ. Moreover, there exists an R0 ∈ (0, 1) such that for any
x ∈ B 1

2
and r ≤ R0

∫

Br(x)

|Du|2 ≤ Crn−2+2α

{
‖f‖2Lq(B1)

+ ‖u‖2H1(B1)

}
,

where R0 and C are constants depending only on n, q, λ, Λ and ‖c‖Ln .

4.3. Moser’s Harnack Inequality

In this section, we only discuss equations without lower order terms. Suppose
Ω is a domain in Rn. We always assume that aij ∈ L∞(Ω) satisfies

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ Ω and ξ ∈ Rn,

for some positive constants λ and Λ.
We first state a result of local boundedness, which is simply a dilated version

of Theorem 4.1.

Theorem 4.14. Let u ∈ H1(Ω) be a nonnegative subsolution in Ω in the fol-
lowing sense∫

Ω

aijDiuDjϕ ≤
∫

Ω

fϕ for any ϕ ∈ H1
0 (Ω) with φ ≥ 0 in Ω.

Suppose f ∈ Lq(Ω) for some q > n/2. Then for any BR ⊂ Ω, any 0 < r < R and
any p > 0

sup
Br

u ≤ C
( 1
(R− r)n/p

‖u+‖Lp(BR) + R2−n
q ‖f‖Lq(BR)

)
,

where C is a positive constant depending only on n, λ, Λ, p and q.

The next result is referred to as the weak Harnack inequality.

Theorem 4.15. Let u ∈ H1(Ω) be a nonnegative supersolution in Ω in the
following sense

(∗)
∫

Ω

aijDiuDjϕ ≥
∫

Ω

fϕ for any ϕ ∈ H1
0 (Ω) with ϕ ≥ 0 in Ω.

Suppose f ∈ Lq(Ω) for some q > n/2. Then for any BR ⊂ Ω, any 0 < p < n/(n−2)
and any 0 < θ < τ < 1

inf
BθR

u + R2−n
q ‖f‖Lq(BR) ≥ C

(
1

Rn

∫

BτR

up

) 1
p

,

where C is a positive constant depending only on n, p, q, λ, Λ, θ and τ .
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Proof. We only prove for R = 1.
Step 1. We prove that the result holds for some p0 > 0.
Set ū = u + k > 0, for some k > 0 to be determined and v = ū−1. First, we

derive an equation for v. For any ϕ ∈ H1
0 (B1) with ϕ ≥ 0 in B1, consider ū−2ϕ as

the test function in (∗). We have
∫

B1

aijDiu
Djϕ

ū2
− 2

∫

B1

aijDiuDj ū
ϕ

ū3
≥

∫

B1

f
ϕ

ū2
.

Note Dū = Du and Dv = −ū2Dū. Therefore, we obtain
∫

B1

aijDjvDiϕ + f̃vϕ ≤ 0,

where

f̃ =
f

ū
.

In other words, v is a nonnegative subsolution of some homogeneous equation.
Choose k = ‖f‖Lq if f is not identical zero. Otherwise, choose an arbitrary k > 0
and then let k → 0+. Note

‖f̃‖Lq(B1) ≤ 1.

Theorem 4.1 implies that for any τ ∈ (θ, 1) and any p > 0

sup
Bθ

ū−p ≤ C

∫

Bτ

ū−p,

or,

inf
Bθ

ū ≥ C

(∫

Bτ

ū−pdx

)− 1
p

= C

(∫

Bτ

ū−p

∫

Bτ

ūp

)− 1
p

(∫

Bτ

ūp

) 1
p

,

where C is a positive constant depending only on n, q, p, λ, Λ, τ and θ.
The key point next is to show that there exists a p0 > 0 such that

∫

Bτ

ū−p0 ·
∫

Bτ

ūp0 ≤ C,

where C is a positive constant depending only on n, q, λ, Λ and τ . We will show
for any τ < 1

(1)
∫

Bτ

ep0|w| ≤ C,

where w = log ū− β with β = |Bτ |−1
∫

Bτ
log ū.

We have two methods to proceed:
(i) To prove directly.
(ii) To prove that w is BMO, i.e., for any Br(y) ⊂ B1,

1
rn

∫

Br

|w − wy,r|dx ≤ C.

Then (1) follows from Theorem 3.5 in Chapter 3 (John-Nirenberg Lemma).
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We first prove (1) directly. Recall ū = u + k ≥ k > 0. Note that

ep0|w| = 1 + p0|w|+ (p0|w|)2
2!

+ · · ·+ (p0|w|)n

n!
+ · · · .

Hence we need to estimate ∫

Bτ

|w|β ,

for each positive integer β.
We first derive an equation for w. Consider ū−1ϕ as the test function in (∗).

Here we need ϕ ∈ L∞(B1) ∩H1
0 (B1) with ϕ ≥ 0. By a direct calculation as before

and by the fact Dw = ū−1Dū, we have

(2)

∫

B1

aijDiwDjwϕ ≤
∫

B1

aijDiwDjϕ +
∫

B1

(−f̃ϕ)

for any ϕ ∈ L∞(B1) ∩H1
0 (B1) with ϕ ≥ 0.

Replace ϕ by ϕ2 in (2). Then the Cauchy inequality implies
∫

B1

|Dw|2ϕ2 ≤ C

{ ∫

B1

|Dϕ|2 +
∫

B1

|f̃ |ϕ2

}
.

By the Hölder inequality and the Sobelev inequality, we obtain
∫

B1

|f̃ |ϕ2 ≤ ‖f̃‖Ln/2‖ϕ‖2L2n/(n−2) ≤ c(n, q)‖Dϕ‖2L2 .

Therefore, we have

(3)
∫

B1

|Dw|2ϕ2 ≤ C

∫

B1

|Dϕ|2,

where C is a positive constant depending only on n, q, λ and Λ. Take ϕ ∈ C1
0 (B1)

with ϕ ≡ 1 in Bτ . Then we obtain

(4)
∫

Bτ

|Dw|2 ≤ C,

where C is a positive constant depending only on n, q, λ, Λ and τ . Hence the
Poincaré inequality implies

∫

Bτ

w2 ≤ c(n, τ)
∫

Bτ

|Dw|2 ≤ C,

since
∫

Bτ
w = 0. By (3), we conclude for any τ ′ ∈ (τ, 1)

(5)
∫

Bτ′
w2 ≤ C,

where C is a positive constant depending only on n, q, λ, Λ, τ and τ ′.
Next, we estimate

∫
Bτ
|w|β for any β ≥ 2. Choose ϕ = ζ2|wm|2β ∈ H1

0 (B1) ∩
L∞(B1) with

wm =





−m w ≤ −m

w |w| < m

m w ≥ m.
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Substitute such a ϕ in (2) to get
∫

B1

ζ2|wm|2βaijDiwDjw ≤ (2β)
∫

B1

ζ2aijDiwDj |wm||wm|2β−1

+
∫

B1

2ζ|wm|2βaijDiwDjζ +
∫

B1

|f̃ |ζ2|wm|2β .

Note

aijDiwDj |wm| = aijDiwmDj |wm| ≤ aijDiwmDjwm a.e. in B1.

The Hölder inequality implies

(2β)|wm|2β−1 ≤ 2β − 1
2β

|wm|2β +
1
2β

(2β)2β

= (1− 1
2β

)|wm|2β + (2β)2β−1.

We obtain∫

B1

ζ2|wm|2βaijDiwDjw ≤ (1− 1
2β

)
∫

B1

ζ2|wm|2βaijDiwmDjwm

+ (2β)2β−1

∫

B1

ζ2aijDiwmDjwm

+
∫

B1

2ζ|wm|2βaijDiwDjζ +
∫

B1

|f̃ |ζ2|wm|2β ,

and hence∫

B1

ζ2|wm|2βaijDiwDjw ≤ (2β)2β

∫

B1

ζ2aijDiwmDjwm

+ 4β

∫

B1

ζ|wm|2βaijDiwDjζ + 2β

∫

B1

|f̃ |ζ2|wm|2β .

Therefore, we have
∫

B1

ζ2|wm|2β |Dw|2 ≤ C

{
(2β)2β

∫

B1

ζ2|Dwm|2

+ β

∫

B1

ζ|wm|2β |Dw||Dζ|+ β

∫

B1

|f̃ |ζ2|wm|2β

}
.

Note that the first term in the right hand side is bounded in (4). Applying the
Cauchy inequality to the second term in the right hand side, we conclude

∫

B1

ζ2|wm|2β |Dw|2 ≤ C

{
(2β)2β

∫

B1

ζ2|Dwm|2

+ β2

∫

B1

|wm|2β |Dζ|2 + β

∫

B1

|f̃ |ζ2|wm|2β

}
.

Note Dw = Dwm for |w| < m and Dwm = 0 for |w| > m. Hence we have
∫

B1

ζ2|wm|2β |Dwm|2 ≤ C{(2β)2β

∫

B1

ζ2|Dwm|2

+ β2

∫

B1

|wm|2β |Dζ|2 + β

∫

B1

|f̃ |ζ2|wm|2β}.
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In the following, we write w = wm and then let m → +∞ at the end. By the
Hölder inequality, we obtain

|D(ζ|w|β)|2 ≤ 2|Dζ|2|w|2β + 2β2ζ2|w|2β−2|Dw|2

≤ 2|Dζ|2|w|2β + 2ζ2|Dw|2(β − 1
β

|w|2β +
1
β

β2β),

and hence ∫

B1

|D(ζ|w|β)|2 ≤ C

{
(2β)2β

∫

B1

ζ2|Dw|2

+ β2

∫
|Dζ|2|w|2β + β

∫

B1

|f̃ |ζ2|w|2β

}
.

Then the Hölder inequality implies
∫

B1

|f̃ |ζ2|w|2β ≤
(∫

B1

|f̃ |q
) 1

q
(∫

B1

(ζ|w|β)
2q

q−1

)1− 1
q

.

Note 2∗ =
2n

n− 2
>

2q

q − 1
> 2 if q > n/2. By the interpolation inequality and the

Sobolev inequality, we have for any small ε > 0

‖ζ|w|β‖
L

2q
q−1

≤ ε‖ζ|w|β‖L2∗ + C(n, q)ε−
n

2q−n ‖ζ|w|β‖L2

≤ ε‖D(ζ|w|β)‖L2 + C(n, q)ε−
n

2q−n ‖ζ|w|β‖L2 .

Therefore, we obtain by (3)
∫

B1

|D(ζ|w|β)|2 ≤ C

{
(2β)2β

∫

B1

ζ2|Dw|2 + βα

∫

B1

(|Dζ|2 + ζ2)|w|2β

}

≤ C

{
(2β)2β

∫

B1

|Dζ|2 + βα

∫

B1

(|Dζ|2 + ζ2)|w|2β

}
,

for some positive constant α depending only on n and q. Apply the Sobolev in-
equality for ζ|w|β ∈ W 1,2

0 (Rn) with χ =
n

n− 2
to get

(∫

B1

ζ2χ|w|2βχ

) 1
χ

≤ Cβα

{
(2β)2β

∫

B1

|Dζ|2 +
∫

B1

(|Dζ|2 + ζ2)|w|2β

}
.

Choose a cut-off function ζ as follows. For τ ≤ r < R ≤ 1, set ζ ≡ 1 on Br, ζ ≡ 0

in B1 \BR and |Dζ| ≤ 2
R− r

. Therefore, we have

(∫

Br

|w|2βχ

) 1
χ

≤ Cβα

(R− r)2
{(2β)2β +

∫

BR

|w|2β}.

For some τ ′ ∈ (τ, 1), set for any i = 1, 2, · · ·

βi = χi−1, and ri = τ +
1

2i−1
(τ ′ − τ).

Then for each i = 1, 2, · · · , we have
(∫

Bri

|w|2χi

) 1
χ

≤ Cχ(i−1)α22(i−1)

(τ ′ − τ)2

{
(2χi−1)2χi−1

+
∫

Bri−1

|w|2χi−1
}

.
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Set
Ij = ‖w‖L2χj

(Brj
).

Then, we have for j = 1, 2, · · · ,
Ij ≤ C

j

2χj {2χj−1 + Ij−1},
where C is a positive constant depending only on n, q, λ, Λ, τ and τ ′. Iterating
the above inequality and observing that

∞∑

i=0

i

χi
< ∞,

we obtain

Ij ≤ C

j∑

i=1

χi−1 + CI0,

or,
Ij ≤ Cχj + CI0.

Now for β ≥ 2, there exists a j such that 2χj−1 ≤ β < 2χj . Hence, we have

Iβ(Bτ ) ≡
(∫

Bτ

|w|β
) 1

β

≤ CIj ≤ Cχj + CI0

≤ Cβ + CI0 ≤ C0β,

since I0 is bounded in (5). Then, we obtain for β ≥ 1
∫

Bτ

|w|βdx ≤ Cβ
0 ββ ≤ Cβ

0 eββ!,

where we used the Sterling formula for the integer β. Hence, for any integer β ≥ 1,
we conclude ∫

Bτ

(p0|w|)β

β!
≤ pβ

0 (C0e)β ≤ 1
2β

,

by choosing p0 = (2C0e)−1. This proves that
∫

ep0|w| =
∫

1 + p0|w|+ (p0|w|)2
2!

+ · · ·

≤ 1 +
1
21

+
1
22

+ · · · ≤ 2.

We remark that the above method is elementary in nature.
Now we give the second proof of the estimate (1) by using BMO. The estimate

(3) yields ∫

B1

|Dw|2ζ2 ≤ C

∫

B1

|Dζ|2 for any ζ ∈ C1
0 (B1).

Then for any B2r(y) ⊂ B1, choose ζ with

supp ζ ⊂ B2r(y), ζ ≡ 1 in Br(y), |Dζ| ≤ 2
r
.

We obtain ∫

Br(y)

|Dw|2 ≤ Crn−2.
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Hence the Poincaré inequality implies

1
rn

∫

Br(y)

|w − wy,r| ≤ 1
r

n
2

(∫

Br(y)

|w − wy,r|2
) 1

2

≤ 1
r

n
2

(
r2

∫

Br(y)

|Dw|2
) 1

2

≤ C,

or, w ∈ BMO. Then the John-Nirenberg Lemma implies∫

Bτ

ep0|w| ≤ C.

Step 2. The result holds for any positive p < n/(n− 2).
We need to prove, for any 0 < r1 < r2 < 1 and 0 < p2 < p1 < n/(n− 2),

(6)
( ∫

Br1

ūp1

) 1
p1 ≤ C

( ∫

Br2

ūp2

) 1
p2

,

where C is positive constant depending only on n, q, λ, Λ, r1, r2, p1 and p2. A
similar calculation may be found before. Here, we just point out some key steps.

Take ϕ = ū−βη2 for β ∈ (0, 1) as the test function in (∗). Then we have
∫

B1

|Dū|2ū−β−1η2 ≤ C

{
1
β2

∫

B1

|Dη|2ū1−β +
1
β

∫

B1

|f |
k

η2ū1−β

}
.

Set γ = 1− β ∈ (0, 1) and w = ū
γ
2 . Then, we obtain∫

|Dw|2η2 ≤ C

(1− γ)α

∫
w2(|Dη|2 + η2),

or ∫
|D(wη)|2 ≤ C

(1− γ)α

∫
w2(|Dη|2 + η2),

for some positive α > 0. The Sobolev embedding theorem and an appropriate
choice of cut-off functions imply, with χ = n/n− 2, for any 0 < r < R < 1

(∫

Br

w2χ

) 1
χ

≤ C

(1− γ)α
· 1
(R− r)2

∫

BR

w2,

or ( ∫

Br

ūγχ

) 1
γχ

≤
(

C

(1− γ)α

1
(R− r)2

) 1
γ
( ∫

BR

ūγ

) 1
γ

.

This holds for any γ ∈ (0, 1). Now (6) follows after finitely many iterations. ¤

Now the Moser’s Harnack inequality is an easy consequence of above results.

Theorem 4.16. Let u ∈ H1(Ω) be a nonnegative solution in Ω∫

Ω

aijDiuDjϕ =
∫

Ω

fϕ for any ϕ ∈ H1
0 (Ω).

Suppose f ∈ Lq(Ω) for some q > n/2. Then for any BR ⊂ Ω,

sup
B R

2

u ≤ C

{
inf
B R

2

u + R2−n
q ‖f‖Lq(BR)

}
,



4.3. MOSER’S HARNACK INEQUALITY 89

where C is a positive constant depending only on n, λ, Λ and q.

The Hölder continuity follows easily from Theorem 4.16.

Corollary 4.17. Let u ∈ H1(Ω) be a solution in Ω, i.e.,
∫

Ω

aijDiuDjϕ =
∫

Ω

fϕ for any ϕ ∈ H1
0 (Ω).

Suppose f ∈ Lq(Ω) for some q > n/2. Then u ∈ Cα(Ω) for some α ∈ (0, 1)
depending only on n, q, λ and Λ. Moreover, for any BR ⊂ Ω

|u(x)− u(y)| ≤ C

( |x− y|
R

)α{(
1

Rn

∫

BR

u2

) 1
2

+ R2−n
q ‖f‖Lq(BR)

}

for any x, y ∈ BR
2
,

where C is a positive constant depending only on n, λ, Λ and q.

Proof. We prove the estimate for R = 1. Set for r ∈ (0, 1)

M(r) = sup
Br

u and m(r) = inf
Br

u.

Then M(r) < +∞ and m(r) > −∞. It suffices to show

ω(r) ≡ M(r)−m(r) ≤ Crα
{‖u‖L2(B1) + ‖f‖Lq(B1)

}
for any r <

1
2
.

Set δ = 2− n

q
. Apply Theorem 4.16 to M(r)− u ≥ 0 in Br to get

sup
B r

2

(M(r)− u) ≤ C

{
inf
B r

2

(
M(r)− u

)
+ rδ‖f‖Lq(Br)

}
,

i.e.,

(1) M(r)−m(
r

2
) ≤ C

{(
M(r)−M(

r

2
)
)

+ rδ‖f‖Lq(Br)

}
.

Similarly, apply Theorem 4.16 to u−m(r) ≥ 0 in Br to get

(2) M(
r

2
)−m(r) ≤ C

{(
m(

r

2
)−m(r)

)
+ rδ‖f‖Lq(Br)

}
.

Then by adding (1) and (2) together, we obtain

ω(r) + ω(
r

2
) ≤ C

{(
ω(r)− ω(

r

2
)
)

+ rδ‖f‖Lq(Br)

}
,

or
ω(

r

2
) ≤ γω(r) + Crδ‖f‖Lq(Br),

for some γ =
C − 1
C + 1

< 1.

Apply Lemma 4.18 below with µ chosen such that

α = (1− µ) log γ/ log τ < µδ.

We obtain

ω(ρ) ≤ Cρα

{
ω(

1
2
) + ‖f‖Lq(B1)

}
for any ρ ∈ (0,

1
2
].
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While Theorem 4.14 implies

ω
(1
2
) ≤ C

{‖u‖L2(B1) + ‖f‖Lq(B1)

}
.

This finishes the proof. ¤

Lemma 4.18. Let ω and σ be non-decreasing functions in an interval (0, R].
Suppose for some 0 < γ, τ < 1

ω(τr) ≤ γω(r) + σ(r) for any r ≤ R.

Then, for any µ ∈ (0, 1) and r ≤ R,

ω(r) ≤ C

{( r

R

)α
ω(R) + σ(rµR1−µ)

}
,

where C is a positive constant depending only on γ, τ and α = (1− µ) log γ/ log τ.

Proof. Fix some r1 ≤ R. Then for any r ≤ r1, we have

ω(τr) ≤ γω(r) + σ(r1),

since σ is nondecreasing. We now iterate this inequality to get for any positive
integer k

ω(τkr1) ≤ γkω(r1) + σ(r1)
k−1∑

i=0

γi ≤ γkω(R) +
σ(r1)
1− γ

.

For any r ≤ r1, we choose k such that

τkr1 < r ≤ τk−1r1.

Hence, we have

ω(r) ≤ ω(τk−1r1) ≤ γk−1ω(R) +
σ(r1)
1− γ

≤ 1
γ

(
r

r1
)log γ/ log τω(R) +

σ(r1)
1− γ

.

By letting r1 = rµR1−µ, we obtain

ω(r) ≤ 1
γ

(
r

R
)(1−µ)(log γ/ log τ)ω(R) +

σ(rµR1−µ)
1− γ

.

This finishes the proof. ¤

We also have the following Liouville theorem.

Corollary 4.19. Suppose u is a solution of a homogeneous equation in Rn,
i.e., ∫

Rn

aijDiuDjϕ = 0 for any ϕ ∈ H1
0 (Rn).

If u is bounded, then u is a constant.

Proof. As in the proof of Corollary 4.17, we have for some γ < 1

ω(r) ≤ γω(2r) for any r > 0.

By an iteration, we obtain

ω(r) ≤ γkω(2kr) ≤ Cγk,
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since u is bounded. Hence by letting k →∞, we conclude

ω(r) = 0 for any r > 0.

Therefore, u is constant. ¤

4.4. Nonlinear Equations

Up to now, we have been discussing linear equations of the following form

−Dj(aij(x)Diu) = f(x) in B1.

It is natural to ask how these results generalize to nonlinear equations. To answer
this question, let us consider an equation for a solution v of the form

v(x) = Φ
(
u(x)

)
,

for some smooth function Φ : R → R with Φ′ 6= 0. Any estimates for u can be
translated to those for v. To find the equation for v, we write

u = Ψ(v),

with Ψ = Φ−1. Then by setting η = Ψ′(v)ξ for ξ ∈ C∞0 (B1), we have
∫

aijDiuDjξ =
∫

aijΨ′(v)DivDjξ

=
∫

aijDivDjη −
∫

Ψ′′(v)
Ψ′(v)

aijDivDjvη.

Therefore if u satisfies∫
aijDiuDjξ =

∫
f(x)ξ for any ξ ∈ H1

0 (B1),

then v satisfies∫
aijDivDjη =

∫ (
Ψ′′(v)
Ψ′(v)

aijDivDjv +
1

Ψ′(v)
f

)
η for any η ∈ C∞0 (B1).

Note that the nonlinear term has a quadratic growth in terms of Dv. Hence, we
may extend the space of test functions to H1

0 (B1) ∩ L∞(B1). It turns out that
H1(B1) ∩ L∞(B1) is also the right space for solutions. The following example
illustrates the boundedness of solutions is essential.

Example 4.20. Consider the equation

−∆u = |Du|2 in BR ⊂ R2,

with R < 1. It is easy to check that u(x) = log log |x|−1 − log log R−1 ∈ H1(BR) is
a weak solution with zero boundary data. Note that u(x) ≡ 0 is also a solution.

In this section, we assume aij ∈ L∞(B1) satisfies

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ B1 and ξ ∈ Rn,

for some positive constants λ and Λ. We consider the nonlinear equation of the
form

(∗)
∫

aij(x)DiuDjϕ =
∫

b(x, u, Du)ϕ for any ϕ ∈ H1
0 (B1) ∩ L∞(B1).
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We say the nonlinear term b satisfies the natural growth condition if

|b(x, u, p)| ≤ C(u)
(
f(x) + |p|2) for any (x, u, p) ∈ B1 × R× Rn,

for some constant C(u) depending only on u, and f ∈ Lq(B1) for some q ≥ 2n

n + 2
.

We always assume
u ∈ H1(B1) ∩ L∞(B1).

Lemma 4.21. Suppose u ∈ H1(B1) is a nonnegative solution of (∗) with |u| ≤
M in B1 and that b satisfies the natural growth condition with f(x) ∈ Lq(B1) for
some q >

n

2
. Then for any BR ⊂ B1

sup
B R

2

u ≤ C
{

inf
B R

2

u + R2−n
q ‖f‖Lq(BR)

}
,

where C is a positive constant depending only on n, λ, Λ,M and q.

Proof. Let v = 1
α (eαu − 1) for some α > 0. Then for ϕ ∈ H1

0 (B1) ∩ L∞(B1)
with ϕ ≥ 0, we have

∫
aijDivDjϕ =

∫
aije

αuDiuDjϕ

=
∫

aijDiuDj(eαuϕ)− α

∫
aije

αuDiuDjuϕ

=
∫

b(x, u,Du)eαuϕ− α

∫
aije

αuDiuDjuϕ

≤ C(M)
∫

(f(x) + |Du|2)eαuϕ− αλ

∫
|Du|2eαuϕ.

Hence by taking α large, we have

(1)

∫
aijDivDjϕ ≤ C

∫
f(x)ϕ

for any ϕ ∈ H1
0 (B1) ∩ L∞(B1) with ϕ ≥ 0,

for some positive constant C depending only on n, λ, Λ and M . Observe that u and
v are compatible. Therefore by Theorem 4.14, we obtain for any p > 0

sup
B R

2

u ≤ C(M, α) sup
B R

2

v

≤ C

{(
1

Rn

∫

BR

vp

) 1
p

+ R2−n
q

(∫

BR

fq

) 1
q

}

≤ C

{(
1

Rn

∫

BR

up

) 1
p

+ R2−n
q

(∫

BR

fq

) 1
q

}
.

For the lower bound, we let w =
1
α

(1− e−αu). As before, by choosing α > 0 large
we have∫

aijDiwDjϕ ≥ C

∫
f(x)ϕ for any ϕ ∈ H1

0 (B1) ∩ L∞(B1) with ϕ ≥ 0.



4.4. NONLINEAR EQUATIONS 93

Hence by Theorem 4.15, we obtain for any p ∈ (0,
n

n− 2
)

(
1

Rn

∫

BR

up

) 1
p

≤ C

{
inf
B R

2

u + R2−n
q

(∫

BR

fq

) 1
q

}
.

We finish the proof by combining the above inequalities. ¤

Remark 4.22. In estimate (1) in the above proof, take ϕ = (u + M)η2 for
some η ∈ C1

0 (B1). Then by the Hölder inequality, we conclude
∫
|Du|2η2 ≤ C

{ ∫ (|Dη|2 + |f |η2
)}

,

for some positive constant C depending only on n, λ, Λ and M . This implies the
interior L2-estimate of the gradient Du in terms of these constants together with
‖f‖L1(B1). This fact will be used in the proof of Theorem 4.24.

Corollary 4.23. Suppose u ∈ H1(B1) is a bounded solution of (∗) and that b

satisfies the natural growth condition with f(x) ∈ Lq(B1) for some q >
n

2
. Then u ∈

Cα
loc(B1), for some α ∈ (0, 1) depending only on n, λ, Λ, q and |u|L∞ . Moreover,

|u(x)− u(y)| ≤ C|x− y|α for any x, y ∈ B 1
2
,

where C is a positive constant depending only on n, λ, Λ, q, |u|L∞(B1) and ‖f‖Lq(B1).

Proof. The proof is identical to that of Theorem 4.17, with Theorem 4.16
replaced by Lemma 4.21. ¤

Theorem 4.24. Suppose u ∈ H1(B1) is a bounded solution of (∗) and that b
satisfies the natural growth condition with f ∈ Lq(B1) for some q > n. Assume
further that aij ∈ Cα(B1) for α = 1− n

q
. Then Du ∈ Cα

loc(B1). Moreover,

|Du|Cα(B 1
2
) ≤ C,

where C is a positive constant depending only on n, λ, Λ, q, |u|L∞(B1) and ‖f‖Lq(B1).

Proof. We only need to prove Du ∈ L∞loc. Then the Hölder continuity is
implied by Theorem 3.11 in Chapter 3. For any Br(x0) ⊂ B1, solve for w such that

∫

Br(x0)

aij(x0)DiwDjϕ = 0 for any ϕ ∈ H1
0

(
Br(x0)

)
,

with w − u ∈ H1
0

(
Br(x0)

)
. Then the maximum principle implies

inf
Br(x0)

u ≤ w ≤ sup
Br(x0)

u in Br(x0),

or

(1) sup
Br(x0)

|u− w| ≤ oscBr(x0)u.

By Lemma 3.9 in Chapter 3, we have for any 0 < ρ ≤ r

(2)
∫

Bρ(x0)

|Du|2 ≤ c

{(ρ

r

)n
∫

Br(x0)

|Du|2 +
∫

Br(x0)

|D(u− w)|2
}

,
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and

(3)

∫

Bρ(x0)

|Du− (Du)x0,ρ|2 ≤ c

{ (ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2

+
∫

Br(x0)

|D(u− w)|2
}

.

Note that the function v = u− w ∈ H1
0

(
Br(x0)

)
satisfies

∫

Br(x0)

aij(x0)DivDjϕ =
∫

Br(x0)

b(x, u, Du)ϕ

+
∫

Br(x0)

(
aij(x0)− aij(x)

)
DiuDjϕ

for any ϕ ∈ H1
0

(
Br(x0)

) ∩ L∞
(
Br(x0)

)
.

Taking ϕ = v and by the Sobolev inequality, we obtain∫

Br(x0)

|Dv|2 ≤ C

{ ∫

Br(x0)

|Du|2|v|+ r2α

∫

Br(x0)

|Du|2 + rn+2α‖f‖2Lq(B1)

}
.

Hence with (1), we conclude

(4)
∫

Br(x0)

|Dv|2 ≤ C

{(
r2α + oscBr(x0) u

) ∫

Br(x0)

|Du|2 + rn+2α‖f‖2Lq

}
.

Corollary 4.23 implies u ∈ Cδ0 for some δ0 > 0. Therefore, we have by (2) and (4)
∫

Bρ(x0)

|Du|2 ≤ C

{[(ρ

r

)n

+ r2α + rδ0

] ∫

Br(x0)

|Du|2 + rn+2α‖f‖2Lq

}
.

By Lemma 3.4 in Chapter 3, we obtain for any δ < 1 and any Br(x0) ⊂ B 7
8∫

Br(x0)

|Du|2 ≤ Crn−2+2δ

{ ∫

B 7
8

|Du|2 + ‖f‖2Lq(B1)

}
.

This implies u ∈ Cδ
loc for any δ < 1. Moreover, for any Br(x0) ⊂ B 3

4

oscBr(x0)u ≤ Crδ,

where C is a positive constant depending only on n, λ, Λ, q, |u|L∞(B1) and ‖f‖Lq(B1),
by the Remark 4.22. With (4), we have for any Br(x0) ⊂ B 2

3∫

Br(x0)

|Dv|2 ≤C

{
(r2α + rδ)rn−2+2δ

∫

B 7
8

|Du|2 + rn+2α‖f‖2Lq

}

≤Crn+2α′ ,

for some α′ < α if δ ∈ (0, 1) is chosen such that 3δ > 2 and α + δ > 1. Hence, with
(3) we obtain for any Br(x0) ⊂ B 2

3
and any 0 < ρ ≤ r

∫

Bρ(x0)

|Du− (Du)x0,ρ|2 ≤ C

{ (ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2 + rn+2α′
}

.

By Lemma 3.4 and Theorem 3.1 in Chapter 3 again, we conclude that Du ∈ Cα′
loc

for some α′ < α, and in particular Du ∈ L∞loc. This finishes the proof. ¤



CHAPTER 5

Viscosity Solutions

In this chapter, we generalize the notion of classical solutions to viscosity solu-
tions and study their regularities. We define viscosity solutions by comparing them
with quadratic polynomials and thus remove the requirement that solutions be at
least C2. The main tool to study viscosity solutions is the maximum principle due
to Alexandroff. We first generalize such a maximum principle to viscosity solutions
and then use the resulting estimate to discuss the regularity of viscosity solutions.
We use it to control the distribution functions of solutions and obtain Harnack in-
equality, which generalizes a result by Krylov and Safonov, and hence Cα regularity.
We also use it to approximate solutions in L∞ by quadratic polynomials and get
Schauder (C2,α) estimates. The methods are basically nonlinear, in the sense that
they do not rely on differentiating equations. The results obtained in this chapter
hold for general fully nonlinear equations, although in this note we focus only on
linear equations.

5.1. Alexandroff Maximum Principle

We begin this section with the definition of viscosity solutions. This very weak
concept of solutions enables us to define a class of functions containing all classical
solutions of linear and nonlinear elliptic equations with fixed ellipticity constants
and bounded measurable coefficients.

Suppose that Ω is a bounded and connected domain in Rn and that aij ∈ C(Ω)
satisfies

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ Ω and any ξ ∈ Rn,

for some positive constants λ and Λ. Consider the operator L in Ω defined by

Lu ≡ aij(x)Diju,

for u ∈ C2(Ω).
Suppose u ∈ C2(Ω) is a supersolution in Ω, i.e., Lu ≤ 0. Then for any ϕ ∈

C2(Ω) with Lϕ > 0, we have

L(u− ϕ) < 0 in Ω.

This implies by the maximum principle that u−ϕ cannot have local interior mini-
mums in Ω. In other words, if u− ϕ has a local minimum at x0 ∈ Ω, then

Lϕ(x0) ≤ 0.

Geometrically, u − ϕ having a local minimum at x0 means that ϕ touches u from
below at x0 if we adjust ϕ appropriately by adding a constant. This suggests the
following definition. Here, we always assume f ∈ C(Ω).

95
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Definition 5.1. u ∈ C(Ω) is a viscosity supersolution (resp. subsolution) of
Lu = f in Ω if, for any x0 ∈ Ω and any function ϕ ∈ C2(Ω) such that u− ϕ has a
local minimum (resp. maximum) at x0, there holds

Lϕ(x0) ≤ f(x0) (resp. Lϕ(x0) ≥ f(x0)).

We say that u is a viscosity solution if it is a viscosity subsolution and a viscosity
supersolution.

Remark 5.2. By an approximation, we may replace the C2 function ϕ by a
quadratic polynomial Q.

Remark 5.3. The above analysis shows that a classical supersolution is a vis-
cosity supersolution. It is straightforward to prove that a C2 viscosity supersolution
is a classical supersolution. Similar statements hold for subsolutions and solutions.

The notion of viscosity solutions can be generalized to nonlinear elliptic equa-
tions accordingly.

Now we define in a weak way the class of “all solutions to all elliptic equations”.
For any function ϕ, which is C2 at x0, we have the following equivalence

n∑

i,j=1

aij(x0)Dijϕ(x0) ≤ 0

⇐⇒
n∑

k=1

αkek ≤ 0 with λ ≤ αk ≤ Λ, ek = ek(D2ϕ(x0))

⇐⇒
∑
ei>0

αiei +
∑
ei<0

αiei ≤ 0

⇐⇒
∑
ei>0

αiei ≤
∑
ei<0

αi(−ei),

which implies
λ

∑
ei>0

ei ≤ Λ
∑
ei<0

(−ei),

where e1, · · · , en are eigenvalues of the Hessian matrix D2ϕ(x0). This means that
positive eigenvalues of D2ϕ(x0) are controlled by negative eigenvalues.

Definition 5.4. Suppose f is a continuous function in Ω and that λ and Λ
are two positive constants. We define u ∈ C(Ω) to belong to S+(λ, Λ, f) (resp.
S−(λ, Λ, f)) if, for any x0 ∈ Ω and any function ϕ ∈ C2(Ω) such that u− ϕ has a
local minimum (resp. maximum) at x0, there holds

λ
∑
ei>0

ei(x0) + Λ
∑
ei<0

ei(x0) ≤ f(x0)

(resp. Λ
∑
ei>0

ei(x0) + λ
∑
ei<0

ei(x0) ≥ f(x0)),

where e1(x0), · · · , en(x0) are eigenvalues of the Hessian matrix D2ϕ(x0).

We set S(λ,Λ, f) = S+(λ, Λ, f) ∩ S−(λ,Λ, f).
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Remark 5.5. Any viscosity supersolutions of

aijDiju = f in Ω

belong to the class S+(λ, Λ, f), if

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ Ω and any ξ ∈ Rn.

The class S+(λ,Λ, f) and S−(λ, Λ, f) also include solutions of fully nonlinear
equations. Among them are the Pucci’s equations.

Example 5.6. For any two positive constants λ ≤ Λ, let A be a symmetric
matrix whose eigenvalues belong to [λ,Λ], i.e.,

λ|ξ|2 ≤ Aijξiξj ≤ Λ|ξ|2 for any ξ ∈ Rn.

Denote by Aλ,Λ the class of all such matrices. For any symmetric matrix M , we
define the Pucci’s extremal operators

M−(M) = M−(λ, Λ,M) = inf
A∈Aλ,Λ

AijMij ,

M+(M) = M+(λ, Λ,M) = sup
A∈Aλ,Λ

AijMij .

Pucci’s equations are given by

M−(λ, Λ, M) = f, M+(λ, Λ, M) = g,

for continuous functions f and g in Ω. It is easy to see

M−(λ,Λ,M) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei,

M+(λ,Λ,M) = Λ
∑
ei>0

ei + λ
∑
ei<0

ei,

where e1, · · · , en are eigenvalues of M . Therefore u ∈ S+(λ,Λ, f) if and only if
M−(λ, Λ, D2u) ≤ f in the viscosity sense, i.e., for any ϕ ∈ C2(Ω) such that u− ϕ
has a local minimum at x0 ∈ Ω there holds

M−(λ, Λ, D2ϕ(x0)) ≤ f(x0).

By the definition ofM− andM+, it is easy to check for any two symmetric matrices
M and N

M−(M) +M−(N) ≤M−(M + N) ≤M+(M) +M−(N)

≤M+(M + N) ≤M+(M) +M+(N).

This property will be needed in the next section.

Next, we derive the Alexandroff maximum principle for viscosity solutions. It
has the role of energy inequalities for solutions of equations of divergence form.

Let v be a continuous function in an open convex set Ω. The convex envelope
of v in Ω is defined by

Γ(v)(x) = sup
L
{L(x); L ≤ v in Ω, L is an affine function},

for any x ∈ Ω. It is easy to see that Γ(v) is a convex function in Ω. The set

{v = Γ(v)} = {x ∈ Ω; v(x) = Γ(v)(x)}
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is called the (lower) contact set of v. Points in the contact set are called contact
points.

The following is the classical version of the Alexandroff maximum principle.
We do not require that functions be solutions to elliptic equations. See Lemma
2.33 in Chapter 2.

Lemma 5.7. Suppose u is a C1,1 function in B1 with u ≥ 0 on ∂B1. Then

sup
B1

u− ≤ c

( ∫

B1∩{u=Γu}
detD2u

) 1
n

,

where Γu is the convex envelope of −u− = min{u, 0} and c is a positive constant
depending only on n.

Now we state a version for viscosity solutions.

Theorem 5.8. Suppose u belongs to S+(λ,Λ, f) in B1 with u ≥ 0 on ∂B1 for
some f ∈ C(Ω). Then

sup
B1

u− ≤ c

( ∫

B1∩{u=Γu}
(f+)n

) 1
n

,

where Γu is the convex envelope of −u− = min{u, 0} and c is a positive constant
depending only on n, λ and Λ.

Proof. We prove that Γu is a C1,1 function in B1 and that at any contact
point x0

(1) f(x0) ≥ 0,

and

(2) L(x) ≤ Γu(x) ≤ L(x) + C
{
f(x0) + ε(x)

}|x− x0|2,
for some affine function L and any x close to x0, where ε(x) → 0 as x → x0 and C
is a positive constant depending only on n, λ and Λ. We then obtain by (2)

detD2Γu(x) ≤ C
(
f(x)

)n for a.e. x ∈ {u = Γu}.
Now we apply Lemma 5.7 to Γu to get the desired result.

Suppose x0 is a contact point, i.e., u(x0) = Γu(x0). We may assume x0 = 0.
We also assume, by subtracting a supporting plane at x0 = 0, that u ≥ 0 in B1 and
that u(0) = 0.

In order to prove (1), we take h(x) = −ε|x|2/2 in B1. Obviously, u − h has
a minimum at 0. Note that the eigenvalues of D2h(0) are −ε, · · · ,−ε. By the
definition of S+(λ, Λ, f), we have

−nΛε ≤ f(0).

We get (1) by letting ε → 0.
For (2), we prove

0 ≤ Γu(x) ≤ C(n, λ, Λ)
{
f(0) + ε(x)

}|x|2 for any x ∈ B1,

where ε(x) → 0 as x → 0. By setting w = Γu, we need to estimate for any small
r > 0

Cr =
1
r2

max
Br

w.
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Fix an r > 0. By the convexity, w attains its maximum in B̄r at some point on the
boundary, say, (0, · · · , 0, r). The set {x ∈ B1; w(x) ≤ w(0, · · · , 0, r)} is convex and
contains Br. It follows easily that

w(x′, r) ≥ w(0, · · · , 0, r) = Crr
2 for any x = (x′, r) ∈ B1.

Take a positive number N to be determined and set

Rr = {(x′, xn); |x′| ≤ Nr, |xn| ≤ r}.
We construct a quadratic polynomial that touches u from below in Rr and curves
upward very much. Set for some b > 0

h(x) = (xn + r)2 − b|x′|2.
Then we have

(i) for xn = −r, h ≤ 0;
(ii) for |x′| = Nr, h ≤ (4− bN2)r2 ≤ 0 if we take b = 4/N2;
(iii) for xn = r, h = 4r2 − b|x′|2 ≤ 4r2.

Hence if we set

h̃(x) =
Cr

4
h(x) =

Cr

4
{
(xn + r)2 − 4

N2
|x′|2},

we obtain h̃ ≤ w ≤ u on ∂Rr (since w is the convex envelope of u) and h̃(0) =
Crr

2/4 > 0 = w(0) = u(0). By lowering h̃ appropriately, we conclude that u − h̃

has a local minimum somewhere inside Rr. Note that the eigenvalues of D2h̃ are
given by Cr/2,−2Cr/N

2, · · · ,−2Cr/N
2. Hence by the definition of S+(λ, Λ, f), we

have

λ
Cr

2
− 2Λ(n− 1)

Cr

N2
≤ max

Rr

f.

By choosing N large, depending only on n, λ and Λ, we obtain

Cr ≤ 4
λ

max
Rr

f,

or

max
Br

w ≤ 4
λ

r2 max
Rr

f.

We finish the proof by noting maxRr f → f(0) as r → 0. ¤

We end this section with a simple consequence of the Calderon-Zygmund de-
composition. We first recall some terminology. Let Q1 be the unit cube. Cut it
equally into 2n cubes, which we take as the first generation. Do the same cutting
for these small cubes to get the second generation. Continue this process. These
cubes (from all generations) are called dyadic cubes. Any (k + 1)-generation cube
Q arises from some k-generation cube Q̃, which is called the predecessor of Q.

Lemma 5.9. Let A ⊂ B ⊂ Q1 be measurable sets such that
(i) |A| < δ for some δ ∈ (0, 1);
(ii) for any dyadic cube Q, |A ∩ Q| ≥ δ|Q| implies Q̃ ⊂ B for the predecessor

Q̃ of Q.
Then

|A| ≤ δ|B|.
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Proof. Apply the Calderon-Zygmund decomposition, Lemma 3.7 in Chapter
3, to f = χA. We obtain, by the assumption (i), a sequence of dyadic cubes {Qj}
such that

A ⊂ ∪jQ
j except for a set of measure zero,

δ ≤ |A ∩Qj |
|Qj | < 2nδ,

and
|A ∩ Q̃j |
|Q̃j | < δ,

for any predecessor Q̃j of Qj . By the assumption (ii), we have Q̃j ⊂ B for each j.
Hence, we obtain

A ⊂ ∪jQ̃
j ⊂ B.

We relabel {Q̃j} so that they are nonoverlapping. Therefore, we get

|A| ≤
∑

i

|A ∩ Q̃i| ≤ δ
∑

i

|Q̃i| ≤ δ|B|.

This finishes the proof. ¤

5.2. The Harnack Inequality

The main result in this section is the following Harnack inequality.

Theorem 5.10. Suppose u belongs to S(λ, Λ, f) in B1 for some f ∈ C(B1)
with u ≥ 0 in B1. Then

sup
B 1

2

u ≤ c

{
inf
B 1

2

u + ‖f‖Ln(B1)

}
,

where c is a positive constant depending only on n, λ and Λ.

The interior Hölder continuity of solutions is a direct consequence, whose proof
is identical to that of Theorem 4.17 in Chapter 4.

Corollary 5.11. Suppose u belongs to S(λ,Λ, f) in B1 for some f ∈ C(B1).
Then u ∈ Cα(B1), for some α ∈ (0, 1) depending only on n, λ and Λ. Moreover,

|u(x)− u(y)| ≤ c|x− y|α
{

sup
B1

|u|+ ‖f‖Ln(B1)

}
for any x, y ∈ B 1

2
,

where c is a positive constant depending only on n, λ and Λ.

For convenience, we work in cubes instead of balls. We prove the following
result.

Lemma 5.12. Suppose u belongs to S(λ,Λ, f) in Q4
√

n for some f ∈ C(Q4
√

n),
with u ≥ 0 in Q4

√
n. Then there exist two positive constants ε0 and C, depend-

ing only on n, λ and Λ, such that, if infQ1/4 u ≤ 1 and ‖f‖Ln(Q4
√

n) ≤ ε0, then
supQ 1

4

u ≤ C.
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Theorem 5.10 follows from Lemma 5.12 easily. For any u ∈ S(λ,Λ, f) in Q4
√

n

with u ≥ 0 in Q4
√

n, consider for δ > 0

uδ =
u

infQ1/4 u + δ + 1
ε0
‖f‖Ln(Q4

√
n)

.

Applying Lemma 5.12 to uδ and then letting δ → 0, we get

sup
Q 1

4

u ≤ C

{
inf
Q 1

4

u + ‖f‖Ln(Q4
√

n)

}
.

Then Theorem 5.10 follows by a standard covering argument.
Now we begin to prove Lemma 5.12. The following result plays a key role. It

asserts that if a solution is small somewhere in Q3 then it is under control in a good
portion of Q1.

Lemma 5.13. Suppose u belongs to S+(λ, Λ, f) in B2
√

n for some f ∈ C(B2
√

n).
Then there exist constants ε0 > 0, µ ∈ (0, 1) and M > 1, depending only on n, λ
and Λ, such that if

(1)

u ≥ 0 in B2
√

n,

inf
Q3

u ≤ 1,

‖f‖Ln(B2
√

n) ≤ ε0,

then
|{u ≤ M} ∩Q1| > µ.

Proof. We construct a function g, which is very concave outside Q1, such
that the contact set occurs in Q1 if we correct u by g. In other words, we localize
where the contact occurs by choosing suitable functions.

Note B1/4 ⊂ B1/2 ⊂ Q1 ⊂ Q3 ⊂ B2
√

n. Define g in B2
√

n by

g(x) = −M
(
1− |x|2

4n

)β
,

for large β > 0 to be determined and some M > 0. We choose M , according to β,
such that

(2) g = 0 on ∂B2
√

n and g ≤ −2 in Q3.

Set w = u + g in B2
√

n. We prove by choosing β large such that

(3) w ∈ S+(λ, Λ, f) in B2
√

n \Q1.

Suppose ϕ is a quadratic polynomial such that w − ϕ has a local minimum at
x0 ∈ B2

√
n. Then u− (ϕ− g) has a local minimum at x0 ∈ B2

√
n. By the definition

of S+(λ, Λ, f) and the Pucci’s extremal operator M−, we have

M−(λ, Λ, D2ϕ(x0)−D2g(x0)) ≤ f(x0),

or
M−(λ, Λ, D2ϕ(x0)) +M−(λ,Λ,−D2g(x0)) ≤ f(x0),

where we used the property of M−. We choose β large such that

M−(λ, Λ,−D2g(x0)) ≥ 0 for any x0 ∈ B2
√

n \B 1
4
.
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To see this, we need to calculate the Hessian matrix of g. Note

Dijg(x) =
M

2n
β
(
1− |x|2

4n

)β−1
δij − M

(2n)2
β(β − 1)

(
1− |x|2

4n

)β−2
xixj .

If we choose x = (|x|, 0, · · · , 0), then the eigenvalues of −D2g(x) are given by

M

2n
β
(
1− |x|2

4n

)β−2(2β − 1
4n

|x|2 − 1
)
,

with the multiplicity 1, and

−M

2n
β
(
1− |x|2

4n

)β−1
,

with the multiplicity n− 1. We choose β large so that for |x| ≥ 1/4 the first eigen-
value is positive and the rest negative, denoted by e+(x) and e−(x) respectively.
Therefore for |x| ≥ 1/4, we have

M−(λ, Λ,−D2g(x)) = λe+(x) + (n− 1)Λe−(x)

=
M

2n
β
(
1− |x|2

4n

)β−2
{

λ
(2β − 1

4n
|x|2 − 1

)− (n− 1)Λ
(
1− |x|2

4n

)} ≥ 0,

if we choose β large, depending only on n, λ and Λ. This finishes the proof of (3).
In fact, we obtain

w ∈ S+(λ,Λ, f + η) in B2
√

n,

for some η ∈ C∞0 (Q1) and 0 ≤ η ≤ C(n, λ, Λ).
We now apply Theorem 5.8 to w in B2

√
n. Note that infQ3 w ≤ −1 and w ≥ 0

on ∂B2
√

n by (1) and (2). We obtain

1 ≤ C

( ∫

B2
√

n∩{w=Γw}
(|f |+ η)n

) 1
n

≤ C‖f‖Ln(B2
√

n) + C|{w = Γw} ∩Q1| 1n .

Choosing ε0 small enough, we get
1
2
≤ C|{w = Γw} ∩Q1| 1n ≤ C|{u ≤ M} ∩Q1| 1n ,

since w(x) = Γw(x) implies w(x) ≤ 0 and hence u(x) ≤ −g(x) ≤ M . This finishes
the proof. ¤

Next, we prove the power decay of distribution functions.

Lemma 5.14. Suppose u belongs to S+(λ, Λ, f) in B2
√

n for some f ∈ C(B2
√

n).
Then there exist positive constants ε0, ε and C, depending only on n, λ and Λ, such
that if

(1)

u ≥ 0 in B2
√

n,

inf
Q3

u ≤ 1,

‖f‖Ln(B2
√

n) ≤ ε0,

then
|{u ≥ t} ∩Q1| ≤ Ct−ε for any t > 0.
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Proof. We prove that, under the assumption (1), there holds

(2) |{u > Mk} ∩Q1| ≤ (1− µ)k for k = 1, 2, · · · ,

where M and µ are as in Lemma 5.13.
For k = 1, (2) is simply Lemma 5.13. Suppose now (2) holds for k − 1. Set

A = {u > Mk} ∩Q1, B = {u > Mk−1} ∩Q1.

We use Lemma 5.9 to prove

(3) |A| ≤ (1− µ)|B|.
Clearly A ⊂ B ⊂ Q1 and |A| ≤ |{u > M} ∩Q1| ≤ 1− µ by Lemma 5.13. We claim
that, if Q = Qr(x0) is a cube in Q1 such that

(4) |A ∩Q| > (1− µ)|Q|,
then Q̃∩Q1 ⊂ B for Q̃ = Q3r(x0). We prove it by contradiction. If not, we take a
x̃ ∈ Q̃ such that u(x̃) ≤ Mk−1. Consider the transformation

x = x0 + ry for any y ∈ Q1 and x ∈ Q = Qr(x0),

and the function
ũ(y) =

1
Mk−1

u(x).

Then ũ ≥ 0 in B2
√

n and infQ3 ũ ≤ 1. It is easy to check that ũ ∈ S+(λ,Λ, f̃) in
B2

√
n with ‖f̃‖Ln(B2

√
n) ≤ ε0. In fact, we have

f̃(y) =
r2

Mk−1
f(x) for any y ∈ B2

√
n,

and hence

‖f̃‖Ln(B2
√

n) ≤
r

Mk−1
‖f‖Ln(B2

√
n) ≤ ‖f‖Ln(B2

√
n) ≤ ε0.

Then ũ satisfies the assumption (1). We now apply Lemma 5.13 to ũ to get

µ < |{ũ(y) ≤ M} ∩Q1| = r−n|{u(x) ≤ Mk} ∩Q|.
Hence |Q∩AC | > µ|Q|, which contradicts (4). We are in a position to apply Lemma
5.9 to get (3). ¤

Proof of Lemma 5.12. We prove that there exist two constants θ > 1 and
M0 >> 1, depending only on n, λ and Λ, such that, if u(x0) = P > M0 for some
x0 ∈ B1/4, there exists a sequence {xk} ∈ B1/2 such that

u(xk) ≥ θkP for k = 0, 1, 2, · · · .

This contradicts the boundedness of u, and hence we conclude that supB1/4
u ≤ M0.

Suppose u(x0) = P > M0 for an x0 ∈ B1/4, with M0 and θ to be determined
in the process. Consider a cube Qr(x0), centered at x0 with the side length r,
which will be chosen later. We intend to find a point x1 ∈ Q4

√
nr(x0) such that

u(x1) ≥ θP . To achieve this, we first choose r such that {u > P/2} covers less
than half of Qr(x0). This can be done by using the power decay of the distribution
function of u.

Note infQ3 u ≤ infQ1/4 u ≤ 1. Hence Lemma 5.14 implies

|{u >
P

2
} ∩Q1| ≤ C

(P

2
)−ε

.
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We choose r such that rn/2 ≥ C(P/2)−ε and r ≤ 1/4. Then we have Qr(x0) ⊂ Q1

and

(1)
1

|Qr(x0)| |{u > P/2} ∩Qr(x0)| ≤ 1
2
.

Next, we show that for θ > 1, with θ − 1 small, u ≥ θP at some point in
Q4

√
nr(x0). We prove it by contradiction. Suppose u ≤ θP in Q4

√
nr(x0). Consider

the transformation

x = x0 + ry for any y ∈ Q4
√

n and x ∈ Q4
√

nr(x0),

and the function

ũ(y) =
θP − u(x)
(θ − 1)P

.

Obviously ũ ≥ 0 in B2
√

n and ũ(0) = 1, hence infQ3 ũ ≤ 1. It is easy to check that
ũ ∈ S+(λ,Λ, f̃) in B2

√
n with ‖f̃‖Ln(B2

√
n) ≤ ε0. In fact, we have

f̃(y) = − r2

(θ − 1)P
f(x) for any y ∈ B2

√
n,

and hence
‖f̃‖Ln(B2

√
n) ≤

r

(θ − 1)P
‖f‖Ln(B2

√
nr(x0)) ≤ ε0,

if we choose P such that r ≤ (θ − 1)P . Hence, we may apply Lemma 5.13 to ũ.

Note that u(x) ≤ P/2 if and only if ũ(y) ≥ θ − 1/2
θ − 1

and that
θ − 1/2
θ − 1

is large if θ

is close to 1. So we obtain
1

|Qr(x0)| |{u ≤ P/2} ∩Qr(x0)|

=|{ũ ≥ θ − 1/2
θ − 1

} ∩Q1| ≤ C

(
θ − 1/2
θ − 1

)−ε

<
1
2
,

if θ is chosen close to 1. This contradicts (1).
Hence, we conclude that there exists a θ > 1 such that if

u(x0) = P for an x0 ∈ B 1
4
,

then
u(x1) ≥ θP for an x1 ∈ Q4

√
nr(x0) ⊂ B2nr(x0),

provided
C(n, λ, Λ)P−

ε
n ≤ r ≤ (θ − 1)P,

where θ and C are positive constants depending only on n, λ and Λ. We choose P

such that P ≥ (
C

θ−1

) n
n+ε and then take r = CP−

ε
n .

Now, we iterate the above result to get a sequence {xk} such that for any
k = 1, 2, · · · ,

u(xk) ≥ θkP for an xk ∈ B2nrk
(xk−1),

where
rk = C(θk−1P )−

ε
n = Cθ−(k−1) ε

n P−
ε
n .
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In order to have {xk} ∈ B1/2, we need
∑

2nrk < 1/4. Hence, we choose M0 such
that

M
ε
n
0 ≥ 8nC

∞∑

k=1

θ−(k−1) ε
n and M0 ≥

( C

θ − 1
) n

n+ε ,

and then take P > M0. This finishes the proof. ¤

In the rest of this section, we prove a technical lemma concerning the second
order derivatives of functions in S(λ, Λ, f). Such a result will be needed in the
discussion of W 2,p-estimates. First, we introduce some terminology.

Let Ω be a bounded domain and u be a continuous function in Ω. We define
for M > 0

G−M (u, Ω) = {x0 ∈ Ω; there exists an affine function L such that

L(x)− M

2
|x− x0|2 ≤ u(x) for x ∈ Ω with equality at x0},

G+
M (u, Ω) = {x0 ∈ Ω; there exists an affine function L such that

L(x) +
M

2
|x− x0|2 ≥ u(x) for x ∈ Ω with equality at x0},

GM (u, Ω) = G+
M (u, Ω) ∩G−M (u, Ω).

We also define

A−M (u, Ω) =Ω \G−M (u, Ω),

A+
M (u, Ω) =Ω \G+

M (u, Ω),

AM (u, Ω) =Ω \GM (u, Ω).

In other words, G−M (u, Ω) (resp. G+
M (u, Ω)) consists of points where there is a

concave (resp. convex) paraboloid of opening M touching u from below (resp.
above). Intuitively, |AM (u, Ω)| behaves like the distribution function of D2u. Hence
for integrability of D2u, we need to study the decay of |AM (u, Ω)|.

Lemma 5.15. Suppose that Ω is a bounded domain with B6
√

n ⊂ Ω and that u

belongs to S+(λ, Λ, f) in B6
√

n for some f ∈ C(B6
√

n). Then there exist positive
constants δ0, µ and C, depending only on n, λ and Λ, such that, if |u| ≤ 1 in Ω and
‖f‖Ln(B6

√
n) ≤ δ0, there holds

|A−t (u, Ω) ∩Q1| ≤ Ct−µ for any t > 0.

If, in addition, u ∈ S(λ, Λ, f) in B6
√

n, there holds

|At(u, Ω) ∩Q1| ≤ Ct−µ for any t > 0.

In the proof of Lemma 5.15, we need the maximal functions of local integrable
functions. For any g ∈ L1

loc(Rn), we define

m(g)(x) = sup
r>0

1
|Qr(x)|

∫

Qr(x)

|g|.
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The maximal operator m is of weak type (1,1) and of strong type (p, p) for 1 < p ≤
∞, i.e.,

|{x ∈ Rn; m(g)(x) ≥ t}| ≤ c1(n)
t

‖g‖L1(Rn) for any t > 0

‖m(g)‖Lp(Rn) ≤ c2(n, p)‖g‖Lp(Rn) for 1 < p ≤ ∞.

Now we begin to prove Lemma 5.15. The following result plays an important
role. It asserts that, if u has a tangent paraboloid with opening 1 from below
somewhere in Q3, then the set where u has a tangent paraboloid from below with
opening M in Q1 is large. Compare it with Lemma 5.13.

Lemma 5.16. Suppose that Ω is a bounded domain with B6
√

n ⊂ Ω and that u

belongs to S+(λ, Λ, f) in B6
√

n for some f ∈ C(B6
√

n). Then there exist constants
0 < σ < 1, δ0 > 0 and M > 1, depending only on n, λ and Λ, such that, if
‖f‖Ln(B6

√
n) ≤ δ0 and G−1 (u, Ω) ∩Q3 6= φ, then

|G−M (u, Ω) ∩Q1| ≥ 1− σ.

Proof. Since G−1 (u, Ω) ∩Q3 6= φ, there is an affine function L1 such that

v ≥ P1 in Ω with equality at some point in Q3,

where

v(x) =
u(x)
2n

+ L1(x) and P1(x) = 1− |x|2
4n

.

This implies v ≥ 0 in B2
√

n and infQ3 v ≤ 1. Then as in the proof of Lemma 5.13,
for w = v + g, where g in the function constructed in Lemma 5.13, we have

|{w = Γw} ∩Q1| ≥ 1− σ,

for some σ ∈ (0, 1) if δ0 is chosen small. Now we need to prove for some M > 1

{w = Γw} ∩Q1 ⊂ G−M (u, Ω) ∩Q1.

Let x0 ∈ {w = Γw}∩Q1 and take an affine function L2 with L2 < 0 on ∂B2
√

n and

L2 ≤ Γw ≤ v + g in B2
√

n with equality at x0.

It follows

(1) P2 ≤ L2 − g ≤ v in B2
√

n with equality at x0,

for a concave paraboloid P2 of opening M0, a positive constant depending only on
n, λ and Λ.

Next, we prove P2 ≤ v in Ω \ B2
√

n. Note that P2 < −g = 0 = P1 on
∂B2

√
n and that P2(x0) = v(x0) ≥ P1(x0) with x0 ∈ Q1 ⊂ B2

√
n. If we take

M0 > 1/(2n), then {P2−P1 ≥ 0} is convex. We conclude P2−P1 < 0 in Rn \B2
√

n.
Hence, we have P2 ≤ P1 ≤ v in Ω \ B2

√
n. By (1) and the definition of v, we get

x0 ∈ G−2nM0
(u, Ω) ∩Q1 with 2nM0 > 1. ¤

Proof of Lemma 5.15. Recall B6
√

n ⊂ Ω, u ∈ S+(λ, Λ, f) in B6
√

n and

(1) |u|L∞(Ω) ≤ 1, ‖f‖Ln(B6
√

n) ≤ δ0.

We prove that there exist constants M > 1 and 0 < γ < 1, depending only on n, λ
and Λ, such that

|A−
Mk(u, Ω) ∩Q1| ≤ γk for any k = 0, 1, · · · .



5.2. THE HARNACK INEQUALITY 107

Step 1. There exist constants M > 1 and 0 < σ < 1 such that

(2) |G−M (u, Ω) ∩Q1| ≥ 1− σ.

It is easy to see that |u|L∞(Ω) ≤ 1 implies

G−c (u, Ω) ∩Q3 6= ∅,
for some constant c depending only on n. We now apply Lemma 5.16 to u/c to get
(2). By a simple adjustment, we assume that δ0,M and σ in Step 1 are the same
as those in Lemma 5.15.

Step 2. We extend f by zero outside B6
√

n and set for k = 0, 1, · · · ,

A = A−
Mk+1(u,Ω) ∩Q1,

B =
(
A−

Mk(u, Ω) ∩Q1

) ∪ {
x ∈ Q1; m(fn)(x) ≥ (c1M

k)n
}
,

for some c1 > 0 to be determined. Then we claim

|A| ≤ σ|B|,
where M > 1 and 0 < σ < 1 are as before. Recall that m(fn) denotes the maximal
function of fn.

We prove it by Lemma 5.9. It is easy to see |A| ≤ σ since we have |G−
Mk+1(u, Ω)∩

Q1| ≥ |G−M (u, Ω) ∩Q1| ≥ 1− σ by Step 1. Next, we claim that, if Q = Qr(x0) is a
cube in Q1 such that

(3) |A−
Mk+1(u, Ω) ∩Q| = |A ∩Q| > σ|Q|,

then Q̃ ∩ Q1 ⊂ B for Q̃ = Q3r(x0). We prove it by contradiction. If not, we take
an x̃ such that

x̃ ∈ G−
Mk(u,Ω) ∩ Q̃,

and

sup
r>0

1
|Qr(x̃)|

∫

Qr(x̃)

|f |n ≤ (c1M
k)n.

Consider the transformation

x = x0 + ry for any y ∈ Q1 and x ∈ Q = Qr(x0),

and the function
ũ(y) =

1
r2Mk

u(x).

It is easy to check that B6
√

n ⊂ Ω̃, the image of Ω under the transformation above,
and that ũ ∈ S+(λ, Λ, f̃) in B6

√
n with

f̃(y) =
1

Mk
f(x) for any y ∈ B6

√
n.

By the choice of x̃, we have

G−1 (ũ, Ω̃) ∩Q3 6= ∅.
Since B6

√
nr(x0) ⊂ Q15

√
nr(x̃), there holds

‖f̃‖Ln(B6
√

n) ≤
1

rMk
‖f‖Ln(Q15

√
nr(x̃)) ≤ c(n)c1 ≤ δ0,

if we take c1 small enough, depending only on n, λ and Λ.
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Hence ũ satisfies the assumption of Lemma 5.16 with Ω replaced by Ω̃. We
apply Lemma 5.16 to ũ to get

|G−M (ũ, Ω̃) ∩Q1| ≥ 1− σ,

or
|G−

Mk+1(u, Ω) ∩Q| > (1− σ)|Q|.
This contradicts (3). We are in a position to apply Lemma 5.9.

Step 3. We finish the proof of Lemma 5.15. Define for k = 0, 1, · · · ,

αk = |A−
Mk(u, Ω) ∩Q1|,

βk = |{x ∈ Q1; m(fn)(x) ≥ (c1M
k)n

}|.
Then Step 2 implies αk+1 ≤ σ(αk +βk) for any k = 0, 1, · · · . Hence by an iteration,
we have

αk ≤ σk +
k−1∑

i=0

σk−iβi.

Since ‖fn‖L1 ≤ δn
0 and the maximal operator is of the weak type (1, 1), we conclude

βk ≤ c(n)δn
0 (c1M

k)−n = CM−nk,

where C is a positive constant depending only on n, λ and Λ. This implies

k−1∑

i=0

σk−iβi ≤ C

k−1∑

i=0

σk−iM−ni ≤ Ckγk
0 ,

with γ0 = max{σ,M−n} < 1. Therefore, we obtain for k large

αk ≤ σk + Ckγk
0 ≤ (1 + Ck)γk

0 ≤ γk,

for some constant γ ∈ (0, 1), depending only on n, λ and Λ. This finishes the
proof. ¤

Remark 5.17. The polynomial decay of the function

µ(t) = |At(u, Ω) ∩Q1|
for u ∈ S(λ, Λ, f) implies that D2u is Lp-integrable in Q1 for small p > 0, depending
only on n, λ and Λ. In order to show the Lp-integrability for large p, we need to
speed up the convergence in the proof of Lemma 5.15. We will discuss W 2,p-
estimates in Section 5.4.

5.3. Schauder Estimates

In this section, we prove the Schauder estimates for viscosity solutions.
Throughout this section, we always assume that aij ∈ C(B1) satisfies

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ B1 and any ξ ∈ Rn,

for some positive constants λ and Λ and that f is a continuous function in B1.
The following approximation result plays an important role in the discussion

of the regularity theory.
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Lemma 5.18. Suppose u ∈ C(B1) is a viscosity solution of

aijDiju = f in B1,

with |u| ≤ 1 in B1. Assume for some 0 < ε < 1/16,

‖aij − aij(0)‖Ln(B3/4) ≤ ε.

Then there exists a function h ∈ C(B̄3/4), with aij(0)Dijh = 0 in B3/4 and |h| ≤ 1
in B3/4, such that

|u− h|L∞(B 1
2
) ≤ C

{
εγ + ‖f‖Ln(B1)

}
,

where C and γ ∈ (0, 1) are constants depending only on n, λ and Λ.

Proof. Solve for h ∈ C(B̄3/4) ∩ C∞(B3/4) such that

aij(0)Dijh = 0 in B3/4

h = u on ∂B3/4.

The maximum principle implies |h| ≤ 1 in B3/4. Note that u belongs to S(λ, Λ, f)
in B1. Corollary 5.11 implies u ∈ Cα(B̄3/4) for some α ∈ (0, 1) depending only on
n, λ and Λ, with the estimate

‖u‖Cα(B̄3/4)
≤ C

{
1 + ‖f‖Ln(B1)

}
,

where C is a positive constant depending only on n, λ and Λ. By Lemma 1.36 in
Chapter 1, we have

‖h‖
C

α
2 (B̄3/4)

≤ C‖u‖Cα(B̄3/4)
≤ C

{
1 + ‖f‖Ln(B1)

}
.

Since u− h = 0 on ∂B3/4, we get for any 0 < δ < 1/4

(1) |u− h|L∞(∂B 3
4−δ

) ≤ Cδ
α
2
{
1 + ‖f‖Ln(B1)

}
.

We claim for any 0 < δ < 1

(2) |D2h|L∞(B 3
4−δ

) ≤ Cδ
α
2−2

{
1 + ‖f‖Ln(B1)

}
.

In fact, for any x0 ∈ B3/4−δ, we apply interior C2-estimate to h−h(x1) in Bδ(x0) ⊂
B3/4 for some x1 ∈ ∂Bδ(x0) and obtain

|D2h(x0)| ≤ Cδ−2 sup
Bδ(x0)

|h− h(x1)| ≤ Cδ−2δ
α
2
{
1 + ‖f‖Ln(B1)

}
.

Note that u− h is a viscosity solution of

aijDij(u− h) = f − (aij − aij(0))Dijh ≡ F in B3/4.

By Theorem 5.8, Alexandroff maximum principle, we have with (1) and (2)

|u− h|L∞(B 3
4−δ

) ≤ |u− h|L∞(∂B 3
4−δ

) + C‖F‖Ln(B 3
4−δ

)

≤|u− h|L∞(∂B 3
4−δ

) + C|D2h|L∞(B 3
4−δ

)‖aij − aij(0)‖Ln(B 3
4
) + C‖f‖Ln(B1)

≤C(δ
α
2 + δ

α
2−2ε)

{
1 + ‖f‖Ln(B1)

}
+ C‖f‖Ln(B1).

Take δ = ε1/2 < 1/4 and then γ = α/4. This finishes the proof. ¤

For the next result, we need to introduce the following concept.
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Definition 5.19. A function g is Hölder continuous at 0 with exponent α in
Ln-sense if

[g]Cα
Ln

(0) ≡ sup
0<r<1

1
rα

(
1
|Br|

∫

Br

|g − g(0)|n
) 1

n

< ∞.

Now we state the Schauder estimates.

Theorem 5.20. Suppose u ∈ C(B1) is a viscosity solution of

aijDiju = f in B1.

Assume {aij} is Hölder continuous at 0 with exponent α in Ln-sence for some
α ∈ (0, 1). If f is Hölder continuous at 0 with exponent α in Ln-sense, then u is
C2,α at 0. Moreover, there exists a polynomial P of degree 2 such that

|u− P |L∞(Br(0)) ≤ C∗r2+α for any 0 < r < 1,

|P (0)|+ |DP (0)|+ |D2P (0)| ≤ C∗,

and
C∗ ≤ C

{|u|L∞(B1) + |f(0)|+ [f ]Cα
Ln

(0)
}
,

where C is a positive constant depending only on n, λ, Λ, α and [aij ]Cα
Ln

(0).

Proof. First we assume f(0) = 0. For this, we consider v = u− bijxixjf(0)/2
for a constant matrix {bij} such that aij(0)bij = 1. By scaling, we also assume that
[aij ]Cα

Ln
(0) is small. Next, by considering for δ > 0

u

|u|L∞(B1) + 1
δ [f ]Cα

Ln
(0)

,

we may assume |u|L∞(B1) ≤ 1 and [f ]Cα
Ln

(0) ≤ δ.
In the following, we prove that there is a constant δ > 0, depending only on

n, λ, Λ and α, such that, if u ∈ C(B1) is a viscosity solution of

aijDiju = f in B1,

with

|u|L∞(B1) ≤ 1, [aij ]Cα
Ln

(0) ≤ δ,
(

1
|Br|

∫

Br

|f |n
) 1

n

≤ δrα for any 0 < r < 1,

then there exists a polynomial P of degree 2 such that

(1) |u− P |L∞(Br(0)) ≤ Cr2+α for any 0 < r < 1,

and

(2) |P (0)|+ |DP (0)|+ |D2P (0)| ≤ C,

where C is a positive constant depending only on n, λ, Λ and α.
We claim that there exist a µ ∈ (0, 1), depending only on n, λ, Λ and α, and a

sequence of polynomials of degree 2 of the form

Pk(x) = ak + bk · x +
1
2
xtCkx,
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such that for any k = 0, 1, 2, · · · ,

(3)
aij(0)DijPk = 0,

|u− Pk|L∞(B
µk ) ≤ µk(2+α),

and

(4) |ak − ak−1|+ µk−1|bk − bk−1|+ µ2(k−1)|Ck − Ck−1| ≤ Cµ(k−1)(2+α),

where P0 = P−1 ≡ 0, and C is a positive constant depending only on n, λ, Λ and α.
We first prove that Theorem 5.20 follows from (3) and (4). It is easy to see

that ak, bk and Ck converge and that the limiting polynomial

p(x) = a∞ + b∞ · x +
1
2
xtC∞x

satisfies

|Pk(x)− p(x)| ≤ C
(|x|2µαk + |x|µ(α+1)k + µ(α+2)k

) ≤ Cµ(2+α)k,

for any |x| ≤ µk. Hence, we have for |x| ≤ µk

|u(x)− p(x)| ≤ |u(x)− Pk(x)|+ |Pk(x)− p(x)| ≤ Cµ(2+α)k,

and hence
|u(x)− p(x)| ≤ C|x|2+α for any x ∈ B1.

Now we prove (3) and (4). Clearly (3) and (4) hold for k = 0. We assume they
hold for k = 0, 1, 2, · · · , l and proceed to prove for k = l + 1. Consider the function

ũ(y) =
1

µl(2+α)
(u− Pl)(µly) for any y ∈ B1.

Then ũ ∈ C(B1) is a viscosity solution of

ãijDij ũ = f̃ in B1,

with

ãij(y) =
1

µlα
aij(µly),

f̃(y) =
1

µlα

(
f(µly)− aij(µly)DijPk

)
.

Now we check that ũ satisfies the assumptions of Lemma 5.18. For this, we note

‖ãij − ãij(0)‖Ln(B1) ≤
1

µlα
‖aij − aij(0)‖Ln(B

µl ) ≤ [aij ]Cα
Ln

(0) ≤ δ,

and

‖f̃‖Ln(B1) ≤
1

µlα
‖f‖Ln(B

µl ) +
1

µlα
sup |D2Pl|‖aij − aij(0)‖Ln(B

µl ) ≤ δ + Cδ,

where we used

|D2Pl| ≤
l∑

k=1

|D2Pk −D2Pk−1| ≤
l∑

k=1

µ(k−1)α ≤ C.

Hence we take ε = C(n, λ, Λ)δ as in Lemma 5.18. Then by Lemma 5.18, there
exists a function h ∈ C(B̄3/4) with ãij(0)Dijh = 0 in B3/4 and |h| ≤ 1 in B3/4 such
that

|ũ− h|L∞(B 1
2
) ≤ C

(
εγ + ε

) ≤ 2Cεγ .
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Write P̃ (y) = h(0) + Dh(0) + ytD2h(0)y/2. Then by interior estimates for h we
have

|ũ− P̃ |L∞(Bµ) ≤ |ũ− h|L∞(Bµ) + |h− P̃ |L∞(Bµ) ≤ 2Cεγ + Cµ3 ≤ µ2+α,

by choosing µ small and then ε small accordingly. Rescaling back, we have

|u(x)− Pl(x)− µl(2+α)P̃ (µ−lx)| ≤ µ(l+1)(2+α) for any x ∈ Bµl+1 .

This implies (3) for k = l + 1, if we define

Pk+1(x) = Pk(x) + µl(2+α)P̃ (µ−lx).

The estimate (4) follows easily. ¤

To finish this section, we state a Cordes-Nirenberg type estimate. The proof is
similar to that of Theorem 5.20.

Theorem 5.21. Suppose u ∈ C(B1) is a viscosity solution of

aijDiju = f in B1.

Then for any α ∈ (0, 1), there exists an θ > 0, depending only on n, λ, Λ and α,
such that if

(
1
|Br|

∫

Br

|aij − aij(0)|n
) 1

n

≤ θ for any 0 < r ≤ 1,

then u is C1,α at 0; that is, there exists an affine function L such that

|u− L|L∞(Br(0)) ≤ C∗r1+α for any 0 < r < 1,

|L(0)|+ |DL(0)| ≤ C∗,

and

C∗ ≤ C

{
|u|L∞(B1) + sup

0<r<1
r1−α

( 1
|Br|

∫

Br

|f |n) 1
n

}
,

where C is a positive constant depending only on n, λ, Λ and α.

5.4. W 2,p Estimates

In this section, we prove W 2,p-estimates for viscosity solutions.
Throughout this section, we always assume that aij ∈ C(B1) satisfies

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ B1 and any ξ ∈ Rn,

for some positive constants λ and Λ and that f is a continuous function in B1.
The main result in this section is the following theorem.

Theorem 5.22. Suppose u ∈ C(B1) is a viscosity solution of

aijDiju = f in B1.

Then for any p ∈ (n,∞), there exists an ε > 0, depending only on n, λ, Λ and p,
such that if

(
1

|Br(x0)|
∫

Br(x0)

|aij − aij(x0)|n
) 1

n

≤ ε for any Br(x0) ⊂ B1,
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then u ∈ W 2,p
loc (B1). Moreover,

‖u‖W 2,p(B 1
2
) ≤ C

{|u|L∞(B1) + ‖f‖Lp(B1)

}
,

where C is a positive constant depending only on n, λ, Λ and p.

As before, we prove the following result instead.

Lemma 5.23. Suppose u ∈ C(B8
√

n) is a viscosity solution of

aijDiju = f in B8
√

n.

Then for any p ∈ (n,∞), there exist positive constants ε and C, depending only on
n, λ, Λ and p, such that if

‖u‖L∞(B8
√

n) ≤ 1, ‖f‖Lp(B8
√

n) ≤ ε,

and
(

1
|Br(x0)|

∫

Br(x0)

|aij − aij(x0)|n
) 1

n

≤ ε for any Br(x0) ⊂ B8
√

n,

then u ∈ W 2,p(B1) and ‖u‖W 2,p(B1) ≤ C.

We first describe the strategy of the proof. Let Ω be a bounded domain and u
be a continuous function in Ω. As in Section 5.2, we define for M > 0

GM (u, Ω) = {x0 ∈ Ω; there exists an affine function L such that

L(x)− M

2
|x− x0|2 ≤ u(x) ≤ L(x) +

M

2
|x− x0|2

for x ∈ Ω with equality at x0},
AM (u, Ω) = Ω \GM (u, Ω).

We consider the function

θ(x) = θ(u,Ω)(x) = inf{M ;x ∈ GM (u, Ω)} ∈ [0,∞] for x ∈ Ω.

It is straightforward to verify that for p ∈ (1,∞] the condition θ ∈ Lp(Ω) implies
D2u ∈ Lp(Ω) and

‖D2u‖Lp(Ω) ≤ 2‖θ‖Lp(Ω).

In order to study the integrability of the function θ, we discuss its distribution
function

µθ(t) = |{x ∈ Ω; θ(x) > t}| for any t > 0.

It is clear that
µθ(t) ≤ |At(u, Ω)| for any t > 0.

Hence we need to study the decay of |At(u, Ω)|.
Lemma 5.24. Suppose that Ω is a bounded domain with B8

√
n ⊂ Ω and that

u ∈ C(Ω) is a viscosity solution of

aijDiju = f in B8
√

n.

Then for any ε0 ∈ (0, 1), there exist an M > 1, depending only on n, λ and Λ, and
an ε ∈ (0, 1), depending only on n, λ, Λ and ε0, such that if

(1) ‖f‖Ln(B8
√

n) ≤ ε, ‖aij − aij(0)‖Ln(B7
√

n) ≤ ε,
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and

(2) G1(u,Ω) ∩Q3 6= ∅,
then

|GM (u, Ω) ∩Q1| ≥ 1− ε0.

Proof. Let x1 ∈ G1(u, Ω) ∩Q3. Then, there exists an affine function L such
that

−1
2
|x− x1|2 ≤ u(x)− L(x) ≤ 1

2
|x− x1|2 in Ω.

By considering (u−L)/c instead of u, for a constant c > 1 large enough, depending
only on n, we may assume

(3) |u| ≤ 1 in B8
√

n,

and hence

(4) −|x|2 ≤ u(x) ≤ |x|2 for any x ∈ Ω \B6
√

n.

Solve for h ∈ C(B̄7
√

n) ∩ C∞(B7
√

n) such that

aij(0)Dijh = 0 in B7
√

n

h = u on ∂B7
√

n.

Then Lemma 5.18 implies

(5) |u− h|L∞(B6
√

n) ≤ C
{
εγ + ‖f‖Ln(B8

√
n)

}
,

and

(6) ‖h‖C2(B6
√

n) ≤ C,

where C > 0 and γ ∈ (0, 1), as in Lemma 5.18, depending only on n, λ and Λ.
Consider h|B̄6

√
n
. Extend h outside B̄6

√
n continuously such that h = u in Ω\B7

√
n

and |u−h|L∞(Ω) = |u−h|L∞(B6
√

n). Note |h| ≤ 1 in Ω. It follows that |u−h|L∞(Ω) ≤
2 and hence with (4)

−2− |x|2 ≤ h(x) ≤ 2 + |x|2 for any x ∈ Ω \ B̄6
√

n.

Then there exists an N > 1, depending only on n, λ and Λ, such that

(7) Q1 ⊂ GN (h,Ω).

Consider

w =
min{1, δ0}

2Cεγ
(u− h),

where δ0 is the constant in Lemma 5.15, and C and γ are constants in (5) and (6).
It is easy to check that w satisfies the hypothesis of Lemma 5.15 in Ω. We now
apply Lemma 5.15 to get

|At(w, Ω) ∩Q1| ≤ Ct−µ for any t > 0.

Therefore, we have

|As(u− h,Ω) ∩Q1| ≤ Cεγµs−µ for any s > 0.

It follows that
|GN (u− h,Ω) ∩Q1| ≥ 1− C1ε

γµ ≥ 1− ε0,
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if we choose ε ∈ (0, 1) small, depending only on n, λ, Λ and ε0. With (7) we get

|G2N (u, Ω) ∩Q1| ≥ 1− ε0.

This finishes the proof. ¤

Remark 5.25. In fact, we proved Lemma 5.24 with the assumption (2) replaced
by (3).

Proof of Lemma 5.23. Step 1. For any ε0 ∈ (0, 1), there exist an M > 1,
depending only on n, λ and Λ, and an ε ∈ (0, 1), depending only on n, λ, Λ and ε0,
such that, under the assumptions of Lemma 5.23, there holds

(1) |GM (u,B8
√

n) ∩Q1| ≥ 1− ε0.

We remark that M does not depend on ε0. In fact, we have |u| ≤ 1 ≤ |x|2 in
B8

√
n \ B6

√
n. We may apply Lemma 5.24 to get (1) with Ω = B8

√
n (see Remark

5.25).
Step 2. We set, for k = 0, 1, · · · ,

A = AMk+1(u,B8
√

n) ∩Q1,

B =
(
AMk(u,B8

√
n) ∩Q1

) ∪ {
x ∈ Q1; m(fn)(x) ≥ (c1M

k)n
}
,

for some c1 > 0 to be determined, depending only on n, λ, Λ and ε0. Then there
holds

|A| ≤ ε0|B|.
The proof is identical to that of Lemma 5.15.

Step 3. We finish the proof of Lemma 5.24. We take ε0 such that

ε0M
p =

1
2
,

where M , depending only on n, λ and Λ, is as in Step 1. Hence the constants ε and
c1 depend only on n, λ, Λ and p. Define for k = 0, 1, · · · ,

αk = |AMk(u,B8
√

n) ∩Q1|,
βk = |{x ∈ Q1; m(fn)(x) ≥ (c1M

k)n
}|.

Then Step 2 implies αk+1 ≤ ε0(αk +βk) for any k = 0, 1, · · · . Hence, by an iteration
we have

αk ≤ εk
0 +

k−1∑

i=1

εk−i
0 βi.

Since fn ∈ Lp/n and the maximal operator is of strong type (p, p), we conclude
that m(fn) ∈ Lp/n and

‖m(fn)‖
L

p
n
≤ C‖f‖n

Lp ≤ C.

Then the definition of βk implies
∑

k≥0

Mpkβk ≤ C.

As before, we set

θ(x) = θ(u,B 1
2
)(x) = inf{M ;x ∈ GM (u, B 1

2
)} ∈ [0,∞] for x ∈ B 1

2
,
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and
µθ(t) = |{x ∈ B 1

2
; θ(x) > t}| for any t > 0.

The proof will be finished if we show

‖θ‖Lp(B 1
2
) ≤ C.

It is clear that

µθ(t) ≤ |At(u,B 1
2
)| ≤ |At(u, B8

√
n) ∩Q1| for any t > 0.

It suffices to prove, with the definition of αk, that∑

k≥1

Mpkαk ≤ C.

In fact, we have

∑

k≥1

Mpkαk ≤
∑

k≥1

(ε0M
p)k +

∑

k≥1

k−1∑

i=0

εk−i
0 Mp(k−i)Mpiβi

≤
∑

k≥1

2−k +
(∑

i≥0

Mpiβi

)( ∑

j≥1

2−j
) ≤ C.

This finishes the proof. ¤
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Hölder continuity in Ln-sense, 110
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