THE BOCHNER INTEGRAL

WENJING WU

1. BASIC NOTIONS

In this lecture, we present an overview of the theory of Bochner integration, a
vector-valued generalization of the theory of Lebesgue integration. Specifically, we
introduce an appropriate notion of measurability for maps on a measure space that
take values in a Banach space and develop a basic theory of integration for these
maps.

In order to develop a theory of integration, we must first decide on a class of maps to
be integrated. Since a Banach space always has plenty of bounded linear functionals,
we could easily turn vector-valued maps into scalar-valued functions by letting linear
functionals act on them.

We fix a o-finite complete measure space (X, M, i) and a Banach space B.

Definition 1.1. f : X — B is weakly measurable if lo f is measurable for each | € B*.

Is this a good notion of measurability? We expect, for example, to be able to
approximate measurable maps with simple maps, just as in the theory of Lebesgue
integration. A map f : X — B is said to be simple provided it can be written
f=>" Xgvi, wherevy,--- v, € B, and Ey, - - - , E, are disjoint measurable subsets
of X with u(E;) < oo for each i =1,--- n.

Definition 1.2. f: X — B is strongly measurable if there exists a sequence of simple
maps { fn.} such that f, — f a.e.

Definition 1.3. f : X — B is essentially separably valued if there exists a null set
N C X such that f(N€) is a separable subset of B.

Remark 1.1. Unfortunately, not all weakly measurable maps are strongly measurable.

Theorem 1.2. (Pettis measurability theorem) f : X — B is strongly measurable if
and only if it is weakly measurable and essentially separably valued.

We shall make use of the following lemma:

Lemma 1.3. Suppose that B is separable. If f : X — B is a weakly measurable map,
then = — || f(z)||p is measurable.

Proof. We fix a € R and let
E={z:|f@)ls < a}, B = {z:|l(f(x))] < a},l € B
1
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If we can find a sequence{l,,} in B* such that

E= ﬁ E,,
n=1

then the claim will follows from the weak measurability of f.

Step 1: claim: there exists a sequence {l;} in Bg- = {l € B* : ||I|| < 1} such that
each [ € Bp« has a corresponding subsequence of {l;} that converges pointwise to [
on B.

Let {v,} be a dense subset of B. The mapping

[— SON(Z) = (l(vl)v T 7Z<UN))
send Bg+ to Y. Since I is separable, there exists a sequence of linear functionals

{Inx}r is Bp+ such that {on(Ing)} is dense in ¢y (Bg+). Therefore, each | € Bp-
furnishes a sequence {ky}y of indices such that
1

lon (Unpen) — o (Dlliy < ¥

This, in particular, implies that

1
INkn (V) = L(va)| < N
for all 1 <n < N, whence
h]{]n lN,kN (vn) = l(vn)u
for all n € N;. Fix v € B, given € > 0, there exists v, € B such that ||v, — v|[p <€,
by the density. Hence
vy (V) = L) < e (V) = D (00) ] Dy (0n) = L(on) |+ [1(vn) = L(v)] < 3e,

for N enough large.
Step 2: By Step 1, there exists a sequence {l,} in Bg+ such that

o0

() E=()E..

Ml n=t
Step 3: By the Hahn-Banach theorem, we have
E= () E.
llZI<1
O
Proof of Theorem 1.2. (=) Let {f.} be a sequence of simple maps on X such that

fn — f a.e. We note that simple maps are evidently weakly measurable. For each
[ € B*, the continuity of | shows that

lim I(f,(x)) = 1(f(2)). ace.

Since each [ o f, is measurable, the a.e. limit [ o f is also measurable, whence f is
weakly measurable.
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We now let N be the set on which f,, does not converge pointwise to f. Observe
that

F(N) | falVe),

it follows that f(N°) is separable.
(<) Suppose now that f is weakly measurable and essentially separably valued.
We assume without loss of generality that imf is separable. define

B = span(imf),

then B is separable. We fix a dense subset {vn} of B. For each b € B, we define
k(N,b) to be the smallest integer 1 < k(N,b) < N such that

16 — vivp)lle = lg;iSHN 16— vj][B-

By the density of {v,},
lij{fn 16— vk pyllB = 0.

We set sy (b) = vy so that sy (b) — b, for any b € B. We now define

SN:SINOfv

so that sy — f pointwise. Note that imsy C {vy, - ,vn}, whence

N
SN = E UnXE%
n=1

where EY = {z € X : sy(z) = v,}. Therefore, showing that f can be approximated
by simple maps amounts to proving that each E}, is measurable. To this end, we
observe that

By = {7 vn = Oy fa)) }

= {z:[[f(2) = vall = min |[f(z) —v;]l}

1<j<N
M= 1/ (2) = vl > min [1f (@) = v}).

We now let

Pn(2) = [[f(x) = vall, on(2) = min ¢;(z),

1<G<N
which are measurable function by Lemma 1.3. Therefore,

(én —on) " ({0}) = {z : | f(2) — vl = min |[f(z) — v}

1<j<N
and

(6p — n) 71 ((0,00)) = {z : [|f () — vl >

are measurable, whence so is E},. Since p is o-finite, there exists an increasing
sequence {E,}, of finite measure sets whose union is the whole space. set fy =
SNXEy- This completes the proof. [l

min () = v}
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Corollary 1.4. If {f,} is a sequence of strongly measurable maps and f, — f a.e.
Then f is strongly measurable.

Proof. By the Pettis measurability theorem, each f,, is weakly measurable and essen-
tially separably valued. It is easy to see that f is also essentially separably valued.
For [ € B*, [ o f is a a.e. limit of [ o f,,, hence it is measurable. 0

Corollary 1.5. A essentially separably valued map f : X — B is strongly measurable
if and only if f is measurable, i.e. the preimages of open subsets of B are measurable.

Proof. (=) Consider an arbitrary open bounded subset U of B. If {f,,} is a sequence
of simple functions that converge pointwise to f, and if

U ={veU:dwdU)>r},

then f1(U,) is measurable regardless of n and r. Fixn € N,. If z € ﬂk>nfk_1(Ur),
then f,(z) € U, for all n > k, whence f(z) € U, C U,/2. Therefore, f~1(U,/2) D
(

Nisnfr ' (Uy), whence
f_ r/2 U ﬂ fk 7‘ .

n>1k>n
This implies that
= U ) > J U N )
m>1 m>1n>1k>n

Conversely, if € f~'(Uy ), then f(x) € Uy Since Uy y, is open, there exists an
n € N, such that fx(z) € Ul/m for all k& > n. Therefore,

n>1k>n
and it follows that

o) = ' Wym) c |J U ) £ Uym)-

m>1 m>1n>1k>n
we conclude that f~(U) is measurable. This completes the proof. O
2. THE BOCHNER INTEGRAL

Having studied the basic properties of measurable Banach-valued maps, we are now
in a position to study the Bochner integral.

Definition 2.1. Given a simple map f : X — B and a measurable set E C X, we

define
[ sdn=>uEnEw B,
E i=1

for [ = Z?Zl XE; Vi

Remark 2.1. The integral is well defined, i.e. it does not depend on the particular
way of writing f, and that it is linear.
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Definition 2.2. f : X — B is Bochner integrable if there ezists a sequence {f,}
of simple maps such that f, — f a.e. (hence x — | f, — fl|lp is measurable) and
[ Ifn = fllgdp — 0. In this case, we define the Bochner integral of f to be

[ sdn=1im [ fudn,
E " JE

for any measurable set E C X.

Proposition 2.2. A strongly measurable map f : X — B is Bochner integrable if
and only if [ ||f|lsdp < oo.

Proof. (<) It f is strongly measurable and if [ || f|gdp < oo, then we can find a
sequence {f}} of simple maps such that f; — f a.e. We set

fo = X ls<aisis) fo

for each n, so that {f,} is a sequence of simple maps such that f,, — f a.e. Since
| fo—fllB < 3||f||g for all n, we invoke the dominated convergence theorem to conclude
that [ || f, — flledpu — 0. O

Definition 2.3. The Lebesgue-Bochner space of order p, 1 < p < 0o, is the space of
all strongly measurable maps f : X — B with the condition

1/p
1 o) = ( / ||f||%1;du) < o0,

quotiented out by the almost-everywhere equivalence relation. The Lebesque-Bochner
space of order oo is the space of all strongly measurable maps f : X — B with the
condition

[flpoe@) = mf{r > 0: p({z € X : [[f(z)[[s > r}) = 0} < oo,
quotiented out by the almost-everywhere equivalence relation.

Because we cannot make sense of or monotone convergence of vector-valued func-
tions, there are no analogues of Fatou’s lemma or the monotone convergence theorem.
We can, on the other hand, generalize the dominated convergence theorem:

Proposition 2.3. Fix 1 < p < oo, and let {f,} be a sequence in LP(B). If f, — f
a.e. and if there exists g € LP(X) such that || f,|lp < |g| a.e. for alln, then f € LP(B),
and

1fn = Fllzee) — 0.

Proposition 2.4. LP(B) is complete for all 1 < p < 0.

3. FURTHERMORE

Now assume that (X, d, 1) is a metric measure space, p is finite on bounded sets.
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Proposition 3.1. Let 2 C X be measurable. Let V be another Banach space. Then
i) For every f € LY(B), it holds that

\ [ i < [ 151

In particular, the map L*(B) — B sending f to [ fdu is linear and continuous.

i1) The space Lipys(X,B) is contained and dense in L'(B).

Proof. To prove its density, it suffices to approximate just the maps of the form ygv,
where E' is bounded. First choose a increasing sequence {C,} of closed subsets of
E with u(E\C,) — 0, so that xc,v — ygv with respect to the L'(B)-norm, then
for each n notice that the maps (1 — kd(-,C,,))*v belong to Lip,s(X,B) and L'(B)-

converge to xc,v as k — 0o. So Lipys(X,B) is dense in L'(B). O

i17) If | : B — V is linear continuous and f € L'(B), one has that [o f € L'(V) and

z(/EfdM) :/Elofd,u.

Lemma 3.2. Let f € L'(B) be given. Suppose there exists a closed subspace V' of
B such that f(z) € V holds for a.ex € X. Then [, fdu € V for every E C X
measurable.

Proof. We argue by contradiction: suppose [, fdu € V¢, then we can choose | € B
with [ = 0 on V and I( [, fdu) = 1 by Hahn-Banach theorem. But the fact that
I(f(x)) = 0 holds a.e. implies I( [, fdu) = [, 1o fdu=0, giving a contradiction. [

Theorem 3.3. (Hille) Let T : B — V be a closed operator. Consider a map f € L*(B)
that satisfies f(x) € D(T) for a.e. z € X and T o f € LY(V). Then for every E C X
measurable it holds that [, fdu € D(T) and that

T(/Efdp) :/ETofdM.

Proof. Define the map ® : X — B x V as &(z) = (f(x),(T o f)(z)) for a.e. z € X.
One can readily check that ® € L'(B x V). Moreover, ®(x) € Gragh(T) for a.e.

r € X, whence
fd To fd = P(z)du € G h(T).
(/ ,u,/ ,u> / (x) L raph(T)

This means that [, fdu € D(T) and that T'( [, fdu) = [, T o fdpu. O

Proposition 3.4. Let v : [0,1] — B be an absolutely continuous curve. Suppose that

Vth — Ut
— B
h

v, = lim
h—0
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exists for a.e. t € [0,1]. Then the map v’ : [0,1] — B is Bochner integrable and

satisfies
t
vy — Vg = / vl.dr
S

Proof. v is continuous = im(v) is separable = span(im(v)) is separable
im(v") C span(im(v)) a.e. = v is essential separable valued
Define w:

forany 0 <s<t<l1.

. Vt4h — Ut
w(t) = 3 a0 =
00, otherwise.

if such limit exists,

Claim: w is Borel. To prove it, consider a dense subset {r,} of span(im(v)). Given
any €,h > 0 and n € N, we define the Borel sets A(e,n, h) and B(e,n) as follows:

<e} - U ﬂ A(e,n, h).

0<6€Q he(—6,0)NQ

Vtyh — Ut

h

_TTL

Ale,n, h) = {t:

. Vi+h — Vg
Hence lim;,_,g —————

call C(j,n) = B(277,n)\ Uic, B(277,i) for any j,n € N,. Then the map f;, defined

e teC(j,n)
wilt) = {+oo, t ¢ U,C(j,n)

exists if and only if ¢t € ;o U,en, B(277,7). Now let us

is Borel by construction. Given that w;(t) — w(t) for all ¢, we finally conclude
that the map w is Borel. Hence v’ is strongly measurable. Since the function [|v'||p
coincides a.e. with the metric speed ||, which belongs to L'(0, 1), we conclude that
v’ is Bochner 1ntegrab1e

Claim: v, = v + [ vlds for any t € [0,1].

For every [ € B* it holds that ¢ — I(v;) € R is absolutely continuous, with 4£{(v;) =
[(v)) for a.e. t € [0,1]. Therefore

¢ t
l(ve) = l(vg) + / d —I(vs)ds = (v +/ vids),
ds 0
which implies that v; = vy + f(f vids. O

Proposition 3.5. (Lebesgue Points) Let v : [0,1] — B be Bochner integrable. Then
t+h

lim JC |lvs — ve||gds = 0

h—0t=h

for a.e. t €0,1].
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Proof. Choose a separable set V' C B such that v, € V for a.e. ¢t € [0,1] and a
sequence {w,} that is dense in V. For any n, the map ¢ — ||v; — w,||p belongs to
L*(0,1), hence there exists a measurable set N,, C [0, 1], with £'(N,,) = 0, such that

t+h
|vy — wy || = lim f |vs — wy||pds

holds for every ¢ € [0, 1]\ N,,, by Lebesgue differentiation theorem. Call N := U, N,
which is an £'-negligible measurable subset of [0, 1]. Therefore for every ¢ € [0, 1]\ N
one has that

t+h t+h
limsup F |lvs — vellgds <limsup § [lvs — wyllp + ||v; — wy|lsds = 2||vy — w,||p.
h—0 t=h h—0 t—h
By density of {w,} in V', we get the statement. O

Fix two metric measure spaces (X, dx, u), (Y,dy,v), with u finite and v finite on
bounded sets. In the following three results we will distinguish real-valued functions
from their equivalence classes up to a.e. equality: namely, we will denote by f:Y —
R the v-measurable maps and by [f] the elements of L”(v).

Proposition 3.6. Let X 3 x — [f,] € LP(v) be any p-measurable map, 1 < p < oo.
Then there exists a choice (z,y) — f(x,y) of representatives, i.e. [f(x,-)] = [fa]
holds for p-a.e. x € X, which is p X v-measurable, Moreover, any two such choices
agree (p X v)-a.e. in X X Y.

Proof. The statement is clearly verified when x — [f,] is a simple map. = € E;, [f,] =
/7] for some [f1] € I(v), i = 1, ,n. Define f(z,y) = S0, x,(2) fi(y).

For x w [f,] generic, define [f*] := xa,(7)[f.] for * € X, where we set Ay :=
{z € X : ||[f)llrrey < k}. Given that [f¥] belongs to LP(LP(v)), we can choose a
sequence of simple maps [¢"] : X — LP(v) such that ||[¢"] — [f’“]||Lp L) S 272 for
every n. As observed in the first part of the proof, we can choose a representative
g": X xY — R for every n. Hence

p{z € X o llgz] = [0 > 27" <27
holds for every n. Therefore we have that
w(U e X2 2 <273 ) = ),
no=1n=ng

Then the functions " converge (1 X v)-a.e. to some limit function fF X xY 5 R,
ff: X xY — R is u x v-measurable, which is accordingly a representative of [f¥].
To conclude, let us define

Z XAk\Uz<kA (I y)

for every (x,y) € X x Y. Therefore f is the desired representative of z — fz]. O
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Proposition 3.7. Consider the operator ® : LP(LP(v)) — LP(uxv) sending x — [f.]
to (the equivalent class of) one of its representatives f found in Proposition (3.6).
Then the map is an isometric isomorphism.

Proof.

I iy = [ N dnto)

= [ [1tpivinte)
~ [ [ 1fwratdu)

— [l

hence ® is an isometry. Moreover, the map ® is linear continuous and injective. In
order to conclude, it suffices to show that the image of ® is dense in LP(X x Y).

Given any f € Lipys(X x Y), we have that lim, ., [ |f(2/,y) — f(x,y)[Pdv(y) = 0 for
every z € X, so that z — f(x,-) € LP(v) is continuous and accordingly in LP(LP(v)).
In other words, we proved that any f € Lip,(X x V) belongs to the image of ®.
Since Lipys(X x Y') is dense in LP(X x Y'), we thus obtained the statement. O

Proposition 3.8. Let (z — [f,]) € LY(L'(v)) and call [f] its image under ®. Then
(/[fxdﬂ ) /fxydu

holds for v-a.e. y € Y.
Proof. First of all, we define the linear and continuous operator Ty : L'(L'(v)) —
L) as Ti(f) = [ fldpz).

On the other hand, we define the linear and continuous operator Ty : L*(u x v) —
L' (v) as To(f ff z,y)du(z)]. Ty and Ty o ® agree on simple maps. O

Lemma 3.9 (Easy Version of Dunford-Pettis). Assume that v is finite. Let {f,} C
L'(v) be a sequence with the property: there exists g € L'(v) such that |f,] < g
holds v-a.e. for every n. Then there exists a subsequence {ny}r and some function

f € L' (v) such that f,, — f weakly in L*(v) and |f| < g holds v-a.e. inY.

Proof. For any k € N, denote f* = min{max{f,, —k}, k} and g = min{max{g, —k}, k}.
The sequence {f*} is bounded in L?(v) for any fixed & € N, thus a diagonalisation
argument shows the existence of {n;} and {h;} C L*(v) such that f¥ — h;, weakly

in L*(v) for all k. In particular, f} — hy weakly in L'(v) for all k. Moreover, one
can readily check that

(3.1) 5 — 5 < |ge — g

holds v-a.e. for every i, k, k" € N. By using (3.1), the lower semicontinuity of | - || z1 )
with respect to the weak topology and the dominated convergence theorem, we then
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deduce that
/|hk — hy|dv < hm,inf/ IfE — fEdv < /\gk — gp|dv — 0, as k, k' — 0,

which grants that the sequence {h;} C L'(v) is Cauchy. Call f € L'(v) its limit. To

prove that f,, — f weakly in L'(v) as i — +o00, observe that for any [ € L™ (v) it

holds that
o

<timsup | [ 17, = £hlllav + | [~ 5piav
+ [ - f||l|dV}

Finally, in order to prove the v-a.e. inequality |f| < g it is clearly sufficient to show

that
'/fldu g/gldl/,

for every [ € L*°(v) with [ > 0. Since
< lim.inf/ | fo, [ldv < /gldu.

‘/fldz/ zlim’/fmldu

Remark 3.10 (Dunford-Pettis theorem). For a finite measure space (X, M, 1) and
bounded sequence { f,} in L'(X, ), the following two properties are equivalent:

(1) {fn} is uniformly integrable over X.

(17) Every subsequence of {f,} has a further subsequence that converges weakly in
Li(p).

Here, a sequence {f,} in L'(u) is uniformly integrable over X provided for each
e > 0, there is 6 > 0 such that for any measurable set E C X, if u(E) < 0, then

/ | fuldp < €
E

Proposition 3.11. Assume that v is finite. Let f : [0,1] — L*(v) and g € L' (Ly; L' (v))
be given. Suppose that

< 2|lg = grllLr @)l zoe ()

O

for all n.

| fe(y) — fs(y)] S/ 9-(y)dr

holds for v-a.e. y €Y, for all0 < s <t < 1. Then f is absolutely continuous and
Li-a.e. differentiable. Moreover, its derivative satisfies

fil(y) < g:(y),
for Ly x v-a.e. (t,y) €[0,1] x Y.
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Proof. g € L*(L*(v)) ~ g :[0,1] x Y — R is £; X v-measurable
By assumption,

hy) = L) < / Neni(ry)dr < / el y)dr
holds for v-a.e. y € Y, forall 0 <s <t < 1.

By integrating, we get that

t t
I = folliao < / / 31(r, ) du(y)dr < / 19 2y dr

forall0 < s <t <1.
This proves that ¢t — f; € L'(v) is AC.

We proceed in the following way: let us define g; := % LHG
and t € (0,1). Observe that

gi(y) = % /t e[gr]dr(y) = / %xu,m)(?“)f/(?% y)dr

for v-a.e. Therefore, we have

[g-]dr for every € > 0

1
T - / gl 1t
0

< [ [1atry)laravty

= lgllzrcx)-

Given any map h € Cy([0,1] x Y), it clearly holds that h¢ — hin L'(L; x v).

/ ‘/ %X(t’t“)(rwr’y)—ﬁ(t,y)dr

Therefore for any such h one has that

d(Ly xv) = 0,e = 0.

19° = gllLrcixwy < Mg = R NlLrccxwy + 10 = Pl <) + 19 = RllLic, <)
< 2llg = Allpicixw) + 1A = Bl <o)

Since Cy([0,1] x Y') is dense in L'(£; X v), we conclude that ||g° — g|r1(z,x) — 0.
Hence, ¢¢ is uniformly integrable. Since

f €n 1 ten €
Jorer = Jo < —/ g-(y)dr = g;" (),
t

€n €n

we know that (f.i., — f.)/€, is uniformly integrable. By the Dunford-Pettis theorem:
up to a not relabeled subsequence, we have that (f... — f.)/e, weakly converges in
LY (£, X v) to some function f' € L'(L; x v). Moreover, simple computations yield

+

t _ t+en ST€n
/ Jrven = Jr frdr = f frdr— F fudr
5 €n t

S
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for every 0 < s <t < 1. The continuity of r — f,. € L'(v) grant that the right hand
side in above equality converges to f; — f, in L'(v). On the other hand, for every
[ € L*>(v) it holds that

/ I(y) / fr“z—n_frdr(y)cﬁ/(y) = / l(y)X[s,t](r)f”E"(y) —fr(y)d<£1 X )(r,y),

€n

which in turn converges to fl(y)(f; fldr)(y)dv(y) as n — oo. In other words, we
showed that fst f”*i’—::frdr — fst fldr weakly in L'(v). We get

[wa=ﬁ—ﬁ,

for every 0 < s < t < 1. By the Lebesgue differential theorem, we know that f; is
the strong derivative in L'(v) of the map t — f; for a.e. t € [0, 1]. O

Lemma 3.12. Let h € L*(0,1) be given. Then h € WY1(0,1) if and only if there
exists a function g € L*(0,1) such that

t
hy — hg :/ grdr

holds for L*-a.e. (t,s) € A. Moreover, in such case it holds that h' = g.

Proof. (=) Fix any family of convolution kernels p. € C2°(R), i.e. [ pc(z)dz =1, the
support of p, is contained in [—e, €]. Let us define h® = h x p, for all € > 0. Choose a
sequence €, — 0 and a negligible Borel set N C [0, 1] such that h;" — h; as n — +00
for every t € [0,1]\N. Given 0 < s <t < 1, for n large, we have

e e = [y = [ atyear
letting n — 400, we have 8 S
hy — hy = /t W dr,
for L%-a.e. (t,5) € A. S

(<) By Fubini theorem, we see that for a.e. € > 0 it holds that h;,.—h; =
for a.e. t € [0, 1]. In particular, there is a sequence €, — 0 such that

t+en
hiye, — hy = / grdr
t

for a.e. t € [0,1]. Now fix ¢ € C2°(0,1). Then
—€n h en—ht €
€

En n

t+e

. gedr

By applying the dominated convergence theorem and Dunford-Pettis theorem, we
finally deduce by letting n — oo in the equation (3.2) that — [ @ihdt = [ gipdt.
Hence h € Wh1(0,1) and 1/ = g. O
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