
THE BOCHNER INTEGRAL

WENJING WU

1. Basic notions

In this lecture, we present an overview of the theory of Bochner integration, a
vector-valued generalization of the theory of Lebesgue integration. Specifically, we
introduce an appropriate notion of measurability for maps on a measure space that
take values in a Banach space and develop a basic theory of integration for these
maps.

In order to develop a theory of integration, we must first decide on a class of maps to
be integrated. Since a Banach space always has plenty of bounded linear functionals,
we could easily turn vector-valued maps into scalar-valued functions by letting linear
functionals act on them.

We fix a σ-finite complete measure space (X,M, µ) and a Banach space B.

Definition 1.1. f : X → B is weakly measurable if l◦f is measurable for each l ∈ B∗.

Is this a good notion of measurability? We expect, for example, to be able to
approximate measurable maps with simple maps, just as in the theory of Lebesgue
integration. A map f : X → B is said to be simple provided it can be written
f =

∑n
i=1 χEivi, where v1, · · · , vn ∈ B, and E1, · · · , En are disjoint measurable subsets

of X with µ(Ei) <∞ for each i = 1, · · · , n.

Definition 1.2. f : X → B is strongly measurable if there exists a sequence of simple
maps {fn} such that fn → f a.e.

Definition 1.3. f : X → B is essentially separably valued if there exists a null set
N ⊂ X such that f(N c) is a separable subset of B.

Remark 1.1. Unfortunately, not all weakly measurable maps are strongly measurable.

Theorem 1.2. (Pettis measurability theorem) f : X → B is strongly measurable if
and only if it is weakly measurable and essentially separably valued.

We shall make use of the following lemma:

Lemma 1.3. Suppose that B is separable. If f : X → B is a weakly measurable map,
then x 7→ ‖f(x)‖B is measurable.

Proof. We fix a ∈ R and let

E = {x : ‖f(x)‖B ≤ a}, El = {x : |l(f(x))| ≤ a}, l ∈ B∗.
1
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If we can find a sequence{ln} in B∗ such that

E =
∞⋂
n=1

Eln ,

then the claim will follows from the weak measurability of f .
Step 1: claim: there exists a sequence {lk} in BB∗ = {l ∈ B∗ : ‖l‖ ≤ 1} such that

each l ∈ BB∗ has a corresponding subsequence of {lk} that converges pointwise to l
on B.

Let {vn} be a dense subset of B. The mapping

l 7→ ϕN(l) = (l(v1), · · · , l(vN))

send BB∗ to lN2 . Since lN2 is separable, there exists a sequence of linear functionals
{lN,k}k is BB∗ such that {ϕN(lN,k)} is dense in ϕN(BB∗). Therefore, each l ∈ BB∗

furnishes a sequence {kN}N of indices such that

‖ϕN(lN,kN )− ϕN(l)‖lN2 <
1

N
.

This, in particular, implies that

|lN,kN (vn)− l(vn)| < 1

N
,

for all 1 ≤ n ≤ N , whence
lim
N
lN,kN (vn) = l(vn),

for all n ∈ N+. Fix v ∈ B, given ε > 0, there exists vn ∈ B such that ‖vn − v‖B < ε,
by the density. Hence

|lN,kN (v)− l(v)| ≤ |lN,kN (v)− lN,kN (vn)|+ |lN,kN (vn)− l(vn)|+ |l(vn)− l(v)| < 3ε,

for N enough large.
Step 2: By Step 1, there exists a sequence {ln} in BB∗ such that⋂

‖l‖≤1

El =
∞⋂
n=1

Eln .

Step 3: By the Hahn-Banach theorem, we have

E =
⋂
‖l‖≤1

El.

�

Proof of Theorem 1.2. (⇒) Let {fn} be a sequence of simple maps on X such that
fn → f a.e. We note that simple maps are evidently weakly measurable. For each
l ∈ B∗, the continuity of l shows that

lim
n
l(fn(x)) = l(f(x)), a.e.

Since each l ◦ fn is measurable, the a.e. limit l ◦ f is also measurable, whence f is
weakly measurable.
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We now let N be the set on which fn does not converge pointwise to f . Observe
that

f(N c) ⊂
∞⋃
n=1

fn(N c),

it follows that f(N c) is separable.
(⇐) Suppose now that f is weakly measurable and essentially separably valued.

We assume without loss of generality that imf is separable. define

B̂ = span(imf),

then B̂ is separable. We fix a dense subset {vn} of B̂. For each b ∈ B̂, we define
k(N, b) to be the smallest integer 1 ≤ k(N, b) ≤ N such that

‖b− vk(N,b)‖B = min
1≤j≤N

‖b− vj‖B.

By the density of {vn},
lim
N
‖b− vk(N,b)‖B = 0.

We set s′N(b) = vk(N,b) so that s′N(b)→ b, for any b ∈ B̂. We now define

sN = s′N ◦ f,
so that sN → f pointwise. Note that imsN ⊂ {v1, · · · , vN}, whence

sN =
N∑
n=1

vnχEnN ,

where En
N = {x ∈ X : sN(x) = vn}. Therefore, showing that f can be approximated

by simple maps amounts to proving that each En
N is measurable. To this end, we

observe that

En
N = {x : vn = vk(N,f(x))}

= {x : ‖f(x)− vn‖ = min
1≤j≤N

‖f(x)− vj‖}

∩ (∩n−1p=1{x : ‖f(x)− vp‖ > min
1≤j≤N

‖f(x)− vj‖}).

We now let
φn(x) = ‖f(x)− vn‖, ϕN(x) = min

1≤j≤N
φj(x),

which are measurable function by Lemma 1.3. Therefore,

(φn − ϕN)−1({0}) = {x : ‖f(x)− vn‖ = min
1≤j≤N

‖f(x)− vj‖}

and
(φp − ϕN)−1((0,∞)) = {x : ‖f(x)− vp‖ > min

1≤j≤N
‖f(x)− vj‖}

are measurable, whence so is En
N . Since µ is σ-finite, there exists an increasing

sequence {En}n of finite measure sets whose union is the whole space. set fN =
sNχEN . This completes the proof. �
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Corollary 1.4. If {fn} is a sequence of strongly measurable maps and fn → f a.e.
Then f is strongly measurable.

Proof. By the Pettis measurability theorem, each fn is weakly measurable and essen-
tially separably valued. It is easy to see that f is also essentially separably valued.
For l ∈ B∗, l ◦ f is a a.e. limit of l ◦ fn, hence it is measurable. �

Corollary 1.5. A essentially separably valued map f : X → B is strongly measurable
if and only if f is measurable, i.e. the preimages of open subsets of B are measurable.

Proof. (⇒) Consider an arbitrary open bounded subset U of B. If {fn} is a sequence
of simple functions that converge pointwise to f , and if

Ur = {v ∈ U : d(v, ∂U) > r},
then f−1n (Ur) is measurable regardless of n and r. Fix n ∈ N+. If x ∈ ∩k≥nf−1k (Ur),
then fn(x) ∈ Ur for all n ≥ k, whence f(x) ∈ Ur ⊂ Ur/2. Therefore, f−1(Ur/2) ⊃
∩k≥nf−1k (Ur), whence

f−1(Ur/2) ⊃
⋃
n≥1

⋂
k≥n

f−1k (Ur).

This implies that

f−1(U) =
⋃
m≥1

f−1(U1/2m) ⊃
⋃
m≥1

⋃
n≥1

⋂
k≥n

f−1k (U1/m).

Conversely, if x ∈ f−1(U1/m), then f(x) ∈ U1/m. Since U1/m is open, there exists an
n ∈ N+ such that fk(x) ∈ U1/m for all k ≥ n. Therefore,

f−1(U1/m) ⊂
⋃
n≥1

⋂
k≥n

f−1k (U1/m),

and it follows that

f−1(U) =
⋃
m≥1

f−1(U1/m) ⊂
⋃
m≥1

⋃
n≥1

⋂
k≥n

f−1k (U1/m).

we conclude that f−1(U) is measurable. This completes the proof. �

2. The Bochner integral

Having studied the basic properties of measurable Banach-valued maps, we are now
in a position to study the Bochner integral.

Definition 2.1. Given a simple map f : X → B and a measurable set E ⊂ X, we
define ∫

E

fdµ =
n∑
i=1

µ(Ei ∩ E)vi ∈ B,

for f =
∑n

i=1 χEivi.

Remark 2.1. The integral is well defined, i.e. it does not depend on the particular
way of writing f , and that it is linear.
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Definition 2.2. f : X → B is Bochner integrable if there exists a sequence {fn}
of simple maps such that fn → f a.e. (hence x 7→ ‖fn − f‖B is measurable) and∫
‖fn − f‖Bdµ→ 0. In this case, we define the Bochner integral of f to be∫

E

fdµ = lim
n

∫
E

fndµ,

for any measurable set E ⊂ X.

Proposition 2.2. A strongly measurable map f : X → B is Bochner integrable if
and only if

∫
‖f‖Bdµ <∞.

Proof. (⇐) It f is strongly measurable and if
∫
‖f‖Bdµ < ∞, then we can find a

sequence {f ′n} of simple maps such that f ′n → f a.e. We set

fn = (χ‖f ′n‖B≤2‖f‖B)f ′n

for each n, so that {fn} is a sequence of simple maps such that fn → f a.e. Since
‖fn−f‖B ≤ 3‖f‖B for all n, we invoke the dominated convergence theorem to conclude
that

∫
‖fn − f‖Bdµ→ 0. �

Definition 2.3. The Lebesgue-Bochner space of order p, 1 ≤ p <∞, is the space of
all strongly measurable maps f : X → B with the condition

‖f‖Lp(B) =

(∫
‖f‖pBdµ

)1/p

<∞,

quotiented out by the almost-everywhere equivalence relation. The Lebesgue-Bochner
space of order ∞ is the space of all strongly measurable maps f : X → B with the
condition

‖f‖L∞(B) = inf{r > 0 : µ({x ∈ X : ‖f(x)‖B > r}) = 0} <∞,

quotiented out by the almost-everywhere equivalence relation.

Because we cannot make sense of or monotone convergence of vector-valued func-
tions, there are no analogues of Fatou’s lemma or the monotone convergence theorem.
We can, on the other hand, generalize the dominated convergence theorem:

Proposition 2.3. Fix 1 ≤ p < ∞, and let {fn} be a sequence in Lp(B). If fn → f
a.e. and if there exists g ∈ Lp(X) such that ‖fn‖B ≤ |g| a.e. for all n, then f ∈ Lp(B),
and

‖fn − f‖Lp(B) → 0.

Proposition 2.4. Lp(B) is complete for all 1 ≤ p ≤ ∞.

3. Furthermore

Now assume that (X, d, µ) is a metric measure space, µ is finite on bounded sets.
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Proposition 3.1. Let E ⊂ X be measurable. Let V be another Banach space. Then
i) For every f ∈ L1(B), it holds that∥∥∥∥∫

E

fdµ

∥∥∥∥
B
≤
∫
E

‖f‖Bdµ.

In particular, the map L1(B)→ B sending f to
∫
fdµ is linear and continuous.

ii) The space Lipbs(X,B) is contained and dense in L1(B).

Proof. To prove its density, it suffices to approximate just the maps of the form χEv,
where E is bounded. First choose a increasing sequence {Cn} of closed subsets of
E with µ(E\Cn) → 0, so that χCnv → χEv with respect to the L1(B)-norm, then
for each n notice that the maps (1 − kd(·, Cn))+v belong to Lipbs(X,B) and L1(B)-
converge to χCnv as k →∞. So Lipbs(X,B) is dense in L1(B). �

iii) If l : B→ V is linear continuous and f ∈ L1(B), one has that l ◦ f ∈ L1(V) and

l

(∫
E

fdµ

)
=

∫
E

l ◦ fdµ.

Lemma 3.2. Let f ∈ L1(B) be given. Suppose there exists a closed subspace V of
B such that f(x) ∈ V holds for a.e.x ∈ X. Then

∫
E
fdµ ∈ V for every E ⊂ X

measurable.

Proof. We argue by contradiction: suppose
∫
E
fdµ ∈ V c, then we can choose l ∈ B∗

with l = 0 on V and l(
∫
E
fdµ) = 1 by Hahn-Banach theorem. But the fact that

l(f(x)) = 0 holds a.e. implies l(
∫
E
fdµ) =

∫
E
l ◦ fdµ=0, giving a contradiction. �

Theorem 3.3. (Hille) Let T : B→ V be a closed operator. Consider a map f ∈ L1(B)
that satisfies f(x) ∈ D(T ) for a.e. x ∈ X and T ◦ f ∈ L1(V). Then for every E ⊂ X
measurable it holds that

∫
E
fdµ ∈ D(T ) and that

T

(∫
E

fdµ

)
=

∫
E

T ◦ fdµ.

Proof. Define the map Φ : X → B × V as Φ(x) = (f(x), (T ◦ f)(x)) for a.e. x ∈ X.
One can readily check that Φ ∈ L1(B × V). Moreover, Φ(x) ∈ Gragh(T ) for a.e.
x ∈ X, whence (∫

E

fdµ,

∫
E

T ◦ fdµ
)

=

∫
E

Φ(x)dµ ∈ Graph(T ).

This means that
∫
E
fdµ ∈ D(T ) and that T (

∫
E
fdµ) =

∫
E
T ◦ fdµ. �

Proposition 3.4. Let v : [0, 1]→ B be an absolutely continuous curve. Suppose that

v′t = lim
h→0

vt+h − vt
h

∈ B
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exists for a.e. t ∈ [0, 1]. Then the map v′ : [0, 1] → B is Bochner integrable and
satisfies

vt − vs =

∫ t

s

v′rdr

for any 0 ≤ s < t ≤ 1.

Proof. v is continuous ⇒ im(v) is separable ⇒ span(im(v)) is separable

im(v′) ⊂ span(im(v)) a.e. ⇒ v′ is essential separable valued
Define w:

w(t) =

limh→0
vt+h − vt

h
, if such limit exists,

+∞, otherwise.

Claim: w is Borel. To prove it, consider a dense subset {rn} of span(im(v)). Given
any ε, h > 0 and n ∈ N+, we define the Borel sets A(ε, n, h) and B(ε, n) as follows:

A(ε, n, h) :=

{
t :

∣∣∣∣vt+h − vth
− rn

∣∣∣∣ < ε

}
, B(ε, n) =

⋃
0<δ∈Q

⋂
h∈(−δ,δ)∩Q

A(ε, n, h).

Hence limh→0
vt+h − vt

h
exists if and only if t ∈

⋂
j∈N+

⋃
n∈N+

B(2−j, n). Now let us

call C(j, n) = B(2−j, n)\ ∪i<n B(2−j, i) for any j, n ∈ N+. Then the map fj, defined
as

wj(t) :=

{
rn. t ∈ C(j, n)

+∞, t /∈ ∪nC(j, n)

is Borel by construction. Given that wj(t) → w(t) for all t, we finally conclude
that the map w is Borel. Hence v′ is strongly measurable. Since the function ‖v′‖B
coincides a.e. with the metric speed |v̇|, which belongs to L1(0, 1), we conclude that
v′ is Bochner integrable.

Claim: vt = v0 +
∫ t
0
v′sds for any t ∈ [0, 1].

For every l ∈ B∗ it holds that t 7→ l(vt) ∈ R is absolutely continuous, with d
dt
l(vt) =

l(v′t) for a.e. t ∈ [0, 1]. Therefore

l(vt) = l(v0) +

∫ t

0

d

ds
l(vs)ds = l(v0 +

∫ t

0

v′sds),

which implies that vt = v0 +
∫ t
0
v′sds. �

Proposition 3.5. (Lebesgue Points) Let v : [0, 1]→ B be Bochner integrable. Then

lim
h→0

t+h∫
−
t−h
‖vs − vt‖Bds = 0

for a.e. t ∈ [0, 1].
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Proof. Choose a separable set V ⊂ B such that vt ∈ V for a.e. t ∈ [0, 1] and a
sequence {wn} that is dense in V . For any n, the map t 7→ ‖vt − wn‖B belongs to
L1(0, 1), hence there exists a measurable set Nn ⊂ [0, 1], with L1(Nn) = 0, such that

‖vt − wn‖B = lim
h→0

t+h∫
−
t−h
‖vs − wn‖Bds

holds for every t ∈ [0, 1]\Nn, by Lebesgue differentiation theorem. Call N := ∪nNn,
which is an L1-negligible measurable subset of [0, 1]. Therefore for every t ∈ [0, 1]\N
one has that

lim sup
h→0

t+h∫
−
t−h
‖vs − vt‖Bds ≤ lim sup

h→0

t+h∫
−
t−h
‖vs − wn‖B + ‖vt − wn‖Bds = 2‖vt − wn‖B.

By density of {wn} in V , we get the statement. �

Fix two metric measure spaces (X, dX , µ), (Y, dY , ν), with µ finite and ν finite on
bounded sets. In the following three results we will distinguish real-valued functions
from their equivalence classes up to a.e. equality: namely, we will denote by f : Y →
R the ν-measurable maps and by [f ] the elements of Lp(ν).

Proposition 3.6. Let X 3 x 7→ [fx] ∈ Lp(ν) be any µ-measurable map, 1 ≤ p <∞.

Then there exists a choice (x, y) 7→ f̃(x, y) of representatives, i.e. [f̃(x, ·)] = [fx]
holds for µ-a.e. x ∈ X, which is µ × ν-measurable, Moreover, any two such choices
agree (µ× ν)-a.e. in X × Y .

Proof. The statement is clearly verified when x 7→ [fx] is a simple map. x ∈ Ei, [fx] =

[f i] for some [f i] ∈ Lp(ν), i = 1, · · · , n. Define f̃(x, y) =
∑n

i=1 χEi(x)f i(y).
For x 7→ [fx] generic, define [fkx ] := χAk(x)[fx] for x ∈ X, where we set Ak :=
{x ∈ X : ‖[fx]‖Lp(ν) ≤ k}. Given that [fk] belongs to Lp(Lp(ν)), we can choose a
sequence of simple maps [gn] : X → Lp(ν) such that ‖[gn]− [fk]‖pLp(Lp(ν)) ≤ 2−2n for

every n. As observed in the first part of the proof, we can choose a representative
g̃n : X × Y → R for every n. Hence

µ({x ∈ X : ‖[gnx ]− [fkx ]‖pLp(ν)} > 2−n) ≤ 2−n

holds for every n. Therefore we have that

µ

( ∞⋃
n0=1

∞⋂
n=n0

{x ∈ X : ‖[gnx ]− [fkx ]‖pLp(ν) ≤ 2−n}
)

= µ(X).

Then the functions g̃n converge (µ× ν)-a.e. to some limit function f̃k : X × Y → R,

f̃k : X × Y → R is µ × ν-measurable, which is accordingly a representative of [fk].
To conclude, let us define

f̃(x, y) =
∑
k

χAk\∪i<kAi(x)f̃k(x, y)

for every (x, y) ∈ X × Y . Therefore f̃ is the desired representative of x 7→ [fx]. �
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Proposition 3.7. Consider the operator Φ : Lp(Lp(ν)) 7→ Lp(µ×ν) sending x 7→ [fx]

to (the equivalent class of) one of its representatives f̃ found in Proposition (3.6).
Then the map is an isometric isomorphism.

Proof.

‖[f·]‖pLp(Lp(ν)) =

∫
‖[fx]‖pLp(ν)dµ(x)

=

∫ ∫
|fx|pdνdµ(x)

=

∫ ∫
|f̃(x, y)|pdν(y)dµ(x)

=

∫
|f̃(x, y)|pd(µ× ν),

hence Φ is an isometry. Moreover, the map Φ is linear continuous and injective. In
order to conclude, it suffices to show that the image of Φ is dense in Lp(X × Y ).

Given any f̃ ∈ Lipbs(X×Y ), we have that limx′→x
∫
|f̃(x′, y)− f̃(x, y)|pdν(y) = 0 for

every x ∈ X, so that x 7→ f̃(x, ·) ∈ Lp(ν) is continuous and accordingly in Lp(Lp(ν)).

In other words, we proved that any f̃ ∈ Lipbs(X × Y ) belongs to the image of Φ.
Since Lipbs(X × Y ) is dense in Lp(X × Y ), we thus obtained the statement. �

Proposition 3.8. Let (x 7→ [fx]) ∈ L1(L1(ν)) and call [f̃ ] its image under Φ. Then(∫
[fx]dµ(x)

)
(y) =

∫
f̃(x, y)dµ(x)

holds for ν-a.e. y ∈ Y .

Proof. First of all, we define the linear and continuous operator T1 : L1(L1(ν)) →
L1(ν) as T1(f) :=

∫
[fx]dµ(x).

On the other hand, we define the linear and continuous operator T2 : L1(µ× ν)→
L1(ν) as T2(f̃) = [

∫
f̃(x, y)dµ(x)]. T1 and T2 ◦ Φ agree on simple maps. �

Lemma 3.9 (Easy Version of Dunford-Pettis). Assume that ν is finite. Let {fn} ⊂
L1(ν) be a sequence with the property: there exists g ∈ L1(ν) such that |fn| ≤ g
holds ν-a.e. for every n. Then there exists a subsequence {nk}k and some function
f ∈ L1(ν) such that fnk ⇀ f weakly in L1(ν) and |f | ≤ g holds ν-a.e. in Y .

Proof. For any k ∈ N, denote fkn = min{max{fn,−k}, k} and gk = min{max{g,−k}, k}.
The sequence {fkn} is bounded in L2(ν) for any fixed k ∈ N+, thus a diagonalisation
argument shows the existence of {ni} and {hk} ⊂ L2(ν) such that fkni ⇀ hk weakly

in L2(ν) for all k. In particular, fkni ⇀ hk weakly in L1(ν) for all k. Moreover, one
can readily check that

(3.1) |fkni − f
k′

ni
| ≤ |gk − gk′|

holds ν-a.e. for every i, k, k′ ∈ N. By using (3.1), the lower semicontinuity of ‖ · ‖L1(ν)

with respect to the weak topology and the dominated convergence theorem, we then
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deduce that∫
|hk − hk′ |dν ≤ lim inf

i

∫
|fkni − f

k′

ni
|dν ≤

∫
|gk − gk′ |dν → 0, as k, k′ → 0,

which grants that the sequence {hk} ⊂ L1(ν) is Cauchy. Call f ∈ L1(ν) its limit. To
prove that fni ⇀ f weakly in L1(ν) as i → +∞, observe that for any l ∈ L∞(ν) it
holds that

lim sup
i

∣∣∣∣ ∫ (fni − f)ldν

∣∣∣∣ ≤ lim sup
i

[ ∫
|fni − fkni ||l|dν +

∣∣∣∣ ∫ (hk − fkni)ldν
∣∣∣∣

+

∫
|hk − f ||l|dν

]
≤ 2‖g − gk‖L1(ν)‖l‖L∞(ν).

Finally, in order to prove the ν-a.e. inequality |f | ≤ g it is clearly sufficient to show
that ∣∣∣∣ ∫ fldν

∣∣∣∣ ≤ ∫ gldν,

for every l ∈ L∞(ν) with l ≥ 0. Since∣∣∣∣ ∫ fldν

∣∣∣∣ = lim
i

∣∣∣∣ ∫ fnildν

∣∣∣∣ ≤ lim inf
i

∫
|fni |ldν ≤

∫
gldν.

�

Remark 3.10 (Dunford-Pettis theorem). For a finite measure space (X,M, µ) and
bounded sequence {fn} in L1(X,µ), the following two properties are equivalent:

(i) {fn} is uniformly integrable over X.
(ii) Every subsequence of {fn} has a further subsequence that converges weakly in

L1(µ).
Here, a sequence {fn} in L1(µ) is uniformly integrable over X provided for each

ε > 0, there is δ > 0 such that for any measurable set E ⊂ X, if µ(E) < δ, then∫
E

|fn|dµ < ε

for all n.

Proposition 3.11. Assume that ν is finite. Let f : [0, 1]→ L1(ν) and g ∈ L1(L1;L
1(ν))

be given. Suppose that

|ft(y)− fs(y)| ≤
∫ t

s

gr(y)dr

holds for ν-a.e. y ∈ Y , for all 0 ≤ s < t ≤ 1. Then f is absolutely continuous and
L1-a.e. differentiable. Moreover, its derivative satisfies

|f ′t |(y) ≤ gt(y),

for L1 × ν-a.e. (t, y) ∈ [0, 1]× Y .
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Proof. g ∈ L1(L1(ν))  g̃ : [0, 1]× Y → R is L1 × ν-measurable
By assumption,

|ft(y)− fs(y)| ≤
∫
χ(s,t)g̃(r, y)dr ≤

∫
χ(s,t)|g̃|(r, y)dr

holds for ν-a.e. y ∈ Y , for all 0 ≤ s < t ≤ 1.
By integrating, we get that

‖ft − fs‖L1(ν) ≤
∫ t

s

∫
|g̃|(r, y)dν(y)dr ≤

∫ t

s

‖gr‖L1(ν)dr

for all 0 ≤ s < t ≤ 1.
This proves that t→ ft ∈ L1(ν) is AC.

We proceed in the following way: let us define gεt := 1
ε

∫ t+ε
t

[gr]dr for every ε > 0
and t ∈ (0, 1). Observe that

gεt(y) =
1

ε

∫ t+ε

t

[gr]dr(y) =

∫
1

ε
χ(t,t+ε)(r)g̃(r, y)dr

for ν-a.e. Therefore, we have

‖gε· ‖L1(L1×ν) =

∫ 1

0

‖[gεt ]‖L1(ν)dt

≤
∫ ∫

|g̃(r, y)|drdν(y)

= ‖g·‖L1(L1×ν).

Given any map h ∈ Cb([0, 1]× Y ), it clearly holds that hε → h in L1(L1 × ν).∫ ∣∣∣∣ ∫ 1

ε
χ(t,t+ε)(r)h̃(r, y)− h̃(t, y)dr

∣∣∣∣d(L1 × ν)→ 0, ε→ 0.

Therefore for any such h one has that

‖gε − g‖L1(L1×ν) ≤ ‖gε − hε‖L1(L1×ν) + ‖hε − h‖L1(L1×ν) + ‖g − h‖L1(L1×ν)

≤ 2‖g − h‖L1(L1×ν) + ‖hε − h‖L1(L1×ν)

Since Cb([0, 1] × Y ) is dense in L1(L1 × ν), we conclude that ‖gε − g‖L1(L1×ν) → 0.
Hence, gε is uniformly integrable. Since∣∣∣∣ft+εn − ftεn

∣∣∣∣ ≤ 1

εn

∫ t+εn

t

gr(y)dr = gεnt (y),

we know that (f·+εn − f·)/εn is uniformly integrable. By the Dunford-Pettis theorem:
up to a not relabeled subsequence, we have that (f·+εn − f·)/εn weakly converges in
L1(L1 × ν) to some function f ′ ∈ L1(L1 × ν). Moreover, simple computations yield∫ t

s

fr+εn − fr
εn

dr =
t+εn∫
−
t
frdr −

s+εn∫
−
s
frdr
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for every 0 < s < t < 1. The continuity of r 7→ fr ∈ L1(ν) grant that the right hand
side in above equality converges to ft − fs in L1(ν). On the other hand, for every
l ∈ L∞(ν) it holds that∫

l(y)

∫ t

s

fr+εn − fr
εn

dr(y)dν(y) =

∫
l(y)χ[s,t](r)

fr+εn(y)− fr(y)

εn
d(L1 × ν)(r, y),

which in turn converges to
∫
l(y)(

∫ t
s
f ′rdr)(y)dν(y) as n → ∞. In other words, we

showed that
∫ t
s
fr+εn−fr

εn
dr ⇀

∫ t
s
f ′rdr weakly in L1(ν). We get∫ t

s

f ′rdr = ft − fs,

for every 0 < s < t < 1. By the Lebesgue differential theorem, we know that f ′t is
the strong derivative in L1(ν) of the map t→ ft for a.e. t ∈ [0, 1]. �

Lemma 3.12. Let h ∈ L1(0, 1) be given. Then h ∈ W 1,1(0, 1) if and only if there
exists a function g ∈ L1(0, 1) such that

ht − hs =

∫ t

s

grdr

holds for L2-a.e. (t, s) ∈ ∆. Moreover, in such case it holds that h′ = g.

Proof. (⇒) Fix any family of convolution kernels ρε ∈ C∞c (R), i.e.
∫
ρε(x)dx = 1, the

support of ρε is contained in [−ε, ε]. Let us define hε = h ∗ ρε for all ε > 0. Choose a
sequence εn → 0 and a negligible Borel set N ⊂ [0, 1] such that hεnt → ht as n→ +∞
for every t ∈ [0, 1]\N . Given 0 < s < t < 1, for n large, we have

hεnt − hεns =

∫ t

s

(hεn)′rdr =

∫ t

s

(h′)εnr dr,

letting n→ +∞, we have

ht − hs =

∫ t

s

h′rdr,

for L2-a.e. (t, s) ∈ ∆.

(⇐) By Fubini theorem, we see that for a.e. ε > 0 it holds that ht+ε−ht =
∫ t+ε
t

grdr
for a.e. t ∈ [0, 1]. In particular, there is a sequence εn → 0 such that

ht+εn − ht =

∫ t+εn

t

grdr

for a.e. t ∈ [0, 1]. Now fix ϕ ∈ C∞c (0, 1). Then

(3.2)

∫
ϕt−εn − ϕt

εn
htdt =

∫
ht+εn−ht
εn

ϕtdt =

∫ ∫
−t+εnt grdrϕtdt.

By applying the dominated convergence theorem and Dunford-Pettis theorem, we
finally deduce by letting n → ∞ in the equation (3.2) that −

∫
ϕ′thtdt =

∫
gtϕtdt.

Hence h ∈ W 1,1(0, 1) and h′ = g. �
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