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Abstract. We construct some irreducible representations of the Leavitt path algebra of
an arbitrary quiver. The constructed representations are associated to certain algebraic
branching systems. For a row-finite quiver, we classify algebraic branching systems, to
which irreducible representations of the Leavitt path algebra are associated. For a certain
quiver, we obtain a faithful completely reducible representation of the Leavitt path algebra.
The twisted representations of the constructed ones under the scaling action are studied.

Keywords. Quiver, Leavitt path algebra, irreducible representation, left-infinite path,
algebraic branching system.

2010 Mathematics Subject Classification. 16G20, 16E50, 16D90.

1 Introduction

Let k be a field and let Q be an arbitrary quiver. The notion of the path algebra
kQ of Q is well known in representation theory ([11]). Unlike this, the Leavitt
path algebra Lk.Q/ of Q with coefficients in k is relatively new, which is intro-
duced in [1, 7, 8]. Leavitt path algebras generalize the important algebras studied
by Leavitt in [19, 20], and are algebraic analogues of the Cuntz–Krieger C �-alge-
bras C �.Q/ ([16, 23]). Recent research indicates that the Leavitt path algebra of
a quiver captures certain homological properties of both the path algebra and its
Koszul dual; see [6, 14, 24].

The representation theory of the Leavitt path algebra Lk.Q/ is studied in the
papers [5, 6, 17]. In [6], the authors prove that the category of finitely presented
Lk.Q/-modules is equivalent to a quotient category of the corresponding category
of kQ-modules. This result is extended in [24] via a completely different method.
Using the notion of algebraic branching system, a construction ofLk.Q/-modules
is given in [17]. Moreover, some sufficient conditions are given to guarantee the
faithfulness of the constructed modules.
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550 X.-W. Chen

We are interested in simple modules, or equivalently, irreducible representa-
tions of Leavitt path algebras. Recall that irreducible representations that can be
embedded in the Leavitt path algebra itself are just minimal left ideals. These rep-
resentations are classified in [9, 10]. This classification plays an important role in
the study of the socle series of Leavitt path algebras; see [4].

In this paper, we construct some irreducible representations of the Leavitt path
algebra Lk.Q/ of an arbitrary quiver Q. More precisely, we prove the following
theorem.

Recall thatLk.Q/ is generated by ei , ˛ and ˛� for all vertices i and arrows ˛ in
the quiverQ. By a left-infinite path, we mean an infinite path which is unbounded
on the left. For a left-infinite path p and an arrow ˛, we denote by p˛ their con-
catenation if p starts at the terminating vertex of ˛. We denote the action of an
algebra on modules by “.”.

Theorem. LetQ be an arbitrary quiver. Let F be the linear span of all left-infinite
paths in Q and N the linear span of all finite paths in Q that terminate at a sink.
Then the following statements hold.

(1) F ˚N is a left Lk.Q/-module by ei :p D p if p starts at i and ei :p D 0 oth-
erwise, ˛:p D p0 if p D p0˛ and ˛:p D 0 otherwise, ˛�:p D p˛ if p starts
at the terminating vertex of ˛ and ˛�:p D 0 otherwise.

(2) The representation F ˚N is a direct sum of irreducible representations, each
of which occurs with multiplicity one.

The construction of the modules is inspired by a construction of representations
of Cuntz algebras in [22]. The irreducible subrepresentations contained in F re-
late to the point modules studied in [24, 25], while the latter plays an important
role in non-commutative algebraic geometry. The irreducible subrepresentations
contained in N are isomorphic to minimal left ideals of Lk.Q/ that is generated
by idempotents corresponding to sinks of the quiver Q; these representations are
known, at least for countable quivers ([9, 10]).

The paper is structured as follows. We recall some basic notions and introduce
some terminology in Section 2. The main construction is given in Section 3, where
the above theorem is contained in Theorems 3.3 and 3.7. In Section 4, we draw
some consequences from the constructed representations. Based on results in [10],
we point out that for a countable quiver, the constructed irreducible representations
contain all minimal left ideals of the Leavitt path algebra; see Proposition 4.3. We
prove the faithfulness of the representation F ˚N for certain quivers; see Propo-
sition 4.4. We relate irreducible subrepresentations of F to point modules; see
Proposition 4.9. Section 5 is devoted to relating the constructed representations to
algebraic branching systems in [17]. For a row-finite quiver, we classify algebraic
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branching systems whose associated representations are irreducible. It turns out
that irreducible representations associated to algebraic branching systems are nec-
essarily isomorphic to the ones constructed in Section 3; see Theorem 5.4. In the
final section, we study the twisted representations of the constructed irreducible
representations under the scaling action. This allows us to obtain new irreducible
representations and prove the faithfulness of some completely reducible represen-
tation; see Theorem 6.2 and Proposition 6.3.

2 Preliminaries

We recall basic notions related to quivers and Leavitt path algebras, and introduce
some terminology for later use. The references for quivers are [11, Chapter III]
and [1], and for Leavitt path algebras are [1, 2, 8, 26].

2.1 Quivers and left-infinite paths

Recall that a quiver Q D .Q0;Q1I s; t/ consists of a set Q0 of vertices, a set Q1
of arrows and two maps s; t WQ1 ! Q0, which assign an arrow ˛ to its starting and
terminating vertices s.˛/ and t .˛/, respectively. A quiver is also called a directed
graph. A vertex where there is no arrow starting is called a sink, and a vertex where
there are infinitely many arrows starting is called an infinite emitter. A vertex is
regular if it is neither a sink nor an infinite emitter. The quiver Q is regular (resp.
row-finite) provided that each vertex is regular (resp. not an infinite emitter).

A (finite) path in the quiver Q is a sequence p D ˛n � � �˛2˛1 of arrows with
t .˛i / D s.˛iC1/ for 1 � i � n � 1; in this case, the path p is said to have length n,
denoted by l.p/ D n. We denote s.p/ D s.˛1/ and t .p/ D t .˛n/. We identify an
arrow with a path of length one, and associate to each vertex i a trivial path ei of
length zero. A nontrivial path p with the same starting and terminating vertex is
an oriented cycle. An oriented cycle of length one is called a loop.

Let k be a field. We denote by Qn the set of paths of length n, and by kQn the
vector space over k with basis Qn. Here, we identify a vertex i with the corre-
sponding trivial path ei . The path algebra is defined as kQ D

L
n�0 kQn, whose

multiplication is given as follows: for two paths p and q, if s.p/ D t .q/, then the
product pq is the concatenation of paths; otherwise, set the product pq to be zero.
We write the concatenation of paths from the right to the left.

The path algebra kQ is naturally N-graded. Observe that for a vertex i and
a path p, pei D ıi;s.p/p and eip D ıi;t.p/p. Here, ı is the Kronecker symbol.
In particular, ¹ei j i 2 Q0º is a set of pairwise orthogonal idempotents in kQ.
Observe that the k-algebra kQ is not necessarily unital unlessQ has finitely many
vertices.
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We need infinite paths in a quiver. A left-infinite path in Q is an infinite se-
quence p D � � �˛n � � �˛2˛1 of arrows with t .˛i / D s.˛iC1/ for all i � 1. We set
s.p/ D s.˛1/. Denote by Q1 the set of left-infinite paths in Q. For example, for
an oriented cycle q, we have a left-infinite path q1 D � � � q � � � qq; such a left-
infinite path is said to be cyclic. We remark that the set Q1 endowed with the
product topology plays an important role in symbolic dynamics ([21]).

For a left-infinite path p and n � 1, denote by

��n.p/ D ˛n � � �˛2˛1 and �>n.p/ D � � �˛nC2˛nC1

the two truncations. Observe that ��n.p/ lies in Qn and that �>n.p/ is a left-
infinite path. Hence, a left-infinite path p is cyclic if and only if there exists some
n � 1 such that p D �>n.p/. We set ��0.p/ D es.p/ and �>0.p/ D p.

Two left-infinite paths p and q are tail-equivalent, denoted by p � q, pro-
vided that there exist n and m such that �>n.p/ D �>m.q/; compare [25, Sec-
tion 1.4]. This is an equivalence relation on Q1. We denote by �Q1 the set of
tail-equivalence classes, and for a path p denote the corresponding class by Œp�.

A left-infinite path p is rational provided that there exists n � 1 such that
p � �>n.p/. This is equivalent to the condition that p is tail-equivalent to a cyclic
path. In this case, p � q1 for a simple oriented cycle q. Here, an oriented cycle
is simple if it is not a power of a shorter oriented cycle. Otherwise, the path p is
called irrational. This is equivalent to the condition that for each pair .n;m/ of
distinct natural numbers, we have �>n.p/ ¤ �>m.p/.

If a left-infinite path p is rational (resp. irrational), then the corresponding
class Œp� is called a rational class (resp. an irrational class); such classes form a
subset �Qrat

1 (resp. �Qirr
1) of �Q1. Then we have a disjoint union �Q1 D �Qrat

1 [
�Qirr
1.

2.2 Leavitt path algebras

LetQ be a quiver and k a field. Consider the set of formal symbols ¹˛� j ˛ 2 Q1º.
The Leavitt path algebra Lk.Q/ of Q with coefficients in k is a k-algebra given
by generators ¹ei ; ˛; ˛� j i 2 Q0; ˛ 2 Q1º subject to the following relations:

(0) eiej D ıij ei for all i 2 Q0,

(1) et.˛/˛ D ˛ D ˛es.˛/ for all ˛ 2 Q1,

(2) es.˛/˛� D ˛� D ˛�et.˛/ for all ˛ 2 Q1,

(3) ˛ˇ� D ı˛;ˇet.˛/ for all ˛; ˇ 2 Q1,

(4)
P
¹˛2Q1js.˛/Diº

˛�˛ D ei for all regular vertices i 2 Q0.

The relations (3) and (4) are called the Cuntz–Krieger relations. Here, we em-
phasize that k-algebras are not required to be unital.
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Observe that Lk.Q/ is naturally Z-graded such that deg ei D 0, deg˛ D 1 and
deg˛� D �1. There is a natural graded algebra homomorphism �W kQ! Lk.Q/

such that �.ei / D ei and �.˛/ D ˛. Here, we abuse notation: for a path p 2 kQ
we denote its image �.p/ still by p. The algebra homomorphism � is injective; see
[18, Lemma 1.6] or Proposition 4.1.

For a path p D ˛n � � �˛2˛1, we set p� D ˛�1˛
�
2 � � �˛

�
n in Lk.Q/. By conven-

tion, e�i D ei for i 2 Q0. Indeed, there is an algebra anti-automorphism

.�/�WLk.Q/! Lk.Q/

with the property that .ei /� D ei , .˛/� D ˛� and .˛�/� D ˛ for all vertices i and
arrows ˛ of the quiver Q.

The following fact is immediate from relation (3). Observe that for finite paths
p; q in Q, p�q D 0 if t .q/ ¤ t .p/.

Lemma 2.1 ([26, Lemma 3.1]). Let p; q; 
 and � be finite paths in Q such that
t .p/ D t .q/ and t .
/ D t .�/. Then in Lk.Q/ we have

.p�q/.
��/ D

8̂̂̂̂
<̂
ˆ̂̂:
.
 0p/�� if 
 D 
 0q;
p�� if q D 
;
p�.q0�/ if q D q0
;
0 otherwise.

Here, 
 0 and q0 are some nontrivial paths in Q.

We have the following immediate consequence; see [1, Lemma 1.5] or [26, Cor-
ollary 3.2].

Corollary 2.2. The Leavitt path algebra Lk.Q/ is spanned by the following set:

¹p�q j p; q are finite paths in Q with t .p/ D t .q/º:

By Corollary 2.2, a nonzero element u in Lk.Q/ can be written in its normal
form

u D

lX
iD1

�ip
�
i qi ; (2.1)

where l � 1, each �i 2 k is nonzero, and the pi and qi are paths in Q with
t .pi / D t .qi /. We require in addition that the pairs .pi ; qi / are pairwise distinct.
The normal form in general is not unique because of relation (4).

Inspired by the paragraphs following [1, Lemma 1.7], we define a numerical
invariant �.u/ of u as the smallest natural number n0 such that in one of its normal
forms u D

Pl
iD1 �ip

�
i qi , we have l.pi / � n0 for all i . For example, �.u/ D 0 if
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and only if u can be written as u D
Pl
iD1 �iqi for some paths qi , if and only if u

lies in the image of �W kQ! Lk.Q/; compare [26, Definition 3.3].
The Leavitt path algebra Lk.Q/ in general is not unital. However, note that the

set ¹ei j i 2 Q0º of pairwise orthogonal idempotents is a set of local units in the
following sense: for a nonzero element u D

Pl
iD1 �ip

�
i qi in its normal form, set

x D
X

¹j2Q0 j jDs.pi / for some iº

ej and y D
X

¹j2Q0 j jDs.qi / for some iº

ej ;

then we have u D xuy. In particular, there exists some j 2 Q0 such that eju ¤ 0.
For details, we refer to [1, Lemma 1.6] or [26, Section 3.2].

3 The construction of irreducible representations

In this section, we construct two classes of irreducible representations of Leavitt
path algebras, and show that they are pairwise non-isomorphic.

3.1 The representation F

Let k be a field and Q be a quiver. We denote by F the vector space over k with
a basis given by the set Q1 of left-infinite paths in Q. For each tail-equivalence
class Œp� in �Q1, denote by FŒp� the subspace of F spanned by the set ¹q j q 2 Œp�º.
Then we have

F D
M

Œp�2 �Q1
FŒp�:

We will construct a representation of the Leavitt path algebra Lk.Q/ on F .
We point out that our construction is inspired by a construction in the proof of
[22, Theorem II].

For each vertex i 2 Q0, define a linear map Pi WF ! F such that

Pi .p/ D ıi;s.p/p

for all p 2 Q1.
For each arrow ˛ 2 Q1, define a linear map S˛WF ! F such that

S˛.p/ D ı˛;˛1�>1.p/

for p D � � �˛2˛1 2 Q1. We define another linear map S�˛ WF ! F such that

S�˛ .p/ D ıt.˛/;s.p/ p˛ D ıt.˛/;s.˛1/ p˛:

Here, we recall by definition that s.p/ D s.˛1/.

Proposition 3.1. There is an algebra homomorphism �WLk.Q/! Endk.F / such
that �.ei / D Pi , �.˛/ D S˛ and �.˛�/ D S�˛ for all i 2 Q0 and ˛ 2 Q1.
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Proof. To see the existence of such a homomorphism, it suffices to show that the
linear maps Pi , S˛ and S�˛ satisfy the defining relations of the Leavitt path algebra.

For (0), we observe that Pi ı Pj D ıijPi .
For (1), we have that for p D � � �˛2˛1 2 Q1,

Pt.˛/S˛.p/ D ıt.˛/;s.˛2/ ı˛;˛1�>1.p/ D ı˛;˛1�>1.p/ D S˛.p/:

Here, we use that if ˛ D ˛1, then t .˛/ D s.˛2/. Similarly, we have

S˛ ı Ps.˛/ D S˛:

Similar arguments prove the relation (2).
For (3), we have that

S˛S
�
ˇ .p/ D ı˛;ˇ ıt.ˇ/;s.p/�>1.pˇ/ D ı˛;ˇ ıt.˛/;s.p/p D ı˛;ˇPt.˛/.p/:

For (4), we have thatX
¹˛2Q1 j s.˛/Diº

S�˛S˛.p/ D
X

¹˛2Q1 j s.˛/Diº

S�˛ .ı˛;˛1�>1.p// D ıi;s.p/p D Pi .p/:

Then we are done.

Denote the action of Lk.Q/ on F by “.”, that is, a:u D �.a/.u/ for a 2 Lk.Q/
and u 2 F .

Lemma 3.2. Let p be a left-infinite path in Q and let 
 and � be finite paths of
length n and m, respectively. Consider p as an element in F . Then the following
statements hold.

(1) 
:p ¤ 0 if and only if 
 D ��n.p/. Indeed, ��n.p/:p D �>n.p/.

(2) ��:p ¤ 0 if and only if s.p/ D t .�/, in which case �:p D p�.

(3) If t .
/ D t .�/, then .��
/:p ¤ 0 if and only if 
 D ��np, in which case one
has .��
/:p D �>n.p/�.

Proof. For an arrow ˛, we observe that ˛:p D p0 if p D p0˛ for some left-infinite
path p0; otherwise, ˛:p D 0. Then statement (1) follows. For (2), we observe that
˛�:p D p˛ if s.p/ D t .˛/; otherwise, ˛�:p D 0. The last statement follows from
(1) and (2).

For a nonzero element u in F , its normal form means the expression

u D

lX
iD1

�ipi ;

where each �i 2 k is nonzero and the left-infinite paths pi are pairwise distinct.
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The following result yields the first class of irreducible representations. In par-
ticular, the representation F turns out to be completely reducible.

Theorem 3.3. Consider the representation F of Lk.Q/. Then the following state-
ments hold.

(1) For each Œp� 2 �Q1, the subspace FŒp� � F is an irreducible subrepresenta-
tion, which satisfies that EndLk.Q/.FŒp�/ ' k.

(2) Two representations FŒp� and FŒq� are isomorphic if and only if Œp� D Œq�.

Proof. To see that FŒp� � F is a subrepresentation, it suffices to notice that for
each left-infinite path p we have p � �>1.p/ and p � p˛ for all arrows ˛ with
t .˛/ D s.p/.

To prove that the representation FŒp� is irreducible, take a nonzero subrepre-
sentation U � FŒp�, and a nonzero element u D

Pl
iD1 �ipi in U . Here, the ex-

pression of u is its normal form. Take n large enough such that all the ��n.pi / are
pairwise distinct. Then by Lemma 3.2 (1) we have

��n.p1/:u D ��n.p1/:.�1p1/ D �1�>n.p1/:

This proves that p0 D �>n.p1/ lies in U . We claim that each p0 2 Œp� lies in U .
Then we are done. We observe that p0 � p0. Assume that �>r.p0/ D �>s.p0/.
The equalities �>s.p0/ D ��s.p0/:p0 and p0 D .��r.p0//�:�>r.p0/ imply that p0

lies in U .
Consider a nonzero homomorphism �WFŒp� ! FŒq�. Since FŒp� is irreducible,

� is injective. Let p0 2 Œp� and write

�.p0/ D

lX
iD1

�iqi

in its normal form. We claim that l D 1 and q1 D p0. Otherwise, we may as-
sume that q1 ¤ p0. Take n large enough such that all the ��n.qi / are pairwise
distinct and that x D ��n.q1/ ¤ ��n.p0/. Then by Lemma 3.2(1) x:p0 D 0 and
x:�.p0/ D x:.�1q1/ D �1�>n.q1/ ¤ 0. A contradiction!

The above claim proves (2). Moreover, we have shown that a nonzero endo-
morphism �WFŒp� ! FŒp� necessarily satisfies that �.p0/ D �p0 p0 with �p0 2 k
for all p0 2 Œp�. It remains to see that all the �p0 are the same, and then we have
EndLk.Q/.FŒp�/ ' k. Take p0 and p00 in Œp�. We assume that �>r.p0/ D �>s.p00/.
We deduce from the equalities

�>s.p
00/ D ��s.p

00/:p00 and p0 D .��r.p
0//�:�>r.p

0/

that �p0 D �p00 .
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Example 3.4. Let n � 1 and let Q D Rn be the quiver consisting of one vertex
and n loops. Then the Leavitt path algebra L.n/ D Lk.Rn/ is the Leavitt algebra
of order n ([19, 20]).

Consider the case n D 1. The algebra L.1/ is isomorphic to the Laurent poly-
nomial algebra kŒx; x�1�. Here, the set Q1 consists of a single element, and then
the representation F is irreducible. In fact, F is one-dimensional, on which x acts
as the identity.

Consider the case n � 2. Then the set �Q1 of tail-equivalence classes is un-
countable. So we obtain a uncountable family of irreducible representations FŒp�
for the Leavitt algebra L.n/.

3.2 The representation N

Let k be a field and let Q be a quiver. Denote by Qs0 the set consisting of all sinks
in Q. Denote by N the vector space over k with a basis given by all the finite
paths in Q that terminate at a sink. For each sink i , denote by Ni the subspace
of N spanned by paths p with t .p/ D i . Then we have

N D
M
i2Qs0

Ni :

We will define a representation of Lk.Q/ on N . The construction is similar to
the one in the previous subsection.

For each vertex i 2 Q0, define a linear map Pi WN ! N such that

Pi .p/ D ıi;s.p/p

for finite paths p terminating at some sink.
For each arrow ˛ 2 Q1, define a linear map S˛WN ! N as follows:

S˛.p/ D 0 if l.p/ D 0; and S˛.p/ D ı˛;˛1˛n � � �˛2

for p D ˛n � � �˛2˛1. We define another linear map S�˛ WN ! N such that

S�˛ .p/ D ıt.˛/;s.p/p˛ D ıt.˛/;s.˛1/ p˛:

Proposition 3.5. There is an algebra homomorphism WLk.Q/! Endk.N / such
that  .ei / D Pi ,  .˛/ D S˛ and  .˛�/ D S�˛ for all i 2 Q0 and ˛ 2 Q1.

Proof. The proof is similar to the proof of Proposition 3.1. We note that in verify-
ing relation (4), we use that Pi .ej / D 0 for i regular and j 2 Qs0.

The following lemma is similar to Lemma 3.2.

Lemma 3.6. Let p be a finite path in Q that terminates at a sink, and let 
 and �
be finite paths of length n and m respectively. Consider p as an element in N .
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Then the following statements hold.

(1) 
:p ¤ 0 if and only if 
 D ��n.p/. Indeed, ��n.p/:p D �>n.p/.

(2) ��:p ¤ 0 if and only if s.p/ D t .�/, in which case �:p D p�.

(3) If t .
/ D t .�/, then .��
/:p ¤ 0 if and only if 
 D ��np, in which case one
has .��
/:p D �>n.p/�. �

The following result gives us the second class of irreducible representations
of the Leavitt path algebra. In particular, the representation N turns out to be
completely reducible.

Theorem 3.7. Consider the representation N of Lk.Q/. Then the following state-
ments hold.

(1) For each i 2 Qs0, the subspace Ni � N is an irreducible subrepresentation,
which satisfies that EndLk.Q/.Ni / ' k.

(2) Two representations Ni and Nj are isomorphic if and only if i D j .

(3) For any Œp� 2 �Q1 and i 2 Qs0, FŒp� is not isomorphic to Ni .

Proof. The subspace Ni � N is clearly a subrepresentation, and it is generated
by the trivial path ei .

For the irreducibility of Ni , take a nonzero subrepresentation U � Ni and a
nonzero element

u D

lX
jD1

�jpj 2 U

in its normal form. That is, each �j 2 k is nonzero, the pj are pairwise dis-
tinct, and t .pj / D i for all j . We choose the normal form such that p1 is longest
among all the pj (such p1 need not be unique). Then by Lemma 3.6 (1) we have
p1:u D �1ei . Therefore ei 2 U , from which we infer U D Ni . Here, we use “.”
to denote the action of Lk.Q/ on N .

Take a nonzero homomorphism �WNi ! Nj , which is necessarily injective.
Write �.ei / D

Pl
rD1 �rpr in its normal form. We claim that l D 1 and p1 D ei .

This will imply i D j and EndLk.Q/.Ni / ' k. To prove the claim, we assume
the converse. Then we may assume that p1 is longest among all the pr . In par-
ticular, l.p1/ � 1. Then by Lemma 3.6 (1) p1:ei D 0 and p1:�.ei / D �1ej ¤ 0.
A contradiction!

For (3), it suffices to show that each homomorphism �WNi ! FŒp� satisfies
�.ei / D 0, whence � D 0. Otherwise, write the nonzero element �.ei / in its nor-
mal form: �.ei / D

Pl
jD1 �jpj . Here, all the pj lie in Œp�. Take n large enough

such that all the truncations ��n.pj / are pairwise distinct. Then ��n.p1/:ei D 0
and by Lemma 3.2 (1) ��n.p1/:�.ei / D �1�>n.p1/ ¤ 0. This is absurd.
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Remark 3.8. We will show that the irreducible representations Ni are isomorphic
to certain minimal left ideals of the Leavitt path algebra; see Proposition 4.3 (2).

4 Minimal left ideals, a faithfulness result and point modules

In this section, we draw some consequences from the constructed representations
F and N . We show that for a countable quiver, the constructed irreducible repre-
sentations contain all minimal left ideals of the Leavitt path algebra. We prove that
for a certain quiver, the representation F ˚N is faithful. We relate the irreducible
representations FŒp� to point modules.

4.1 Some consequences

The following result extends slightly a result contained in the proof of [24, The-
orem 5.4]. Recall that Lk.Q/ D

L
n2ZLk.Q/n is naturally Z-graded such that

the natural algebra homomorphism �W kQ! Lk.Q/ is graded. We point out that
the injectivity of � is known; see [18, Lemma 1.6].

Proposition 4.1. Let Q be an arbitrary quiver. Fix m; n � 0. Then the following
subset of Lk.Q/n�m,

¹p�q j p; q are paths in Q with t .p/ D t .q/; l.p/ D m and l.q/ D nº; (4.1)

is linearly independent. In particular, the algebra homomorphism �W kQ! Lk.Q/

is injective.

Proof. The second statement is an immediate consequence of the first one, once
we notice that the homomorphism � preserves the gradings, and that ¹q j l.q/ D nº
is a basis of kQn. Here, we use that �.q/ D e�

t.q/
q.

Suppose .pi ; qi /, 1 � i � l , are pairwise distinct pairs of paths such that each
p�i qi is in the set (4.1). Consider an element u D

Pl
iD1 �ip

�
i qi in Lk.Q/ with

each �i 2 k nonzero. We will show that u is nonzero. Consider the terminating
vertex t .q1/ of q1. Then we are in two cases. In the first case, there is a path p with
s.p/ D t .q1/ and t .p/ a sink. Consider the element pq1 in Nt.p/. By Lemma 3.6
we have that

u:.pq1/ D
X

¹i j1�i�l; qiDq1º

�ippi :

Observe that the paths ppi in the summation are pairwise distinct. Then we have
u:.pq1/ ¤ 0, which implies that u ¤ 0. In the second case, there is a left-infinite
path p with s.p/ D t .q1/. Consider the element pq1 in FŒp�. Then the same argu-
ment as in the first case will work.
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560 X.-W. Chen

The following observation in the finite case is implicitly contained in [3, Sec-
tion 3]. Recall that for a quiver Q, Qs0 denotes the set of all sinks in Q.

Proposition 4.2. Let Q be an arbitrary quiver. Then the subset

¹p�q j p; q are finite paths in Q with t .p/ D t .q/ 2 Qs0º � Lk.Q/ (4.2)

is linearly independent.

Proof. It suffices to show that each element u D
Pl
iD1 �ip

�
i qi in Lk.Q/ is non-

zero, where each �i 2 k is nonzero and the pairs .pi ; qi / are pairwise distinct with
each p�i qi in the set (4.2). Assume that q1 is the shortest among the paths qi (such
q1 need not be unique). Consider the element q1 2 N . Then by Lemma 3.6 we
have

u:q1 D �1p1 C
X

�ipi ;

where the summation runs over 2 � i � l with qi D q1. Observe that these pi are
different from p1. It follows that u:q1 ¤ 0. This proves that u is nonzero.

4.2 Minimal left ideals

We show that some of the irreducible representations constructed in Section 3 are
isomorphic to minimal left ideals of the Leavitt path algebra. For this, we recall
some terminology from [9, 10]. Let Q be a quiver. A vertex i is called linear if
there is at most one arrow starting at i and there are no oriented cycles going
through i . A linear vertex i is a line point if t .p/ is a linear vertex for every path p
that starts at i .

There are two cases for a line point. A line point i is infinite if there is a left-
infinite path p starting at i ; this unique path is called the tail of i . A line point i is
finite if there is a path from i to a sink; the unique sink is called the end of i . We
remark that a sink is a finite line point, whose end is itself.

For a vertex i of Q, we consider the left ideal Lk.Q/ei generated by the idem-
potent ei . This left ideal is viewed as a representation of Lk.Q/; it is nonzero by
Proposition 4.1.

Proposition 4.3. Let Q be a quiver. Then the following statements hold.

(1) Let i be an infinite line point with tail p. Then there is an isomorphism of
representations

Lk.Q/ei ' FŒp�:

(2) Let i be a finite line point with end i0. Then there is an isomorphism of repre-
sentations

Lk.Q/ei ' Ni0 :
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We consider a countable quiver Q, that is, both the sets of vertices and arrows
are countable. By [10, Theorem 4.13], up to isomorphism, all minimal left ideals
ofLk.Q/ are of the formLk.Q/ei for some line point i . Therefore, the irreducible
representations constructed in Section 3 contain all minimal left ideals of Lk.Q/.
It seems that a similar result holds for an arbitrary quiver; see [4, Proposition 1.9
and Theorem 1.10].

Proof. (1) For each left-infinite path q in Œp�, take n.q/ � 0 smallest such that
�>n.q/.q/ D �>m.p/ for some m � 0; such an m D m.q/ is unique, since the tail
of an infinite line point is not cyclic. We observe that for each pair .n;m/ such
that �>n.q/ D �>m.p/, we have .��n.q//���m.p/ D .��n.q/.q//���m.q/.p/ in
Lk.Q/; here, we use relation (4) in Section 2.2 and the fact that each vertex ap-
pearing in p is linear.

Define a linear map FŒp� ! Lk.Q/ei , sending q to .��n.q/.q//���m.q/.p/. It
is a homomorphism of representations by direct verification. Since the homomor-
phism sends p to ei , by the irreducibility of FŒp� we deduce that it is an isomor-
phism.

(2) Let q be the unique path from i to its end i0. Then we have an isomorphism
Lk.Q/ei0 ! Lk.Q/ei sending x to xq; compare [9, Lemma 2.2]. The inverse
is given by the multiplication of q� from the right. Here, we apply relations (3)
and (4) in Section 2.2 to have qq� D ei0 and q�q D ei .

Define a linear map Ni0 ! Lk.Q/ei0 sending p to p�. It sends ei0 to ei0 D e
�
i0

.
The map is a homomorphism of representations by direct verification. Then it
follows from the irreducibility of Ni0 that the map is an isomorphism.

4.3 A faithfulness result

Recall that a quiver Q is row-finite, provided that there is no infinite emitter in Q.
A left-infinite path p which is not cyclic is said to be non-cyclic. This is equivalent
to the condition that p ¤ �>n.p/ for any n � 1.

We point out that a part of the argument in the following proof resembles the
one given in the first step in the proof of [17, Theorem 4.2].

Proposition 4.4. Let Q be a row-finite quiver. Assume that for each vertex i in Q,
there exists either a path which starts at i and terminates at a sink, or a non-cyclic
left-infinite path which starts at i . Then the representation F ˚N is faithful.

Proof. We will show that for each nonzero element u 2 Lk.Q/, its action on
F ˚N is nonzero. Write

u D

lX
iD1

�ip
�
i qi
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in its normal form; see (2.1). Moreover, there exists j 2 Q0 such that eju ¤ 0;
see Section 2.2. Observe that if the action of eju on F ˚N is nonzero, so does u.
So we replace u by eju. This amounts to the requirement that in the normal form
of u, s.pi / D j for all i .

We use induction on the numerical invariant �.u/ introduced in Section 2.2. For
the case �.u/ D 0, we have that u D

Pl
iD1 �iqi and t .qi / D j . Without loss of

generality, we assume that q1 is shortest among all the qi . Consider the vertex j .
Then we are in two cases. In the first case, there is a path p with s.p/ D j and
t .p/ a sink. Then .pu/:.pq1/ D �1ej ¤ 0. Here, we view pq1 2 N . This shows
that pu acts nontrivially on N , and so does u.

In the second case, there is a non-cyclic left-infinite path p with s.p/ D j . We
view pq1 2 F . Then

u:.pq1/ D

lX
iD1

�iqi :.pq1/:

Observe that for i ¤ 1 we have qi :.pq1/ ¤ 0 if and only if qi D ��ni .p/q1 with
ni D l.qi / � l.q1/, in which case qi :.pq1/ D �>ni .p/ and ni � 1. Consequently,
by Lemma 3.2 we have

u:.pq1/ D �1p C
X

�i�>ni .p/;

where the summation runs over all i ¤ 1 such that qi D ��ni .p/q1. Since the left-
infinite path p is non-cyclic, in particular, p ¤ �>m.p/ for any m � 1, we have
u:.pq1/ ¤ 0. This implies that u acts nontrivially on F .

For the general case, we assume that �.u/ > 0. This implies that j D s.pi / is
not a sink. By assumption, the vertex j is not an infinite emitter, and then the
vertex j is regular. By relation (4) in Section 2.2, we have

u D eju D
X

¹˛2Q1 j s.˛/Dj º

˛�˛u:

In particular, there is an arrow ˛ with v D ˛u ¤ 0. Observe by relation (3) that
�.v/ < �.u/. Hence by the induction hypothesis, the action of v on F ˚N is
nonzero. This forces that the action of u is also nonzero.

Remark 4.5. (1) The conditions on the quiver are necessary for the proposition.
Consider the quiverQ D R1 in Example 3.4, that is, it consists of a vertex with one
loop. The representation F is one dimensional, and N is zero. The representation
F ˚N is not faithful.

(2) One may apply [15, Theorem 8] to simplify the argument above. Indeed, [15,
Theorem 8] states that every two-sided ideal ofLk.Q/ is generated by elements of
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the form u D ei C
Pl
jD1 �j cj , where i is a vertex inQ and each cj is an oriented

cycle passing through i , �j 2 k. Hence to prove the proposition above, it suffices
to show that such u acts nontrivially on F ˚N .

We apply Proposition 4.4 to a finite quiverQ without oriented cycles to recover
[3, Proposition 3.5]. For a sink i of Q, denote by ni the number of paths that
terminate at i . We denote by Mn.k/ the full n � n matrix algebra over k.

Proposition 4.6. Let Q be a finite quiver without oriented cycles. Then there is an
isomorphism of algebras

Lk.Q/ '
Y
i2Qs0

Mni .k/:

Proof. The Leavitt path algebraLk.Q/ is finite dimensional by Corollary 2.2, and
the corresponding representation F is zero. By Proposition 4.4 the finite dimen-
sional representation N is faithful and completely reducible. It follows that the
Leavitt path algebra Lk.Q/ is semi-simple and ¹Ni j i 2 Q0 is a sinkº is a com-
plete set of pairwise non-isomorphic irreducible representations of Lk.Q/, each
of which has its endomorphism algebra isomorphic to k; see Theorem 3.7. Ob-
serve that dimk Ni D ni . Then the above isomorphism is a direct consequence of
the Wedderburn–Artin Theorem for semisimple algebras.

Remark 4.7. The above isomorphism can be proved directly by combining Lem-
ma 2.1 and Proposition 4.2. Indeed, the Leavitt path algebra Lk.Q/ has a basis
¹p�q j p; q are finite paths in Q with t .p/ D t .q/ 2 Qs0º.

4.4 Point modules

Let p D � � �˛2˛1 be a left-infinite path in Q. We will relate the irreducible repre-
sentation FŒp� in Section 3.1 to point modules in [24, 25].

Recall that the path algebra kQ is graded by the length of paths. We define
a graded kQ-module Mp associated to p as follows. As a graded vector space,
Mp D

L
n�0 kzn with a basis ¹zn j n � 0º such that deg zn D n. The kQ-action

is defined such that for each vertex i , ei :zn D zn if s.˛nC1/ D i , and ei :zn D 0
otherwise; for each arrow ˛ we have ˛:zn D znC1 if ˛ D ˛nC1, and ˛:zn D 0
otherwise. This graded kQ-module Mp is known as the point module associated
to p; see [24, 25].

Recall that the Leavitt path algebra Lk.Q/ is Z-graded, and the natural algebra
homomorphism �W kQ! Lk.Q/ preserves the grading. Then Lk.Q/˝kQMp
becomes a graded Lk.Q/-module. We are interested in this module.

A left-infinite path p D � � �˛2˛1 is regular if each vertex s.˛i / is regular.
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Lemma 4.8. The module Lk.Q/˝kQMp is linearly spanned by the set

Sp D ¹

�
˝ zm j m � 0; 
 finite paths with t .
/ D t .˛m/º;

where we identify ˛0 with es.p/. If p is regular, then Lk.Q/˝kQMp is linearly
spanned by

S 0p D ¹

�
˝ zm 2 Sp j 
 does not end with ˛m if m � 1º:

Proof. Observe that the kQ-module Mp is generated by z0. By Corollary 2.2,
Lk.Q/˝kQMp is spanned by elements of the form 
��˝ z0 D 


� ˝ �:z0 with
t .
/ D t .�/. Observe that inMp, �:z0 ¤ 0 if and only if � D ��m.p/, wherem is
the length of �; indeed, ��m.p/:z0 D zm. This proves the first statement.

Suppose p is regular. We will show that each element in Sp lies in S 0p. Consider

� ˝ zm in Sp such that m � 1 and 
 D ˛m
 0 for some path 
 0. Since the vertex
s.˛m/ is regular, by relation (4) in Section 2.2

es.˛m/ ˝ zm�1 D
X

¹˛2Q1 j s.˛/Ds.˛m/º

˛�˛ ˝ zm�1

D

X
¹˛2Q1 j s.˛/Ds.˛m/º

˛� ˝ ˛:zm�1

D ˛�m ˝ zm;

where the last equality uses the fact that ˛:zm�1 D 0 for each arrow ˛ ¤ ˛m and
˛m:zm�1 D zm. Then we have


� ˝ zm D 

0�˛�m ˝ zm�1 D 


0�es.˛m/ ˝ zm�1 D 

0�
˝ zm�1:

By induction on m, we infer that 
� ˝ zm lies in S 0p.

Consider the set

¹.n; q/ j n 2 Z; q 2 Q1 such that �>m�n.q/ D �>m.p/ for some mº: (4.3)

Let Fp be the vector space spanned by this set. Then Fp is naturally graded by
means of deg.n; q/ D n.

We endow Fp with a graded Lk.Q/-module structure: for each vertex i and
arrow ˛ in Q we have that ei :.n; q/ D .n; Pi .q//, ˛:.n; q/ D .nC 1; S˛.q// and
˛�:.n; q/ D .n � 1; S�˛ .q//. Here, the operators Pi , S˛ and S�˛ are defined in Sec-
tion 3.1, and we identify .n; 0/ with the zero element in Fp. Similar to Proposi-
tion 3.1, this defines a Lk.Q/-module structure on Fp.

The following result relates the irreducible representation FŒp� to the graded
module Fp, and then to the point module Mp. In particular, if p is regular and
irrational, we have an isomorphism Lk.Q/˝kQMp ' FŒp� of Lk.Q/-modules.
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Proposition 4.9. Keep the notation as above. Then we have the following state-
ments.

(1) There is a surjective homomorphism of graded Lk.Q/-modules

Lk.Q/˝kQMp ! FpI

it is an isomorphism if p is regular.

(2) There is a surjective homomorphism �pWFp ! FŒp� of Lk.Q/-modules send-
ing .n; q/ to q; �p is an isomorphism if and only if p is irrational.

Proof. For (1), observe a graded kQ-module homomorphism Mp ! Fp by send-
ing zm to .m; �>m.p//. This homomorphism extends to a graded Lk.Q/-module
homomorphism �pWLk.Q/˝kQMp ! Fp.

Consider the element 
� ˝ zm in Sp with n the length of 
 . We have

�p.

�
˝ zm/ D 


�:.m; �>m.p// D .m � n; �>m.p/
/:

For each .n; q/ in the set (4.3), take m to be the minimal nonnegative integer such
that q D �>m.p/
 for a path 
 with length m � n. By the identity above, we have
�p.


� ˝ zm/ D .n; q/, proving that �p is surjective.
Assume that p is regular. We define a linear map  pWFp ! Lk.Q/˝kQMp

by  p.n; q/ D 
� ˝ zm. Then the composite  p ı �p is the identity on the set S 0p.
By Lemma 4.8,  p ı �p is the identity map. Hence, the homomorphism �p is
injective, which proves (1).

Statement (2) is obvious. For the last statement, it suffices to recall the following
fact: a left-infinite path p is irrational if and only if for each left-infinite path q in
its tail-equivalence class Œp�, there is a unique integer n such that

�>m�n.q/ D �>m.p/

for some m.

Remark 4.10. If p is regular, then the isomorphisms �p and  p imply that S 0p in
Lemma 4.8 is a linear basis of Lk.Q/˝kQMp.

5 Algebraic branching systems

In this section, we relate the irreducible representations constructed in Section 3
to certain algebraic branching systems in [17]. This somehow is expected by the
authors; see the second paragraph in [17, p. 259]. For a row-finite quiver, we clas-
sify algebraic branching systems whose associated representations of the Leavitt
path algebra are irreducible. It turns out that all these irreducible representations
are isomorphic to the ones in Section 3.
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Let Q be an arbitrary quiver. Following [17, Definition 2.1], a Q-algebraic
branching system consists of a set X , and a family of its subsets

¹Xi ; X˛ j i 2 Q0; ˛ 2 Q1º

together with a bijection �˛WXt.˛/ ! X˛ for each arrow ˛, where the subsets are
subject to the following constraints:

(1) Xi \Xj D ¿ D X˛ \Xˇ for i ¤ j , ˛ ¤ ˇ,

(2) X˛ � Xs.˛/ for each ˛ 2 Q1,

(3) Xi D
S
¹˛2Q1js.˛/Diº

X˛ for each regular vertex i .

We will denote the above Q-algebraic branching system simply by X . We point
out that this notion is closely related to dynamical systems with partitions studied
in [13].

AQ-algebraic branching system X is saturated provided that X D
S
i2Q0

Xi ;
it is said to be perfect, if, in addition, (3) also holds when i is an infinite emitter. For
a row-finite quiver Q, every saturated Q-algebraic branching system is perfect.

Let X and Y be two Q-algebraic branching systems. A map f WX ! Y is a
morphism of Q-algebraic branching systems if f .Xi / � Yi and f .X˛/ � Y˛ for
all vertices i and arrows ˛ of Q, and f is compatible with the bijections inside
X and Y . Two Q-algebraic branching systems are isomorphic provided that there
exist mutually inverse morphisms between them.

Examples of Q-algebraic branching systems are given in [17, Theorem 3.1].
We are interested in the following examples, both of which are perfect.

Example 5.1. (1) Let p be a left-infinite path in Q. Consider its tail-equivalence
class Œp� as a set. It is a Q-algebraic branching system in the following manner:
Œp�i D ¹q 2 Œp� j s.q/ D iº and Œp�˛ D ¹q 2 Œp� j q starts with ˛º. The bijection
�˛W Œp�t.˛/ ! Œp�˛ sends q to q˛.

(2) Let i 2 Qs0 be a sink. Consider the set Ni consisting of paths in Q that
terminate at i . It is a Q-algebraic branching system in a similar manner.

We recall that one may associate a representation of the Leavitt path algebra
to each Q-algebraic branching system. Let X be a Q-algebraic branching sys-
tem. Denote by M.X/ the vector space consisting of all functions from X to k,
which vanish on all but finitely many elements in X . For each x 2 X , denote by
�x WX ! k the characteristic function. That is, �x.y/ D ıx;y for all x and y inX .
Then ¹�x j x 2 Xº is a basis of M.X/.

The module M.X/ in the following lemma differs from the module in [17, The-
orem 2.2], but is the same as the one mentioned in [17, Remark 2.3]. Here, we
adapt the notation for our convenience.
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Lemma 5.2. Let X be a Q-algebraic branching system. Then there is a represen-
tation of Lk.Q/ on M.X/ as follows:

(1) for each i 2 Q0, ei :�x D �x if x 2 Xi , otherwise ei :�x D 0,

(2) for each ˛ 2 Q1, ˛:�x D ���1˛ .x/ if x 2 X˛, otherwise ˛:�x D 0,

(3) for each ˛ 2 Q1, ˛�:�x D ��˛.x/ if x 2 Xt.˛/, otherwise ˛�:�x D 0.

For a Q-algebraic branching system X , the above representation M.X/ of
Lk.Q/ is said to be the associated representation to X . Observe that X is sat-
urated if and only if the associated representation M.X/ is unital, that is,

Lk.Q/:M.X/ DM.X/:

Let f WX ! Y be a morphism of Q-algebraic branching systems. Assume that
X is perfect. Then f induces a homomorphism of associated representations

M.f /WM.X/ �!M.Y /;

which sends �x to �f .x/. Here, we use the facts that

f �1.Yi / D Xi and f �1.Y˛/ D X˛

for each vertex i and arrow ˛ of Q, which is derived directly from the perfectness
of X . The homomorphism M.f / is an isomorphism if and only if so is f .

The following observation shows that the representations constructed in Sec-
tion 3 are associated to the Q-algebraic branching systems in Example 5.1.

Proposition 5.3. LetQ be a quiver. Use the notation as above. Then there are iso-
morphisms of representations

FŒp� 'M.Œp�/ and Ni 'M.Ni /

for each left-infinite path p and sink i .

Proof. The linear map FŒp� !M.Œp�/ sending q to �q is an isomorphism of rep-
resentations. This is done by direct verification. The same map works for Ni .

We infer from Section 3 and Proposition 5.3 that the representations associated
to algebraic branching systems in Example 5.1 are irreducible. In some cases, these
are all the irreducible representations constructed in this way.

Theorem 5.4. Let Q be a quiver and X be a perfect Q-algebraic branching sys-
tem. Then the associated representation M.X/ is irreducible if and only if X is
isomorphic to Œp� or Ni , where p is a left-infinite path and i is a sink in Q.
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This result implies that for a row-finite quiver Q, all the irreducible representa-
tions associated to some saturated Q-algebraic branching systems are isomorphic
to the ones constructed in Section 3.

The following example shows that the perfectness condition in the above theo-
rem is necessary.

Example 5.5. Let Q be the following quiver consisting of two vertices ¹1; 2º and
infinitely many arrows from 1 to 2:

1
1
�! 2:

Consider the Q-algebraic branching system X D ¹�º consisting of a single ele-
ment, such that X1 D X , X2 D ¿ D X˛ for each arrow ˛. Then X is saturated
but not perfect; thus it is isomorphic to none of theQ-algebraic branching systems
in Example 5.1. However, the associated representation M.X/ is one-dimensio-
nal and therefore irreducible. We refer to [2, Lemma 1.2] for the structure of the
Leavitt path algebra Lk.Q/.

We make some preparation for the proof of Theorem 5.4. The argument here
resembles the one in the proof of [13, Theorem 1]. Let X be a perfectQ-algebraic
branching system, and let x 2 X . If x 2 Xi for a non-sink i , then there exists
a unique arrow ˛ such that s.˛/ D i and x 2 X˛; thus there exists a unique
y 2 Xt.˛/ such that �˛.y/ D x. We repeat this argument for y. Then we infer
that for each element x 2 X there are two cases as follows.

In the first case, there exists a unique left-infinite path p.x/ D � � �˛n � � �˛2˛1,
such that there exist xm 2 Xs.˛mC1/ for m � 0, such that

x D x0 and �˛m.xm/ D xm�1 for m � 1.

Here, we notice that Xs.˛m/ D Xt.˛m�1/ for m � 1.
In the second case, there exists a unique path p.x/ D ˛l � � �˛2˛1 terminating

at a sink such that there exist xm 2 Xs.˛mC1/ for 0 � m � l � 1, and xl 2 Xt.˛l /,
satisfying that x D x0 and �˛m.xm/ D xm�1 for 1 � m � l . The length l of the
path p.x/ might be zero; this happens if and only if x 2 Xi for a sink i .

Recall that
Q1 D

[
Œp�2 �Q1

Œp�

is a disjoint union. Then it is naturally aQ-algebraic branching system as in Exam-
ple 5.1 (1). Similarly, the disjoint union N D

S
i2Qs0

Ni is a Q-algebraic branch-
ing system, and so is the disjoint union Q1 [N .

We have the following observation, whose proof is routine.
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Lemma 5.6. Let X be a perfect Q-algebraic branching system. Then the map

fX WX �! Q1 [N; fX .x/ D p.x/

is a morphism of Q-algebraic branching systems.

We are in a position to prove Theorem 5.4.

Proof of Theorem 5.4. The “if” part follows from Proposition 5.3 and Section 3.
For the “only if” part, assume that the associated representation M.X/ is irre-
ducible. The morphism in Lemma 5.6 induces a nonzero homomorphism

M.fX /WM.X/!M.Q1 [N/I

it is injective, since M.X/ is irreducible. Observe from Proposition 5.3 that

M.Q1 [N/ ' F ˚N :

Recall from Section 3 that the representation F ˚N is completely reducible
and each irreducible summand occurs with multiplicity one. It follows that any
irreducible subrepresentation of F ˚N equals FŒp� or Ni for some left-infinite
path p or a sink i . From these we infer that the image of the injective homo-
morphism M.fX / equals FŒp� or Ni . This implies that the image of fX equals
Œp� or Ni , and then as Q-algebraic branching systems, X is isomorphic to Œp�
or Ni .

6 Twisted representations

In this section we study representations F a
Œp�

and N a
i of Lk.Q/ that are obtained

by twisting the irreducible representations in Section 3 with automorphisms that
scale the actions of the arrows. In particular, we obtain new irreducible represen-
tations for rational tail-equivalence classes. In the end, we prove the faithfulness
of some completely reducible representation.

Let Q be an arbitrary quiver. Denote by k� the multiplicative group of k, and
by .k�/Q1 the product group. Its elements are of the form a D .a˛/˛2Q1 with
each a˛ 2 k�, and its multiplication is componentwise. For each a, there is an
algebra automorphism 
aWLk.Q/! Lk.Q/ such that 
a.ei / D ei , 
a.˛/ D a˛˛,
and 
a.˛

�/ D a�1˛ ˛�. This gives rise to an injective group homomorphism


 W .k�/
Q1
! Aut.Lk.Q//:

This is called the (generalized) scaling action; compare [12, Definition 2.13].
For an element a D .a˛/˛2Q1 and a nontrivial path p D ˛n � � �˛2˛1 in Q, set

ap D a˛n � � � a˛2a˛1 . The element a is called p-stable if ap D 1.
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Recall that for a representationM of an algebraA and an automorphism � ofA,
we have the twisted representation M � as follows: M � DM as vector spaces,
and the action is given by a:m� D .�.a/:m/� . Here, for an element m in M , we
denote bym� the corresponding element inM � . Moreover, the representationM �

is irreducible if and only if M is.
For the Leavitt path algebra, we write the twisted representation M 
a simply

as M a. Observe that M 1 DM .
Recall the irreducible representations FŒp� and Ni constructed in Section 3. We

are interested in their twisted representations F a
Œp�

and N a
i .

Proposition 6.1. Let Q be a quiver, and let a;b 2 .k�/Q1 . We use the notation as
above. Then the following statements hold.

(1) For Œp� 2 �Q1 an irrational class, the representations F a
Œp�

and F b
Œp�

are iso-
morphic.

(2) For Œq1� 2 �Q1 a rational class with q a simple oriented cycle, the represen-
tations F a

Œq1�
and F b

Œq1�
are isomorphic if and only if ab�1 is q-stable.

(3) For i 2 Qs0 a sink, the representations N a
i and N b

i are isomorphic.

Proof. To show (1), it suffices to prove that

FŒp� ' F a
Œp�

for every a 2 .k�/Q1 . Fix p0 2 Œp�. Then for each q 2 Œp�, we may choose natural
numbers n and m such that �>n.q/ D �>m.p0/. Since the left-infinite path p0
is irrational, the number n �m is unique for q. For the same reason, the scalar
�.q/ WD .a��n.q//

�1a��m.p0/ is independent of the choice of n and m. Then we
have the required isomorphism �WFŒp� ! F a

Œp�
, which sends q 2 Œp� to �.q/q.

One proves (3) with a similar argument.
To see (2), it suffices to prove that

FŒq1� ' F a
Œq1�

if and only if a is q-stable. For the “only if” part, we observe that every isomor-
phism

�WFŒq1� ! F a
Œq1�

satisfies �.q1/ D �q1 for some nonzero scalar �; consult the third paragraph in
the proof of Theorem 3.3. Then

�.q1/ D �.q:q1/ D q:�.q1/ D �aqq
1:

This implies that aq D 1.
Finally, we consider the “if” part. For each p 2 Œq1�, take the smallest natural

number n0 such that �>n0.p/ D q
1, and set �.p/ D .a��n0 .p//

�1; in addition,
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set �.q1/ D 1. Define a linear map �WFŒq1� ! F a
Œq1�

sending p to �.p/p. It is
routine to verify that this is an isomorphism of representations. Here, one needs
for the verification to use that a is q-stable.

To summarize, we list all the irreducible representations of the Leavitt path
algebra that are constructed in this paper. To this end, we fix for each rational
class Œp� 2 �Qrat

1 a simple oriented cycle q D ˛n � � �˛2˛1 with p � q1. For each
� 2 k�, set a�;q D .a˛/˛2Q1 such that a˛1 D � and a˛ D 1 for ˛ ¤ ˛1.

Set F �
Œp�
D F

a�;q
Œp�

. By Proposition 6.1 (2) we have that for each a 2 .k�/Q1 ,

F a
Œp� ' F

aq
Œp�
I

moreover, F �
Œp�

is isomorphic to F �0

Œp�
if and only if � D �0. Observe that we have

F 1
Œp�
D FŒp�.

We obtain a list of pairwise non-isomorphic irreducible representations for the
Leavitt path algebra Lk.Q/. The representations are parameterized by the disjoint
union �Qirr

1 [ .k
� � �Qrat

1/ [Q
s
0.

Theorem 6.2. Let Q be a quiver and let k be field. Then the following set,

¹FŒp� j Œp� 2 �Qirr
1º [ ¹F

�
Œp� j � 2 k

�; Œp� 2 �Qrat
1º [ ¹Ni j i 2 Q

s
0º;

consists of pairwise non-isomorphic irreducible representations of Lk.Q/.

Proof. It suffices to show that these representations are pairwise non-isomorphic.
This follows from Theorem 3.3 (2), Theorem 3.7 (3) and Proposition 6.1 (2). Here,
we need to use the same argument in Theorem 3.3 to show that

F �
Œp� ' F �0

Œp0� H) Œp� D Œp0�:

Moreover, F �
Œp�

is neither isomorphic to FŒp0� with Œp0� irrational, nor isomorphic
to Ni with i a sink. We omit the details.

We close this paper with a faithfulness result on the following completely re-
ducible representation:

S D
M

Œp�2 �Qirr
1

FŒp�
M

�2k�; Œp�2 �Qrat
1

F �
Œp�

M
i2Qs0

Ni :

This partially remedies the counterexample in Remark 4.5.

Proposition 6.3. Let Q be a row-finite quiver, and let k be an infinite field. Then
the representation S of Lk.Q/ is faithful.
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Proof. We observe that a modified argument in the proof of Proposition 4.4 will
work. It suffices to show that any nonzero element u D

Pl
iD1 �iqi in Lk.Q/ acts

nontrivially on S . Here, u is in its normal form (see (2.1)), and �.u/ D 0, that is,
all the qi are paths in Q. We may assume that t .qi / D j for some j 2 Q0 and
all 1 � i � l . Without loss of generality, we assume that q1 is shortest among all
the qi .

By Proposition 4.4 and its proof, we may assume that there is a cyclic path
p D q1 starting at j with q a simple oriented cycle.

Consider pq1 as an element in F �
Œp�

for some �. Consider

I1 D ¹i j 2 � i � l; qi D q
miq1 for some mi � 1º;

I2 D ¹2; 3; : : : ; lº n I1:

Here, l.q/mi D l.qi / � l.q1/ for i 2 I1. Then by a variant of Lemma 3.2, we have

u:.pq1/ D �1p C
X
i2I1

�i qi :.pq1/C
X
i2I2

�i qi :.qq1/

D

�
�1 C

X
i2I1

�i�
mi

�
p C

X
i2I2

�i qi :.qq1/:

We observe that in the summation indexed by I2, qi :.qq1/ is either zero or a
multiple of a path in F �

Œp�
that is different from p. Since the field k is infinite,

we may take � 2 k� such that

�1 C
X
i2I1

�i�
mi ¤ 0:

In this case, we have that in F �
Œp�

, u:.pq1/ ¤ 0. We are done.

Remark 6.4. For a finite field k, the representation S might not be faithful. Such
an example is given by Q D R1 in Example 3.4, the quiver consisting of one
vertex with one loop.

Acknowledgments. The author thanks the referee for a very helpful report that
improves the exposition. In particular, the referee encourages the author to include
Section 4.4 and points out the reference [15].
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